Sample records for storage facility building

  1. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. Final Environmental Assessment: Base-Wide Building Demolition Arnold Air Force Base, Tennessee

    DTIC Science & Technology

    2006-02-01

    Building • Engine Test Facility ( ETF )-B Exhauster • ETF -A Airside • ETF -A Exhauster • ETF -A Reefer • CE Facility • Rocket Storage • Von Karman Gas...Executive Order ESA Endangered Species Act ETF Engine Test Facility FamCamp Family Camping Area P:\\ARNOLDAFB\\333402DO42COMPLIANCE\\DEMOLITION...Fabrication Shop • Natural Resources Building • Salt Storage Building • Administration Building • Engine Test Facility ( ETF )-B Exhauster • ETF -A

  3. VIEW OF BUILDING 778 LOOKING WESTSOUTHWEST. BUILDING 778 HOUSED LAUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 778 LOOKING WEST-SOUTHWEST. BUILDING 778 HOUSED LAUNDRY FACILITIES, SHOWERS, LOCKER ROOMS, SANITARY FACILITIES, AN ELECTRIC SHOP, MACHINE SHOP, SHEET METAL SHOP, AND INERT GAS STORAGE. (12/7/90) - Rocky Flats Plant, Laundry Facility, Northeast quad of Plant between buildings 776/777 & 707, Golden, Jefferson County, CO

  4. MINIMUM AREAS FOR ELEMENTARY SCHOOL BUILDING FACILITIES.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Public Instruction, Harrisburg.

    MINIMUM AREA SPACE REQUIREMENTS IN SQUARE FOOTAGE FOR ELEMENTARY SCHOOL BUILDING FACILITIES ARE PRESENTED, INCLUDING FACILITIES FOR INSTRUCTIONAL USE, GENERAL USE, AND SERVICE USE. LIBRARY, CAFETERIA, KITCHEN, STORAGE, AND MULTIPURPOSE ROOMS SHOULD BE SIZED FOR THE PROJECTED ENROLLMENT OF THE BUILDING IN ACCORDANCE WITH THE PROJECTION UNDER THE…

  5. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. 2. LAUNCH CONTROL SUPPORT BUILDING WEST FRONT AND VEHICLE STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LAUNCH CONTROL SUPPORT BUILDING WEST FRONT AND VEHICLE STORAGE BUILDING SOUTHWEST FRONT. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  8. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. 120. NORTH PLANT GB BULK STORAGE BUILDING AND AMMUNITION DEMOLITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. NORTH PLANT GB BULK STORAGE BUILDING AND AMMUNITION DEMOLITION FACILITY AT CENTER AND CASE FILLING PLANT/CLUSTER ASSEMBLY BUILDING (BUILDING 1601/1606) IN BACKGROUND, FROM GB MANUFACTURING PLANT. VIEW TO WEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  11. 14. VEHICLE STORAGE BUILDING NORTHWEST SIDE AND NORTHEAST REAR. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VEHICLE STORAGE BUILDING NORTHWEST SIDE AND NORTHEAST REAR. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  12. 13. VEHICLE STORAGE BUILDING SOUTHWEST FRONT AND SOUTHEAST SIDE. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VEHICLE STORAGE BUILDING SOUTHWEST FRONT AND SOUTHEAST SIDE. VIEW TO NORTHWEST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  13. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  14. 90. VIEW NORTHEAST OF BUILDING 98 OIL HOUSE AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. VIEW NORTHEAST OF BUILDING 98 OIL HOUSE AND STORAGE TANK; OIL FOR POWER GENERATION WAS UNLOADED FROM TANK CARS AND STORED AT THIS FACILITY - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  15. Energy Conscious Design: Educational Facilities. [Brief No.] 1.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    An energy task group of the American Institute of Architects discusses design features and options that educational facility designers can use to create an energy efficient school building. Design elements cover the building envelope, energy storage system, hydronic heating/cooling systems, solar energy collection, building orientation and shape,…

  16. KSC-04pd0643

    NASA Image and Video Library

    2004-03-26

    KENNEDY SPACE CENTER, FLA. -- An aerial photo of the hangar and storage facility near the KSC Shuttle Landing Facility. The hangar was used to collect and evaluate the pieces of Columbia debris before they were moved to permanent storage in the Vehicle Assembly Building.

  17. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  18. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 etmore » seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less

  19. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321more » et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less

  20. Management self assessment plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debban, B.L.

    Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less

  1. SPERTI Terminal Building (PER604) with view into interior. Storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Terminal Building (PER-604) with view into interior. Storage tanks and equipment in view. Camera facing west. Photographer: R.G. Larsen. Date: May 20, 1955. INEEL negative no. 55-1291 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. Building Renovation in ARL Libraries. SPEC Kit 97.

    ERIC Educational Resources Information Center

    Hersberger, Rodney M.

    This collection of library documents related to building renovation, by members of the Association of Research Libraries (ARL), contains excerpts from: (1) a plan for upgrading and expanding library facilities at the University of Kansas; (2) a report on storage facilities at Rutgers University; (3) documents presenting the essential remodeling…

  3. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft[sup 2] support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  4. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft{sup 2} support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  5. Building and managing high performance, scalable, commodity mass storage systems

    NASA Technical Reports Server (NTRS)

    Lekashman, John

    1998-01-01

    The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.

  6. LPT. Shield test facility test building interior (TAN646). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility test building interior (TAN-646). Camera facing south. Distant pool contained EBOR reactor; near pool was intended for fuel rod storage. Other post-1970 activity equipment remains in pool. INEEL negative no. HD-40-9-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Athletic Facilities: Planning, Designing, and Operating Today's Physical-Education Centers.

    ERIC Educational Resources Information Center

    Spoor, Dana L.

    1998-01-01

    Examines what should be featured in an athletic facility, how to plan for the many different sports and activities that will be housed, and how to get the community involved. Areas addressed include planning for locker rooms and storage, flooring and lighting, building code adherence, spectator seating, building security, and outdoor recreation…

  8. PBF Reactor Building (PER620). Plot plan shows layout, including auxiliary ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Plot plan shows layout, including auxiliary buildings: Emergency Generator (621), Hose House (622), Cooling Tower Auxiliary (624), Maintenance and Storage Warehouse (625), Gas Cylinder Storage (627), Hose House (628), Cooling Tower (720), Substation (719), and other features. Road connections between PBF Reactor, its control building, and SPERT-I site. Note cable trenches along road to control building. Date: July 1965. Ebasco Services, PER-U-101. INEEL index no. 761-0100-00-205-123005 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Type II Forward Storage Site Facilities: POMCUS System. Volume 2.

    DTIC Science & Technology

    1980-09-01

    shall be PROVIDED. (2) b. 4.14.2 Gas-tight,solid, non- combustible partitions will be used to separate oxygen and other combustion supporting gases from...buildings responsive to POMCUS activities; especially, 1) adequate insulation for temperature controlled buildings, 2) structural adequacy for lift...4.6.1 A building for storage of rations will be PROVIDED for a secured ready supply of meals for combat ( MCI ). This allows MCI replenishment as needed

  10. Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less

  11. Credit PSR. This view shows the east and north facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows the east and north facades of the storage facility as seen when looking south southwest. This fireproof all-metal structure was rated for a maximum of 50,000 pounds (22,730 Kg) of class 1.4 materials and four personnel. The concrete catch basin at left was designed to retain any spilled chemicals, preventing them from contaminating the soil. Spills were collected from the building and apron via a concrete lined gutter - Jet Propulsion Laboratory Edwards Facility, Solid Fuel Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  12. Preliminary assessment report for Camp Carroll Training Center, Installation 02045, Anchorage, Alaska. Installation Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krokosz, M.; Sefano, J.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Alaska Army National Guard property known as Camp Carroll Training Center, located on the Fort Richardson Army facility near Anchorage, Alaska. Preliminary assessments of federal facilities are being conducted to compile the information necessary for the completion of preremedial activities and to provide a basis for establishing, corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, types and quantities ofmore » hazardous substances used, the nature and amounts of wastes generated or stored at the facility, and potential pathways by which contamination could affect public health and the environment. The primary environmentally significant operations (ESOs) associated with the property are (1) the Alaska Air National Guard storage area behind Building S57112 (Organizational Maintenance Shop [OMS] 6); (2) the state of Alaska maintenance facility and the soil/tar-type spill north of the state of Alaska maintenance facility; (3) the waste storage area adjacent to OMS 6; (4) the contaminated area from leaking underground storage tanks (USTs) and the oil-water separator; and (5) soil staining in the parking area at the Camp Carroll Headquarters Building. Camp Carroll appears to be in excellent condition from an environmental standpoint, and current practices are satisfactory. Argonne recommends that the Alaska Department of Military Affairs consider remediation of soil contamination associated with all storage areas, as well as reviewing the practices of other residents of the facility. Argonne also recommends that the current methods of storing waste material behind Building S57112 (OMS 6) be reviewed for alternatives.« less

  13. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLLENBECK, R.G.

    The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold twomore » MCOs.« less

  14. Higher Education Facilities: The SmartGrid Earns a Doctorate in Economics

    ERIC Educational Resources Information Center

    Tysseling, John C.; Zibelman, Audrey; Freifeld, Allen

    2011-01-01

    Most higher education facilities have already accomplished some measure of a "microgrid" investment with building control systems (BCS), energy management systems (EMS), and advanced metering infrastructure (AMI) installations. Available energy production facilities may include boilers, chillers, cogeneration, thermal storage, electrical…

  15. Looking West From rear (East) End of Office Building Including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking West From rear (East) End of Office Building Including Recycle Storage Area, Loading Docks, and Decontamination Zone - Hematite Fuel Fabrication Facility, Office, 3300 State Road P, Festus, Jefferson County, MO

  16. Ice-On-Coil Diurnal Ice Storage Cooling System for a Barracks/Office/ Dining Hall Facility at Yuma Proving Ground, AZ

    DTIC Science & Technology

    1990-09-01

    Kedl is associated with the Oak Ridge National Laboratory ( ORNL ). The technical editor was Gloria J. Wienke, Information Management Office, USACERL. COL...of a DIS cooling system for Building 506, a barracks/ office/dining facility. Oak Ridge National Laboratory ( ORNL ) designed the system in cooperation... ORNL with assistance from YPG and analyzed by USACERL. R.J. Kedl and C.W. Sohn, As.vsment of Energy Storage Technologies for Army Facilities, Technical

  17. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  18. C-431 B -- Scope document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollister, H.L.

    1951-06-01

    This document describes the scope of the C-431-B Reactor Production Facility. In dealing with the broad phases of the project, it includes the Sections ``A`` (Scope Modifications) of the approved Design Criteria, modified to ensure correctness to date. Location of the facility has been set as shown on the site map in HDC-2101, designated site number one. Included in Project C-431-B are the 105-C Building, including within that building facilities previously located in the 1608 Building, a contaminated effluent crib adjacent to 105-C, and gas facilities using the 115-B Building interconnected with 105-C. Also included are an oil shed, amore » thimble storage cave, a badge house, and an exclusion fence. Building services and process lines will be considered part of the project to a location nominally five feet outside of 105-C.« less

  19. Stack Flow Rate Changes and the ANSI/N13.1-1999 Qualification Criteria: Application to the Hanford Canister Storage Building Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, Julia E.; Glissmeyer, John A.

    2016-02-29

    The Canister Storage Building (CSB), located in the 200-East Area of the Hanford Site, is a 42,000 square foot facility used to store spent nuclear fuel from past activities at the Hanford Site. Because the facility has the potential to emit radionuclides into the environment, its ventilation exhaust stack has been equipped with an air monitoring system. Subpart H of the National Emissions Standards for Hazardous Air Pollutants requires that a sampling probe be located in the exhaust stack in accordance with criteria established by the American National Standards Institute/Health Physics Society Standard N13.1-1999, Sampling and Monitoring Releases of Airbornemore » Radioactive Substances from the Stack and Ducts of Nuclear Facilities.« less

  20. 20. VIEW OF THE WASTE STORAGE TANKS ASSOCIATED WITH THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF THE WASTE STORAGE TANKS ASSOCIATED WITH THE PLATING LABORATORY. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  1. 5. VIEW LOOKING SOUTH DOWN SIXTH STREET AT THE INTERSECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW LOOKING SOUTH DOWN SIXTH STREET AT THE INTERSECTION WITH CENTRAL AVENUE. AS PART OF THE INITIAL SITE DEVELOPMENT, A RAILROAD SPUR, ACCESS ROADS, POWER LINES, AND TELEPHONE LINES WERE BUILT. ALL FACILITIES WERE HEATED BY STEAM GENERATED IN BUILDING 443 AND PIPED THROUGHOUT THE SITE. THE BUILDING IN THE BACKGROUND OF THE PHOTOGRAPH IS BUILDING 664, A LOW - LEVEL WASTE STORAGE FACILITY. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  2. 3. VIEW OF ADDITION TO BUILDING 444. IN THE MID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF ADDITION TO BUILDING 444. IN THE MID 1950s, RADIOGRAPHY VAULTS, A GRAPHITE STORAGE AND CUTTING AREA, AND A GRAPHITE PRODUCTION PROCESSING AREA WERE ADDED TO BUILDING 444. (1956) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  3. 1. OBLIQUE VIEW, NORTH AND EAST SIDES. VIEW SHOWS POSITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OBLIQUE VIEW, NORTH AND EAST SIDES. VIEW SHOWS POSITION OF BUILDING UNDER LEG OF TOWER 33. - Chollas Heights Naval Radio Transmitting Facility, PERS Support Storage Building, 6410 Zero Road, San Diego, San Diego County, CA

  4. Low-level radwaste storage facility at Hope Creek and Salem Generating Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyen, L.C.; Lee, K.; Bravo, R.

    Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less

  5. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential futuremore » residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility.« less

  6. SSC OCIO, IT SUMMIT 2011

    NASA Technical Reports Server (NTRS)

    Cottrell, Dinna L.

    2011-01-01

    The Stennis Space Center (SSC) Records Retention Facility is a centralized location for all SSC records, Records Management staff, and the SSC History Office. The building is a storm resistant facility and provides a secure environment for records housing. The Records Retention Facility was constructed in accordance with The National Archives and Records Administration (NARA) requirements for records storage, making it the first NARA compliant facility in the agency. Stennis Space Center's Records Retention Facility became operational in May 2010. The SSC Records Retention Facility ensures that the required federal records are preserved, managed and accessible to all interested personnel. The facility provides 20,000 cubic feet of records storage capacity for the purpose of managing the centers consolidated records within a central, protected environment. Records housed in the facility are in the form of paper, optical, film and magnetic media. Located within the SSC Records Retention Facility, the Records Management Office provides comprehensive records management services in the form of: a) Storage and life-cycle management of inactive records of all media types; b) Digitizing/scanning of records and documents; c) Non-textual/digital electronic records media storage, migration and transfer; d) Records Remediation.

  7. New Spaces for Learning: Designing College Facilities to Utilize Instructional Aids and Media. Revised.

    ERIC Educational Resources Information Center

    Hauf, Harold D.; And Others

    Colleges need appropriate large group instructional facilities for effective and efficient use of instructional aids and media. A well planned system of facilities must provide space for learning; production, origination, and support; storage and retrieval. Design begins with a building plan--a statement, made jointly by the administrator and…

  8. 40 CFR 270.42 - Permit modification at the request of the permittee.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...

  9. 40 CFR 270.42 - Permit modification at the request of the permittee.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...

  10. 40 CFR 270.42 - Permit modification at the request of the permittee.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...

  11. 40 CFR 270.42 - Permit modification at the request of the permittee.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...

  12. Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KESSLER, S.F.

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weldmore » station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less

  14. STS-39 Discovery Rollback to the OPF High Bay #2 (Shots of Doors)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Shown is Discovery rolling back to the Orbiter Processing Facility (OPF) High Bay 2 for repair. High Bay 2, located west of the Vehicle Assembly Building (VAB), is used for external tank (ET) checkout and storage and as a contingency storage area for orbiters.

  15. 40 CFR 60.244 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fertilizer Industry: Granular Triple Superphosphate Storage Facilities § 60.244 Test methods and procedures... quantities of product are being cured or stored in the facility. (1) Total granular triple superphosphate is at least 10 percent of the building capacity, and (2) Fresh granular triple superphosphate is at...

  16. 40 CFR 60.244 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fertilizer Industry: Granular Triple Superphosphate Storage Facilities § 60.244 Test methods and procedures... quantities of product are being cured or stored in the facility. (1) Total granular triple superphosphate is at least 10 percent of the building capacity, and (2) Fresh granular triple superphosphate is at...

  17. Hazardous Waste Cleanup: Thermo King de Puerto Rico Incorporated in Arecibo, Puerto Rico

    EPA Pesticide Factsheets

    Thermo King de Puerto Rico, Inc. facility is located in the Zeno Gandia Industrial Area in Arecibo, Puerto Rico. Major features of the facility include six buildings used for manufacturing and storage, a wastewater treatment plant, a hazardous waste and no

  18. 3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW, LOOKING SOUTH, OF BUILDING 371 BASEMENT UNDER CONSTRUCTION. THE BASEMENT HOUSES HEATING, VENTILATION, AND AIR CONDITIONING EQUIPMENT AND MECHANICAL UTILITIES, THE UPPER PART OF THE PLUTONIUM STORAGE VAULT AND MAINTENANCE BAY, AND SMALL PLUTONIUM PROCESSING AREAS. THE BASEMENT LEVEL IS DIVIDED INTO NEARLY EQUAL NORTH AND SOUTH PARTS BY THE UPPER PORTION OF THE PLUTONIUM STORAGE VAULT. (10/7/74) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  19. VIEW OF THE INTERIOR OF BUILDING 774, THE ORIGINAL LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INTERIOR OF BUILDING 774, THE ORIGINAL LIQUID PROCESS WASTEWATER TREATMENT FACILITY. THE PHOTOGRAPH SHOWS STORAGE TANKS AND ASSOCIATED PLUTONIUM-CONTAMINATED SOLUTIONS. THE GLOVE BOX IS USED BY OPERATORS TO MANUALLY OPERATE PUMPS AND VALVES THAT REQUIRE PERIODIC ADJUSTMENT. OTHER VALVES IN THE ROOM WERE INFREQUENTLY ADJUSTED, AND ARE SEALED IN PLASTIC WRAP - Rocky Flats Plant, Waste Treatment Facility, Adjacent to bldg 771C, in northern portion of protected area, Golden, Jefferson County, CO

  20. 7 CFR 1436.5 - Eligible borrowers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... with any applicable local zoning, land use, and building codes for the applicable farm storage facility... has all peril structural insurance; (10) Demonstrates compliance with the National Environmental...

