Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers
Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...
2014-12-31
Various approaches are used to evaluate the capacity of saline aquifers to store CO 2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO 2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO 2 storage capacity estimation can strongly exceed the cumulative CO 2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to themore » flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO 2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO 2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO 2 storage without water extraction, and highlights the need for any CO 2 storage estimate to specify whether it is intended to represent CO 2 storage capacity with or without water extraction.« less
CO2 storage capacity estimation: Methodology and gaps
Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.
2007-01-01
Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales-in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers. ?? 2007 Elsevier Ltd. All rights reserved.
Classification of CO2 Geologic Storage: Resource and Capacity
Frailey, S.M.; Finley, R.J.
2009-01-01
The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of these terms and how storage classification changes as new data become available. ?? 2009 Elsevier Ltd. All rights reserved.
Evolution of Root Zone Storage after Land Use Change
NASA Astrophysics Data System (ADS)
Nijzink, R.; Hutton, C.; Capell, R.; Pechlivanidis, I.; Hrachowitz, M.; Savenije, H.
2015-12-01
It has been acknowledged for some time that a coupling exists between vegetation, climate and hydrological processes (e.g. Eagleson, 1982a, Rodriguez-Iturbe,2001 ). Recently, Gao et al.(2014) demonstrated that one of the core parameters of hydrological functioning, the catchment-scale root zone water storage capacity, can be estimated based on climate data alone. It was shown that ecosystems develop root zone storage capacities that allow vegetation to bridge droughts with return periods of about 20 years. As a consequence, assuming that the evaporative demand determines the root zone storage capacity, land use changes, such as deforestation, should have an effect on the development of this capacity . In this study it was tested to which extent deforestation affects root zone storage capacities. To do so, four different hydrological models were calibrated in a moving window approach after deforestation occurred. In this way, model based estimates of the storage capacity in time were obtained. This was compared with short term estimates of root zone storage capacities based on a climate based method similar to Gao et al.(2014). In addition, the equilibrium root zone storage capacity was determined with the total time series of an unaffected control catchment. Preliminary results indicate that models tend to adjust their storage capacity to the values found by the climate based method. This is strong evidence that the root zone storage is determined by the evaporative demand of vegetation. Besides, root zones storage capacities develop towards an equilibrium value where the ecosystem is in balance, further highlighting the evolving, time dynamic character of hydrological systems.
CO2 storage capacity estimation: Issues and development of standards
Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.
2007-01-01
Associated with the endeavours of geoscientists to pursue the promise that geological storage of CO2 has of potentially making deep cuts into greenhouse gas emissions, Governments around the world are dependent on reliable estimates of CO2 storage capacity and insightful indications of the viability of geological storage in their respective jurisdictions. Similarly, industry needs reliable estimates for business decisions regarding site selection and development. If such estimates are unreliable, and decisions are made based on poor advice, then valuable resources and time could be wasted. Policies that have been put in place to address CO2 emissions could be jeopardised. Estimates need to clearly state the limitations that existed (data, time, knowledge) at the time of making the assessment and indicate the purpose and future use to which the estimates should be applied. A set of guidelines for estimation of storage capacity will greatly assist future deliberations by government and industry on the appropriateness of geological storage of CO2 in different geological settings and political jurisdictions. This work has been initiated under the auspices of the Carbon Sequestration Leadership Forum (www.cslforum.org), and it is intended that it will be an ongoing taskforce to further examine issues associated with storage capacity estimation. Crown Copyright ?? 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
2013-08-05
Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deepmore » geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.« less
A dynamic programming approach to estimate the capacity value of energy storage
Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul
2013-09-17
Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less
Global root zone storage capacity from satellite-based evaporation data
NASA Astrophysics Data System (ADS)
Wang-Erlandsson, Lan; Bastiaanssen, Wim; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel; van Dijk, Albert; Guerschman, Juan; Keys, Patrick; Gordon, Line; Savenije, Hubert
2016-04-01
We present an "earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale-independent. In contrast to traditional look-up table approaches, our method captures the variability in root zone storage capacity within land cover type, including in rainforests where direct measurements of root depth otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. We find that evergreen forests are able to create a large storage to buffer for extreme droughts (with a return period of up to 60 years), in contrast to short vegetation and crops (which seem to adapt to a drought return period of about 2 years). The presented method to estimate root zone storage capacity eliminates the need for soils and rooting depth information, which could be a game-changer in global land surface modelling.
Pailian, Hrag; Halberda, Justin
2015-04-01
We investigated the psychometric properties of the one-shot change detection task for estimating visual working memory (VWM) storage capacity-and also introduced and tested an alternative flicker change detection task for estimating these limits. In three experiments, we found that the one-shot whole-display task returns estimates of VWM storage capacity (K) that are unreliable across set sizes-suggesting that the whole-display task is measuring different things at different set sizes. In two additional experiments, we found that the one-shot single-probe variant shows improvements in the reliability and consistency of K estimates. In another additional experiment, we found that a one-shot whole-display-with-click task (requiring target localization) also showed improvements in reliability and consistency. The latter results suggest that the one-shot task can return reliable and consistent estimates of VWM storage capacity (K), and they highlight the possibility that the requirement to localize the changed target is what engenders this enhancement. Through a final series of four experiments, we introduced and tested an alternative flicker change detection method that also requires the observer to localize the changing target and that generates, from response times, an estimate of VWM storage capacity (K). We found that estimates of K from the flicker task correlated with estimates from the traditional one-shot task and also had high reliability and consistency. We highlight the flicker method's ability to estimate executive functions as well as VWM storage capacity, and discuss the potential for measuring multiple abilities with the one-shot and flicker tasks.
Storage capacity of the Fena Valley Reservoir, Guam, Mariana Islands, 2014
Marineau, Mathieu D.; Wright, Scott A.
2015-01-01
Analyses of the bathymetric data indicate that the reservoir currently has 6,915 acre-feet of storage capacity. The engineering drawings of record show that the total reservoir capacity in 1951 was estimated to be 8,365 acre-feet. Thus, between 1951 and 2014, the total storage capacity decreased by 1,450 acre-feet (a loss of 17 percent of the original total storage capacity). The remaining live-storage capacity, or the volume of storage above the lowest-level reservoir outlet elevation, was calculated to be 5,511 acre-feet in 2014, indicating a decrease of 372 acre-feet (or 6 percent) of the original 5,883 acre-feet of live-storage capacity. The remaining dead-storage capacity, or volume of storage below the lowest-level outlet, was 1,404 acre-feet in 2014, indicating a decrease of 1,078 acre-feet (or 43 percent) of the original 2,482 acre-feet of dead-storage capacity.
The Evolution of Root Zone Storage Capacity after Land Use Change
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Wagener, Thorsten; Savenije, Hubert H. G.; Hrachowitz, Markus
2016-04-01
Root zone storage capacity forms a crucial parameter in ecosystem functioning as it is the key parameter that determines the partitioning between runoff and transpiration. There is increasing evidence from several case studies for specific plants that vegetation adapts to the critical situation of droughts. For example, trees will, on the long term, try to improve their internal hydraulic conductivity after droughts, for example by allocating more biomass for roots. In spite of this understanding, the water storage capacity in the root zone is often treated as constant in hydrological models. In this study, it was hypothesized that root zone storage capacities are altered by deforestation and the regrowth of the ecosystem. Three deforested sub catchments as well as not affected, nearby control catchments of the experimental forests of HJ Andrews and Hubbard Brook were selected for this purpose. Root zone storage capacities were on the one hand estimated by a climate-based approach similar to Gao et al. (2014), making use of simple water balance considerations to determine the evaporative demand of the system. In this way, the maximum deficit between evaporative demand and precipitation allows a robust estimation of the root zone storage capacity. On the other hand, three conceptual hydrological models (FLEX, HYPE, HYMOD) were calibrated in a moving window approach for all catchments. The obtained model parameter values representing the root zone storage capacities of the individual catchments for each moving window period were then compared to the estimates derived from climate data for the same periods. Model- and climate-derived estimates of root zone storage capacities both showed a similar evolution. In the deforested catchments, considerable reductions of the root zone storage capacities, compared to the pre-treatment situation and control catchments, were observed. In addition, the years after forest clearing were characterized by a gradual recovery of the root zone storage capacities, converging to new equilibrium conditions and linked to forest regrowth. Further trend analysis suggested a relatively quick hydrological recovery between 5 and 15 years in the study catchments. The results lend evidence to the role of both, climate and vegetation dynamics for the development of root zone systems and their controlling influence on hydrological response dynamics.
Global root zone storage capacity from satellite-based evaporation
NASA Astrophysics Data System (ADS)
Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.
2016-04-01
This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.
Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs
NASA Astrophysics Data System (ADS)
Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih
2015-04-01
A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation and using analytical equation were very consistent. The validation results showed that the modified MBE we proposed in this study can be efficiently used for the estimation of CO2 storage capacity in a depleted gas reservoir.
NASA Astrophysics Data System (ADS)
Nijzink, Remko; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus
2016-12-01
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is impossible to observe directly at the catchment scale and is typically treated as a calibration parameter or obtained from a priori available soil characteristics combined with estimates of rooting depth. Often this parameter is considered to remain constant in time. Using long-term data (30-40 years) from three experimental catchments that underwent significant land cover change, we tested the hypotheses that: (1) the root-zone storage capacity significantly changes after deforestation, (2) changes in the root-zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root-zone storage can improve the performance of a hydrological model.A recently introduced method to estimate catchment-scale root-zone storage capacities based on climate data (i.e. observed rainfall and an estimate of transpiration) was used to reproduce the temporal evolution of root-zone storage capacity under change. Briefly, the maximum deficit that arises from the difference between cumulative daily precipitation and transpiration can be considered as a proxy for root-zone storage capacity. This value was compared to the value obtained from four different conceptual hydrological models that were calibrated for consecutive 2-year windows.It was found that water-balance-derived root-zone storage capacities were similar to the values obtained from calibration of the hydrological models. A sharp decline in root-zone storage capacity was observed after deforestation, followed by a gradual recovery, for two of the three catchments. Trend analysis suggested hydrological recovery periods between 5 and 13 years after deforestation. In a proof-of-concept analysis, one of the hydrological models was adapted to allow dynamically changing root-zone storage capacities, following the observed changes due to deforestation. Although the overall performance of the modified model did not considerably change, in 51 % of all the evaluated hydrological signatures, considering all three catchments, improvements were observed when adding a time-variant representation of the root-zone storage to the model.In summary, it is shown that root-zone moisture storage capacities can be highly affected by deforestation and climatic influences and that a simple method exclusively based on climate data can not only provide robust, catchment-scale estimates of this critical parameter, but also reflect its time-dynamic behaviour after deforestation.
Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.
2009-01-01
This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3–7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within ±1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0–0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.
Estimating restorable wetland water storage at landscape scales
Jones, Charles Nathan; Evenson, Grey R.; McLaughlin, Daniel L.; Vanderhoof, Melanie; Lang, Megan W.; McCarty, Greg W.; Golden, Heather E.; Lane, Charles R.; Alexander, Laurie C.
2018-01-01
Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.
Estimating restorable wetland water storage at landscape scales.
Jones, Charles Nathan; Evenson, Grey R; McLaughlin, Daniel L; Vanderhoof, Melanie K; Lang, Megan W; McCarty, Greg W; Golden, Heather E; Lane, Charles R; Alexander, Laurie C
2018-01-01
Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.
Capacity value of energy storage considering control strategies.
Shi, Nian; Luo, Yi
2017-01-01
In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given.
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The moisture storage available to vegetation is a key parameter in the hydrological functioning of ecosystems. This parameter, the root zone storage capacity, determines the partitioning between runoff and transpiration, but is impossible to observe at the catchment scale. In this research, data from the experimental forests of HJ Andrews (Oregon, USA) and Hubbard Brook (New Hampshire, USA) was used to test the hypotheses that: (1) the root zone storage capacity significantly changes after deforestation, (2) changes in the root zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root zone storage can improve the performance of a hydrological model. At first, root zone storage capacities were estimated based on a simple, water-balance based method. Briefly, the maximum difference between cumulative rainfall and estimated transpiration was determined, which could be considered a proxy for root zone storage capacity. These values were compared with root zone storage capacities obtained from four conceptual models (HYPE, HYMOD, FLEX, TUW), calibrated for consecutive 2-year windows. Both methods showed a sharp decline in root zone storage capacity after deforestation, which was followed by a gradual recovery signal. It was found in a trend analysis that these recovery periods took between 5 and 13 years for the different catchments. Eventually, one of the models was adjusted to allow for a time-dynamic formulation of root zone storage capacity. This adjusted model showed improvements in model performance as evaluated by 28 hydrological signatures, such as rising limb density or peak flows. Thus, this research clearly shows the time-dynamic character of a crucial parameter, which is often considered to remain constant in time. Root zone storage capacities are strongly affected by deforestation, leading to changes in hydrological regimes, and time-dynamic formulations of root zone storage are therefore necessary in systems under change.
Case study - Dynamic pressure-limited capacity and costs of CO2 storage in the Mount Simon sandstone
Anderson, Steven T.; Jahediesfanjani, Hossein
2017-01-01
Widespread deployment of carbon capture and storage (CCS) is likely necessary to be able to satisfy baseload electricity demand, to maintain diversity in the energy mix, and to achieve climate and other objectives at the lowest cost. If all of the carbon dioxide (CO2) emissions from stationary sources (such as fossil-fuel burning power plants, and other industrial plants) in the United States needed to be captured and stored, it could be possible to store only a small fraction of this CO2 in oil and natural gas reservoirs, including as a result of CO2 utilization for enhanced oil recovery. The vast majority would have to be stored in saline-filled reservoirs (Dahowski et al., 2005). Given a lack of long-term commercial-scale CCS projects, there is considerable uncertainty in the risks, dynamic capacity, and their cost implications for geologic storage of CO2. Pressure buildup in the storage reservoir is expected to be a primary source of risk associated with CO2 storage, and could severely limit CO2 injection rates (dynamic storage capacities). Most cost estimates for commercial-scale deployment of CCS estimate CO2 storage costs under assumed availability of a theoretical capacity to store tens, hundreds, or even thousands of gigatons of CO2, without considering geologic heterogeneities, pressure limitations, or the time dimension. This could lead to underestimation of the costs of CO2 storage (Anderson, 2017). This paper considers the impacts of pressure limitations and geologic heterogeneity on the dynamic CO2 storage capacity and storage (injection) costs. In the U.S. Geological Survey (USGS)’s National Assessment of Geologic CO2 Storage Resources (USGS, 2013), the mean estimate of the theoretical storage capacity in the Mount Simon Sandstone was about 94 billion metric tons of CO2. However, our results suggest that the pressure-limited capacity after 50 years of injection could be only about 4% of the theoretical geologic storage capacity in this formation. Because this is far less than emissions of CO2 from stationary sources in the region around the Mount Simon Sandstone, the costs to accommodate the potential annual demand for CO2 storage in this formation could be significantly greater than current estimates. Our results could have implications for how long and to what extent decision makers can expect to be able to deploy CCS before transitioning to other low- or zero-carbon energy technologies.
Effects of strategy on visual working memory capacity
Bengson, Jesse J.; Luck, Steven J.
2015-01-01
Substantial evidence suggests that individual differences in estimates of working memory capacity reflect differences in how effectively people use their intrinsic storage capacity. This suggests that estimated capacity could be increased by instructions that encourage more effective encoding strategies. The present study tested this by giving different participants explicit strategy instructions in a change detection task. Compared to a condition in which participants were simply told to do their best, we found that estimated capacity was increased for participants who were instructed to remember the entire visual display, even at set sizes beyond their capacity. However, no increase in estimated capacity was found for a group that was told to focus on a subset of the items in supracapacity arrays. This finding confirms the hypothesis that encoding strategies may influence visual working memory performance, and it is contrary to the hypothesis that the optimal strategy is to filter out any items beyond the storage capacity. PMID:26139356
Effects of strategy on visual working memory capacity.
Bengson, Jesse J; Luck, Steven J
2016-02-01
Substantial evidence suggests that individual differences in estimates of working memory capacity reflect differences in how effectively people use their intrinsic storage capacity. This suggests that estimated capacity could be increased by instructions that encourage more effective encoding strategies. The present study tested this by giving different participants explicit strategy instructions in a change detection task. Compared to a condition in which participants were simply told to do their best, we found that estimated capacity was increased for participants who were instructed to remember the entire visual display, even at set sizes beyond their capacity. However, no increase in estimated capacity was found for a group that was told to focus on a subset of the items in supracapacity arrays. This finding confirms the hypothesis that encoding strategies may influence visual working memory performance, and it is contrary to the hypothesis that the optimal strategy is to filter out any items beyond the storage capacity.
Capacity value of energy storage considering control strategies
Luo, Yi
2017-01-01
In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given. PMID:28558027
Sedimentation Survey of Lago Icacos, Puerto Rico, March 2004
Soler-López, Luis R.
2007-01-01
The Lago Icacos, a small reservoir built in 1930 and owned by the Puerto Rico Electric Power Authority, is part of the Rio Blanco Hydroelectric Power System. The reservoir is located in Naguabo, within the Caribbean National Forest in eastern Puerto Rico. The original storage capacity of the reservoir was 19,119 cubic meters in 1930. The bathymetric survey conducted by the U.S. Geological Survey in March 2004 indicates a storage capacity of 7,435 cubic meters or 39 percent of the original storage capacity, and a maximum depth of 5.3 meters. The reservoir has been dredged several times to restore lost storage capacity caused by high sediment loads and the frequent landslides that occur upstream from the dam, which have partially or completely filled the Lago Icacos. Because sediment removal activities have not been documented, sedimentation rates could not be determined using storage volume comparisons. A reservoir sedimentation rate was calculated using the daily sediment load data gathered at the U.S. Geological Survey Rio Icacos streamflow station upstream of the reservoir, the estimated Lago Icacos sediment trapping efficiency, and the estimated sediment yield of the Lago Icacos basin extrapolated from the Rio Icacos sediment load data. Using these properties, the Lago Icacos sedimentation rate was estimated as 71 cubic meters per year, equivalent to about 1 percent of the original storage capacity per year. The Lago Icacos 7.47-square-kilometer drainage area sediment yield was estimated as 7,126 tonnes per year or about 954 tonnes per square kilometer per year. Based on the current estimated sedimentation rate of 71 cubic meters per year, Lago Icacos has a useful life of about 105 years or to year 2109.
Joseph K. O. Amoah; Devendra M. Amatya; Soronnadi Nnaji
2012-01-01
Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfallârunoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity...
NASA Astrophysics Data System (ADS)
Stanton, R. W.; Burruss, R. C.; Flores, R. M.; Warwick, P. D.
2001-05-01
Subsurface environments for geologic storage of CO2 from combustion of fossil fuel include saline formations, depleted oil and gas reservoirs, and unmineable coalbeds. Of these environments, storage in petroleum reservoirs and coal beds offers a potential economic benefit of enhanced recovery of energy resources. Meaningful assessment of the volume and geographic distribution of storage sites requires quantitative estimates of geologic factors that control storage capacity. The factors that control the storage capacity of unmineable coalbeds are poorly understood. In preparation for a USGS assessment of CO2 storage capacity we have begun new measurements of CO2 and CH4 adsorption isotherms of low-rank coal samples from 4 basins. Initial results for 13 samples of low-rank coal beds from the Powder River Basin (9 subbituminous coals), Greater Green River Basin (1 subbituminous coal), Williston Basin (2 lignites) and the Gulf Coast (1 lignite) indicate that their adsorption capacity is up to 10 times higher than it is for CH4. These values contrast with published measurements of the CO2 adsorption capacity of bituminous coals from the Fruitland Formation, San Juan basin, and Gates Formation, British Columbia, that indicate about twice as much carbon dioxide as methane can be adsorbed on coals. Because CH4 adsorption isotherms are commonly measured on coals, CO2 adsorption capacity can be estimated if thecorrect relationship between the gases is known. However, use a factor to predict CO2 adsorption that is twice that of CH4 adsorption, which is common in the published literature, grossly underestimates the storage capacity of widely distributed, thick low-rank coal beds. Complete petrographic and chemical characterization of these low-rank coal samples is in progress. Significant variations in adsorption measurements among samples are depicted depending on the reporting basis used. Properties were measured on an "as received" (moist) basis but can be converted to a dry basis, ash-free basis (moist), or dry ash-free basis to emphasize the property having the greatest effect on the adsorption isotherm. Initial results show that moisture content has a strong effect on CO2 adsorption. Our current sample base covers a limited range of coal rank and composition. Full characterization of the storage capacity of coalbeds in the US will require additional samples that cover a broader range of coal compositions, ranks, and depositional environments. Even at this preliminary stage, we can use results from the recent USGS assessment of the Powder River Basin (Wyoming and Montana) to examine the impact of these new measurements on estimates of storage capacity. At depths greater than 500 feet, the Wyodak-Anderson coal zone contains 360 billion metric tons of coal. Using the new measurements of CO2 storage capacity, this coal zone could, theoretically, sequester about 290 trillion cubic feet (TCF) of CO2. This estimate contrasts sharply with an estimated capacity of 70 TCF based on the published values for bituminous coals.
Bielicki, Jeffrey M.; Langenfeld, Julie K.; Tao, Zhiyuan; ...
2018-05-26
Hydrocarbon depleted fractured shale (HDFS) formations could be attractive for geologic carbon dioxide (CO 2) storage. Shale formations may be able to leverage existing infrastructure, have larger capacities, and be more secure than saline aquifers. We compared regional storage capacities and integrated CO 2 capture, transport, and storage systems that use HDFS with those that use saline aquifers in a region of the United States with extensive shale development that overlies prospective saline aquifers. We estimated HDFS storage capacities with a production-based method and costs by adapting methods developed for saline aquifers and found that HDFS formations in this regionmore » might be able to store with less cost an estimated ~14× more CO 2 on average than saline aquifers at the same location. The potential for smaller Areas of Review and less investment in infrastructure accounted for up to 84% of the difference in estimated storage costs. We implemented an engineering-economic geospatial optimization model to determine and compare the viability of storage capacity for these two storage resources. Across the state-specific and regional scenarios we investigated, our results for this region suggest that integrated CCS systems using HDFS could be more centralized, require less pipelines, prioritize different routes for trunklines, and be 6.4–6.8% ($5-10/tCO 2) cheaper than systems using saline aquifers. In conclusion, overall, CO 2 storage in HDFS could be technically and economically attractive and may lower barriers to large scale CO 2 storage if they can be permitted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielicki, Jeffrey M.; Langenfeld, Julie K.; Tao, Zhiyuan
Hydrocarbon depleted fractured shale (HDFS) formations could be attractive for geologic carbon dioxide (CO 2) storage. Shale formations may be able to leverage existing infrastructure, have larger capacities, and be more secure than saline aquifers. We compared regional storage capacities and integrated CO 2 capture, transport, and storage systems that use HDFS with those that use saline aquifers in a region of the United States with extensive shale development that overlies prospective saline aquifers. We estimated HDFS storage capacities with a production-based method and costs by adapting methods developed for saline aquifers and found that HDFS formations in this regionmore » might be able to store with less cost an estimated ~14× more CO 2 on average than saline aquifers at the same location. The potential for smaller Areas of Review and less investment in infrastructure accounted for up to 84% of the difference in estimated storage costs. We implemented an engineering-economic geospatial optimization model to determine and compare the viability of storage capacity for these two storage resources. Across the state-specific and regional scenarios we investigated, our results for this region suggest that integrated CCS systems using HDFS could be more centralized, require less pipelines, prioritize different routes for trunklines, and be 6.4–6.8% ($5-10/tCO 2) cheaper than systems using saline aquifers. In conclusion, overall, CO 2 storage in HDFS could be technically and economically attractive and may lower barriers to large scale CO 2 storage if they can be permitted.« less
Lin, Po-Han; Luck, Steven J.
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556
Lin, Po-Han; Luck, Steven J
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.
Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul
2012-08-13
We estimate the capacity value of concentrating solar power (CSP) plants with thermal energy storage (TES) in the southwestern U.S. Our results show that incorporating TES in CSP plants significantly increases their capacity value. While CSP plants without TES have capacity values ranging between 60% and 86% of maximum capacity, plants with TES can have capacity values between 79% and 92%. Here, we demonstrate the effect of location and configuration on the operation and capacity value of CSP plants. Finally, we also show that using a capacity payment mechanism can increase the capacity value of CSP, since the capacity valuemore » of CSP is highly sensitive to operational decisions and energy prices are not a perfect indicator of scarcity of supply.« less
Specific storage volumes: A useful tool for CO2 storage capacity assessment
Brennan, S.T.; Burruss, R.C.
2006-01-01
Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative storage capacities of these different settings. Typically, CO2 emissions are reported in units of mass, which are not directly applicable to comparing the CO2 storage capacities of the various storage targets. However, if the emission values are recalculated to volumes per unit mass (specific volume) then the volumes of geologic reservoirs necessary to store CO2 emissions from large point sources can be estimated. The factors necessary to convert the mass of CO2 emissions to geologic storage volume (referred to here as Specific Storage Volume or 'SSV') can be reported in units of cubic meters, cubic feet, and petroleum barrels. The SSVs can be used to estimate the reservoir volume needed to store CO2 produced over the lifetime of an individual point source, and to identify CO2 storage targets of sufficient size to meet the demand from that given point source. These storage volumes also can then be projected onto the land surface to outline a representative "footprint," which marks the areal extent of storage. This footprint can be compared with the terrestrial carbon sequestration capacity of the same land area. The overall utility of this application is that the total storage capacity of any given parcel of land (from surface to basement) can be determined, and may assist in making land management decisions. ?? Springer Science+Business Media, LLC 2006.
Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul
2012-01-27
Here, we estimate the capacity value of concentrating solar power (CSP) plants without thermal energy storage in the southwestern U.S. Our results show that CSP plants have capacity values that are between 45% and 95% of maximum capacity, depending on their location and configuration. We also examine the sensitivity of the capacity value of CSP to a number of factors and show that capacity factor-based methods can provide reasonable approximations of reliability-based estimates.
Storage Capacity and Sedimentation of Loch Lomond Reservoir, Santa Cruz, California, 1998
McPherson, Kelly R.; Harmon, Jerry G.
2000-01-01
In 1998, a bathymetric survey was done to determine the storage capacity and the loss of capacity owing to sedimentation of Loch Lomond Reservoir in Santa Cruz County, California. Results of the survey indicate that the maximum capacity of the reservoir is 8,991 acre-feet in November 1998. The results of previous investigations indicate that storage capacity of the reservoir is less than 8,991 acre-feet. The storage capacity determined from those investigations probably were underestimated because of limitations of the methods and the equipment used. The volume of sedimentation in a reservoir is considered equal to the decrease in storage capacity. To determine sedimentation in Loch Lomond Reservoir, change in storage capacity was estimated for an upstream reach of the reservoir. The change in storage capacity was determined by comparing a 1998 thalweg profile (valley floor) of the reservoir with thalweg profiles from previous investigations; results of the comparison indicate that sedimentation is occurring in the upstream reach. Cross sections for 1998 and 1982 were compared to determine the magnitude of sedimentation in the upstream reach of the reservoir. Results of the comparison, which were determined from changes in the cross-sectional areas, indicate that the capacity of the reservoir decreased by 55 acre-feet.
NASA Astrophysics Data System (ADS)
Vannier, Olivier; Braud, Isabelle; Anquetin, Sandrine
2013-04-01
The estimation of catchment-scale soil properties, such as water storage capacity and hydraulic conductivity, is of primary interest for the implementation of distributed hydrological models at the regional scale. This estimation is generally done on the basis of information provided by soil databases. However, such databases are often established for agronomic uses and generally do not document deep weathered rock horizons (i.e. pedologic horizons of type C and deeper), which can play a major role in water transfer and storages. Here we define the Drainable Storage Capacity Index (DSCI), an indicator that relies on the comparison of cumulated streamflow and precipitation to assess catchment-scale storage capacities. The DSCI is found to be reliable to detect underestimation of soil storage capacities in soil databases. We also use the streamflow recession analysis methodology defined by Brutsaert and Nieber (Water Resources Research 13(3), 1977) to estimate water storage capacities and lateral saturated hydraulic conductivities of the non-documented deep horizons. The analysis is applied to a sample of twenty-three catchments (0.2 km² - 291 km²) located in the Cévennes-Vivarais region (south of France). In a regionalisation purpose, the obtained results are compared to the dominant catchments geology. This highlights a clear hierarchy between the different geologies present in the area. Hard crystalline rocks are found to be associated to the thickest and less conductive deep soil horizons. Schist rocks present intermediate values of thickness and of saturated hydraulic conductivity, whereas sedimentary rocks and alluvium are found to be the less thick and the most conductive. Consequently, deep soil layers with thicknesses and hydraulic conductivities differing with the geology were added to a distributed hydrological model implemented over the Cévennes-Vivarais region. Preliminary simulations show a major improvement in terms of simulated discharge when compared to simulations done without deep soil layers. KEY WORDS: hydraulic soil properties, streamflow recession, deep soil horizons, soil databases, Boussinesq equation, storage capacity, regionalisation
Koltun, G.F.
2001-01-01
This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.
Lee, K.G.
2013-01-01
The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.
NASA Astrophysics Data System (ADS)
Wilson, Dennis L.; Glicksman, Robert A.
1994-05-01
A Picture Archiving and Communications System (PACS) must be able to support the image rate of the medical treatment facility. In addition the PACS must have adequate working storage and archive storage capacity required. The calculation of the number of images per minute and the capacity of working storage and of archiving storage is discussed. The calculation takes into account the distribution of images over the different size of radiological images, the distribution between inpatient and outpatient, and the distribution over plain film CR images and other modality images. The support of the indirect clinical image load is difficult to estimate and is considered in some detail. The result of the exercise for a particular hospital is an estimate of the average size of the images and exams on the system, of the number of gigabytes of working storage, of the number of images moved per minute, of the size of the archive in gigabytes, and of the number of images that are to be moved by the archive per minute. The types of storage required to support the image rates and the capacity required are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyer, James M.; Erdman, Bill; Iannucci, Joseph J., Jr.
2005-03-01
This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A numbermore » of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.« less
Capacity Expansion Modeling for Storage Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine; Stoll, Brady; Mai, Trieu
2017-04-03
The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.
McPherson, Kelly R.; Freeman, Lawrence A.; Flint, Lorraine E.
2011-01-01
In 2009, the U.S. Geological Survey, in cooperation with the City of Santa Cruz, conducted bathymetric and topographic surveys to determine the water storage capacity of, and the loss of capacity owing to sedimentation in, Loch Lomond Reservoir in Santa Cruz County, California. The topographic survey was done as a supplement to the bathymetric survey to obtain information about temporal changes in the upper reach of the reservoir where the water is shallow or the reservoir may be dry, as well as to obtain information about shoreline changes throughout the reservoir. Results of a combined bathymetric and topographic survey using a new, state-of-the-art method with advanced instrument technology indicate that the maximum storage capacity of the reservoir at the spillway altitude of 577.5 feet (National Geodetic Vertical Datum of 1929) was 8,646 ±85 acre-feet in March 2009, with a confidence level of 99 percent. This new method is a combination of bathymetric scanning using multibeam-sidescan sonar, and topographic surveying using laser scanning (LiDAR), which produced a 1.64-foot-resolution grid with altitudes to 0.3-foot resolution and an estimate of total water storage capacity at a 99-percent confidence level. Because the volume of sedimentation in a reservoir is considered equal to the decrease in water-storage capacity, sedimentation in Loch Lomond Reservoir was determined by estimating the change in storage capacity by comparing the reservoir bed surface defined in the March 2009 survey with a revision of the reservoir bed surface determined in a previous investigation in November 1998. This revised reservoir-bed surface was defined by combining altitude data from the 1998 survey with new data collected during the current (2009) investigation to fill gaps in the 1998 data. Limitations that determine the accuracy of estimates of changes in the volume of sedimentation from that estimated in each of the four previous investigations (1960, 1971, 1982, and 1998) are a result of the limitations of the survey equipment and data-processing methods used. Previously used and new methods were compared to determine the recent (1998-2009) change in storage capacity and the most accurate and cost-effective means to define the reservoir bed surface so that results can be easily replicated in future surveys. Results of this investigation indicate that the advanced method used in the 2009 survey accurately captures the features of the wetted reservoir surface as well as features along the shoreline that affect the storage capacity calculations. Because the bathymetric and topographic data are referenced to a datum, the results can be easily replicated or compared with future results. Comparison of the 2009 reservoir-bed surface with the surface defined in 1998 indicates that sedimentation is occurring throughout the reservoir. About 320 acre-feet of sedimentation has occurred since 1998, as determined by comparing the revised 1998 reservoir-bed surface, with an associated maximum reservoir storage capacity of 8,965 acre-feet, to the 2009 reservoir bed surface, with an associated maximum capacity of 8,646 acre-feet. This sedimentation is more than 3 percent of the total storage capacity that was calculated on the basis of the results of the 1998 bathymetric investigation.
Storage capacity: how big should it be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malina, M.A.
1980-01-28
A mathematical model was developed for determining the economically optimal storage capacity of a given material or product at a manufacturing plant. The optimum was defined as a trade-off between the inventory-holding costs and the cost of customer-service failures caused by insufficient stocks for a peak-demand period. The order-arrival, production, storage, and shipment process was simulated by Monte Carlo techniques to calculate the probability of order delays for various lengths of time as a function of storage capacity. Example calculations for the storage of a bulk liquid chemical in tanks showed that the conclusions arrived at, via this model, aremore » comparatively insensitive to errors made in estimating the capital cost of storage or the risk of losing an order because of a late delivery.« less
Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M
2015-08-04
Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.
National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.
2012-06-01
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less
Comparing the net cost of CSP-TES to PV deployed with battery storage
NASA Astrophysics Data System (ADS)
Jorgenson, Jennie; Mehos, Mark; Denholm, Paul
2016-05-01
Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs provides a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.
Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Steven T., E-mail: sanderson@usgs.gov
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less
Cost implications of uncertainty in CO2 storage resource estimates: A review
Anderson, Steven T.
2017-01-01
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.
A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.
Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue
2018-05-23
Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.
Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu
2015-07-01
Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgenson, Jennie; Mehos, Mark; Denholm, Paul
Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs providesmore » a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckel, Timothy; Trevino, Ramon
This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacitymore » estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi 2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO₂ storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO₂ injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial-scale CCS will require storage capacity utilizing well-documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine-filled) closures. No assessment was made of potential for CO₂ utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO₂ leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably a surface associated with the last Pleistocene glacial lowstand. The identification of a previously unrecognized (in commercial seismic data) gas chimney that was clearly defined in the 2013 HR3D survey, indicates that HR3D surveys may be useful as both a characterization tool for the overburden of a potential carbon sequestration site and as an additional monitoring tool for future engineered injection sites. Geochemical modeling indicated that injection of CO₂ would result in minor dissolution of calcite, K-feldspar and albite. In addition, modeling of typical brines in Miocene age rocks indicate that approximately 5% of injection capacity would result from CO₂ dissolution into the brine. After extensive searches, no rock samples of the Marginulina A and Amphistegina B seals (“caprocks”) were obtained, but analyses of available core samples of other Miocene age mudrocks (seals or caprocks) indicate that they have sealing ability sufficient for potential CO 2 storage in underlying sandstone units.« less
Methods to assess geological CO2 storage capacity: Status and best practice
Heidug, Wolf; Brennan, Sean T.; Holloway, Sam; Warwick, Peter D.; McCoy, Sean; Yoshimura, Tsukasa
2013-01-01
To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.
The magical number 4 in short-term memory: a reconsideration of mental storage capacity.
Cowan, N
2001-02-01
Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. However, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide variety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recording of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity-limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.
M.R. McHale; I.C. Burke; M.A. Lefsky; P.J. Peper; E.G. McPherson
2009-01-01
Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban trees. These studies have been limited by a lack of research on urban tree biomass, such that estimates of carbon storage in urban systems have relied upon allometric relationships developed in traditional forests. As urbanization increases globally, it is becoming...
This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We f...
This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We ...
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Estimating restorable wetland water storage at landscape scales
Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., the volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many...
Huang, S.; Young, Caitlin; Feng, M.; Heidemann, Hans Karl; Cushing, Matthew; Mushet, D.M.; Liu, S.
2011-01-01
Recent flood events in the Prairie Pothole Region of North America have stimulated interest in modeling water storage capacities of wetlands and their surrounding catchments to facilitate flood mitigation efforts. Accurate estimates of basin storage capacities have been hampered by a lack of high-resolution elevation data. In this paper, we developed a 0.5 m bare-earth model from Light Detection And Ranging (LiDAR) data and, in combination with National Wetlands Inventory data, delineated wetland catchments and their spilling points within a 196 km2 study area. We then calculated the maximum water storage capacity of individual basins and modeled the connectivity among these basins. When compared to field survey results, catchment and spilling point delineations from the LiDAR bare-earth model captured subtle landscape features very well. Of the 11 modeled spilling points, 10 matched field survey spilling points. The comparison between observed and modeled maximum water storage had an R2 of 0.87 with mean absolute error of 5564 m3. Since maximum water storage capacity of basins does not translate into floodwater regulation capability, we further developed a Basin Floodwater Regulation Index. Based upon this index, the absolute and relative water that could be held by wetlands over a landscape could be modeled. This conceptual model of floodwater downstream contribution was demonstrated with water level data from 17 May 2008.
The potential of geological storage of CO2 in Austria: a techno-economic assessment
NASA Astrophysics Data System (ADS)
Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy
2014-05-01
An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and economic uncertainties. Results indicate a significant potential for CCS in Austria and a very high probability for any CO2 storage activity. The assessment of the average practical capacity of the whole country is 120Mt at 15€/tCO2 of storage budget, while the average matched national capacity is 40Mt. Concerning the individual reservoirs, reservoir development probabilities generally lie between 20 and 30%. These numbers served as basis for a reservoir exploration ranking. Compared to current emissions, total storage capacity is at the low end, which is likely the main technical limiting factor for CCS deployment in Austria. Also, current policy seems not in favour of CCS. Storage capacity is however high enough to provide a significant contribution to the reduction of CO2 emissions in the country, in the order of a few million tonnes per year. Opportunities to combine CO2 geological storage and geothermal energy seem promising, but require additional evaluation. Welkenhuysen, K., Ramirez, A., Swennen, R. & Piessens, K., 2013. Ranking potential CO2 storage reservoirs: an exploration priority list for Belgium. International Journal of Greenhouse Gas Control, 17, p. 431-449
Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Zhou, Q.
Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2}more » per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godec, Michael
Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less
NASA Astrophysics Data System (ADS)
Klamerus-Iwan, Anna; Błońska, Ewa
2018-04-01
The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.
Pailian, Hrag; Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin
2016-08-01
Research in adults has aimed to characterize constraints on the capacity of Visual Working Memory (VWM), in part because of the system's broader impacts throughout cognition. However, less is known about how VWM develops in childhood. Existing work has reached conflicting conclusions as to whether VWM storage capacity increases after infancy, and if so, when and by how much. One challenge is that previous studies did not control for developmental changes in attention and executive processing, which also may undergo improvement. We investigated the development of VWM storage capacity in children from 3 to 8 years of age, and in adults, while controlling for developmental change in exogenous and endogenous attention and executive control. Our results reveal that, when controlling for improvements in these abilities, VWM storage capacity increases across development and approaches adult-like levels between ages 6 and 8 years. More generally, this work highlights the value of estimating working memory, attention, perception, and decision-making components together.
Leveraging social system networks in ubiquitous high-data-rate health systems.
