Image matrix processor for fast multi-dimensional computations
Roberson, George P.; Skeate, Michael F.
1996-01-01
An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.
1995-03-01
data so-rces. gw’wrgv d l" M t fi the dat rme, and ccr’•kp~ g a"i revwr’g bdhiecs, of kfc •- ’adm Sei ccrrrrarts regarding &ins burde erante or anry oter...too stringent for the commercial market . For practical high- density storage applications, it has even been suggested to pursue higher operation...several techniques for mixing micro spheres with a host matrix. These include: (a) high shear mixing in the presence of antioxidant, (b) the suspension
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.
2017-12-01
The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.
Image matrix processor for fast multi-dimensional computations
Roberson, G.P.; Skeate, M.F.
1996-10-15
An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.
Reeves, Lawrence E; Holderman, Chris J; Gillett-Kaufman, Jennifer L; Kawahara, Akito Y; Kaufman, Phillip E
2016-09-15
Determination of the interactions between hematophagous arthropods and their hosts is a necessary component to understanding the transmission dynamics of arthropod-vectored pathogens. Current molecular methods to identify hosts of blood-fed arthropods require the preservation of host DNA to serve as an amplification template. During transportation to the laboratory and storage prior to molecular analysis, genetic samples need to be protected from nucleases, and the degradation effects of hydrolysis, oxidation and radiation. Preservation of host DNA contained in field-collected blood-fed specimens has an additional caveat: suspension of the degradative effects of arthropod digestion on host DNA. Unless effective preservation methods are implemented promptly after blood-fed specimens are collected, host DNA will continue to degrade. Preservation methods vary in their efficacy, and need to be selected based on the logistical constraints of the research program. We compared four preservation methods (cold storage at -20 °C, desiccation, ethanol storage of intact mosquito specimens and crushed specimens on filter paper) for field storage of host DNA from blood-fed mosquitoes across a range of storage and post-feeding time periods. The efficacy of these techniques in maintaining host DNA integrity was evaluated using a polymerase chain reaction (PCR) to detect the presence of a sufficient concentration of intact host DNA templates for blood meal analysis. We applied a logistic regression model to assess the effects of preservation method, storage time and post-feeding time on the binomial response variable, amplification success. Preservation method, storage time and post-feeding time all significantly impacted PCR amplification success. Filter papers and, to a lesser extent, 95 % ethanol, were the most effective methods for the maintenance of host DNA templates. Amplification success of host DNA preserved in cold storage at -20 °C and desiccation was poor. Our data suggest that, of the methods tested, host DNA template integrity was most stable when blood meals were preserved using filter papers. Filter paper preservation is effective over short- and long-term storage, while ethanol preservation is only suitable for short-term storage. Cold storage at -20 °C, and desiccation of blood meal specimens, even for short time periods, should be avoided.
Farkhari, M; Naghavi, M R; Pyghambari, S A; Sabokdast
2007-09-01
Genetic variation of 28 populations of jointed goatgrass (Aegilops cylindrica Host.), collected from different parts of Iran, were evaluated using both RAPD-PCR and SDS-PAGE of seed proteins. The diversity within and between populations for the three-band High Molecular Weight (HMW) subunits of glutenin pattern were extremely low. Out of 15 screened primers of RAPD, 14 primers generated 133 reproducible fragments which among them 92 fragments were polymorphic (69%). Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm and separated the 28 populations into two groups. Confusion can happen between populations with the same origin as well as between populations of very diverse geographical origins. Our results show that compare to seed storage protein, RAPD is suitable for genetic diversity assessment in Ae. cylindrica populations.
Chemical-clathrate hybrid hydrogen storage: storage in both guest and host.
Strobel, Timothy A; Kim, Yongkwan; Andrews, Gary S; Ferrell, Jack R; Koh, Carolyn A; Herring, Andrew M; Sloan, E Dendy
2008-11-12
Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.
Chu, Guang; Wang, Xuesi; Yin, Hang; Shi, Ying; Jiang, Haijing; Chen, Tianrui; Gao, Jianxiong; Qu, Dan; Xu, Yan; Ding, Dajun
2015-10-07
Photonic crystals incorporating with plasmonic nanoparticles have recently attracted considerable attention due to their novel optical properties and potential applications in future subwavelength optics, biosensing and data storage device. Here we demonstrate a free-standing chiral plasmonic film composed of entropy-driven self-co-assembly of gold nanoparticles (GNPs) and rod-like cellulose nanocrystals (CNCs). The CNCs-GNPs composite films not only preserve the photonic ordering of the CNCs matrix but also retain the plasmonic resonance of GNPs, leading to a distinct plasmon-induced chiroptical activity and a strong resonant plasmonic-photonic coupling that is confirmed by the stationary and ultrafast transient optical response. Switchable optical activity can be obtained by either varying the incidence angle of lights, or by taking advantage of the responsive feature of the CNCs matrix. Notably, an angle-dependent plasmon resonance in chiral nematic hybrid film has been observed for the first time, which differs drastically from that of the GNPs embed in three-dimensional photonic crystals, revealing a close relation with the structure of the host matrix. The current approach for fabricating device-scale, macroscopic chiral plasmonic materials from abundant CNCs with robust chiral nematic matrix may enable the mass production of functional optical metamaterials.
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
Marques, Paula A A P; Gonçalves, Gil; Singh, Manoj K; Grácio, José
2012-08-01
Graphene and its derivatives have attracted great research interest for their potential applications in electronics, energy, materials and biomedical areas. When incorporated appropriately, these atomically thin carbon sheets are expected to improve physical properties of host polymers at extremely small loading. Herein, we report a novel two-step method for the preparation of PLLA/Hap/graphene oxide nanocomposites with augmented mechanical properties when compared to PLLA/Hap and neat PLLA. The presence of graphene oxide (GO) had a positive effect on the dispersion of hydroxyapatite particles on the polymeric matrix contributing for a good homogeneity of the final nanocomposite. PLLA nanocomposites prepared with 30% (w/w) of Hap and 1% (w/w) of GO showed the highest hardness and storage modulus values indicating an efficient load transfer between the fillers and the PLLA matrix. These materials may find interesting biomedical applications as for example bone screws. The following step on the study of these materials will be in vitro tests to access the biocompatibility of these new nanocomposites.
NASA Astrophysics Data System (ADS)
Befus, Kenneth S.; Gardner, James E.
2016-04-01
Between 70 and 175 ka, over 350 km3 of high-silica rhyolite magma erupted both effusively and explosively from within the Yellowstone Caldera. Phenocrysts in all studied lavas and tuffs are remarkably homogenous at the crystal, eruption, and caldera-scale, and yield QUILF temperatures of 750 ± 25 °C. Phase equilibrium experiments replicate the observed phenocryst assemblage at those temperatures and suggest that the magmas were all stored in the upper crust. Quartz-hosted glass inclusions contain 1.0-2.5 % H2O and 50-600 ppm CO2, but some units are relatively rich in CO2 (300-600 ppm) and some are CO2-poor (50-200 ppm). The CO2-rich magmas were stored at 90-150 MPa and contained a fluid that was 60-75 mol% CO2. CO2-poor magmas were stored at 50-70 MPa, with a more H2O-rich fluid (X_{{{text{CO}}2 }} = 40-60 %). Storage pressures and volatiles do not correlate with eruption age, volume, or style. Trace-element contents in glass inclusions and host matrix glass preserve a systematic evolution produced by crystal fractionation, estimated to range from 36 ± 12 to 52 ± 12 wt%. Because the erupted products contain <10 wt% crystals, crystal-poor melts likely separated from evolving crystal-rich mushes prior to eruption. In the Tuffs of Bluff Point and Cold Mountain Creek, matrix glass is less evolved than most inclusions, which may indicate that more primitive rhyolite was injected into the reservoir just before those eruptions. The presence and dissolution of granophyre in one flow may record evidence for heating prior to eruption and also demonstrate that the Yellowstone magmatic system may undergo rapid changes. The variations in depth suggest the magmas were sourced from multiple chambers that follow similar evolutionary paths in the upper crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase Qishi
A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. To support such capabilities, significant progress has been made in various components including the deployment of 100 Gbps networks with future 1 Tbps bandwidth, increases in end-host capabilities with multiple cores and buses, capacity improvements in large disk arrays, and deployment of parallel file systems such as Lustre and GPFS. High-performance source-to-sink datamore » flows must be composed of these component systems, which requires significant optimizations of the storage-to-host data and execution paths to match the edge and long-haul network connections. In particular, end systems are currently supported by 10-40 Gbps Network Interface Cards (NIC) and 8-32 Gbps storage Host Channel Adapters (HCAs), which carry the individual flows that collectively must reach network speeds of 100 Gbps and higher. Indeed, such data flows must be synthesized using multicore, multibus hosts connected to high-performance storage systems on one side and to the network on the other side. Current experimental results show that the constituent flows must be optimally composed and preserved from storage systems, across the hosts and the networks with minimal interference. Furthermore, such a capability must be made available transparently to the science users without placing undue demands on them to account for the details of underlying systems and networks. And, this task is expected to become even more complex in the future due to the increasing sophistication of hosts, storage systems, and networks that constitute the high-performance flows. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align and transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections. These solutions will be tested using (1) 100 Gbps connection(s) between Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) with storage systems supported by Lustre and GPFS file systems with an asymmetric connection to University of Memphis (UM); (2) ORNL testbed with multicore and multibus hosts, switches with OpenFlow capabilities, and network emulators; and (3) 100 Gbps connections from ESnet and their Openflow testbed, and other experimental connections. This proposal brings together the expertise and facilities of the two national laboratories, ORNL and ANL, and UM. It also represents a collaboration between DOE and the Department of Defense (DOD) projects at ORNL by sharing technical expertise and personnel costs, and leveraging the existing DOD Extreme Scale Systems Center (ESSC) facilities at ORNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.
2013-12-01
A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSRmore » NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion-bearing sodalites contained in the multiphase ceramic matrix are present as mixed-anion sodalite phases. These results suggest the multiphase FBSR NAS material may be a viable host matrix for long-lived, highly mobilie radionuclides which is a critical aspect in the management of nuclear waste.« less
Efficient Storage Scheme of Covariance Matrix during Inverse Modeling
NASA Astrophysics Data System (ADS)
Mao, D.; Yeh, T. J.
2013-12-01
During stochastic inverse modeling, the covariance matrix of geostatistical based methods carries the information about the geologic structure. Its update during iterations reflects the decrease of uncertainty with the incorporation of observed data. For large scale problem, its storage and update cost too much memory and computational resources. In this study, we propose a new efficient storage scheme for storage and update. Compressed Sparse Column (CSC) format is utilized to storage the covariance matrix, and users can assign how many data they prefer to store based on correlation scales since the data beyond several correlation scales are usually not very informative for inverse modeling. After every iteration, only the diagonal terms of the covariance matrix are updated. The off diagonal terms are calculated and updated based on shortened correlation scales with a pre-assigned exponential model. The correlation scales are shortened by a coefficient, i.e. 0.95, every iteration to show the decrease of uncertainty. There is no universal coefficient for all the problems and users are encouraged to try several times. This new scheme is tested with 1D examples first. The estimated results and uncertainty are compared with the traditional full storage method. In the end, a large scale numerical model is utilized to validate this new scheme.