  1. An automated scraper system for swine confinement facilities

    USDA-ARS?s Scientific Manuscript database

    Odor and air emissions released by some commercial, large swine operations can be a nuisance. Research has shown that some swine confinement buildings can emit significant amounts of odors, hydrogen sulfide (H2S) and other gases, especially from deep pit buildings with long-term manure storage. A m...

  2. 78 FR 65639 - Questar Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP14-6-000] Questar Pipeline... appurtenant facilities located in Moffat County, Colorado. Specifically, Questar proposes to abandon one Solar Saturn 1200 compressor, a compressor building, two generators and a generator building, a liquids storage...

  3. Decision Analysis with Value Focused Thinking as a Methodology to Select Buildings for Deconstruction

    DTIC Science & Technology

    2007-03-01

    Congress Facility 7366 30251 Hazardous Material Storage Shed 432 20447 Aircraft Research Lab 1630 20449 Aircraft Research Lab 2480 34042 Reserve Forces...Congress Facility 0.566 20055 Engineering Admin. Building 0.578 20449 Aircraft Research Lab 0.595 20447 Aircraft Research Lab 0.605 20464...0.525 $39.00 0.01346 20447 Aircraft Research Lab 0.605 $59.50 0.01017 20449 Aircraft Research Lab 0.595 $62.40 0.00954 20464 Area B Gas Station

  4. 82. CANAL WEST OF LOCK 12 EAST NEAR BOONTON. STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. CANAL WEST OF LOCK 12 EAST NEAR BOONTON. STORAGE BUILDING AND CHUTE ON LEFT SIDE OF CANAL MAY BE A COAL FACILITY. COAL WOULD BE UNLOADED FROM THE BOAT AND PASSED UP THE CHUTE INTO THE COAL STORAGE BIN. COAL COULD THEN BE LOADED INTO WAGONS FROM THE BOTTOM OF THE BIN ON THE OPPOSITE SIDE OF THE STRUCTURE WHEN NECESSARY. - Morris Canal, Phillipsburg, Warren County, NJ

  5. 7 CFR 1436.5 - Eligible borrowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... erodible land and wetlands conservation provisions according to 7 CFR part 12; (8) Demonstrates compliance with any applicable local zoning, land use, and building codes for the applicable farm storage facility...

  6. 8. Photographic copy of construction drawing 1976 (original drawing located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photographic copy of construction drawing 1976 (original drawing located in Building 301, Offutt AFB, Bellevue, Nebraska). Floor plan of entire building. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  7. Credit PSR. This view shows the south and east facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows the south and east facades of this concrete block facility as seen when looking northwest (320°). Note the outdoor emergency shower; the roof has lightning rods installed at corners - Jet Propulsion Laboratory Edwards Facility, Oxidizer Weigh & Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  8. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poderis, Reed J.; King, Rebecca A.

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping,more » tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400« less

  9. 5. INTERIOR VIEW SHOWING RAFTER CONSTRUCTION. SOUTHERN EXTENSION AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW SHOWING RAFTER CONSTRUCTION. SOUTHERN EXTENSION AT LEFT. - Chollas Heights Naval Radio Transmitting Facility, Operational Storage Building, 6410 Zero Road, San Diego, San Diego County, CA

  10. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    PubMed

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  11. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Wastemore » Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.« less

  12. 78 FR 21962 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ...-1264 Directions: two buildings, an office & garage/storage facility; totaling approx. 4,320 sf. Comments: 12 months vacant; good conditions [FR Doc. 2013-08242 Filed 4-11-13; 8:45 am] BILLING CODE 4210... homeless use for a period of 60 days from the date of this Notice. Where property is described as for ``off...

  13. Soil Sample Report in Support of the Site 300 EWTF Ecological Risk Assessment and Permit Renewal-September 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald

    2012-10-02

    LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less

  14. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less

  15. 15. INTERIOR VIEW TO THE WEST OF ROOM 107, THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR VIEW TO THE WEST OF ROOM 107, THE HOT STORAGE AND PACKAGING ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV

  16. 16. INTERIOR VIEW TO THE NORTHEAST OF ROOM 107, THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR VIEW TO THE NORTHEAST OF ROOM 107, THE HOT STORAGE AND PACKAGING ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV

  17. 25. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 109, THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 109, THE WARM AND COLD STORAGE ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV

  18. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  19. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    A solar energy technology program is described that includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Early results from simulator tests indicate that non-selective coatings behave more nearly in accord with predicted performance than do selective coatings. Initial experiments on the decay rate of thermally stratified hot water in a storage tank have been run. Results suggest that where high temperature water is required, excess solar energy collected by a building solar system should be stored overnight in the form of chilled water rather than hot water.

  20. 7. Photographic copy of construction drawing 1976 (original drawing located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of construction drawing 1976 (original drawing located in Building 301, Offutt AFB, Bellevue, Nebraska). Elevations of entire building exterior. Includes elevation, plan and details of the addition's interior stairs. - Offutt Air Force Base, Looking Glass Airborne Command Post, Aerospace Ground Equipment (AGE) Storage Facility, Far Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  1. PBF Reactor Building (PER620). Camera is facing east and down ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera is facing east and down into canal and storage pit for fuel rod assemblies. Stainless steel liner is being applied, temporarily covered with plywood for protection. Photographer: John Capek. Date: August 29, 1969. INEEL negative no. 69-4641 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. Final Environmental Assessment: Construction of Maintenance and Storage Facility, Perimeter Fence Upgrade and Demolition of Three Buildings and Two Structures Gila River Air Force Space Surveillance Station Arizona

    DTIC Science & Technology

    2012-11-01

    Estrella mountain range is approximately six miles west of the Installation and the Sacaton mountain range lie approximate- ly six miles to the southeast...Structures 3-4 Figure 5. Geological Map of Gila River AFSSS and Vicinity Sierra Estrella Range Sacaton Range EA — Construct Maintenance & Storage

  3. KENNEDY SPACE CENTER, FLA. -- Endeavour settles into place inside the Vehicle Assembly Building (VAB) where it has been moved for temporary storage. It left the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

    NASA Image and Video Library

    2004-01-09

    KENNEDY SPACE CENTER, FLA. -- Endeavour settles into place inside the Vehicle Assembly Building (VAB) where it has been moved for temporary storage. It left the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  4. KENNEDY SPACE CENTER, FLA. -- Endeavour rolls into the Vehicle Assembly Building (VAB) for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

    NASA Image and Video Library

    2004-01-09

    KENNEDY SPACE CENTER, FLA. -- Endeavour rolls into the Vehicle Assembly Building (VAB) for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  5. KENNEDY SPACE CENTER, FLA. -- Endeavour is towed toward the Vehicle Assembly Building for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

    NASA Image and Video Library

    2004-01-09

    KENNEDY SPACE CENTER, FLA. -- Endeavour is towed toward the Vehicle Assembly Building for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  6. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  7. Oil Pharmacy at the Thermal Protection System Facility

    NASA Image and Video Library

    2017-08-08

    An overall view of the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.

  8. Correction to AD/RHIC-47, Beam Transfer From AGS to RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, J.; Foelsche, H.

    1988-12-12

    RHIC an acronym for Relativistic Heavy Ion Collider, is a facility for colliding heavy ions with each other, proposed for construction at Brookhaven National Laboratory. This facility and the motivation for building it, have been described. It consists of two intersecting storage rings and the purpose of this note is to describe how these two rings are to be filled with beam.

  9. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  10. Second of three panoramic views of North Base as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Second of three panoramic views of North Base as seen from top of Building 4500, Control Tower. View looks west (268°) at North Base complex. In foreground is taxiway, with Building 4456 (Fire House No. 4) at right. Building 4452 (Utility Vault) appears in extreme left foreground, with Building 4412 (Liquid Oxygen Repair Facility) and Building 4410 (Liquid Oxygen Storage) in extreme left background. In view over Building 4456 is the "loop" bound by Third, Fourth, A, and B Streets. Concrete slabs are all that remain of military housing constructed in the 1940s. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA

  11. Site-specific standard request for Underground Storage Tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility Buildings 9754-1 and 9720-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This document is a site-specific standard request for underground storage tanks located at the Rust Garage Facility. These standards are justified based on conclusion derived from the exposure assessment that indicates there is no current or forseeable future human health risk associated with petroleum contaminants on the site, that current and future ecological risks would be generally limited to subsurface species and plant life with roots extending into the area, and that most of the impacted area at the site is covered by asphalt or concrete. The vertical and horizontal extent of soil and ground water contamination are limited tomore » immediate area of the Rust Garage Facility.« less

  12. PBF Reactor Building (PER620). Camera is in cab of electricpowered ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera is in cab of electric-powered rail crane and facing east. Reactor pit and storage canal have been shaped. Floors for wings on east and west side are above and below reactor in view. Photographer: Larry Page. Date: August 23, 1967. INEEL negative no. 67-4403 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. Improvements in Certain District of Columbia Public Schools' Administrative Operations. Report to the Superintendent of the District of Columbia Public Schools.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    The District of Columbia Public Schools system has taken action to ensure that supply items will be obtained at the most competitive prices. Because lack of storage facilities prevented bulk purchase of emergency items at competitive rates, the Division of Buildings and Grounds has remodeled a building as a warehouse to store large quantities of…

  14. 40 CFR 264.190 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264... use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a... treat hazardous waste which contains no free liquids and are situated inside a building with an...

  15. USSR Report, Agriculture.

    DTIC Science & Technology

    1984-05-14

    of coarse fodders, including 40,000 tons of hay, 50,000 tons of haylage and 40,000 tons of straw; a total of 185,000 tons of succulent fodders...Significant resources are allocated for the building of storage facilities and for silage and haylage structures. Capital investments for acquiring

  16. KENNEDY SPACE CENTER, FLA. -- Endeavour is towed in front of the Vehicle Assembly Building (VAB) where it is going for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

    NASA Image and Video Library

    2004-01-09

    KENNEDY SPACE CENTER, FLA. -- Endeavour is towed in front of the Vehicle Assembly Building (VAB) where it is going for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bay’s cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  17. Solar project cost report for Ingham County, Medical Care Facility, Okemos, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The solar energy system supplies service hot water for a 204 bed medical and geriatric care facility with laundry and kitchen. The system was designed at the time the building was designed. The 9,374 ft/sup 2/ of collectors were manufactured by Revere Copper and Brass, Inc., and are mounted at grade level behind the building. Solar heated water for use in heating service water is stored in a 5000 gallon hot water storage tank. The heaviest use of hot water occurs during the day so the requirement for thermal storage is modest. The construction costs of this solar project aremore » presented. Category costs are listed by materials, direct labor, ad subcontract costs. The subcontract costs include both materials, labor, overhead and profit for electrical, control and other minor subcontractors. The installed cost of the system was $312,825 not including prime contractor overhead and profit and general and administrative costs. (MHR)« less

  18. 4. Credit BG. View looking northwest at Control and Recording ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit BG. View looking northwest at Control and Recording Center 4221/E-22, as seen from Test Stand 'C' tower. The Test Stand 'C' workshop 4213/E-14 appears at lower left of the image. To the south of 4221/E-22 lies Blower House No. 2, Building 4226/E-27, used for ventilating the tunnel system which connected 4221/E-22 to all test stands. At the southeast corner of 4221/E-22 is the Booster Pumping Station, Building 4227/E-28. To the northwest of 4221/E-22 is a Water Storage Tank, Building 4289/E-90 which supplies the water and firefighting systems at the JPL Edwards facility. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA

  19. Oil Pharmacy at the Thermal Protection System Facility

    NASA Image and Video Library

    2017-08-08

    Tim King of Jacobs at NASA's Kennedy Space Center in Florida, explains operations in the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.

  20. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA)more » of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.« less

  1. A wind tunnel study of air flow near model swine confinement buildings

    USDA-ARS?s Scientific Manuscript database

    One of the most significant and persistent environmental concerns regarding swine production is the transport of odor constituents, trace gases, and particulates from animal production and manure storage facilities. The objectives of this study were to determine how swine housing unit orientation af...

  2. 76 FR 61092 - Notice of Intent To Prepare a Supplement to the Draft Environmental Impact Statement for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... (SEL) re: 1[micro]Pa\\2\\-sec. The USFWS and the DoN collaborated to form the Marbled Murrelet Science... Administrative/Construction Field Office, an Inert Storage building, a Rigging Shop, and a Refit Support Facility...

  3. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  4. ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM BOTTOM TO TOP: ETR COOLING TOWER, ELECTRICAL BUILDING AND LOW-BAY SECTION OF ETR BUILDING, HEAT EXCHANGER BUILDING (WITH U SHAPED YARD), COMPRESSOR BUILDING. MTR REACTOR SERVICES BUILDING IS ATTACHED TO SOUTH WALL OF MTR. WING A IS ATTACHED TO BALCONY FLOOR OF MTR. NEAR UPPER RIGHT CORNER OF VIEW IS MTR PROCESS WATER BUILDING. WING B IS AT FAR WEST END OF COMPLEX. NEAR MAIN GATE IS GAMMA FACILITY, WITH "COLD" BUILDINGS BEYOND: RAW WATER STORAGE TANKS, STEAM PLANT, MTR COOLING TOWER PUMP HOUSE AND COOLING TOWER. INL NEGATIVE NO. 56-4101. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal

    NASA Astrophysics Data System (ADS)

    Kollar, Lenka

    Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for the spent fuel pool, 0.42 for dry cask storage, 0.36 for the operating geological repository, and 0.28 for the closed geological repository. Therefore, the spent fuel pool is currently the most proliferation resistant method for storing spent fuel. The extrinsic attributes, mainly involving safeguards measures, affect the total PR value the most. As a result, several recommendations are made to improve the proliferation resistance of spent fuel. These recommendations include employing more advanced safeguards measures, such as verification techniques and remote monitoring, for dry cask storage and the geological repository. Dry cask storage facilities should also be located at the plant and in a secure building to minimize the proliferation risk. Finally, the cost-benefit analysis of increased safeguards needs to be considered. Taking these recommendations into account, the PR values of dry cask storage and the closed geological would be significantly increased, to 0.57 and 0.51, respectively. As a result, with increased safeguards to the safeguards level of the spent fuel pool, dry cask storage would be the most proliferation resistant method to store spent fuel. Therefore, the IAEA should continue to develop remote monitoring and cask storage verification techniques in order to improve the proliferation resistance of spent fuel.

  6. Afghanistan: Narcotics and U.S. Policy

    DTIC Science & Technology

    2007-12-06

    build on existing USAID programs to develop integrated systems of crop processing facilities, storage areas, roads, and markets, and to restore wheat ...Darling, “ Fungi May Be the Newest Recruits in War on Drugs Colombia,” Los Angeles Times, August 30, 2000. 105 According to a USDA official, “The

  7. 324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUMPHREYS, D C

    A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Teammore » counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.« less

  8. Photographic copy of photograph, view looking northeast of JPL Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, view looking northeast of JPL Edwards Test Station as it looked in 1945. To the immediate right of the Test Stand 'A' tower stands a concrete monitor building or blockhouse (now Building 4203/E-4) for observation and control of tests. Other frame buildings housed workshop and administrative functions. Long structure behind automobiles was designated 4207/E-8 and was used for instrument repair and storage, a cafeteria, machine and welding shops. To the immediate south of 4207/E-8 were 4200/E-1 (used as an office and photographic laboratory) and 4205/E-6 (guardhouse, with fire extinguisher mounted on it). To the northeast of 4205/E-6 was 4204/E-5 (a propellant storage dock, with shed roof). Buildings 4200/E-1, 4205/E-6 and 4207/E-8 were demolished in 1983. Note the absence of trees. (JPL negative no. 383-1297, July 1946) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  9. Development of irradiation capabilities to address the challenges of the nuclear industry

    NASA Astrophysics Data System (ADS)

    Leay, L.; Bower, W.; Horne, G.; Wady, P.; Baidak, A.; Pottinger, M.; Nancekievill, M.; Smith, A. D.; Watson, S.; Green, P. R.; Lennox, B.; LaVerne, J. A.; Pimblott, S. M.

    2015-01-01

    With the announcement of the U.K. new nuclear build and the requirement to decommission old facilities, researchers require bespoke facilities to undertake experiments to inform decision making. This paper describes development of The University of Manchester's Dalton Cumbrian Facility, a custom built research environment which incorporates a 5 MV tandem ion accelerator as well as a self-shielded 60Co irradiator. The ion accelerator allows the investigation into the radiolytic consequences of various charged particles, including protons, alpha particles and a variety of heavier (metal and nonmetal) ions, while the 60Co irradiator allows the effects of gamma radiation to be studied. Some examples of work carried out at the facility are presented to demonstrate how this equipment can improve our mechanistic understanding of various aspects of the deleterious effects of radiation in the nuclear industry. These examples include applications in waste storage and reprocessing as well as geological storage and novel surveying techniques. The outlook for future research is also discussed.

  10. Operation and maintenance of the Sol-Dance Building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaultney, J.R.