Massey, Tammara; Marfia, Gustavo; Stoelting, Adam; Tomasi, Riccardo; Spirito, Maurizio A; Sarrafzadeh, Majid; Pau, Giovanni
2011-05-01
Social system networks with high data rates and limited storage will discard data if the system cannot connect and upload the data to a central server. We address the challenge of limited storage capacity in mobile health systems during network partitions with a heuristic that achieves efficiency in storage capacity by modifying the granularity of the medical data during long intercontact periods. Patterns in the connectivity, reception rate, distance, and location are extracted from the social system network and leveraged in the global algorithm and online heuristic. In the global algorithm, the stochastic nature of the data is modeled with maximum likelihood estimation based on the distribution of the reception rates. In the online heuristic, the correlation between system position and the reception rate is combined with patterns in human mobility to estimate the intracontact and intercontact time. The online heuristic performs well with a low data loss of 2.1%-6.1%.
Richards, Joseph M.; Green, W. Reed
2013-01-01
Millwood Lake, in southwestern Arkansas, was constructed and is operated by the U.S. Army Corps of Engineers (USACE) for flood-risk reduction, water supply, and recreation. The lake was completed in 1966 and it is likely that with time sedimentation has resulted in the reduction of storage capacity of the lake. The loss of storage capacity can cause less water to be available for water supply, and lessens the ability of the lake to mitigate flooding. Excessive sediment accumulation also can cause a reduction in aquatic habitat in some areas of the lake. Although many lakes operated by the USACE have periodic bathymetric and sediment surveys, none have been completed for Millwood Lake. In March 2013, the U.S. Geological Survey (USGS), in cooperation with the USACE, surveyed the bathymetry of Millwood Lake to prepare an updated bathymetric map and area/capacity table. The USGS also collected sediment thickness data in June 2013 to estimate the volume of sediment accumulated in the lake.
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Meixner, T.; Ferré, T. P. A.; Williams, M. W.; Sickman, J. O.; Molotch, N. P.; Jepsen, S. M.
2014-12-01
The role of dynamic storage in catchment discharge response to earlier snowmelt timing has not been fully quantified. Green Lake 4 (GL4) and Emerald Lake Watershed (ELW) have similar high-elevation settings but GL4 has greater estimated storage capacity relative to ELW due to differences in physical structure. Daily catchment area-normalized input (modelled snowmelt estimates) and output (measured discharge) in conjunction with mineral weathering products (hydrochemical data) for eleven snowmelt seasons from GL4 (more storage) and ELW (less storage) were used to determine the role of dynamic storage at the catchment scale. Daily fluxes generally show snowmelt is greater than discharge initially, changing mid-season to discharge being greater than snowmelt, creating a counter-clockwise hysteresis loop for each snowmelt season. This hysteresis loop can be approximated with a least-squares fitted ellipse. The properties of fitted ellipses were used to quantify catchment response, which were then compared between catchments with different storage capacities (GL4 and ELW). The eccentricity of the fitted ellipses can be used to quantify delay between snowmelt and discharge due to connection to subsurface storage; narrower loops show minimal storage delay whereas wider loops show greater storage delay. Variability of mineral weathering products shows changes in contribution from stored water over the snowmelt season. Both catchments show a moderate linear correlation between fitted ellipse area and total snowmelt volume (GL4 R2=0.516, ELW R2=0.614). Ellipse eccentricity is more consistent among years in ELW (range=0.81-0.94) than in GL4 (range=0.54-0.95), indicating a more consistent hydrologic structure and connectivity to shallow storage at ELW. The linear correlation between seasonal eccentricity versus snowmelt timing is stronger in ELW than GL4 (R2=0.741 and 0.223, respectively). ELW shows hydrochemical response independent of snowmelt timing, whereas GL4 shows more variability. The larger storage capacity of GL4 allows for a greater range of physical and chemical response to input conditions. The limited storage capacity of ELW shows greater vulnerability of physical response to changes in snowmelt conditions, though chemical response remains constant regardless of snowmelt conditions.
Estimates of Storage Capacity of Multilayer Perceptron with Threshold Logic Hidden Units.
Kowalczyk, Adam
1997-11-01
We estimate the storage capacity of multilayer perceptron with n inputs, h(1) threshold logic units in the first hidden layer and 1 output. We show that if the network can memorize 50% of all dichotomies of a randomly selected N-tuple of points of R(n) with probability 1, then N=2(nh(1)+1), while at 100% memorization N=nh(1)+1. Furthermore, if the bounds are reached, then the first hidden layer must be fully connected to the input. It is shown that such a network has memory capacity (in the sense of Cover) between nh(1)+1 and 2(nh(1)+1) input patterns and for the most efficient networks in this class between 1 and 2 input patterns per connection. Comparing these results with the recent estimates of VC-dimension we find that in contrast to a single neuron case, the VC-dimension exceeds the capacity for a sufficiently large n and h(1). The results are based on the derivation of an explicit expression for the number of dichotomies which can be implemented by such a network for a special class of N-tuples of input patterns which has a positive probability of being randomly chosen.
Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex
ERIC Educational Resources Information Center
Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne
2009-01-01
Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…
Exploring the capacity of radar remote sensing to estimate wetland marshes water storage.
Grings, F; Salvia, M; Karszenbaum, H; Ferrazzoli, P; Kandus, P; Perna, P
2009-05-01
This paper focuses on the use of radar remote sensing for water storage estimation in wetland marshes of the Paraná River Delta in Argentina. The approach followed is based on the analysis of a temporal set of ENVISAT ASAR data which includes images acquired under different polarizations and incidence angles as well as different environmental conditions (water level, precipitation, and vegetation condition). Two marsh species, named junco and cortadera, were monitored. This overall data set gave us the possibility of studying and understanding the basic interactions between the radar, the soil under different flood conditions, and the vegetation structure. The comprehension of the observed features was addressed through electromagnetic models developed for these ecosystems. The procedure used in this work to estimate water level within marshes combines a direct electromagnetic model, field work data specifically obtained to feed the model, the actual ASAR measurements and a well known retrieval scheme based on a cost function. Results are validated with water level evaluations at specific points. A map showing an estimation of the water storage capacity and its error in junco and cortadera areas for the date where the investigation was done is also presented.
Canopy storage capacity of xerophytic shrubs in Northwestern China
NASA Astrophysics Data System (ADS)
Wang, Xin-ping; Zhang, Ya-feng; Hu, Rui; Pan, Yan-xia; Berndtsson, Ronny
2012-08-01
SummaryThe capacity of shrub canopy water storage is a key factor in controlling the rainfall interception. Thus, it affects a variety of hydrological processes in water-limited arid desert ecosystems. Vast areas of revegetated desert ecosystems in Northwestern China are occupied by shrub and dwarf shrub communities. Yet, data are still scarce regarding their rainwater storage capacity. In this study, simulated rainfall tests were conducted in controlled conditions for three dominant xerophytic shrub types in the arid Tengger Desert. Eight rainfall intensities varying from 1.15 to 11.53 mm h-1 were used to determine the canopy water storage capacity. The simulated rainfall intensities were selected according to the long-term rainfall records in the study area. The results indicate that canopy storage capacity (expressed in water storage per leaf area, canopy projection area, biomass, and volume of shrub respectively) increased exponentially with increase in rainfall intensity for the selected shrubs. Linear relationships were found between canopy storage capacity and leaf area (LA) or leaf area index (LAI), although there was a striking difference in correlation between storage capacity and LA or LAI of Artemisia ordosica compared to Caragana korshinskii and Hedysarum scoparium. This is a result of differences in biometric characteristics, especially canopy morphology between the shrub species. Pearson correlation coefficient indicated that LA and dry biomass are better predictors as compared to canopy projection area and volume of samples for precise estimation of canopy water storage capacity. In terms of unit leaf area, mean storage capacity was 0.39 mm (range of 0.24-0.53 mm), 0.43 mm (range of 0.28-0.60 mm), and 0.61 mm (range of 0.29-0.89 mm) for C. korshinskii, H. scoparium, and A. ordosica, respectively. Correspondingly, divided per unit dry biomass, mean storage capacity was 0.51 g g-1 (range of 0.30-0.70 g g-1), 0.41 g g-1 (range of 0.26-0.57 g g-1), and 0.73 g g-1 (range of 0.38-1.05 g g-1) for C. korshinskii, H. scoparium, and A. ordosica, respectively, when the rainfall intensities ranged from 1.15, 2.31, 3.46, 4.61, 6.92, 9.23 to 11.53 mm h-1. The needle-leaved species A. ordosica had a higher canopy water storage capacity than the ovate-leaved species C. korshinskii and H. scoparium at the same magnitude of rainfall intensity, except for C. korshinskii when it was expressed in unit of canopy projection area. Consequently, A. ordosica will generate higher interception losses as compared to C. korshinskii and H. scoparium. This is especially the case as it often forms dense dwarf shrub communities despite its small size.
Kress, Wade H.; Sebree, Sonja K.; Littin, Gregory R.; Drain, Michael A.; Kling, Michael E.
2005-01-01
The U.S. Geological Survey, in cooperation with The Central Nebraska Public Power and Irrigation District, conducted a study that used bathymetric and topographic surveying in conjunction with Geographical Information Systems techniques to determine the 2003 physical shape, current storage capacity, and the changes in storage capacity of Lake McConaughy that have occurred over the past 62 years. By combining the bathymetric and topographic survey data, the current surface area of Lake McConaughy was determined to be 30,413.0 acres, with a volume of 1,756,300 acre-feet at the lake conservation-pool elevation of 3,266.4 feet above North American Vertical Datum of 1988 (3,265.0 feet above Central datum). To determine the changes in storage of Lake McConaughy, the 2003 survey Digital Elevation Model (DEM) was compared to a preconstruction DEM compiled from historical contour maps. This comparison showed an increase in elevation at the dam site due to the installation of Kingsley Dam. Immediately to the west of the Kingsley Dam is an area of decline where a borrow pit for Kingsley Dam was excavated. The comparison of the preconstruction survey to the 2003 survey also was used to estimate the gross storage capacity reduction that occurred between 1941 and 2002. The results of this comparison indicate a gross storage capacity reduction of approximately 42,372 acre-feet, at the lake conservation-pool elevation of 3,266.4 feet in NAVD 88 (3,265.0 feet in Central datum). By comparing preconstruction and 2003 survey data and subtracting the Kingsley Dam and borrow pit, the total estimated net volume of sediment deposited over the past 62 years is 53,347,124 cubic yards, at an annual average rate of 860,437 cubic yards per year. The approximate decrease in the net storage capacity occurring over the past 62 years is 33,066 acre-feet, at an annual average decrease of approximately 533 acre-feet per year, which has resulted in a 1.8 percent decrease in storage capacity of Lake McConaughy. The lake has accumulated most of the sediment in the original river channel and in the west end of the delta area on the upstream end of the lake.
Balancing autonomy and utilization of solar power and battery storage for demand based microgrids
NASA Astrophysics Data System (ADS)
Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.
2015-04-01
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.
Solar heating for a restaurant--North Little Rock, Arkansas
NASA Technical Reports Server (NTRS)
1981-01-01
Hot water consumption of large building affects solar-energy system design. Continual demand for hot water at restaurant makes storage less important than at other sites. Storage capacity of system installed in December 1979 equals estimated daily hot-water requirement. Report describes equipment specifications and modifications to existing building heating and hot water systems.
Calcium-decorated carbyne networks as hydrogen storage media.
Sorokin, Pavel B; Lee, Hoonkyung; Antipina, Lyubov Yu; Singh, Abhishek K; Yakobson, Boris I
2011-07-13
Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of ∼0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed ∼8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.
Demonstration to characterize watershed runoff potential by microwave techniques
NASA Technical Reports Server (NTRS)
Blanchard, B. J.
1977-01-01
Characteristics such as storage capacity of the soil, volume of storage in vegetative matter, and volume of storage available in local depressions are expressed in empirical watershed runoff equations as one or more coefficients. Conventional techniques for estimating coefficients representing the spatial distribution of these characteristics over a watershed drainage area are subjective and produce significant errors. Characteristics of the wear surface are described as a single coefficient called the curve number.
Assessing materials handling and storage capacities in port terminals
NASA Astrophysics Data System (ADS)
Dinu, O.; Roşca, E.; Popa, M.; Roşca, M. A.; Rusca, A.
2017-08-01
Terminals constitute the factual interface between different modes and, as a result, buffer stocks are unavoidable whenever transport flows with different discontinuities meet. This is the reason why assessing materials handling and storage capacities is an important issue in the course of attempting to increase operative planning of logistic processes in terminals. Proposed paper starts with a brief review of the compatibilities between different sorts of materials and corresponding transport modes and after, a literature overview of the studies related to ports terminals and their specialization is made. As a methodology, discrete event simulation stands as a feasible technique for assessing handling and storage capacities at the terminal, taking into consideration the multi-flows interaction and the non-uniform arrivals of vessels and inland vehicles. In this context, a simulation model, that integrates the activities of an inland water terminal and describes the essential interactions between the subsystems which influence the terminal capacity, is developed. Different scenarios are simulated for diverse sorts of materials, leading to bottlenecks identification, performance indicators such as average storage occupancy rate, average dwell or transit times estimations, and their evolution is analysed in order to improve the transfer operations in the logistic process
NASA Astrophysics Data System (ADS)
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; Asrar, Ghassem R.; Leng, Guoyong; Wang, Yingping; Luo, Yiqi
2016-07-01
Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted ˜ 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA' simulated 37 % higher NPP than CABLE. On the other hand, τE, which was a function of the baseline carbon residence time (τ'E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τE was mainly caused by longer τ'E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ'E. Overall, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; ...
2016-07-29
Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted – 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivitymore » (NPP) and ecosystem residence time ( τ E), the predicted difference in the storage capacity between the two models results from differences in either NPP or τ E or both. Our analysis showed that CLM-CASA'simulated 37 % higher NPP than CABLE. On the other hand, τ E, which was a function of the baseline carbon residence time ( τ' E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τ E was mainly caused by longer τ' E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ' E. Altogether, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra
Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted – 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivitymore » (NPP) and ecosystem residence time ( τ E), the predicted difference in the storage capacity between the two models results from differences in either NPP or τ E or both. Our analysis showed that CLM-CASA'simulated 37 % higher NPP than CABLE. On the other hand, τ E, which was a function of the baseline carbon residence time ( τ' E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τ E was mainly caused by longer τ' E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ' E. Altogether, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.« less
Lifetime of carbon capture and storage as a climate-change mitigation technology
Szulczewski, Michael L.; MacMinn, Christopher W.; Herzog, Howard J.; Juanes, Ruben
2012-01-01
In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century. PMID:22431639
Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.
2000-01-01
The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.
Kuhn, Gerhard; Nickless, R.C.
1994-01-01
Part of the storage space of Pueblo Reservoir consists of a 65,950 acre-foot joint-use pool (JUP) that can be used to provide additional conservation capacity from November 1 to April 14; however, the JUP must be evacuated by April 15 and used only for flood-control capacity until November 1. A study was completed to determine if the JUP possibly could be used for conservation storage for any number of days from April 15 through May 14 under certain hydrologic conditions. The methods of the study were: (1) Frequency analysis of recorded daily mean discharge data for streamflow-gaging stations upstream and downstream from Pueblo Reservoir, and (2) Implementation of the extended streamflow prediction (ESP) procedure for the Arkansas River basin upstream from the reservoir. The frequency analyses enabled estimation of daily discharges at selected exceedance probabilities (EP's), including the 0.01 EP that was used in design of the flood- storage capacity of Pueblo Reservoir. The ESP procedure enabled probabilistic forecasts of inflow volume to the reservoir for April 15 through May 14. Daily discharges derived from the frequency analyses were routed through Pueblo Reservoir to estimate evacuation dates of the JUP for different reservoir inflow volumes; the estimates indicated a relation between the inflow volume and the JUP evacuation date. To apply the study results, only a ESP forecast of the April 15-May 14 reservoir inflow volume is needed. Study results indicate the JUP possibly could be used as late as May 5 depending on the forecast inflow volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.
2015-05-25
Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the materialmore » must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.
The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows themore » relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.« less
NASA Astrophysics Data System (ADS)
Farmann, Alexander; Waag, Wladislaw; Marongiu, Andrea; Sauer, Dirk Uwe
2015-05-01
This work provides an overview of available methods and algorithms for on-board capacity estimation of lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-Function are discussed and analyzed by many authors and researchers in the past. On-board estimation of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions far from those used in laboratory environments as well as the large variation in aging behavior of each cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krapels, E.N.
1983-07-01
The principal objective of this project has been to determine the feasibility of constructing a data base on world primary secondary, and tertiary oil storage capacity. This objective was inspired by the view that surges in stock levels - i.e. sudden changes in the amount of oil storage owners desire to hold - can have a substantial impact on supply, demand, and prices in the world oil market. Those interested in improving their understanding of the market would benefit from a better picture of the storage situation. This report presents the fruits of research into the storage scene in sevenmore » industrial countries: the United States, Japan, West Germany, France, Italy, Spain, and the Netherlands. One finding of this project is that it is indeed possible to construct a useful data base. A major obstacle, however, is the poor quality of information on secondary and tertiary capacity in some countries. The cooperation of government and industry is essential to overcome this handicap. Our research was greatly aided by such cooperation.« less
Terrestrial carbon storage dynamics: Chasing a moving target
NASA Astrophysics Data System (ADS)
Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.
2015-12-01
Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.
How resilient are ecosystems in adapting to climate variability
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.
2015-04-01
The conclusion often drawn in the media is that ecosystems may perish as a result of climate change. Although climatic trends may indeed lead to shifts in ecosystem composition, the challenge to adjust to climatic variability - even if there is no trend - is larger, particularly in semi-arid or topical climates where climatic variability is large compared to temperate climates. How do ecosystems buffer for climatic variability? The most powerful mechanism is to invest in root zone storage capacity, so as to guarantee access to water and nutrients during period of drought. This investment comes at a cost of having less energy available to invest in growth or formation of fruits. Ecosystems are expected to create sufficient buffer to overcome critical periods of drought, but not more than is necessary to survive or reproduce. Based on this concept, a methodology has been developed to estimate ecosystem root zone storage capacity at local, regional and global scale. These estimates correspond well with estimates made by combining soil and ecosystem information, but are more accurate and more detailed. The methodology shows that ecosystems have intrinsic capacity to adjust to climatic variability and hence have a high resilience to both climatic variability and climatic trends.
Analytical Solution for Flow to a Partially Penetrating Well with Storage in a Confined Aquifer
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Mishra, P. K.; Neuman, S. P.
2009-12-01
Analytical solutions for radial flow toward a pumping well are commonly applied to analyze pumping tests conducted in confined aquifers. However, the existing analytical solutions are not capable to simultaneously take into account aquifer anisotropy, partial penetration, and wellbore storage capacity of pumping well. Ignoring these effects may have important impact on the estimated aquifer properties. We present a new analytical solution for three-dimensional, axially symmetric flow to a pumping well in confined aquifer that accouts for aquifer anisotropy, partial penetration and wellbore storage capacity of pumping well. Our analytical reduces to that of Papadopulos et.al. [1967] when the pumping well is fully penetrating, Hantush [1964] when the pumping well has no wellbore storage, and Theis [1935] when both conditions are fulfilled. The solution is evaluated through numerical inversion of its Laplace transform. We use our new solution to analyze data from synthetic and real pumping tests.
Langland, Michael J.
2009-01-01
The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.
Storage Capacity and Water Quality of Lake Ngardok, Babeldaob Island, Republic of Palau, 1996-98
Yeung, Chiu Wang; Wong, Michael F.
1999-01-01
A bathymetric survey conducted during March and April, 1996, determined the total storage capacity Lake Ngardok to be between 90 and 168 acre-feet. Elevation-surface area and elevation-capacity curves summarizing the current relations among elevation, surface area, and storage capacity were created from the bathymetric map. Rainfall and lake-elevation data collected from April 1996 to March 1998 indicated that lake levels correlated to rainfall values with lake elevation rising rapidly in response to heavy rainfall and then returning to normal levels within a few days. Mean lake elevation for the 22 month period of data was 59.5 feet which gives a mean storage capacity of 107 acre-feet and a mean surface area of 24.1 acre. A floating mat of reeds, which covered 58 percent of the lake surface area at the time of the bathymetric survey, makes true storage capacity difficult to estimate. Water-quality sampling during April 1996 and November 1997 indicated that no U.S. Environmental Protection Agency primary drinking-water standards were violated for analyzed organic and inorganic compounds and radionuclides. With suitable biological treatment, the lake water could be used for drinking-water purposes. Temperature and dissolved oxygen measurements indicated that Lake Ngardok is stratified. Given that air temperature on Palau exhibits little seasonal variation, it is likely that this pattern of stratification is persistent. As a result, complete mixing of the lake is probably rare. Near anaerobic conditions exist at the lake bottom. Low dissolved oxygen (3.2 milligrams per liter) measured at the outflow indicated that water flowing past the outflow was from the deep oxygen-depleted depths of the lake.
NASA Astrophysics Data System (ADS)
Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens
2010-05-01
People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface area, depth and shape. Depth was measured using a stadia rod or a manual echosounder. For reservoirs in the sub-set, estimated surface area was used as an input into the triangulated irregular network model. With the surface area and depth, measured volume was calculated. Comparisons were made between estimates of surface area from field surveys and estimates of surface area from remote sensing. A linear regression analysis was carried out to establish the relationship between surface area and storage capacities. Within geomorphologically homogenous regions, one may expect a good correlation between the surface area, which may be determined through satellite observations, and the stored volume. Such a relation depends on the general shape of the slopes (convex, through straight, to concave). The power relationships between remotely sensed surface areas (m^2) and storage capacities of reservoirs (m^3) obtained were - Limpopo basin (Lower Mzingwane sub-catchment): Volume = 0.023083 x Area^1.3272 (R2 = 95%); Bandama basin (North of the basin in Ivory Coast): Volume = 0.00405 x Area^1.4953 (R2 = 88.9%); Volta basin (Upper East region of the Volta Basin in Ghana): Volume = 0.00857 × Area^1.43 (R2 = 97.5%); São Francisco basin (Preto river sub-catchment): Volume = 0.2643 x Area^1.1632 (R2 = 92.1%). Remote sensing was found to be a suitable means to detect small reservoirs and accurately measure their surface areas. The general relationship between measured reservoir volumes and their remotely sensed surface areas showed good accuracy for all four basins. Combining such relationships with periodical satellite-based reservoir area measurements may allow hydrologists and planners to have clear picture of water resource system in the Basins, especially in ungauged sub-basins.
NASA Astrophysics Data System (ADS)
Joewondo, N.; Zhang, Y.; Prasad, M.
2016-12-01
Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental results.
Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects
Sioshansi, Ramteen; Denholm, Paul; Jenkin, Thomas; ...
2008-10-31
Here, significant increases in prices and price volatility of natural gas and electricity have raised interest in the potential economic opportunities for electricity storage. In this paper, we analyze the arbitrage value of a price-taking storage device in PJM during the six-year period from 2002 to 2007, to understand the impact of fuel prices, transmission constraints, efficiency, storage capacity, and fuel mix. The impact of load-shifting for larger amounts of storage, where reductions in arbitrage are offset by shifts in consumer and producer surplus as well as increases in social welfare from a variety of sources, is also considered.
Kim, So-Ra; Kwak, Doo-Ahn; Lee, Woo-Kyun; oLee, Woo-Kyun; Son, Yowhan; Bae, Sang-Won; Kim, Choonsig; Yoo, Seongjin
2010-07-01
The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging (LiDAR) data. A digital canopy model (DCM), generated from the LiDAR data, was combined with aerial photography for segmenting crowns of individual trees. To eliminate errors in over and under-segmentation, the combined image was smoothed using a Gaussian filtering method. The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method. After measuring the crown area from the segmented individual trees, the individual tree diameter at breast height (DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area. The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute. The carbon storage, based on individual trees, was estimated by simple multiplication using the carbon conversion index (0.5), as suggested in guidelines from the Intergovernmental Panel on Climate Change. The mean carbon storage per individual tree was estimated and then compared with the field-measured value. This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data.
Reservoir transport and poroelastic properties from oscillating pore pressure experiments
NASA Astrophysics Data System (ADS)
Hasanov, Azar K.
Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.
Static internal pressure capacity of Hanford Single-Shell Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julyk, L.J.
1994-07-19
Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.
A SCR Model Calibration Approach with Spatially Resolved Measurements and NH 3 Storage Distributions
Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; ...
2014-11-27
The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH 3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH 3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH 3more » storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO 2, and NH 3. The equations and the approach for determining the NH 3 storage capacity of the catalyst and a method of dividing the NH 3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less
Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin
2014-08-01
An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A simple topography-driven, calibration-free runoff generation model
NASA Astrophysics Data System (ADS)
Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H. H. G.
2017-12-01
Determining the amount of runoff generation from rainfall occupies a central place in rainfall-runoff modelling. Moreover, reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we created a new method to estimate runoff generation - HAND-based Storage Capacity curve (HSC) which uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and partially the saturated areas of catchments. We then coupled the HSC model with the Mass Curve Technique (MCT) method to estimate root zone storage capacity (SuMax), and obtained the calibration-free runoff generation model HSC-MCT. Both the two models (HSC and HSC-MCT) allow us to estimate runoff generation and simultaneously visualize the spatial dynamic of saturated area. We tested the two models in the data-rich Bruntland Burn (BB) experimental catchment in Scotland with an unusual time series of the field-mapped saturation area extent. The models were subsequently tested in 323 MOPEX (Model Parameter Estimation Experiment) catchments in the United States. HBV and TOPMODEL were used as benchmarks. We found that the HSC performed better in reproducing the spatio-temporal pattern of the observed saturated areas in the BB catchment compared with TOPMODEL which is based on the topographic wetness index (TWI). The HSC also outperformed HBV and TOPMODEL in the MOPEX catchments for both calibration and validation. Despite having no calibrated parameters, the HSC-MCT model also performed comparably well with the calibrated HBV and TOPMODEL, highlighting the robustness of the HSC model to both describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate the SuMax. Moreover, the HSC-MCT model facilitated effective visualization of the saturated area, which has the potential to be used for broader geoscience studies beyond hydrology.
A low-cost iron-cadmium redox flow battery for large-scale energy storage
NASA Astrophysics Data System (ADS)
Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.
2016-10-01
The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.
NASA Astrophysics Data System (ADS)
Wang, B.; Bauer, S.; Pfeiffer, W. T.
2015-12-01
Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul L; Margolis, Robert M
Opportunities to provide peaking capacity with low-cost energy storage are emerging. But adding storage changes the ability of subsequent storage additions to meet peak demand. Increasing photovoltaic (PV) deployment also affects storage's ability to provide peak capacity. This study examines storage's potential to replace conventional peak capacity in California.
Sedimentation survey of Lago Cerrillos, Ponce, Puerto Rico, April-May 2008
Soler-López, Luis R.
2011-01-01
Lago Cerrillos dam, located in the municipality of Ponce in southern Puerto Rico, was constructed in 1991 as part of the multipurpose Rio Portugues and Bucana Project. This project provides flood protection, water supply, and recreation facilities for the municipio of Ponce. The reservoir had an original storage capacity of 38.03 million cubic meters at maximum conservation pool elevation of 174.65 meters above mean sea level and a drainage area of 45.32 square kilometers. Sedimentation in Lago Cerrillos reservoir has reduced the storage capacity from 38.03 million cubic meters in 1991 to 37.26 million cubic meters in 2008, which represents a total storage loss of about 2 percent. During July 29 to August 23, 2002, 8,492 cubic meters of sediment were removed from the Rio Cerrillos mouth of the reservoir. Taking into account this removed material, the total water-storage loss as of 2008 is 778,492 cubic meters, and the long-term annual water-storage capacity loss rate is about 45,794 cubic meters per year or about 0.12 percent per year. The Lago Cerrillos net sediment-contributing drainage area has an average sediment yield of about 1,069 cubic meters per square kilometer per year. Sediment accumulation in Lago Cerrillos is not uniformly distributed and averages about 3 meters in thickness. This represents a sediment deposition rate of about 18 centimeters per year. On the basis of the 2008 reservoir storage capacity of 37.26 million cubic meters per year and a long-term sedimentation rate of 45,794 cubic meters per year, Lago Cerrillos is estimated to have a useful life of about 814 years or until the year 2822.
Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.
2011-01-01
The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and guidelines for reporting estimates within the classification based on each project's status.
Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape
Liu, Tao; Ren, Tao; White, Philip J; Cong, Rihuan
2018-01-01
Abstract Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear–plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass. PMID:29669007
Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon
NASA Astrophysics Data System (ADS)
Neumann, P.; Haggerty, R.
2012-12-01
A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.
Evaluation of solar thermal power plants using economic and performance simulations
NASA Technical Reports Server (NTRS)
El-Gabawali, N.
1980-01-01
An energy cost analysis is presented for central receiver power plants with thermal storage and point focusing power plants with electrical storage. The present approach is based on optimizing the size of the plant to give the minimum energy cost (in mills/kWe hr) of an annual plant energy production. The optimization is done by considering the trade-off between the collector field size and the storage capacity for a given engine size. The energy cost is determined by the plant cost and performance. The performance is estimated by simulating the behavior of the plant under typical weather conditions. Plant capital and operational costs are estimated based on the size and performance of different components. This methodology is translated into computer programs for automatic and consistent evaluation.
Quantifying the Restorable Water Volume of California's Sierra Nevada Meadows
NASA Astrophysics Data System (ADS)
Emmons, J. D.; Yarnell, S. M.; Fryjoff-Hung, A.; Viers, J.
2013-12-01
The Sierra Nevada is estimated to provide over 66% of California's water supply, which is largely derived from snowmelt. Global climate warming is expected to result in a decrease in snow pack and an increase in melting rate, making the attenuation of snowmelt by any means, an important ecosystem service for ensuring water availability. Montane meadows are dispersed throughout the mountain range and can act like natural reservoirs, and also provide wildlife habitat, water filtration, and water storage. Despite the important role of meadows in the Sierra Nevada, a large proportion is degraded from stream incision, which increases volume outflows and reduces overbank flooding, thus reducing infiltration and potential water storage. Restoration of meadow stream channels would therefore improve hydrological functioning, including increased water storage. The potential water holding capacity of restored meadows has yet to be quantified, thus this research seeks to address this knowledge gap by estimating the restorable water volume due to stream incision. More than 17,000 meadows were analyzed by categorizing their erosion potential using channel slope and soil texture, ultimately resulting in six general erodibility types. Field measurements of over 100 meadows, stratified by latitude, elevation, and geologic substrate, were then taken and analyzed for each erodibility type to determine average depth of incision. Restorable water volume was then quantified as a function of water holding capacity of the soil, meadow area and incised depth. Total restorable water volume was found to be 120 x 10^6 m3, or approximately 97,000 acre-feet. Using 95% confidence intervals for incised depth, the upper and lower bounds of the total restorable water volume were found to be 107 - 140 x 10^6 m3. Though this estimate of restorable water volume is small in regards to the storage capacity of typical California reservoirs, restoration of Sierra Nevada meadows remains an important objective. Storage of water in meadows benefits California wildlife, potentially attenuate floods, and elevates base flows, which can ease effects to the spring recession curve from the expected decline in Sierran snowpack with atmospheric warming.
Reducing a cortical network to a Potts model yields storage capacity estimates
NASA Astrophysics Data System (ADS)
Naim, Michelangelo; Boboeva, Vezha; Kang, Chol Jun; Treves, Alessandro
2018-04-01
An autoassociative network of Potts units, coupled via tensor connections, has been proposed and analysed as an effective model of an extensive cortical network with distinct short- and long-range synaptic connections, but it has not been clarified in what sense it can be regarded as an effective model. We draw here the correspondence between the two, which indicates the need to introduce a local feedback term in the reduced model, i.e. in the Potts network. An effective model allows the study of phase transitions. As an example, we study the storage capacity of the Potts network with this additional term, the local feedback w, which contributes to drive the activity of the network towards one of the stored patterns. The storage capacity calculation, performed using replica tools, is limited to fully connected networks, for which a Hamiltonian can be defined. To extend the results to the case of intermediate partial connectivity, we also derive the self-consistent signal-to-noise analysis for the Potts network; and finally we discuss the implications for semantic memory in humans.
Duan, Zhen-Hua; Liu, Hua-Zhong; Luo, Ping; Gu, Yi-Peng; Li, Yan-Qun
2018-03-14
Preservative effect of melanin-free extract of Sepia esculenta ink (MFESI) on Sparus latus fillet has been verified in our previous work. This study aims to further approach the mechanism of MFESI for extending the shelf-life of fish fillet during cold storage. Tilapia fillets were treated with different dosage of MFESI (0, 15, 25 and 35 mg/ml) and packed with preservative film for succedent cold-storage at 4 °C for scheduled time. Contents of total volatile basic nitrogen and sulfydryl and carbanyl groups were measured for evaluating protein oxidation. Malondialdehyde contents were measured for estimating lipid peroxidation and loss of water was used to determine water-holding capacity of fillet. The data indicated that MFESI not only possessed certain degree of antioxidant capacity in vitro, also lengthened shelf-life of tilapia fillet in cold-storage condition. Apart from 15 mg/ml, both 25 and 35 mg/ml of MFESI obviously prevented lipid and protein from oxidation and reduced loss of water from tilapia fillets, and the latter was more effective than the former. MFESI can repress lipid peroxidation and protein oxidation and reduce water loss, maintain the tilapia fillets quality and, thus, it could be an effective and natural preservative for extending the shelf-life of tilapia fillets during cold storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany A; Cole, Wesley J; Sun, Yinong
Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve demand over the evolution of many years or decades. Various CEM formulations are used to evaluate systems ranging in scale from states or utility service territories to national or multi-national systems. CEMs can be computationally complex, and to achieve acceptable solve times, key parameters are often estimated using simplified methods. In this paper, we focus on two of these key parameters associated with the integration of variable generation (VG) resources: capacity value and curtailment. We first discuss commonmore » modeling simplifications used in CEMs to estimate capacity value and curtailment, many of which are based on a representative subset of hours that can miss important tail events or which require assumptions about the load and resource distributions that may not match actual distributions. We then present an alternate approach that captures key elements of chronological operation over all hours of the year without the computationally intensive economic dispatch optimization typically employed within more detailed operational models. The updated methodology characterizes the (1) contribution of VG to system capacity during high load and net load hours, (2) the curtailment level of VG, and (3) the potential reductions in curtailments enabled through deployment of storage and more flexible operation of select thermal generators. We apply this alternate methodology to an existing CEM, the Regional Energy Deployment System (ReEDS). Results demonstrate that this alternate approach provides more accurate estimates of capacity value and curtailments by explicitly capturing system interactions across all hours of the year. This approach could be applied more broadly to CEMs at many different scales where hourly resource and load data is available, greatly improving the representation of challenges associate with integration of variable generation resources.« less
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...
What controls respiration rate in stored sugarbeet roots
USDA-ARS?s Scientific Manuscript database
Although respiration is estimated to be responsible for 60 to 80% of the sucrose lost during storage, the mechanisms by which sugarbeet roots regulate their respiration rate are unknown. In plants, respiration rate is regulated by (1) available respiratory capacity, (2) cellular energy status, (3) ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng
2011-01-01
Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target salinemore » aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.« less
Sahle, Mesfin; Saito, Osamu; Fürst, Christine; Yeshitela, Kumelachew
2018-05-15
In this study, the supply of and demand for carbon storage and sequestration of woody biomass in the socio-ecological environment of the Wabe River catchment in Gurage Mountains, Ethiopia, were estimated. This information was subsequently integrated into a map that showed the balance between supply capacities and demand in a spatially explicit manner to inform planners and decision makers on methods used to manage local climate change. Field data for wood biomass and soil were collected, satellite images for land use and land cover (LULC) were classified, and secondary data from statistics and studies for estimation were obtained. Carbon storage, the rate of carbon sequestration and the rate of greenhouse gas (GHG) emissions from diverse sources at different LULCs, was estimated accordingly by several methods. Even though a large amount of carbon was stored in the catchment, the current yearly sequestration was less than the CO 2 -eq. GHG emissions. Forest and Enset-based agroforestry emissions exhibited the highest amount of woody biomass, and cereal crop and wetland exhibited the highest decrease in soil carbon sequestration. CO 2 -eq. GHG emissions are mainly caused by livestock, nitrogenous fertilizer consumption, and urban activities. The net negative emissions were estimated for the LULC classes of cereal crop, grazing land, and urban areas. In conclusion, without any high-emission industries, GHG emissions can be greater than the regulatory capacity of ecosystems in the socio-ecological environment. This quantification approach can provide information to policy and decision makers to enable them to tackle climate change at the root level. Thus, measures to decrease emission levels and enhance the sequestration capacity are crucial to mitigate the globally delivered service in a specific area. Further studies on the effects of land use alternatives on net emissions are recommended to obtain in-depth knowledge on sustainable land use planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin
2014-01-01
Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity.
National assessment of geologic carbon dioxide storage resources: summary
,
2013-01-01
The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national assessment was a geology-based examination of all sedimentary basins in the onshore and State waters area of the United States that contain storage assessment units (SAUs) that could be defined according to geologic and hydrologic characteristics. Although geologic storage of CO2 may be possible in some areas not assessed by the USGS, the SAUs identified in this assessment represent those areas within sedimentary basins that met the assessment criteria. A geologic description of each SAU was prepared; descriptions for SAUs in several basins are in Warwick and Corum (2012, USGS OFR 2012–1024).
NASA Astrophysics Data System (ADS)
Ashwin, T. R.; Barai, A.; Uddin, K.; Somerville, L.; McGordon, A.; Marco, J.
2018-05-01
Ageing prediction is often complicated due to the interdependency of ageing mechanisms. Research has highlighted that storage ageing is not linear with time. Capacity loss due to storing the battery at constant temperature can shed more light on parametrising the properties of the Solid Electrolyte Interphase (SEI); the identification of which, using an electrochemical model, is systematically addressed in this work. A new methodology is proposed where any one of the available storage ageing datasets can be used to find the property of the SEI layer. A sensitivity study is performed with different molecular mass and densities which are key parameters in modelling the thickness of the SEI deposit. The conductivity is adjusted to fine tune the rate of capacity fade to match experimental results. A correlation is fitted for the side reaction variation to capture the storage ageing in the 0%-100% SoC range. The methodology presented in this paper can be used to predict the unknown properties of the SEI layer which is difficult to measure experimentally. The simulation and experimental results show that the storage ageing model shows good accuracy for the cases at 50% and 90% and an acceptable agreement at 20% SoC.
NASA Astrophysics Data System (ADS)
Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.
2011-12-01
The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth, suggesting that most of the differential storage is taken by the epikarst. Second, we use STD gravity differences to determine the effective density values for each site. These integrative density values are compared to measured grain densities from core samples in order to obtain the apparent porosity and saturation representative to the investigated volume. We then discuss the relation between the physical characteristic of each non-saturated zone and its water storage capacity. It seems that epikarst water storage variation is only weakly related to lithology. We also discuss the reasons for specific water storage in the epikarst. Because epikarst water storage has been claimed to be a general characteristic of karst system, a gravimetric approach appears to be a promising method to verify quantitatively this hypothesis.