Compressed sensing of hyperspectral images based on scrambled block Hadamard ensemble
NASA Astrophysics Data System (ADS)
Wang, Li; Feng, Yan
2016-11-01
A fast measurement matrix based on scrambled block Hadamard ensemble for compressed sensing (CS) of hyperspectral images (HSI) is investigated. The proposed measurement matrix offers several attractive features. First, the proposed measurement matrix possesses Gaussian behavior, which illustrates that the matrix is universal and requires a near-optimal number of samples for exact reconstruction. In addition, it could be easily implemented in the optical domain due to its integer-valued elements. More importantly, the measurement matrix only needs small memory for storage in the sampling process. Experimental results on HSIs reveal that the reconstruction performance of the proposed measurement matrix is comparable or better than Gaussian matrix and Bernoulli matrix using different reconstruction algorithms while consuming less computational time. The proposed matrix could be used in CS of HSI, which would save the storage memory on board, improve the sampling efficiency, and ameliorate the reconstruction quality.
Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao
2015-04-22
Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.
System matrix computation vs storage on GPU: A comparative study in cone beam CT.
Matenine, Dmitri; Côté, Geoffroi; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe
2018-02-01
Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersection distances between the trajectories of photons and the object, also called ray tracing or system matrix computation. This work focused on the thin-ray model is aimed at comparing different system matrix handling strategies using graphical processing units (GPUs). In this work, the system matrix is modeled by thin rays intersecting a regular grid of box-shaped voxels, known to be an accurate representation of the forward projection operator in CT. However, an uncompressed system matrix exceeds the random access memory (RAM) capacities of typical computers by one order of magnitude or more. Considering the RAM limitations of GPU hardware, several system matrix handling methods were compared: full storage of a compressed system matrix, on-the-fly computation of its coefficients, and partial storage of the system matrix with partial on-the-fly computation. These methods were tested on geometries mimicking a cone beam CT (CBCT) acquisition of a human head. Execution times of three routines of interest were compared: forward projection, backprojection, and ordered-subsets convex (OSC) iteration. A fully stored system matrix yielded the shortest backprojection and OSC iteration times, with a 1.52× acceleration for OSC when compared to the on-the-fly approach. Nevertheless, the maximum problem size was bound by the available GPU RAM and geometrical symmetries. On-the-fly coefficient computation did not require symmetries and was shown to be the fastest for forward projection. It also offered reasonable execution times of about 176.4 ms per view per OSC iteration for a detector of 512 × 448 pixels and a volume of 384 3 voxels, using commodity GPU hardware. Partial system matrix storage has shown a performance similar to the on-the-fly approach, while still relying on symmetries. Partial system matrix storage was shown to yield the lowest relative performance. On-the-fly ray tracing was shown to be the most flexible method, yielding reasonable execution times. A fully stored system matrix allowed for the lowest backprojection and OSC iteration times and may be of interest for certain performance-oriented applications. © 2017 American Association of Physicists in Medicine.
Comparison of two matrix data structures for advanced CSM testbed applications
NASA Technical Reports Server (NTRS)
Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.
1989-01-01
The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.
Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon
Salyer, Ival O.
1987-01-01
A composite useful in thermal energy storage, said composite being formed of a polyethylene matrix having a straight chain alkyl hydrocarbon incorporated therein, said polyethylene being crosslinked to such a degree that said polyethylene matrix is form stable and said polyethylene matrix is capable of absorbing at least 10% by weight of said straight chain alkyl hydrocarbon; the composite is useful in forming pellets or sheets having thermal energy storage characteristics.
High performance binder-free SiO x/C composite LIB electrode made of SiO x and lignin
Chen, Tao; Hu, Jiazhi; Zhang, Long; ...
2017-07-19
A high performance binder-free SiO x/C composite electrode was synthesized by mixing SiO x particles and Kraft lignin in a cryo-mill followed by heat treatment at 600 °C. After the heat treatment, lignin formed a conductive matrix hosting SiO x particles, ensuring electronic conductivity, connectivity, and accommodation of volume changes during lithiation/delithiation. As the result, no conventional binder or conductive agent was necessary. When electrochemically cycled, the composite electrode delivered excellent performance, maintaining ~900 mAh g -1 after 250 cycles at a rate of 200 mA g -1, and good rate capability. The robustness of the electrode was also examinedmore » by post-cycling SEM images, where few cracks were observed. The excellent electrochemical performance can be attributed to the comparatively small volume change of SiO x-based electrodes (160%) and the flexibility of the lignin derived carbon matrix to accommodate the volume change. In conclusion, this work should stimulate further interests in using bio-renewable resources in making advanced electrochemical energy storage systems.« less
High performance binder-free SiO x/C composite LIB electrode made of SiO x and lignin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tao; Hu, Jiazhi; Zhang, Long
A high performance binder-free SiO x/C composite electrode was synthesized by mixing SiO x particles and Kraft lignin in a cryo-mill followed by heat treatment at 600 °C. After the heat treatment, lignin formed a conductive matrix hosting SiO x particles, ensuring electronic conductivity, connectivity, and accommodation of volume changes during lithiation/delithiation. As the result, no conventional binder or conductive agent was necessary. When electrochemically cycled, the composite electrode delivered excellent performance, maintaining ~900 mAh g -1 after 250 cycles at a rate of 200 mA g -1, and good rate capability. The robustness of the electrode was also examinedmore » by post-cycling SEM images, where few cracks were observed. The excellent electrochemical performance can be attributed to the comparatively small volume change of SiO x-based electrodes (160%) and the flexibility of the lignin derived carbon matrix to accommodate the volume change. In conclusion, this work should stimulate further interests in using bio-renewable resources in making advanced electrochemical energy storage systems.« less
Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems
NASA Technical Reports Server (NTRS)
Menasce, Daniel A.; Pentakalos, Odysseas I.
1995-01-01
Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.
NASA Technical Reports Server (NTRS)
Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.
1972-01-01
The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.
Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamolla, Meritxell Martell
2012-07-01
On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. Thismore » paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)« less
Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology.
Roberts, M G; Heesterbeek, J A P
2013-03-01
We address the interaction of ecological processes, such as consumer-resource relationships and competition, and the epidemiology of infectious diseases spreading in ecosystems. Modelling such interactions seems essential to understand the dynamics of infectious agents in communities consisting of interacting host and non-host species. We show how the usual epidemiological next-generation matrix approach to characterize invasion into multi-host communities can be extended to calculate R₀, and how this relates to the ecological community matrix. We then present two simple examples to illustrate this approach. The first of these is a model of the rinderpest, wildebeest, grass interaction, where our inferred dynamics qualitatively matches the observed phenomena that occurred after the eradication of rinderpest from the Serengeti ecosystem in the 1980s. The second example is a prey-predator system, where both species are hosts of the same pathogen. It is shown that regions for the parameter values exist where the two host species are only able to coexist when the pathogen is present to mediate the ecological interaction.
Method of determining lanthanidies in a transition element host
De Kalb, Edward L.; Fassel, Velmer A.
1976-02-03
A phosphor composition contains a lanthanide activator element within a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO.sub.4 with a portion of the rare earth replaced with one or more of the transition elements. On X-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence.
Forouzan, Farzane; Jalali, Mohammad Amin; Ziaaddini, Mahdi; Hashemi Rad, Hamid
2018-05-28
Psix saccharicola (Mani) (Hymenoptera: Platygastridae) is a solitary egg parasitoid of the pistachio green stink bug, Acrosternum arabicum (Wagner) (Hemiptera: Pentatomidae), which is one of the most important pests of pistachio in Iran. Augmentation of P. saccharicola field populations using mass-reared individuals may provide an alternative to conventional pesticide use for pistachio green stink bug control. Cold storage is an important component of mass-rearing protocols for optimum timing of host egg parasitization and potentially extended storage of P. saccharicola pupae prior to adult emergence. The impact of cold storage on A. arabicum eggs for various time intervals at 4.0°C was investigated. Results indicated that host eggs stored at 4.0°C for up to 60 d could be exploited by P. sacchricola, whereas no offspring were produced when eggs were stored for 120 d. The emergence rates of the F1 and F2 generations declined with increased host egg storage time. Both sex ratio and survival rate of the F2 generation decreased as the refrigeration time of host eggs increased. The impact of cold storage on P. saccharicola pupae was evaluated. Reared pupae of P. saccharicola were held for 1 wk at three temperatures and compared with a control (27 ± 1°C). Psix saccharicola pupae were tolerant to cold storage at 8 and 12°C. Cold storage adversely affected mean adult emergence at 4°C, which decreased following low temperature exposure. Furthermore, mean percentage survivorship was unaffected by storage at low temperatures in the F1 generation, but was reduced at 4°C. The sex ratio of the F1 generation became more male-biased when held at lower storage temperatures. The highest female proportion was observed at 12°C.
Improvements in sparse matrix operations of NASTRAN
NASA Technical Reports Server (NTRS)
Harano, S.
1980-01-01
A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.
Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne
2013-01-01
Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787
Petropolis, Debora B; Rodrigues, Juliany C F; Viana, Nathan B; Pontes, Bruno; Pereira, Camila F A; Silva-Filho, Fernando C
2014-01-01
Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited "freeze and run" migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular "home"-macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.
Rodrigues, Juliany C.F.; Viana, Nathan B.; Pontes, Bruno; Pereira, Camila F.A.; Silva-Filho, Fernando C.
2014-01-01
Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model. PMID:24765565
Selective and Responsive Nanopore-Filled Membranes
2011-03-14
Materials Science and Engineering Poster Competition 15. Chen, H.; Elabd, Y.A. Ionic Liquid Polymers: Electrospinning and Solution Properties. Fall...hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project include (1) synthesizing stimuli...on polymer-polymer nanocomposites of hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project
Effect of temperature on storage modulus and glass transition temperature of ZnS/PS nanocomposites
NASA Astrophysics Data System (ADS)
Agarwal, Sonalika; Awasthi, Kamlendra; Saxena, N. S.
2018-05-01
In the present study, a simplified solution casting method has been used for preparation of ZnS/PS nanocomposites, based on mixing the ZnS nano filler in nanometer range with the polymer matrix. The prepared nanocomposites with different concentration (0, 2, 4, 6 & 8 wt %) are structurally characterized through X-ray diffraction (XRD) and transmission electron microscope (TEM). The main objective of this study is to investigate the variation of storage modulus and glass transition temperature (Tg) within temperature range 30oC to 150oC for PS and ZnS/PS nanocomposites and have been performed through dynamic mechanical analyzer (DMA). The result shows that storage modulus and Tg of nanocomposites increase with the increase of ZnS nanoparticles up to 4 wt. % in PS and beyond this wt. %, both storage modulus and Tg decrease. The increasing behavior is due to the good adhesion between the ZnS nanoparticles and PS matrix which indicates that ZnS nanoparticles are capable of reinforcing the PS matrix. Beside this the decreasing behaviour at higher filler concentration (6 and 8 wt. %) is due to the agglomeratation of nanoparticles in polymer matrix.