    1980-07-29

    A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. Amore » 10,000 gallon black steel water tank provides heat storage.« less

  11. Lightning Protection Certification for High Explosives Facilities at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, T J; Brown, C G; Ong, M M

    2006-01-11

    Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the Nationalmore » Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.« less

  12. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less

  13. KSC-2011-1395

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is NASA Construction of Facility Project Manager Nick Rivieccio. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  14. LPT. Plot plan and site layout. Includes shield test pool/EBOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Plot plan and site layout. Includes shield test pool/EBOR facility. (TAN-645 and -646) low power test building (TAN-640 and -641), water storage tanks, guard house (TAN-642), pump house (TAN-644), driveways, well, chlorination building (TAN-643), septic system. Ralph M. Parsons 1229-12 ANP/GE-7-102. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0102-00-693-107261 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. Environmental Assessment: Demolition of McGuire Central Heat Plant at Joint Base McGuire-Dix-Lakehurst, New Jersey

    DTIC Science & Technology

    2012-06-01

    insulation, boiler, holding tank and duct coverings, floor tiles , window caulking/glazing, and corrugated building siding. The asbestos insulation and...facility, with the Bulk Fuel Storage area and the golf course located between them. BOMARC is located several miles from the proposed solar sites...Architectural Resources The Central Heat Plant was constructed in 1956. It is a flat- roofed building originally rectangular in form, and is now L-shaped. The

  16. Hydrazine Blending and Storage Facility, Wastewater Treatment and Decommissioning Assessment. Technical Plan, Version 3.2

    DTIC Science & Technology

    1988-04-01

    o CHEMICAL TREATMENT - CHLORINE (VARIOUS FORMS) AND CHLORINE/ULTRAVIOLET LIGHT (UV) - OZONE AND OZONE/UV - PERMANGANATE - HYDROGEN PEROXIDE AND...and placed in drums, rail cars or trucks (Hazard 3 Abatement Plan, 1982). The existing hydrazine blending facility area is a limited access site which...Area 40’-0" x 26’-0" Volume 44,000 gallons Function Receive wastewater and stormwater runoff m Construction Material Concrete 7. Building 759 Size 40’-0

  17. KSC-2012-1254

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, one of space shuttle Endeavour’s payload bay doors has been fully opened so that an antenna can be retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-1247

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians begin to open space shuttle Endeavour’s payload bay doors in order to retract an antenna. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  19. KSC-2012-1246

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians prepare to open space shuttle Endeavour’s payload bay doors in order to retract an antenna. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  20. KSC-2012-1250

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, one of space shuttle Endeavour’s payload bay doors has been fully opened so that an antenna can be retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  1. KSC-2012-1251

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, one of space shuttle Endeavour’s payload bay doors has been fully opened so that an antenna can be retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  2. KSC-2012-1252

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, one of space shuttle Endeavour’s payload bay doors has been fully opened so that an antenna can be retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  3. KSC-2012-1253

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, one of space shuttle Endeavour’s payload bay doors has been fully opened so that an antenna can be retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-1255

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, one of space shuttle Endeavour’s payload bay doors has been fully opened and an antenna has been retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  5. 9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF BUILDING. CAMERA FACING NORTHEAST. CONTAMINATED AIR FILTERS LOADED IN TRANSPORT CASKS WERE TRANSFERRED TO VEHICLES AND SENT TO RADIOACTIVE WASTE MANAGEMENT COMPLEX FOR STORAGE. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  6. Maximizing Library Storage with High-Tech Robotic Shelving

    ERIC Educational Resources Information Center

    Amrhein, Rick; Resetar, Donna

    2004-01-01

    This article presents a plan of having a new facility for the library of Valparaiso University. The authors, as dean of library services and assistant university librarian for access services at Valpo, discuss their plan of building a Center for Library and Information Resources that would house more books while also providing computing centers,…

  7. Basis for Interim Operation for Fuel Supply Shutdown Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENECKE, M.W.

    2003-02-03

    This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the currentmore » and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment, the form of the uranium, and the required controls, a Criticality Alarm System (CAS) is not required as allowed by DOE Order 420.1 (DOE 2000).« less

  8. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-10-01

    The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less

  9. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  10. TA-60-1 Heavy Equipment Shop Areas SWPPP Rev 2 Jan 2017-Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    The primary activities and equipment areas at the facility that are potential stormwater pollution sources include; The storage of vehicles and heavy equipment awaiting repair; or repaired vehicles waiting to be picked up; The storage and handling of oils, anti-freeze, solvents, degreasers, batteries and other chemicals for the maintenance of vehicles and heavy equipment; and Equipment cleaning operations including exterior vehicle wash-down. Steam cleaning is only done on the steam cleaning pad area located at the north east end of Building 60-0001.

  11. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haori; Hayward, Jason; Chichester, David

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-sitemore » wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.« less

  12. 75 FR 50758 - Leader One Energy, LLC; Supplemental Notice of Intent To Prepare an Environmental Assessment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ...-diameter pipeline, the Leader One Header Pipeline, to connect the storage facility to Colorado Interstate... (202) 502-8371. For instructions on connecting to eLibrary, refer to the last page of this notice. Land... historic district, site, building, structure, or object included in or eligible for inclusion in the...

  13. 77 FR 31647 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... includes the retrofit and build-out of the facility, which will be located in Mt. Pleasant, Pennsylvania. The NAICS industry code for this enterprise is: 335911 (storage battery manufacturing). DATES: All..., Assistant Secretary for Employment and Training. [FR Doc. 2012-12917 Filed 5-25-12; 8:45 am] BILLING CODE...

  14. Nuuanu YMCA Honolulu, Hawaii solar-water-heating project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-10-14

    The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. (LEW)« less

  15. Nuuanu YMCA solar water-heating project (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-08-13

    The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. These Drawings accompany report No. DOE/CS/31640-T1. (LEW)« less

  16. The Materials Data Facility: Data Services to Advance Materials Science Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaiszik, B.; Chard, K.; Pruyne, J.

    2016-07-06

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloudhosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific)andmore » automatically-extractedmetadata in a registrywhile the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. TheMDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of thirdparty publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF’s design, current status, and future plans.« less

  17. The Materials Data Facility: Data Services to Advance Materials Science Research

    NASA Astrophysics Data System (ADS)

    Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I.

    2016-08-01

    With increasingly strict data management requirements from funding agencies and institutions, expanding focus on the challenges of research replicability, and growing data sizes and heterogeneity, new data needs are emerging in the materials community. The materials data facility (MDF) operates two cloud-hosted services, data publication and data discovery, with features to promote open data sharing, self-service data publication and curation, and encourage data reuse, layered with powerful data discovery tools. The data publication service simplifies the process of copying data to a secure storage location, assigning data a citable persistent identifier, and recording custom (e.g., material, technique, or instrument specific) and automatically-extracted metadata in a registry while the data discovery service will provide advanced search capabilities (e.g., faceting, free text range querying, and full text search) against the registered data and metadata. The MDF services empower individual researchers, research projects, and institutions to (I) publish research datasets, regardless of size, from local storage, institutional data stores, or cloud storage, without involvement of third-party publishers; (II) build, share, and enforce extensible domain-specific custom metadata schemas; (III) interact with published data and metadata via representational state transfer (REST) application program interfaces (APIs) to facilitate automation, analysis, and feedback; and (IV) access a data discovery model that allows researchers to search, interrogate, and eventually build on existing published data. We describe MDF's design, current status, and future plans.

  18. WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA. FROM RIGHT TO LEFT, ABOVEGROUND STORAGE MAGAZINE (BUILDING 3568), SPARES INERT STORAGE BUILDING (BUILDING 3570), MISSILE ASSEMBLY SHOP (BUILDING 3578) AND SEGREGATED MAGAZINE STORAGE BUILDING (BUILDING 3572). VIEW TO NORTHWEST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  19. KSC-2011-1398

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place inside the new 18,500-square-foot Electrical Maintenance Facility (EMF) at NASA's Kennedy Space Center in Florida. From left are Kennedy Director of Operations Mike Benik, NASA Construction of Facility Project Manager Nick Rivieccio and Kennedy Center Director Bob Cabana. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    AFP no. 28 (General Electric Lynn Manufacturing dept). is located in the City of Everett, Mass. The facility is composed of 10 buildings having 344,342 square feet of floor space on a 43-acre tract. The plant is engaged in the manufacture of large jet engine components and sub-assemblies. AFT 29 (General Electric River Works Facility) is located in the City of Lynn, Mass. AFT No. 29 is part of the General Electric Aircraft Engine Business Group and the facilities are used for testing and assembly of jet engines. The following conclusions have been developed based on the results of themore » project team's field inspection, review of plant records and files, and interviews with plant personnel. Each of the sites listed below was ranked using the HARM system and was determined to have a sufficient potential for environmental contamination to warrant some degree of follow-on investigation. AFB no. 28: Waste sump and chip storage area; and AFT no. 29: Underground fuel line leaks and underground fuel storage tank leak.« less

  1. KSC-2012-1249

    NASA Image and Video Library

    2012-02-03

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as one of space shuttle Endeavour’s payload bay doors is opened so that an antenna can be retracted. Space Shuttle Program transition and retirement work continues on Discovery and Endeavour in the orbiter processing facilities, while shuttle Atlantis is in temporary storage in high bay 4 of the Vehicle Assembly Building. Endeavour is being prepared for display at the California Science Center in Los Angeles. Photo credit: NASA/Kim Shiflett

  2. Photographic copy of photograph, aerial view looking north and showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, aerial view looking north and showing Test Stand 'A' (at bottom), Test Stand 'B' (upper right), and a portion of Test Stand 'C' (top of view). Compare HAER CA-163-1 and 2 and note addition of liquid nitrogen storage tank (Building 4262/E-63) to west of Test Stand 'C' as well as various ancillary facilities located behind earth barriers near Test Stand 'C.' (JPL negative no. 384-3006-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  3. Radiation streaming and skyshine evaluation for a proposed low-level radioactive waste assured isolation facility.

    PubMed

    Arno, Matthew; Hamilton, Ian S

    2003-10-01

    Texas is investigating the idea of building a long term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground, retrievable low-level radioactive waste storage facility. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using MCNP to model the facility in greater detail. Using bounding source term assumptions, the radiation doses and dose rates are found to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma" rooms where the waste with greatest gamma radiation intensity is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is less than the 1 mSv annual limit for exposure of the public. Within the site perimeter, modifying the roof results in an order of magnitude drop in the dose rate for personnel outside the facility and on the facility roof, as well as a significant drop inside the facility. Radiation streaming inside the facility can be lowered almost two orders of magnitude by placing operational restrictions to keep at least two rows of waste containers in front of the high-gamma room to cut down on the size of the path for streaming.

  4. Physics at COSY-Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroeher, Hans

    2011-10-21

    COSY, a storage and cooler synchrotron, which is fed by an injector cyclotron, is operated at Forschungszentrum Juelich (Germany). It provides phase space cooled polarized or unpolarized beams of protons and deuterons with momenta between 0.3 and 3.7 GeV/c for internal experiments and to external target stations. The major experimental facilities, used for the ongoing physics program, are ANKE and WASA (internal) and TOF (external). A new internal target station to investigate polarization build-up by spin-filtering (PAX) has recently been commissioned. COSY is the machine for hadron spin physics on a world-wide scale, which is also used for tests inmore » conjunction with plans to build a dedicated storage ring for electric dipole moment (EDM) measurements of proton, deuteron and {sup 3}He. In this contribution recent results as well as future plans are summarized.« less

  5. 235U Holdup Measurements in the 321-M Exhaust Elbows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salaymeh, S.R.

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability, and to meetmore » criticality safety controls. This report covers holdup measurements of uranium residue in the exhaust piping elbows removed from the roof the 321-M facility.« less

  6. Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booher, M.N.; Miller, G.A.; Draugelis, A.K.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This reportmore » provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.« less

  7. Australia's TERN: Building, Sustaining and Advancing Collaborative Long Term Ecosystem Research Networks

    NASA Astrophysics Data System (ADS)

    HEld, A. A.; Phinn, S. R.

    2012-12-01

    TERN is Australia's Terrestrial Ecosystem Research Network (www.tern.org.au) is one of several environmental data collection, storage and sharing projects developed through the government's research infrastructure programs 2008-2014. This includes terrestrial and coastal ecosystem data collection infrastructure across multiple disciplines, hardware, software and processes used to store, analyse and integrate data sets. TERN's overall objective is to build the collaborations, infrastructure and programs to meet the needs of ecosystem science communities in Australia in the long term, through institutional frameworks necessary to establish a national terrestrial ecosystem site and observational network, coordinated networks enabling cooperation and operational experience; public access to quality assured and appropriately licensed data; and allowing the terrestrial ecosystem research community to define and sustain the terrestrial observing paradigm into the longer term. This paper explains how TERN was originally established, and now operates, along with plans to sustain itself in the future. TERN is implemented through discipline/technical groups referred to as "TERN Facilities". Combined, the facilities provide observations of surface mass and energy fluxes over key ecosystems, biophysical remote sensing data, ecological survey plots, soils information, and coastal ecosystems and associated water quality variables across Australia. Additional integrative facilities cover elements of ecoinformatics, data-scaling and modelling, and linking science to management. A central coordination and portal facility provides meta-data storage, data identification, legal and licensing support. Data access, uploading, meta-data generation, DOI attachment and licensing is completed at each facility's own portal level. TERN also acts as the open-data repository of choice for Australian scientists required to publish their data. Several key lessons we have learnt, will be presented during the talk.

  8. A Bookless Library, Part II: Managing Access Services with No In-House Collections

    ERIC Educational Resources Information Center

    Sewell, Bethany B.

    2013-01-01

    In the spring of 2011, the Penrose Library at the University of Denver began the process of storing all materials, services, and staff to temporary locations in preparation for a building renovation project. The library was faced with the challenge of delivering all materials from an off-site storage facility within two hours of request. A new…

  9. Olympic Village thermal energy storage experiment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, R.A.; Saylor, C.M.

    Four thermal energy storage (TES) systems were operated in identical dormitory-style buildings of the Raybrook Correctional Facility, formerly the housing for the athletes at the 1980 Winter Olympic Games in Lake Placid, New York. The objectives of the project were to assess the ability of these TES systems to be controlled so as to modify load profiles favorably, and to assess the ability to maintain comfortable indoor conditions under those control strategies. Accordingly, the test was designed to evaluate the effect on load profiles of appropriate control algorithms for the TES systems, collect comprehensive TES operating data, and identify neededmore » research and development to improve the effectiveness of the TES systems. The four similar dormitory buildings were used to compare electric slab heating on grade, ceramic brick storage heating, pressurized-hot-water heating, and heat pumps with hot-water storage. In a fifth similar building, a conventional (non-TES) forced air electric resistance heat system was used. The four buildings with TES systems also had electric resistance heating for backup. A remote computer-based monitoring and control system was used to implement the control algorithms and to collect data from the site. For a 25% TES saturation of electric heat customers on the NMPC system, production costs were reduced by up to $2,235,000 for the New York Power Pool. The winter peak load was reduced by up to 223 MW. The control schedules developed were successful in reducing on-peak energy consumption while maintaining indoor conditions as close to the comfort level as possible considering the test environment.« less

  10. Site 300 City Water Master Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jeff

    Lawrence Livermore National Laboratory (LLNL), a scientific research facility, operates an experimental test site known as Site 300. The site is located in a remote area of southeastern Alameda County, California, and consists of about 100 facilities spread across 7,000-acres. The Site 300 water system includes groundwater wells and a system of storage tanks, booster pumps, and underground piping to distribute water to buildings and significant areas throughout the site. Site 300, which is classified as a non-transient non-community (NTNC) water system, serves approximately 110 employees through 109 service connections. The distribution system includes approximately 76,500-feet of water mains varyingmore » from 4- to 10-inches in diameter, mostly asbestos cement (AC) pipe, and eleven water storage tanks. The water system is divided into four pressure zones fed by three booster pump stations to tanks in each zone.« less

  11. Solar water-heating system for the Ingham County geriatric medical care facility, Okemos, Michigan. Operational and maintenance instruction manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objectives of the Ingham County Solar Project include: the demonstration of a major operational supplement to fossil fuels, thereby reducing the demand for non-renewable energy sources, demonstration of the economic and technical feasibility of solar systems as an important energy supplement over the expected life of the building, and to encourage Michigan industry to produce and incorporate solar systems in their own facility. The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a mixture of water and propylene glycol which flows through themore » tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently utilized to increase the temperature of the laundry water, kitchen water, and domestic potable water.« less

  12. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Astrophysics Data System (ADS)

    1980-04-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  13. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  14. KSC-2011-1397

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is Kennedy Director of Operations Mike Benik. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  15. KSC-2011-1396

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is Kennedy Center Director Bob Cabana. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  16. 71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  17. 70. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING WEST INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING WEST INTO STORAGE AREA SHOWING THE FOUR STORAGE ROOM ENTRANCES. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  18. Cryogenic System for the New International Accelerator Facility for Research with Ions and Antiprotons at GSI

    NASA Astrophysics Data System (ADS)

    Kauschke, M.; Schroeder, C. H.

    2004-06-01

    The Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, is planning an extension of the existing heavy ion accelerator. The new facilities will contain two synchrotrons, four storage rings and approximately 1.4 km of beam transport, requiring different types of magnets and cooling regimes. As the magnets for the synchrotrons have to be fast-ramped magnets, the cryogenic system heat loads will be dominated by the AC-losses of the magnets. Our approach is to adopt and modify existing magnet designs to achieve a short development time for the facility. The cryogenic system has to provide 7.5 kW at 4.4 K in the two-phase cooling regime, 3 kW at 0.4 MPa and 4.2 K in forced-flow cooling for the synchrotrons. The storage ring magnets will be placed in bath cryostats and require a refrigeration capacity of 5 kW at 4.5 K. As the project will be commissioned in several steps, an economic plan for the cryogenic infrastructure is needed, which will be sufficient for every phase of the build-up and allow experiments in some parts of the facilities as well as the testing of the components for the later parts of the facility.

  19. GIVE THE PUBLIC SOMETHING, SOMETHING MORE INTERESTING THAN RADIOACTIVE WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codee, Hans D.K.

    2003-02-27

    In the Netherlands the policy to manage radioactive waste is somewhat different from that in other countries, although the practical outcome is not much different. Long-term, i.e. at least 100 years, storage in above ground engineered structures of all waste types is the first element in the Dutch policy. Second element, but equally important, is that deep geologic disposal is foreseen after the storage period. This policy was brought out in the early eighties and was communicated to the public as a practical, logical and feasible management system for the Dutch situation. Strong opposition existed at that time to deepmore » disposal in salt domes in the Netherlands. Above ground storage at principle was not rejected because the need to do something was obvious. Volunteers for a long term storage site did not automatically emerge. A site selection procedure was followed and resulted in the present site at Vlissingen-Oost. The waste management organization, COVRA, was not really welcomed here , but was tolerated. In the nineties facilities for low and medium level waste were erected and commissioned. In the design of the facilities much attention was given to emotional factors. The first ten operational years were needed to gain trust from the local population. Impeccable conduct and behavior was necessary as well as honesty and full openness to the public Now, after some ten years, the COVRA facilities are accepted. And a new phase is entered with the commissioning of the storage facility for high level waste, the HABOG facility. A visit to that facility will not be very spectacular, activities take place only during loading and unloading. Furthermore it is a facility for waste, so unwanted material will be brought into the community. In order to give the public something more interesting the building itself is transformed into a piece of art and in the inside a special work of art will be displayed. Together with that the attitude of the company will change. We are proud on our work and we like to show that. Our work is necessary and useful for society. We will not hide our activities but show them and make it worth looking at them.« less

  20. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattlin, E.; Charboneau, S.; Johnston, G.