NASA Astrophysics Data System (ADS)
Wójcicki, Adam; Jarosiński, Marek
2017-04-01
For the stage of shale gas production, like in the USA, prediction of the CO2 storage potential in shale reservoir can be performed by dynamic modeling. We have made an attempt to estimate this potential at an early stage of shale gas exploration in the Lower Paleozoic Baltic Basin, based on data from 3,800 m deep vertical well (without hydraulic fracking stimulation), supplemented with additional information from neighboring boreholes. Such an attempt makes a sense as a first guess forecast for company that explores a new basin. In our approach, the storage capacity is build by: (1) sorption potential of organic matter, (2) open pore space and (3) potential fracture space. the sequence. our estimation is done for 120 m long shale sequence including three shale intervals enriched with organic mater. Such an interval is possible to be fracked from a single horizontal borehole as known from hydraulic fracture treatment in the other boreholes in this region. The potential for adsorbed CO2 is determined from Langmuir isotherm parameters taken from laboratory measurements in case of both CH4 and CO2 adsorption, as well as shale density and volume. CO2 has approximately three times higher sorption capacity than methane to the organic matter contained in the Baltic Basin shales. Finally, due to low permeability of shale we adopt the common assumption for the USA shale basins that the CO2 will be able to reach effectively only 10% of theoretical total sorption volume. The pore space capacity was estimated by utilizing results of laboratory measurements of dynamic capacity for pores bigger than 10 nm. It is assumed for smaller pores adsorption prevails over free gas. Similarly to solution for sorption, we have assumed that only 10 % of the tight pore space will be reached by CO2. For fracture space we have considered separately natural (tectonic-origin) and technological (potentially produced by hydraulic fracturing treatment) fractures. From fracture density profile and typical permeability of fractures under lithostatic stress we inferred negligible open space of natural fractures. Technological fracture space was calculated as an potential for hydraulic stimulation of vertical fractures until, due to elastic expansion of reservoir, the horizontal minimum stress equals the vertical one. In such a case, horizontal fractures start to open and the stimulation process gets to fail. Based on elastic anisotropy and tectonic stress differentiation, the maximum hydraulic horizontal extension was calculated for separated shale complexes. For further storage capacity we assumed that technological fracture space create primary pathway for CO2 transport is entirely accessible for the CO2. In general, the CO2 sorption capacity makes the predominant contribution and fracture space capacity is comparable or smaller than pore space contribution. When compare this with the best recognized Marcellus shale basin we can see that our calculations for the 35 m depth interval comprising formations with the higher TOC content show a slightly lower value than in the case of Marcellus.
8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany A
Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve load over many years or decades. CEMs can be computationally complex and are often forced to estimate key parameters using simplified methods to achieve acceptable solve times or for other reasons. In this paper, we discuss one of these parameters -- capacity value (CV). We first provide a high-level motivation for and overview of CV. We next describe existing modeling simplifications and an alternate approach for estimating CV that utilizes hourly '8760' data of load and VG resources.more » We then apply this 8760 method to an established CEM, the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016). While this alternative approach for CV is not itself novel, it contributes to the broader CEM community by (1) demonstrating how a simplified 8760 hourly method, which can be easily implemented in other power sector models when data is available, more accurately captures CV trends than a statistical method within the ReEDS CEM, and (2) providing a flexible modeling framework from which other 8760-based system elements (e.g., demand response, storage, and transmission) can be added to further capture important dynamic interactions, such as curtailment.« less
NASA Astrophysics Data System (ADS)
Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.
2018-02-01
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.
Working and Net Available Shell Storage Capacity
2017-01-01
Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).
46 CFR 112.55-15 - Capacity of storage batteries.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...
46 CFR 112.55-15 - Capacity of storage batteries.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...
46 CFR 112.55-15 - Capacity of storage batteries.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...
46 CFR 112.55-15 - Capacity of storage batteries.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...
46 CFR 112.55-15 - Capacity of storage batteries.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...
Wernly, John F.; Zajd, Jr., Henry J.; Coon, William F.
2016-10-05
During 2015, the U.S. Geological Survey, in cooperation with the City of Ithaca, New York, and the New York State Department of State, conducted a bathymetric survey of the lower Sixmile Creek reservoir in Tompkins County, New York. A former water-supply reservoir for the City of Ithaca, the reservoir is no longer a functional component of Ithaca’s water-supply system, having been replaced by a larger reservoir less than a mile upstream in 1911. Excessive sedimentation has substantially reduced the reservoir’s water-storage capacity and made the discharge gate at the base of the 30-foot dam, which creates the reservoir, inoperable. U.S. Geological Survey personnel collected bathymetric data by using an acoustic Doppler current profiler. Across more than half of the approximately 14-acre reservoir, depths were manually measured because of interference from aquatic vegetation with the acoustic Doppler current profiler. City of Ithaca personnel created a bottom-elevation surface from these depth data. A second surface was created from depths that were manually measured by City of Ithaca personnel during 1938. Surface areas and storage capacities were computed at 1-foot increments of elevation for both bathymetric surveys. The results indicate that the current storage capacity of the reservoir at its normal water-surface elevation is about 84 acre-feet and that sediment accumulated between 1938 and 2015 has decreased the reservoir’s capacity by about 68 acre-feet. This sediment load is attributed to annual inputs from the watershed above the reservoir, as well as from an episodic landslide that filled a large part of the reservoir along its northern edge in 1949.
Online estimation of lithium-ion battery capacity using sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani
2015-09-01
Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.
Seneca Compressed Air Energy Storage (CAES) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2012-11-30
Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant constructionmore » with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installed CAES plant cost estimate of approximately $2,300/KW for the 210MW CAES 1A and 2 cycles. The capital cost for the 136 MW CAES 1 cycle was even higher due to the lower generating capacity of the cycle. Notably, the large equipment could have generated additional capacity (up to 270MW) which would have improved the cost per KW; however, the output was limited by the night time transmission system capability. The research herein, therefore, is particular to the site-specific factors that influenced the design and the current and forecasted generation mix and energy prices in Upstate New York and may not necessarily indicate that CAES plants cannot be economically constructed in other places in New York State or the world.« less
Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin
2014-01-01
Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity. PMID:24883372
Emrich, Stephen M; Busseri, Michael A
2015-09-01
The amount of task-irrelevant information encoded in visual working memory (VWM), referred to as unnecessary storage, has been proposed as a potential mechanism underlying individual differences in VWM capacity. In addition, a number of studies have provided evidence for additional activity that initiates the filtering process originating in the frontal cortex and basal ganglia, and is therefore a crucial step in the link between unnecessary storage and VWM capacity. Here, we re-examine data from two prominent studies that identified unnecessary storage activity as a predictor of VWM capacity by directly testing the implied path model linking filtering-related activity, unnecessary storage, and VWM capacity. Across both studies, we found that unnecessary storage was not a significant predictor of individual differences in VWM capacity once activity associated with filtering was accounted for; instead, activity associated with filtering better explained variation in VWM capacity. These findings suggest that unnecessary storage is not a limiting factor in VWM performance, whereas neural activity associated with filtering may play a more central role in determining VWM performance that goes beyond preventing unnecessary storage.
78 FR 38308 - PK Ventures, Inc.; North Carolina; Notice Soliciting Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 4093-031] PK Ventures, Inc... at normal pool elevation of 315 feet mean sea level and a gross storage capacity of 100 acre-feet; and (5) appurtenant facilities. The project operates run-of-river and generates and estimated average...
CO2 storage capacity estimates from fluid dynamics (Invited)
NASA Astrophysics Data System (ADS)
Juanes, R.; MacMinn, C. W.; Szulczewski, M.
2009-12-01
We study a sharp-interface mathematical model for the post-injection migration of a plume of CO2 in a deep saline aquifer under the influence of natural groundwater flow, aquifer slope, gravity override, and capillary trapping. The model leads to a nonlinear advection-diffusion equation, where the diffusive term describes the upward spreading of the CO2 against the caprock. We find that the advective terms dominate the flow dynamics even for moderate gravity override. We solve the model analytically in the hyperbolic limit, accounting rigorously for the injection period—using the true end-of-injection plume shape as an initial condition. We extend the model by incorporating the effect of CO2 dissolution into the brine, which—we find—is dominated by convective mixing. This mechanism enters the model as a nonlinear sink term. From a linear stability analysis, we propose a simple estimate of the convective dissolution flux. We then obtain semi-analytic estimates of the maximum plume migration distance and migration time for complete trapping. Our analytical model can be used to estimate the storage capacity (from capillary and dissolution trapping) at the geologic basin scale, and we apply the model to various target formations in the United States. Schematic of the migration of a CO2 plume at the geologic basin scale. During injection, the CO2 forms a plume that is subject to gravity override. At the end of the injection, all the CO2 is mobile. During the post-injection period, the CO2 migrates updip and also driven by regional groundwater flow. At the back end of the plume, where water displaces CO2, the plume leaves a wake or residual CO2 due to capillary trapping. At the bottom of the moving plume, CO2 dissolves into the brine—a process dominated by convective mixing. These two mechanisms—capillary trapping and convective dissolution—reduce the size of the mobile plume as it migrates. In this communication, we present an analytical model that predicts the migration distance and time for complete trapping. This is used to estimate storage capacity of geologic formations at the basin scale.
Langland, Michael J.; Hainly, Robert A.
1997-01-01
The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.
Effects of well spacing on geological storage site distribution costs and surface footprint.
Eccles, Jordan; Pratson, Lincoln F; Chandel, Munish Kumar
2012-04-17
Geological storage studies thus far have not evaluated the scale and cost of the network of distribution pipelines that will be needed to move CO(2) from a central receiving point at a storage site to injection wells distributed about the site. Using possible injection rates for deep-saline sandstone aquifers, we estimate that the footprint of a sequestration site could range from <100 km(2) to >100,000 km(2), and that distribution costs could be <$0.10/tonne to >$10/tonne. Our findings are based on two models for determining well spacing: one which minimizes spacing in order to maximize use of the volumetric capacity of the reservoir, and a second that determines spacing to minimize subsurface pressure interference between injection wells. The interference model, which we believe more accurately reflects reservoir dynamics, produces wider well spacings and a counterintuitive relationship whereby total injection site footprint and thus distribution cost declines with decreasing permeability for a given reservoir thickness. This implies that volumetric capacity estimates should be reexamined to include well spacing constraints, since wells will need to be spaced further apart than void space calculations might suggest. We conclude that site-selection criteria should include thick, low-permeability reservoirs to minimize distribution costs and site footprint.
Do Shale Pore Throats Have a Threshold Diameter for Oil Storage?
Zou, Caineng; Jin, Xu; Zhu, Rukai; Gong, Guangming; Sun, Liang; Dai, Jinxing; Meng, Depeng; Wang, Xiaoqi; Li, Jianming; Wu, Songtao; Liu, Xiaodan; Wu, Juntao; Jiang, Lei
2015-01-01
In this work, a nanoporous template with a controllable channel diameter was used to simulate the oil storage ability of shale pore throats. On the basis of the wetting behaviours at the nanoscale solid-liquid interfaces, the seepage of oil in nano-channels of different diameters was examined to accurately and systematically determine the effect of the pore diameter on the oil storage capacity. The results indicated that the lower threshold for oil storage was a pore throat of 20 nm, under certain conditions. This proposed pore size threshold provides novel, evidence-based criteria for estimating the geological reserves, recoverable reserves and economically recoverable reserves of shale oil. This new understanding of shale oil processes could revolutionize the related industries. PMID:26314637
Do Shale Pore Throats Have a Threshold Diameter for Oil Storage?
Zou, Caineng; Jin, Xu; Zhu, Rukai; Gong, Guangming; Sun, Liang; Dai, Jinxing; Meng, Depeng; Wang, Xiaoqi; Li, Jianming; Wu, Songtao; Liu, Xiaodan; Wu, Juntao; Jiang, Lei
2015-08-28
In this work, a nanoporous template with a controllable channel diameter was used to simulate the oil storage ability of shale pore throats. On the basis of the wetting behaviours at the nanoscale solid-liquid interfaces, the seepage of oil in nano-channels of different diameters was examined to accurately and systematically determine the effect of the pore diameter on the oil storage capacity. The results indicated that the lower threshold for oil storage was a pore throat of 20 nm, under certain conditions. This proposed pore size threshold provides novel, evidence-based criteria for estimating the geological reserves, recoverable reserves and economically recoverable reserves of shale oil. This new understanding of shale oil processes could revolutionize the related industries.
18 CFR 11.16 - Filing requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... generating capacity separately designated. (3) A description of the total storage capacity of the reservoir..., irrigation storage, and flood control storage. Identification, by reservoir elevation, of the portion of the reservoir assigned to each of its respective storage functions. (4) An elevation-capacity curve, or a...
18 CFR 11.16 - Filing requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... generating capacity separately designated. (3) A description of the total storage capacity of the reservoir..., irrigation storage, and flood control storage. Identification, by reservoir elevation, of the portion of the reservoir assigned to each of its respective storage functions. (4) An elevation-capacity curve, or a...
Hu, Kexiang; Awange, Joseph L; Khandu; Forootan, Ehsan; Goncalves, Rodrigo Mikosz; Fleming, Kevin
2017-12-01
For Brazil, a country frequented by droughts and whose rural inhabitants largely depend on groundwater, reliance on isotope for its monitoring, though accurate, is expensive and limited in spatial coverage. We exploit total water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) satellites to analyse spatial-temporal groundwater changes in relation to geological characteristics. Large-scale groundwater changes are estimated using GRACE-derived TWS and altimetry observations in addition to GLDAS and WGHM model outputs. Additionally, TRMM precipitation data are used to infer impacts of climate variability on groundwater fluctuations. The results indicate that climate variability mainly controls groundwater change trends while geological properties control change rates, spatial distribution, and storage capacity. Granular rocks in the Amazon and Guarani aquifers are found to influence larger storage capability, higher permeability (>10 -4 m/s) and faster response to rainfall (1 to 3months' lag) compared to fractured rocks (permeability <10 -7 m/s and lags > 3months) found only in Bambui aquifer. Groundwater in the Amazon region is found to rely not only on precipitation but also on inflow from other regions. Areas beyond the northern and southern Amazon basin depict a 'dam-like' pattern, with high inflow and slow outflow rates (recharge slope > 0.75, discharge slope < 0.45). This is due to two impermeable rock layer-like 'walls' (permeability <10 -8 m/s) along the northern and southern Alter do Chão aquifer that help retain groundwater. The largest groundwater storage capacity in Brazil is the Amazon aquifer (with annual amplitudes of > 30cm). Amazon's groundwater declined between 2002 and 2008 due to below normal precipitation (wet seasons lasted for about 36 to 47% of the time). The Guarani aquifer and adjacent coastline areas rank second in terms of storage capacity, while the northeast and southeast coastal regions indicate the smallest storage capacity due to lack of rainfall (annual average is rainfall <10cm). Copyright © 2017 Elsevier B.V. All rights reserved.
Storage capacity of subcutaneous fat in Japanese adults.
Sato, S; Demura, S; Nakai, M
2015-08-01
On the basis of our previous study, which examined the nonlinear relationship between visceral fat area (VFA) and percent regional fat mass in the trunk, we hypothesise the presence of some storage capacity of subcutaneous fat. This study aimed to examine the storage capacity of subcutaneous fat on the basis of subcutaneous fat area (SFA) and VFA in 791 Japanese adult males and 563 females. Regression analyses by using SFA as a dependent variable and VFA as an independent variable were performed for each group classified by visceral fat obesity (VO): VO (VFA ⩾ 100 cm(2)) and the no-VO (NVO) groups. To statistically identify an optimal critical point for subcutaneous fat accumulation, we changed the cutoff point for the VO group from 50-150 cm(2) in 10-cm(2) increments and confirmed the significance of the correlation between SFA and VFA for each obesity group, the statistical difference in correlations between NVO and VO groups, and the goodness of fit for the two regression lines using the standard error of estimation values. These analyses were conducted for each sex and age (<65 and ⩾ 65 years) group. The critical point for subcutaneous fat accumulation appears at the following cutoff points of VFA: 130 cm(2) in <65-year-old males, 110 cm(2) in ⩾ 65-year-old males and 100 cm(2) in both female groups. These results suggest the presence of some storage capacity of subcutaneous fat. As a further application, these findings may serve to improve the risk assessment of obesity-related diseases.
Sedimentation survey of Lago Caonillas, Utuado, Puerto Rico, September–November 2012
Soler-Lopez, Luis R.
2016-11-09
During September–November 2012, the U.S. Geological Survey, in cooperation with the Puerto Rico Aqueduct and Sewer Authority, conducted a sedimentation survey of Lago Caonillas to estimate current (2012) reservoir storage capacity and the recent (2000–2012) reservoir sedimentation rate by comparing the 2012 bathymetric survey data with the February 2000 data. The Lago Caonillas storage capacity, which was 42.27 million cubic meters in February 2000, decreased to 39.55 million cubic meters by September–November 2012. The intersurvey (2000–2012) storage capacity loss was about 6 percent, corresponding to a decrease of about 0.5 percent per year; this loss represents a reservoir sedimentation rate of about 226,670 cubic meters per year between 2000 and 2012. On a long-term basis, however, the sedimentation rate has remained nearly constant, decreasing from about 257,500 to 251,720 cubic meters per year during 1948–2000 and 1948–2012, respectively. Most of the sediment accumulation and associated storage capacity loss of Lago Caonillas has occurred within the eastern and Río Caonillas branches of the reservoir. In the vicinity of the Caonillas Dam, minor sediment deposition and scour have occurred. The Lago Caonillas drainage area sediment yield has decreased by about 2 percent since the previous survey, from 1,266 cubic meters per square kilometer per year in 2000 to 1,237 cubic meters per square kilometer per year in 2012. If the long-term sedimentation rate of 251,720 cubic meters per year remains constant, the useful life of Lago Caonillas may end in about 2169.
Simple agrometeorological models for estimating Guineagrass yield in Southeast Brazil.
Pezzopane, José Ricardo Macedo; da Cruz, Pedro Gomes; Santos, Patricia Menezes; Bosi, Cristiam; de Araujo, Leandro Coelho
2014-09-01
The objective of this work was to develop and evaluate agrometeorological models to simulate the production of Guineagrass. For this purpose, we used forage yield from 54 growing periods between December 2004-January 2007 and April 2010-March 2012 in irrigated and non-irrigated pastures in São Carlos, São Paulo state, Brazil (latitude 21°57'42″ S, longitude 47°50'28″ W and altitude 860 m). Initially we performed linear regressions between the agrometeorological variables and the average dry matter accumulation rate for irrigated conditions. Then we determined the effect of soil water availability on the relative forage yield considering irrigated and non-irrigated pastures, by means of segmented linear regression among water balance and relative production variables (dry matter accumulation rates with and without irrigation). The models generated were evaluated with independent data related to 21 growing periods without irrigation in the same location, from eight growing periods in 2000 and 13 growing periods between December 2004-January 2007 and April 2010-March 2012. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, minimum temperature and potential evapotranspiration or degreedays) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on minimum temperature corrected by relative soil water storage, determined by the ratio between the actual soil water storage and the soil water holding capacity.irrigation in the same location, in 2000, 2010 and 2011. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, potential evapotranspiration or degree-days) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on degree-days corrected by the water deficit factor.
Canopy interception variability in changing climate
NASA Astrophysics Data System (ADS)
Kalicz, Péter; Herceg, András; Kisfaludi, Balázs; Csáki, Péter; Gribovszki, Zoltán
2017-04-01
Tree canopies play a rather important role in forest hydrology. They intercept significant amounts of precipitation and evaporate back into the atmosphere during and after precipitation event. This process determines the net intake of forest soils and so important factor of hydrological processes in forested catchments. Average amount of interception loss is determined by the storage capacity of tree canopies and the rainfall distribution. Canopy storage capacity depends on several factors. It shows strong correlation with the leaf area index (LAI). Some equations are available to quantify this dependence. LAI shows significant variability both spatial and temporal scale. There are several methods to derive LAI from remote sensed data which helps to follow changes of it. In this study MODIS sensor based LAI time series are used to estimate changes of the storage capacity. Rainfall distribution derived from the FORESEE database which is developed for climate change related impact studies in the Carpathian Basin. It contains observation based precipitation data for the past and uses bias correction method for the climate projections. In this study a site based estimation is outworked for the Sopron Hills area. Sopron Hills is located at the eastern foothills of the Alps in Hungary. The study site, namely Hidegvíz Valley experimental catchment, is located in the central valley of the Sopron Hills. Long-term interception measurements are available in several forest sites in Hidegvíz Valley. With the combination of the ground based observations, MODIS LAI datasets a simple function is developed to describe the average yearly variations in canopy storage. Interception measurements and the CREMAP evapotranspiration data help to calibrate a simple interception loss equation based on Merriam's work. Based on these equation and the FORESEE bias corrected precipitation data an estimation is outworked for better understanding of the feedback of forest crown on hydrological cycle. This research has been supported by the Agroclimate.2 VKSZ_12-1-2013-0034 project, and the corresponding author's work was also supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences.
Gleason, Robert A.; Tangen, Brian A.; Laubhan, Murray K.; Kermes, Kevin E.; Euliss, Ned H.
2007-01-01
Executive Summary Concern over flooding along rivers in the Prairie Pothole Region has stimulated interest in developing spatially distributed hydrologic models to simulate the effects of wetland water storage on peak river flows. Such models require spatial data on the storage volume and interception area of existing and restorable wetlands in the watershed of interest. In most cases, information on these model inputs is lacking because resolution of existing topographic maps is inadequate to estimate volume and areas of existing and restorable wetlands. Consequently, most studies have relied on wetland area to volume or interception area relationships to estimate wetland basin storage characteristics by using available surface area data obtained as a product from remotely sensed data (e.g., National Wetlands Inventory). Though application of areal input data to estimate volume and interception areas is widely used, a drawback is that there is little information available to provide guidance regarding the application, limitations, and biases associated with such approaches. Another limitation of previous modeling efforts is that water stored by wetlands within a watershed is treated as a simple lump storage component that is filled prior to routing overflow to a pour point or gaging station. This approach does not account for dynamic wetland processes that influence water stored in prairie wetlands. Further, most models have not considered the influence of human-induced hydrologic changes, such as land use, that greatly influence quantity of surface water inputs and, ultimately, the rate that a wetland basin fills and spills. The goals of this study were to (1) develop and improve methodologies for estimating and spatially depicting wetland storage volumes and interceptions areas and (2) develop models and approaches for estimating/simulating the water storage capacity of potentially restorable and existing wetlands under various restoration, land use, and climatic scenarios. To address these goals, we developed models and approaches to spatially represent storage volumes and interception areas of existing and potentially restorable wetlands in the upper Mustinka subbasin within Grant County, Minn. We then developed and applied a model to simulate wetland water storage increases that would result from restoring 25 and 50 percent of the farmed and drained wetlands in the upper Mustinka subbasin. The model simulations were performed during the growing season (May-October) for relatively wet (1993; 0.79 m of precipitation) and dry (1987; 0.40 m of precipitation) years. Results from the simulations indicated that the 25 percent restoration scenario would increase water storage by 21-24 percent and that a 50 percent scenario would increase storage by 34-38 percent. Additionally, we estimated that wetlands in the subbasin have potential to store 11.57-20.98 percent of the total precipitation that fell over the entire subbasin area (52,758 ha). Our simulation results indicated that there is considerable potential to enhance water storage in the subbasin; however, evaluation and calibration of the model is necessary before simulation results can be applied to management and planning decisions. In this report we present guidance for the development and application of models (e.g., surface area-volume predictive models, hydrology simulation model) to simulate wetland water storage to provide a basis from which to understand and predict the effects of natural or human-induced hydrologic alterations. In developing these approaches, we tried to use simple and widely available input data to simulate wetland hydrology and predict wetland water storage for a specific precipitation event or a series of events. Further, the hydrology simulation model accounted for land use and soil type, which influence surface water inputs to wetlands. Although information presented in this report is specific to the Mustinka subbasin, the approaches
Külen, Oktay; Stushnoff, Cecil; Holm, David G
2013-08-15
Twelve Colorado-grown specialty potato clones were evaluated for total phenolic content, antioxidant activity and ascorbic acid content at harvest and after 2, 4, 6 and 7 months cold storage at 4 °C. Potato clones were categorized as pigmented ('CO97226-2R/R', 'CO99364-3R/R', 'CO97215-2P/P', 'CO97216-3P/P', 'CO97227-2P/P', 'CO97222-1R/R', 'Purple Majesty', 'Mountain Rose' and 'All Blue'), yellow ('Yukon Gold') and white fleshed ('Russet Nugget', 'Russet Burbank'). Folin-Ciocalteu reagent was used to estimate total phenolic content, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+) ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(•) ) radical scavenging assays were used to estimate antioxidant capacity. Pigmented potato genotypes had significantly higher total phenolic content and antioxidant activity at all data points than yellow- and white-fleshed cultivars. Vitamin C content was higher in 'Yukon Gold' than in the other clones. The highest level of vitamin C in all clones was at harvest and after 2 months in cold storage. Vitamin C content in all potato clones dropped rapidly with longer intervals of cold storage. Although total phenolic content and antioxidant activity fluctuated during cold storage, after 7 months of cold storage their levels were slightly higher than at harvest. Total phenolic content was better correlated with Trolox equivalent antioxidant capacity (TEAC)/ABTS(•+) than the TEAC/DPPH(•) radical scavenging assay. Pigmented potato clones had significantly higher total phenolic content and antioxidant activity, while the yellow-fleshed potato cultivar 'Yukon Gold' had significantly higher vitamin C content. Vitamin C content decreased in all potato clones during cold storage, while total phenolics increased in pigmented clones. © 2013 Society of Chemical Industry.
Wu, Hai Bing; Fang, Hai Lan; Peng, Hong Ling
2016-05-01
The effects of different vegetation types, compaction ways and soil basic physico-chemical properties on soil water reservoir in the typical newly-established green belts of Shanghai Chenshan Botanical Garden were studied. The results showed that the total reservoir capacity, detention capacity and effective storage for the Botanical Garden were lower than those of natural forests. However, the dead storage was very high accounting for 60.6% of the total reservoir capacity, resulting in reduced flood storage and drainage capacity for the greens. The total reservoir capacity and detention capacity of different vegetation types were in order of brush land> tree land> grassland> bamboo land> bare land. The effective storages of the brush land and the tree land were relatively high, whereas those of the bare land and the bamboo land were lower. The ratios of the dead storage over the total re-servoir capacity in the bare land and the bamboo land were relatively high with the values 65.5% and 67.6%, respectively. The total reservoir capacity, detention capacity and effective storage of the brush land were significantly different from those of the bare land. The vegetation significantly improved the water storage and retention capacity for the soil, while the compaction by large machinery and man-caused trampling reduced the total reservoir capacity, detention capacity and effective storage of soils. The water reservoir properties were influenced by soil bulk density, saturated hydraulic conductivity, capillary porosity, non-capillary porosity, total porosity, clay and organic matter contents. Therefore, improving the soil physico-chemical properties might increase the soil reservoir capacity of the urban green belt effectively.
Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J.; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin
2014-01-01
Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations. PMID:24586881
Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin
2014-01-01
Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.
Patel, Nilesh J.; Talati, Jayant G.
2017-01-01
It is of paramount importance for consumers, scientists and industrialists to understand how low-temperature storage of food items affects their bioactive compounds and properties. This study evaluated the effects of cold storage on total phenolics (TP), phenolic acids profile (PA), total anthocyanins (TA), total ascorbic acid (Vit. C) and antioxidant activity (AA) of 19 fruits and vegetables, collected from local Indian markets and stored in refrigerator (4 °C) during 15 days. Content of TP was highest in dill and amaranth and decreased (up to 29.67%) with storage. Leafy vegetables (amaranth, dill, onion, fenugreek and spinach) contained higher amounts of the 12 PA revealed by UPLC-UV; ellagic, gallic, sinapic and vanillic acids levels were the highest; chlorogenic acid (ρ = 0.423), syringic acid (ρ = 0.403) and sinapic acid (ρ = 0.452) mostly correlated with TP; and the PA increased during storage. Highest contents of Vit C estimated by AOAC, DCPIP and DNP methods were found in amaranth, dill and pomegranate, and decreased with storage. Pomegranate showed highest TA levels and low-temperature storage did not significantly increase TA, which was the largest contributor of TP in fruits and vegetables (ρ = 0.661). Storage induced a drastic decrease of AA, which mostly correlated with TP (ρ = 0.808, 0.690 and 0.458 for DPPH, ABTS and FRAP assays, respectively). Spearman’s correlation confirmed by principal component analysis demonstrated that dill, pomegranate and amaranth had the highest overall antioxidant capacity, whereas orange juice and carrot showed the lowest. The results provide support for a key-role of TP, followed by Vit. C and TA in antioxidant capacity of fruits and vegetables, which could be interesting dietary sources of natural antioxidants for prevention of diseases caused by oxidative stress. PMID:28737734
Galani, Joseph H Y; Patel, Jalpesh S; Patel, Nilesh J; Talati, Jayant G
2017-07-24
It is of paramount importance for consumers, scientists and industrialists to understand how low-temperature storage of food items affects their bioactive compounds and properties. This study evaluated the effects of cold storage on total phenolics (TP), phenolic acids profile (PA), total anthocyanins (TA), total ascorbic acid (Vit. C) and antioxidant activity (AA) of 19 fruits and vegetables, collected from local Indian markets and stored in refrigerator (4 °C) during 15 days. Content of TP was highest in dill and amaranth and decreased (up to 29.67%) with storage. Leafy vegetables (amaranth, dill, onion, fenugreek and spinach) contained higher amounts of the 12 PA revealed by UPLC-UV; ellagic, gallic, sinapic and vanillic acids levels were the highest; chlorogenic acid (ρ = 0.423), syringic acid (ρ = 0.403) and sinapic acid (ρ = 0.452) mostly correlated with TP; and the PA increased during storage. Highest contents of Vit C estimated by AOAC, DCPIP and DNP methods were found in amaranth, dill and pomegranate, and decreased with storage. Pomegranate showed highest TA levels and low-temperature storage did not significantly increase TA, which was the largest contributor of TP in fruits and vegetables (ρ = 0.661). Storage induced a drastic decrease of AA, which mostly correlated with TP (ρ = 0.808, 0.690 and 0.458 for DPPH, ABTS and FRAP assays, respectively). Spearman's correlation confirmed by principal component analysis demonstrated that dill, pomegranate and amaranth had the highest overall antioxidant capacity, whereas orange juice and carrot showed the lowest. The results provide support for a key-role of TP, followed by Vit. C and TA in antioxidant capacity of fruits and vegetables, which could be interesting dietary sources of natural antioxidants for prevention of diseases caused by oxidative stress.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M
2014-09-01
Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source-sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional-structural L-PEACH model. The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink-source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. The sink-source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional-structural plant model.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M.
2014-01-01
Background and Aims Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. Methods The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source–sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional–structural L-PEACH model. Key Results The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink–source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. Conclusions The sink–source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional–structural plant model. PMID:24674986
Influence of Synaptic Depression on Memory Storage Capacity
NASA Astrophysics Data System (ADS)
Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato
2011-08-01
Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.
Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR
NASA Astrophysics Data System (ADS)
Scher, C.; Saah, D.
2017-12-01
Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.
Parallel Consolidation of Simple Features into Visual Short-Term Memory
ERIC Educational Resources Information Center
Mance, Irida; Becker, Mark W.; Liu, Taosheng
2012-01-01
Although considerable research has examined the storage limits of visual short-term memory (VSTM), little is known about the initial formation (i.e., the consolidation) of VSTM representations. A few previous studies have estimated the capacity of consolidation to be one item at a time. Here we used a sequential-simultaneous manipulation to…
Influence of methane in CO2 transport and storage for CCS technology.
Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada
2012-12-04
CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.
NASA Astrophysics Data System (ADS)
Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen
2018-03-01
Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.
National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations
NASA Astrophysics Data System (ADS)
Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.
2013-12-01
In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity. As part of this follow up study, additional maps were generated to show the geographic distribution of the input estimates and the output results across the U.S. For example, the distribution of the SAUs with fresh, saline or mixed formation water quality is shown. Also mapped is the variation in CO2 density as related to basin location and to related properties such as subsurface temperature and pressure. Furthermore, variation in the estimated SAU depth and resulting TASR are shown across the assessment study areas, and these depend on the geologic basin size and filling history. Ultimately, multiple map displays are possible with the complete data set of input estimates and range of reported results. The findings from this study show the effectiveness of the USGS methodology and the robustness of the assessment.
Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.
1999-01-01
We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7 Pg C) reduction in total carbon storage from that estimated for potential vegetation. The carbon sink capacity of natural terrestrial ecosystems in the conterminous US is about 69% of that estimated for potential vegetation.
Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.
Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid
2015-10-01
Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kamal, Rajeev
Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at part load operation. The study highlighted the need for optimum system sizing for GEHP/HVAC systems to meet the building load to obtain better performance in buildings. The second part of this study focusses on using chilled water or ice as thermal energy storage for shifting the air conditioning load from peak to off-peak in a commercial building. Thermal energy storage can play a very important role in providing demand-side management for diversifying the utility demand from buildings. Model of a large commercial office building is developed with thermal storage for cooling for peak power shifting. Three variations of the model were developed and analyzed for their performance with 1) ice storage, 2) chilled water storage with mixed storage tank and 3) chilled water storage with stratified tank, using EnergyPlus 8.5 software developed by the US Department of Energy. Operation strategy with tactical control to incorporate peak power schedule was developed using energy management system (EMS). The modeled HVAC system was optimized for minimum cost with the optimal storage capacity and chiller size using JEPlus. Based on the simulation, an optimal storage capacity of 40-45 GJ was estimated for the large office building model along with 40% smaller chiller capacity resulting in higher chiller part-load performance. Additionally, the auxiliary system like pump and condenser were also optimized to smaller capacities and thus resulting in less power demand during operation. The overall annual saving potential was found in the range of 7-10% for cooling electricity use resulting in 10-17% reduction in costs to the consumer. A possible annual peak shifting of 25-78% was found from the simulation results after comparing with the reference models. Adopting TES in commercial buildings and achieving 25% peak shifting could result in a reduction in peak summer demand of 1398 MW in Tampa.
Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique
NASA Astrophysics Data System (ADS)
Zhao, Jie; Xu, Zongxue; Singh, Vijay P.
2016-09-01
The root zone storage capacity (Sr) greatly influences runoff generation, soil water movement, and vegetation growth and is hence an important variable for ecological and hydrological modelling. However, due to the great heterogeneity in soil texture and structure, there seems to be no effective approach to monitor or estimate Sr at the catchment scale presently. To fill the gap, in this study the Mass Curve Technique (MCT) was improved by incorporating a snowmelt module for the estimation of Sr at the catchment scale in different climatic regions. The "range of perturbation" method was also used to generate different scenarios for determining the sensitivity of the improved MCT-derived Sr to its influencing factors after the evaluation of plausibility of Sr derived from the improved MCT. Results can be showed as: (i) Sr estimates of different catchments varied greatly from ∼10 mm to ∼200 mm with the changes of climatic conditions and underlying surface characteristics. (ii) The improved MCT is a simple but powerful tool for the Sr estimation in different climatic regions of China, and incorporation of more catchments into Sr comparisons can further improve our knowledge on the variability of Sr. (iii) Variation of Sr values is an integrated consequence of variations in rainfall, snowmelt water and evapotranspiration. Sr values are most sensitive to variations in evapotranspiration of ecosystems. Besides, Sr values with a longer return period are more stable than those with a shorter return period when affected by fluctuations in its influencing factors.
On the Capacity of Attention: Its Estimation and Its Role in Working Memory and Cognitive Aptitudes
Cowan, Nelson; Elliott, Emily M.; Saults, J. Scott; Morey, Candice C.; Mattox, Sam; Hismjatullina, Anna; Conway, Andrew R.A.
2008-01-01
Working memory (WM) is the set of mental processes holding limited information in a temporarily accessible state in service of cognition. We provide a theoretical framework to understand the relation between WM and aptitude measures. The WM measures that have yielded high correlations with aptitudes include separate storage and processing task components, on the assumption that WM involves both storage and processing. We argue that the critical aspect of successful WM measures is that rehearsal and grouping processes are prevented, allowing a clearer estimate of how many separate chunks of information the focus of attention circumscribes at once. Storage-and-processing tasks correlate with aptitudes, according to this view, largely because the processing task prevents rehearsal and grouping of items to be recalled. In a developmental study, we document that several scope-of-attention measures that do not include a separate processing component, but nevertheless prevent efficient rehearsal or grouping, also correlate well with aptitudes and with storage-and-processing measures. So does digit span in children too young to rehearse. PMID:16039935
Estimating plant available water content from remotely sensed evapotranspiration
NASA Astrophysics Data System (ADS)
van Dijk, A. I. J. M.; Warren, G.; Doody, T.
2012-04-01
Plant available water content (PAWC) is an emergent soil property that is a critical variable in hydrological modelling. PAWC determines the active soil water storage and, in water-limited environments, is the main cause of different ecohydrological behaviour between (deep-rooted) perennial vegetation and (shallow-rooted) seasonal vegetation. Conventionally, PAWC is estimated for a combination of soil and vegetation from three variables: maximum rooting depth and the volumetric water content at field capacity and permanent wilting point, respectively. Without elaborate local field observation, large uncertainties in PAWC occur due to the assumptions associated with each of the three variables. We developed an alternative, observation-based method to estimate PAWC from precipitation observations and CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET) estimates. Processing steps include (1) removing residual systematic bias in the CMRSET estimates, (2) making spatially appropriate assumptions about local water inputs and surface runoff losses, (3) using mean seasonal patterns in precipitation and CMRSET to estimate the seasonal pattern in soil water storage changes, (4) from these, calculating the mean seasonal storage range, which can be treated as an estimate of PAWC. We evaluate the resulting PAWC estimates against those determined in field experiments for 180 sites across Australia. We show that the method produces better estimates of PAWC than conventional techniques. In addition, the method provides detailed information with full continental coverage at moderate resolution (250 m) scale. The resulting maps can be used to identify likely groundwater dependent ecosystems and to derive PAWC distributions for each combination of soil and vegetation type.
Concentrating Solar Power Projects - Ilanga I | Concentrating Solar Power |
Fluid Type: Thermal oil Solar-Field Inlet Temp: 293°C Solar-Field Outlet Temp: 393°C Power Block Turbine Capacity (Gross): 100.0 MW Turbine Capacity (Net): 100.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 4.5 hours Thermal Storage Description: Molten salt
NASA Astrophysics Data System (ADS)
Yerk, W.
2016-12-01
It is generally agreed that canopy water storage capacity is one of the defining factors of rainfall interception. Multiple studies of storage capacity by shrubs have been published. However, only a fraction of species have been studied. In the presented study the storage capacity of five species (Aronia melanocarpa, Cornus sericea, Hydrangea quercifolia, Itea virginica, and Prunus laurocerasus) was directly measured in an indoor experiment. Effect of the water temperature on the amount of water stored by the canopy was also investigated. Five branches of each species (length 0.25-0.60 m, LAI 1.3-3.6) were selected. Methods of full submergence in water and a simulated rain of intensity of 187.5±9.9 mm/hr were applied. Water of two different temperatures of 30°C and 1.5°C was used for the submergence method. Weight of the branches fixated in a natural position was measured with a digital balance. Storage capacity was expressed as a depth of water retained by the entire branch divided by the one-sided area of all leaves. The storage capacity obtained by submergence was 0.45±0.5 mm for A. melanocarpa, 0.33±0.03 mm for C. sericea, 0.40±0.02 mm for H. quercifolia, 0.48±0.05 mm for I. virginica, and 0.67±0.09 mm for P. laurocerasus. Difference in the storage capacities obtained by both methods was inconsistent. Water temperature exerted a more pronounced effect on the capacity. The canopies stored 0.01 to 0.05 mm more water (p-value < 0.005 for all species except A. melanocarpa). Our findings correspond with the range of storage capacity reported for shrub species. The directly measured storage capacity exceeds the widely used in hydrological modeling value of 0.2 mm. We were able to detect an increase of capacity to store cold water; however, the increase was below the practical level.