The Eclectic Simulator Program (ESP) Usage Guide.
1980-05-01
DataStorage and H-5.1 1-t- Transmission.) For example, the columns of a 3 x 3 matrix BMAT could be declared on an *INFORM card as: ’ INFORM 3 1 BMAT (1,J...but not the rows: *INFORM 1 3 BMAT (J, 1) $ because the data in a matrix row is not stored contiguously. In other words, BMAT (J, 1) is the starting...location for an array of the 3 next elements in storage, and since FORTRAN always stores a matrix such as BMAT by columns, a reference to BMAT (J, 1
Electroluminescence from completely horizontally oriented dye molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komino, Takeshi; Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395
2016-06-13
A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d′] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimatemore » orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (T{sub g}) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above T{sub g}.« less
NASA Astrophysics Data System (ADS)
Shpotyuk, O.; Ingram, A.; Shpotyuk, Ya.
2018-02-01
Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy are examined to parameterize free-volume structural evolution processes in some nanostructurized substances obeying conversion from positronium (Ps) decaying to positron trapping. Unlike conventional x3-term fitting analysis based on admixed positron trapping and Ps decaying, the effect of nanostructurization is considered as occurring due to conversion from preferential Ps decaying in initial host matrix to positron trapping in modified (nanostructurized) host-guest matrix. The developed approach referred to as x3-x2-CDA (coupling decomposition algorithm) allows estimation defect-free bulk and defect-specific positron lifetimes of free-volume elements responsible for nanostructurization. The applicability of this approach is proved for some nanostructurized materials allowing free-volume changes through Ps-to-positron trapping conversion, such as (i) metallic Ag nanoparticles embedded in polymer matrix, (ii) structure-modification processes caused by swift heavy ions irradiation in polystyrene, and (iii) host-guest chemistry problems like water immersion in alumomagnesium spinel ceramics. This approach is considered to be used as test-indicator, separating processes of host-matrix nanostructurization due to embedded nanoparticles from uncorrelated changes in positron-trapping and Ps-decaying channels.
Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage
NASA Astrophysics Data System (ADS)
Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf
2015-04-01
In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage can be minimized. Furthermore, the model can be used to design efficient monitoring programs to detect possible variations of the host rock due construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farlotti, M.; Ecole Polytechnique, Palaiseau, F 91128; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simplemore » problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)« less
NASA Astrophysics Data System (ADS)
Solivio, Morwena J.; Less, Rebekah; Rynes, Mathew L.; Kramer, Marcus; Aksan, Alptekin
2016-04-01
Despite abundant research conducted on cancer biomarker discovery and validation, to date, less than two-dozen biomarkers have been approved by the FDA for clinical use. One main reason is attributed to inadvertent use of low quality biospecimens in biomarker research. Most proteinaceous biomarkers are extremely susceptible to pre-analytical factors such as collection, processing, and storage. For example, cryogenic storage imposes very harsh chemical, physical, and mechanical stresses on biospecimens, significantly compromising sample quality. In this communication, we report the development of an electrospun lyoprotectant matrix and isothermal vitrification methodology for non-cryogenic stabilization and storage of liquid biospecimens. The lyoprotectant matrix was mainly composed of trehalose and dextran (and various low concentration excipients targeting different mechanisms of damage), and it was engineered to minimize heterogeneity during vitrification. The technology was validated using five biomarkers; LDH, CRP, PSA, MMP-7, and C3a. Complete recovery of LDH, CRP, and PSA levels was achieved post-rehydration while more than 90% recovery was accomplished for MMP-7 and C3a, showing promise for isothermal vitrification as a safe, efficient, and low-cost alternative to cryogenic storage.
Huang, Zhao; Chen, Zhi; Ding, Shuangshuang; Chen, Changmiao; Zhang, Ming
2018-06-21
Potassium-ion batteries (KIBs) are considered as attractive alternatives to commercial lithium-ion batteries (LIBs). However, the lack of suitable electrodes to host large K+ for rapid as well as reversible insertion/extraction hinders the developments of KIBs. As an attempt, the phosphoric acid doped SnO2-graphene-carbon (P-SGC) nanofibers synthesized with a facile electrospinning method are introduced and applied as anode materials for KIBs. The P-SGC anodes present a reversible capacity of 285.9 mAh g-1 over 60 cycles at the current density of 100 mA g-1, and the high rate capacity of 208.53 mAh g-1 at 1 A g-1 as well. Emphasis is placed on enhancing the electrochemical properties of the SGC nanofibers by phosphoric acid modification through more active sites and higher electrical conductivity, accounting for improved K+ diffusion kinetics. Meanwhile, the coated carbon matrix and dispersive graphene buffer the structural changes and protect the active materials from destruction, leading to the good structural stability. With the presented results, these P-SGC nanofibers show attractive potential for future energy storage application of KIBs. © 2018 IOP Publishing Ltd.
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms.
Castaño, Oscar; Pérez-Amodio, Soledad; Navarro-Requena, Claudia; Mateos-Timoneda, Miguel Ángel; Engel, Elisabeth
2018-04-05
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing. Copyright © 2018 Elsevier B.V. All rights reserved.
Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock
NASA Astrophysics Data System (ADS)
Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre
2018-05-01
This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.
Tungsten hydride complex as a template in organic inorganic hybrid materials
NASA Astrophysics Data System (ADS)
Montinho, Isilda; Boev, Victor; Fonseca, António M.; Silva, Carlos J. R.; Neves, Isabel C.
2003-03-01
A tungsten hydride complex, [WH 2( η2-OOCCH 3)(Ph 2PCH 2CH 2PPh 2) 2][BPh 4], was dispersed in a hybrid matrix synthesized by a sol-gel process. The host matrix of the so-called ureasil is a network of silica to which oligopolyoxyethylene chains [POE, (OCH 2CH 2) n] are grafted by means of urea cross-links. The free complex and sol-gel materials were characterized by thermal analysis (DSC) and spectroscopic methods (FT-IR and UV/Vis). The data gathered indicate that the tungsten(IV) complex is immobilized in the host matrix, and it exhibits structural properties different from those of the free form. These differences could arise either from distortions caused by steric effects imposed by the structure of hybrid matrix or by interactions with the matrix.
Evaluation of Two Matrices for Long-Term, Ambient Storage of Bacterial DNA.
Miernyk, Karen M; DeByle, Carolynn K; Rudolph, Karen M
2017-12-01
Culture-independent molecular analyses allow researchers to identify diverse microorganisms. This approach requires microbiological DNA repositories. The standard for DNA storage is liquid nitrogen or ultralow freezers. These use large amounts of space, are costly to operate, and could fail. Room temperature DNA storage is a viable alternative. In this study, we investigated storage of bacterial DNA using two ambient storage matrices, Biomatrica DNAstable ® Plus and GenTegra ® DNA. We created crude and clean DNA extracts from five Streptococcus pneumoniae isolates. Extracts were stored at -30°C (our usual DNA storage temperature), 25°C (within the range of temperatures recommended for the products), and 50°C (to simulate longer storage time). Samples were stored at -30°C with no product and dried at 25°C and 50°C with no product, in Biomatrica DNAstable Plus or GenTegra DNA. We analyzed the samples after 0, 1, 2, 4, 8, 16, 32, and 64 weeks using the Nanodrop 1000 to determine the amount of DNA in each aliquot and by real-time PCR for the S. pneumoniae genes lytA and psaA. Using a 50°C storage temperature, we simulated 362 weeks of 25°C storage. The average amount of DNA in aliquots stored with a stabilizing matrix was 103%-116% of the original amount added to the tubes. This is similar to samples stored at -30°C (average 102%-121%). With one exception, samples stored with a stabilizing matrix had no change in lytA or psaA cycle threshold (Ct) value over time (Ct range ≤2.9), similar to samples stored at -30°C (Ct range ≤3.0). Samples stored at 25°C with no stabilizing matrix had Ct ranges of 2.2-5.1. DNAstable Plus and GenTegra DNA can protect dried bacterial DNA samples stored at room temperature with similar effectiveness as at -30°C. It is not effective to store bacterial DNA at room temperature without a stabilizing matrix.
Aggregation of carbon dioxide sequestration storage assessment units
Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.
2013-01-01
The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.
Crosstalk compensation in analysis of energy storage devices
Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M
2014-06-24
Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Kar, Manoranjan
2018-05-01
Novel ceramic-polymer nanocomposites have great potential for electrical energy storage applications due to its high energy storage density. In the present work, BNT and PVDF based flexible polymer nanocomposites (BNT-PVDF) with different volume fraction (ϕ = 0, 5, 10, 15) were fabricated by solution casting method. Enhancement in beta phase of PVDF polymer matrix with the volume fraction (ϕ = 5, 10, 15) of BNT has been confirmed by X-ray diffraction (XRD) technique as well as Fourier transform infrared (FTIR) spectroscopy analysis. The enhancement of β phase increases as compared to (α) phases with volume fraction (ϕ) of nanofiller (BNT) in the matrix (PVDF) due to internal stress at the interface as well as structural modification of PVDF matrix. BNT-PVDF nanocomposites (with ϕ=10) showed a high dielectric constant (ɛr ≈ 78) relative to pure PVDF (ɛr ≈ 10) at 100 Hz. In addition to this, it exhibits relaxor type ferroelectric behavior with energy storage efficiency up to 77% for the volume fraction (ϕ) of 10.
Storage rot in sugar beet: variable response over time and with different host germplasm
USDA-ARS?s Scientific Manuscript database
Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. While in storage the crop is subject to multiple post-harvest rots. In the Michigan growing region, little loss due to storage rots is observed until beets have been in storage for several mo...
8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF ...
8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF NAILS USED TO ADHERE PORTLAND CEMENT PLASTER, SOUTH ADOBE WALL ADJACENT TO WINDOW Note: Photographs Nos. AZ-159-A-9 through AZ-159-A-10 are photocopies of photographs. The original prints and negatives are located in the SCS Tucson Plant Materials Center, Tucson, Arizona. Photographer Ted F. Spaller. - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ
Container and method for absorbing and reducing hydrogen concentration
Wicks, George G.; Lee, Myung W.; Heung, Leung K.
2001-01-01
A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.
Potvin, Christopher M; Zhou, Hongde
2011-11-01
The objective of this study was to demonstrate the effects of complex matrix effects caused by chemical materials on the analysis of key soluble microbial products (SMP) including proteins, humics, carbohydrates, and polysaccharides in activated sludge samples. Emphasis was placed on comparison of the commonly used standard curve technique with standard addition (SA), a technique that differs in that the analytical responses are measured for sample solutions spiked with known quantities of analytes. The results showed that using SA provided a great improvement in compensating for SMP recovery and thus improving measurement accuracy by correcting for matrix effects. Analyte recovery was found to be highly dependent on sample dilution, and changed due to extraction techniques, storage conditions and sample composition. Storage of sample extracts by freezing changed SMP concentrations dramatically, as did storage at 4°C for as little as 1d. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lipp, R
1998-12-01
The purpose of this study was to stabilize transdermal drug-delivery systems (TDDS) highly loaded with sex steroids against recrystallization of drugs during storage. To facilitate the selection of potential crystallization inhibitors a drug-excipient interaction test was also established. Analysis of the thermal behaviour of 1:1 steroid-excipient mixtures by differential scanning calorimetry (DSC) revealed that oestradiol and gestodene interact strongly with silicone dioxide and povidones, e.g. povidone K12. The addition of povidone K12 to polyacrylate-based matrix TDDS containing either 3% oestradiol or 2% gestodene resulted in stable systems which did not recrystallize during storage at 25 degrees C for more than 5 years. Significant recrystallization was, on the other hand, observed in non-stabilized reference patches even after 1 to 2 months storage. The DSC screening model proved very effective for selection of inhibitors of the crystallization of sex steroids in matrix TDDS. The crystallization inhibitor approach is a highly versatile stabilization tool for matrix patches containing high concentrations of sex steroids.