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4,more » D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z locations. Clean closed 241-Z treatment and storage tanks, equipment and/or structures will remain after RCRA clean closure for future disposition in conjunction with PFP decommissioning activities which are integrated with CERCLA. (authors)« less

  1. WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEAPONS STORAGE AREA, LOOKING TOWARD ELECTRIC POWER STATION BUILDING (BUILDING 3583), STORAGE BUILDING (BUILDING 3584)NIGHT AND SECURITY POLICE ENTRY CONTROL (BUILDING 3582)LEFT. VIEW TO NORTHEAST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  2. Hot conditioning equipment conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hotmore » Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.« less

  3. KSC-99pp1133

    NASA Image and Video Library

    1999-09-20

    The Butler Building at Kennedy Space Center is nearly demolished, with the help of the crane in the background. The building, which is near the Orbiter Processing Facility (right), is being demolished in order to extend the crawlerway leading to the high bay of the Vehicle Assembly Building (VAB), part of KSC's Safe Haven project. The goal of Safe Haven is to strengthen readiness for Florida's hurricane season by expanding the VAB's storage capacity. Construction includes outfitting the VAB with a third stacking area, in high bay 2, that will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad into the safety of the VAB if severe weather threatens. The VAB can withstand winds up to 125 mph

  4. KSC-99pp1132

    NASA Image and Video Library

    1999-09-20

    The walls of the Butler Building at Kennedy Space Center come tumbling down, with the help of the crane in the background. The building, which is near the Orbiter Processing Facility, is being demolished in order to extend the crawlerway leading to the high bay of the Vehicle Assembly Building (VAB), part of KSC's Safe Haven project. The goal of Safe Haven is to strengthen readiness for Florida's hurricane season by expanding the VAB's storage capacity. Construction includes outfitting the VAB with a third stacking area, in high bay 2, that will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad into the safety of the VAB if severe weather threatens. The VAB can withstand winds up to 125 mph

  5. 27 CFR 19.19 - Discontinuance of storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Discontinuance of storage... Provisions § 19.19 Discontinuance of storage facilities. If TTB determines that a proprietor's bonded storage... spirits stored in the facility to another storage facility. The transfer will take place at such time and...

  6. 27 CFR 19.19 - Discontinuance of storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Discontinuance of storage... Provisions § 19.19 Discontinuance of storage facilities. If TTB determines that a proprietor's bonded storage... spirits stored in the facility to another storage facility. The transfer will take place at such time and...

  7. Great Lakes Steel -- PCI facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silomore » at Great Lakes Steel, and is injected into three blast furnaces.« less

  8. View of debris assembled at the Kennedy Space Center from STS 51-L

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Large portion of the three main engines of the Space Shuttle Orbiter Challenger have been recovered from the floor of the Atlantic Ocean to the east of the Kennedy Space Center. They have been moved to a large storage building to the east of the Logistics Facility at Complex 39. Most of the pieces were recovered by the Coast Guard and Navy following the accident.

  9. Quantitative risk analysis of oil storage facilities in seismic areas.

    PubMed

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.

  10. PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  11. 69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  12. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  13. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  14. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  15. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  16. Lightning Protection System for HE Facilities at LLNL - Certification Template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, T J; Ong, M M; Brown, C G

    2005-12-08

    This document is meant as a template to assist in the development of your own lighting certification process. Aside from this introduction and the mock representative name of the building (Building A), this document is nearly identical to a lightning certification report issued by the Engineering Directorate at Lawrence Livermore National Laboratory. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facilities. In Chapters 1 and 2 respectively, we address the need and methods of lightning certification for HE processing and storage facilities at LLNL. We present the preferredmore » method of lightning protection in Chapter 3, as well as the likely building modifications that are needed to comply with this method. In Chapter 4, we present the threat assessment and resulting safe work areas within a cell. After certification, there may be changes to operations during a lightning alert, and this is discussed in Chapter 5. Chapter 6 lists the maintenance requirements for the continuation of lighting certification status. Appendices of this document are meant as an aid in developing your own certification process, and they include a bonding list, an inventory of measurement equipment, surge suppressors in use at LLNL, an Integrated Work and Safety form (IWS), and a template certification sign-off sheet. The lightning certification process involves more that what is spelled out in this document. The first steps involve considerable planning, the securing of funds, and management and explosives safety buy-in. Permits must be obtained, measurement equipment must be assembled and tested, and engineers and technicians must be trained in their use. Cursory building inspections are also recommended, and surge suppression for power systems must be addressed. Upon completion of a certification report and its sign-off by management, additional work is required. Training will be needed in order to educate workers and facility managers of the requirements of lightning certification. Operating procedures will need to be generated and/or modified with additional controls. Engineering controls may also be implemented requiring the modification of cells. Careful planning should bring most of these issues to light, making it clear where this document is helpful and were additional assistance may be necessary.« less

  17. Site 300 Spill Prevention, Control, and Countermeasures (SPCC) Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, D.; Mertesdorf, E.

    This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Experimental Test Site (Site 300) near Tracy, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil. This SPCC Plan complies with the Oil Pollution Prevention regulation in Title 40 of the Code of Federal Regulations, Part 112 (40 CFR 112) and with 40 CFR 761.65(b) and (c), which regulates the temporary storage of polychlorinated biphenyls (PCBs). This Plan has also been prepared in accordance with Division 20, Chapter 6.67more » of the California Health and Safety Code (HSC 6.67) requirements for oil pollution prevention (referred to as the Aboveground Petroleum Storage Act [APSA]), and the United States Department of Energy (DOE) Order No. 436.1. This SPCC Plan establishes procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines for aboveground oil storage and use at Site 300. This SPCC Plan has been prepared for the entire Site 300 facility and replaces the three previous plans prepared for Site 300: LLNL SPCC for Electrical Substations Near Buildings 846 and 865 (LLNL 2015), LLNL SPCC for Building 883 (LLNL 2015), and LLNL SPCC for Building 801 (LLNL 2014).« less

  18. Site 300 SPCC Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, D.

    This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Experimental Test Site (Site 300) near Tracy, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil. This SPCC Plan complies with the Oil Pollution Prevention regulation in Title 40 of the Code of Federal Regulations, Part 112 (40 CFR 112) and with 40 CFR 761.65(b) and (c), which regulates the temporary storage of polychlorinated biphenyls (PCBs). This Plan has also been prepared in accordance with Division 20, Chapter 6.67more » of the California Health and Safety Code (HSC 6.67) requirements for oil pollution prevention (referred to as the Aboveground Petroleum Storage Act [APSA]), and the United States Department of Energy (DOE) Order No. 436.1. This SPCC Plan establishes procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines for aboveground oil storage and use at Site 300. This SPCC Plan has been prepared for the entire Site 300 facility and replaces the three previous plans prepared for Site 300: LLNL SPCC for Electrical Substations Near Buildings 846 and 865 (LLNL 2015), LLNL SPCC for Building 883 (LLNL 2015), and LLNL SPCC for Building 801 (LLNL 2014).« less

  19. Credit PSR. This view of the interior of the weighing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view of the interior of the weighing facility looks through the open double doors on the south side. A Toledo scale, rated at 3,000 pounds (1,363 Kg), is installed in the center of the floor; the smaller scale in the corner is rated for 200 pounds (91 Kg). The wall-mounted recording device records quantities weighed and serves as a record displaying that substances were in fact weighed. Note the explosion-proof fluorescent lighting above, and the 0.5 ton hoist - Jet Propulsion Laboratory Edwards Facility, Oxidizer Weigh & Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  20. DEMOLISHING A COLD WARE ERA FULE STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLOYD ER; STEVENS JM; DAGAN EB

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB)more » siding. The project's mission was to complete demolition of the structure over the KE Basin within six months of turnover from facility deactivation activities. The demolition project team applied open-air demolition techniques to bring the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives during the demolition; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovative approach that made demolition easier was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building and portions of the interior walls, and was an integral part of the multiple-layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by using heavy equipment to remove the CAB during demolition. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that contaminated structures can be torn down successfully using similar open-air demolition techniques.« less

  1. DEMOLISHING A COLD-WAR-ERA FUEL STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLOYD ER; ORGILL TK; DAGAN EB

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB)more » siding. The project's mission was to complete demolition of the structure over the K East basin within six months of tumover from facility deactivation activities. The demolition project team implemented open-air demolition techniques to demolish the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovation that aided demolition was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building, portions of the interior walls, and was an integral part of the multiple layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by removing the CAB during demolition using heavy equipment. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that similar open-air demolition ofcontaminated structures can be performed successfully.« less

  2. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  3. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  4. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  5. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  6. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  7. KSC-04PD-0017

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Endeavour rolls into the Vehicle Assembly Building (VAB) for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  8. KSC-04PD-0018

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Endeavour rolls into the Vehicle Assembly Building (VAB) for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  9. KSC-04PD-0014

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Endeavour is towed toward the Vehicle Assembly Building for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  10. Environmental Assessment Addressing Gate Complex Construction at Scott Air Force Base, Illinois

    DTIC Science & Technology

    2014-04-01

    2014 221,760 No change I3. Construct Aircraft Deicing Pad, which would include an underground storage tank, a drainage system , and permanent lighting...Defense Information System Agency DNL day-night average A-weighted sound level DOD Department of Defense DOPAA Description of the Proposed Action...MWDs); a truck-inspection search office; a cargo-transfer facility; a mobile vehicle and cargo inspection system ; an over watch building; and a

  11. 10. CONTEXT VIEW LOOKING SOUTHEAST SHOWING BUILDING 342 (STORAGE MAGAZINE) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONTEXT VIEW LOOKING SOUTHEAST SHOWING BUILDING 342 (STORAGE MAGAZINE) ON LEFT AND BUILDING 343 (STORAGE MAGAZINE) ON RIGHT IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  12. 13. CONTEXT VIEW LOOKING EAST SHOWING BUILDING 343 (STORAGE MAGAZINE) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CONTEXT VIEW LOOKING EAST SHOWING BUILDING 343 (STORAGE MAGAZINE) ON RIGHT AND BUILDING 342 (STORAGE MAGAZINE) ON LEFT IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  13. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  14. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  15. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  16. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  17. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  18. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  19. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  20. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  1. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Lobato, C.; Van Geet, O.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% ofmore » the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.« less

  2. Multi Canister Overpack (MCO) Topical Report [SEC 1 THRU 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LORENZ, B.D.

    In February 1995, the US Department of Energy (DOE) approved the Spent Nuclear Fuel (SNF) Project's ''Path Forward'' recommendation for resolution of the safety and environmental concerns associated with the deteriorating SNF stored in the Hanford Site's K Basins (Hansen 1995). The recommendation included an aggressive series of projects to design, construct, and operate systems and facilitates to permit the safe retrieval, packaging, transport, conditions, and interim storage of the K Basins' SNF. The facilities are the Cold VAcuum Drying Facility (CVDF) in the 100 K Area of the Hanford Site and the Canister Storage building (CSB) in the 200more » East Area. The K Basins' SNF is to be cleaned, repackaged in multi-canister overpacks (MCOs), removed from the K Basins, and transported to the CVDF for initial drying. The MCOs would then be moved to the CSB and weld sealed (Loscoe 1996) for interim storage (about 40 years). One of the major tasks associated with the initial Path Forward activities is the development and maintenance of the safety documentation. In addition to meeting the construction needs for new structures, the safety documentation for each must be generated.« less

  3. Extreme I/O on HPC for HEP using the Burst Buffer at NERSC

    NASA Astrophysics Data System (ADS)

    Bhimji, Wahid; Bard, Debbie; Burleigh, Kaylan; Daley, Chris; Farrell, Steve; Fasel, Markus; Friesen, Brian; Gerhardt, Lisa; Liu, Jialin; Nugent, Peter; Paul, Dave; Porter, Jeff; Tsulaia, Vakho

    2017-10-01

    In recent years there has been increasing use of HPC facilities for HEP experiments. This has initially focussed on less I/O intensive workloads such as generator-level or detector simulation. We now demonstrate the efficient running of I/O-heavy analysis workloads on HPC facilities at NERSC, for the ATLAS and ALICE LHC collaborations as well as astronomical image analysis for DESI and BOSS. To do this we exploit a new 900 TB NVRAM-based storage system recently installed at NERSC, termed a Burst Buffer. This is a novel approach to HPC storage that builds on-demand filesystems on all-SSD hardware that is placed on the high-speed network of the new Cori supercomputer. We describe the hardware and software involved in this system, and give an overview of its capabilities, before focusing in detail on how the ATLAS, ALICE and astronomical workflows were adapted to work on this system. We describe these modifications and the resulting performance results, including comparisons to other filesystems. We demonstrate that we can meet the challenging I/O requirements of HEP experiments and scale to many thousands of cores accessing a single shared storage system.

  4. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to themore » hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)« less

  5. THE INTEGRATION OF THE 241-Z BUILDING DECONTAMINATION & DECOMMISSIONING (D&D) UNDER COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION & LIABILITY ACT (CERCLA) WITH RESOURCE CONSERVATION & RECOVERY ACT (RCRA) CLOSURE AT THE PLUTONIUM FINISHING PLANT (PFP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    2007-02-20

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building.more » The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.« less

  6. SECURITY GATE FOR WEAPONS STORAGE AREA. FROM LEFT TO RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECURITY GATE FOR WEAPONS STORAGE AREA. FROM LEFT TO RIGHT, STORAGE BUILDING (BUILDING 3584), CONVENTIONAL MUNITIONS SHOP (BUILDING 3580), AND SECURITY POLICE ENTRY CONTROL BUILDING (BUILDING 3582). VIEW TO SOUTHWEST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  7. 7 CFR 301.89-16 - Compensation for grain storage facilities, flour millers, National Survey participants, and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Compensation for grain storage facilities, flour... DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-16 Compensation for grain storage facilities, flour... the 1999-2000 and subsequent crop seasons. Owners of grain storage facilities, flour millers, and...

  8. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  9. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  10. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  11. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  12. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  13. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  14. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  15. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  16. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  17. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  18. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  19. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  20. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  1. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  2. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  3. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  4. Desert architecture for educational buildings, a case study: A center for training university graduates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeid, M.

    1996-10-01

    A new program for training graduates in desert development is being implemented by the Desert Development Center (DDC) of the American University in Cairo. The facilities consist of fifty bed/sitting rooms for accommodating 100 students. Each unit consists of two rooms and a bathroom for the use of 4 students; a lecture theater which can house 120 students, with adjoining office for trainers as well as necessary facilities; a general cafeteria which can serve 120--150 persons and an adjoining dining room for teaching staff. The cafeteria building also houses the kitchen; a cold storage area; a laundry room, storerooms, sleepingmore » quarters and services for the labor force of the building complex; a system of solar water heaters; and a special sanitary sewage system for treatment of waste water produced by the building`s activities. When designing and implementing this complex, architectural elements and building philosophy based on the concept of integrating with the environment were considered. Elements included orientation heights and building materials suited to the desert environment, thick walls, outer and inner finishing materials, roofs, malkafs, floors, colors, solar heaters, lighting, green areas, windbreaks, terraces, and furniture. The paper includes a general evaluation of this educational building based on the PRA approach (Participatory Rapid Appraisal) involving those living and working in it. As a result of her position with the project, the author was able to evaluate the original designs, recommend modifications, and evaluate their implementation and fulfillment of the original goals of the projects.« less

  5. Final Environmental Assessment: Proposed Fire Crash Rescue Station, Hill Air Force Base, Utah

    DTIC Science & Technology

    2008-10-02

    storage shed (Building 16) would be demolished and converted to parking ( see Figure 1 for the approximate locations). 1.3 Need for the Action The...existing facilities ( see Section 2.3.3.1), and other potential locations for siting the proposed fire crash rescue station ( see Section 2.3.3.2). 2.3...during scoping meetings, but eliminated from detailed consideration ( see Section 1.7.3) include: • geology and surface soils (seismicity, topography

  6. KSC-04PD-0019

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Endeavour settles into place inside the Vehicle Assembly Building (VAB) where it has been moved for temporary storage. It left the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  7. Defense Infrastructure: DOD’s 2013 Facilities Corrosion Study Addressed Reporting Elements

    DTIC Science & Technology

    2014-03-27

    the coating system to metal structures helped prevent corrosion and provided resistance to fire . For the second element, to review a sampling of...noted, was to apply an epoxy coating system to metal structures to prevent corrosion and provide fire resistance. In 2006, DOD applied an epoxy... heat exchange  Fuel distribution  Plumbing  Bridge  Fuel storage  Roof  Building exterior—paint  Generator  Signage  Compressor  Hot water

  8. STORAGE/SEDIMENTATION FACILITIES FOR CONTROL OF STORM AND COMBINED SEWER OVERFLOW: DESIGN MANUAL

    EPA Science Inventory

    This manual describes applications of storage facilities in wet-weather flow management and presents step-by-step procedures for analysis and design of storage-treatment facilities. Retention, detention, and sedimentation storage information is classified and described. Internati...

  9. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  10. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  11. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  12. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  13. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  14. 36 CFR 1232.14 - What requirements must an agency meet before it transfers records to a records storage facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agency meet before it transfers records to a records storage facility? 1232.14 Section 1232.14 Parks... RECORDS TO RECORDS STORAGE FACILITIES § 1232.14 What requirements must an agency meet before it transfers records to a records storage facility? An agency must meet the following requirements before it transfers...

  15. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for themore » facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.« less

  16. Feasibility Study for an Asymmetric B Factory Based on PEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattapadhyay, A.; Hitlin, D.; Porter, F.