Medina, C.R.; Rupp, J.A.; Barnes, D.A.
2011-01-01
The Upper Cambrian Mount Simon Sandstone is recognized as a deep saline reservoir that has significant potential for geological sequestration in the Midwestern region of the United States. Porosity and permeability values collected from core analyses in rocks from this formation and its lateral equivalents in Indiana, Kentucky, Michigan, and Ohio indicate a predictable relationship with depth owing to a reduction in the pore structure due to the effects of compaction and/or cementation, primarily as quartz overgrowths. The regional trend of decreasing porosity with depth is described by the equation: ??(d)=16.36??e-0.00039*d, where ?? is the porosity and d is the depth in m. The decrease of porosity with depth generally holds true on a basinwide scale. Bearing in mind local variations in lithologic and petrophysical character within the Mount Simon Sandstone, the source data that were used to predict porosity were utilized to estimate the pore volume available within the reservoir that could potentially serve as storage space for injected CO2. The potential storage capacity estimated for the Mount Simon Sandstone in the study area, using efficiency factors of 1%, 5%, 10%, and 15%, is 23,680, 118,418, 236,832, and 355,242 million metric tons of CO2, respectively. ?? 2010 Elsevier Ltd.
Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico
NASA Astrophysics Data System (ADS)
Schellekens, J.; Scatena, F. N.; Bruijnzeel, L. A.; Wickel, A. J.
1999-12-01
Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman-Monteith based estimates for the wet canopy evaporation rate (0.11 mm h -1 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.
Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios
NASA Astrophysics Data System (ADS)
Vaughan, Naomi E.; Gough, Clair; Mander, Sarah; Littleton, Emma W.; Welfle, Andrew; Gernaat, David E. H. J.; van Vuuren, Detlef P.
2018-04-01
Biomass Energy with Carbon Capture and Storage (BECCS) is heavily relied upon in scenarios of future emissions that are consistent with limiting global mean temperature increase to 1.5 °C or 2 °C above pre-industrial. These temperature limits are defined in the Paris Agreement in order to reduce the risks and impacts of climate change. Here, we explore the use of BECCS technologies in a reference scenario and three low emission scenarios generated by an integrated assessment model (IMAGE). Using these scenarios we investigate the feasibility of key implicit and explicit assumptions about these BECCS technologies, including biomass resource, land use, CO2 storage capacity and carbon capture and storage (CCS) deployment rate. In these scenarios, we find that half of all global CO2 storage required by 2100 occurs in USA, Western Europe, China and India, which is compatible with current estimates of regional CO2 storage capacity. CCS deployment rates in the scenarios are very challenging compared to historical rates of fossil, renewable or nuclear technologies and are entirely dependent on stringent policy action to incentivise CCS. In the scenarios, half of the biomass resource is derived from agricultural and forestry residues and half from dedicated bioenergy crops grown on abandoned agricultural land and expansion into grasslands (i.e. land for forests and food production is protected). Poor governance of the sustainability of bioenergy crop production can significantly limit the amount of CO2 removed by BECCS, through soil carbon loss from direct and indirect land use change. Only one-third of the bioenergy crops are grown in regions associated with more developed governance frameworks. Overall, the scenarios in IMAGE are ambitious but consistent with current relevant literature with respect to assumed biomass resource, land use and CO2 storage capacity.
Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri; ...
2016-08-04
Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri
Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less
On the Capacity of Attention: Its Estimation and Its Role in Working Memory and Cognitive Aptitudes
ERIC Educational Resources Information Center
Cowan, N.; Elliott, E.M.; Scott Saults, J.; Morey, C.C.; Mattox, S.; Hismjatullina, A.; Conway, A.R.A.
2005-01-01
Working memory (WM) is the set of mental processes holding limited information in a temporarily accessible state in service of cognition. We provide a theoretical framework to understand the relation between WM and aptitude measures. The WM measures that have yielded high correlations with aptitudes include separate storage-and-processing task…
Concentrating Solar Power Projects - Solana Generating Station |
(APS). The thermal energy storage system provides up to 6 hours of generating capacity after sunset cooling Fossil Backup Type: Natural gas Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 6 hours Thermal Storage Description: Molten salts
Parameterizing the Variability and Uncertainty of Wind and Solar in CEMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany
We present current and improved methods for estimating the capacity value and curtailment impacts from variable generation (VG) in capacity expansion models (CEMs). The ideal calculation of these variability metrics is through an explicit co-optimized investment-dispatch model using multiple years of VG and load data. Because of data and computational limitations, existing CEMs typically approximate these metrics using a subset of all hours from a single year and/or using statistical methods, which often do not capture the tail-event impacts or the broader set of interactions between VG, storage, and conventional generators. In our proposed new methods, we use hourly generationmore » and load values across all hours of the year to characterize the (1) contribution of VG to system capacity during high load hours, (2) the curtailment level of VG, and (3) the reduction in VG curtailment due to storage and shutdown of select thermal generators. Using CEM model outputs from a preceding model solve period, we apply these methods to exogenously calculate capacity value and curtailment metrics for the subsequent model solve period. Preliminary results suggest that these hourly methods offer improved capacity value and curtailment representations of VG in the CEM from existing approximation methods without additional computational burdens.« less
40 CFR 52.987 - Control of hydrocarbon emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control systems on a 37,500 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Oil... a 25,000 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Haynesville... barrel capacity crude oil storage tank at Cities Service Pipeline Company, Summerfield, Louisiana with...
40 CFR 52.987 - Control of hydrocarbon emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control systems on a 37,500 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Oil... a 25,000 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Haynesville... barrel capacity crude oil storage tank at Cities Service Pipeline Company, Summerfield, Louisiana with...
40 CFR 52.987 - Control of hydrocarbon emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control systems on a 37,500 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Oil... a 25,000 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Haynesville... barrel capacity crude oil storage tank at Cities Service Pipeline Company, Summerfield, Louisiana with...
77 FR 73652 - Honeoye Storage Corporation: Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-16-000] Honeoye Storage... Storage Corporation (Honeoye) as supplemented on November 29, 2012, 4511 Egypt Road, Canandaigua, New York... to increase the maximum storage capacity and working gas capacity of the Honeoye Storage facitility...
Long-term storage of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Vaidyanathan, Hari
1987-01-01
Representative samples of nickel hydrogen cells for the INTELSAT program were used to evaluate the effects of prolonged storage under passive conditions such as open circuit discharged at 0 C, room temperature, and -20 C, and under quasidynamic conditions such as top-off charge and trickle charge. Cell capacity declines when cells are stored open-circuit discharged at room temperature, and a second plateau occurs in the discharge curve. Capacity loss was 47 percent for a cell with hydrogen precharge and 24.5 percent for one with no hydrogen precharge. Capacity recovery was observed following top-off charge storage of cells which had exhibited faded capacity as a result of passive storage at room temperature. Cells stored either at -20 C or on trickle charge maintained their capacity. At 0 C storage, the capacity of all three cells under tests was greater than 55 Ah (which exceeds the required minimum of 44 Ah) after 7 months.
Water storage capacity, stemflow and water funneling in Mediterranean shrubs
NASA Astrophysics Data System (ADS)
Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J.
2010-08-01
SummaryTo predict water losses and other hydrological and ecological features of a given vegetation, its water storage capacity and stemflow need to be accurately determined. Vast areas of the Mediterranean region are occupied by shrublands yet there is scarce data available on their rainwater interception capacity. In this study, simulated rainfall tests were conducted in controlled conditions on nine Mediterranean shrubs of varying anatomic and morphological features to determine water storage capacity, stemflow and the funneling ratio. After assessing correlations between these hydrological variables and the biometric characteristics of the shrubs, we compared two methods of determining storage capacity: rainfall simulation and immersion. Mean water storage capacity was 1.02 mm (0.35-3.24 mm), stemflow was 16% (3.8-26.4%) and the funneling ratio was 104 (30-260). Per unit biomass, mean storage capacity was 0.66 ml g -1 and ranged from 0.23 ml g -1 for Cistus ladanifer to 2.26 ml g -1 for Lavandula latifolia. Despite their small size, shrubs may generate high water losses to the atmosphere when they form dense communities and this can have a significant impact in regions where water is scarce. When considered the whole shrubs in absolute terms (ml per plant), water storage capacity and stemflow were correlated to biomass and the dendrometric characteristics of the shrubs, yet in relative terms (expressed per surface area unit or as %), anatomic features such as pubescence, branch rigidity or leaf insertion angle emerged as determining factors. The use of a simple procedure to assess storage capacity was inefficient. The immersion method underestimated storage capacity to a different extent for each species. Some shrubs returned high stemflow values typical of their adaptation to the semiarid climate. In contrast, other shrubs seem to have structures that promote stemflow yet have developed other drought-adaptation mechanisms. In this report, we discuss the ecological and hydrological significance of stemflow and the funneling ratio.
Capacity loss on storage and possible capacity recovery for HST nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Lowery, John E.
1992-01-01
Negatively precharged nickel hydrogen cells will experience a useable capacity loss during extended open circuit storage periods. Some of the lost capacity can be recovered through cycling. Capacity recovery through cycling can be enhanced by cycling at high depths of discharge (DOD). The most timely procedure for recovering the faded capacity is to charge the cell fully and allow the cell to sit open-circuit at room temperature. This procedure seems to be effective in part because of the enlarged structure of the active materials. The compounds that formed during storage at the low electrode potentials can more easily dissolve and redistribute. All of the original capacity cannot be recovered because the lattice structure of the active material is irreversibly altered during storage. The recommendation is to use positively precharged cells activated with 26 percent KOH if possible. In aerospace applications, the benefits of negative precharge are offset by the possibility of delays and storage periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Angel G.; Gomez, Judith C.; Galleguillos, Hector
In recent years, lithium containing salts have been studied for thermal energy storage (TES) systems applications, because of their optimal thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, due to its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations of carbon and low chromium steels were performed at 390 degrees C for 1000 hours. Thermophysicalmore » properties of the salt mixtures, such as thermal stability and heat capacity, were measured before and after corrosion tests. Chemical composition of the salts was also determined and an estimation of Chilean production costs is reported. Results showed that purity, thermal stability and heat capacity of the salts were reduced, caused by partial thermal decomposition and incorporation of corrosion products from the steel.« less
Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Ramana G.
2013-10-23
The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reducemore » the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.« less
Risk, liability, and economic issues with long-term CO2 storage—A review
Anderson, Steven T.
2017-01-01
Given a scarcity of commercial-scale carbon capture and storage (CCS) projects, there is a great deal of uncertainty in the risks, liability, and their cost implications for geologic storage of carbon dioxide (CO2). The probabilities of leakage and the risk of induced seismicity could be remote, but the volume of geologic CO2 storage (GCS) projected to be necessary to have a significant impact on increasing CO2 concentrations in the atmosphere is far greater than the volumes of CO2 injected thus far. National-level estimates of the technically accessible CO2storage resource (TASR) onshore in the United States are on the order of thousands of gigatons of CO2 storage capacity, but such estimates generally assume away any pressure management issues. Pressure buildup in the storage reservoir is expected to be a primary source of risk associated with CO2 storage, and only a fraction of the theoretical TASR could be available unless the storage operator extracts the saltwater brines or other formation fluids that are already present in the geologic pore space targeted for CO2 storage. Institutions, legislation, and processes to manage the risk, liability, and economic issues with CO2 storage in the United States are beginning to emerge, but will need to progress further in order to allow a commercial-scale CO2 storage industry to develop in the country. The combination of economic tradeoffs, property rights definitions, liability issues, and risk considerations suggests that CO2 storage offshore of the United States may be more feasible than onshore, especially during the current (early) stages of industry development.
MAGNA (Materially and Geometrically Nonlinear Analysis). Part I. Finite Element Analysis Manual.
1982-12-01
provided for operating the program, modifying storage caoacity, preparing input data, estimating computer run times , and interpreting the output...7.1.3 Reserved File Names 7.1.16 7.1.4 Typical Execution Times on CDC Computers 7.1.18 7.2 CRAY PROGRAM VERSION 7.2.1 7.2.1 Job Control Language 7.2.1...7.2.2 Modification of Storage Capacity 7.2.8 7.2.3 Execution Times on the CRAY-I Computer 7.2.12 7.3 VAX PROGRAM VERSION 7.3.1 8 INPUT DATA 8.0.1 8.1
Sedimentation and the Economics of Selecting an Optimum Reservoir Size
NASA Astrophysics Data System (ADS)
Miltz, David; White, David C.
1987-08-01
This paper attempts to develop an easily reproducible methodology for the economic selection of an optimal reservoir size given an annual sedimentation rate. The optimal capacity is that at which the marginal cost of constructing additional storage capacity is equal to the dredging costs avoided by having that additional capacity available to store sediment. The cost implications of misestimating dredging costs, construction costs, and sediment delivery rates are investigated. In general, it is shown that oversizing is a rational response to uncertainty in the estimation of parameters. The sensitivity of the results to alternative discount rates is also discussed. The theoretical discussion is illustrated with a case study drawn from Highland Silver Lake in southwestern Illinois.
NASA Astrophysics Data System (ADS)
Møll Nilsen, Halvor; Lie, Knut-Andreas; Andersen, Odd
2015-06-01
MRST-co2lab is a collection of open-source computational tools for modeling large-scale and long-time migration of CO2 in conductive aquifers, combining ideas from basin modeling, computational geometry, hydrology, and reservoir simulation. Herein, we employ the methods of MRST-co2lab to study long-term CO2 storage on the scale of hundreds of megatonnes. We consider public data sets of two aquifers from the Norwegian North Sea and use geometrical methods for identifying structural traps, percolation-type methods for identifying potential spill paths, and vertical-equilibrium methods for efficient simulation of structural, residual, and solubility trapping in a thousand-year perspective. In particular, we investigate how data resolution affects estimates of storage capacity and discuss workflows for identifying good injection sites and optimizing injection strategies.
Polyaniline-polypyrrole composites with enhanced hydrogen storage capacities.
Attia, Nour F; Geckeler, Kurt E
2013-06-13
A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline-polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lazarenko, L M; Bezrukov, V F
2008-01-01
The age-related dynamics of chromosomal instability and germination capacity of welsh onion (Allium fistulosum L.) seeds have been studied under two different storage temperatures during six years after harvesting. Seeds that were kept at the room temperature (14-28 degrees C) during 6 years of storage have lost their germination capacity. The frequencies of aberrant anaphases grew from 2% on the first month of storage up to 80% on the 75th month of storage. The germination capacity of seeds kept at the lower temperature (4-9 degrees C) was 73-77% on the 6th year of storage and the frequency of aberrant anaphases remained within the limits of 2-4%. Thus, storage of welsh onion seeds during 6 years at the lower temperature allows to retain germination capacity and restrains the augmentation of chromosomal instability in root meristem cells of seedlings during this period.
76 FR 63916 - Transcontinental Gas Pipe Line Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... associated storage deliverability and capacity at the Eminence Storage Field (Eminence) in Covington County... Caverns 1, 2, 3, and 4, and reduce deliverability and capacity from 20.5 Bcf to 15.025 Bcf in Caverns 5, 6, and 7. Transco also seeks to partially abandon the total storage capacity and deliverability...
Storage Capacity Explains Fluid Intelligence but Executive Control Does Not
ERIC Educational Resources Information Center
Chuderski, Adam; Taraday, Maciej; Necka, Edward; Smolen, Tomasz
2012-01-01
We examined whether fluid intelligence (Gf) is better predicted by the storage capacity of active memory or by the effectiveness of executive control. In two psychometric studies, we measured storage capacity with three kinds of task which required the maintenance of a visual array, the monitoring of simple relations among perceptually available…
Only adding stationary storage to vaccine supply chains may create and worsen transport bottlenecks.
Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Claypool, Erin G; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y
2013-01-01
Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints.
Only Adding Stationary Storage to Vaccine Supply Chains May Create and Worsen Transport Bottlenecks
Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Claypool, Erin G.; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y.
2015-01-01
Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints. PMID:23903398
Conceptual design of multi-source CCS pipeline transportation network for Polish energy sector
NASA Astrophysics Data System (ADS)
Isoli, Niccolo; Chaczykowski, Maciej
2017-11-01
The aim of this study was to identify an optimal CCS transport infrastructure for Polish energy sector in regards of selected European Commission Energy Roadmap 2050 scenario. The work covers identification of the offshore storage site location, CO2 pipeline network design and sizing for deployment at a national scale along with CAPEX analysis. It was conducted for the worst-case scenario, wherein the power plants operate under full-load conditions. The input data for the evaluation of CO2 flow rates (flue gas composition) were taken from the selected cogeneration plant with the maximum electric capacity of 620 MW and the results were extrapolated from these data given the power outputs of the remaining units. A graph search algorithm was employed to estimate pipeline infrastructure costs to transport 95 MT of CO2 annually, which amount to about 612.6 M€. Additional pipeline infrastructure costs will have to be incurred after 9 years of operation of the system due to limited storage site capacity. The results show that CAPEX estimates for CO2 pipeline infrastructure cannot be relied on natural gas infrastructure data, since both systems exhibit differences in pipe wall thickness that affects material cost.
Storage of platelets: effects associated with high platelet content in platelet storage containers.
Gulliksson, Hans; Sandgren, Per; Sjödin, Agneta; Hultenby, Kjell
2012-04-01
A major problem associated with platelet storage containers is that some platelet units show a dramatic fall in pH, especially above certain platelet contents. The aim of this study was a detailed investigation of the different in vitro effects occurring when the maximum storage capacity of a platelet container is exceeded as compared to normal storage. Buffy coats were combined in large-volume containers to create primary pools to be split into two equal aliquots for the preparation of platelets (450-520×10(9) platelets/unit) in SSP+ for 7-day storage in two containers (test and reference) with different platelet storage capacity (n=8). Exceeding the maximum storage capacity of the test platelet storage container resulted in immediate negative effects on platelet metabolism and energy supply, but also delayed effects on platelet function, activation and disintegration. Our study gives a very clear indication of the effects in different phases associated with exceeding the maximum storage capacity of platelet containers but throw little additional light on the mechanism initiating those negative effects. The problem appears to be complex and further studies in different media using different storage containers will be needed to understand the mechanisms involved.
How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany
Cebulla, Felix; Haas, Jannik; Eichman, Josh; ...
2018-02-03
Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less
How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebulla, Felix; Haas, Jannik; Eichman, Josh
Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less
Concentrating Solar Power Projects - Archimede | Concentrating Solar Power
as the heat-transfer fluid. A 2-tank direct system will provide 8 hours of thermal storage. Status % Thermal Storage Storage Type: 2-tank direct Storage Capacity: 8 hour(s) Thermal Storage Description: Total of 1,580 tons of molten salt. 60% sodium nitrate, 40% potassium nitrate. Capacity 100 MWh (thermal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul L; Margolis, Robert M
In this report, we examine the potential for replacing conventional peaking capacity in California with energy storage, including analysis of the changing technical potential with increased storage deployment and the effect of PV deployment. We examine nine years of historic load data, a range of storage durations (2-8 hours), and a range of PV penetration levels (0%-30%). We demonstrate how PV increases the ability of storage to reduce peak net demand. In the scenarios analyzed, the expected penetration of PV in California in 2020 could more than double the potential for 4-hour energy storage to provide capacity services.
Groundwater Variability Across Temporal and Spatial Scales in the Central and Northeastern U.S.
NASA Technical Reports Server (NTRS)
Li, Bailing; Rodell, Matthew; Famiglietti, James S.
2015-01-01
Depth-to-water measurements from 181 monitoring wells in unconfined or semi-confined aquifers in nine regions of the central and northeastern U.S. were analyzed. Groundwater storage exhibited strong seasonal variations in all regions, with peaks in spring and lows in autumn, and its interannual variability was nearly unbounded, such that the impacts of droughts, floods, and excessive pumping could persist for many years. We found that the spatial variability of groundwater storage anomalies (deviations from the long term mean) increases as a power function of extent scale (square root of area). That relationship, which is linear on a log-log graph, is common to other hydrological variables but had never before been shown with groundwater data. We describe how the derived power function can be used to determine the number of wells needed to estimate regional mean groundwater storage anomalies with a desired level of accuracy, or to assess uncertainty in regional mean estimates from a set number of observations. We found that the spatial variability of groundwater storage anomalies within a region often increases with the absolute value of the regional mean anomaly, the opposite of the relationship between soil moisture spatial variability and mean. Recharge (drainage from the lowest model soil layer) simulated by the Variable Infiltration Capacity (VIC) model was compatible with observed monthly groundwater storage anomalies and month-to-month changes in groundwater storage.
The Collyhurst Sandstone as a secondary storage unit for CCS in the East Irish Sea Basin (UK)
NASA Astrophysics Data System (ADS)
Gamboa, D.; Williams, J. D. O.; Kirk, K.; Gent, C. M. A.; Bentham, M.; Schofield, D. I.
2016-12-01
Carbon Capture and Storage (CCS) is key technology for low-carbon energy and industry. The UK hosts a large CO2 storage potential offshore with an estimated capacity of 78 Gt. The East Irish Sea Basin (EISB) is the key area for CCS in the western UK, with a CO2 storage potential of 1.7 Gt in hydrocarbon fields and in saline aquifers within the Triassic Sherwood Sandstone Formation. However, this theoretical storage capacity does not consider the secondary storage potential in the lower Permian Collyhurst Sandstone Formation. 3D seismic data were used to characterise the Collyhurst Sandstone Formation in the EISB. On the southern basin domain, numerous fault-bound blocks limit the lateral continuity of the sandstone strata, while on the northern domain the sandstones are intersected by less faults. The caprock for the Collyhurst sandstones is variable. The Manchester Marls predominate in the south, transitioning to the St. Bees evaporites towards the north. The evaporites in the EISB cause overburden faults to terminate or detach along Upper Permian strata, limiting the deformation of the underlying reservoir units. Five main storage closures have been identified in the Permian strata. In the southern and central area these are predominantly fault bounded, occurring at depths over 1000m. Despite the higher Collyhurst sandstone thickness in the southern IESB, the dolomitic nature of the caprock constitutes a storage risk in this area. Closures in the northern area are deeper (around 2000-2500m) and wider, reaching areas of 34Km2, and are overlain by evaporitic caprocks. The larger Collyhurst closures to the north underlie large Triassic fields with high storage potential. The spatial overlap favours storage plans including secondary storage units in the EISB. The results of this work also expand the understanding of prospective areas for CO2 sequestration in the East Irish Sea Basin in locations where the primary Sherwood Sandstone Formation is either too shallow, discontinuous or eroded.
Review of ultra-high density optical storage technologies for big data center
NASA Astrophysics Data System (ADS)
Hao, Ruan; Liu, Jie
2016-10-01
In big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/ cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/ cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.
Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States
Baik, Ejeong; Turner, Peter A.; Mach, Katharine J.; Field, Christopher B.; Benson, Sally M.
2018-01-01
Bioenergy with carbon capture and storage (BECCS) is a negative-emissions technology that may play a crucial role in climate change mitigation. BECCS relies on the capture and sequestration of carbon dioxide (CO2) following bioenergy production to remove and reliably sequester atmospheric CO2. Previous BECCS deployment assessments have largely overlooked the potential lack of spatial colocation of suitable storage basins and biomass availability, in the absence of long-distance biomass and CO2 transport. These conditions could constrain the near-term technical deployment potential of BECCS due to social and economic barriers that exist for biomass and CO2 transport. This study leverages biomass production data and site-specific injection and storage capacity estimates at high spatial resolution to assess the near-term deployment opportunities for BECCS in the United States. If the total biomass resource available in the United States was mobilized for BECCS, an estimated 370 Mt CO2⋅y−1 of negative emissions could be supplied in 2020. However, the absence of long-distance biomass and CO2 transport, as well as limitations imposed by unsuitable regional storage and injection capacities, collectively decrease the technical potential of negative emissions to 100 Mt CO2⋅y−1. Meeting this technical potential may require large-scale deployment of BECCS technology in more than 1,000 counties, as well as widespread deployment of dedicated energy crops. Specifically, the Illinois basin, Gulf region, and western North Dakota have the greatest potential for near-term BECCS deployment. High-resolution spatial assessment as conducted in this study can inform near-term opportunities that minimize social and economic barriers to BECCS deployment. PMID:29531081
Cycling capacity recovery effect: A coulombic efficiency and post-mortem study
NASA Astrophysics Data System (ADS)
Wilhelm, Jörn; Seidlmayer, Stefan; Keil, Peter; Schuster, Jörg; Kriele, Armin; Gilles, Ralph; Jossen, Andreas
2017-10-01
The analysis of lithium-ion battery aging relies on correct differentiation between irreversible and reversible capacity changes. Anode overhang regions have been observed to influence Coulombic Efficiency (CE) measurements through lithium diffusion into and out of these areas, complicating precise capacity determination. This work presents an analysis of the extent of graphite anode overhang lithiation after calendar storage by means of local X-ray diffraction (XRD), CE measurements, and color change analysis. We found LiC12 lithiation of the anode overhang area after 20 month storage at 40 °C at high state of charge (SoC) and partial lithiation (LiC18) at medium SoC storage at 40 °C and 25 °C. Graphite color changes in the overhang areas are observed and consistent with the state of lithiation measured by XRD. Coulombic efficiencies greater than unity and increasing capacity during 1200 h of cycling are detected for high SoC storage cells. The capacity difference between high and low storage SoC batteries decreases by up to 40 mAh (3.6% of nominal capacity) after cycling compared to tests directly after storage. Consequently, the size of the anode overhang areas as well as the battery storage temperature and duration need to be considered in CE analysis and state of health assessment.
National assessment of geologic carbon dioxide storage resources: results
,
2013-01-01
In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery replacement storage resource (KRRSR) is a conservative estimate that represents only the amount of CO2 at subsurface conditions that could replace the volume of known hydrocarbon production. The mean national KRRSR, determined from production volumes rather than the geologic model of buoyant and residual traps that make up TASR, is 13 Gt. The estimated storage resources are dominated by residual trapping class 2, which accounts for 89 percent of the total resources. The Coastal Plains Region of the United States contains the largest storage resource of any region. Within the Coastal Plains Region, the resources from the U.S. Gulf Coast area represent 59 percent of the national CO2 storage capacity.
Economic performance of water storage capacity expansion for food security
NASA Astrophysics Data System (ADS)
Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.
2013-03-01
SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for themore » facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.« less
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
18 CFR 157.214 - Increase in storage capacity.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Increase in storage... Act for Certain Transactions and Abandonment § 157.214 Increase in storage capacity. (a) Prior notice... maximum volume of natural gas authorized to be stored in a storage field to the extent that geological...
Moisture buffer capacity of cement-lime plasters with enhanced thermal storage capacity
NASA Astrophysics Data System (ADS)
Fořt, Jan; Pavlíková, Milena; Pavlík, Zbyšek
2017-07-01
Indoor air temperature and relative humidity represent important parameters for health and working efficiency of buildings occupants. Beside the moderation of temperature, investigation of hygric properties of building materials with connection to indoor relative humidity variation became recognized as a relevant factor for energy efficient building maintenance. The moisture buffer value introduced in the Nordtest protocol can be used for estimation of moisture buffer capacity of building materials or their multi-layered systems. In this paper, both the ideal and real moisture buffer values are examined on the basis of simulation of diurnal relative humidity fluctuations in plasters with incorporated PCM admixture. Retrieved data points to a complex effect of the tested plasters on possible moderation of buildings interior climate.
Holman, Benjamin W B; Coombs, Cassius E O; Morris, Stephen; Kerr, Matthew J; Hopkins, David L
2018-05-01
Different chilled (~0.1 °C for up to 5 weeks) then frozen storage (up to 12 months) combinations and two frozen storage holding temperatures (-12 °C and -18 °C) effects on beef M. longissimus lumborum (LL) protein structure degradation and a marker of protein oxidation were tested. Particle size (PS) analysis and protein solubility results found storage combination effects on protein degradation to be significant (P < 0.05), although the influence of frozen holding temperatures was negligible. LL carbonyl, and nitrate and nitrite content responses were variable and yet broadly reflected an increased incidence of protein oxidation across increasing chilled storage and ensuing frozen storage periods - this aspect meriting future exploration. Total myoglobin content and the estimated myoglobin redox fractions (metmyoglobin, deoxymyoglobin, and oxymyoglobin) were also subject to storage treatment. These findings demonstrate the capacity for beef storage selection (chilled-then-frozen) to manage compositional protein changes and its implications on sensory quality traits across comparative 'long term' durations. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Offshore Storage Resource Assessment - Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Bill; Ozgen, Chet
The DOE developed volumetric equation for estimating Prospective Resources (CO 2 storage) in oil and gas reservoirs was utilized on each depleted field in the Federal GOM. This required assessment of the in-situ hydrocarbon fluid volumes for the fields under evaluation in order to apply the DOE equation. This project utilized public data from the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Reserves database and from a well reputed, large database (250,000+ wells) of GOM well and production data marketed by IHS, Inc. IHS interpreted structure map files were also accessed for a limited number ofmore » fields. The databases were used along with geological and petrophysical software to identify depleted oil and gas fields in the Federal GOM region. BOEM arranged for access by the project team to proprietary reservoir level maps under an NDA. Review of the BOEM’s Reserves database as of December 31, 2013 indicated that 675 fields in the region were depleted. NITEC identified and rank these 675 fields containing 3,514 individual reservoirs based on BOEM’s estimated OOIP or OGIP values available in the Reserves database. The estimated BOEM OOIP or OGIP values for five fields were validated by an independent evaluation using available petrophysical, geologic and engineering data in the databases. Once this validation was successfully completed, the BOEM ranked list was used to calculate the estimated CO 2 storage volume for each field/reservoir using the DOE CO 2 Resource Estimate Equation. This calculation assumed a range for the CO 2 efficiency factor in the equation, as it was not known at that point in time. NITEC then utilize reservoir simulation to further enhance and refine the DOE equation estimated range of CO 2 storage volumes. NITEC used a purpose built, publically available, 4-component, compositional reservoir simulator developed under funding from DOE (DE-FE0006015) to assess CO 2-EOR and CO 2 storage in 73 fields/461 reservoirs. This simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO 2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO 2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO 2 injection period. This modeling of the CO 2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO 2 storage capacity of 4,748 MM tons. The CO 2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO 2 storage volume with the addition of CO 2-EOR (Enhanced Oil Recovery) production. Application of CO 2-EOR to oil reservoirs resulted in higher volumes of CO 2 storage.« less
Design of a Hydrogen Community for Santa Monica
2011-01-01
transportation of hydrogen fuel have been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations...been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations. Hydrogen dispensing using...tanks (Storage capacity of 198 kg of H2 at 350 and 700 bar), four compressors which assist in dispensing 400 kg of hydrogen in 14 hours, two hydrogen
Economic Analysis and Optimal Sizing for behind-the-meter Battery Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Kintner-Meyer, Michael CW; Yang, Tao
This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity for behind-the-meter BSS. In the proposed method, a linear programming is first formulated only using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizingmore » have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions of the Continental United States. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but can also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.« less
Storing and sharing water in sand rivers: a water balance modelling approach
NASA Astrophysics Data System (ADS)
Love, D.; van der Zaag, P.; Uhlenbrook, S.
2009-04-01
Sand rivers and sand dams offer an alternative to conventional surface water reservoirs for storage. The alluvial aquifers that make up the beds of sand rivers can store water with minimal evaporation (extinction depth is 0.9 m) and natural filtration. The alluvial aquifers of the Mzingwane Catchment are the most extensive of any tributaries in the Limpopo Basin. The lower Mzingwane aquifer, which is currently underutilised, is recharged by managed releases from Zhovhe Dam (capacity 133 Mm3). The volume of water released annually is only twice the size of evaporation losses from the dam; the latter representing nearly one third of the dam's storage capacity. The Lower Mzingwane valley currently support commercial agro-businesses (1,750 ha irrigation) and four smallholder irrigation schemes (400 ha with provision for a further 1,200 ha). In order to support planning for optimising water use and storage over evaporation and to provide for more equitable water allocation, the spreadsheet-based balance model WAFLEX was used. It is a simple and userfriendly model, ideal for use by institutions such as the water management authorities in Zimbabwe which are challenged by capacity shortfalls and inadequate data. In this study, WAFLEX, which is normally used for accounting the surface water balance, is adapted to incorporate alluvial aquifers into the water balance, including recharge, baseflow and groundwater flows. Results of the WAFLEX modelling suggest that there is surplus water in the lower Mzingwane system, and thus there should not be any water conflicts. Through more frequent timing of releases from the dam and maintaining the alluvial aquifers permanently saturated, less evaporation losses will occur in the system and the water resources can be better shared to provide more irrigation water for smallholder farmers in the highly resource-poor communal lands along the river. Sand dams are needed to augment the aquifer storage system and improve access to water. An alternative to the current scenario was modelled in WAFLEX: making fuller use of the alluvial aquifers upstream and downstream of Zhovhe Dam. These alluvial aquifers have an estimated average water storage capacity of 0.37 Mm3 km
NASA Astrophysics Data System (ADS)
Hall, Kristyn Ann
The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the produced oil could help offset the current high costs of CCS. The cumulative potential of CCS-EOR in the continental U.S. has been evaluated in terms of both CO2 storage capacity and additional oil production. This thesis examines the same potential, but on a reservoir-by-reservoir basis. Reservoir properties from the Nehring Oil and Gas Database are used as inputs to a CCS-EOR model developed by McCoy (YR) to estimate the storage capacity, oil production and CCS-EOR costs for over 10,000 oil reservoirs located throughout the continental United States. We find that 86% of the reservoirs could store ≤1 y or CO2 emissions from a single 500 MW coal-fired power plant (i.e., 3 Mtons CO2). Less than 1% of the reservoirs, on the other hand, appear capable of storing ≥30 y of CO2 emissions from a 500 MW plan. But these larger reservoirs are also estimated to contain 48% of the predicted additional oil that could be produced through CCS-EOR. The McCoy model also predicts that the reservoirs will on average produce 4.5 bbl of oil for each ton of sequestered CO2, a ratio known as the utilization factor. This utilization factor is 1.5 times higher that arrived at by the U.S. Department of Energy, and leads to a cumulative production of oil for all the reservoirs examined of ˜183 billion barrels along with a cumulative storage capacity of 41 Mtons CO2. This is equivalent to 26.5 y of current oil consumption by the nation, and 8.5 y of current coal plant emissions.
Concentrating Solar Power Projects - Astexol II | Concentrating Solar Power
(Badajoz) Owner(s): Elecnor/Aries/ABM AMRO (100%) Technology: Parabolic trough Turbine Capacity: Net: 50.0 Difference: 100°C Power Block Turbine Capacity (Gross): 50.0 MW Turbine Capacity (Net): 50.0 MW Output Type indirect Storage Capacity: 8 Hours Thermal Storage Description:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blount, G.; Millings, M.
2011-08-01
A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literaturemore » reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).« less
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤capacity<151 ≥13.1 151 ≤capacity ≥0.7 a Maximum...
Geospatial Analysis of Near-Term Technical Potential of BECCS in the U.S.
NASA Astrophysics Data System (ADS)
Baik, E.; Sanchez, D.; Turner, P. A.; Mach, K. J.; Field, C. B.; Benson, S. M.
2017-12-01
Atmospheric carbon dioxide (CO2) removal using bioenergy with carbon capture and storage (BECCS) is crucial for achieving stringent climate change mitigation targets. To date, previous work discussing the feasibility of BECCS has largely focused on land availability and bioenergy potential, while CCS components - including capacity, injectivity, and location of potential storage sites - have not been thoroughly considered in the context of BECCS. A high-resolution geospatial analysis of both biomass production and potential geologic storage sites is conducted to consider the near-term deployment potential of BECCS in the U.S. The analysis quantifies the overlap between the biomass resource and CO2 storage locations within the context of storage capacity and injectivity. This analysis leverages county-level biomass production data from the U.S. Department of Energy's Billion Ton Report alongside potential CO2 geologic storage sites as provided by the USGS Assessment of Geologic Carbon Dioxide Storage Resources. Various types of lignocellulosic biomass (agricultural residues, dedicated energy crops, and woody biomass) result in a potential 370-400 Mt CO2 /yr of negative emissions in 2020. Of that CO2, only 30-31% of the produced biomass (110-120 Mt CO2 /yr) is co-located with a potential storage site. While large potential exists, there would need to be more than 250 50-MW biomass power plants fitted with CCS to capture all the co-located CO2 capacity in 2020. Neither absolute injectivity nor absolute storage capacity is likely to limit BECCS, but the results show regional capacity and injectivity constraints in the U.S. that had not been identified in previous BECCS analysis studies. The state of Illinois, the Gulf region, and western North Dakota emerge as the best locations for near-term deployment of BECCS with abundant biomass, sufficient storage capacity and injectivity, and the co-location of the two resources. Future studies assessing BECCS potential should employ higher-resolution spatial datasets to identify near-term deployment opportunities, explicitly including the availability of co-located storage, regional capacity limitations, and integration of electricity produced with BECCS into local electricity grids.
Summary of Aquifer Test Data for Arkansas - 1940-2006
Pugh, Aaron L.
2008-01-01
As demands on Arkansas's ground water continue to increase, decision-makers need all available information to ensure the sustainability of this important natural resource. From 1940 through 2006, the U.S. Geological Survey has conducted over 300 aquifer tests in Arkansas. Much of these data never have been published. This report presents the results from 206 of these aquifer tests from 21 different hydrogeologic units spread across 51 Arkansas counties. Ten of the hydrogeologic units are within the Atlantic Plain of Arkansas and consist mostly of unconsolidated and semi-consolidated deposits. The remaining 11 units are within the Interior Highlands consisting mainly of consolidated rock. Descriptive statistics are reported for each hydrologic unit with two or more tests, including the mean, minimum, median, maximum and standard deviation values for specific capacity, transmissivity, hydraulic conductivity, and storage coefficient. Hydraulic conductivity values for the major water-bearing hydrogeologic units are estimated because few conductivity values are recorded in the original records. Nearly all estimated hydraulic conductivity values agree with published hydraulic conductivity values based on the hydrogeologic unit material types. Similarly, because few specific capacity values were available in the original aquifer test records, specific capacity values are estimated for individual wells.
Fog interception by Ball moss (Tillandsia recurvata)
NASA Astrophysics Data System (ADS)
Guevara-Escobar, A.; Cervantes-Jiménez, M.; Suzán-Azpiri, H.; González-Sosa, E.; Hernández-Sandoval, L.; Malda-Barrera, G.; Martínez-Díaz, M.
2011-08-01
Interception losses are a major influence in the water yield of vegetated areas. For most storms, rain interception results in less water reaching the ground. However, fog interception can increase the overall water storage capacity of the vegetation and once the storage is exceeded, fog drip is a common hydrological input. Fog interception is disregarded in water budgets of semiarid regions, but for some plant communities, it could be a mechanism offsetting evaporation losses. Tillandsia recurvata is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by T. recurvata was measured in controlled conditions and applying simulated rain or fog. Juvenile, vegetative specimens were used to determine the potential upperbound storage capacities. The storage capacity was proportional to dry weight mass. Interception storage capacity (Cmin) was 0.19 and 0.56 mm for rainfall and fog respectively. The coefficients obtained in the laboratory were used together with biomass measurements for T. recurvata in a xeric scrub to calculate the depth of water intercepted by rain. T. recurvata contributed 20 % to the rain interception capacity of their shrub hosts: Acacia farnesiana and Prosopis laevigata and; also potentially intercepted 4.8 % of the annual rainfall. Nocturnal stomatic opening in T. recurvata is not only relevant for CO2 but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543 ± 77 vs. 325 ± 56 mg, p = 0.048). The storage capacity of T. recurvata leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because potential storage capacity is very high, in the laboratory experiments it took up to 12 h at a rate of 0.26 l h-1 to reach saturation conditions when fog was applied.