Bastounis, Effie E; Yeh, Yi-Ting; Theriot, Julie A
2018-05-02
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been previously studied, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens was hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically-relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm), and found that adhesion of Lm onto host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Dynamic characterization of fractured carbonates at the Hontomín CO2 storage site
NASA Astrophysics Data System (ADS)
Le Gallo, yann; de Dios, José Carlos; Salvador, Ignacio; Acosta Carballo, Taimara
2017-04-01
The geological storage of CO2 is investigated at the Technology Development Plant (TDP) at Hontomín (Burgos, Spain) into a deep saline aquifer, formed by fractured carbonates with poor matrix porosity. During the hydraulic characterization tests, 2,300 tons of liquid CO2 and 14,000 m3 synthetic brine were co-injected on site in various sequences to determine the pressure and temperature responses of the facture network. The results of the pressure tests were analyzed using an analytical approach to determine the overall petrophysical characteristics of the storage formation. Later on, these characteristics were implemented in a 3-D numerical model. The model is a compositional dual medium (fracture + matrix) which accounts for temperature effects, as CO2 is liquid at the well bottom-hole, and multiphase flow hysteresis as alternating water and CO2 injection tests were performed. The pressure and temperature responses of the storage formation were history-matched mainly through the petrophysical and geometrical characteristics of the facture network. This dynamic characterization of the fracture network controls the CO2 migration while the matrix does not appear to significantly contribute to the storage capacity. Consequently, the hydrodynamic behavior of the aquifer is one of the main challenge of the modeling workflow.
Proof of concept of an imaging system demonstrator for PET applications with SiPM
NASA Astrophysics Data System (ADS)
Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Giuseppina Bisogni, Maria; Collazuol, Gianmaria; Ambrosi, Giovanni; Santoni, Cristiano; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto
2013-08-01
A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence.
Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.
NASA Astrophysics Data System (ADS)
Böttcher, N.
2015-12-01
This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.
Hecker, Arnaud; Quennedey, Brigitte; Testenière, Olivier; Quennedey, André; Graf, François; Luquet, Gilles
2004-06-01
Orchestia cavimana is a crustacean that cyclically replaces its calcified cuticle during molting cycles in order to grow. Its terrestrial way of life requires storage of calcium during each premolt period, as calcareous concretions, in tubular diverticula of the midgut. During the postmolt period the stored calcium is reabsorbed and is translocated through the storage organ epithelium as calcified small spherules. In a previous study, we sequenced and characterized a remarkable component of the organic matrix of the premolt storage structures, Orchestin, which is a calcium-binding phosphoprotein. In this paper, we analyzed the spatiotemporal expression of the orchestin gene by Northern blotting and in situ hybridization, and its translated product by immunocytochemistry. We found evidence that the gene and the protein are expressed specifically during premolt in the storage organs. More interestingly, we demonstrated that the protein is synthesized also during the postmolt period, as a component of the organic matrix of the calcium resorption spherules. Thus, Orchestin is a matrix component that is synthesized by the same cells to contribute alternately to the elaboration of two different calcifications. These results, in addition to the physical and chemical features of the protein, suggest that Orchestin is probably a key molecule in the calcium carbonate precipitation process leading to the cyclic elaboration of two transitory calcified mineralizations by the crustacean Orchestia.
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation. PMID:23166582
Phase matrix induced symmetrics for multiple scattering using the matrix operator method
NASA Technical Reports Server (NTRS)
Hitzfelder, S. J.; Kattawar, G. W.
1973-01-01
Entirely rigorous proofs of the symmetries induced by the phase matrix into the reflection and transmission operators used in the matrix operator theory are given. Results are obtained for multiple scattering in both homogeneous and inhomogeneous atmospheres. These results will be useful to researchers using the method since large savings in computer time and storage are obtainable.
76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... the requirements of reconstituted fuel assemblies; add requirements to qualify metal matrix composite... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the...
Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration
NASA Astrophysics Data System (ADS)
Zhou, Jian; Qi, Jinyi
2011-03-01
Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU).We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.
Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute
2013-01-01
Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems. PMID:23842652
Neural network based feed-forward high density associative memory
NASA Technical Reports Server (NTRS)
Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.
1987-01-01
A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.
2015-10-26
grafting block copolymer (BCP) to nanoparticles (BCP-g-NPs) to chemically match the corona of NPs with BCP matrix has resulted in a highly dispersed BCP...strategy of grafting BCP to nanoparticles in order to chemically match the corona of nanoparticles with BCP matrix has resulted in a highly dispersed...fast energy storage and discharge capabilities. However, the energy storage density of these capacitors is limited by the dielectric properties of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Sean M. McDeavitt; Thomas J. Downar; Dr. Temitope A. Taiwo
2009-03-01
The U.S. Department of Energy is developing next generation processing methods to recycle uranium and transuranic (TRU) isotopes from spent nuclear fuel. The objective of the 3-year project described in this report was to develop near-term options for storing TRU oxides isolated through the uranium extraction (UREX+) process. More specifically, a Zircaloy matrix cermet was developed as a storage form for transuranics with the understanding that the cermet also has the ability to serve as a inert matrix fuel form for TRU burning after intermediate storage. The goals of this research projects were: 1) to develop the processing steps requiredmore » to transform the effluent TRU nitrate solutions and the spent Xircaloy cladding into a zireonium matrix cermet sotrage form; and 2) to evaluate the impact of phenomena that govern durability of the storage form, material processing, and TRU utiliztion in fast reactor fuel. This report represents a compilation of the results generated under this program. The information is presented as a brief technical narrative in the following sections with appended papers, presentations and academic theses to provide a detailed review of the project's accomplishments.« less
Nickel hydrogen battery cell storage matrix test
NASA Technical Reports Server (NTRS)
Wheeler, James R.; Dodson, Gary W.
1993-01-01
Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.
Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models
NASA Astrophysics Data System (ADS)
March, Rafael; Doster, Florian; Geiger, Sebastian
2018-03-01
Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.
Coustau, C; Renaud, F; Delay, B; Robbins, I; Mathieu, M
1991-07-01
The mechanisms involved in the parasitic castration of the marine mussel Mytilus edulis by the trematode parasite Prosorhynchus squamatus Odhner, 1905, have been investigated in vitro with two bioassays employing dissociated host tissues. There is no conclusive evidence that P. squamatus affects the secretion of two host neuroendocrine factors, viz., gonial mitosis-stimulating factor and glycogen mobilization hormone, involved in the gametogenesis/nutrient storage cycles of the mussel. In contrast, extracts of P. squamatus sporocysts and cercariae significantly stimulated glycogen mobilization in host glycogen cells and strongly inhibited host gonial mitosis. A gonial mitosis-inhibiting factor (GMIF) was found in the hemolymph of parasitized mussels. The existence of an endogenous GMIF in mantle tissue of uninfected mussels has been demonstrated. This factor appeared to be secreted into the hemolymph during the period of sexual maturity. Whether the parasite acts directly on the host gonia, or by provoking the liberation of this endogenous GMIF, has yet to be ascertained. It would appear, however, that the parasite acts directly on host glycogen cells.
Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik
2010-06-15
The immersion liquid method is powerful for the measurement of the refractive index of solid particles in a liquid matrix. However, this method applies best for cases when the liquid matrix is transparent. A problem is usually how to assess the refractive index of a pigment when it is in a colored host liquid. In this article we introduce a method, and show that by combining so-called multifunction spectrophotometer, immersion liquid method and detection of light transmission and reflection we can assess the refractive index of a pigment in a colored liquid, and also the extinction or absorption coefficient of the host liquid.
Activated phosphors having matrices of yttrium-transition metal compound
De Kalb, E.L.; Fassel, V.A.
1975-07-01
A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)
Mesoporous Aluminosilicates as a Host and Reactor for Preparation of Ordered Metal Nanowires
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Napolskii, K. S.; Kolesnik, I. V.; Kolenko, Yu. V.; Lukashin, A. V.; Gornert, P.; Tretyakov, Yu. D.
The creation of functional nanomaterials with the controlled properties is emerging as a new area of great technological and scientific interest, in particular, it is a key technology for developing novel high-density data storage devices. Today, no other technology can compete with magnetic carriers in information storage density and access rate. However, usually very small (10-1000 nm3) magnetic nanoparticles shows para- or superparamagnetic properties, with very low blocking temperatures and no coercitivity at normal conditions. One possible solution of this problem is preparation of highly anisotropic nanostructures. From the other hand, the use of purely nanocrystalline systems is limited because of their low stability and tendency to form aggregates. These problems could be solved by encapsulation of nanoparticles to a chemically inert matrix. One of the promising matrices for preparation of highly anisotropic magnetic nanoparticles is mesoporous silica or mesoporous aluminosilicates. Mesoporous silica is an amorphous SiO2 with a highly ordered uniform pore structure (the pore diameter can be controllably varied from 2 to 50 nm). This pore system is a perfect reactor for synthesis of nanocomposites due to the limitation of reaction zone by the pore walls. One could expect that size and shape of nanoparticles incorporated into mesoporous silica to be consistent with the dimensions of the porous framework.
Mechanical trapping of particles in granular media
NASA Astrophysics Data System (ADS)
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Mechanical trapping of particles in granular media.
Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A
2018-02-01
Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.