    This report addresses the feasibility of designing and constructing an asymmetric B-factory based on the PEP storage ring at SLAC that can ultimately reach a luminosity of 1 X 10{sup 34} cm{sup -2}s{sup -1}. Such a facility, operating at the {gamma}(4S) resonance, could be used to study mixing, rate decays, and CP violation in the B{bar B} system, and could also study tau and charm physics. The essential accelerator physics, engineering, and technology issues that must be addressed to successfully build this exciting and challenging facility are identified, and possible solutions, or R and D that will reasonable lead tomore » such solutions, are described.« less

  17. Adaptation of the South-West Wing of Collegium Chemicum of Adam Mickiewicz University in Poznań for Storage Facilities/ Adaptacja Południowo-Zachodniego Skrzydła Budynku Collegium Chemicum Uam W Poznaniu Na Cele Magazynowe

    NASA Astrophysics Data System (ADS)

    Ścigałło, Jacek

    2015-06-01

    The article refers to the problems of adaptation of Collegium Chemicum facilities belonging to Adam Mickiewicz Uniwersity in Poznań to its storage needs. The subject building is situated in Grunwaldzka Street in Poznań. In the introduction part, the building and its structural solutions are described. The results of the materials research and the measurements of the used reinforcement have been presented. The structure diagnostic analyses were performed basing on measurements and research. The analysis allowed the determination of the limit loads. The results of the performed analysis of the current state turned out to be unsatisfactory, not only in terms of the planned storage load but also in terms of the current load state, as was shown by the construction analysis. W pracy przedstawiono problemy związane z adaptacją budynku dydaktycznego Collegium Chemicum przy ul. Grunwaldzkiej w Poznaniu na cele magazynowe Biblioteki Głównej UAM. Na wstępie opisano badany budynek oraz scharakteryzowano zastosowane w nim rozwiązania konstrukcyjne. Przedstawiono wyniki wykonanych badań materiałowych oraz pomiarów inwentaryzacyjnych zastosowanego zbrojenia. Na podstawie wykonanych pomiarów i badań przeprowadzono analizę diagnostyczną konstrukcji, która pozwoliła na wyznaczenie dopuszczalnych wartości obciążeń powierzchni stropowych. Wyniki wykonanej analizy konstrukcji w stanie istniejącym okazały się dalece niezadowalające nie tylko z punktu widzenia planowanych, znacznych obciążeń magazynowych. Analiza wykazała bowiem, że konstrukcja jest już znacznie przeciążona w aktualnym stanie jej obciążenia

  18. 77 FR 31841 - Notice of Applications for Authorization To Abandon Facilities and Services and To Acquire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... To Abandon Facilities and Services and To Acquire Facilities by Merger Steuben Gas Storage Company... Field Storage Facilities (Adrian Field) which Steuben operates pursuant to certificates of public... authorization to charge market based rates following its acquisition of the Adrian Field Storage Facility. The...

  19. 63. CONTEXT VIEW LOOKING WEST OF BUILDING 372 (HAZARDOUS STORAGE) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. CONTEXT VIEW LOOKING WEST OF BUILDING 372 (HAZARDOUS STORAGE) IN BASE SPARES AREA WITH BUILDING 370 (ADMINISTRATIVE OFFICE BUILDING) IN BACKGROUND. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  20. Towards a 4{sup th} generation storage ring at the Canadian Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallin, Les; Wurtz, Ward

    2016-07-27

    Demands from beamline scientists for more brilliant sources of synchrotron radiation have resulted in the emergence of 4{sup th} generation (diffraction-limited) storage rings. The practical development of the multi-bend achromat (MBA) concept by MAX IV lab has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options. For a new low emittance source in the existing CLS tunnel a decrease in electron energy would be required. A machine similar to the ALS upgrade couldmore » be contemplated. To achieve low emittance at our present energy of 2.9 GeV a new storage ring is desirable. Several options have been investigated. These designs use extremely strong focusing magnets to achieve extremely low emittances in compact lattice achromats.« less

  1. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  2. Public Preferences Related to Radioactive Waste Management in the United States: Methodology and Response Reference Report for the 2016 Energy and Environment Survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika

    This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less

  3. Resolving Past Liabilities for Future Reduction in Greenhouse Gases; Nuclear Energy and the Outstanding Federal Liability of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Donohue, Jay

    This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.

  4. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  5. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  6. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  7. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  8. 18 CFR 157.213 - Underground storage field facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...

  9. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  10. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  11. 18 CFR 157.213 - Underground storage field facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...

  12. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  13. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  14. 1. VIEW OF PATTERN STORAGE BUILDING NO. 5 (wooden structure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF PATTERN STORAGE BUILDING NO. 5 (wooden structure to right) AND NO. 6 (brick structure to the left, ca. 1891) ON THE EASTERN BANK OF THE STONY CREEK RIVER. Brick foundation for the pump machinery and brick conduit tunnel are still intact in the basement of Pattern Storage Building No. 6. - Johnson Steel Street Rail Company, Pattern Storage Building, 525 Central Avenue, Johnstown, Cambria County, PA

  15. Spatial distributions of heating, cooling, and industrial degree-days in Turkey

    NASA Astrophysics Data System (ADS)

    Yildiz, I.; Sosaoglu, B.

    2007-11-01

    The degree-day method is commonly used to estimate energy consumption for heating and cooling in residential, commercial and industrial buildings, as well as in greenhouses, livestock facilities, storage facilities and warehouses. This article presents monthly and yearly averages and spatial distributions of heating, cooling, and industrial degree-days at the base temperatures of 18 °C and 20 °C, 18 °C and 24 °C, and 7 °C and 13 °C, respectively; as well as the corresponding number of days in Turkey. The findings presented here will facilitate the estimation of heating and cooling energy consumption for any residential, commercial and industrial buildings in Turkey, for any period of time (monthly, seasonal, etc.). From this analysis it will also be possible to compare and design alternative building systems in terms of energy efficiencies. If one prefers to use set point temperatures to indicate the resumption of the heating season would also be possible using the provided information in this article. In addition, utility companies and manufacturing/marketing companies of HVAC systems would be able to easily determine the demand, marketing strategies and policies based on the findings in this study.

  16. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  17. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...

  18. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  19. 27 CFR 19.79 - Discontinuance of storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Discontinuance of storage... Provisions Activities Not Subject to This Part § 19.79 Discontinuance of storage facilities. When the appropriate TTB officer finds that any facilities for the storage of spirits on bonded premises are unsafe or...

  20. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  1. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...

  2. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  3. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  4. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  5. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  6. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Specimen and data storage facilities. 160.51 Section 160.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space...

  7. 12. NORTHWEST CORNER OF STORAGE MAGAZINE (BUILDING 342) IN STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NORTHWEST CORNER OF STORAGE MAGAZINE (BUILDING 342) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  8. Credit BG. View looking northeast (42°) at storage building used ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking northeast (42°) at storage building used to store equipment near southeast edge of aircraft apron in the vicinity of Building 4305 (Unicon Portable Hangar) - Edwards Air Force Base, North Base, Equipment Storage Building, East of Second Street, Boron, Kern County, CA

  9. Lessons Learned from the Puerto Rico Battery Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility ismore » at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.« less

  10. A Facile Molten-Salt Route for Large-Scale Synthesis of NiFe2O4 Nanoplates with Enhanced Lithium Storage Capability.

    PubMed

    Huang, Gang; Du, Xinchuan; Zhang, Feifei; Yin, Dongming; Wang, Limin

    2015-09-28

    Binary metal oxides have been deemed as a promising class of electrode materials for high-performance lithium ion batteries owing to their higher conductivity and electrochemical activity than corresponding monometal oxides. Here, NiFe2O4 nanoplates consisting of nanosized building blocks have been successfully fabricated by a facile, large-scale NaCl and KCl molten-salt route, and the changes in the morphology of NiFe2O4 as a function of the molten-salt amount have been systemically investigated. The results indicate that the molten-salt amount mainly influences the diameter and thickness of the NiFe2O4 nanoplates as well as the morphology of the nanosized building blocks. Cyclic voltammetry (CV) and galvanostatic charge-discharge measurements have been conducted to evaluate the lithium storage properties of the NiFe2O4 nanoplates prepared with a Ni(NO3)2/Fe(NO3)3/KCl/NaCl molar ratio of 1:2:20:60. A high reversible capacity of 888 mAh g(-1) is delivered over 100 cycles at a current density of 100 mA g(-1). Even at a current density of 5000 mA g(-1) , the discharge capacity could still reach 173 mAh g(-1). Such excellent electrochemical performances of the NiFe2O4 nanoplates are contributed to the short Li(+) diffusion distance of the nanosized building blocks and the synergetic effect of the Ni(2+) and Fe(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  12. View from east to west of PAR site storage building; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from east to west of PAR site storage building; formerly PAR dispensary - Stanley R. Mickelsen Safeguard Complex, Storage Building, Across street from Family Housing Units 110 & 111, Nekoma, Cavalier County, ND

  13. Chemical Stockpile Disposal Program. Risk Analysis of the Continued Storage of Chemical Munitions

    DTIC Science & Technology

    1987-08-01

    Grass Army Depot LIC liquid incinerator LPF leakers processing facility LPG liquified propane gas MD)B munitions demilitarization building"I 1DIA mu...screening process , con- sidering both frequency and magnitude of agent release, are included in the deliverables of this project. S.1.3. Scove of Study...simplistic terms the PRA process focuses on answering the fol- •• loving three basic questions: 1. Wh.t can go wrong? 2. How frequently is it expected to

  14. Massachusetts Institute of Technology Lincoln Laboratory Facilities Replacement on Hanscom Air Force Base Phase 1 Final Environmental Assessment

    DTIC Science & Technology

    2014-07-24

    Service UST Underground Storage Tank VC Vitrified Clay VOCs Volatile Organic Compounds W Watts 1 1.0 PURPOSE AND NEED FOR ACTION 1.1 INTRODUCTION The...discharged to sanitary drain and the solids slurry is hauled off site for disposal Fluoride drain: welded stainless steel drain piping from wet...diameter vitrified clay (VC) gravity sewer collection pipe, flowing north/northeast to the upper pumping station at Building 1306, is located within the

  15. KSC-04PD-0016

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Endeavour is towed in front of the Vehicle Assembly Building (VAB) where it is going for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  16. KSC-04PD-0015

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Endeavour is towed in front of the Vehicle Assembly Building (VAB) where it is going for temporary storage. The orbiter has been moved from the Orbiter Processing Facility (OPF) to allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the OPF includes annual validation of the bays cranes, work platforms, lifting mechanisms and jack stands. Endeavour will remain in the VAB for approximately 12 days, then return to the OPF.

  17. Safety analysis report for packaging (onsite) multicanister overpack cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  18. CPA ups storage at Lavera site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, R.

    Compagnie Parisienne des Asphaltes (CPA; Paris) and its subsidiary Pacsud -owned 65% by CPA and 35% by Shell Chimie (Paris) - have inaugurated their new chemicals storage site at Lavera, France, in the Europort South complex near Marseilles. The facilities, with 60,000-m.t./year capacity, also include a barreling plant that will have output of up to 250 bbl/hour when it comes onstream next spring. Total investment for these facilities amount to F122 million ($22.5 million), including F22 million for the barreling unit. CPA, France's number two storage specialist, after LB Chimie (Paris), is jointly owned by investment company Union Normandie (60%),more » Elf Aquitaine (Paris; 20%), and Total (Paris; 20%). Adding to its existing French storage sites at Dunkirk and Rouen, CPA says it decided to build on the Pacsud venture because it considered it attractive to invest in the petroleum and petrochemical complex of Fos-Berre-Lavera, particularly since the present trend in the oil and chemical industries is to subcontract all ancillary functions, especially logistics. CPA general manager Rafic Charles Rathle says that customer requirements and the role of the service provider are changing. With that in mid, CPA, in addition to providing storage terminals, converts its depots into distribution and packing centers. At Lavera the company has taken over storage, blending, and barreling operations for Pacsud and its direct customers. For example, Pacsud has a long-term contract with Shell Chimie for the latter's additive production at a 10,000-m.t./year rate. Another long-term contract is being negotiated, but the identity of the customer was not revealed.« less

  19. 68. INTERIOR SHOT OF ENTRANCE TO BUILDING 272 (PLUTONIUM STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. INTERIOR SHOT OF ENTRANCE TO BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING WEST. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  20. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) You must install and...

  1. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) For each control device...

  2. 78 FR 15712 - Arlington Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Storage Company, LLC; Notice of Application Take notice that on February 26, 2013, Arlington Storage... Commission's regulations, requesting authorization to expand its Seneca Lake natural gas storage facility... ``Gallery 2''), previously used for propane storage, and related facilities to natural gas storage. The...

  3. A public health initiative for reducing access to pesticides as a means to committing suicide: findings from a qualitative study.

    PubMed

    Mohanraj, Rani; Kumar, Shuba; Manikandan, Sarojini; Kannaiyan, Veerapandian; Vijayakumar, Lakshmi

    2014-08-01

    Widespread use of pesticides among farmers in rural India, provides an easy means for suicide. A public health initiative involving storage of pesticides in a central storage facility could be a possible strategy for reducing mortality and morbidity related to pesticide poisoning. This qualitative study explored community perceptions towards a central pesticide storage facility in villages in rural South India. Sixteen focus group discussions held with consenting adults from intervention and control villages were followed by eight more a year after initiation of the storage facility. Analysis revealed four themes, namely, reasons for committing suicide and methods used, exposure to pesticides and first-aid practices, storage and disposal of pesticides, and perceptions towards the storage facility. The facility was appreciated as a means of preventing suicides and for providing a safe haven for pesticide storage. The participatory process that guided its design, construction and location ensured its acceptability. Use of qualitative methods helped provide deep insights into the phenomenon of pesticide suicide and aided the understanding of community perceptions towards the storage facility. The study suggests that communal storage of pesticides could be an important step towards reducing pesticide suicides in rural areas.

  4. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  5. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  6. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  7. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  8. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  9. Contamination source review for Building E3236, Edgewood Area, Aberdeen Proving Ground, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Smits, M.P.; Draugelis, A.K.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building. This report provides the resultsmore » of the contamination source review for Building E3236. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot- scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.« less

  10. Contamination source review for Building E3642, Edgewood Area, Aberdeen Proving Ground, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booher, M.N.; O`Reilly, D.P.; Draugelis, A.K.

    1995-09-01

    Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of these buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG. The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination sourcemore » review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation and review of available records regarding underground storage tanks associated with the building. This report provides the results of the contamination source review for Building E3642.« less

  11. Fort McClellan, ammunition storage building 4404. Planar view of rear ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Fort McClellan, ammunition storage building 4404. Planar view of rear (west) side, view towards the east northeast without scale - Fort McClellan Ammunition Storage Area, Building No. 4404, Second Avenue (Magazine Road), Anniston, Calhoun County, AL

  12. 36 CFR 1238.28 - What must agencies do when sending permanent microform records to a records storage facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sending permanent microform records to a records storage facility? 1238.28 Section 1238.28 Parks, Forests... MANAGEMENT Storage, Use, and Disposition of Microform Records § 1238.28 What must agencies do when sending permanent microform records to a records storage facility? Agencies must: (a) Follow the procedures in part...

  13. 36 CFR 1238.28 - What must agencies do when sending permanent microform records to a records storage facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sending permanent microform records to a records storage facility? 1238.28 Section 1238.28 Parks, Forests... MANAGEMENT Storage, Use, and Disposition of Microform Records § 1238.28 What must agencies do when sending permanent microform records to a records storage facility? Agencies must: (a) Follow the procedures in part...

  14. Sanitary evaluation of domestic water supply facilities with storage tanks and detection of Aeromonas, enteric and related bacteria in domestic water facilities in Okinawa Prefecture of Japan.

    PubMed

    Miyagi, Kazufumi; Sano, Kouichi; Hirai, Itaru

    2017-08-01

    To provide for temporary restrictions of the public water supply system, storage tanks are commonly installed in the domestic water systems of houses and apartment buildings in Okinawa Prefecture of Japan. To learn more about the sanitary condition and management of these water supply facilities with storage tanks (hereafter called "storage tank water systems") and the extent of bacterial contamination of water from these facilities, we investigated their usage and the existence of Aeromonas, enteric and related bacteria. Verbal interviews concerning the use and management of the storage tank water systems were carried out in each randomly sampled household. A total of 54 water samples were collected for bacteriological and physicochemical examinations. Conventional methods were used for total viable count, fecal coliforms, identification of bacteria such as Aeromonas, Enterobacteriaceae and non-fermentative Gram-negative rods (NF-GNR), and measurement of residual chlorine. On Aeromonas species, tests for putative virulence factor and an identification using 16S rRNA and rpoB genes were also performed. Water from the water storage systems was reported to be consumed directly without boiling in 22 of the 54 houses (40.7%). 31 of the sampled houses had installed water storage tanks of more than 1 cubic meter (m 3 ) per inhabitant, and in 21 of the sampled houses, the tank had never been cleaned. In all samples, the total viable count and fecal coliforms did not exceed quality levels prescribed by Japanese waterworks law. Although the quantity of bacteria detected was not high, 23 NF-GNR, 14 Enterobacteriaceae and 5 Aeromonas were isolated in 42.6%, 7.4% and 3.7% of samples respectively. One isolated A. hydrophila and four A. caviae possessed various putative virulence factors, especially A. hydrophila which had diverse putative pathogenic genes such as aer, hlyA, act, alt, ast, ser, and dam. Many bacteria were isolated when the concentration of residual chlorine was below 0.1 mg/l and the water temperature was above 20 °C. These results suggest that elevated water temperature and mismatch between tank size and water demand lead to loss of residual chlorine in tap water. Therefore, to minimize growth of aquatic bacteria such as Aeromonas spp. and Pseudomonas spp., we recommend that an appropriate size tank and/or volume of stored water is always used, and also suggest installation of some means of reducing water temperature such as shading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    NASA Astrophysics Data System (ADS)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.