NASA Technical Reports Server (NTRS)
Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.
1991-01-01
Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.
The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis)
Hayashi, Marika; Feilich, Kara L.; Ellerby, David J.
2009-01-01
Explosive dehiscence ballistically disperses seeds in a number of plant species. During dehiscence, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energies. The resulting seed dispersal patterns have been investigated in some ballistic dispersers, but the mechanical performance of a launch mechanism of this type has not been measured. The properties of the energy storage tissue and the energy transfer efficiency of the launch mechanism were quantified in Impatiens capensis. In this species the valves forming the seed pod wall store mechanical energy. Their mass specific energy storage capacity (124 J kg−1) was comparable with that of elastin and spring steel. The energy storage capacity of the pod tissues was determined by their level of hydration, suggesting a role for turgor pressure in the energy storage mechanism. During dehiscence the valves coiled inwards, collapsing the pod and ejecting the seeds. Dehiscence took 4.2±0.4 ms (mean ±SEM, n=13). The estimated efficiency with which energy was transferred to the seeds was low (0.51±0.26%, mean ±SEM, n=13). The mean seed launch angle (17.4±5.2, mean ±SEM, n=45) fell within the range predicted by a ballistic model to maximize dispersal distance. Low ballistic dispersal efficiency or effectiveness may be characteristic of species that also utilize secondary seed dispersal mechanisms. PMID:19321647
The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis).
Hayashi, Marika; Feilich, Kara L; Ellerby, David J
2009-01-01
Explosive dehiscence ballistically disperses seeds in a number of plant species. During dehiscence, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energies. The resulting seed dispersal patterns have been investigated in some ballistic dispersers, but the mechanical performance of a launch mechanism of this type has not been measured. The properties of the energy storage tissue and the energy transfer efficiency of the launch mechanism were quantified in Impatiens capensis. In this species the valves forming the seed pod wall store mechanical energy. Their mass specific energy storage capacity (124 J kg(-1)) was comparable with that of elastin and spring steel. The energy storage capacity of the pod tissues was determined by their level of hydration, suggesting a role for turgor pressure in the energy storage mechanism. During dehiscence the valves coiled inwards, collapsing the pod and ejecting the seeds. Dehiscence took 4.2+/-0.4 ms (mean +/-SEM, n=13). The estimated efficiency with which energy was transferred to the seeds was low (0.51+/-0.26%, mean +/-SEM, n=13). The mean seed launch angle (17.4+/-5.2, mean +/-SEM, n=45) fell within the range predicted by a ballistic model to maximize dispersal distance. Low ballistic dispersal efficiency or effectiveness may be characteristic of species that also utilize secondary seed dispersal mechanisms.
Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework
Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Swenson, Sean; Rodell, Matthew
2015-01-01
Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations. The Total Groundwater Stress (TGS) ratio, defined as the ratio of total storage to the groundwater depletion rate, is used to explore the timescales to depletion in the world's largest aquifer systems and associated groundwater buffer capacity. We find that the current state of knowledge of large‐scale groundwater storage has uncertainty ranges across orders of magnitude that severely limit the characterization of resilience in the study aquifers. Additionally, we show that groundwater availability, traditionally defined as recharge and redefined in this study as total storage, can alter the systems that are considered to be stressed versus unstressed. We find that remote sensing observations from NASA's Gravity Recovery and Climate Experiment can assist in providing such information at the scale of a whole aquifer. For example, we demonstrate that a groundwater depletion rate in the Northwest Sahara Aquifer System of 2.69 ± 0.8 km3/yr would result in the aquifer being depleted to 90% of its total storage in as few as 50 years given an initial storage estimate of 70 km3. PMID:26900184
Modelling the effects of Prairie wetlands on streamflow
NASA Astrophysics Data System (ADS)
Shook, K.; Pomeroy, J. W.
2015-12-01
Recent research has demonstrated that the contributing areas of Prairie streams dominated by depressional (wetland) storage demonstrate hysteresis with respect to catchment water storage. As such contributing fractions can vary over time from a very small percentage of catchment area to the entire catchment during floods. However, catchments display complex memories of past storage states and their contributing fractions cannot be modelled accurately by any single-valued function. The Cold Regions Hydrological Modelling platform, CRHM, which is capable of modelling all of the hydrological processes of cold regions using a hydrological response unit discretization of the catchment, was used to further investigate dynamical contributing area response to hydrological processes. Contributing fraction in CRHM is also controlled by the episodic nature of runoff generation in this cold, sub-humid environment where runoff is dominated by snowmelt over frozen soils, snowdrifts define the contributing fraction in late spring, unfrozen soils have high water holding capacity and baseflow from sub-surface flow does not exist. CRHM was improved by adding a conceptual model of individual Prairie depression fill and spill runoff generation that displays hysteresis in the storage - contributing fraction relationship and memory of storage state. The contributing area estimated by CRHM shows strong sensitivity to hydrological inputs, storage and the threshold runoff rate chosen. The response of the contributing area to inputs from various runoff generating processes from snowmelt to rain-on-snow to rainfall with differing degrees of spatial variation was investigated as was the importance of the memory of storage states on streamflow generation. The importance of selecting hydrologically and ecologically meaningful runoff thresholds in estimating contributing area is emphasized.
NASA Astrophysics Data System (ADS)
Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken
2018-04-01
A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.
Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2015-08-26
This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.
Hydrologic Engineering in Planning,
1981-04-01
through abstraction of losses 3) Transform precipitation excess to streamflow 4) Estimate other contributions in order to obtain the total runoff...similar to those of surface entry, transmission ability and storage capacity and are illustrated in Figure 4.3. The initial losses are the losses that...AVERAGE CONDITIONS LEGEND w UNIFORM LOSSES 0I SOIL TRANSMISSION RATE A NTECEDENT CONDITIONS U) -~(WET)(DY IL 0 / -J TIME TIME SOIL CHARACTERISTICS 0,0
NASA Astrophysics Data System (ADS)
Magoba, Moses; Opuwari, Mimonitu
2017-04-01
This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.
Improved Battery State Estimation Using Novel Sensing Techniques
NASA Astrophysics Data System (ADS)
Abdul Samad, Nassim
Lithium-ion batteries have been considered a great complement or substitute for gasoline engines due to their high energy and power density capabilities among other advantages. However, these types of energy storage devices are still yet not widespread, mainly because of their relatively high cost and safety issues, especially at elevated temperatures. This thesis extends existing methods of estimating critical battery states using model-based techniques augmented by real-time measurements from novel temperature and force sensors. Typically, temperature sensors are located near the edge of the battery, and away from the hottest core cell regions, which leads to slower response times and increased errors in the prediction of core temperatures. New sensor technology allows for flexible sensor placement at the cell surface between cells in a pack. This raises questions about the optimal locations of these sensors for best observability and temperature estimation. Using a validated model, which is developed and verified using experiments in laboratory fixtures that replicate vehicle pack conditions, it is shown that optimal sensor placement can lead to better and faster temperature estimation. Another equally important state is the state of health or the capacity fading of the cell. This thesis introduces a novel method of using force measurements for capacity fade estimation. Monitoring capacity is important for defining the range of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Current capacity estimation techniques require a full discharge to monitor capacity. The proposed method can complement or replace current methods because it only requires a shallow discharge, which is especially useful in EVs and PHEVs. Using the accurate state estimation accomplished earlier, a method for downsizing a battery pack is shown to effectively reduce the number of cells in a pack without compromising safety. The influence on the battery performance (e.g. temperature, utilization, capacity fade, and cost) while downsizing and shifting the nominal operating SOC is demonstrated via simulations. The contributions in this thesis aim to make EVs, HEVs and PHEVs less costly while maintaining safety and reliability as more people are transitioning towards more environmentally friendly means of transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Andrew; Wiser, Ryan
2012-05-18
We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\more » $$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal storage is found to drop considerably (by more than \\$$70/MWh) as the penetration of solar increases toward 30\\percent on an energy basis. This is due primarily to a steep drop in capacity value followed by a decrease in energy value. In contrast, the value of CSP with thermal storage drops much less dramatically as penetration increases. As a result, at solar penetration levels above 10\\percent, CSP with thermal storage is found to be considerably more valuable relative to PV and CSP without thermal storage. The marginal economic value of wind is found to be largely driven by energy value, and is lower than solar at low penetration. The marginal economic value of wind drops at a relatively slower rate with penetration, however. As a result, at high penetration, the value of wind can exceed the value of PV and CSP without thermal storage. Though some of these findings may be somewhat unique to the specific case study presented here, the results: (1) highlight the importance of an analysis framework that addresses long-term investment decisions as well as short-term dispatch and operational constraints, (2) can help inform long-term decisions about renewable energy procurement and supporting infrastructure, and (3) point to areas where further research is warranted.« less
Gas storage using fullerene based adsorbents
NASA Technical Reports Server (NTRS)
Mikhael, Michael G. (Inventor); Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor)
2000-01-01
This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.
The role of reservoir storage in large-scale surface water availability analysis for Europe
NASA Astrophysics Data System (ADS)
Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.
2017-12-01
A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.
Antioxidant capacity and vitamin E in barley: Effect of genotype and storage.
Do, Thu Dung T; Cozzolino, Daniel; Muhlhausler, Beverly; Box, Amanda; Able, Amanda J
2015-11-15
Antioxidants, including vitamin E, may have a positive effect on human health and prolong storage of food items. Vitamin E content and antioxidant capacity were measured in 25 barley genotypes before and after 4 months storage at 10 °C using high performance liquid chromatography (HPLC) and ability to scavenge DPPH radicals, respectively. As expected, α-tocotrienol (α-T3) and α-tocopherol (α-T) were the predominant tocol isomers. Vitamin E content and antioxidant capacity varied significantly among genotypes. Vitamin E ranged from 8.5 to 31.5 μg/g dry weight (DW) while ascorbic acid equivalent antioxidant capacity (AEAC) varied from 57.2 to 158.1 mg AEAC/100 g fresh weight (FW). Generally, lower vitamin E content or antioxidant capacity was observed in hulless or coloured genotypes. These results suggest that some genotypes are potential candidates for breeding of barley cultivars with high vitamin E content or antioxidant capacity at harvest, even after storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
U.S. Geological Survey Geologic Carbon Sequestration Assessment
NASA Astrophysics Data System (ADS)
Warwick, P. D.; Blondes, M. S.; Brennan, S.; Corum, M.; Merrill, M. D.
2012-12-01
The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geological storage resources for carbon dioxide (CO2) in consultation with the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and State geological surveys. To conduct the assessment, the USGS developed a probability-based assessment methodology that was extensively reviewed by experts from industry, government and university organizations (Brennan et al., 2010, http://pubs.usgs.gov/of/2010/1127). The methodology is intended to be used at regional to sub-basinal scales and it identifies storage assessment units (SAUs) that are based on two depth categories below the surface (1) 3,000 to 13,000 ft (914 to 3,962 m), and (2) 13,000 ft (3,962 m) and greater. In the first category, the 3,000 ft (914 m) minimum depth of the storage reservoir ensures that CO2 is in a supercritical state to minimize the storage volume. The depth of 13,000 ft (3,962 m) represents maximum depths that are accessible with average injection pressures. The second category represents areas where a reservoir formation has potential storage at depths below 13,000 ft (3,962 m), although they are not accessible with average injection pressures; these are assessed as a separate SAU. SAUs are restricted to formation intervals that contain saline waters (total dissolved solids greater than 10,000 parts per million) to prevent contamination of protected ground water. Carbon dioxide sequestration capacity is estimated for buoyant and residual storage traps within the basins. For buoyant traps, CO2 is held in place in porous formations by top and lateral seals. For residual traps, CO2 is contained in porous formations as individual droplets held within pores by capillary forces. Preliminary geologic models have been developed to estimate CO2 storage capacity in approximately 40 major sedimentary basins within the United States. More than 200 SAUs have been identified within these basins. The results of the assessment are estimates of the technically accessible storage resources based on present-day geological and engineering technology related to CO2 injection into geologic formations; therefore the assessment is not of total in-place resources. Summary geologic descriptions of the evaluated basins and SAUs will be prepared, along with the national assessment results. During the coming year, these results will be released as USGS publications available from http://energy.usgs.gov. In support of these assessment activities, CO2 sequestration related research science is being conducted by members of the project. Results of our research will contribute to current and future CO2 storage assessments conducted by the USGS and other organizations. Research topics include: (a) geochemistry of CO2 interactions with subsurface environments; (b) subsurface petrophysical rock properties in relation to CO2 injection; (c) enhanced oil recovery and the potential for CO2 storage; (d) storage of CO2 in unconventional reservoirs (coal, shale, and basalt); (e) statistical aggregation of assessment results; and (f) potential risks of induced seismicity.
NASA Astrophysics Data System (ADS)
Lahay, R. R.; Misrun, S.; Sipayung, R.
2018-02-01
Cocoa is plant which it’s seed character is recalcitrant. Giving PEG and using various of storage containers was hoped to increase storage capacity of cocoa seeds as long as period of saving. The reseach was aimed to identify the storage capacity of cocoa seeds through giving PEG in the various of storage containers. Research took place in Hataram Jawa II, Kabupaten Simalungun, Propinsi Sumatera Utara, Indonesia. The method of this research is spit-split plot design with 3 replication. Storage period was put on main plot which was consisted of 4 level, PEG concentration was put on sub plot, consisted of 4 level and storage container was put on the sub sub plot consisted of 3 types. The results showed that until 4 days at storage with 45 % PEG concentration at all storage container, percentage of seed germination at storage can be decreased to be 2.90 %, and can be defensed until 16 days with 45 % PEG concentration at perforated plastic storage container. Percentage of molded seeds and seed moisture content were increased with added period of storage but seed moisture content was increased until 12 days at storage and was decreased at 16 days in storage.
Solar heating and hot water system installed at Listerhill, Alabama
NASA Technical Reports Server (NTRS)
1978-01-01
The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.
Bathymetry and capacity of Chambers Lake, Chester County, Pennsylvania
Gyves, Matthew C.
2015-10-26
This report describes the methods used to create a bathymetric map of Chambers Lake for the computation of reservoir storage capacity as of September 2014. The product is a bathymetric map and a table showing the storage capacity of the reservoir at 2-foot increments from minimum usable elevation up to full capacity at the crest of the auxiliary spillway.
Hoos, A.B.
1990-01-01
Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic diffusivity are derived from estimates of the streamflow recession index and drainage density for 75 drainage basins; values range from 3,300 to 130,000 ft^2/d (feet squared per day). Basin-specific and site-specific estimates of transmissivity are computed from estimates of hydraulic diffusivity and specific-capacity test data, respectively. Basin-specific, or areal, estimates of transmissivity range from 22 to 1,300 ft^2/d, with a mean of 240 ft^2/d In general, areal transmissivity is highest for basins underlain by the Cumberland Plateau aquifer (mean value 480 ft^2/d) and lowest for basins underlain by the Central Basin aquifer (mean value 79 ft^2/d). Mean transmissivity values for the Highland Rim, Valley and Ridge, and Blue Ridge aquifer are 320,140, and 120 ft^2/d respectively. Site-specific estimates of transmissivity, computed from specific-capacity data from 118 test wells in Middle and East Tennessee range from 2 to 93,000 ft^2/d with a mean of 2,600 ft^2/d Mean transmissivity values for the Cumberland Plateau, Highland Rim, Central Basin, Valley and Ridge, and Blue Ridge aquifers are 2,800,1,200, 7,800, 390, and 65Oft Id, respectively.
Volume Holographic Storage of Digital Data Implemented in Photorefractive Media
NASA Astrophysics Data System (ADS)
Heanue, John Frederick
A holographic data storage system is fundamentally different from conventional storage devices. Information is recorded in a volume, rather than on a two-dimensional surface. Data is transferred in parallel, on a page-by -page basis, rather than serially. These properties, combined with a limited need for mechanical motion, lead to the potential for a storage system with high capacity, fast transfer rate, and short access time. The majority of previous volume holographic storage experiments have involved direct storage and retrieval of pictorial information. Success in the development of a practical holographic storage device requires an understanding of the performance capabilities of a digital system. This thesis presents a number of contributions toward this goal. A description of light diffraction from volume gratings is given. The results are used as the basis for a theoretical and numerical analysis of interpage crosstalk in both angular and wavelength multiplexed holographic storage. An analysis of photorefractive grating formation in photovoltaic media such as lithium niobate is presented along with steady-state expressions for the space-charge field in thermal fixing. Thermal fixing by room temperature recording followed by ion compensation at elevated temperatures is compared to simultaneous recording and compensation at high temperature. In particular, the tradeoff between diffraction efficiency and incomplete Bragg matching is evaluated. An experimental investigation of orthogonal phase code multiplexing is described. Two unique capabilities, the ability to perform arithmetic operations on stored data pages optically, rather than electronically, and encrypted data storage, are demonstrated. A comparison of digital signal representations, or channel codes, is carried out. The codes are compared in terms of bit-error rate performance at constant capacity. A well-known one-dimensional digital detection technique, maximum likelihood sequence estimation, is extended for use in a two-dimensional page format memory. The effectiveness of the technique in a system corrupted by intersymbol interference is investigated both experimentally and through numerical simulations. The experimental implementation of a fully-automated multiple page digital holographic storage system is described. Finally, projections of the performance limits of holographic data storage are made taking into account typical noise sources.
Foster, Guy M.
2016-06-20
The U.S. Geological Survey, in cooperation with the Kansas Water Office, computed the suspended-sediment inflows and retention in John Redmond Reservoir during May through July 2015. Computations relied upon previously published turbidity-suspended sediment relations at water-quality monitoring sites located upstream and downstream from the reservoir. During the 3-month period, approximately 872,000 tons of sediment entered the reservoir, and 57,000 tons were released through the reservoir outlet. The average monthly trapping efficiency during this period was 93 percent, and monthly averages ranged from 83 to 97 percent. During the study period, an estimated 980 acre-feet of storage was lost, over 2.4 times the design annual sedimentation rate of the reservoir. Storm inflows during the 3-month analysis period reduced reservoir storage in the conservation pool approximately 1.6 percent. This indicates that large inflows, coupled with minimal releases, can have substantial effects on reservoir storage and lifespan.
NASA Astrophysics Data System (ADS)
Rawangphai, M.; Maneeintr, K.
2018-04-01
Recently, climate change and global warming are the global concern because of an increase in the huge amount of carbon dioxide (CO2) in the atmosphere. This gas comes from energy activities and industries like petroleum industries. Carbon capture and storage (CCS) is the practical technology to reduce and storage CO2. In Thailand, one of the main potential sites for storage is the Gulf of Thailand. However, the research on this issue is very rare in Thailand. Consequently, this work is aiming on the potential study of CO2 geological storage in formations in the Gulf of Thailand by using simulation. The CO2 storage capacity, pressure buildup and plume migration have been estimated. Also, this study has been simulated with various conditions. CO2 injection is used from 1,000-4,000 tons per day with the depth from 2,200-2,330 meters and the results are studied for 50 years as a monitoring period. The results present that with the formation characteristics, CO2 storage in this area has potential. Moreover, pressure buildup and plume migration are illustrated for the period of 50 years. As a fundamental knowledge, this study can contribute to CO2 storage in an offshore area in Thailand.
Risser, Dennis W.
2010-01-01
This report by the U.S. Geological Survey, prepared in cooperation with the Pennsylvania Department of Environmental Protection, Bureau of Mining and Reclamation, evaluates factors affecting the application of specific-capacity tests in six low-yielding water wells in areas of coal mining or quarrying in Pennsylvania. Factors such as pumping rate, duration of pumping, aquifer properties, wellbore storage, and turbulent flow were assessed by theoretical analysis and by completing multiple well tests, selected to be representative of low-yielding household-supply wells in areas of active coal mining or quarrying. All six wells were completed in fractured-bedrock aquifers--five in coal-bearing shale, siltstone, sandstone, limestone, and coal of Pennsylvanian and Permian age and one in limestone of Cambrian age. The wells were pumped 24 times during 2007-09 at rates from 0.57 to 14 gallons per minute during tests lasting from 22 to 240 minutes. Geophysical logging and video surveys also were completed to determine the depth, casing length, and location of water-yielding zones in each of the test wells, and seasonal water-level changes were measured during 2007-09 by continuous monitoring at each well. The tests indicated that specific-capacity values were reproducible within about ? 20 percent if the tests were completed at the same pumping rate and duration. A change in pumping duration, pumping rate, or saturated aquifer thickness can have a substantial effect on the comparability of repeated tests. The largest effect was caused by a change in aquifer thickness in well YO 1222 causing specific capacity from repeated tests to vary by a factor of about 50. An increase in the duration of pumping from 60 to 180 minutes caused as much as a 62 percent decrease in specific capacity. The effect of differing pumping rates on specific capacity depends on whether or not the larger rate causes the water level in the well to fall below a major water-yielding zone; when this decline happened at well CA 462, specific capacity was reduced by about 63 percent. Estimates of the maximum yield for low-yielding wells that are computed by multiplying the available drawdown by the specific-capacity value may contain large errors if the wells were pumped at low rates that do not cause much water-level drawdown. The estimates of yield are likely to be too large because the effects of lowering the water level in the well below water-yielding zones have not been incorporated. Better yield estimates can be made by the use of step-drawdown tests or by over-pumping at a rate large enough to dewater most of the wellbore. The maximum well yield, after overpumping, can be estimated from the rate of water-level recovery or by subtracting the incremental rate of change of borehole storage at the end of the test from the pumping rate.
Dynamic transport capacity in gravel-bed river systems
T. E. Lisle; B. Smith
2003-01-01
Abstract - Sediment transport capacity mediates the transfer and storage of bed material between alluvial reservoirs in a drainage system. At intermediate time scales corresponding to the evolution of sediment pulses, conditions governing bed-material transport capacity under the hydrologic regime respond to variations in storage and sediment flux as pulses extend,...
Sediment transport-storage relations for degrading, gravel bed channels
Thomas E. Lisle; Michael Church
2002-01-01
In a drainage network,sediment is transferred through a series of channel/valley segments (natural sediment storage reservoirs) that are distinguished from their neighbors by their particular capacity to store and transport sediment. We propose that the sediment transport capacity of each reservoir is a unique positive function of storage volume, which influences...
Surface water storage capacity of twenty tree species in Davis, California
Qingfu Xiao; E. Gregory McPherson
2016-01-01
Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing...—Group 1 Storage Vessels at Existing and New Affected Sources Vessel capacity(cubic meters) Vapor Pressure a (kilopascals) 75 ≤capacity pressure of total...
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing...—Group 1 Storage Vessels at Existing and New Affected Sources Vessel capacity(cubic meters) Vapor Pressure a (kilopascals) 75 ≤ capacity pressure of...
Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C
2015-11-01
Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.
Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H
2013-05-01
We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.
Defaunation affects carbon storage in tropical forests
Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro
2015-01-01
Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067
NASA Astrophysics Data System (ADS)
Alipour, M. H.; Kibler, Kelly M.
2018-02-01
A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.
Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.
2007-01-01
Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohajeri, Afshan; Shahsavar, Azin
2018-07-01
Nitrogen/sulfur dual doped carbon materials have attracted a great deal of interest due to their fascinating applications in lithium ion batteries, hydrogen storage, and oxygen reduction reactions. Here, the hydrogen storage capacity of NS dual-doped graphyne (GYNS) decorated with Li or Na is theoretically explored. The NS-codoping leads to greater charge transfer and stronger binding between the alkali metal and graphyne surface giving rise to enhanced hydrogen storage capacity. We showed that the NS-codoping increases the hydrogen storage capacities of Li-decorated and Na-decorated GY by almost 30% and 60%, respectively. At high NS concentration, the hydrogen uptake capacities can reach to 8.98 wt% and 9.34 wt% for double-side Li- decorated GYNS and Na-decorated GYNS. Moreover, the average adsorption energies per H2 are -0.27 eV for 2Li/GYNS(33.3%) and -0.26 eV for 2Na/GYNS(33.3%) which lie in desirable range for practical applications at ambient conditions.
He, Ligang; Liao, Xiangke; Huang, Chenlin
2014-01-01
Maintaining data availability is one of the biggest challenges in decentralized online social networks (DOSNs). The existing work often assumes that the friends of a user can always contribute to the sufficient storage capacity to store all data. However, this assumption is not always true in today's online social networks (OSNs) due to the fact that nowadays the users often use the smart mobile devices to access the OSNs. The limitation of the storage capacity in mobile devices may jeopardize the data availability. Therefore, it is desired to know the relation between the storage capacity contributed by the OSN users and the level of data availability that the OSNs can achieve. This paper addresses this issue. In this paper, the data availability model over storage capacity is established. Further, a novel method is proposed to predict the data availability on the fly. Extensive simulation experiments have been conducted to evaluate the effectiveness of the data availability model and the on-the-fly prediction. PMID:24892095
Fu, Songling; He, Ligang; Liao, Xiangke; Li, Kenli; Huang, Chenlin
2014-01-01
Maintaining data availability is one of the biggest challenges in decentralized online social networks (DOSNs). The existing work often assumes that the friends of a user can always contribute to the sufficient storage capacity to store all data. However, this assumption is not always true in today's online social networks (OSNs) due to the fact that nowadays the users often use the smart mobile devices to access the OSNs. The limitation of the storage capacity in mobile devices may jeopardize the data availability. Therefore, it is desired to know the relation between the storage capacity contributed by the OSN users and the level of data availability that the OSNs can achieve. This paper addresses this issue. In this paper, the data availability model over storage capacity is established. Further, a novel method is proposed to predict the data availability on the fly. Extensive simulation experiments have been conducted to evaluate the effectiveness of the data availability model and the on-the-fly prediction.
High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing
NASA Astrophysics Data System (ADS)
D'Errico, F.; Screnci, A.
One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.
High-Capacity Hydrogen-Based Green-Energy Storage Solutions for the Grid Balancing
NASA Astrophysics Data System (ADS)
D'Errico, F.; Screnci, A.
One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.
The measurement of water scarcity: Defining a meaningful indicator.
Damkjaer, Simon; Taylor, Richard
2017-09-01
Metrics of water scarcity and stress have evolved over the last three decades from simple threshold indicators to holistic measures characterising human environments and freshwater sustainability. Metrics commonly estimate renewable freshwater resources using mean annual river runoff, which masks hydrological variability, and quantify subjectively socio-economic conditions characterising adaptive capacity. There is a marked absence of research evaluating whether these metrics of water scarcity are meaningful. We argue that measurement of water scarcity (1) be redefined physically in terms of the freshwater storage required to address imbalances in intra- and inter-annual fluxes of freshwater supply and demand; (2) abandons subjective quantifications of human environments and (3) be used to inform participatory decision-making processes that explore a wide range of options for addressing freshwater storage requirements beyond dams that include use of renewable groundwater, soil water and trading in virtual water. Further, we outline a conceptual framework redefining water scarcity in terms of freshwater storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, Jason E.; Dewers, Thomas; Chidsey, Thomas C.
Greater Aneth oil field, Utah’s largest oil producer, was discovered in 1956 and has produced over 483 million barrels of oil. Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian (Desmoinesian) Paradox Formation. Because Greater Aneth is a mature, major oil field in the western U.S., and has a large carbonate reservoir, it was selected to demonstrate combined enhanced oil recovery and carbon dioxide storage. The Aneth Unit in the northwestern part of the field has produced over 160 million barrels of the estimated 386 million barrels of original oil inmore » place—a 42% recovery rate. The large amount of remaining oil made the Aneth Unit ideal to enhance oil recovery by carbon dioxide flooding and demonstrate carbon dioxide storage capacity.« less
Hydrogen Storage Performance in Pd/Graphene Nanocomposites.
Zhou, Chunyu; Szpunar, Jerzy A
2016-10-05
We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).
Lu, Jun [Salt Lake City, UT; Fang, Zhigang Zak [Salt Lake City, UT; Sohn, Hong Yong [Salt Lake City, UT
2012-04-03
As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.
Chemical hydrogen storage material property guidelines for automotive applications
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hong-Cai; Liu, Di-Jia
This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H 2/kg system and volumetric capacity of 0.040 kg H 2/L system at a cost of $400/kg H 2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL)more » collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H 2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal sites oriented towards MOF pores help to surpass the predicted hydrogen uptakes described by Chahine’s rule.4 These observations are believed to have a major impact on the hydrogen storage community, and may potentially lead to the development of a material that could meet the DOE goals for hydrogen storage systems for automotive applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, W.T.
The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.
Central and Peripheral Components of Working Memory Storage
Cowan, Nelson; Saults, J. Scott; Blume, Christopher L.
2014-01-01
This study re-examines the issue of how much of working memory storage is central, or shared across sensory modalities and verbal and nonverbal codes, and how much is peripheral, or specific to a modality or code. In addition to the exploration of many parameters in 9 new dual-task experiments and re-analysis of some prior evidence, the innovations of the present work compared to previous studies of memory for two stimulus sets include (1) use of a principled set of formulas to estimate the number of items in working memory, and (2) a model to dissociate central components, which are allocated to very different stimulus sets depending on the instructions, from peripheral components, which are used for only one kind of material. We consistently find that the central contribution is smaller than was suggested by Saults and Cowan (2007), and that the peripheral contribution is often much larger when the task does not require the binding of features within an object. Previous capacity estimates are consistent with the sum of central plus peripheral components observed here. We consider the implications of the data as constraints on theories of working memory storage and maintenance. PMID:24867488
Sequestration Options for the West Coast States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myer, Larry
The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source-sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost ofmore » $31/tonne (t), $35/t, or $$50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $$20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.« less
Capacity retention in hydrogen storage alloys
NASA Technical Reports Server (NTRS)
Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.
1992-01-01
Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.
NASA Technical Reports Server (NTRS)
Goualard, Jacques; Paugam, D.; Borthomieu, Y.
1993-01-01
The results of tests to assess capacity loss in nickel hydrogen cells are presented in outline form. The effects of long storage (greater than 1 month), high hydrogen pressure storage, high cobalt content, and recovery actions are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambria, Erik; Chattopadhyay, Anupam; Linn, Eike
Not unlike the concern over diminishing fossil fuel, information technology is bringing its own share of future worries. Here, we chose to look closely into one concern in this paper, namely the limited amount of data storage. By a simple extrapolatory analysis, it is shown that we are on the way to exhaust our storage capacity in less than two centuries with current technology and no recycling. This can be taken as a note of caution to expand research initiative in several directions: firstly, bringing forth innovative data analysis techniques to represent, learn, and aggregate useful knowledge while filtering outmore » noise from data; secondly, tap onto the interplay between storage and computing to minimize storage allocation; thirdly, explore ingenious solutions to expand storage capacity. Throughout this paper, we delve deeper into the state-of-the-art research and also put forth novel propositions in all of the abovementioned directions, including space- and time-efficient data representation, intelligent data aggregation, in-memory computing, extra-terrestrial storage, and data curation. The main aim of this paper is to raise awareness on the storage limitation we are about to face if current technology is adopted and the storage utilization growth rate persists. In the manuscript, we propose some storage solutions and a better utilization of storage capacity through a global DIKW hierarchy.« less
Cambria, Erik; Chattopadhyay, Anupam; Linn, Eike; ...
2017-05-27
Not unlike the concern over diminishing fossil fuel, information technology is bringing its own share of future worries. Here, we chose to look closely into one concern in this paper, namely the limited amount of data storage. By a simple extrapolatory analysis, it is shown that we are on the way to exhaust our storage capacity in less than two centuries with current technology and no recycling. This can be taken as a note of caution to expand research initiative in several directions: firstly, bringing forth innovative data analysis techniques to represent, learn, and aggregate useful knowledge while filtering outmore » noise from data; secondly, tap onto the interplay between storage and computing to minimize storage allocation; thirdly, explore ingenious solutions to expand storage capacity. Throughout this paper, we delve deeper into the state-of-the-art research and also put forth novel propositions in all of the abovementioned directions, including space- and time-efficient data representation, intelligent data aggregation, in-memory computing, extra-terrestrial storage, and data curation. The main aim of this paper is to raise awareness on the storage limitation we are about to face if current technology is adopted and the storage utilization growth rate persists. In the manuscript, we propose some storage solutions and a better utilization of storage capacity through a global DIKW hierarchy.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-23
... reversible pump turbine with a total installed generating capacity of 250 megawatts (MW); (6) a transformer... with a total installed generating capacity of 250 MW; (6) a transformer hall; (7) a lower reservoir; (8... installed generating capacity of 250 MW; (6) a transformer hall; (7) a lower reservoir with a storage...
Archival storage solutions for PACS
NASA Astrophysics Data System (ADS)
Chunn, Timothy
1997-05-01
While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.
Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...
2016-12-23
This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Borui; Gao, Dian-ce; Xiao, Fu
This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less
Natural gas storage in bedded salt formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, G.
1996-09-01
In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can bemore » added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.« less
Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun
2014-06-01
The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.
Influences of operational practices on municipal solid waste landfill storage capacity.
Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng
2013-03-01
The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.
FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAJO, JOHN
2014-06-12
DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materialsmore » would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.« less
Renal parameter estimates in unrestrained dogs
NASA Technical Reports Server (NTRS)
Rader, R. D.; Stevens, C. M.
1974-01-01
A mathematical formulation has been developed to describe the hemodynamic parameters of a conceptualized kidney model. The model was developed by considering regional pressure drops and regional storage capacities within the renal vasculature. Estimation of renal artery compliance, pre- and postglomerular resistance, and glomerular filtration pressure is feasible by considering mean levels and time derivatives of abdominal aortic pressure and renal artery flow. Changes in the smooth muscle tone of the renal vessels induced by exogenous angiotensin amide, acetylcholine, and by the anaesthetic agent halothane were estimated by use of the model. By employing totally implanted telemetry, the technique was applied on unrestrained dogs to measure renal resistive and compliant parameters while the dogs were being subjected to obedience training, to avoidance reaction, and to unrestrained caging.
Operational Benefits of Meeting California's Energy Storage Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichman, Josh; Denholm, Paul; Jorgenson, Jennie
In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014more » version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation reserve, as the added storage could provide about 75% of the regulation up requirement for all of California, which would likely greatly reduce regulation prices and potential revenue. The addition of storage in California decreases renewable curtailment, particularly in the 40% RPS case. Following previous analysis, storage has a mixed impact on emissions, generally reducing emissions, but also creating additional incentives for increased emissions from out-of-state coal generations. Overall, storage shows significant system cost savings, but analysis also points to additional challenges associated with full valuation of energy storage, including capturing the operational benefits calculated here, but also recovering additional benefits associated avoided generation, transmission, and distribution capacity, and avoided losses.« less
Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, Santosh; Muto, Andrew
Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precisionmore » Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO 2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO 2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat exchanger with a shell and tube reactor. A bench scale reactor system was then designed and constructed to test sorbent performance under more commercially relevant conditions. This system utilizes a tube-in tube reactor design containing approximately 250 grams sorbent and is able to operate under a wide range of temperature, pressure and flow conditions as needed to explore system performance under a variety of operating conditions. A variety of sorbent loading methods may be tested using the reactor design. Initial bench test results over 25 cycles showed very high sorbent stability (>99%) and sufficient capacity (>0.28 g CO 2/g sorbent) for an economical commercial-scale system. Initial technoeconomic evaluation of the proposed storage system show that the sorbent cost should not have a significant impact on overall system cost, and that the largest cost impacts come from the heat exchanger reactor and balance of plant equipment, including compressors and gas storage, due to the high temperatures for sCO 2 cycles. Current estimated system costs are $47/kWhth based on current material and equipment cost estimates.« less
Customized electric power storage device for inclusion in a microgrid
Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.
2017-08-01
An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.
Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems
2007-11-16
high thermal conductivity materials for heat transfer enhancement. In addition, the PCMs ’ low heat storage density requires excessively large system...capacity as compared to the PCMs . For example, Ca0.2M0.8Ni5, a commercial hydride, has a heat storage density of 853.3MJ/m³ in raw material condition...Huston and Sandrock, 1980], while paraffin (Calwax 130), a common organic PCM has a heat storage capacity of 177.5MJ/m³ [Al-Hallaj and Selman, 2000]. The
Balloon-borne video cassette recorders for digital data storage
NASA Technical Reports Server (NTRS)
Althouse, W. E.; Cook, W. R.
1985-01-01
A high speed, high capacity digital data storage system was developed for a new balloon-borne gamma-ray telescope. The system incorporates economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.
Phase-Change Heat-Storage Module
NASA Technical Reports Server (NTRS)
Mulligan, James C.
1989-01-01
Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.
EEG correlates of visual short-term memory as neuro-cognitive endophenotypes of ADHD.
Wiegand, Iris; Hennig-Fast, Kristina; Kilian, Beate; Müller, Hermann J; Töllner, Thomas; Möller, Hans-Jürgen; Engel, Rolf R; Finke, Kathrin
2016-05-01
Attention deficit hyperactivity disorder (ADHD) frequently persists into adulthood. A reduction in visual short-term memory (vSTM) storage capacity was recently suggested as a potential neuro-cognitive endophenotype, i.e., a testable marker of an individual's liability for developing ADHD. This study aimed at identifying markers of the brain abnormalities underlying vSTM reductions in adult ADHD. We combined behavioral parameter-based assessment with electrophysiology in groups of adult ADHD patients and healthy age-matched controls. Amplitudes of ERP markers of vSTM storage capacity, the contralateral delay activity (CDA) and the P3b, were analyzed according to (i) differences between individuals with higher vs. lower storage capacity K and (ii) differences between ADHD patients and control participants. We replicated the finding of reduced storage capacity in adult ADHD. Across groups, individuals with higher relative to lower storage capacity showed a larger CDA and P3b. We further found differences between the patient and control groups in the ERPs: The CDA amplitude was attenuated in an early time window for ADHD patients compared to control participants, and was negatively correlated with ADHD patients' symptom severity ratings. Furthermore, the P3b was larger in ADHD patients relative to control participants. These electrophysiological findings indicate altered brain mechanisms underlying visual storage capacity in ADHD, which are characterized by deficient encoding and maintenance, and increased recruitment of control processes. Accordingly, (quantifiable) ERP markers of vSTM in adult ADHD bear candidacy as neuro-cognitive endophenotypes of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Concentrating Solar Power Projects - Crescent Dunes Solar Energy Project |
: None Thermal Storage Storage Type: 2-tank direct Storage Capacity: 10 hours Thermal Storage Description : Thermal energy storage achieved by raising salt temperature from 550 to 1050 F. Thermal storage efficiency
NASA Astrophysics Data System (ADS)
Konstantinovskaya, E.; Malo, M.; Claprood, M.; Tran-Ngoc, T. D.; Gloaguen, E.; Lefebvre, R.