Wilson, Sacoby; Zhang, Hongmei; Burwell, Kristen; Samantapudi, Ashok; Dalemarre, Laura; Jiang, Chengsheng; Rice, LaShanta; Williams, Edith; Naney, Charles
2014-01-01
There are approximately 590,000 underground storage tanks (USTs) nationwide that store petroleum or hazardous substances. Many of these tanks are leaking, which may increase the risk of exposure to contaminants that promote health problems in host neighborhoods. Within this study, we assessed disparities in the spatial distribution of leaking underground storage tanks (LUSTs) based on socioeconomic status (SES) and race/ethnicity in South Carolina (SC). Chi-square tests were used to evaluate the difference in the proportion of populations who host a LUST compared to those not hosting a LUST for all sociodemographic factors. Linear regression models were applied to examine the association of distance to the nearest LUST with relevant sociodemographic measures. As percent black increased, the distance (both in kilometers and miles) to the nearest LUST decreased. Similar results were observed for percent poverty, unemployment, persons with less than a high school education, blacks in poverty, and whites in poverty. Furthermore, chi-square tests indicated that blacks or non-whites or people with low SES were more likely to live in LUST host areas than in non-host areas. As buffer distance increased, percent black and non-white decreased. SES variables demonstrated a similar inverse relationship. Overall, burden disparities exist in the distribution of LUSTs based on race/ethnicity and SES in SC. PMID:24729829
Halma, Matilte; Mousty, Christine; Forano, Claude; Sancelme, Martine; Besse-Hoggan, Pascale; Prevot, Vanessa
2015-02-01
A soft chemical process was successfully used to immobilize Pseudomonas sp. strain ADP (ADP), a well-known atrazine (herbicide) degrading bacterium, within a Mg2Al-layered double hydroxide host matrix. This approach is based on a simple, quick and ecofriendly direct coprecipitation of metal salts in the presence of a colloidal suspension of bacteria in water. It must be stressed that by this process the mass ratio between inorganic and biological components was easily tuned ranging from 2 to 40. This ratio strongly influenced the biological activity of the bacteria towards atrazine degradation. The better results were obtained for ratios of 10 or lower, leading to an enhanced atrazine degradation rate and percentage compared to free cells. Moreover the biohybrid material maintained this biodegradative activity after four cycles of reutilization and 3 weeks storage at 4°C. The ADP@MgAl-LDH bionanohybrid materials were completely characterized by X-ray diffraction (XRD), FTIR spectroscopy, thermogravimetric analysis and scanning and transmission electronic microscopy (SEM and TEM) evidencing the successful immobilization of ADP within the inorganic matrix. This synthetic approach could be readily extended to other microbial whole-cell immobilization of interest for new developments in biotechnological systems. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Jiarui; Lv, Weiqiang; Chen, Yuanfu; Wen, Kechun; Xu, Chen; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong
2017-08-22
Lithium-tellurium (Li-Te) batteries are attractive for energy storage owing to their high theoretical volumetric capacity of 2621 mAh cm -3 . In this work, highly nanoporous cobalt and nitrogen codoped carbon polyhedra (C-Co-N) derived from a metal-organic framework (MOF) is synthesized and employed as tellurium host for Li-Te batteries. The Te@C-Co-N cathode with a high Te loading of 77.2 wt % exhibits record-breaking electrochemical performances including an ultrahigh initial capacity of 2615.2 mAh cm -3 approaching the theoretical capacity of Te (2621 mAh cm -3 ), a superior cycling stability with a high capacity retention of 93.6%, a ∼99% Columbic efficiency after 800 cycles as well as rate capacities of 2160, 1327.6, and 894.8 mAh cm -3 at 4, 10, and 20 C, respectively. The redox chemistry of tellurium is revealed by in operando Raman spectroscopic analysis and density functional theory simulations. The results illustrate that the performances are attributed to the highly conductive C-Co-N matrix with an advantageous structure of abundant micropores, which provides highly efficient channels for electron transfer and ionic diffusion as well as sufficient surface area to efficiently host tellurium while mitigating polytelluride dissolution and suppressing volume expansion.
Kim, L B; Shkurupy, V A; Putyatina, A N
2017-01-01
Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.
Bruce, Caroline D; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W
2010-05-01
The objective of this study was to investigate the influence of talc and humidity conditions during storage on the crystal growth of guaifenesin on the surface of melt-extruded matrix tablets. Tablets consisted of the model drug guaifenesin in a matrix of either Acryl-EZE(R) or Eudragit(R) L10055 and either no talc, 25% or 50% talc. After processing, the hot-melt-extruded matrix tablets were supersaturated with amorphous guaifenesin, which resulted in the development of guaifenesin drug crystals on exposed surfaces of the tablet during storage (all tablets were stored at 24 degrees C). A previously developed, quantitative test was used to assay for surface guaifenesin. In tablets with a drug-to-polymer ratio of 19:81, talc-containing tablets exhibited an earlier onset of crystal growth (storage at 17% relative humidity). The presence of talc also increased the amount of surface crystallization and was independent of the talc concentration, since the talc levels used in this study exceeded the critical nucleant concentration. Additional non-melting components did not have an additive effect on surface crystal growth. High humidity during storage (78%) increased guaifenesin crystallization, but moisture uptake of tablets did not correlate with increased drug recrystallization. When storage at 17% relative humidity was interrupted for 3days by storage at 78% relative humidity before the tablets were returned to their previous low RH storage conditions, crystal growth quickly increased during the high RH interval and remained at an elevated level throughout the remaining storage period. A similar intermediate period of low, 17% relative humidity in tablets stored before and after that time at 78% RH did not affect surface crystallization levels. The effects of humidity and talc on the crystallization of guaifenesin from melt-extruded dosage forms supersaturated with amorphous drug were ascribed to heterogeneous nucleation.
Quantifying water flow and retention in an unsaturated fracture-facial domain
Nimmo, John R.; Malek-Mohammadi, Siamak
2015-01-01
Hydrologically significant flow and storage of water occur in macropores and fractures that are only partially filled. To accommodate such processes in flow models, we propose a three-domain framework. Two of the domains correspond to water flow and water storage in a fracture-facial region, in addition to the third domain of matrix water. The fracture-facial region, typically within a fraction of a millimeter of the fracture wall, includes a flowing phase whose fullness is determined by the availability and flux of preferentially flowing water, and a static storage portion whose fullness is determined by the local matric potential. The flow domain can be modeled with the source-responsive preferential flow model, and the roughness-storage domain can be modeled with capillary relations applied on the fracture-facial area. The matrix domain is treated using traditional unsaturated flow theory. We tested the model with application to the hydrology of the Chalk formation in southern England, coherently linking hydrologic information including recharge estimates, streamflow, water table fluctuation, imaging by electron microscopy, and surface roughness. The quantitative consistency of the three-domain matrix-microcavity-film model with this body of diverse data supports the hypothesized distinctions and active mechanisms of the three domains and establishes the usefulness of this framework.
NASA Astrophysics Data System (ADS)
John, Beena Mary; Ushamani, M.; Sreekumar, K.; Joseph, Rani; Sudha Kartha, C.
2007-01-01
The diffraction efficiency, sensitivity, and storage life of methylene blue-sensitized poly(vinyl chloride) film was improved by the addition of an electron donor in the matrix. The addition of pyridine enhanced the diffraction efficiency by two times, and storage life of the gratings was increased to 2-3 days.
An efficient sparse matrix multiplication scheme for the CYBER 205 computer
NASA Technical Reports Server (NTRS)
Lambiotte, Jules J., Jr.
1988-01-01
This paper describes the development of an efficient algorithm for computing the product of a matrix and vector on a CYBER 205 vector computer. The desire to provide software which allows the user to choose between the often conflicting goals of minimizing central processing unit (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of four types of storage is selected for each diagonal. The candidate storage types employed were chosen to be efficient on the CYBER 205 for diagonals which have nonzero structure which is dense, moderately sparse, very sparse and short, or very sparse and long; however, for many densities, no diagonal type is most efficient with respect to both resource requirements, and a trade-off must be made. For each diagonal, an initialization subroutine estimates the CPU time and storage required for each storage type based on results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the two resources. The adjusted resource requirements are then compared to select the most efficient storage and computational scheme.
Kubodera, Takafumi; Yamashita, Nobuo; Nishimura, Akira
2003-01-01
Mureka-non-forming sake koji molds were constructed from an Aspergillus oryzae industrial strain by the disruption of the mreA gene using a host-vector system with the ptrA gene as a dominant selectable marker. All of the mreA gene disruptants obtained retained the advantages of the host strain in terms of the brewing characteristics, while their isoamyl alcohol oxidase (IAAOD) activities were significantly lower than that of the host strain. Sake brewing was successfully carried out using the koji prepared with the disruptants, followed by storage of the resultant non-pasteurized sake (nama-shu). The isovaleraldehyde (i-Val) concentration in the sake brewed the host strain increased rapidly and reached the threshold values for mureka, 1.8 ppm and 2.6 ppm after storage at 20 degrees C for 42 d and 63 d, respectively, while those of the disruptants were less than 0.5 ppm even after storage at 20 degrees C or 30 degrees C for 63 d. In the sensory evaluation of the sake stored at 20 degrees C or 30 degrees C for 63 d, all members of the panel recognized the strong mureka flavor of the sake brewed with the host strain, while they did not detect this flavor in the sake brewed with the disruptants. Thus, we concluded that the mreA gene disruptants can be used for the production of sake in which mureka is not formed.
Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y
2015-02-24
Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.
Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm.
Danso, K E; Ford-Lloyd, B V
2003-04-01
We report the encapsulation of in vitro-derived nodal cuttings or shoot tips of cassava in 3% calcium alginate for storage and germplasm exchange purposes. Shoot regrowth was not significantly affected by the concentration of sucrose in the alginate matrix while root formation was. In contrast, increasing the sucrose concentration in the calcium chloride polymerisation medium significantly reduced regrowth from encapsulated nodal cuttings of accession TME 60444. Supplementing the alginate matrix with increased concentrations of 6-benzylaminopurine and alpha-naphthaleneacetic acid enhanced complete plant regrowth within 2 weeks. Furthermore, plant regrowth by encapsulated nodal cuttings and shoot tips was significantly affected by the duration of the storage period as shoot recovery decreased from almost 100% to 73.3% for encapsulated nodal cuttings and 94.4% to 60% for shoot tips after 28 days of storage. The high frequency of plant regrowth from alginate-coated micropropagules coupled with high viability percentage after 28 days of storage is highly encouraging for the exchange of cassava genetic resources. Such encapsulated micropropagules could be used as an alternative to synthetic seeds derived from somatic embryos.
A highly resilient mesoporous SiOx lithium storage material engineered by oil-water templating.
Park, Eunjun; Park, Min-Sik; Lee, Jaewoo; Kim, Ki Jae; Jeong, Goojin; Kim, Jung Ho; Kim, Young-Jun; Kim, Hansu
2015-02-01
Mesoporous silicon-based materials gained considerable attention as high-capacity lithium-storage materials. However, the practical use is still limited by the complexity and limited number of available synthetic routes. Here, we report carbon-coated porous SiOx as high capacity lithium storage material prepared by using a sol-gel reaction of hydrogen silsesquioxane and oil-water templating. A hydrophobic oil is employed as a pore former inside the SiOx matrix and a precursor for carbon coating on the SiOx . The anode exhibits a high capacity of 730 mAh g(-1) and outstanding cycling performance over 100 cycles without significant dimensional changes. Carbon-coated porous SiOx also showed highly stable thermal reliability comparable to that of graphite. These promising properties come from the mesopores in the SiOx matrix, which ensures reliable operation of lithium storage in SiOx . The scalable sol-gel process presented here can open up a new avenue for the versatile preparation of porous SiOx lithium storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.W.
1993-08-01
The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.
Goyal, Amit; Shin, Junsoo
2014-04-01
A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.
1995-01-01
The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177
Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.
Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu
2017-11-29
A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.
Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S
2014-03-11
Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine
The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention onmore » elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to help with this issue, which are a particular instances of the more general challenge of efficient host/guest IO that is the focus of interfaces like virtio. A collection of bridging technologies have been identified in Chapter 4, which can be helpful to overcome the limitations and challenges of supporting efficient storage for secure enclaves. The synthesis of native filesystem security mechanisms and bridging technologies led to an isolation-centric storage architecture that is proposed in Chapter 5, which leverages isolation mechanisms from different layers to facilitate secure storage for an enclave. Recommendations: The following highlights recommendations from the investigations done thus far. - The Lustre filesystem offers excellent performance but does not support some security related features, e.g., encryption, that are included in GPFS. If encryption is of paramount importance, then GPFS may be a more suitable choice. - There are several possible Lustre related enhancements that may provide functionality of use for secure-enclaves. However, since these features are not currently integrated, the use of Lustre as a secure storage system may require more direct involvement (support). (*The network that connects the storage subsystem and users, e.g., Lustre s LNET.) - The use of OpenStack with GPFS will be more streamlined than with Lustre, as there are available drivers for GPFS. - The Manilla project offers Filesystem as a Service for OpenStack and is worth further investigation. Manilla has some support for GPFS. - The proposed Lustre enhancement of Dynamic-LNET should be further investigated to provide more dynamic changes to the storage network which could be used to isolate hosts and their tenants. - The Linux namespaces offer a good solution for creating efficient restrictions to shared HPC filesystems. However, we still need to conduct a thorough round of storage/filesystem benchmarks. - Vendor products should be more closely reviewed, possibly to include evaluation of performance/protection of select products. (Note, we are investigation the option of evaluating equipment from Seagate/Xyratex.) Outline: The remainder of this report is structured as follows: - Section 1: Describes the growing importance of secure storage architectures and highlights some challenges for HPC. - Section 2: Provides background information on HPC storage architectures, relevant supporting technologies for secure storage and details on OpenStack components related to storage. Note, that background material on HPC storage architectures in this chapter can be skipped if the reader is already familiar with Lustre and GPFS. - Section 3: A review of protection mechanisms in two HPC filesystems; details about available isolation, authentication/authorization and performance capabilities are discussed. - Section 4: Describe technologies that can be used to bridge gaps in HPC storage and filesystems to facilitate...« less
Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brant, M.C.; McLean, D.G.; Sutherland, R.L.
1996-12-31
The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic.more » Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.« less
Sideridou, Irini D; Vouvoudi, Evangelia C; Adamidou, Evanthia A
2015-02-01
The aim of this work is the study of the dynamic mechanical thermal properties (viscoelastic properties) of a current dental commercial light-cured nanohybrid resin composite, Kalore, GC (GC Corporation, Tokyo, Japan) along with the study of the effect of some food/oral simulating liquids (FSLs) on these properties. Dynamic mechanical thermal analysis (DMTA) tests were performed on a Diamond Dynamic Mechanical Thermal Analyzer in bending mode. A frequency of 1Hz and a temperature range of 25-185°C were applied, while the heating rate of 2°C/min was selected to cover mouth temperature and the material's likely Tg. The properties were determined after storage in air, distilled water, heptane, ethanol/water solution (75% v/v) or absolute ethanol at 37°C for up to 1h, 1, 7 or 30 days. Storage modulus, loss modulus and tangent delta (tanδ) were plotted against temperature. The glass transition temperatures are taken from the peak of the tangent tanδ versus temperature curves. Moreover, some factors indicating the heterogeneity of the polymer matrix, such as the width (ΔT) at the half of tanδ peak and the "ζ" parameter were determined. All samples analyzed after storage for 1h or 1 day in the aging media showed two Tg values. All samples analyzed after storage for 7 or 30 days in the ageing media showed a unique Tg value. Storage of Kalore GC in dry air, water or heptane at 37°C for 7 days caused post-curing reactions. Storage in air or water for 30 days did not seem to cause further effects. Storage in heptane for 30 days may cause plasticization and probably some degradation of the filler-silane bond and polymer matrix. Storage in ethanol/water solution (75% v/v) or ethanol for 7 days seems to cause post-curing reactions and degradation reactions of the matrix-filler bonds. Storage in ethanol for 30 days caused a strong change of the sample morphology and the DMTA results were not reliable. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Craddock, J.P.; McGillion, M.S.; Webers, G.F.
2007-01-01
Cambrian carbonates in the Heritage Range of the Ellsworth Mountains, West Antarctica host a series of carbonate-rich breccia bodies that formed contemporaneously with the Permian Gondwanide orogen. The breccia bodies had a three-stage genesis, with the older breccias containing Cambrian limestone (and marble) clasts supported by calcite, whereas the younger breccias are nearly clast-free and composed entirely of matrix calcite. Breccia clasts, calcite matrix and detrital matrix samples were analyzed using x-ray fluorescence (major and trace elements), x-ray diffraction, and stable isotopes (C, O) and suggest that the breccias formed as part of a closed geochemical system, at considerable depth, within the Cambrian limestone host as the Ellsworth Mountains deformed into a fold-and-thrust belt along the margin of Gondwana
Qu, Yanyan; Olonisakin, Tolani; Bain, William; Zupetic, Jill; Brown, Rebecca; Hulver, Mei; Xiong, Zeyu; Shanks, Robert M.Q.; Bomberger, Jennifer M.; Cooper, Vaughn S.; Zegans, Michael E.; Han, Jongyoon; Pilewski, Joseph; Ray, Anuradha; Ray, Prabir; Lee, Janet S.
2018-01-01
Acute lung injury is characterized by excessive extracellular matrix proteolysis and neutrophilic inflammation. A major risk factor for lung injury is bacterial pneumonia. However, host factors that protect against pathogen-induced and host-sustained proteolytic injury following infection are poorly understood. Pseudomonas aeruginosa (PA) is a major cause of nosocomial pneumonia and secretes proteases to amplify tissue injury. We show that thrombospondin-1 (TSP-1), a matricellular glycoprotein released during inflammation, dose-dependently inhibits PA metalloendoprotease LasB, a virulence factor. TSP-1–deficient (Thbs1–/–) mice show reduced survival, impaired host defense, and increased lung permeability with exaggerated neutrophil activation following acute intrapulmonary PA infection. Administration of TSP-1 from platelets corrects the impaired host defense and aberrant injury in Thbs1–/– mice. Although TSP-1 is cleaved into 2 fragments by PA, TSP-1 substantially inhibits Pseudomonas elastolytic activity. Administration of LasB inhibitor, genetic disabling of the PA type II secretion system, or functional deletion of LasB improves host defense and neutrophilic inflammation in mice. Moreover, TSP-1 provides an additional line of defense by directly subduing host-derived proteolysis, with dose-dependent inhibition of neutrophil elastase from airway neutrophils of mechanically ventilated critically ill patients. Thus, a host matricellular protein provides dual levels of protection against pathogen-initiated and host-sustained proteolytic injury following microbial trigger. PMID:29415890
Comparing direct and iterative equation solvers in a large structural analysis software system
NASA Technical Reports Server (NTRS)
Poole, E. L.
1991-01-01
Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.
Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO2 single crystals.
Kawarasaki, Masaru; Tanabe, Kenji; Terasaki, Ichiro; Fujii, Yasuhiro; Taniguchi, Hiroki
2017-07-13
The development of dielectric materials with colossal permittivity is important for the miniaturization of electronic devices and fabrication of high-density energy-storage devices. The electron-pinned defect-dipoles has been recently proposed to boost the permittivity of (Nb + In) co-doped TiO 2 to 10 5 . However, the follow-up studies suggest an extrinsic contribution to the colossal permittivity from thermally excited carriers. Herein, we demonstrate a marked enhancement in the permittivity of (Nb + In) co-doped TiO 2 single crystals at sufficiently low temperatures such that the thermally excited carriers are frozen out and exert no influence on the dielectric response. The results indicate that the permittivity attains quadruple of that for pure TiO 2 . This finding suggests that the electron-pinned defect-dipoles add an extra dielectric response to that of the TiO 2 host matrix. The results offer a novel approach for the development of functional dielectric materials with large permittivity by engineering complex defects into bulk materials.
Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films
Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R.; Hu, Liangbing
2016-01-01
Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matenine, D; Cote, G; Mascolo-Fortin, J
2016-06-15
Purpose: Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersections between the photons’ trajectories and the object, also called ray-tracing or system matrix computation. This work evaluates different ways to store the system matrix, aiming to reconstruct dense image grids in reasonable time. Methods: We propose an optimized implementation of the Siddon’s algorithm using graphics processing units (GPUs) with a novel data storage scheme. The algorithm computes a part of the system matrix on demand, typically, for one projection angle. The proposed method was enhanced with accelerating options: storage of larger subsets of themore » system matrix, systematic reuse of data via geometric symmetries, an arithmetic-rich parallel code and code configuration via machine learning. It was tested on geometries mimicking a cone beam CT acquisition of a human head. To realistically assess the execution time, the ray-tracing routines were integrated into a regularized Poisson-based reconstruction algorithm. The proposed scheme was also compared to a different approach, where the system matrix is fully pre-computed and loaded at reconstruction time. Results: Fast ray-tracing of realistic acquisition geometries, which often lack spatial symmetry properties, was enabled via the proposed method. Ray-tracing interleaved with projection and backprojection operations required significant additional time. In most cases, ray-tracing was shown to use about 66 % of the total reconstruction time. In absolute terms, tracing times varied from 3.6 s to 7.5 min, depending on the problem size. The presence of geometrical symmetries allowed for non-negligible ray-tracing and reconstruction time reduction. Arithmetic-rich parallel code and machine learning permitted a modest reconstruction time reduction, in the order of 1 %. Conclusion: Partial system matrix storage permitted the reconstruction of higher 3D image grid sizes and larger projection datasets at the cost of additional time, when compared to the fully pre-computed approach. This work was supported in part by the Fonds de recherche du Quebec - Nature et technologies (FRQ-NT). The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council of Canada (Grant No. 432290).« less
Disruption of Methicillin-resistant Staphylococcus aureus Biofilms with Enzymatic Therapeutics
2015-04-29
polysaccharide matrix and bacteria from the growth surface. α-Amylase, bromelain, and papain caused removal of most of the polysaccharide matrix...biofilm EPS matrix, including polysaccharides , proteins, and bacterial/host DNA [21]. While these enzymes have been utilized clinically since the 1940s...clinically or can easily transition to the clinical setting. These enzymes included an anti- polysaccharide agent, α-amylase, an anti-peptidoglycan agent
NASA Technical Reports Server (NTRS)
Collins, J. D.; Volakis, John L.
1992-01-01
A method that combines the finite element and boundary integral techniques for the numerical solution of electromagnetic scattering problems is presented. The finite element method is well known for requiring a low order storage and for its capability to model inhomogeneous structures. Of particular emphasis in this work is the reduction of the storage requirement by terminating the finite element mesh on a boundary in a fashion which renders the boundary integrals in convolutional form. The fast Fourier transform is then used to evaluate these integrals in a conjugate gradient solver, without a need to generate the actual matrix. This method has a marked advantage over traditional integral equation approaches with respect to the storage requirement of highly inhomogeneous structures. Rectangular, circular, and ogival mesh termination boundaries are examined for two-dimensional scattering. In the case of axially symmetric structures, the boundary integral matrix storage is reduced by exploiting matrix symmetries and solving the resulting system via the conjugate gradient method. In each case several results are presented for various scatterers aimed at validating the method and providing an assessment of its capabilities. Important in methods incorporating boundary integral equations is the issue of internal resonance. A method is implemented for their removal, and is shown to be effective in the two-dimensional and three-dimensional applications.
Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage.
Liang, Yanliang; Yoo, Hyun Deog; Li, Yifei; Shuai, Jing; Calderon, Hector A; Robles Hernandez, Francisco Carlos; Grabow, Lars C; Yao, Yan
2015-03-11
Mg rechargeable batteries (MgRBs) represent a safe and high-energy battery technology but suffer from the lack of suitable cathode materials due to the slow solid-state diffusion of the highly polarizing divalent Mg ion. Previous methods improve performance at the cost of incompatibility with anode/electrolyte and drastic decrease in volumetric energy density. Herein we report interlayer expansion as a general and effective atomic-level lattice engineering approach to transform inactive intercalation hosts into efficient Mg storage materials without introducing adverse side effects. As a proof-of-concept we have combined theory, synthesis, electrochemical measurement, and kinetic analysis to improve Mg diffusion behavior in MoS2, which is a poor Mg transporting material in its pristine form. First-principles simulations suggest that expanded interlayer spacing allows for fast Mg diffusion because of weakened Mg-host interactions. Experimentally, the expansion was realized by inserting a controlled amount of poly(ethylene oxide) into the lattice of MoS2 to increase the interlayer distance from 0.62 nm to up to 1.45 nm. The expansion boosts Mg diffusivity by 2 orders of magnitude, effectively enabling the otherwise barely active MoS2 to approach its theoretical storage capacity as well as to achieve one of the highest rate capabilities among Mg-intercalation materials. The interlayer expansion approach can be leveraged to a wide range of host materials for the storage of various ions, leading to novel intercalation chemistry and opening up new opportunities for the development of advanced materials for next-generation energy storage.
A Combination Therapy of JO-I and Chemotherapy in Ovarian Cancer Models
2013-10-01
which consists of a 3PAR storage backend and is sharing data via a highly available NetApp storage gateway and 2 high throughput commodity storage...Environment is configured as self- service Enterprise cloud and currently hosts more than 700 virtual machines. The network infrastructure consists of...technology infrastructure and information system applications designed to integrate, automate, and standardize operations. These systems fuse state of
Lin, Dingchang; Zhao, Jie; Sun, Jie; Yao, Hongbin; Liu, Yayuan; Yan, Kai; Cui, Yi
2017-01-01
Rechargeable batteries based on lithium (Li) metal chemistry are attractive for next-generation electrochemical energy storage. Nevertheless, excessive dendrite growth, infinite relative dimension change, severe side reactions, and limited power output severely impede their practical applications. Although exciting progress has been made to solve parts of the above issues, a versatile solution is still absent. Here, a Li-ion conductive framework was developed as a stable “host” and efficient surface protection to address the multifaceted problems, which is a significant step forward compared with previous host concepts. This was fulfilled by reacting overstoichiometry of Li with SiO. The as-formed LixSi–Li2O matrix would not only enable constant electrode-level volume, but also protect the embedded Li from direct exposure to electrolyte. Because uniform Li nucleation and deposition can be fulfilled owing to the high-density active Li domains, the as-obtained nanocomposite electrode exhibits low polarization, stable cycling, and high-power output (up to 10 mA/cm2) even in carbonate electrolytes. The Li–S prototype cells further exhibited highly improved capacity retention under high-power operation (∼600 mAh/g at 6.69 mA/cm2). The all-around improvement on electrochemical performance sheds light on the effectiveness of the design principle for developing safe and stable Li metal anodes. PMID:28416664
A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries
Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang
2016-01-01
Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g−1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles. PMID:26842015
A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries.
Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang
2016-02-04
Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g(-1) at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.
A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries
NASA Astrophysics Data System (ADS)
Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang
2016-02-01
Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g-1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.
Integrated Circuit For Simulation Of Neural Network
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.; Khanna, Satish K.
1988-01-01
Ballast resistors deposited on top of circuit structure. Cascadable, programmable binary connection matrix fabricated in VLSI form as basic building block for assembly of like units into content-addressable electronic memory matrices operating somewhat like networks of neurons. Connections formed during storage of data, and data recalled from memory by prompting matrix with approximate or partly erroneous signals. Redundancy in pattern of connections causes matrix to respond with correct stored data.
10 CFR 960.4-2-2 - Geochemistry.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Considering the likely chemical interactions among radionuclides, the host rock, and the ground water, the... the rock matrix, or sorption of radionuclides; inhibit the formation of particulates, colloids... geochemical conditions and a volumetric flow rate of water in the host rock that would allow less than 0.001...
Distributed Storage Algorithm for Geospatial Image Data Based on Data Access Patterns.
Pan, Shaoming; Li, Yongkai; Xu, Zhengquan; Chong, Yanwen
2015-01-01
Declustering techniques are widely used in distributed environments to reduce query response time through parallel I/O by splitting large files into several small blocks and then distributing those blocks among multiple storage nodes. Unfortunately, however, many small geospatial image data files cannot be further split for distributed storage. In this paper, we propose a complete theoretical system for the distributed storage of small geospatial image data files based on mining the access patterns of geospatial image data using their historical access log information. First, an algorithm is developed to construct an access correlation matrix based on the analysis of the log information, which reveals the patterns of access to the geospatial image data. Then, a practical heuristic algorithm is developed to determine a reasonable solution based on the access correlation matrix. Finally, a number of comparative experiments are presented, demonstrating that our algorithm displays a higher total parallel access probability than those of other algorithms by approximately 10-15% and that the performance can be further improved by more than 20% by simultaneously applying a copy storage strategy. These experiments show that the algorithm can be applied in distributed environments to help realize parallel I/O and thereby improve system performance.
Protection of probiotic bacteria in a synbiotic matrix following aerobic storage at 4 deg C
USDA-ARS?s Scientific Manuscript database
The survival of single strains of Bifidobacterium breve, Bifidobacterium longum, Lactobacillus acidophilus, and Lactobacillus reuteri was investigated in synbiotics that included 10 mg/mL of fructo-oligosaccharides, inulin and pectic-oligosaccharides in an alginate matrix under refrigerated (4 C) ae...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase
A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align andmore » transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections.« less
Kim, Jung-Kyun; Kwon, Yong-Eun; Lee, Sang-Gil; Kim, Chang-Yeon; Kim, Jin-Gyu; Huh, Min; Lee, Eunji; Kim, Youn-Joong
2017-01-01
We have applied correlative microscopy to identify the key constituents of a dorsal rib fossil from Koreanosaurus boseongensis and its hosting mudstone discovered at the rich fossil site in Boseong, South Korea, to investigate the factors that likely contributed to diagenesis and the preservation of fossil bone. Calcite and illite were the commonly occurring phases in the rib bone, hosting mudstone, and the boundary region in-between. The boundary region may have contributed to bone preservation once it fully formed by acting as a protective shell. Fluorapatite crystals in the rib bone matrix signified diagenetic alteration of the original bioapatite crystals. While calcite predominantly occupied vascular channels and cracks, platy illite crystals widely occupied miniscule pores throughout the bone matrix. Thorough transmission electron microscopy (TEM) study of illite within the bone matrix indicated the solid-state transformation of 1M to 2M without composition change, which was more evident from the lateral variation of 1M to 2M within the same layer. The high level of lattice disordering of 2M illite suggested an early stage of 1M to 2M transformation. Thus, the diagenetic alteration of both apatite and illite crystals within the bone matrix may have increased its overall density, as the preferred orientation of apatite crystals from moderate to strong degrees was evident despite the poor preservation of osteohistological features. The combined effects of rapid burial, formation of a boundary region, and diagenesis of illite and apatite within the bone matrix may have contributed to the rib bone preservation.
Disrupting the biofilm matrix improves wound healing outcomes.
Wolcott, R
2015-08-01
The most unyielding molecular component of biofilm communities is the matrix structure that it can create around the individual microbes that constitute the biofilm. The type of polymeric substances (polymeric sugars, bacterial proteins, bacterial DNA and even co-opted host substances) are dependent on the microbial species present within the biofilm. The extracellular polymeric substances that make up the matrix give the wound biofilm incredible colony defences against host immunity, host healing and wound care treatments. This polymeric slime layer, which is secreted by bacteria, encases the population of microbes, creating a physical barrier that limits the ingress of treatment agents to the bacteria. The aim of this study was to determine if degrading the wound biofilm matrix would improve wound healing outcomes and if so, if there was a synergy between treating agents that disrupted biofilm defenses with Next Science Wound Gel (wound gel) and cidal agents (topical antibiotics). A three-armed randomised controlled trial was designed to determine if standard of care (SOC) was superior to SOC plus wound gel (SOC + gel) and wound gel alone. The wound gel used in this study contains components that directly attack the biofilm extracellular polymeric substance. The gel was applied directly to the wound bed on a Monday-Wednesday-Friday interval, either alone or with SOC topical antibiotics. Using a surrogate endpoint of 50% reduction in wound volume, the results showed that SOC healed at 53%, wound gel healed at 80%, while SOC plus wound gel showed 93% of wounds being successfully treated. By directly targeting the wound biofilm matrix, wound healing outcomes are improved.
Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming
2015-08-01
The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. © The Author(s) 2015.
Minimizing energy dissipation of matrix multiplication kernel on Virtex-II
NASA Astrophysics Data System (ADS)
Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook
2002-07-01
In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.
Predictive model to describe water migration in cellular solid foods during storage.
Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J
2011-11-01
Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.
Soukoulis, Christos; Yonekura, Lina; Gan, Heng-Hui; Behboudi-Jobbehdar, Solmaz; Parmenter, Christopher; Fisk, Ian
2014-08-01
In the present paper, a novel approach for the development of probiotic baked cereal products is presented. Probiotic pan bread constructed by the application of film forming solutions based either on individual hydrogels e.g. 1% w/w sodium alginate (ALG) or binary blends of 0.5% w/w sodium alginate and 2% whey protein concentrate (ALG/WPC) containing Lactobacillus rhamnosus GG, followed by an air drying step at 60 °C for 10 min or 180 °C for min were produced. No visual differences between the bread crust surface of control and probiotic bread were observed. Microstructural analysis of bread crust revealed the formation of thicker films in the case of ALG/WPC. The presence of WPC improved significantly the viability of L. rhamnosus GG throughout air drying and room temperature storage. During storage there was a significant reduction in L. rhamnosus GG viability during the first 24 h, viable count losses were low during the subsequent 2-3 days of storage and growth was observed upon the last days of storage (day 4-7). The use of film forming solutions based exclusive on sodium alginate improved the viability of L. rhamnosus GG under simulated gastro-intestinal conditions, and there was no impact of the bread crust matrix on inactivation rates. The presence of the probiotic edible films did not modify cause major shifts in the mechanistic pathway of bread staling - as shown by physicochemical, thermal, texture and headspace analysis. Based on our calculations, an individual 30-40 g bread slice can deliver approx. 7.57-8.98 and 6.55-6.91 log cfu/portion before and after in-vitro digestion, meeting the WHO recommended required viable cell counts for probiotic bacteria to be delivered to the human host.