  16. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  17. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  18. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  19. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  20. PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. 5. SOUTHEAST CORNER OF BUILDING 260 (STORAGE STRUCTURE A) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTHEAST CORNER OF BUILDING 260 (STORAGE STRUCTURE A) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  2. 14. WEST FRONT ELEVATION OF BUILDING 343 (STORAGE MAGAZINE) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WEST FRONT ELEVATION OF BUILDING 343 (STORAGE MAGAZINE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  3. 11. WEST FRONT ELEVATION OF BUILDING 342 (STORAGE MAGAZINE) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. WEST FRONT ELEVATION OF BUILDING 342 (STORAGE MAGAZINE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  4. 9. FERTILIZER PLANT AND STORAGE BUILDINGS, LOOKING EAST FROM BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FERTILIZER PLANT AND STORAGE BUILDINGS, LOOKING EAST FROM BUILDING 149; LIVESTOCK HOLDING BUILDINGS (HOG AND SHEEP HOTELS) OCCUPIED OPEN AREA IN FOREGROUND - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  5. ALF: a facility for x-ray lithography II--a progress report

    NASA Astrophysics Data System (ADS)

    Lesoine, L. G.; Kukkonen, Kenneth W.; Leavey, Jeffrey A.

    1992-07-01

    In our previous paper which we presented here two years ago, we described the ALF (Advanced Lithography Facility), IBM's new facility for X-ray lithography which was built as an addition to the Advanced Semiconductor Technology Center at IBM's semiconductor plant in Hopewell Jct., NY. At that time, we described the structure, its utilities, facilities and special features such as the radiation shielding, control room, clean room and vibration resistant design. The building has been completed and occupied. By the time this paper is presented the storage ring will be commissioned, the clean room occupied, and two beamlines with one stepper operational. In this paper we will review the successful completion of the facility with its associated hardware. The installation of the synchrotron will be described elsewhere. We will also discuss the first measurements of vibration, clean room cleanliness and the effectiveness of the radiation shielding. The ALF was completed on schedule and cost objectives were met. This is attributed to careful planning, close cooperation among all the parties involved from the technical team in IBM Research, the system vendor (Oxford Instruments of Oxford England) to the many contractors and subcontractors and to strong support from IBM senior management. All the planned building specifications were met and the facility has come on-line with a minimum of problems. Most important, the initial measurements show that the radiation shielding plan is sound and that with a few modifications the dose limit of 10% of background will be met. Any concerns about an electron accelerator and synchrotron in an industrial setting have been eliminated.

  6. B-1 and B-3 Test Stands at NASA’s Plum Brook Station

    NASA Image and Video Library

    1966-09-21

    Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.

  7. Log transfer and storage facilities in Southeast Alaska: a review.

    Treesearch

    Tamra L. Faris; Kenneth D. Vaughan

    1985-01-01

    The volume of timber harvested in southeast Alaska between 1909 and 1983 was 14,689 million board feet; nearly all was transported on water to various destinations for processing. In 1971 there were 69 active log transfer and storage facilities and 38 raft collecting and storage facilities in southeast Alaska. In 1983 there were 90 log transfer sites, 49 log storage...

  8. 36 CFR § 1238.28 - What must agencies do when sending permanent microform records to a records storage facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sending permanent microform records to a records storage facility? § 1238.28 Section § 1238.28 Parks... RECORDS MANAGEMENT Storage, Use, and Disposition of Microform Records § 1238.28 What must agencies do when sending permanent microform records to a records storage facility? Agencies must: (a) Follow the...

  9. 3. CONTEXT VIEW LOOKING NORTHWEST OF BUILDING 259 (NORTH SENTRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONTEXT VIEW LOOKING NORTHWEST OF BUILDING 259 (NORTH SENTRY POST) IN STORAGE ARE WITH BUILDING 258 (STORAGE IGLOO) IN BACKGROUND. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  10. 8. CONTEXT VIEW LOOKING NORTHWEST OF BUILDING 262 (SOUTH SENTRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. CONTEXT VIEW LOOKING NORTHWEST OF BUILDING 262 (SOUTH SENTRY POST) IN STORAGE AREA WITH BUILDING 260 (STORAGE STRUCTURE A) AT LEFT. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  11. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  12. 78. BUILDINGS NO. 537, GENERAL STORAGE (DRY HOUSE), NO. 538, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. BUILDINGS NO. 537, GENERAL STORAGE (DRY HOUSE), NO. 538, GENERAL STORAGE (GRAPHITING & SORTING HOUSE), LOOKING SOUTHEAST AT NORTHWEST AND SOUTHWEST SIDES. BUILDING NO. 537 WAS ONCE USED AS A DRY HOUSE, AND BUILDING NO. 538 AS A GLAZING (GRAPHITING) AND SORTING HOUSE. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  13. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  14. 15. INTERIOR VIEW LOOKING SOUTHWEST OF BUILDING 343 (STORAGE MAGAZINE) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR VIEW LOOKING SOUTHWEST OF BUILDING 343 (STORAGE MAGAZINE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  15. 4. WEST REAR ELEVATION OF BUILDING 260 (STORAGE STRUCTURE A) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WEST REAR ELEVATION OF BUILDING 260 (STORAGE STRUCTURE A) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  16. 1. Exterior view of Components Test Laboratory (T27), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Exterior view of Components Test Laboratory (T-27), looking southeast from hill north of structure. The building wing in the right foreground houses Test Cell 8 (oxidizer) and the oxidizer storage pit or vault. Test Cell 10 is located in the center background, Test Cell 9 is at the far left, and the equipment room is in the immediate left foreground. The control room is in the center of the structure and abuts the aforementioned test cell and equipment room wings. This structure served as a facility for testing, handling, and storage of Titan II's hydrazine- and nitrogen teteroxide-based propellant system components for compatability determinations. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. Dryden Flight Research Center Chemical Pharmacy Program

    NASA Technical Reports Server (NTRS)

    Davis, Bette

    1997-01-01

    The Dryden Flight Research Center (DFRC) Chemical Pharmacy "Crib" is a chemical sharing system which loans chemicals to users, rather than issuing them or having each individual organization or group purchasing the chemicals. This cooperative system of sharing chemicals eliminates multiple ownership of the same chemicals and also eliminates stockpiles. Chemical management duties are eliminated for each of the participating organizations. The chemical storage issues, hazards and responsibilities are eliminated. The system also ensures safe storage of chemicals and proper disposal practices. The purpose of this program is to reduce the total releases and transfers of toxic chemicals. The initial cost of the program to DFRC was $585,000. A savings of $69,000 per year has been estimated for the Center. This savings includes the reduced costs in purchasing, disposal and chemical inventory/storage responsibilities. DFRC has chemicals stored in 47 buildings and at 289 locations. When the program is fully implemented throughout the Center, there will be three chemical locations at this facility. The benefits of this program are the elimination of chemical management duties; elimination of the hazard associated with chemical storage; elimination of stockpiles; assurance of safe storage; assurance of proper disposal practices; assurance of a safer workplace; and more accurate emissions reports.

  18. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  19. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  20. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  1. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  2. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  3. 17. NORTHEAST CORNER OF BUILDING 345 (ENTRY CONTROL BUILDING) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. NORTHEAST CORNER OF BUILDING 345 (ENTRY CONTROL BUILDING) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  4. Management of Disused Radioactive Sealed Sources in the Slovak Republic - 12100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzer, Peter

    2012-07-01

    After splitting-up the Czechoslovak Federation in 1993, the system of management of institutional radioactive waste, where disused sources represent its significant part, had had to build from beginning, since all corresponding activities had remained in the Czech part of the Federation. The paper presents the development of legislative and institutional framework of the disused radioactive sealed source management, development of the national inventory and development of management practices. According the Governmental decision (1994), the management of disused sealed sources and institutional radioactive waste at whole was based on maximal utilization of facilities inside nuclear facilities, particularly in the NPP A1more » (shut down in the past, currently under decommissioning). This approach has been recently changing by Governmental decision (2009) to construct 'non-nuclear facility' - central storage for remained disused sealed sources collected from the places of use, where they were stored in some cases for tens of years. The approaches to siting and construction of this storage facility will be presented, as well as the current approaches to solution of the disused radioactive sources final disposal. Environmental impact assessment process in regard to the given facility/activity is slowly drawing to a close. The final statement of the Ministry of Environment can be expected in January or February 2012, probably recommending option 1 as preferred [6]. According to the Slovak legislation, the final statement has a status of recommendation for ongoing processes leading to the siting license. Very recently, in December 2012, Government of the Slovak republic decided to postpone putting the facility into operation by the end of June, 2014. (author)« less

  5. 18 CFR 157.213 - Underground storage field facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... storage reservoir and within the buffer area; (4) A detailed description of present storage operations and..., provided the storage facility's certificated physical parameters—including total inventory, reservoir pressure, reservoir and buffer boundaries, and certificated capacity remain unchanged—and provided...

  6. 42. CONTEXT VIEW LOOKING WEST OF BUILDING 269 (PAINT BUILDING) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. CONTEXT VIEW LOOKING WEST OF BUILDING 269 (PAINT BUILDING) IN ASSEMBLY AREA SHOWING BUILDING 272 (STORAGE STRUCTURE A-2) IN BACKGROUND. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  7. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  8. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  9. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  10. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  11. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  12. 16. EAST FRONT ELEVATION OF BUILDING 345 (ENTRY CONTROL BUILDING) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EAST FRONT ELEVATION OF BUILDING 345 (ENTRY CONTROL BUILDING) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  13. 16. GENERAL VIEW OF THE DIAMOND MINEYARD. ON THE LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. GENERAL VIEW OF THE DIAMOND MINEYARD. ON THE LEFT IS THE CHIPPY HOIST HOUSE, THE MAIN HOIST HOUSE IS IN THE CENTER, AND THE SUPER HEATER, WHICH WAS USED FOR HEATING COMPRESSED AIR, IS ON THE RIGHT. THE SMALL BUILDING WAS USED FOR CLEANING ROPE CLIPS, AND FOR TOILET FACILITIES. THERE IS ALSO A TAR HOUSE, WHERE TAR WAS STORED AND KEPT WARM. ORIGINALLY EACH MINE HAD ITS OWN TAR STORAGE, BUT IT WAS EVENTUALLY CONSOLIDATED AT THE DIAMOND MINE - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  14. Final Environmental Assessment for Construction and Operation of the Edgemeade Readiness Center and Tactical Unmanned Aerial System Storage and Maintenance Facility Idaho Army National Guard Elmore County, Idaho

    DTIC Science & Technology

    2010-07-01

    Edgemeade Readiness Center are public lands managed by the BLM. These areas are primarily composed of undeveloped basalt plains dominated by 4.0 Affected...areas where new buildings would be constructed. 4.10.2 Existing Conditions Basaltic formations in the general vicinity are in abundance. The Snake...River has cut down through many of these formations leaving basalt plains and terraces several hundred feet above the valley floor. Subsequently

  15. 1. VIEW OF THE CONTROL ROOM FOR THE XY RETRIEVER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE CONTROL ROOM FOR THE X-Y RETRIEVER. USING THE X-Y RETRIEVER, OPERATORS RETRIEVED PLUTONIUM METAL FROM THE PLUTONIUM STORAGE VAULTS (IN MODULE K) AND CONVEYED IT TO THE X-Y SHUTTLE AREA WHERE IT WAS CUT AND WEIGHED. FROM THE SHUTTLE AREA THE PLUTONIUM WAS CONVEYED TO MODULES A, J OR K FOR CASTING, OR MODULE B FOR ROLLING AND FORMING. (5/17/71) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  16. PLAN VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS. INL DRAWING NUMBER 200-0603-00-706-051285. ALTERNATE ID NUMBER CPP-D-1285. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  18. 1. EXTERIOR OF BUILDING 402, CIVIL ENGINEERING STORAGE, LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OF BUILDING 402, CIVIL ENGINEERING STORAGE, LOOKING SOUTH. - Mill Valley Air Force Station, Civil Engineering Storage, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  19. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sitesmore » and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install the necessary integrated systems to process the accumulated MVST Facilities SL inventory at the TWPC thus enabling safe and effective disposal of the waste. This BCP does not include work to support current MVST Facility Surveillance and Maintenance programs or the ORNL Building 3019 U-233 Disposition project, since they are not currently part of the TWPC prime contract. The purpose of the environmental compliance strategy is to identify the environmental permits and other required regulatory documents necessary for the construction and operation of the SL- PFB at the TWPC, Oak Ridge, TN. The permits and other regulatory documents identified are necessary to comply with the environmental laws and regulations of DOE Orders, and other requirements documented in the SL-PFB, Safety Design Strategy (SDS), SL-A-AD-002, R0 draft, and the Systems, Function and Requirements Document (SFRD), SL-X-AD-002, R1 draft. This compliance strategy is considered a 'living strategy' and it is anticipated that it will be revised as design progresses and more detail is known. The design basis on which this environmental permitting and compliance strategy is based is the Wastren Advantage, Inc., (WAI), TWPC, SL-PFB (WAI-BL-B.01.06) baseline. (authors)« less

  20. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.

    2003-02-26

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less

  1. BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. High-level waste tank farm set point document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREASmore » listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.« less

  3. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  4. 5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING SOUTHEAST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  5. 4. DETAIL VIEW OF WINDOW AT CHEMICAL STORAGE BUILDING (#1776), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF WINDOW AT CHEMICAL STORAGE BUILDING (#1776), LOOKING EAST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  6. Advanced human-machine interface for collaborative building control

    DOEpatents

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  7. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CROWE, R.D.; PIEPHO, M.G.

    2000-03-23

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  8. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort wasmore » designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.« less

  9. Storage for greater-than-Class C low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beitel, G.A.

    1991-12-31

    EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less

  10. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  11. 36 CFR § 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage...

  12. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  13. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  14. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  15. 3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING (#1776), LOOKING NORTHWEST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  16. 62. SOUTH CORNER OF BUILDING 372 (HAZARDOUS STORAGE) IN BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. SOUTH CORNER OF BUILDING 372 (HAZARDOUS STORAGE) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  17. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)« less

  18. Building G interior, second floor oblique looking southwest, showing storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building G interior, second floor oblique looking southwest, showing storage area for samples - Daniel F. Waters Germantown Dye Works, Building G, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA

  19. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  20. Space Station tethered refueling facility operations

    NASA Technical Reports Server (NTRS)

    Kiefel, E. R.; Rudolph, L. K.; Fester, D. A.

    1986-01-01

    The space-based orbital transfer vehicle will require a large cryogenic fuel storage facility at the Space Station. An alternative to fuel storage onboard the Space Station, is on a tethered orbital refueling facility (TORF) which is separated from the Space Station by a sufficient distance to induce a gravity gradient to settle the propellants. Facility operations are a major concern associated with a tethered LO2/LH2 storage depot. A study was carried out to analyze these operations so as to identify the preferred TORF deployment direction (up or down) and whether the TORF should be permanently or intermittently deployed. The analyses considered safety, contamination, rendezvous, servicing, transportation rate, communication, and viewing. An upwardly, intermittently deployed facility is the preferred configuration for a tethered cryogenic fuel storage.

  1. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayancsik, B.A.

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less

  2. Financial Assurance Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The Resource Conservation and Recovery Act (RCRA) requires all treatment, storage and disposal facilities (TSDFs) to demonstrate that they will have the financial resources to properly close the facility

  3. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  4. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  5. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  6. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  7. 61. SOUTHEAST FRONT ELEVATION OF BUILDING 372 (HAZARDOUS STORAGE) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. SOUTHEAST FRONT ELEVATION OF BUILDING 372 (HAZARDOUS STORAGE) IN BASE SPARES AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  8. RLUOB Celebration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Amy S.; Powell, Kimberly S.

    Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility Office Building (RLUOB), is also its first to achieve both the Leadership in Energy and Environmental Design (LEED) status and LEED Gold certification from the U.S. Green Building Council (USGBC). From its robust design to its advanced scientific equipment, RLUOB is essential to the Laboratory's national security mission in support of the National Nuclear Security Administration's (NNSA) nuclear weapons program. At more than 200,000 square feet, this building is the only radiological facility within the Department of Energy to have attained LEED Gold, which contributes to NNSA's achievement towards themore » high performance sustainable building goals outlined in Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance. 'As we celebrate RLUOB being completed almost one year ahead of schedule and having achieved LEED certification at the Gold level, we approach our plutonium mission at Los Alamos and NNSA with a great sense of achievement,' said Don Cook, NNSA's deputy administrator for defense programs. 'RLUOB adds a major component to NNSA's plutonium support capability and RLUOB demonstrates our commitment in helping to deliver President Obama's nuclear security agenda which includes ensuring the safety, security and effectiveness of the nuclear deterrent without testing.' The facility contains laboratories for analytical chemistry and materials characterization of special nuclear material, along with space for offices, training and emergency operations. Its multi-functional purpose makes RLUOB a unique project for which LEED certification was sought. 'LEED certification was a huge goal and one we sought from the very beginning of this project,' said Laboratory Director Charlie McMillan. 'It's an important step forward, allowing us to advance national security science in modern, safer, more efficient infrastructure.' The Laboratory's project team and its contractor partners, especially in coordination with Jacobs Engineering, focused on green design and construction in LEED categories, such as sustainable sites, water efficiency, energy and atmosphere, materials and resources, indoor environmental quality and innovation in design. RLUOB's features include: (1) Building envelope design (orientation, materials and insulation) yielded a 20 percent improvement in energy performance; (2) Incorporation of building materials with 24 percent recycled content; (3) Diversion of 72 percent of construction-generated materials through reuse, recycle and salvage; (4) Roofing comprised of 93 percent highly-reflective materials to reduce heat island effects; (5) High efficiency, gas-fired hot water boilers, air-cooled chillers, thermal storage systems and variable frequency drives for compressors, fans and pumps; (6) Energy efficient lighting for interiors, exteriors, process glove boxes and fume hoods; (7) Water efficient fixtures resulting in 30 percent reduction in usage; (8) Low emission paints and carpeting for improved indoor air quality; (9) Landscaping that doesn't require permanent irrigation; (10) Enhanced building system commissioning; and (11) Comprehensive transportation alternatives, including public transportation, bicycle storage and changing rooms, and a refueling station for government vehicles using alternative fuels. 'RLUOB's LEED certification demonstrates tremendous leadership in green building,' says Rick Fedrizzi, president and CEO of USGBC. 'The urgency of our mission has challenged the industry to move faster and reach further than ever before, and RLUOB serves as a prime example of just how much we can accomplish.'« less

  9. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What documentation must an agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks... RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  10. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  11. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  12. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  13. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  14. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  15. 36 CFR § 1232.14 - What requirements must an agency meet before it transfers records to a records storage facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agency meet before it transfers records to a records storage facility? § 1232.14 Section § 1232.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.14 What requirements must an agency meet before it...