2012-04-01
The Paleozoic sedimentary succession of the St. Lawrence Platform was characterized to estimate the CO2 storage capacity, the caprock integrity and the fracture/fault stability at the Becancour pilot site. Results are based on the structural interpretation of 25 seismic lines and analysis of 11 well logs and petrophysical data. The three potential storage units of Potsdam, Beekmantown and Trenton saline aquifers are overlain by a multiple caprock system of Utica shales and Lorraine siltstones. The NE-SW regional normal faults dipping to the SE affect the subhorizontal sedimentary succession. The Covey Hill (Lower Potsdam) was found to be the only unit with significant CO2 sequestration potential, since these coarse-grained poorly-sorted fluvial-deltaic quartz-feldspar sandstones are characterized by the highest porosity, matrix permeability and net pay thickness and have the lowest static Young modulus, Poisson's ratio and compressive strength relative to other units. The Covey Hill is located at depths of 1145-1259 m, thus injected CO2 would be in supercritical state according to observed salinity, temperature and fluid pressure. The calcareous Utica shale of the regional seal is more brittle and has higher Young modulus and lower Poisson's ratio than the overlying Lorraine shale. The 3D geological model is kriged using the tops of the geological formations recorded at wells and picked travel times as external drift. The computed CO2 storage capacity in the Covey Hill sandstones is estimated by the volumetric and compressibility methods as 0.22 tons/km2 with storage efficiency factor E 2.4% and 0.09 tons/km2 with E 1%, respectively. A first set of numerical radial simulations of CO2 injection into the Covey Hill were carried out with TOUGH2/ECO2N. A geomechanical analysis of the St. Lawrence Platform sedimentary basin provides the maximum sustainable fluid pressures for CO2 injection that will not induce tensile fracturing and shear reactivation along pre-existing fractures and faults in the caprock. The regional stresses/pressure gradients estimated for the Paleozoic sedimentary basin (depths < 4 km) indicate a strike-slip stress regime. The average maximum horizontal stress orientation (SHmax) is estimated N62.8°E±4.0° in the Becancour-Notre Dame area. The high-angle NE-SW Yamaska normal fault is oriented at 16.7° to the SHmax orientation in the Becancour site. The slip tendency along the fault in this area is estimated to be 0.47 based on the stress magnitude and rock strength evaluations for the borehole breakout intervals in local wells. The regional pore pressure-stress coupling ratio under assumed parameters is about 0.5-0.65 and may contribute to reduce the risk of shear reactivation of faults and fractures. The maximum sustainable fluid pressure that would not cause opening of vertical tensile fractures during CO2 operations is about 18.5-20 MPa at a depth of 1 km.
Nickel-hydrogen capacity loss on storage
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
1989-01-01
A controlled experiment evaluating the capacity loss experienced by nickel electrodes stored under various conditions of temperature, hydrogen pressure, and electrolyte concentration was conducted using nickel electrodes from four different manufacturers. It was found that capacity loss varied with respect to hydrogen pressure, and storage temperature as well as with respect to electrode manufacturing processes. Impedance characteristics were monitored and found to be indicative of electrode manufacturing processes and capacity loss. Cell testing to evaluate state-of-charge effects on capacity loss were inconclusive as no loss was sustained by the cells tested in this experiment.
A thermal storage capacity market for non dispatchable renewable energies
NASA Astrophysics Data System (ADS)
Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz
2017-06-01
Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.
Applications for activated carbons from waste tires: Natural gas storage and air pollution control
Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.
1996-01-01
Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.
Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.
Wang, Min; Yang, Zhenzhong; Li, Weihan; Gu, Lin; Yu, Yan
2016-05-01
Carbonaceous materials have attracted immense interest as anode materials for Na-ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na-storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O-dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g(-1) at 100 mA g(-1) after 100 cycles and retaining a capacity of 240 mAh g(-1) at 2 A g(-1) after 2000 cycles. The NOC composite with 3D well-defined porosity and N,O-dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O-dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-01-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices. PMID:27546225
Zequine, Camila; Ranaweera, C K; Wang, Z; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Gupta, Bipin Kumar; Ramasamy, K; Kahol, P K; Dvornic, P R; Gupta, Ram K
2016-08-22
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm(2) at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
NASA Astrophysics Data System (ADS)
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-08-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
NASA Technical Reports Server (NTRS)
Deligiannis, F.; Shen, D. H.; Halpert, G.; Ang, V.; Donley, S.
1991-01-01
A program was initiated to investigate the effects of storage on the performance of lithium primary cells. Two types of liquid cathode cells were chosen to investigate these effects. The cell types included Li-SOCl2/BCX cells, Li-SO2 cells from two different manufacturers, and a small sample size of 8-year-old Li-SO2 cells. The following measurements are performed at each test interval: open circuit voltage, resistance and weight, microcalorimetry, ac impedance, capacity, and voltage delay. The authors examine the performance characteristics of these cells after one year of controlled storage at two temperatures (10 and 30 C). The Li-SO2 cells experienced little to no voltage and capacity degradation after one year storage. The Li-SOCl2/BCX cells exhibited significant voltage and capacity degradation after 30 C storage. Predischarging shortly prior to use appears to be an effective method of reducing the initial voltage drop. Studies are in progress to correlate ac impedance and microcalorimetry measurements with capacity losses and voltage delay.
Ultra-high density optical data storage in common transparent plastics.
Kallepalli, Deepak L N; Alshehri, Ali M; Marquez, Daniela T; Andrzejewski, Lukasz; Scaiano, Juan C; Bhardwaj, Ravi
2016-05-25
The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc.
Climatic and biotic controls on annual carbon storage in Amazonian ecosystems
Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.
2000-01-01
1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate variability and increasing atmospheric CO2 over the study period. This amount is large enough to have compensated for most of the carbon losses associated with tropical deforestation in the Amazon during the same period. 5 Comparisons with empirical data indicate that climate variability and CO2 fertilization explain most of the variation in net carbon storage for the undisturbed ecosystems. Our analyses suggest that assessment of the regional carbon budget in the tropics should be made over at least one cycle of El Nino-Southern Oscillation because of inter-annual climate variability. Our analyses also suggest that proper scaling of the site-specific and sub-annual measurements of carbon fluxes to produce Basin-wide flux estimates must take into account seasonal and spatial variations in net carbon storage.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai
2018-02-01
An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.
Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota
Ludden, A.P.; Frink, D.L.; Johnson, D.H.
1983-01-01
Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.
NASA Astrophysics Data System (ADS)
Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.
1999-11-01
The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.
Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
Shayeganfar, Farzaneh; Shahsavari, Rouzbeh
2016-12-20
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.
Bathymetric Survey and Storage Capacity of Upper Lake Mary near Flagstaff, Arizona
Hornewer, Nancy J.; Flynn, Marilyn E.
2008-01-01
Upper Lake Mary is a preferred drinking-water source for the City of Flagstaff, Arizona. Therefore, storage capacity and sedimentation issues in Upper Lake Mary are of interest to the City. The U.S. Geological Survey, in cooperation with the City of Flagstaff, collected bathymetric and land-survey data in Upper Lake Mary during late August through October 2006. Water-depth data were collected using a single-beam, high-definition fathometer. Position data were collected using real-time differential global position system receivers. Data were processed using commercial software and imported into geographic information system software to produce contour maps of lakebed elevations and for the computation of area and storage-capacity information. At full pool (spillway elevation of 6,828.5 feet above mean sea level), Upper Lake Mary has a storage capacity of 16,300 acre-feet, a surface area of 939 acres, a mean depth of 17.4 feet, and a depth near the dam of 39 feet. It is 5.6 miles long and varies in width from 308 feet near the central, narrow portion of the lake to 2,630 feet in the upper portion. Comparisons between this survey and a previous survey conducted in the 1950s indicate no apparent decrease in reservoir area or storage capacity between the two surveys.
NASA Astrophysics Data System (ADS)
Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.
2017-12-01
Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.
Gao, Wu; Xu, Wenjie; Bian, Xuecheng; Chen, Yunmin
2017-11-01
The settlement of any position of the municipal solid waste (MSW) body during the landfilling process and after its closure has effects on the integrity of the internal structure and storage capacity of the landfill. This paper proposes a practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. The MSW body in the landfill was divided into independent column units, and the filling process of each column unit was determined by a simplified complete landfilling process. The settlement of a position in the landfill was calculated with the compression of each MSW layer in every column unit. Then, the simultaneous settlement of all the column units was integrated to obtain the settlement of the landfill and storage capacity of all the column units; this allowed to obtain the storage capacity of the landfill based on the layer-wise summation method. When the compression of each MSW layer was calculated, the effects of the fluctuation of the main leachate level and variation in the unit weight of the MSW on the overburdened effective stress were taken into consideration by introducing the main leachate level's proportion and the unit weight and buried depth curve. This approach is especially significant for MSW with a high kitchen waste content and landfills in developing countries. The stress-biodegradation compression model was used to calculate the compression of each MSW layer. A software program, Settlement and Storage Capacity Calculation System for Landfills, was developed by integrating the space and time discretization of the landfilling process and the settlement and storage capacity algorithms. The landfilling process of the phase IV of Shanghai Laogang Landfill was simulated using this software. The maximum geometric volume of the landfill error between the calculated and measured values is only 2.02%, and the accumulated filling weight error between the calculated value and measured value is less than 5%. These results show that this approach is practical for satisfactorily and reliably calculating the settlement and storage capacity. In addition, the development of the elevation lines in the landfill sections created with the software demonstrates that the optimization of the design of the structures should be based on the settlement of the landfill. Since this practical approach can reasonably calculate the storage capacity of landfills and efficiently provide the development of the settlement of each landfilling stage, it can be used for the optimizations of landfilling schemes and structural designs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes
Shon, Jeong Kuk; Lee, Hyo Sug; Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Gyeong Su; Kong, Soo Sung; Jin, Mingshi; Choi, Jae-Man; Chang, Hyuk; Doo, Seokgwang; Kim, Ji Man; Yoon, Won-Sub; Pak, Chanho; Kim, Hansu; Stucky, Galen D.
2016-01-01
Developing electrode materials with high-energy densities is important for the development of lithium-ion batteries. Here, we demonstrate a mesoporous molybdenum dioxide material with abnormal lithium-storage sites, which exhibits a discharge capacity of 1,814 mAh g−1 for the first cycle, more than twice its theoretical value, and maintains its initial capacity after 50 cycles. Contrary to previous reports, we find that a mechanism for the high and reversible lithium-storage capacity of the mesoporous molybdenum dioxide electrode is not based on a conversion reaction. Insight into the electrochemical results, obtained by in situ X-ray absorption, scanning transmission electron microscopy analysis combined with electron energy loss spectroscopy and computational modelling indicates that the nanoscale pore engineering of this transition metal oxide enables an unexpected electrochemical mass storage reaction mechanism, and may provide a strategy for the design of cation storage materials for battery systems. PMID:27001935
Hydrogen storage in Pd nanocrystals covered with a metal-organic framework
NASA Astrophysics Data System (ADS)
Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi
2014-08-01
Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.
Eternal 5D data storage by ultrafast laser writing in glass
NASA Astrophysics Data System (ADS)
Zhang, J.; ČerkauskaitÄ--, A.; Drevinskas, R.; Patel, A.; Beresna, M.; Kazansky, P. G.
2016-03-01
Securely storing large amounts of information over relatively short timescales of 100 years, comparable to the span of the human memory, is a challenging problem. Conventional optical data storage technology used in CDs and DVDs has reached capacities of hundreds of gigabits per square inch, but its lifetime is limited to a decade. DNA based data storage can hold hundreds of terabytes per gram, but the durability is limited. The major challenge is the lack of appropriate combination of storage technology and medium possessing the advantages of both high capacity and long lifetime. The recording and retrieval of the digital data with a nearly unlimited lifetime was implemented by femtosecond laser nanostructuring of fused quartz. The storage allows unprecedented properties including hundreds of terabytes per disc data capacity, thermal stability up to 1000 °C, and virtually unlimited lifetime at room temperature opening a new era of eternal data archiving.
NASA Astrophysics Data System (ADS)
Rahman, Md. Wasikur
2017-06-01
The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Broderick, Robert; Mather, Barry
2016-05-01
This report analyzes distribution-integration challenges, solutions, and research needs in the context of distributed generation from PV (DGPV) deployment to date and the much higher levels of deployment expected with achievement of the U.S. Department of Energy's SunShot targets. Recent analyses have improved estimates of the DGPV hosting capacities of distribution systems. This report uses these results to statistically estimate the minimum DGPV hosting capacity for the contiguous United States using traditional inverters of approximately 170 GW without distribution system modifications. This hosting capacity roughly doubles if advanced inverters are used to manage local voltage and additional minor, low-cost changesmore » could further increase these levels substantially. Key to achieving these deployment levels at minimum cost is siting DGPV based on local hosting capacities, suggesting opportunities for regulatory, incentive, and interconnection innovation. Already, pre-computed hosting capacity is beginning to expedite DGPV interconnection requests and installations in select regions; however, realizing SunShot-scale deployment will require further improvements to DGPV interconnection processes, standards and codes, and compensation mechanisms so they embrace the contributions of DGPV to system-wide operations. SunShot-scale DGPV deployment will also require unprecedented coordination of the distribution and transmission systems. This includes harnessing DGPV's ability to relieve congestion and reduce system losses by generating closer to loads; minimizing system operating costs and reserve deployments through improved DGPV visibility; developing communication and control architectures that incorporate DGPV into system operations; providing frequency response, transient stability, and synthesized inertia with DGPV in the event of large-scale system disturbances; and potentially managing reactive power requirements due to large-scale deployment of advanced inverter functions. Finally, additional local and system-level value could be provided by integrating DGPV with energy storage and 'virtual storage,' which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Together, continued innovation across this rich distribution landscape can enable the very-high deployment levels envisioned by SunShot.« less
Climate, soil water storage, and the average annual water balance
Milly, P.C.D.
1994-01-01
This paper describes the development and testing of the hypothesis that the long-term water balance is determined only by the local interaction of fluctuating water supply (precipitation) and demand (potential evapotranspiration), mediated by water storage in the soil. Adoption of this hypothesis, together with idealized representations of relevant input variabilities in time and space, yields a simple model of the water balance of a finite area having a uniform climate. The partitioning of average annual precipitation into evapotranspiration and runoff depends on seven dimensionless numbers: the ratio of average annual potential evapotranspiration to average annual precipitation (index of dryness); the ratio of the spatial average plant-available water-holding capacity of the soil to the annual average precipitation amount; the mean number of precipitation events per year; the shape parameter of the gamma distribution describing spatial variability of storage capacity; and simple measures of the seasonality of mean precipitation intensity, storm arrival rate, and potential evapotranspiration. The hypothesis is tested in an application of the model to the United States east of the Rocky Mountains, with no calibration. Study area averages of runoff and evapotranspiration, based on observations, are 263 mm and 728 mm, respectively; the model yields corresponding estimates of 250 mm and 741 mm, respectively, and explains 88% of the geographical variance of observed runoff within the study region. The differences between modeled and observed runoff can be explained by uncertainties in the model inputs and in the observed runoff. In the humid (index of dryness <1) parts of the study area, the dominant factor producing runoff is the excess of annual precipitation over annual potential evapotranspiration, but runoff caused by variability of supply and demand over time is also significant; in the arid (index of dryness >1) parts, all of the runoff is caused by variability of forcing over time. Contributions to model runoff attributable to small-scale spatial variability of storage capacity are insignificant throughout the study area. The consistency of the model with observational data is supportive of the supply-demand-storage hypothesis, which neglects infiltration excess runoff and other finite-permeability effects on the soil water balance.
Radiocarbon as a Reactive Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matter, Juerg; Stute, Martin; Schlosser, Peter
In view of concerns about the long-term integrity and containment of CO 2 storage in geologic reservoirs, many efforts have been made to improve the monitoring, verification and accounting methods for geologically stored CO 2. Our project aimed to demonstrate that carbon-14 ( 14C) could be used as a reactive tracer to monitor geochemical reactions and evaluate the extent of mineral trapping of CO 2 in basaltic rocks. The capacity of a storage reservoir for mineral trapping of CO 2 is largely a function of host rock composition. Mineral carbonation involves combining CO 2 with divalent cations including Ca 2+,more » Mg 2+ and Fe 2+. The most abundant geological sources for these cations are basaltic rocks. Based on initial storage capacity estimates, we know that basalts have the necessary capacity to store million to billion tons of CO 2 via in situ mineral carbonation. However, little is known about CO2-fluid-rock reactions occurring in a basaltic storage reservoir during and post-CO 2 injection. None of the common monitoring and verification techniques have been able to provide a surveying tool for mineral trapping. The most direct method for quantitative monitoring and accounting involves the tagging of the injected CO 2 with 14C because 14C is not present in deep geologic reservoirs prior to injection. Accordingly, we conducted two CO 2 injection tests at the CarbFix pilot injection site in Iceland to study the feasibility of 14C as a reactive tracer for monitoring CO 2-fluid-rock reactions and CO 2 mineralization. Our newly developed monitoring techniques, using 14C as a reactive tracer, have been successfully demonstrated. For the first time, permanent and safe disposal of CO 2 as environmentally benign carbonate minerals in basaltic rocks could be shown. Over 95% of the injected CO 2 at the CarbFix pilot injection site was mineralized to carbonate minerals in less than two years after injection. Our monitoring results confirm that CO 2 mineralization in basaltic rocks is far faster than previously postulated.« less
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity
NASA Astrophysics Data System (ADS)
Manfredi, S.; Di Tucci, E.; Latora, V.
2018-02-01
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity.
Manfredi, S; Di Tucci, E; Latora, V
2018-02-09
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
Robles-Sánchez, R M; Islas-Osuna, M A; Astiazarán-García, H; Vázquez-Ortiz, F A; Martín-Belloso, O; Gorinstein, S; González-Aguilar, G A
2009-04-01
To measure bioactive compound losses due to minimal processing, mature green fresh-cut mangoes (Mangifera indica L.) cv. "Ataulfo" were subjected to an antioxidant treatment and stored at 5 degrees C during 15 d. Quality index, total phenols, flavonoids, beta-carotene, ascorbic acid, vitamin E, and antioxidant activity were measured during the storage period of fruits. Antioxidant capacity was estimated using ORAC(FL), TEAC, and DPPH assays. The dipping treatments with ascorbic acid (AA) + citric acid (CA) + CaCl2 affected positively quality delaying deterioration of fresh-cut mango as compared with whole fruit. However, dipping treatment affected the consumer preferences of fresh-cut mangoes. The highest vitamin C, beta-carotene, and vitamin E losses were observed after 10 d, being similar in whole and fresh-cut mangoes. The antioxidant activity was not significantly affected by storage time. We conclude that fresh-cut mangoes retained their bioactive compound content during storage and their antioxidant and nutritional properties make them a good source of these compounds.
NASA Astrophysics Data System (ADS)
Pueyo, E. L.; Klimowitz, J.; García-Lobón, J. L.; Calvín, P.; Casas, A. M.; Oliva, B.; Algeco2 Team
2012-04-01
The project "Identification and preliminary characterization of geological structures for geological storage of CO2" (ALGECO2) led by the IGME between 2009 and 2010 has made the first rigorous selection of potential CO2 reservoirs in Spain; more than one hundred structures were identified and subjected to preliminary evaluation. This assortment comprises more than thirty structures within the Pyrenees and the Ebro Basin (PE) domain. The discussion, based on the oil-exploration experience and regional geological knowledge (with the compilation of over 500 cross sections) has finally chosen 8 structures in the Pyrenees. Seismic data, oil industry wells and surface mapping have allowed building three-dimensional preliminary models of these structures. These potential reservoirs display storage capacities from a few Mt to hundreds Mt CO2. Besides, some Pyrenean structures are among the most favorable and reliable in the national ranking according to the panel of more than 150 experts of the ALGECO2 project. Two Pyrenean structural traps are notable for their large potential capacity; they have been coded as PE-GE-13 and PE-GE-14. The first one is a large and wide basement antiform located in the Northern Jaca-Pamplona Basin. There is an extensive seismic coverage in the area and a dozen of deep wells (2 of them 4,000 m deep). The reservoir consists of Buntsandstein sands (>80 m in thickness), being the Röt and Keuper facies the seal. The top of the reservoir is 1,720 m deep and the structure has a map-view surface > 500 km2. Preliminary 3D models allow estimating storage capacity > 300 Mt. On the other hand, the PE-GE-14 structure (partially overlapped in map-view with PE-GE-13) is a cover anticline related to an underneath thrust (but structurally higher than PE-GE-13). In this case, the reservoir-seal pair is formed by upper Paleocene platform limestones and the Eocene flysch and talus marls respectively. The structure has an area > 100 km2. The top of the reservoir is 1,300 m in depth and its thickness ≈ 80 m. It has an estimated storage capacity > 100 Mt of CO2. The exhaustive analysis of several hundreds of available seismic sections (surveys PP, DP, JAT, PJ, BB, P & SA) and the subsequent construction of balanced cross sections would allow improving the geometric definition of these two structures. The derived accurate 3D models would quantify the effectiveness of both traps. In order to support these underground reconstructions, an inexpensive geophysical survey (potential fields) would better constraint the basement-cover interface (where the reservoir is located). In conclusion, these structures represent two suggestive potential reservoirs; besides, an advanced evaluation of them requires modest investments.
Concentrating Solar Power Projects - Likana Solar Energy Project |
three 130 megawatt (MW) solar thermal towers each with 13 hours of full load energy storage, delivering Thermal Storage Storage Type: 2-tank direct Storage Capacity: 13 hours Thermal Storage Description: Molten
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... storage capacity of 25,000 acre-feet and a surface area of 241 acres at maximum normal water surface... penstocks; (4) a powerhouse with four 250 MW pump/turbines having an installed capacity of approximately... capacity of 25,000 acre-feet and a surface area of 240 acres at maximum normal water surface elevation of 1...
Chemical hydrogen storage material property guidelines for automotive applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semelsberger, Troy; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less
Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II
DOE Office of Scientific and Technical Information (OSTI.GOV)
George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg
2009-06-01
This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2more » storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.« less
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing... Polyether Polyols Production Pt. 63, Subpt. PPP, Table 3 Table 3 to Subpart PPP of Part 63—Group 1 Storage...) 75 ≤ capacity 1 capacity ≥ 151 ≥ 5.2 a Maximum true vapor pressure of total organic HAP at...
Climate, interseasonal storage of soil water, and the annual water balance
Milly, P.C.D.
1994-01-01
The effects of annual totals and seasonal variations of precipitation and potential evaporation on the annual water balance are explored. It is assumed that the only other factor of significance to annual water balance is a simple process of water storage, and that the relevant storage capacity is the plant-available water-holding capacity of the soil. Under the assumption that precipitation and potential evaporation vary sinusoidally through the year, it is possible to derive an analytic solution of the storage problem, and this yields an expression for the fraction of precipitation that evaporates (and the fraction that runs off) as a function of three dimensionless numbers: the ratio of annual potential evaporation to annual precipitation (index of dryness); an index of the seasonality of the difference between precipitation and potential evaporation; and the ratio of plant-available water-holding capacity to annual precipitation. The solution is applied to the area of the United States east of 105??W, using published information on precipitation, potential evaporation, and plant-available water-holding capacity as inputs, and using an independent analysis of observed river runoff for model evaluation. The model generates an areal mean annual runoff of only 187 mm, which is about 30% less than the observed runoff (263 mm). The discrepancy is suggestive of the importance of runoff-generating mechanisms neglected in the model. These include intraseasonal variability (storminess) of precipitation, spatial variability of storage capacity, and finite infiltration capacity of land. ?? 1994.
Thermal properties of simulated Hanford waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; Chun, Jaehun; Crum, Jarrod V.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flashmore » diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Shi, Zheng; Lu, Xingjie
Terrestrial ecosystems have absorbed roughly 30 % of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C inputmore » (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Overall, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less
Balloon-borne video cassette recorders for digital data storage
NASA Technical Reports Server (NTRS)
Althouse, W. E.; Cook, W. R.
1985-01-01
A high-speed, high-capacity digital data storage system has been developed for a new balloon-borne gamma-ray telescope. The system incorporates sophisticated, yet easy to use and economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.
Multiplexed image storage by electromagnetically induced transparency in a solid
NASA Astrophysics Data System (ADS)
Heinze, G.; Rentzsch, N.; Halfmann, T.
2012-11-01
We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.
Zarriello, Phillip J.
2002-01-01
A Hydrologic Simulation Program FORTRAN (HSPF) model previously developed for the Ipswich River Basin was modified to simulate the hydrologic response and firm yields of the water-supply systems of Lynn, Peabody, and Salem-Beverly. The updated model, expanded to include a portion of the Saugus River Basin that supplies water to Lynn, simulated reservoir system storage over a 35-year period (1961-95) under permitted withdrawals and hypothetical restrictions designed to maintain seasonally varied streamflow for aquatic habitat. A firm yield was calculated for each system and each withdrawal restriction by altering demands until the system failed. This is considered the maximum withdrawal rate that satisfies demands, but depletes reservoir storage. Simulations indicate that, under the permitted withdrawals, Lynn and Salem-Beverly were able to meet demands and generally have their reservoir system recover to full capacity during most years; reservoir storage averaged 83 and 82 percent of capacity, respectively. The firm yields for the Lynn and Salem-Beverly systems were 11.4 and 12.2 million gallons per day (Mgal/d), respectively, or 8 and 21 percent more than average 1998-2000 demands, respectively. Under permitted withdrawals and average 1998-2000 demands, the Peabody system failed in all years; thus Peabody purchased water to meet demands. The firm yield for the Peabody system is 3.70 Mgal/d, or 37 percent less than the average 1998-2000 demand. Simulations that limit withdrawals to levels recommended by the Ipswich River Fisheries Restoration Task Group (IRFRTG) indicate that under average 1998-2000 demands, reservoir storage was depleted in each of the three systems. Reservoir storage under average 1998-2000 demands and IRFRTG-recommended streamflow requirements averaged 15, 22, and 71 percent of capacity for the Lynn, Peabody, Salem-Beverly systems, respectively. The firm-yield estimates under the IRFRTG-recommended streamflow requirements were 6.02, 1.94, and 7.69 Mgal/d or 43, 64, and 34 percent less than the average 1998-2000 demands for the Lynn, Peabody, and Salem-Beverly systems, respectively. Simulations that limit withdrawals from the Saugus River to a less stringent set of restrictions (based on an Instream Flow Incremental Methodology study) than those previously simulated indicate that the firm yield of the Lynn system is about 31 percent less than the average 1998-2000 withdrawals (7.31 Mgal/d).
Pseudo-orthogonalization of memory patterns for associative memory.
Oku, Makito; Makino, Takaki; Aihara, Kazuyuki
2013-11-01
A new method for improving the storage capacity of associative memory models on a neural network is proposed. The storage capacity of the network increases in proportion to the network size in the case of random patterns, but, in general, the capacity suffers from correlation among memory patterns. Numerous solutions to this problem have been proposed so far, but their high computational cost limits their scalability. In this paper, we propose a novel and simple solution that is locally computable without any iteration. Our method involves XNOR masking of the original memory patterns with random patterns, and the masked patterns and masks are concatenated. The resulting decorrelated patterns allow higher storage capacity at the cost of the pattern length. Furthermore, the increase in the pattern length can be reduced through blockwise masking, which results in a small amount of capacity loss. Movie replay and image recognition are presented as examples to demonstrate the scalability of the proposed method.
Evolution of antioxidant capacity during storage of selected fruits and vegetables.
Kevers, Claire; Falkowski, Michael; Tabart, Jessica; Defraigne, Jean-Olivier; Dommes, Jacques; Pincemail, Joël
2007-10-17
Interest in the consumption of fresh fruits and vegetables is, to a large extent, due to its content of bioactive nutrients and their importance as dietary antioxidants. Among all of the selected fruits and vegetables, strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols. More interesting, the results of this study indicated that in most fruits and vegetables storage did not affect negatively the antioxidant capacity. Better, in some cases, an increase of the antioxidant capacity was observed in the days following their purchase, accompanied by an increase in phenolic compounds. In general, fruits and vegetables visually spoil before any significant antioxidant capacity loss occurs except in banana and broccoli. When ascorbic acid or flavonoids (aglycons of flavonols and anthocyanins) were concerned, the conclusions were similar. Their content was generally stable during storage.
Storage peak gas-turbine power unit
NASA Technical Reports Server (NTRS)
Tsinkotski, B.
1980-01-01
A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.
Advancing the capabilities of reservoir remote sensing by leveraging multi-source satellite data
NASA Astrophysics Data System (ADS)
Gao, H.; Zhang, S.; Zhao, G.; Li, Y.
2017-12-01
With a total global capacity of more than 6000 km3, reservoirs play a key role in the hydrological cycle and in water resources management. However, essential reservoir data (e.g., elevation, storage, and evaporation loss) are usually not shared at a large scale. While satellite remote sensing offers a unique opportunity for monitoring large reservoirs from space, the commonly used radar altimeters can only detect storage variations of about 15% of global lakes at a repeat period of 10 days or longer. To advance the capabilities of reservoir sensing, we developed a series of algorithms geared towards generating long term reservoir records at improved spatial coverage, and at improved temporal resolution. To this goal, observations are leveraged from multiple satellite sensors, which include radar/laser altimeters, imagers, and passive microwave radiometers. In South Asia, we demonstrate that reservoir storage can be estimated under all-weather conditions at a 4 day time step, with the total capacity of monitored reservoirs increased to 45%. Within the Continuous United States, a first Landsat based evaporation loss dataset was developed (containing 204 reservoirs) from 1984 to 2011. The evaporation trends of these reservoirs are identified and the causes are analyzed. All of these algorithms and products were validated with gauge observations. Future satellite missions, which will make significant contributions to monitoring global reservoirs, are also discussed.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Ahlström, A.; Loisel, J.; Harden, J. W.
2017-12-01
Soils provide numerous and indispensable services to ecological systems and human societies. As human populations and human land use changes, the capacity of soils to maintain these services may also change. To investigate this we provide the first global scale study based on the soil service index (SSI; see presentations by Harden et al. and Loisel et al. in this session for more details). In this index multiple soil services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability. Soil services assessed under the SSI include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The SSI may be applied at any scale. Here we present a first global application of the SSI and provide broad-scale analyses of soil service spatial distributions. We assess how the SSI will change under projected changes in human societies populations and human land use (following representative concentration pathway scenarios). Present and future potential utilization and vulnerability of soil resources are analyzed in the context of human population distributions and its projected changes. The SSI is designed to be broadly useful across scientific, governance and resource management organizations. To exemplify this, the parameterization of this is global soil service estimate is based on only open source input data.
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.
2017-12-01
More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.
NASA Astrophysics Data System (ADS)
Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.
2017-12-01
Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. Fred
A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In thismore » design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.« less
Capacity recovery after storage negatively precharged nickel hydrogen cells
NASA Technical Reports Server (NTRS)
Lowery, John E.
1993-01-01
Tests were conducted to investigate the recovery of capacity lost during open circuit storage of negatively precharged nickel hydrogen batteries. Four Eagle Picher RNH-90-3 cells were used in the tests. Recovery procedures and test results are presented in outline and graphic form.
Increasing hydrogen storage capacity using tetrahydrofuran.
Sugahara, Takeshi; Haag, Joanna C; Prasad, Pinnelli S R; Warntjes, Ashleigh A; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2009-10-21
Hydrogen hydrates with tetrahydrofuran (THF) as a promoter molecule are investigated to probe critical unresolved observations regarding cage occupancy and storage capacity. We adopted a new preparation method, mixing solid powdered THF with ice and pressurizing with hydrogen at 70 MPa and 255 +/- 2 K (these formation conditions are insufficient to form pure hydrogen hydrates). All results from Raman microprobe spectroscopy, powder X-ray diffraction, and gas volumetric analysis show a strong dependence of hydrogen storage capacity on THF composition. Contrary to numerous recent reports that claim it is impossible to store H(2) in large cages with promoters, this work shows that, below a THF mole fraction of 0.01, H(2) molecules can occupy the large cages of the THF+H(2) structure II hydrate. As a result, by manipulating the promoter THF content, the hydrogen storage capacity was increased to approximately 3.4 wt % in the THF+H(2) hydrate system. This study shows the tuning effect may be used and developed for future science and practical applications.
Sari, Fatma Nur; Akdag, Arzu; Dizdar, Evrim Alyamac; Uras, Nurdan; Erdeve, Omer; Erel, Ozcan; Dilmen, Ugur
2012-06-01
To determine total antioxidant capacity and total oxidation status in fresh and freeze stored (at -80°C) breast milk during the stages of lactation. Samples of colostrum, transitional and mature milk were collected from 44 healthy women at 3, 8 and 30 days after birth. The total milk volume collected (6 ml) was divided in two aliquot parts: 3 ml for the fresh analysis which was done immediately after the extraction and 3 ml for storage under freezing conditions at -80°C for two months. The antioxidant status and oxidative stress of the fresh and stored breast milk were assessed via determination of total antioxidant capacity and total oxidation status. Antioxidant capacity of transitional and mature milk decreased (p = 0.0001, p = 0.028, respectively); however, antioxidant capacity of colostrum did not change by storage at -80°C (p > 0.05). Total antioxidant capacity of fresh and stored breast milk significantly decreased during the stages of lactation (p < 0.0001, p = 0.028, respectively). Total oxidation status showed no significant difference in fresh and stored breast milk during the stages of lactation (p > 0.05). Freeze storage of breast milk at -80°C for two months seems not to be the optimal condition to preserve the antioxidant capacity of breast milk.
NASA Astrophysics Data System (ADS)
Zhang, S.; Jing, X.
2017-12-01
Rainwater harvesting is now increasingly used to manage urban flood and alleviate water scarcity crisis. In this study, a computational tool based on water balance equation is developed to assess stormwater capture and water saving efficiency and economic viability of rainwater harvesting systems (RHS) in eight cities across four climatic zones of China. It requires daily rainfall, contributing area, runoff losses, first flush volume, storage capacity, daily water demand and economic parameters as inputs. Three non-potable water demand scenarios (i.e., toilet flushing, lawn irrigation, and combination of them) are considered. The water demand for lawn irrigation is estimated using the Cropwat 8.0 and Climwat 2.0. Results indicate that higher water saving efficiency and water supply time reliability can be achieved for RHS with larger storage capacities, for lower water demand scenarios and located in more humid regions, while higher stormwater capture efficiency is associated with larger storage capacity, higher water demand scenarios and less rainfall. For instance, a 40 m3 RHS in Shanghai (humid climate) for lawn irrigation can capture 17% of stormwater, while its water saving efficiency and time reliability can reach 96 % and 98%, respectively. The water saving efficiency and time reliability of a 20 m3 RHS in Xining (semi-arid climate) for toilet flushing are 19% and 16%, respectively, but it can capture 63% of stormwater. With the current values of economic parameters, economic viability of RHS can be achieved in humid and semi-humid regions for reasonably designed RHS; however, it is not financially viable to install RHS in arid regions as the benefit-cost ratio is much smaller than 1.0.
41 CFR 109-28.000-51 - Storage guidelines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Storage guidelines. 109...-STORAGE AND DISTRIBUTION § 109-28.000-51 Storage guidelines. (a) Indoor storage areas should be arranged... capacities. (b) Storage yards for items not requiring covered protection shall be protected by locked fenced...
41 CFR 109-28.000-51 - Storage guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Storage guidelines. 109...-STORAGE AND DISTRIBUTION § 109-28.000-51 Storage guidelines. (a) Indoor storage areas should be arranged... capacities. (b) Storage yards for items not requiring covered protection shall be protected by locked fenced...
41 CFR 109-28.000-51 - Storage guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Storage guidelines. 109...-STORAGE AND DISTRIBUTION § 109-28.000-51 Storage guidelines. (a) Indoor storage areas should be arranged... capacities. (b) Storage yards for items not requiring covered protection shall be protected by locked fenced...
78 FR 77445 - Tres Palacios Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... Gas Storage LLC; Notice of Application Take notice that on December 6, 2013, Tres Palacios Gas Storage... working gas storage capacity in its salt cavern natural gas storage facility located in Matagorda, Colorado, and Wharton Counties, Texas. Tres Palacios states that the proposed abandonment of storage...
41 CFR 109-28.000-51 - Storage guidelines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Storage guidelines. 109...-STORAGE AND DISTRIBUTION § 109-28.000-51 Storage guidelines. (a) Indoor storage areas should be arranged... capacities. (b) Storage yards for items not requiring covered protection shall be protected by locked fenced...
41 CFR 109-28.000-51 - Storage guidelines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Storage guidelines. 109...-STORAGE AND DISTRIBUTION § 109-28.000-51 Storage guidelines. (a) Indoor storage areas should be arranged... capacities. (b) Storage yards for items not requiring covered protection shall be protected by locked fenced...
NASA Astrophysics Data System (ADS)
Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas
2016-03-01
The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.
NASA Astrophysics Data System (ADS)
Ward, Frank A.; Crawford, Terry L.
2016-09-01
Growing demands for food security to feed increasing populations worldwide have intensified the search for improved performance of irrigation, the world's largest water user. These challenges are raised in the face of climate variability and from growing environmental demands. Adaptation measures in irrigated agriculture include fallowing land, shifting cropping patterns, increased groundwater pumping, reservoir storage capacity expansion, and increased production of risk-averse crops. Water users in the Gila Basin headwaters of the U.S. Lower Colorado Basin have faced a long history of high water supply fluctuations producing low-valued defensive cropping patterns. To date, little research grade analysis has investigated economically viable measures for irrigation development to adjust to variable climate. This gap has made it hard to inform water resource policy decisions on workable measures to adapt to climate in the world's dry rural areas. This paper's contribution is to illustrate, formulate, develop, and apply a new methodology to examine the economic performance from irrigation capacity improvements in the Gila Basin of the American Southwest. An integrated empirical optimization model using mathematical programming is developed to forecast cropping patterns and farm income under two scenarios (1) status quo without added storage capacity and (2) with added storage capacity in which existing barriers to development of higher valued crops are dissolved. We find that storage capacity development can lead to a higher valued portfolio of irrigation production systems as well as more sustained and higher valued farm livelihoods. Results show that compared to scenario (1), scenario (2) increases regional farm income by 30%, in which some sub regions secure income gains exceeding 900% compared to base levels. Additional storage is most economically productive when institutional and technical constraints facing irrigated agriculture are dissolved. Along with additional storage, removal of constraints on weak transportation capacity, limited production scale, poor information access, weak risk-bearing capacity, limited management skills, scarce labor supply, low food processing capacity, and absolute scale constraints, all can raise the economic value of additional irrigation capacity development. Our results light a path forward to policy makers, water administrators, and farm managers, who bear the burden of protecting farm income, food and water security, and rural economic development in the world's dry regions faced by the need to adapt to climate variability.
Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples
Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...
2016-09-16
Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less
Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Shi, Zheng; Lu, Xingjie
Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less
Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan
2011-12-23
Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N
2017-08-02
Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.