  16. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  17. 303-K Storage Facility closure plan. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Codemore » (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less

  18. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Michael; Momber, Ilan; Megel, Olivier

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heatmore » and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.« less

  19. NREL's Energy Storage and REopt Teams Awarded $525k from TCF to Study

    Science.gov Websites

    Commercial Viability of Optimal, Reliable Building-Integrated Energy Storage | News | NREL NREL's Energy Storage and REopt Teams Awarded $525k from TCF to Study Commercial Viability of Optimal Study Commercial Viability of Optimal, Reliable Building-Integrated Energy Storage November 14, 2017

  20. Oblique view of rear and south sides of ammunition storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of rear and south sides of ammunition storage buildings 4403 and 4404, view towards the north without scale - Fort McClellan Ammunition Storage Area, Building No. 4403, Second Avenue (Magazine Road), Anniston, Calhoun County, AL

  1. Oblique view of rear and south sides of ammunition storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of rear and south sides of ammunition storage buildings 4404 and 4405, view towards the north with scale - Fort McClellan Ammunition Storage Area, Building No. 4404, Second Avenue (Magazine Road), Anniston, Calhoun County, AL

  2. Oblique view of rear and south sides of ammunition storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of rear and south sides of ammunition storage buildings 4404 and 4405, view towards the north without scale - Fort McClellan Ammunition Storage Area, Building No. 4404, Second Avenue (Magazine Road), Anniston, Calhoun County, AL

  3. 45. CONTEXT VIEW LOOKING SOUTH OF BUILDING 272 (STORAGE STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. CONTEXT VIEW LOOKING SOUTH OF BUILDING 272 (STORAGE STRUCTURE A-2 IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  4. 43. EAST FRONT ELEVATION OF BUILDING 272 (STORAGE STRUCTURE A2) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. EAST FRONT ELEVATION OF BUILDING 272 (STORAGE STRUCTURE A-2) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  5. 6. DETAIL OF ENTRY ON NORTH ELEVATION OF BUILDING 260 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF ENTRY ON NORTH ELEVATION OF BUILDING 260 (STORAGE STRUCTURE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  6. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  7. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  8. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  9. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  10. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ...] Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office Park Circle, Suite 300..., operate, and maintain a new salt dome natural gas storage facility in two caverns and related facilities...

  11. 77 FR 37036 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... operation of natural gas facilities in Sheridan County and Campbell County, Wyoming and modification of underground storage facilities at its Baker Storage Reservoir in Fallon County, Montana. The details of... firm storage deliverability from its Baker Storage Reservoir that it will use to make up for declining...

  12. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. Thismore » paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)« less

  13. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  14. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  15. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  16. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  17. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gasmore » emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  19. The 10 MWe Solar Thermal Central Receiver Pilot Plant: Solar facilities design integration. Pilot-plant station manual (RADL Item 2-1). Volume 1: System description

    NASA Astrophysics Data System (ADS)

    1982-09-01

    The complete Barstow Solar Pilot Plant is described. The plant requirements and general description are presented, the mechanical, electric power, and control and instrumentation systems as well as civil engineering and structural aspects and the station buildings are described. Included in the mechanical systems are the heliostats, receiver, thermal storage system, beam characterization system, steam, water, nitrogen, and compressed air systems, chemical feed system, fire protection system, drains, sumps and the waste disposal systems, and heating, ventilating, and air conditioning systems.

  20. Management and development of local area network upgrade prototype

    NASA Technical Reports Server (NTRS)

    Fouser, T. J.

    1981-01-01

    Given the situation of having management and development users accessing a central computing facility and given the fact that these same users have the need for local computation and storage, the utilization of a commercially available networking system such as CP/NET from Digital Research provides the building blocks for communicating intelligent microsystems to file and print services. The major problems to be overcome in the implementation of such a network are the dearth of intelligent communication front-ends for the microcomputers and the lack of a rich set of management and software development tools.

  1. Solar heating and hot water system installed at Listerhill, Alabama

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  2. 36 CFR 1234.14 - What are the requirements for environmental controls for records storage facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false What are the requirements for environmental controls for records storage facilities? 1234.14 Section 1234.14 Parks, Forests, and Public... storage space that is designed to preserve them for their full retention period. New records storage...

  3. 75. VIEW OF SECOND WEAPONS STORAGE AREA IGLOO FIELD FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. VIEW OF SECOND WEAPONS STORAGE AREA IGLOO FIELD FROM ROOF OF BUILDING 328 LOOKING NORTHWEST SHOWING BUILDING 327-318. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  4. 44. NORTHWEST CORNER OF BUILDING 272 (STORAGE STRUCTURE A2) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. NORTHWEST CORNER OF BUILDING 272 (STORAGE STRUCTURE A-2) IN ASSEMBLY AREA SHOWING SHAPE OF EARTHEN BERM. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  5. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  6. Spent nuclear fuel canister storage building conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, C.E.

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  7. 3. PHOTOCOPY, ARCHITECTURAL AND STRUCTURAL PLAN, ELEVATIONS, AND SECTION DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. PHOTOCOPY, ARCHITECTURAL AND STRUCTURAL PLAN, ELEVATIONS, AND SECTION DRAWING FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  8. Seismic analyses of equipment in 2736-Z complex. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocoma, E.C.

    1995-04-01

    This report documents the structural qualification for the existing equipment when subjected to seismic loading in the Plutonium Storage Complex. It replaces in entirety Revision 0 and reconciles the U.S. Department of Energy (DOE) comments on Revision 0. The Complex consists of 2736-Z Building (plutonium storage vault), 2736-ZA Building (vault ventilation equipment building), and 2736-ZB Building (shipping/receiving, repackaging activities). The existing equipment structurally qualified in this report are the metal storage racks for 7 inch and lard cans in room 2 of Building 2736-Z; the cubicles, can holders and pedestals in rooms 1, 3, and 4 of Building 2736-Z; themore » ventilation duct including exhaust fans/motors, emergency diesel generator, and HEPA filter housing in Building 2736-ZA; the repackaging glovebox in Building 2736-ZB; and the interface duct between Buildings 2736-Z and 2736-ZA.« less

  9. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  10. 1. Credit USAF, ca. 1945. Original housed in the Records ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit USAF, ca. 1945. Original housed in the Records of the Defense Intelligence Agency. Record Group 373. National Archives. Cartographic and Architectural Branch. Washington, D.C. Oblique aerial photo 16PS5M79-1-0-46-4:3:1146-12:120003500N11745W looks northeast across North Base, then known as Muroc Flight Test Base. Rogers Dry lake is in view to the right, bordered by four hangars; 6,000 foot runway built in 1943 is in background. Fenced area in immediate foreground (not extant in 1995) was a "Chemical Storage Area" also designated a fuel storage facility on some engineering drawings; two small ponds nearby were for sewage sludge. Black square in middle of view is recently oiled or paved parking lot surrounding Building 4340 (T-73), the Recreation Hall/Chapel (not extant in 1995). - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA

  11. Retrospective dosimetry: dose evaluation using unheated and heated quartz from a radioactive waste storage building.

    PubMed

    Jain, M; Bøtter-Jensen, L; Murray, A S; Jungner, H

    2002-01-01

    In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites and particularly in nuclear installations. These materials contain natural dosemeters such as quartz, which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar in a wall of a low-level radioactive-waste storage facility containing distributed sources of 60Co and 137Cs has been investigated. Dose-depth proliles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose recorded by environmental TLDs.

  12. Introduction to the magnet and vacuum systems of an electron storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, W.T.

    An accelerator or storage ring complex is a concerted interplay of various functional systems. For the convenience of discussion we can divide it into the following systems: injector, magnet, RF, vacuum, instrumentation and control. In addition, the conventional construction of the building and radiation safety consideration are also needed and finally the beam lines, detector, data acquisition and analysis set-ups for research programs. Dr. L. Teng has given a comprehensive review of the whole complex and the operation of such a facility. I concentrate on the description of magnet and vacuum systems. Only the general function of each system andmore » the basic design concepts will be introduced, no detailed engineering practice will be given which will be best done after a machine design is produced. For further understanding and references a table of bibliography is provided at the end of the paper.« less

  13. 2. Missile transfer building, interior, transporter/erector on left, storage and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Missile transfer building, interior, transporter/erector on left, storage and shipping container, ballistic missile (SSCBM) containing minuteman II missile on right - Ellsworth Air Force Base, Delta Flight, Missile Roll Transfer Building, 920 Kennedy Road, Interior, Jackson County, SD

  14. 1. NORTH AND WEST SIDES OF BUILDING 728 FROM CHEMICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTH AND WEST SIDES OF BUILDING 728 FROM CHEMICAL STORAGE TANK. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Mustard Filling & Storage Building, 280 feet South of December Seventh Avenue; 2130 feet East of D Street, Commerce City, Adams County, CO

  15. 18. CONTEXT VIEW LOOKING WEST OF BUILDING 345 (ENTRY CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. CONTEXT VIEW LOOKING WEST OF BUILDING 345 (ENTRY CONTROL BUILDING) IN STORAGE AREA WITH EAST LORING LAKE IN BACKGROUND. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  16. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  17. VIEW NORTH OF PRESTRESS TRACK CENTERHEMP STORAGE BUILDING 77 (1920) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTH OF PRE-STRESS TRACK CENTER-HEMP STORAGE BUILDING 77 (1920) ROPE WAREHOUSE 43 (1941) BEHIND IT STORAGE SHED 44 (1953) IN FRONT - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  18. 78 FR 12050 - S. Martinez Livestock, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... traditional turbine-generator facility. The pumped storage facility would consist of: (1) A new upper... storage facility would be 86,430 megawatt hours. The turbine-generator facility would consist of: (1) an... turbine-generator unit. The estimated annual generation of the turbine generator unit would be 17,286...

  19. Work Plan: Phase II Investigation at the Former CCC/USDA Grain Storage Facility in Montgomery City, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, Lorraine M

    From September 1949 until September 1966, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) leased property at the southeastern end of Montgomery City, Missouri, for the operation of a grain storage facility. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities.

  20. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    PubMed

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  1. 9. Building 105, Facilities Engineering Building, 1830, interior, Tin Metal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Building 105, Facilities Engineering Building, 1830, interior, Tin Metal area of building, looking S. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  2. A&M. Radioactive parts security storage warehouses: TAN648 on left, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage warehouses: TAN-648 on left, and dolly storage building, TAN-647, on right. Camera facing south. This was the front entry for the warehouse and the rear of the dolly storage building. Date: August 6, 2003. INEEL negative no. HD-36-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. GENERAL VIEW LOOKING NORTHEAST FROM ATOP A STORAGE TANK, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW LOOKING NORTHEAST FROM ATOP A STORAGE TANK, LOOKING AT THE CATALYZER BUILDINGS. NOTE CIRCULAR FOUNDATION FOR AMMONIA STORAGE TANK AND THE LIQUID AIR BUILDING IN THE UPPPER RIGHT CORNER OF PHOTO. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  4. 8. Interior view of former food service and storage area ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Interior view of former food service and storage area looking towards hall way; showing closed and open doorways to walk-in storage; near southwest corner of building on main floor; view to southwest. - Ellsworth Air Force Base, Mess & Administration Building, 1561 Ellsworth Street, Blackhawk, Meade County, SD

  5. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  6. Effects of the earthquake of March 27, 1964, at Whittier, Alaska: Chapter B in The Alaska earthquake, March 27, 1964: effects on communities

    USGS Publications Warehouse

    Kachadoorian, Reuben

    1965-01-01

    Whittier, Alaska, lying at the western end of Passage Canal, is an ocean terminal of The Alaska Railroad. The earthquake that shook south-central Alaska at 5:36 p.m. (Alaska Standard Time) on March 27, 1964, took the lives of 13 persons and caused more than $5 million worth of damage to Government and private property at Whittier. Seismic motion lasted only 2½-3 minutes, but when it stopped the Whittier waterfront was in shambles land the port facilities were inoperable. Damage was caused by (1) a 5.3-foot subsidence of the landmass, sufficient to put some of the developed land under water during high tides, (2) seismic shock, (3) fracturing of fill and unconsolidated sediments, (4) compaction of fill and unconsolidated deposits, (5) submarine landslides which generated waves that destroyed part of The Alaska Railroad roadbed and other property, (6) at least two, but probably three, waves generated by landslides, which completely wrecked the buildings of two lumber companies, the stub pier, the small-boat harbor, the car-barge slip dock, and several homes, and (7) fire that destroyed the fuel-storage tanks at the Whittier waterfront. Many buildings and other facilities were totally wrecked, others were damaged to lesser degrees. For example, the 14-story reinforced concrete Hodge Building, which rests upon at least 44 feet of sandy gravel, was moderately damaged by seismic shock, but the six-story reinforced-concrete Buckner Building, which rests upon bedrock, was only slightly damaged.

  7. 31. Perimeter acquisition radar building room #318, data storage "racks"; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Perimeter acquisition radar building room #318, data storage "racks"; sign read: M&D controller, logic control buffer, data transmission controller - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. Thermal storage HVAC system retrofit provides economical air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.F.

    1993-03-01

    This article describes an EMS-controlled HVAC system that meets the ventilation and cooling needs of an 18,000-seat indoor ice hockey arena. The Buffalo Memorial Auditorium (affectionately referred to as the Aud) was built in 1937 under the Works Project Administration of the federal government. Its original configuration included a 12,000-seat arena with an ice skating rink. By the late 1980s, the city was unsuccessfully attempting to attract events and tenants to the auditorium, which lacked air conditioning and other modern amenities. Thus, it was decided to renovate the facility to make it marketable. The first phase of the renovation includedmore » installing an air-conditioning system in the arena and repairing the existing building systems that were inoperable because of deferred maintenance. After considering the existing conditions (such as size of the space, intermittent usage, construction restrictions, operating budgets and the limited operations staff), the engineering team designed an innovative HVAC system. The system's features include: a carbon dioxide monitoring device that controls the intake of outside air; an ice storage system that provides chilled water and shifts electrical demand to off-peak hours; and a design that uses the building mass as a heat sink. A new energy management system (EMS) determines building cooling needs based on the type of event, ambient conditions and projected audience size. Then, it selects the most economical method to obtain the desired arena temperature.« less

  9. Simplified numerical description of latent storage characteristics for phase change wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.

    1995-05-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand. Thermal mass can be utilized to reduce the peak-power demand, down-size the cooling systems and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the short-comings of alternative cooling sources or to avoid high demand charges. With the advent of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, thermal storage can be part of the building structure even for light-weight buildings. PCMs have two important advantages as storage media: they can offer anmore » order-of-magnitude increase in thermal storage capacity and their discharge is almost isothermal. This allows to store large amounts of energy without significantly changing the temperature of the sheathing. As heat storage takes place in the building part where the loads occur, rather than externally (e.g., ice or chilled water storage), additional transport energy is not needed. To numerically evaluate the latent storage performance of treated wallboard, RADCOOL, a thermal building simulation model based on the finite difference approach, will be used. RADCOOL has been developed in the SPARK environment in order to be compatible with the new family of simulation tools being developed at Lawrence Berkeley Laboratory. As logical statements are difficult to use in SPARK, a continuous function for the specific heat and the enthalpy had to be found. This report covers the development of a simplified description of latent storage characteristics for wallboard treated with phase change material.« less

  10. 10. Building 105, Facilities Engineering Building, 1830, interior, air condition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Building 105, Facilities Engineering Building, 1830, interior, air condition repair shop, S end of building, looking N. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  11. 8. Building 105, Facilities Engineering Building, 1830, interior, drafting area, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Building 105, Facilities Engineering Building, 1830, interior, drafting area, east side of building, center, looking N. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  12. Siting and Transportation for Consolidated Used Nuclear Fuel Management Facilities: A Proposed Approach for a Regional Initiative to Begin the Dialogue - 13562

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, Alex W.; Janairo, Lisa

    2013-07-01

    The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to responsible management of the United States' nuclear waste legacy. Themore » Commission recommended Congressional action to rewrite parts of the Nuclear Waste Policy Act (NWPA); however, a comprehensive legislative overhaul will likely take years to fully implement. The nature and characteristics of nuclear waste, the activities that generated it, and the past history of federal efforts to manage the waste make it virtually certain that finding workable solutions will be controversial and difficult. As the BRC report suggests, this difficulty can be made insurmountable if top-down, federally-mandated efforts are forced upon unwilling States, Tribes, and local communities. Decades of effort and billions of ratepayer and taxpayer dollars have been spent attempting to site and operate spent fuel storage and disposal facilities in this manner. The experience thus far indicates that voluntary consent and active partnership of States, Tribes, and local governments in siting, designing, and operating such facilities are critical. Some States, Tribes, and local communities have indicated that, given adequate scientific and technical information, along with appropriate incentives, assurances, and authority, they might be willing to consider hosting facilities for consolidated storage and disposal of spent nuclear fuel. The authors propose a new regional approach to identifying and resolving issues related to the selection of a consolidated storage site. The approach would be characterized by informed discussion and deliberation, bringing together stakeholders from government, the non-governmental (NGO) community, industry, and other sectors. Because site selection would result in regional transportation impacts, the development of the transportation system (e.g., route identification, infrastructure improvements) would be integrated into the issue-resolution process. In addition to laying out the necessary steps and associated timeline, the authors address the challenges of building public trust and confidence in the new waste management program, as well as the difficulty of reaching and sustaining broad-based consensus on a decision to host a consolidated storage facility. (authors)« less

  13. 7 CFR 1436.9 - Loan amount and loan application approvals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...

  14. 7 CFR 1436.9 - Loan amount and loan application approvals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...

  15. 7 CFR 1436.9 - Loan amount and loan application approvals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...

  16. 7 CFR 1436.9 - Loan amount and loan application approvals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...