U.S. Natural Gas Storage Risk-Based Ranking Methodology and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folga, Steve; Portante, Edgar; Shamsuddin, Shabbir
2016-10-01
This report summarizes the methodology and models developed to assess the risk to energy delivery from the potential loss of underground gas storage (UGS) facilities located within the United States. The U.S. has a total of 418 existing storage fields, of which 390 are currently active. The models estimate the impacts of a disruption of each of the active UGS facilities on their owners/operators, including (1) local distribution companies (LDCs), (2) directly connected transporting pipelines and thus on the customers in downstream States, and (3) third-party entities and thus on contracted customers expecting the gas shipment. Impacts are measured acrossmore » all natural gas customer classes. For the electric sector, impacts are quantified in terms of natural gas-fired electric generation capacity potentially affected from the loss of a UGS facility. For the purpose of calculating the overall supply risk, the overall consequence of the disruption of an UGS facility across all customer classes is expressed in terms of the number of expected equivalent residential customer outages per year, which combines the unit business interruption cost per customer class and the estimated number of affected natural gas customers with estimated probabilities of UGS disruptions. All models and analyses are based on publicly available data. The report presents a set of findings and recommendations in terms of data, further analyses, regulatory requirements and standards, and needs to improve gas/electric industry coordination for electric reliability.« less
Bai, Wen Kai; Zhang, Fei Jing; He, Tian Jin; Su, Peng Wei; Ying, Xiong Zhi; Zhang, Li Li; Wang, Tian
2016-01-01
This study was aimed to measure the dietary effects of probiotic Bacillus subtilis strain fmbj (BS fmbj) on antioxidant capacity and oxidative stability of chicken breast meat during storage. Treatment groups were fed the basal diet with BS fmbj at 0 g/kg (CON), 0.2 g/kg (BS-1), 0.3 g/kg (BS-2), or 0.4 g/kg (BS-3) doses without antibiotics. During 8 days of storage at 4°C, BS-2 group showed a significant improvement (P < 0.05) on meat quality (pH, Drip loss, Cooking loss, Shear force, color L*, a*, b*), free radical scavenging activity (DPPH, ABTS+, H2O2), tissues antioxidant enzyme capacity (SOD, CAT, GSH-Px, GSH, T-SH), mitochondria antioxidant enzyme capacity (MnSOD, GPx, GSH), mRNA expression of antioxidant genes (Nrf2, HO-1, SOD, CAT, GSH-Px) and mitochondrial function genes (avUCP, NRF1, NRF2, TFAM, PGC-1α), oxidative damage index (MDA, ROS, PC, 8-OHdG), and MMP level in chicken breast meat as compared to the CON group. These results indicate that dietary BS fmbj in broiler diets can protect breast meat against the storage-induced oxidative stress by improving their free radical scavenging capacity and antioxidant activity during 8 days of storage at 4°C. PMID:27907152
Wang, Xin; Zhang, Yiping
2006-10-01
Based on the 2003-2004 laboratory and field observation data, and with scaling-up method, this paper studied the canopy rainfall storage capacity of tropical seasonal rainforest and rubber plantation in Xishuangbanna. The results showed that the canopy rainfall storage capacity was 0.45-0.79 mm for tropical seasonal rainforest and 0.48-0.71 mm for rubber plantation, and that of the branch and bark accounted for >50 % of the total. For these two forests, the canopy rainfall storage capacity was much higher in foggy season (from November to February) and dry-hot season (from March to April) than in rainy season (from May to October), and the duration needed to reach water saturation was about 5 min for leaf, 2-3 h for bark, and 2. 5-4 h for branch. During the processes of wetting and air-drying, leaf was easier while branch and bark were somewhat difficult to hold water and then be air-dried, suggesting that leaf played an important role in intercepting rainfall in short-duration rainfall events, while branch and bark could work much better in doing this in long-duration or high-intensity rainfall events. Compared with rubber plantation, tropical seasonal rainforest had a stronger rainfall-storage capacity due to its multi-layer structure of canopy and excellent water-holding performance.
A 3-D seismic investigation of the Ray gas storage reef, Macomb County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, S.F.; Dixon, R.A.
1994-08-01
A 4.2 mi[sup 2] 3-D seismic survey was acquired over the Ray Niagaran reef gas storage field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the storage reservoir. Goals of the survey were to (1) determine if additional storage capacity could be found either as extensions to the Ray reef or as undiscovered satellite reefs, (2) investigate the relationship between the main body and a low-relief gas well east of the reef, and (3) determine if seismic data can be used to quantify reservoir parameters to maximize the productive capacity of infillmore » wells. Interpretation of the 3-D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and a possible relationship between porosity and seismic amplitude was investigated. A potential connection between the main reef and the low-relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3-D seismic data, and underscores the necessity of such a survey prior to developing a new storage reservoir.« less
Tomczewski, Andrzej
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326
Metal-functionalized silicene for efficient hydrogen storage.
Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev
2013-10-21
First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Small Form Factor Information Storage Devices for Mobile Applications in Korea
NASA Astrophysics Data System (ADS)
Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin
Recently, the ubiquitous environment in which anybody can reach a lot of information data without any limitations on the place and time has become an important social issue. There are two basic requirements in the field of information storage devices which have to be satisfied; the first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for new development of information storage devices small enough to be applied to mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop information storage devices which have simultaneously a large capacity and a small size. Korea possesses the necessary infrastructure for developing such small sized information storage devices. It has a good digital market, major digital companies, and various research institutes. Nowadays, many companies and research institutes including university cooperate together in the research on small sized information storage devices. Thus, it is expected that small form factor optical disk drives will be commercialized in the very near future in Korea.
Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.
2015-11-01
Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.
Effect of some plant starches and carrageenan as fat substitutes in chicken patties.
Das, S K; Prabhakaran, P; Tanwar, V K; Biswas, S
2015-07-01
This study evaluated the effect of different flours on the physicochemical, textural, and sensory properties of chicken patties. pH; cooking yield %; water holding capacity (WHC); proximate analysis (cooked); cholesterol content; and storage stability studies of control (Con) and sorghum flour (SF; 10%w/w), finger millet flour (FMF; 10%w/w), and carrageenan (Cgn; 0.5% w/w) treated chicken patties were observed in this study. Texture profile analysis (TPA) parameters like hardness, springiness, cohesiveness, gumminess, chewiness, and sensory parameters were estimated on cooked patties. Highly significant (P < 0.01) difference in fat %, total ash %, and cholesterol content; significant (P < 0.05) difference in moisture % (cooked); and no significant (P > 0.05) difference in pH, WHC, and protein % among control and treatments were noticed. Storage stability was dependent on treatments and storage periods. Significant difference (P < 0.05) was observed in different TPA parameters among the treatments, except for hardness value. Sensory scores showed no significant difference (P > 0.05) between Con and treatments.
Joshi, Ankur; Knipfer, Thorsten; Steudle, Ernst
2009-11-01
In standard techniques (root pressure probe or high-pressure flowmeter), the hydraulic conductivity of roots is calculated from transients of root pressure using responses following step changes in volume or pressure, which may be affected by a storage of water in the stele. Storage effects were examined using both experimental data of root pressure relaxations and clamps and a physical capacity model. Young roots of corn and barley were treated as a three-compartment system, comprising a serial arrangement of xylem/probe, stele and outside medium/cortex. The hydraulic conductivities of the endodermis and of xylem vessels were derived from experimental data. The lower limit of the storage capacity of stelar tissue was caused by the compressibility of water. This was subsequently increased to account for realistic storage capacities of the stele. When root water storage was varied over up to five orders of magnitude, the results of simulations showed that storage effects could not explain the experimental data, suggesting a major contribution of effects other than water storage. It is concluded that initial water flows may be used to measure root hydraulic conductivity provided that the volumes of water used are much larger than the volumes stored.
Li, Chunyang; Huang, Wu-Yang; Wang, Xing-Na; Liu, Wen-Xu
2013-01-25
Total antioxidant capacity of different varieties of strawberry (Ningfeng, Ningyu, Zijin 4, Toyonoka, Benihope, Sweet Charlie) in different developmental stages (including green unripe stages, half red stages, and red ripe stages) was investigated by oxygen radical absorbance capacity (ORAC) assay. In addition, effects of the antioxidant properties of strawberry stored at 4 °C or -18 °C for a period of five months were studied. The results showed that antioxidant capacity of strawberry changed based on tested part, developmental stage, variety, and time of collection. Calyces had significantly higher ORAC values compared with fruits. Strawberry fruits had higher ORAC values during the green unripe stages than the half red stages and red ripe stages. Strawberries got higher ORAC values during short-time storage, and then decreased during long-time storage. Samples stored at -18 °C exhibited higher antioxidant capacity than those stored at 4 °C, while vacuum treatment could further increase ORAC values. The results indicated the potential market role of strawberries as a functional food and could provide great value in preventing oxidation reaction in food processing and storage for the dietary industry.
NASA Astrophysics Data System (ADS)
Fanelli, R. M.; Prestegaard, K. L.; Palmer, M.
2015-12-01
Urbanization alters watershed hydrological processes; impervious surfaces increase runoff generation, while storm sewer networks increase connectivity between runoff sources and streams. Stormwater control measures (SCMs) that enhance stormwater infiltration have been proposed to mitigate these effects by functioning as stormwater sinks. Regenerative stormwater conveyances structures (RSCs) are an example of infiltration-based SCMs that are placed between storm sewer outfalls and perennial stream networks. Given their location, RSCs act as critical nodes that regulate stormwater-stream connectivity. Therefore, the storage capacity of a RSC structure may exert a major control on the frequency, duration, and magnitude of these connections. This project examined both hydrogeological and hydro-climatic factors that could influence storage capacity of RSC structures. We selected three headwater (5-48 ha) urban watersheds near Annapolis, Maryland, USA. Each watershed is drained by first-order perennial streams and has been implemented with a RSC structure. We conducted high-frequency precipitation and stream stage monitoring below the outlet of each RSC structure for a 1-year period. We also instrumented one of the RSC structures with groundwater wells to monitor changes in subsurface storage over time. Using these data, we 1) identified rainfall thresholds for RSC storage capacity exceedance; 2) quantified the frequency and duration of connectivity when the storage capacity of each RSC was exceeded; and 3) evaluated both event-scale and seasonal changes in groundwater levels within the RSC structure. Precipitation characteristics and antecedent precipitation indices influenced the frequency and duration of stormwater-stream connections. We hypothesize both infiltration limitations and storage limitations of the RSCs contributed to the temporal patterns we observed in stormwater-stream connectivity. We also observed reduced storage potential as contributing area and percent impervious cover increased. Overall, the efficacy of urban SCMs for mitigating the impacts of urbanization and reducing stormwater-stream connectivity is dependent on both climate and the landscape context in which they are placed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingarapu, Sreeram; Singh, Dileep; Timofeeva, Elena V.
2015-08-01
Concentrated Solar Power (CSP) is considered as a viable large-scale renewable energy source to produce electricity. However, current costs to produce electricity from CSP are not cost competitive as compared to the traditional energy generation technologies based on fossil fuels and nuclear. It is envisioned that development of high efficiency and high heat capacity thermal storage fluids will increase system efficiency, reduce structural storage volume, and hence, contribute to reducing costs. Particularly, with respect to CSP, current high temperature energy storage fluids, such as molten salts, are relatively limited in terms of their thermal energy storage capacity and thermal conductivity.more » The current work explores possibility of boosting the thermal storage capacity of molten salts through latent heat of added phase change materials. We studied the advantage Of adding coated Zn micron-sized particles to alkali chloride salt eutectic for enhanced thermal energy storage. Zinc particles (0.6 mu m and 5 mu m) obtained from commercial source were coated with an organo-phosphorus shell to improve chemical stability and to prevent individual particles from coalescing with one another during melt/freeze cycles. Thermal cycling tests (200 melt/freeze cycles) showed that coated Zn particles have good thermal stability and are chemically inert to alkali chloride salt eutectic in both N-2 and in air atmospheres. Elemental mapping of the cross-sectional view of coated Zn particles from the composite after thermal cycles showed no signs of oxidation, agglomeration or other type of particle degradation. The measured enhancement in volumetric thermal storage capacity of the composite with just similar to 10 vol% of coated Zn particles over the base chloride salt eutectic varies from 15% to 34% depending on cycling temperature range (Delta T = 50 degrees C -100 degrees C. (C) 2015 Elsevier Ltd. All rights reserved.« less
Groundwater balance in the Khor Arbaat basin, Red Sea State, eastern Sudan
NASA Astrophysics Data System (ADS)
Elsheikh, Abdalla E. M.; Zeielabdein, Khalid A. Elsayed; Babikir, Ibrahim A. A.
2009-12-01
The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75 × 106 m3. The annual recharge through the infiltration of flood water is about 1.93 × 106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33 × 105 m3/year. The total annual groundwater recharge is 2.06 × 106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29 × 105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38 × 106 m3/year on average. The total annual groundwater discharge is about 4.7 × 106 m3. A deficit of 2.6 × 106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Shih-Chieh; McManamay, Ryan A; Stewart, Kevin M
2014-04-01
The rapid development of multiple national geospatial datasets related to topography, hydrology, and environmental characteristics in the past decade have provided new opportunities for the refinement of hydropower resource potential from undeveloped stream-reaches. Through 2011 to 2013, the Oak Ridge National Laboratory (ORNL) was tasked by the Department of Energy (DOE) Water Power Program to evaluate the new stream-reach development (NSD) resource potential for more than 3 million US streams. A methodology was designed that contains three main components: (1) identification of stream-reaches with high energy density, (2) topographical analysis of stream-reaches to estimate inundated surface area and reservoir storage,more » and (3) environmental attribution to spatially join information related to the natural ecological systems, social and cultural settings, policies, management, and legal constraints to stream-reaches of energy potential. An initial report on methodology (Hadjerioua et al., 2013) was later reviewed and revised based on the comments gathered from two peer review workshops. After implementing the assessment across the entire United States, major findings were summarized in this final report. The estimated NSD capacity and generation, including both higher-energy-density (>1 MW per reach) and lower-energy-density (<1 MW per reach) stream-reaches is 84.7 GW, around the same size as the existing US conventional hydropower nameplate capacity (79.5 GW; NHAAP, 2013). In terms of energy, the total undeveloped NSD generation is estimated to be 460 TWh/year, around 169% of average 2002 2011 net annual generation from existing conventional hydropower plants (272 TWh/year; EIA, 2013). Given the run-of-river assumption, NSD stream-reaches have higher capacity factors (53 71%), especially compared with conventional larger-storage peaking-operation projects that usually have capacity factors of around 30%. The highest potential is identified in the Pacific Northwest Region (32%), followed by Missouri Region (15%) and California Region (9%). In terms of states, the highest potential is found in Oregon, Washington, and Idaho, the three states in the Pacific Northwest, followed by California, Alaska, Montana, and Colorado. In addition to the resource potential, abundant environmental attributes were also organized and attributed to the identified stream-reaches to support further hydropower market analysis. The prevalence of environmental variables and proportion of capacity from stream-reaches intersecting environmental variables varied according to hydrologic region. Detailed NSD findings are organized by hydrologic regions and presented in each chapter of this report.« less
Ni-MH storage test and cycle life test
NASA Technical Reports Server (NTRS)
Dell, R. Dan; Klein, Glenn C.; Schmidt, David F.
1994-01-01
Gates Aerospace Batteries is conducting two long term test programs to fully characterize the NiMH cell technology for aerospace applications. The first program analyzes the effects of long term storage upon cell performance. The second program analyzes cycle life testing and preliminary production lot testing. This paper summarizes these approaches to testing the NiMH couple and culminates with initial storage and testing recommendations. Long term storage presents challenges to deter the adverse condition of capacity fade in NiMH cells. Elevated but stabilized pressures and elevated but stabilized end-of-charge voltages also appear to be a characteristic phenomenon of long term storage modes. However, the performance degradation is dependent upon specific characteristics of the metal-hydride alloy. To date, there is no objective evidence with which to recommend the proper method for storage and handling of NiMH cells upon shipment. This is particularly critical due to limited data points that indicate open circuit storage at room temperature for 60 to 90 days will result in irrecoverable capacity loss. Accordingly a test plan was developed to determine what method of mid-term to long-term storage will prevent irrecoverable capacity loss. The explicit assumption is that trickle charging at some rate above the self-discharge rate will prevent the irreversible chemical changes to the negative electrode that result in the irrecoverable capacity loss. Another premise is that lower storage temperatures, typically 0 C for aerospace customers, will impede any negative chemical reactions. Three different trickle charge rates are expected to yield a fairly flat response with respect to recoverable capacity versus baseline cells in two different modes of open circuit. Specific attributes monitored include: end-of-charge voltage, end-of-charge pressure, mid-point discharge voltage, capacity, and end-of-discharge pressure. Cycle life testing and preliminary production lot testing continue to dominate the overall technology development effort at GAB. The cell life test program reflects continuing improvements in baseline cell designs. Performance improvements include lower and more stable charge voltages and pressures. The continuing review of production lot testing assures conformance to the design criteria and expectations. This is especially critical during this period of transferring technology from research and development status to production.
Utility-Scale Lithium-Ion Storage Cost Projections for Use in Capacity Expansion Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J.; Marcy, Cara; Krishnan, Venkat K.
2016-11-21
This work presents U.S. utility-scale battery storage cost projections for use in capacity expansion models. We create battery cost projections based on a survey of literature cost projections of battery packs and balance of system costs, with a focus on lithium-ion batteries. Low, mid, and high cost trajectories are created for the overnight capital costs and the operating and maintenance costs. We then demonstrate the impact of these cost projections in the Regional Energy Deployment System (ReEDS) capacity expansion model. We find that under reference scenario conditions, lower battery costs can lead to increased penetration of variable renewable energy, withmore » solar photovoltaics (PV) seeing the largest increase. We also find that additional storage can reduce renewable energy curtailment, although that comes at the expense of additional storage losses.« less
Information, Information, Information
ERIC Educational Resources Information Center
Pratt, John
2013-01-01
According to researchers at the University of Southern California (Washington Post, 2011), the world's storage capacity for digital data increased from 0.2 billion gigabytes in 1986 to 276 billion gigabytes by 2007 (at the same time analogue storage capacity increased from 2.6 to 18.9 billion gigabytes). This huge growth is often seen in…
Manure storage capacity and application timing influence watershed-level nutrient losses
USDA-ARS?s Scientific Manuscript database
Current concerns over water quality requires best management practices for land-applied manure. One important strategy is to apply manure at right timing, which though is often greatly affected by manure generation and storage capacities in a given watershed. This study was to test the hypotheses: (...
NASA Astrophysics Data System (ADS)
Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin
2010-09-01
SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged shallow aquifer through canal seepage. The water flowing out of the canal system accounted for approximately 32% of the water in the CIDS canals. The storage capacity of the CIDS canals is negatively correlated to the precipitation. In years with abundant precipitation, the volume of the surface runoff and drainage from the cropland may surpass the storage capacities of the CIDS canals, while in years with less precipitation, partial storage capacity of the CIDS canal may be occupied by the diversion water from the Yellow River. Proper maintenance of the storage capacity of the CIDS has the potential in improving the efficiency of reusing the surface runoff and field drainage for irrigation practices to mitigate the increasing water shortage along the lower Yellow River.
Design and demonstration of a storage-assisted air conditioning system
NASA Astrophysics Data System (ADS)
Rizzuto, J. E.
1981-03-01
The system is a peak-shaving system designed to provide a levelized air conditioning load. The system also requires minimum air conditioner and thermal storage capacity. The storage-assisted air conditioning system uses a Glauber's salt-based phase change material in sausage like containers called CHUBS. The CHUBS are two (2) inches in diameter and 20 inches long. They are stacked in modules of 64 CHUBS which are appropriately spaced and oriented in the storage system so that air may pass perpendicular to the long axis of the CHUBS. The phase change material, has a thermal storage capacity in the range of 45 to 50 Btu/lb and a transition temperature of approximately 55 F.
Customized electric power storage device for inclusion in a collective microgrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.
An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specifiedmore » load parameters in the at least two connected microgrids.« less
NASA Astrophysics Data System (ADS)
Wang, Jianghai; Xiao, Xi; Zhou, Qianzhi; Xu, Xiaoming; Zhang, Chenxi; Liu, Jinzhong; Yuan, Dongliang
2018-01-01
The global carbon cycle has played a key role in mitigating global warming and climate change. Long-term natural and anthropogenic processes influence the composition, sources, burial rates, and fluxes of carbon in sediments on the continental shelf of China. In this study, the rates, fluxes, and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area (SYSA) and Min-Zhe belt (MZB), East China Sea. Based on the high-resolution temporal sequences of total carbon (TC) and total organic carbon (TOC) contents, we reconstructed the annual variations of historical marine carbon storage, and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale. The estimated TC storage over 100 years was 1.18×108 t in the SYSA and 1.45×109 t in the MZB. The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km2·a)in the SYSA and from 56 to 148 t/(km2·a) in the MZB. The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source. In the MZB, two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006, which were coeval with the water impoundment in the Gezhouba and Three Gorges dams, respectively. The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.
Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications
Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...
2017-01-12
Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less
Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Shi, Zheng; Lu, Xingjie
Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less
Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance
Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; ...
2017-08-03
Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less
Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin
Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less
18 CFR 157.213 - Underground storage field facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... storage reservoir and within the buffer area; (4) A detailed description of present storage operations and..., provided the storage facility's certificated physical parameters—including total inventory, reservoir pressure, reservoir and buffer boundaries, and certificated capacity remain unchanged—and provided...
Modelling rainfall interception by forests: a new method for estimating the canopy storage capacity
NASA Astrophysics Data System (ADS)
Pereira, Fernando; Valente, Fernanda; Nóbrega, Cristina
2015-04-01
Evaporation of rainfall intercepted by forests is usually an important part of a catchment water balance. Recognizing the importance of interception loss, several models of the process have been developed. A key parameter of these models is the canopy storage capacity (S), commonly estimated by the so-called Leyton method. However, this method is somewhat subjective in the selection of the storms used to derive S, which is particularly critical when throughfall is highly variable in space. To overcome these problems, a new method for estimating S was proposed in 2009 by Pereira et al. (Agricultural and Forest Meteorology, 149: 680-688), which uses information from a larger number of storms, is less sensitive to throughfall spatial variability and is consistent with the formulation of the two most widely used rainfall interception models, Gash analytical model and Rutter model. However, this method has a drawback: it does not account for stemflow (Sf). To allow a wider use of this methodology, we propose now a revised version which makes the estimation of S independent of the importance of stemflow. For the application of this new version we only need to establish a linear regression of throughfall vs. gross rainfall using data from all storms large enough to saturate the canopy. Two of the parameters used by the Gash and the Rutter models, pd (the drainage partitioning coefficient) and S, are then derived from the regression coefficients: pd is firstly estimated allowing then the derivation of S but, if Sf is not considered, S can be estimated making pd= 0. This new method was tested using data from a eucalyptus plantation, a maritime pine forest and a traditional olive grove, all located in Central Portugal. For both the eucalyptus and the pine forests pd and S estimated by this new approach were comparable to the values derived in previous studies using the standard procedures. In the case of the traditional olive grove, the estimates obtained by this methodology for pd and S allowed interception loss to be modelled with a normalized averaged error less than 4%. Globally, these results confirm that the method is more robust and certainly less subjective, providing adequate estimates for pd and S which, in turn, are crucial for a good performance of the interception models.
CAN A MODEL TRANSFERABILITY FRAMEWORK IMPROVE ...
Budget constraints and policies that limit primary data collection have fueled a practice of transferring estimates (or models to generate estimates) of ecological endpoints from sites where primary data exists to sites where little to no primary data were collected. Whereas benefit transfer has been well studied; there is no comparable framework for evaluating whether model transfer between sites is justifiable. We developed and applied a transferability assessment framework to a case study involving forest carbon sequestration for soils in Tillamook Bay, Oregon. The carbon sequestration capacity of forested watersheds is an important ecosystem service in the effort to reduce atmospheric greenhouse gas emissions. We used our framework, incorporating three basic steps (model selection, defining context variables, assessing logistical constraints) for evaluating model transferability, to compare estimates of carbon storage capacity derived from two models, COMET-Farm and Yasso. We applied each model to Tillamook Bay and compared results to data extracted from the Soil Survey Geographic Database (SSURGO) using ArcGIS. Context variables considered were: geographic proximity to Tillamook, dominant tree species, climate and soil type. Preliminary analyses showed that estimates from COMET-Farm were more similar to SSURGO data, likely because model context variables (e.g. proximity to Tillamook and dominant tree species) were identical to those in Tillamook. In contras
Caine, Jonathan S.; Tomusiak, S.R.A.
2003-01-01
Expansion of the Denver metropolitan area has resulted in substantial residential development in the foothills of the Rocky Mountain Front Range. This type of sub-urban growth, characteristic of much of the semiarid intermountain west, often relies on groundwater from individual domestic wells and is exemplified in the Turkey Creek watershed. The watershed is underlain by complexly deformed and fractured crystalline bedrock in which groundwater resources are poorly understood, and concerns regarding groundwater mining and degradation have arisen. As part of a pilot project to establish quantitative bounds on the groundwater resource, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated. Existing data suggest that ground-water storage, flow, and contaminant transport are primarily controlled by a heterogeneous array of fracture networks. Inspections of well-permit data and field observations led to a conceptual model in which three dominant lithologic groups underlying sparse surface deposits form the aquifer system-metamorphic rocks, a complex array of granitic intrusive rocks, and major brittle fault zones. Pervasive but variable jointing of each lithologic group forms the "background" permeability structure and is an important component of the bulk storage capacity. This "background" is cut by brittle fault zones of varying structural styles and by pegmatite dikes, both with much higher fracture intensities relative to "background" that likely make them spatially complex conduits. Probabilistic, discrete-fracture-network and finite-element modeling was used to estimate porosity and permeability at the outcrop scale using fracture network data collected in the field. The models were conditioned to limited aquifer test and borehole geophysical data and give insight into the relative hydraulic properties between locations and geologic controls on storage and flow. Results from this study reveal a complex aquifer system in which the upper limits on estimated hydraulic properties suggest limited storage capacity and permeability as compared with many sedimentary-rock and surficial-deposit aquifers.
210Pb and 137Cs as tracers of recent sedimentary processes in two water reservoirs in Cuba.
Díaz-Asencio, Misael; Corcho-Alvarado, José Antonio; Cartas-Aguila, Héctor; Pulido-Caraballé, Anabell; Betancourt, Carmen; Smoak, Joseph M; Alvarez-Padilla, Elizabeth; Labaut-Betancourt, Yeny; Alonso-Hernández, Carlos; Seisdedo-Losa, Mabel
2017-10-01
Hanabanilla and Paso Bonito Reservoirs are the main fresh water sources for about half a million inhabitants in central Cuba. Prior to this investigation precise information about the losses of storage capacity was not available. Sedimentation is the dominant process leading to reduction in water storage capacity. We investigated the sedimentation process in both reservoirs by analyzing environmental radionuclides (e.g. 210 Pb, 226 Ra and 137 Cs) in sediment cores. In the shallow Paso Bonito Reservoir (mean depth of 6.5 m; water volume of 8 × 10 6 m 3 ), we estimated a mean mass accumulation rate (MAR) of 0.4 ± 0.1 g cm -2 y -1 based on 210 Pb chronologies. 137 Cs was detected in the sediments, but due to the recent construction of this reservoir (1975), it was not possible to use it to validate the 210 Pb chronologies. The estimated MAR in this reservoir is higher than the typical values reported in similar shallow fresh water reservoirs worldwide. Our results highlight a significant loss of water storage capacity during the past 30 years. In the deeper and larger Hanabanilla Reservoir (mean depth of 15.5 m; water volume of 292 × 10 6 m 3 ), the MAR was investigated in three different sites of the reservoir. The mean MARs based on the 210 Pb chronologies varied between 0.15 and 0.24 g cm -2 y -1 . The MARs calculated based on the 137 Cs profiles further validated these values. We show that the sediment accumulation did not change significantly over the last 50 years. A simple empirical mixing and sedimentation model that assumes 137 Cs in the water originated from both, direct atmospheric fallout and the catchment area, was applied to interpret the 137 Cs depth profiles. The model consistently reproduced the measured 137 Cs profiles in the three cores (R 2 > 0.9). Mean residence times for 137 Cs in the water and in the catchment area of 1 y and 35-50 y, respectively were estimated. The model identified areas where the catchment component was higher, zones with higher erosion in the catchment, and sites where the fallout component was quantitatively recorded in the sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hardware design and implementation of fast DOA estimation method based on multicore DSP
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping
2016-10-01
In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.
Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed
NASA Astrophysics Data System (ADS)
Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan
2017-12-01
Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.
76 FR 12095 - Monroe Gas Storage Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... Storage Company, LLC; Notice of Application Take notice that on February 18, 2011, Monroe Gas Storage... Monroe Gas Storage Project. Specifically, through this Application, Monroe seeks authorization to (1...) of high-deliverability working gas storage capacity, with about 4.46 Bcf of base gas. Nor is any...
Augmenting Transport versus Increasing Cold Storage to Improve Vaccine Supply Chains
Haidari, Leila A.; Connor, Diana L.; Wateska, Angela R.; Brown, Shawn T.; Mueller, Leslie E.; Norman, Bryan A.; Schmitz, Michelle M.; Paul, Proma; Rajgopal, Jayant; Welling, Joel S.; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y.
2013-01-01
Background When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. Methods This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Results Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. Conclusions When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs. PMID:23717590
Augmenting transport versus increasing cold storage to improve vaccine supply chains.
Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Chen, Sheng-I; Lee, Bruce Y
2013-01-01
When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs.
Effect of Storage on Performance of Super Nickel-Cadmium Cells
NASA Technical Reports Server (NTRS)
Vaidyanathan, Hari; Rao, Gopalakrishna M.
1997-01-01
A study was undertaken to examine the capacity maintenance features of SUPER nickel-cadmium cells when stored for extended periods to determine whether the features change when the same kinds of positive plates as that used in nickel-hydrogen cells are used, The cells maintained their capacity when stored at 0 C in the discharged state and at 0 C in the charged state by continuously trickle charging. There was a capacity loss when stored in the open-circuit condition at 28 C. A cycling test at 17% depth of discharge for 2400 cycles using cells stored at various conditions showed that cells maintained good end of discharge voltage regardless of their storage history. However, the EOD voltages of stored cells were lower by 10 mV compared to those of fresh cells. The capacity at the end of the cycling test decreased for the stored cells by 2-7 Ah. The storage related capacity loss is lower for SUPER Ni-Cd cells compared to that of Ni-H2 cells containing a hydrogen precharge. The results suggest the pivotal role of hydrogen pressure in the capacity loss phenomenon.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Technical Reports Server (NTRS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-01-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Astrophysics Data System (ADS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-06-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Antioxidant activity of apples--an impact of maturity stage and fruit part.
Duda-Chodak, Aleksandra; Tarko, Tomasz; Tuszyński, Tadeusz
2011-01-01
Recently, many studies have been oriented towards improving methods and efficiency of antioxidants recovery from different fruit and their wastes.The aim of the study was to evaluate antioxidant potential of apple seeds and peel, which constitute the fruit industry wastes, and compare it to apple flesh. Antioxidant activity of apples at different maturity and storage stage were analysed too. The Idared and the Šampion cultivars of apples were used in the study. Antioxidant activity was estimated using ABTS and DPPH assays, and polyphenols profile was determined by HPLC method. Seeds of analysed apple cultivars were characterised by a significantly higher antioxidant capacity and by higher concentrations of polyphenols analysed when compared to their peel and flesh. There were present two predominant compounds: phloridzin in seeds (84% and 72%) and quercetin glycosides in peels (54% and 38%, Idared and Šampion cultivars, respectively). No quercetin glycosides in seeds were found. The capacity to scavenge an ABTS radical, but not DPPH, decreased during ripening of apples, while cold storage resulted in enhanced antioxidant potential. It can be concluded that unripe apples together with apple seeds and peel (fruit industry wastes) constitute a valuable source of polyphenols.
NASA Technical Reports Server (NTRS)
Savinell, R. F.; Fritts, S. D.
1986-01-01
There is increasing interest in hydrogen-bromine fuel cells as both primary and regenerative energy storage systems. One promising design for a hydrogen-bromine fuel cell is a negative half cell having only a gas phase, which is separated by a cationic exchange membrane from a positive half cell having an aqueous electrolyte. The hydrogen gas and the aqueous bromide solution are stored external to the cell. In order to calculate the energy storage capacity and to predict and assess the performance of a single cell, the open circuit potential (OCV) must be estimated for different states of change, under various conditions. Theoretical expressions were derived to estimate the OCV of a hydrogen-bromine fuel cell. In these expressions temperature, hydrogen pressure, and bromine and hydrobromic acid concentrations were taken into consideration. Also included are the effects of the Nafion membrance separator and the various bromide complex species. Activity coefficients were taken into account in one of the expressions. The sensitivity of these parameters on the calculated OCV was studied.
A Bayesian belief network (BBN) was developed to characterize the effects of sediment accumulation on the water storage capacity of Lago Lucchetti (located in southwest Puerto Rico) and to forecast the life expectancy (usefulness) of the reservoir under different management scena...
High Energy Density Capacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-07-01
BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.
Kanerva's sparse distributed memory with multiple hamming thresholds
NASA Technical Reports Server (NTRS)
Pohja, Seppo; Kaski, Kimmo
1992-01-01
If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated, utilization of the storage capacity is very low compared to the case of uniformly distributed random input patterns. We consider a variation of SDM that has a better storage capacity utilization for correlated input patterns. This approach uses a separate selection threshold for each physical storage address or hard location. The selection of the hard locations for reading or writing can be done in parallel of which SDM implementations can benefit.
Solar thermal electricity generation
NASA Astrophysics Data System (ADS)
Gasemagha, Khairy Ramadan
1993-01-01
This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.
Research on laser detonation pulse circuit with low-power based on super capacitor
NASA Astrophysics Data System (ADS)
Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong
2018-03-01
According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.
Tan, Xin; Tahini, Hassan A; Smith, Sean C
2016-12-07
Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.
Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors
Rodríguez Burbano, Diana C.; Capobianco, John A.
2017-01-01
The performance of a persistent phosphor is often determined by comparing luminance decay curves, expressed in cd/m2. However, these photometric units do not enable a straightforward, objective comparison between different phosphors in terms of the total number of emitted photons, as these units are dependent on the emission spectrum of the phosphor. This may lead to incorrect conclusions regarding the storage capacity of the phosphor. An alternative and convenient technique of characterizing the performance of a phosphor was developed on the basis of the absolute storage capacity of phosphors. In this technique, the phosphor is incorporated in a transparent polymer and the measured afterglow is converted into an absolute number of emitted photons, effectively quantifying the amount of energy that can be stored in the material. This method was applied to the benchmark phosphor SrAl2O4:Eu,Dy and to the nano-sized phosphor CaS:Eu. The results indicated that only a fraction of the Eu ions (around 1.6% in the case of SrAl2O4:Eu,Dy) participated in the energy storage process, which is in line with earlier reports based on X-ray absorption spectroscopy. These findings imply that there is still a significant margin for improving the storage capacity of persistent phosphors. PMID:28773228
Capacity estimation of soil organic carbon pools in the intertidal zone of the Bohai Bay
NASA Astrophysics Data System (ADS)
Tian-Yu, Mao; Ting-Ting, Shi; Ya-Juan, Li
2018-03-01
Based on the data obtained from the field survey in the intertidal zone of the Binhai New Area of Tianjin Bay in October 2014, the distribution characteristics of soil organic carbon pool in intertidal zone were studied. The results showed that the highest organic carbon content of soil is 22.913g/kg; the average is 16.304g/kg. The soil organic carbon pool in the intertidal zone is in the 6.58-30.40kg/m3, almost close the level of forest soil in the Binhai New Area. Moreover, close to the surrounding wetland such as Yellow River Estuary or Liaohe River Estuary. In conclusion, the soil carbon storage of the beach tidal flats is higher in the coastal zone, and the carbon storage will be significantly reduced after artificial backfilling.
The Value of Concentrating Solar Power and Thermal Energy Storage
Sioshansi, Ramteen; Denholm, Paul
2010-06-14
Our paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in a number of regions in the southwestern United States. Our analysis also shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant's solar field to be used, allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We also analyze the sensitivity of this value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, andmore » dry cooling of the CSP plant, and also estimate the capacity value of a CSP plant with TES. We further discuss the value of CSP plants and TES net of capital costs.« less
Capacity and precision in an animal model of visual short-term memory.
Lara, Antonio H; Wallis, Jonathan D
2012-03-14
Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys' VSTM capacity. Subjects' performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrades the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM.
NASA Astrophysics Data System (ADS)
André, Laurie; Abanades, Stéphane; Cassayre, Laurent
2017-06-01
Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.
Iconic Memories Die a Sudden Death.
Pratte, Michael S
2018-06-01
Iconic memory is characterized by its large storage capacity and brief storage duration, whereas visual working memory is characterized by its small storage capacity. The limited information stored in working memory is often modeled as an all-or-none process in which studied information is either successfully stored or lost completely. This view raises a simple question: If almost all viewed information is stored in iconic memory, yet one second later most of it is completely absent from working memory, what happened to it? Here, I characterized how the precision and capacity of iconic memory changed over time and observed a clear dissociation: Iconic memory suffered from a complete loss of visual items, while the precision of items retained in memory was only marginally affected by the passage of time. These results provide new evidence for the discrete-capacity view of working memory and a new characterization of iconic memory decay.
High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects
Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki
2015-06-02
In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al 2O 3, ZnO, TiO 2 etc.) material coatings also improvemore » the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less
Long-term potentiation expands information content of hippocampal dentate gyrus synapses.
Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M
2018-03-06
An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.
Olsson, Marie E; Ekvall, Jimmy; Gustavsson, Karl-Erik; Nilsson, Jessica; Pillai, Deepa; Sjöholm, Ingegerd; Svensson, Ulla; Akesson, Björn; Nyman, Margareta G L
2004-05-05
Four cultivars of strawberries (Senga Sengana, BFr77111, Elsanta, and Honeoye) were studied for their content of antioxidants, total antioxidant capacity, and low molecular weight carbohydrates in relation to harvest year, ripening stage, and cold storage. For ascorbic acid, chlorogenic acid, ellagic acid, and total antioxidative capacity, measured in both water-soluble and water-insoluble extracts, there was a 2-5-fold variation among cultivars. Unripe berries contained lower concentrations of chlorogenic acid and p-coumaric acid and also quercetin and kaempferol compared with riper berries. During cold storage for up to 3 days, relatively few changes in the concentration of the different antioxidants occurred. The concentrations of several investigated parameters were interrelated, for example, for ascorbic acid and water-soluble antioxidant capacity and for ellagic acid and water-insoluble antioxidant capacity. The dominating sugars in strawberries were fructose and glucose, but considerable amounts of sucrose were also present, and their contents varied among cultivars, giving a predicted glycemic index of approximately 81. Verbascose, raffinose, and stachyose were found in only minor amounts. The study shows that the concentration of a number of bioactive compounds in strawberries varied according to cultivar, ripening stage, and storage. This information should make it possible to select strawberries with an optimal content of bioactive compounds.
Medical image digital archive: a comparison of storage technologies
NASA Astrophysics Data System (ADS)
Chunn, Timothy; Hutchings, Matt
1998-07-01
A cost effective, high capacity digital archive system is one of the remaining key factors that will enable a radiology department to eliminate film as an archive medium. The ever increasing amount of digital image data is creating the need for huge archive systems that can reliably store and retrieve millions of images and hold from a few terabytes of data to possibly hundreds of terabytes. Selecting the right archive solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, conformance to open standards, archive availability and reliability, security, cost, achievable benefits and cost savings, investment protection, and more. This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. New technologies will be discussed, such as DVD and high performance tape. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on random and pre-fetch retrieval time will be analyzed. The concept of automated migration of images from high performance, RAID disk storage devices to high capacity, NearlineR storage devices will be introduced as a viable way to minimize overall storage costs for an archive.
A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage
Brennan, Sean T.; Burruss, Robert A.; Merrill, Matthew D.; Freeman, P.A.; Ruppert, Leslie F.
2010-01-01
In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology to estimate storage potential that could be applied uniformly to geologic formations across the United States. After its release, the methodology was to receive public comment and external expert review. An initial methodology was developed and published in March 2009 (Burruss and others, 2009), and public comments were received. The report was then sent to a panel of experts for external review. The external review report was received by the USGS in December 2009. This report is in response to those external comments and reviews and describes how the previous assessment methodology (Burruss and others, 2009) was revised. The resource that is assessed is the technically accessible storage resource, which is defined as the mass of CO2 that can be stored in the pore volume of a storage formation. The methodology that is presented in this report is intended to be used for assessments at scales ranging from regional to subbasinal in which storage assessment units are defined on the basis of common geologic and hydrologic characteristics. The methodology does not apply to site-specific evaluation of storage resources or capacity.
A minimalist probabilistic description of root zone soil water
Milly, P.C.D.
2001-01-01
The probabilistic response of depth‐integrated soil water to given climatic forcing can be described readily using an existing supply‐demand‐storage model. An apparently complex interaction of numerous soil, climate, and plant controls can be reduced to a relatively simple expression for the equilibrium probability density function of soil water as a function of only two dimensionless parameters. These are the index of dryness (ratio of mean potential evaporation to mean precipitation) and a dimensionless storage capacity (active root zone soil water capacity divided by mean storm depth). The first parameter is mainly controlled by climate, with surface albedo playing a subsidiary role in determining net radiation. The second is a composite of soil (through moisture retention characteristics), vegetation (through rooting characteristics), and climate (mean storm depth). This minimalist analysis captures many essential features of a more general probabilistic analysis, but with a considerable reduction in complexity and consequent elucidation of the critical controls on soil water variability. In particular, it is shown that (1) the dependence of mean soil water on the index of dryness approaches a step function in the limit of large soil water capacity; (2) soil water variance is usually maximized when the index of dryness equals 1, and the width of the peak varies inversely with dimensionless storage capacity; (3) soil water has a uniform probability density function when the index of dryness is 1 and the dimensionless storage capacity is large; and (4) the soil water probability density function is bimodal if and only if the index of dryness is <1, but this bimodality is pronounced only for artificially small values of the dimensionless storage capacity.
May, Christine L.; Gresswell, Robert E.
2003-01-01
Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.
McGarvey, Jennifer C; Thompson, Jonathan R; Epstein, Howard E; Shugart, Herman H
2015-02-01
Few old-growth stands remain in the matrix of secondary forests that dominates the eastern North American landscape. These remnant stands offer insight on the potential carbon (C) storage capacity of now-recovering secondary forests. We surveyed the remaining old-growth forests on sites characteristic of the general Mid-Atlantic United States and estimated the size of multiple components of forest C storage. Within and between old-growth stands, variability in C density is high and related to overstory tree species composition. The sites contain 219 ± 46 Mg C/ha (mean ± SD), including live and dead aboveground biomass, leaf litter, and the soil O horizon, with over 20% stored in downed wood and snags. Stands dominated by tulip poplar (Liriodendron tulipifera) store the most live biomass, while the mixed oak (Quercus spp.) stands overall store more dead wood. Total C density is 30% higher (154 Mg C/ha), and dead wood C density is 1800% higher (46 Mg C/ha) in the old-growth forests than in the surrounding younger forests (120 and 5 Mg C/ha, respectively). The high density of dead wood in old growth relative to secondary forests reflects a stark difference in historical land use and, possibly, the legacy of the local disturbance (e.g., disease) history. Our results demonstrate the potential for dead wood to maintain the sink capacity of secondary forests for many decades to come.
Sedimentation survey of Lago de Matrullas, Puerto Rico, December 2001
Soler-López, Luis R.
2003-01-01
Lago de Matrullas reservoir, constructed in 1934, is located at an altitude of approximately 730 meters above mean sea level in the municipality of Orocovis in central Puerto Rico, and has a drainage area of 11.45 square kilometers. The reservoir is part of the Puerto Rico Electric Power Authority Toro Negro Hydroelectric Project, which also includes the Lago El Guineo reservoir and a hydroelectric plant to the south of the insular hydrographic divide. Historically, the drainage area had been protected from soil erosion by dense vegetation and the lack of basin development. However, transportation, potable water, and electric power infrastructure construction has facilitated development in rural areas resulting in the clearing of land. This trend in land-use changes is impacting the useful life of Lago de Matrullas. The reservoir storage capacity has been reduced from 3.71 million cubic meters in 1934 to 3.08 million cubic meters in 2001. This represents a total storage-capacity loss of 0.63 million cubic meters by 2001 (17 percent), or a long-term annual storage loss of 0.25 percent per year. The sediment trapping efficiency of Lago de Matrullas has been estimated at approximately 90 percent. If the current long-term sedimentation rate continues, Lago de Matrullas would fill by the year 2328. However, this life expectancy could be reduced at a faster than predicted rate as a result of rural development in the Lago de Matrullas basin and the high sediment trapping efficiency of the reservoir.
He, Qin; Mohaghegh, Shahab D.; Gholami, Vida
2013-01-01
CO 2 sequestration into a coal seam project was studied and a numerical model was developed in this paper to simulate the primary and secondary coal bed methane production (CBM/ECBM) and carbon dioxide (CO 2 ) injection. The key geological and reservoir parameters, which are germane to driving enhanced coal bed methane (ECBM) and CO 2 sequestration processes, including cleat permeability, cleat porosity, CH 4 adsorption time, CO 2 adsorption time, CH 4 Langmuir isotherm, CO 2 Langmuir isotherm, and Palmer and Mansoori parameters, have been analyzed within a reasonable range. The model simulation results showed good matches for bothmore » CBM/ECBM production and CO 2 injection compared with the field data. The history-matched model was used to estimate the total CO 2 sequestration capacity in the field. The model forecast showed that the total CO 2 injection capacity in the coal seam could be 22,817 tons, which is in agreement with the initial estimations based on the Langmuir isotherm experiment. Total CO 2 injected in the first three years was 2,600 tons, which according to the model has increased methane recovery (due to ECBM) by 6,700 scf/d.« less
The Contribution of Reservoirs to Global Land Surface Water Storage Variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tian; Nijssen, Bart; Gao, Huilin
Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variationsmore » is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... Reservoir due to AVC and Excess Capacity Master Contract operations and potential contributions to flooding... Southeastern for storage of non-Fry-Ark Project water in Pueblo Reservoir, a feature of the Fry-Ark Project... storage in Pueblo Reservoir for entities within its boundaries in the Upper Arkansas basin, Lower Arkansas...
Working memory for visual features and conjunctions in schizophrenia.
Gold, James M; Wilk, Christopher M; McMahon, Robert P; Buchanan, Robert W; Luck, Steven J
2003-02-01
The visual working memory (WM) storage capacity of patients with schizophrenia was investigated using a change detection paradigm. Participants were presented with 2, 3, 4, or 6 colored bars with testing of both single feature (color, orientation) and feature conjunction conditions. Patients performed significantly worse than controls at all set sizes but demonstrated normal feature binding. Unlike controls, patient WM capacity declined at set size 6 relative to set size 4. Impairments with subcapacity arrays suggest a deficit in task set maintenance: Greater impairment for supercapacity set sizes suggests a deficit in the ability to selectively encode information for WM storage. Thus, the WM impairment in schizophrenia appears to be a consequence of attentional deficits rather than a reduction in storage capacity.
High-capacity high-speed recording
NASA Astrophysics Data System (ADS)
Jamberdino, A. A.
1981-06-01
Continuing advances in wideband communications and information handling are leading to extremely large volume digital data systems for which conventional data storage techniques are becoming inadequate. The paper presents an assessment of alternative recording technologies for the extremely wideband, high capacity storage and retrieval systems currently under development. Attention is given to longitudinal and rotary head high density magnetic recording, laser holography in human readable/machine readable devices and a wideband recorder, digital optical disks, and spot recording in microfiche formats. The electro-optical technologies considered are noted to be capable of providing data bandwidths up to 1000 megabits/sec and total data storage capacities in the 10 to the 11th to 10 to the 12th bit range, an order of magnitude improvement over conventional technologies.
Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.
Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling; Zhang, Cairong
2017-08-02
The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H₂ molecules is four with the average adsorption energy of -0.429 eV/H₂. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of -0.296 eV/H₂. The adsorption of H₂ molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H₂ molecules and positively charged Sc atoms.
Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage
2017-01-01
The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar. PMID:28413259
Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations
Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling
2017-01-01
The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms. PMID:28767084
A highly resilient mesoporous SiOx lithium storage material engineered by oil-water templating.
Park, Eunjun; Park, Min-Sik; Lee, Jaewoo; Kim, Ki Jae; Jeong, Goojin; Kim, Jung Ho; Kim, Young-Jun; Kim, Hansu
2015-02-01
Mesoporous silicon-based materials gained considerable attention as high-capacity lithium-storage materials. However, the practical use is still limited by the complexity and limited number of available synthetic routes. Here, we report carbon-coated porous SiOx as high capacity lithium storage material prepared by using a sol-gel reaction of hydrogen silsesquioxane and oil-water templating. A hydrophobic oil is employed as a pore former inside the SiOx matrix and a precursor for carbon coating on the SiOx . The anode exhibits a high capacity of 730 mAh g(-1) and outstanding cycling performance over 100 cycles without significant dimensional changes. Carbon-coated porous SiOx also showed highly stable thermal reliability comparable to that of graphite. These promising properties come from the mesopores in the SiOx matrix, which ensures reliable operation of lithium storage in SiOx . The scalable sol-gel process presented here can open up a new avenue for the versatile preparation of porous SiOx lithium storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Photorefractive Effect and its Application in Optical Computing
NASA Astrophysics Data System (ADS)
Li, Guo
This Ph.D dissertation includes the fanning effect and the temperature dependence of the diffraction efficiency and response time using different addressing configurations, and evaluation of the limitations and capacity of a holographic storage in BaTiO_3 crystals. Also, we designed a digital holographic optical disk and made an associate memory. The beam fanning effect in a BaTiO_3 crystal was investigated in detail. The effect depends on the crystal faces illuminated. In particular, for the +c face of illumination we found that the fanning effect strongly depends on angle of incidence, polarization and wavelength of the incident light, crystal temperature, laser beam profile, but only weakly depends on input laser power. In the case of the -c face and a-face illumination dependence of the ring angle on wavelength and input power was observed. We found that the intensity of the reflected beam in NDFWM, the intensity of self phase conjugate beam and the response time of the fanning effect decrease with temperature exponentially and there being a major change around 60 ^circ-80^circ C. A random bistability and oscillation of the SPPC occur around 80^circC. We also present a theoretical analysis for the dependence of the photorefractive effect on temperature. We experimentally evaluate the capacity and limitation of optical storage in BaTiO_3 crystals using self-pumped phase conjugation (SPPC) and two-wave mixing. The storage capacity is different with different face of illumination, polarization, beam profile and input power. We demonstrate that using two wave mixing, three dimensional volume holograms can be stored. The information -bearing beam diameter for storage and recall can be about 0.25mm or less. By these techniques we demonstrate that at least 10^5 holograms can be stored in a 3.5 inch photorefractive disk. We evaluate an optimal optical architecture for exploiting the photorefractive effect for digital holographic disk storage. An image with many pixels was used for this experimental evaluation. By using a raytracing program, we traced a beam with a Gaussian profile through our optical system. We also estimated the Seidel aberration of our optical system in order to determine the quality of the stored digital data.
NASA Astrophysics Data System (ADS)
Cretcher, C. K.; Rountredd, R. C.
1980-11-01
Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.
40 CFR 246.202-4 - Recommended procedures: Methods of separation and storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... which the corrugated accumulates, the storage capacity of the facility, and the projected cost-effectiveness of using the various methods. All of the following suggested modes of separation and storage...
27 CFR 22.92 - Storage facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...
27 CFR 22.92 - Storage facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...
27 CFR 22.92 - Storage facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...
27 CFR 22.92 - Storage facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...
27 CFR 22.92 - Storage facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...
40 CFR 65.47 - Recordkeeping provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.47 Recordkeeping provisions. (a) Retention time. Each owner or operator of a storage vessel subject to this subpart shall meet the requirements of... storage vessel is in operation. (b) Vessel dimensions and capacity. Each owner or operator of a storage...
Large-scale runoff generation - parsimonious parameterisation using high-resolution topography
NASA Astrophysics Data System (ADS)
Gong, L.; Halldin, S.; Xu, C.-Y.
2011-08-01
World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting at very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TRG only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the HydroSHEDS dataset with a resolution of 3" (around 90 m at the equator). The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.
Large-scale runoff generation - parsimonious parameterisation using high-resolution topography
NASA Astrophysics Data System (ADS)
Gong, L.; Halldin, S.; Xu, C.-Y.
2010-09-01
World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting a very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TGR only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the HydroSHEDS dataset with a resolution of 3'' (around 90 m at the equator). The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.
Storage Characteristics of Lithium Ion Cells
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Smart, M. C.; Blosiu, J. O.; Surampudi, S.
2000-01-01
Lithium ion cells are being developed under the NASA/Air Force Consortium for the upcoming aerospace missions. First among these missions are the Mars 2001 Lander and Mars 2003 Lander and Rover missions. Apart from the usual needs of high specific energy, energy density and long cycle life, a critical performance characteristic for the Mars missions is low temperature performance. The batteries need to perform well at -20 C, with at least 70% of the rated capacity realizable at moderate discharge rates (C/5). Several modifications have been made to the lithium ion chemistry, mainly with respect to the electrolyte, both at JPL' and elsewhere to achieve this. Another key requirement for the battery is its storageability during pre-cruise and cruise periods. For the Mars programs, the cruise period is relatively short, about 12 months, compared to the Outer Planets missions (3-8 years). Yet, the initial results of our storage studies reveal that the cells do sustain noticeable permanent degradation under certain storage conditions, typically of 10% over two months duration at ambient temperatures, attributed to impedance buildup. The build up of the cell impedance or the decay in the cell capacity is affected by various storage parameters, i.e., storage temperature, storage duration, storage mode (open circuit, on buss or cycling at low rates) and state of charge. Our preliminary studies indicate that low storage temperatures and states of charge are preferable. In some cases, we have observed permanent capacity losses of approx. 10% over eight-week storage at 40 C, compared to approx. 0-2% at O C. Also, we are attempting to determine the impact of cell chemistry and design upon the storageability of Li ion cells.
Comparison of Decadal Water Storage Trends from Global Hydrological Models and GRACE Satellite Data
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Zhang, Z. Z.; Save, H.; Sun, A. Y.; Mueller Schmied, H.; Van Beek, L. P.; Wiese, D. N.; Wada, Y.; Long, D.; Reedy, R. C.; Doll, P. M.; Longuevergne, L.
2017-12-01
Global hydrology is increasingly being evaluated using models; however, the reliability of these global models is not well known. In this study we compared decadal trends (2002-2014) in land water storage from 7 global models (WGHM, PCR-GLOBWB, and GLDAS: NOAH, MOSAIC, VIC, CLM, and CLSM) to storage trends from new GRACE satellite mascon solutions (CSR-M and JPL-M). The analysis was conducted over 186 river basins, representing about 60% of the global land area. Modeled total water storage trends agree with those from GRACE-derived trends that are within ±0.5 km3/yr but greatly underestimate large declining and rising trends outside this range. Large declining trends are found mostly in intensively irrigated basins and in some basins in northern latitudes. Rising trends are found in basins with little or no irrigation and are generally related to increasing trends in precipitation. The largest decline is found in the Ganges (-12 km3/yr) and the largest rise in the Amazon (43 km3/yr). Differences between models and GRACE are greatest in large basins (>0.5x106 km2) mostly in humid regions. There is very little agreement in storage trends between models and GRACE and among the models with values of r2 mostly <0.1. Various factors can contribute to discrepancies in water storage trends between models and GRACE, including uncertainties in precipitation, model calibration, storage capacity, and water use in models and uncertainties in GRACE data related to processing, glacier leakage, and glacial isostatic adjustment. The GRACE data indicate that land has a large capacity to store water over decadal timescales that is underrepresented by the models. The storage capacity in the modeled soil and groundwater compartments may be insufficient to accommodate the range in water storage variations shown by GRACE data. The inability of the models to capture the large storage trends indicates that model projections of climate and human-induced changes in water storage may be mostly underestimated. Future GRACE and model studies should try to reduce the various sources of uncertainty in water storage trends and should consider expanding the modeled storage capacity of the soil profiles and their interaction with groundwater.
Demonstration of a high-capacity turboalternator for a 20 K, 20 W space-borne Brayton cryocooler
NASA Astrophysics Data System (ADS)
Zagarola, M.; Cragin, K.; Deserranno, D.
2014-01-01
NASA is considering multiple missions involving long-term cryogenic propellant storage in space. Liquid hydrogen and oxygen are the typical cryogens as they provide the highest specific impulse of practical chemical propellants. Storage temperatures are nominally 20 K for liquid hydrogen and 90 K for liquid oxygen. Heat loads greater than 10 W at 20 K are predicted for hydrogen storage. Current space cryocoolers have been developed for sensor cooling with refrigeration capacities less than 1 W at 20 K. In 2011, Creare Inc. demonstrated an ultra-low-capacity turboalternator for use in a turbo-Brayton cryocooler. The turboalternator produced up to 5 W of turbine refrigeration at 20 K; equivalent to approximately 3 W of net cryocooler refrigeration. This turboalternator obtained unprecedented operating speeds and efficiencies at low temperatures benefitting from new rotor design and fabrication techniques, and new bearing fabrication techniques. More recently, Creare applied these design and fabrication techniques to a larger and higher capacity 20 K turboalternator. The turboalternator was tested in a high-capacity, low temperature test facility at Creare and demonstrated up to 42 W of turbine refrigeration at 20 K; equivalent to approximately 30 W of net cryocooler refrigeration. The net turbine efficiency was the highest achieved to date at Creare for a space-borne turboalternator. This demonstration was the first step in the development of a high-capacity turbo-Brayton cryocooler for liquid hydrogen storage. In this paper, we will review the design, development and testing of the turboalternator.
High Density Methane Storage in Nanoporous Carbon
NASA Astrophysics Data System (ADS)
Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team
2014-03-01
Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.
Goto, Yoshihiro; Morikawa, Akira; Iwasaki, Masaoki; Miura, Masahide; Tanabe, Toshitaka
2018-04-03
Herein, we report on the synthesis of Ce0.5Zr0.5-xTixO2 oxygen storage materials prepared via a solution combustion method. Ce0.5Zr0.4Ti0.1O2 showed an outstanding oxygen storage capacity (1310 μmol-O per g) at 200 °C compared to conventional κ-Ce2Zr2O8 (650 μmol-O per g) due to its cation ordering and the formation of weakly bound oxygen atoms induced by Ti substitution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jianchao C.; An, Yonghao H.; Montalvo, Elizabeth
The graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to the charisma of graphene in assisting various metal oxides (MOs) to achieve near-theoretical capacities, exploiting the exceptional electronic and mechanical properties of graphene. By comparison, the true lithium storage mechanisms of graphene and their correlations with MOs remain enigmatic. Via a unique two-step liquid-flow-guided solgel process, we have synthesized and investigated the electrochemical performance ofmore » several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs play an equally important role in promoting graphene to achieve large reversible lithium storage capacity. Our experiments suggest that the unexpected lithium storage heightening may arise from a unique surface coverage mechanism of MOs. The magnitude of capacity improvement is found to scale crudely with the surface coverage of MOs but depend strongly upon the storage mechanisms of MOs variety. Importantly, synergistic effect is only observed in conversion reaction GMOs (i.e., Fe2O3/graphene and SnO2/graphene) but not in intercalationbased GMOs (i.e., TiO2/graphene). Our first principles calculations suggest an alternative lithium storage sites from resultant interfaces between Li2O and graphene that agree with our experimental observations. This unusually beneficial role of MOs to graphene suggests an effective pathway for reversible lithium storage in graphene and shifts design paradigms for graphene-based electrodes.« less
Ye, Jianchao C.; An, Yonghao H.; Montalvo, Elizabeth; ...
2016-02-10
The graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to the charisma of graphene in assisting various metal oxides (MOs) to achieve near-theoretical capacities, exploiting the exceptional electronic and mechanical properties of graphene. By comparison, the true lithium storage mechanisms of graphene and their correlations with MOs remain enigmatic. Via a unique two-step liquid-flow-guided solgel process, we have synthesized and investigated the electrochemical performance ofmore » several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs play an equally important role in promoting graphene to achieve large reversible lithium storage capacity. Our experiments suggest that the unexpected lithium storage heightening may arise from a unique surface coverage mechanism of MOs. The magnitude of capacity improvement is found to scale crudely with the surface coverage of MOs but depend strongly upon the storage mechanisms of MOs variety. Importantly, synergistic effect is only observed in conversion reaction GMOs (i.e., Fe2O3/graphene and SnO2/graphene) but not in intercalationbased GMOs (i.e., TiO2/graphene). Our first principles calculations suggest an alternative lithium storage sites from resultant interfaces between Li2O and graphene that agree with our experimental observations. This unusually beneficial role of MOs to graphene suggests an effective pathway for reversible lithium storage in graphene and shifts design paradigms for graphene-based electrodes.« less
NASA Astrophysics Data System (ADS)
Solomon, Laura
2013-01-01
Encapsulated phase change materials (EPCM) have a great deal of potential for the storage of thermal energy in a wide range of applications. The present work is aimed at developing encapsulated phase change materials capable of storing thermal energy at temperatures above 700°C for use in concentrated solar power (CSP) systems. EPCM with a phase change material (PCM) with both a salt (sodium chloride) and a metal (aluminum) are considered here. Sodium chloride and aluminum are effective storage mediums because of their high melting points and large latent heats of fusion, 800°C and 660°C and 430kJ/kg and 397kJ/kg, respectively. Based on the heat capacities and the latent heat of fusion, for a 100 degree temperature range centered on the melting point of the PCM, 80% of the energy stored by the sodium chloride PCM can be attributed to the latent heat and 79% for the aluminum PCM. These large fractions attributed to latent heat have the potential for making EPCM based thermal energy storage devices smaller and less expensive. To study the performance of the candidate PCMs considered here, a specialized immersion calorimeter was designed, calibrated, and used to evaluate the storage capabilities of sodium chloride and aluminum based EPCMs. Additionally, the EPCMs were studied to ensure no loss of capacity would occur over the lifetime of the EPCM. While no reduction in the storage capacity of the sodium chloride EPCMs was found after repeated thermal cycles, there was a decrease in the storage capacity of the aluminum EPCMs after prolonged exposure to high temperatures.
NASA Astrophysics Data System (ADS)
Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick
2017-03-01
Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.
Aliso Canyon facility is giant among gas storage projects. [Underground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magruder, P.S.
1975-11-01
Alison Canyon, the largest and newest of the Southern California Gas Company's underground storage fields, has the capacity to provide nearly 50 percent of the company's firm peak day deliverability from systemwide storage. (LK)
Li-Decorated β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study.
Liu, Tingting; Chen, Yuhong; Wang, Haifeng; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong
2017-12-07
The hydrogen storage properties of pristine β 12 -borophene and Li-decorated β 12 -borophene are systemically investigated by means of first-principles calculations based on density functional theory. The adsorption sites, adsorption energies, electronic structures, and hydrogen storage performance of pristine β 12 -borophene/H₂ and Li- β 12 -borophene/H₂ systems are discussed in detail. The results show that H₂ is dissociated into Two H atoms that are then chemisorbed on β 12 -borophene via strong covalent bonds. Then, we use Li atom to improve the hydrogen storage performance and modify the hydrogen storage capacity of β 12 -borophene. Our numerical calculation shows that Li- β 12 -borophene system can adsorb up to 7 H₂ molecules; while 2Li- β 12 -borophene system can adsorb up to 14 H₂ molecules and the hydrogen storage capacity up to 10.85 wt %.
Concentrating Solar Power Projects - Kathu Solar Park | Concentrating Solar
): Eskom Plant Configuration Solar Field Heat-Transfer Fluid Type: Thermal oil Solar-Field Inlet Temp: 293Â (Net): 100.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: 2-tank indirect Storage Capacity: 4.5 hours Thermal Storage Description: Molten salt
On the Maximum Storage Capacity of the Hopfield Model
Folli, Viola; Leonetti, Marco; Ruocco, Giancarlo
2017-01-01
Recurrent neural networks (RNN) have traditionally been of great interest for their capacity to store memories. In past years, several works have been devoted to determine the maximum storage capacity of RNN, especially for the case of the Hopfield network, the most popular kind of RNN. Analyzing the thermodynamic limit of the statistical properties of the Hamiltonian corresponding to the Hopfield neural network, it has been shown in the literature that the retrieval errors diverge when the number of stored memory patterns (P) exceeds a fraction (≈ 14%) of the network size N. In this paper, we study the storage performance of a generalized Hopfield model, where the diagonal elements of the connection matrix are allowed to be different from zero. We investigate this model at finite N. We give an analytical expression for the number of retrieval errors and show that, by increasing the number of stored patterns over a certain threshold, the errors start to decrease and reach values below unit for P ≫ N. We demonstrate that the strongest trade-off between efficiency and effectiveness relies on the number of patterns (P) that are stored in the network by appropriately fixing the connection weights. When P≫N and the diagonal elements of the adjacency matrix are not forced to be zero, the optimal storage capacity is obtained with a number of stored memories much larger than previously reported. This theory paves the way to the design of RNN with high storage capacity and able to retrieve the desired pattern without distortions. PMID:28119595
Mechanisms for capacity fading in the NiH2 cell and its effects on cycle life
NASA Technical Reports Server (NTRS)
Zimmerman, Albert H.
1993-01-01
During recent years there have been a number of instances where the capacity of nickel hydrogen battery cells has proven to be unstable during storage. The capacity losses seen after periods of cell or battery storage have typically varied from only a small amount of fading, up to about 30 percent of the total cell capacity. Detailed studies into the root causes for such fading have been carried out in a number of instances. This report provides an overview of the different mechanisms that have been found to be responsible for such capacity fading in nickel hydrogen cells, and summarizes the presently available data on how each responsible mechanism affects ultimate cell cycle life.
2017-01-01
Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chaopeng; Fang, Kuai; Ludwig, Noel
The DOE and BLM identified 285,000 acres of desert land in the Chuckwalla valley in the western U.S., for solar energy development. In addition to several approved solar projects, a pumped storage project was recently proposed to pump nearly 8000 acre-ft-yr of groundwater to store and stabilize solar energy output. This study aims at providing estimates of the amount of naturally-occurring recharge, and to estimate the impact of the pumping on the water table. To better provide the locations and intensity of natural recharge, this study employs an integrated, physically-based hydrologic model, PAWS+CLM, to calculate recharge. Then, the simulated rechargemore » is used in a parameter estimation package to calibrate spatially-distributed K field. This design is to incorporate all available observational data, including soil moisture monitoring stations, groundwater head, and estimates of groundwater conductivity, to constrain the modeling. To address the uncertainty of the soil parameters, an ensemble of simulations are conducted, and the resulting recharges are either rejected or accepted based on calibrated groundwater head and local variation of the K field. The results indicate that the natural total inflow to the study domain is between 7107 and 12,772 afy. During the initial-fill phase of pumped storage project, the total outflow exceeds the upper bound estimate of the inflow. If the initial-fill is annualized to 20 years, the average pumping is more than the lower bound of inflows. The results indicate after adding the pumped storage project, the system will nearing, if not exceeding, its maximum renewable pumping capacity. The accepted recharges lead to a drawdown range of 24 to 45 ft for an assumed specific yield of 0.05. However, the drawdown is sensitive to this parameter, whereas there is insufficient data to adequately constrain this parameter.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... (upper reservoir) having a total storage capacity of 8,145 acre- feet at a normal maximum operating... reservoir) 250 feet below the bottom of the upper reservoir having a total/usable storage capacity of 7,465 acre-feet at normal maximum operation elevation of 210 feet msl; (5) a powerhouse with approximate...
Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X
2008-03-19
This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.
A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41.
Park, Soo-Jin; Lee, Seul-Yi
2010-06-01
The objective of the present work was to investigate the possibility of improving the hydrogen-storage capacity of mesoporous MCM-41 containing nickel (Ni) oxides (Ni/MCM-41). The MCM-41 and Ni/MCM-41 were prepared using a hydrothermal process as a function of Ni content (2, 5, and 10 wt.% in the MCM-41). The surface functional groups of the Ni/MCM-41 were identified by Fourier transform infrared spectroscopy (FTIR). The structure and morphology of the Ni/MCM-41 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). XRD results showed a well-ordered hexagonal pore structure; FE-TEM also revealed, as a complementary technique, the structure and pore size. The textural properties of the Ni/MCM-41 were analyzed using N(2) adsorption isotherms at 77 K. The hydrogen-storage capacity of the Ni/MCM-41 was evaluated at 298 K/100 bar. It was found that the presence of Ni on mesoporous MCM-41 created hydrogen-favorable sites that enhanced the hydrogen-storage capacity by a spillover effect. Furthermore, it was concluded that the hydrogen-storage capacity was greatly influenced by the amount of nickel oxide, resulting in a chemical reaction between Ni/MCM-41 and hydrogen molecules. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.
Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K
2014-06-01
Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. Copyright © 2014 Elsevier Inc. All rights reserved.
Working Memory and Fluid Intelligence: Capacity, Attention Control, and Secondary Memory Retrieval
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.
2015-01-01
Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. PMID:24531497
Niu, Shanshan; Wang, Zhiyu; Yu, Mingliang; Yu, Mengzhou; Xiu, Luyang; Wang, Song; Wu, Xianhong; Qiu, Jieshan
2018-04-24
Powerful yet thinner lithium-ion batteries (LIBs) are eagerly desired to meet the practical demands of electric vehicles and portable electronic devices. However, the use of soft carbon materials in current electrode design to improve the electrode conductivity and stability does not afford high volumetric capacity due to their low density and capacity for lithium storage. Herein, we report a strategy leveraging the MXene with superior conductivity and density to soft carbon as matrix and additive material for comprehensively enhancing the power capability, lifespan, and volumetric capacity of conversion-type anode. A kinetics favorable 2D nanohybrid with high conductivity, compact density, accumulated pseudocapacitance, and diffusion-controlled behavior is fabricated by coupling Ti 3 C 2 MXene with high-density molybdenum carbide for fast lithium storage over 300 cycles with high capacities. By replacing the carbonaceous conductive agent with Ti 3 C 2 MXene, the electrodes with better conductivity and dramatically reduced thickens could be further manufactured to achieve 37-40% improvement in capacity retention and ultra-long life of 5500 cycles with extremely slow capacity loss of 0.002% per cycle at high current rates. Ultrahigh volumetric capacity of 2460 mAh cm -3 could be attained by such MXene-based electrodes, highlighting the great promise of MXene in the development of high-performance LIBs.
NASA Astrophysics Data System (ADS)
Guédez, R.; Arnaudo, M.; Topel, M.; Zanino, R.; Hassar, Z.; Laumert, B.
2016-05-01
Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase.
Two-stage energy storage equalization system for lithium-ion battery pack
NASA Astrophysics Data System (ADS)
Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.
2017-11-01
How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.
Experimental investigation of a molten salt thermocline storage tank
NASA Astrophysics Data System (ADS)
Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua
2016-07-01
Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad A.; Riaz, Amir
2017-09-01
Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.
NASA Astrophysics Data System (ADS)
Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi
2010-10-01
Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.
NASA Astrophysics Data System (ADS)
Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian
2016-05-01
The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.
Masjedi-Arani, Maryam; Salavati-Niasari, Masoud
2018-05-01
For the first time, a simple and rapid sonochemical technique for preparing of pure Cd 2 SiO 4 nanostructures has been developed in presence of various surfactants of SDS, CTAB and PVP. Uniform and fine Cd 2 SiO 4 nanoparticle was synthesized using of polymeric PVP surfactant and ultrasonic irradiation. The optimized cadmium silicate nanostructures added to graphene sheets and Cd 2 SiO 4 /Graphene nanocomposite synthesized through pre-graphenization. Hydrogen storage capacity performances of Cd 2 SiO 4 nanoparticle and Cd 2 SiO 4 /Graphene nanocomposite were compared. Obtained results represent that Cd 2 SiO 4 /Graphene nanocomposites have higher hydrogen storage capacity than Cd 2 SiO 4 nanoparticles. Cd 2 SiO 4 /Graphene nanocomposites and Cd 2 SiO 4 nanoparticles show hydrogen storage capacity of 3300 and 1300 mAh/g, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Wan, Fang; Zhang, Linlin; Dai, Xi; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun
2018-04-25
Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g -1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device.
A 3D seismic investigation of the Ray Gas Storage Reef in Macomb County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, S.F.; Dixon, R.A.
1995-09-01
A 4.2 square mile 3D seismic survey was acquired over the Ray Niagaran Reef Gas Storage Field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the field. Goals of the survey were: (1) to determine if additional storage capacity could be found, either as extensions to the main reef or as undiscovered satellite reefs, (2) to determine if 3D seismic data can be utilized to quantify reservoir parameters in order to maximize the productive capacity of infill wells, and (3) to investigate the relationship between the main reef body and a lowmore » relief/flow volume gas well east of the reef. Interpretation of the 3D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and the relationship between porosity and seismic amplitude was investigated. A possible connection between the main reef and the low relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3D seismic data, and underscores the necessity of acquiring such a survey prior to developing a new storage reservoir.« less
Bruder, Friedrich-Karl; Hagen, Rainer; Rölle, Thomas; Weiser, Marc-Stephan; Fäcke, Thomas
2011-05-09
Optical data storage has had a major impact on daily life since its introduction to the market in 1982. Compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs) are universal data-storage formats with the advantage that the reading and writing of the digital data does not require contact and is therefore wear-free. These formats allow convenient and fast data access, high transfer rates, and electricity-free data storage with low overall archiving costs. The driving force for development in this area is the constant need for increased data-storage capacity and transfer rate. The use of holographic principles for optical data storage is an elegant way to increase the storage capacity and the transfer rate, because by this technique the data can be stored in the volume of the storage material and, moreover, it can be optically processed in parallel. This Review describes the fundamental requirements for holographic data-storage materials and compares the general concepts for the materials used. An overview of the performance of current read-write devices shows how far holographic data storage has already been developed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen storage in engineered carbon nanospaces.
Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter
2009-05-20
It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.
Yakami, Masahiro; Ishizu, Koichi; Kubo, Takeshi; Okada, Tomohisa; Togashi, Kaori
2011-04-01
Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. "Ordinary" hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.
A review on prognostics and health monitoring of Li-ion battery
NASA Astrophysics Data System (ADS)
Zhang, Jingliang; Lee, Jay
2011-08-01
The functionality and reliability of Li-ion batteries as major energy storage devices have received more and more attention from a wide spectrum of stakeholders, including federal/state policymakers, business leaders, technical researchers, environmental groups and the general public. Failures of Li-ion battery not only result in serious inconvenience and enormous replacement/repair costs, but also risk catastrophic consequences such as explosion due to overheating and short circuiting. In order to prevent severe failures from occurring, and to optimize Li-ion battery maintenance schedules, breakthroughs in prognostics and health monitoring of Li-ion batteries, with an emphasis on fault detection, correction and remaining-useful-life prediction, must be achieved. This paper reviews various aspects of recent research and developments in Li-ion battery prognostics and health monitoring, and summarizes the techniques, algorithms and models used for state-of-charge (SOC) estimation, current/voltage estimation, capacity estimation and remaining-useful-life (RUL) prediction.
An Overview of Different Approaches for Battery Lifetime Prediction
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liang, Jun; Zhang, Feng
2017-05-01
With the rapid development of renewable energy and the continuous improvement of the power supply reliability, battery energy storage technology has been wildly used in power system. Battery degradation is a nonnegligible issue when battery energy storage system participates in system design and operation strategies optimization. The health assessment and remaining cycle life estimation of battery gradually become a challenge and research hotspot in many engineering areas. In this paper, the battery capacity falling and internal resistance increase are presented on the basis of chemical reactions inside the battery. The general life prediction models are analysed from several aspects. The characteristics of them as well as their application scenarios are discussed in the survey. In addition, a novel weighted Ah ageing model with the introduction of the Ragone curve is proposed to provide a detailed understanding of the ageing processes. A rigorous proof of the mathematical theory about the proposed model is given in the paper.
Clay facial masks: physicochemical stability at different storage temperatures.
Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles
2007-01-01
Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.
Graphene Nanobubbles Produced by Water Splitting.
An, Hongjie; Tan, Beng Hau; Moo, James Guo Sheng; Liu, Sheng; Pumera, Martin; Ohl, Claus-Dieter
2017-05-10
Graphene nanobubbles are of significant interest due to their ability to trap mesoscopic volumes of gas for various applications in nanoscale engineering. However, conventional protocols to produce such bubbles are relatively elaborate and require specialized equipment to subject graphite samples to high temperatures or pressures. Here, we demonstrate the formation of graphene nanobubbles between layers of highly oriented pyrolytic graphite (HOPG) with electrolysis. Although this process can also lead to the formation of gaseous surface nanobubbles on top of the substrate, the two types of bubbles can easily be distinguished using atomic force microscopy. We estimated the Young's modulus, internal pressure, and the thickness of the top membrane of the graphene nanobubbles. The hydrogen storage capacity can reach ∼5 wt % for a graphene nanobubble with a membrane that is four layers thick. The simplicity of our protocol paves the way for such graphitic nanobubbles to be utilized for energy storage and industrial applications on a wide scale.
Onset of density-driven instabilities in fractured aquifers
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2018-04-01
Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.
Initial in Situ Measurements of Perennial Meltwater Storage in the Greenland Firn Aquifer
NASA Technical Reports Server (NTRS)
Koenig, Lora S.; Miege, Clement; Forster, Richard R.; Brucker, Ludovic
2014-01-01
A perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between approx. 12 and 37m and amounted to 18.7 +/- 0.9 kg in the extracted core. The water filled the firn to capacity at approx. 35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 +/- 20 Gt, representing approx. 0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics.
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-01-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-08-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2017-12-01
Partitioning the vertically integrated water storage variations estimated from GRACE satellite data into the components of which it is comprised requires independent information. Land surface models, which simulate the transfer and storage of moisture and energy at the land surface, are often used to estimate water storage variability of snow, surface water, and soil moisture. To obtain an estimate of changes in groundwater, the estimates of these storage components are removed from GRACE data. Biases in the modeled water storage components are therefore present in the residual groundwater estimate. In this study, we examine how soil moisture variability, estimated using the Community Land Model (CLM), depends on the vertical structure of the model. We then explore the implications of this uncertainty in the context of estimating groundwater variations using GRACE data.
75 FR 57747 - Tres Palacios Gas Storage LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... Gas Storage LLC; Notice of Application September 15, 2010. Take notice that on September 3, 2010, Tres Palacios Gas Storage LLC (Tres Palacios), 53 Riverside Avenue, Westport, Connecticut 06880, filed in Docket... natural gas storage caverns to the actual capacities available in each cavern as established by the most...
76 FR 13612 - Freebird Gas Storage, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Storage, LLC; Notice of Request Under Blanket Authorization Take notice that on March 1, 2011, Freebird Gas Storage, LLC (Freebird) filed a Prior Notice Request pursuant to sections 157.205 and 157.208 of... blanket certificate for authorization to increase the storage capacity and deliverability at its East...
New insights into designing metallacarborane based room temperature hydrogen storage media.
Bora, Pankaj Lochan; Singh, Abhishek K
2013-10-28
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.
Shittu, Ekundayo; Harnly, Melissa; Whitaker, Shanta; Miller, Roger
2016-02-01
One of the major problems facing Nigeria's vaccine supply chain is the lack of adequate vaccine storage facilities. Despite the introduction of solar-powered refrigerators and the use of new tools to monitor supply levels, this problem persists. Using data on vaccine supply for 2011-14 from Nigeria's National Primary Health Care Development Agency, we created a simulation model to explore the effects of variance in supply and demand on storage capacity requirements. We focused on the segment of the supply chain that moves vaccines inside Nigeria. Our findings suggest that 55 percent more vaccine storage capacity is needed than is currently available. We found that reorganizing the supply chain as proposed by the National Primary Health Care Development Agency could reduce that need to 30 percent more storage. Storage requirements varied by region of the country and vaccine type. The Nigerian government may want to consider the differences in storage requirements by region and vaccine type in its proposed reorganization efforts. Project HOPE—The People-to-People Health Foundation, Inc.
New insights into designing metallacarborane based room temperature hydrogen storage media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, Pankaj Lochan; Singh, Abhishek K.
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of chargemore » transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.« less