  17. 7 CFR 1436.9 - Loan amount and loan application approvals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... data is not applicable to the storage need, a reasonable acreage projection may be made for newly... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS FARM STORAGE FACILITY LOAN... by the FSA State committee. (b) The net cost for all storage facilities and handling equipment: (1...

  18. 40 CFR 63.8698 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility used to transfer oxidized asphalt from a storage tank into a tank truck, rail car, or barge... facility includes one or more asphalt flux blowing stills, asphalt flux storage tanks storing asphalt flux intended for processing in the blowing stills, oxidized asphalt storage tanks, and oxidized asphalt loading...

  19. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.

    2007-07-01

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuelmore » from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported that the facility is now fully operational. The TUK-108/1 SNF transport and storage casks were designed to have a 50-year storage life. Current RF practice is not to condition the submarine SNF or cask during the cask loading. Current RF regulations allow up to 4 mm of residual water (up to 3.2 liters) to remain in the casks. It has been determined that allowing this amount of residual water to remain untreated for a period longer than two years can produce hydrogen gas through hydrolysis which will increase the risk of explosion and could cause some corrosion of internal components. A solution to this problem was to develop and utilize a cask conditioning system to remove the residual water and create an inert storage environment in the cask by back-filling the internal cask cavity with an inert gas, such as helium or argon. This system is compatible with the existing TUK-108/1 design and is mobile for use at multiple submarine dismantlement sites. The RF has required that this cask conditioning system be tested and commissioned at the 'Zvezda' Shipyard in the Far East near Vladivostok, one of the major RF submarine fuel off loading and storage facilities. Currently, the fuel cannot be transferred to 'Mayak' for reprocessing until the completion of the 20 km railroad connector between 'Zvezda' and the main rail line to 'Mayak'. The cask conditioning system will allow extension of the currently-stored casks for an additional three years, at which time the rail connector line should be completed. The current license to store these casks at 'Zvezda' was scheduled to expire on 31 Dec 2006. Without the cask-conditioning system, the license could not be extended, no more fuel could be off-loaded from the decommissioned submarines, and the START objectives could not be met at 'Zvezda'. Completion of this cask conditioning system has removed a significant bottleneck for the completion of the Russian submarine decommissioning program under the START II Agreement. (authors)« less

  20. 46. ARAI. Aerial view of ARAI buildings as they looked ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. ARA-I. Aerial view of ARA-I buildings as they looked in 1981. From left to right, buildings are tank (ARA-727), contaminated waste storage tank (ARA-629), trailer, hot cell building (ARA-626), fuel oil storage tank (ARA-728), guard house (ARA-628), shop and maintenance building (ARA-627), and two trailers. Ineel photo no. 81-297. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  1. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Specimen and data storage facilities. 792.51 Section 792.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  2. 9 CFR 149.7 - Recordkeeping at site.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... If the carcass storage facility or composting facility is located on the site, then the animal disposal plan must provide for a storage or composting facility that precludes rodent or wildlife contact... swine and other mammals by rendering, incineration, composting, burial, or other means, as allowed by...

  3. Probabilistic dose assessment of normal operations and accident conditions for an assured isolation facility in Texas

    NASA Astrophysics Data System (ADS)

    Arno, Matthew Gordon

    Texas is investigating building a long-term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground low-level radioactive waste storage facility that is actively maintained and from which waste may be retrieved. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using the computer code Monte Carlo N-Particle (MCNP) to model the facility in greater detail. Accidental release scenarios have been studied in more depth to better assess the potential dose to off-site individuals. Using bounding source term assumptions, the projected radiation doses and dose rates are estimated to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma rooms," where the waste with the highest concentration of gamma emitting radioactive material is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is estimated at 86 mrem, below the 100 mrem annual limit for exposure of the public. Within the site perimeter, the dose rates are lowered sufficiently such that it is not necessary to categorize many workers and contractor personnel as radiation workers, saving on costs as well as being advisable under ALARA principles. A detailed analysis of bounding accidents incorporating information on the local meteorological conditions indicate that the maximum committed effective dose equivalent from the passage of a plume of material released in an accident at any of the cities near the facility is 59 :rem in the city of Eunice, NM based on the combined day and night meteorological conditions. Using the daytime meteorological conditions, the maximum dose at any city is 7 :rem, also in the city of Eunice. The maximum dose at the site boundary was determined to be 230 mrem using the combined day and night meteorological conditions and 33 mrem using the daytime conditions.

  4. 39. Perimeter acquisition radar building room #504, techinal maintenance and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Perimeter acquisition radar building room #504, techinal maintenance and repair center (TMRC) and tactical support equipment (TSE) storage area; storage-travel wave tubes - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  5. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; May, Doug; Howlett, Don

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less

  6. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  7. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.

  8. EFFECTS OF MIXING AND AGING ON WATER QUALITY IN DISTRIBUTION SYSTEM STORAGE FACILITIES

    EPA Science Inventory

    Aging of water in distribution system storage facilities can lead to deterioration of the water quality due to loss of disinfectant residual and bacterial regrowth. Facilities should be operated to insure that the age of the water is not excessive taking into account the quality...

  9. Concentrating Solar Power Projects - National Solar Thermal Power Facility

    Science.gov Websites

    | Concentrating Solar Power | NREL National Solar Thermal Power Facility Status Date: February 13, 2014 Project Overview Project Name: National Solar Thermal Power Facility Country: India Location Capacity (Net): 1.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: None

  10. 86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Aerial photo shows Launch Complex 39 Area

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This aerial photo captures many of the facilities involved in Space Shuttle launches. At center is the Vehicle Assembly Building (VAB). The curved road on the near side is the newly restored crawlerway leading into the VAB high bay 2, where a mobile launcher platform/crawler-transporter currently sits. The road restoration and high bay 2 are part of KSC's Safe Haven project, enabling the storage of orbiters during severe weather. The road circles around the Orbiter Processing Facility 3 (OPF-3) at left center. OPF1 and OPF-2 are just below the curving road. The crawlerway also extends from the east side of the VAB out to the two launch pads, only one visible to the left of the VAB. In the distance is the Atlantic Ocean. To the right of the far crawlerway is the turn basin, into which ships tow the barge for offloading new external tanks from Louisiana.

  12. An optimization model for energy generation and distribution in a dynamic facility

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  13. Americans with Disabilities Act: Accessibility Guidelines for Buildings and Facilities, Transportation Facilities, Transportation Vehicles.

    ERIC Educational Resources Information Center

    Architectural and Transportation Barriers Compliance Board, Washington, DC.

    Guidelines are presented regarding accessibility to buildings and facilities, transportation facilities, and transportation vehicles by individuals with disabilities, under the Americans with Disabilities Act of 1990. These guidelines are to be applied during building design, construction, and alteration. Part 1 offers detailed facility…

  14. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  15. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  16. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  17. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  18. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... construction or alterations of buildings or facilities on which construction has begun, or all approvals for... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... Making Buildings and Facilities Accessible to and Usable by the Physically Handicapped). This paragraph...

  19. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled bymore » CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.« less

  20. Shuttle orbiter storage locker system: A study

    NASA Technical Reports Server (NTRS)

    Butler, D. R.; Schowalter, D. T.; Weil, D. C.

    1973-01-01

    Study has been made to assure maximum utility of storage space and crew member facilities in planned space shuttle orbiter. Techniques discussed in this study should be of interest to designers of storage facilities in which space is at premium and vibration is severe. Manufacturers of boats, campers, house trailers, and aircraft could benefit from it.

  1. 40 CFR 60.5395 - What standards apply to storage vessel affected facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... undergoes fracturing or refracturing, you must comply with paragraph (d)(1) of this section as soon as liquids from the well following fracturing or refracturing are routed to the storage vessel affected... associated with fracturing or refracturing of a well feeding the storage vessel affected facility, you must...

  2. Safety analysis report for the Waste Storage Facility. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  3. Environmental Assessment for Construction and Repair of Fuel Storage and Offloading Facilities at Kirtland Air Force Base

    DTIC Science & Technology

    2005-09-01

    G Ot-T GOO) D. BRENT WILSON, P.E. Base Civil Engineer Kirtland Air Force Base Kirtland AFB Fuel Storage and Ofjloading Facilities Construction...September 2005 A-1 3 77 MSG/CEVQ DEPARTMENT OF THE AIR FORCE 3 77th Civil Engineer Division (AFMC) 2050 Wyoming Blvd SE, Suite 120 Kirtland AFB NM...FINAL FINDING OF NO SIGNIFICANT IMPACT FOR THE FOR CONSTRUCTION AND REP AIR OF FUEL STORAGE AND OFFLOADING FACILITIES AT KIRTLAND AIR FORCE

  4. 13. Building 105, Facilities Engineering Building, 1830, interior, tin metal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Building 105, Facilities Engineering Building, 1830, interior, tin metal shop area, showing construction of window and part of ceiling, E wall of building. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldaini, Michel

    The first heading of your manuscript must be 'Introduction'. Phenix is the only remaining French fast breeder reactor after the shutdown of Superphenix (1999) and Rapsodie (1983). Phenix is located inside the Marcoule nuclear site along the Rhone river near Bagnols-sur-Ceze in southeastern France. Phenix is one of the facilities belonging the French Atomic Energy Commission (CEA) on the Marcoule site. It is a fast breeder reactor (FBR) developed at the end of the 1960's. that has been in operation since 1973 and was connected to the power grid in 1974. It is a second generation prototype developed while themore » first generation FBR, Rapsodie, was still in operation. Phenix is a 250 electrical MW power plant. During the first 20 years of operation, its main aim was to demonstrate the viability of sodium-cooled FBRs. Since the 1991 radioactive waste management act, Phenix has become an irradiation tool for the actinide transmutation program. To extend its operating life for 6 additional cycles, it was necessary to refurbish the plant; this involved major work performed from 1999 to 2003 at a total cost of about 250 M??. Today, with a realistic expectation, the final shutdown is planned for the beginning of 2009. The main objective of the Phenix dismantling project is to eliminate all the process equipment and clean all the building to remove all the radioactive zones. To reach this objective, three main hazards must be eliminated: Fuel (criticality hazard), Sodium, Radioactive equipment. The complexity of decommissioning a facility such as Phenix is increased by: - the lack of storage facility for high radioactive material, - the decision to treat all the radioactive sodium and sodium waste inside the plant, - the very high irradiation of the core structures due to the presence of cobalt alloys. On the other hand, Phenix plant is still under operating with a qualified staff and the radioactivity coming from structural activation is well known. After the final shutdown, the first operations will be conducted by the same staff under the same safety report. Another interesting fact is that the decommissioning funds project exist and are available. The CEA decided to begin the dismantling phase without waiting because after a period of decay it is not really cheaper or easier to work. This approach needs interim storage facilities not long after the final shutdown. For the low- and intermediate-level radioactive waste there are national storage centers but for the high-level wastes, each operator must manage its waste until a suitable disposal site is available. At Marcoule a new storage facility is now being designed and scheduled to begin operating after 2013-2014. After removal of the fuel and core elements, the primary sodium will be drained and eliminated by a carbonation process. To ensure biological shielding, the reference scenario calls for filling the primary vessel with water. The most radioactive structures (dia-grid and core support) will be cut up with remote tools, after which the rest of the structure will be cut up manually. Phenix contains about 1450 metric tons of sodium. The CEA initially planned to build ATENA, a new facility for all radioactive sodium waste from R and D and FBR facilities. For various reasons, but mainly to save money, the CEA decided to treat all radioactive sodium and sodium waste in the framework of the Phenix dismantling project. There are no real difficulties in the dismantling schedule because of the advanced state of development of the processes selected for the ATENA project. Because of the knowledge already obtained, the issues concern project management, waste management and human resources reduction more than technical 0014challe.« less

  6. The ideal neutrino beams

    NASA Astrophysics Data System (ADS)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  7. RMP Guidance for Propane Storage Facilities - Main Text

    EPA Pesticide Factsheets

    This document is intended as comprehensive Risk Management Program guidance for larger propane storage or distribution facilities who already comply with propane industry standards. Includes sample RMP, and release calculations.

  8. Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetiu, C.; Feustel, H.E.

    1998-07-01

    As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage canmore » thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.« less

  9. KENNEDY SPACE CENTER, FLA. - Workers in the Columbia Debris Hangar pull items from storage containers to transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - Workers in the Columbia Debris Hangar pull items from storage containers to transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  10. 64. VIEW OF EAST LORING LAKE LOOKING WEST FROM HILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. VIEW OF EAST LORING LAKE LOOKING WEST FROM HILL BEHIND BUILDING 345 (ENTRY CONTROL BUILDING) IN STORAGE AREA, WITH BUILDING 1026 (BASE SPARES AREA WATER TOWER) IN DISTANCE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  11. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    NASA Astrophysics Data System (ADS)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions. [1] V. Rostampour and T. Keviczky, "Probabilistic Energy Management for Building Climate Comfort in Smart Thermal Grids with Seasonal Storage Systems," arXiv [math.OC], 10-Nov-2016.

  12. 45. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH BUILDING METAL SIDING BEING APPLIED ON "A" FACE (LEFT) AND "B" FACE (RIGHT). NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  13. 57. BUILDING NO. 1071, ORDNANCE FACILITY (CRYSTALLIZATION BUILDING), LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. BUILDING NO. 1071, ORDNANCE FACILITY (CRYSTALLIZATION BUILDING), LOOKING AT SOUTHEAST SIDE. NOTE ESCAPE CHUTES PROJECTING FROM SIDES OF BUILDING. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  14. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) LOOKING SOUTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) LOOKING SOUTHWEST SHOWING STORAGE BASIN IN FOREGROUND, TRANSFER CRANE AND UNLOADER TO LEFT OF NORTH SIDE OF HOT CELL. INL PHOTO NUMBER NRTS-58-157. J. Anderson, Photographer, 1/15/1958 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. 36 CFR 1234.30 - How does an agency request authority to establish or relocate records storage facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Records Administration, 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301) 837-1867. The... authority to establish or relocate records storage facilities? 1234.30 Section 1234.30 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR...

  16. 36 CFR 1234.30 - How does an agency request authority to establish or relocate records storage facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Records Administration, 8601 Adelphi Road, College Park, MD 20740-6001, phone number (301) 837-1867. The... authority to establish or relocate records storage facilities? 1234.30 Section 1234.30 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR...

  17. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  18. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  19. Credit BG. View looks south (174°) at Deluge Water Supply ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks south (174°) at Deluge Water Supply complex, including Water Pumping Booster Station (Building 4317) in foreground, with Deluge Water Storage (Building 4316) in background at right. Pole on roof of Building 4316 is a gauge board used to indicate water level in the reservoir. Structure in left background is Building 4311 (Well No. 2) - Edwards Air Force Base, North Base, Deluge Water Storage Building, Near Second & D Streets, Boron, Kern County, CA

  20. NV Energy Electricity Storage Valuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp ratemore » resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.« less

  1. 14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, crib area of building, showing electrical and plumbing cribs, wall and ceiling detail, looking S. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  2. Modern tornado design of nuclear and other potentially hazardous facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, J.D.; Zhao, Y.

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  3. 1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  4. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    PubMed

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacRae, W.T.

    The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.

  6. Analysis of environmental issues related to small-scale hydroelectric development IV: fish mortality resulting from turbine passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turbak, S. C.; Reichle, D. R.; Shriner, C. R.

    1981-01-01

    This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner)more » has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.« less

  7. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  8. 21. Detail of typical refrigeration unit in the southwest corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Detail of typical refrigeration unit in the southwest corner of the fruit and vegetable storage room - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  9. 1. Keeper's house, oil house, light tower and storage building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house, oil house, light tower and storage building, view northeast, south or southwest sides - Petit Manan Light Station, 2.5 miles south of Petit Manan Point, Milbridge, Washington County, ME

  10. 7. SOUTH ELEVATION OF BUILDING 262 (SOUTH SENTRY POST) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTH ELEVATION OF BUILDING 262 (SOUTH SENTRY POST) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  11. 2. SOUTHWEST CORNER OF BUILDING 259 (NORTH SENTRY POST) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHWEST CORNER OF BUILDING 259 (NORTH SENTRY POST) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  12. 1. SOUTH ELEVATION OF BUILDING 259 (NORTH SENTRY POST) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTH ELEVATION OF BUILDING 259 (NORTH SENTRY POST) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  13. KENNEDY SPACE CENTER, FLA. - Storage boxes and other containers of Columbia debris wait in the Columbia Debris Hangar for transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - Storage boxes and other containers of Columbia debris wait in the Columbia Debris Hangar for transfer to storage in the Vehicle Assembly Building. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  14. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    NASA Astrophysics Data System (ADS)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  15. A web platform for integrated surface water - groundwater modeling and data management

    NASA Astrophysics Data System (ADS)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  16. 36 CFR 1234.14 - What are the requirements for environmental controls for records storage facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temporary records, including microforms and audiovisual and electronic records, must be stored in records..., unscheduled, and/or sample/select records. All records storage facilities that store microfilm, audiovisual...

  17. Appendix D - Sample Bulk Storage Facility Plan

    EPA Pesticide Factsheets

    This sample Spill Prevention, Control and Countermeasure (SPCC) Plan in Appendix D is intended to provide examples and illustrations of how a bulk storage facility could address a variety of scenarios in its SPCC Plan.

  18. The Influence of Building Codes on Recreation Facility Design.

    ERIC Educational Resources Information Center

    Morrison, Thomas A.

    1989-01-01

    Implications of building codes upon design and construction of recreation facilities are investigated (national building codes, recreation facility standards, and misperceptions of design requirements). Recreation professionals can influence architectural designers to correct past deficiencies, but they must understand architectural and…

  19. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahe, Carole; Leroy, Christine

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the productionmore » schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut-down, maintenance and surveillance expenditure. The authorization is issued by a decree adopted upon advice of the French Nuclear Safety Authority and after a public enquiry. In accordance with Decree No. 2007-1557 of November 2, 2007, the application is filed with the ministries responsible for nuclear safety and the Nuclear Safety Authority. It consists of twelve files and four records information. The favorable opinion of the Nuclear Safety Authority on the folder is required to start the public inquiry. Once the public inquiry is completed, the building permit is issued by the prefect. (authors)« less

  20. Canister Storage Building (CSB) Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safetymore » analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.« less

Top