Electronic device aspects of neural network memories
NASA Technical Reports Server (NTRS)
Lambe, J.; Moopenn, A.; Thakoor, A. P.
1985-01-01
The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.
Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.
1987-01-01
A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.
A compressive sensing based secure watermark detection and privacy preserving storage framework.
Qia Wang; Wenjun Zeng; Jun Tian
2014-03-01
Privacy is a critical issue when the data owners outsource data storage or processing to a third party computing service, such as the cloud. In this paper, we identify a cloud computing application scenario that requires simultaneously performing secure watermark detection and privacy preserving multimedia data storage. We then propose a compressive sensing (CS)-based framework using secure multiparty computation (MPC) protocols to address such a requirement. In our framework, the multimedia data and secret watermark pattern are presented to the cloud for secure watermark detection in a CS domain to protect the privacy. During CS transformation, the privacy of the CS matrix and the watermark pattern is protected by the MPC protocols under the semi-honest security model. We derive the expected watermark detection performance in the CS domain, given the target image, watermark pattern, and the size of the CS matrix (but without the CS matrix itself). The correctness of the derived performance has been validated by our experiments. Our theoretical analysis and experimental results show that secure watermark detection in the CS domain is feasible. Our framework can also be extended to other collaborative secure signal processing and data-mining applications in the cloud.
A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring
NASA Astrophysics Data System (ADS)
Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.
2012-11-01
The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.
Pielach, Anna; Leroux, Olivier; Domozych, David S.; Knox, J. Paul; Popper, Zoë A.
2014-01-01
Background and Aims Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. Methods Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). Key Results Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. Conclusions The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria. PMID:25024256
USDA-ARS?s Scientific Manuscript database
Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antivir...
USDA-ARS?s Scientific Manuscript database
American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and...
Flexible matrix composite laminated disk/ring flywheel
NASA Technical Reports Server (NTRS)
Gupta, B. P.; Hannibal, A. J.
1984-01-01
An energy storage flywheel consisting of a quasi-isotropic composite disk overwrapped by a circumferentially wound ring made of carbon fiber and a elastometric matrix is proposed. Through analysis it was demonstrated that with an elastomeric matrix to relieve the radial stresses, a laminated disk/ring flywheel can be designed to store a least 80.3 Wh/kg or about 68% more than previous disk/ring designs. at the same time the simple construction is preserved.
Image compression using singular value decomposition
NASA Astrophysics Data System (ADS)
Swathi, H. R.; Sohini, Shah; Surbhi; Gopichand, G.
2017-11-01
We often need to transmit and store the images in many applications. Smaller the image, less is the cost associated with transmission and storage. So we often need to apply data compression techniques to reduce the storage space consumed by the image. One approach is to apply Singular Value Decomposition (SVD) on the image matrix. In this method, digital image is given to SVD. SVD refactors the given digital image into three matrices. Singular values are used to refactor the image and at the end of this process, image is represented with smaller set of values, hence reducing the storage space required by the image. Goal here is to achieve the image compression while preserving the important features which describe the original image. SVD can be adapted to any arbitrary, square, reversible and non-reversible matrix of m × n size. Compression ratio and Mean Square Error is used as performance metrics.
Pluen, Alain; Boucher, Yves; Ramanujan, Saroja; McKee, Trevor D.; Gohongi, Takeshi; di Tomaso, Emmanuelle; Brown, Edward B.; Izumi, Yotaro; Campbell, Robert B.; Berk, David A.; Jain, Rakesh K.
2001-01-01
The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors. PMID:11274375
Method for preparing polyolefin composites containing a phase change material
Salyer, Ival O.
1990-01-01
A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.
Beshkar, Pezhman; Hosseini, Ehteramolsadat; Ghasemzadeh, Mehran
2018-02-01
Regardless of different sources, methods or devices which are applied for preparation of therapeutic platelets, these products are generally isolated from whole blood by the sedimentation techniques which are based on PRP or buffy coat (BC) separation. As a general fact, platelet preparation and storage are also associated with some deleterious changes that known as platelet storage lesion (PSL). Although these alternations in platelet functional activity are aggravated during storage, whether technical issues within preparation can affect integrin activation and platelet adhesion to fibrinogen were investigated in this study. PRP- and BC-platelet concentrates (PCs) were subjected to flowcytometry analysis to examine the expression of platelet activation marker, P-selectin as well as active confirmation of the GPIIb/IIIa (α IIb β 3 ) on day 0, 1, 3 and 5 post-storage. Platelet adhesion to fibrinogen matrix was evaluated by fluorescence microscopy. Glucose concentration and LDH activity were also measured by colorimetric methods. The increasing P-selectin expression during storage was in a reverse correlation with PAC-1 binding (r = -0.67; p = .001). PRP-PCs showed the higher level of P-selectin expression than BC-PCs, whereas the levels of PAC-1 binding and platelet adhesion to fibrinogen matrix were significantly lower in PRP-PCs. Higher levels of active confirmation of the GPIIb/IIIa in BC-PCs were also associated with greater concentration of glucose in these products. We demonstrated the superior capacities of integrin activation and adhesion to fibrinogen for BC-PCs compared to those of PRP-PCs. These findings may provide more advantages for BC method of platelet preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modifying a numerical algorithm for solving the matrix equation X + AX T B = C
NASA Astrophysics Data System (ADS)
Vorontsov, Yu. O.
2013-06-01
Certain modifications are proposed for a numerical algorithm solving the matrix equation X + AX T B = C. By keeping the intermediate results in storage and repeatedly using them, it is possible to reduce the total complexity of the algorithm from O( n 4) to O( n 3) arithmetic operations.
Mattice, Kristin D; Marangoni, Alejandro G
2017-06-01
Two hydrogenated roll-in shortenings (A & B), one non-hydrogenated roll-in shortening and butter were used to prepare croissants. The impact of the laminated dough matrix on fat crystallization was then investigated using powder X-ray diffraction (XRD), pulsed nuclear magnetic resonance (p-NMR) and differential scanning calorimetry (DSC). The fat contained within a croissant matrix has never before been analyzed using these techniques. In each case, XRD revealed that the polymorphism of a roll-in fat will be different when baked within the dough matrix than when simply heated and cooled on its own. Both hydrogenated roll-in shortenings and butter experienced only minor changes, largely retaining their β' polymorphs, but the non-hydrogenated shortening experienced significant conversion from β' to the β form. However, this conversion did not take place immediately upon cooling, but after approximately 24h of storage time. The fat contained within the croissants exhibited a significantly lower SFC than the same fats in bulk. Further, DSC results demonstrated that a greater temperature was required to completely melt all of the fat in a croissant than the same fat in bulk, observed visually as broader peaks in the melting endotherms. Analysis of croissant firmness over storage time, measured as the maximum force required to cut a croissant was used as an indication of potential sensory consequences. Results suggested that only croissants prepared with non-hydrogenated shortening experienced significant changes in firmness over one week of storage. These results indicate that there is an interaction between the shortenings and the ingredients of the croissant matrix, and given the differences observed between roll-in fats used, the extent of interaction is potentially influenced by the composition of the roll-in fat itself. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei
2017-11-22
Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.
Doetzer, A K; Foerster, L A
2013-10-01
The eggs of pentatomid species were evaluated to parasitism by Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead after storage in liquid nitrogen. Adults which emerged from stored eggs were kept at 18°C for 120 and 180 days to investigate whether adult dormancy could be associated with host egg storage in liquid nitrogen as a method of mass production of these egg parasitoids. Eggs of Nezara viridula (L.) and Acrosternum pengue (Rolston) were successfully parasitized by T. basalis, as well as Piezodorus guildinii (Westwood) and Dichelops furcatus (F.) by T. podisi. The eggs of Edessa meditabunda (F.) were not parasitized by T. basalis. The emergence of T. podisi from eggs of Euschistus heros (F.) and Podisus nigrispinus (Dallas) stored for 6 months was lower than the control. Females of T. basalis and T. podisi that emerged from stored eggs were kept in dormancy at 18°C. Longevity of T. basalis was influenced by the storage time and sex, but not by the interaction of sex and storage time. For T. podisi, longevity was influenced by the storage time, sex, and by the interaction of sex and storage time. For T. basalis, storage in liquid nitrogen did not affect the fecundity of quiescent females, while the number of parasitized eggs by T. podisi decreased after storage. By the joint use of these techniques, it is possible to optimize mass production of T. basalis so that its life cycle can be monitored and synchronized with the life cycle and availability of hosts.
USDA-ARS?s Scientific Manuscript database
Weed biological control workers have advocated for the advance assessment of agent efficacy in order to minimize the release of host-specific but ineffective agents. One method involves demographic matrix modeling of target weed populations in order to identify plant life stage transitions that cont...
Non-covalent interactions of a drug molecule encapsulated in a hybrid silica gel.
Paul, Geo; Steuernagel, Stefan; Koller, Hubert
2007-12-28
The drug molecule Propranolol has been encapsulated by a sol-gel process in an organic-inorganic hybrid matrix by in-situ self-assembly; the 2D HETCOR solid state NMR spectroscopy provides direct proof of the intimate spatial relationship between the host matrix and guest drug molecules.
Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri
2017-11-01
Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.
2016-08-01
Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.
NASA Astrophysics Data System (ADS)
Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.
2013-12-01
In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the vicinity of the cavern. These programs will allow detecting changes of the host rock properties during the construction and operation of the storage facility. The developed model will be used by public authorities for land use planning issues.
Role of polysaccharides in Pseudomonas aeruginosa biofilm development
Ryder, Cynthia; Byrd, Matthew; Wozniak, Daniel J.
2008-01-01
During the past decade, there has been a renewed interest in using P. aeruginosa as a model system for biofilm development and pathogenesis. Since the biofilm matrix represents a critical interface between the bacterium and the host or its environment, considerable effort has been expended to acquire a more complete understanding of the matrix composition. Here, we focus on recent developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix. PMID:17981495
Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.
2010-05-11
Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.
Polyolefin composites containing a phase change material
Salyer, Ival O.
1991-01-01
A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.
A real time spectrum to dose conversion system
NASA Technical Reports Server (NTRS)
Farmer, B. J.; Johnson, J. H.; Bagwell, R. G.
1972-01-01
A system has been developed which permits the determination of dose in real time or near real time directly from the pulse-height output of a radiation spectrometer. The technique involves the use of the resolution matrix of a spectrometer, the radiation energy-to-dose conversion function, and the geometrical factors, although the order of matrix operations is reversed. The new technique yields a result which is mathematically identical to the standard method while requiring no matrix manipulations or resolution matrix storage in the remote computer. It utilizes only a single function for each type dose required and each geometric factor involved.
Method of encapsulating solid radioactive waste material for storage
Bunnell, Lee Roy; Bates, J. Lambert
1976-01-01
High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.
Ferreira, J E M; Rodriguez-Amaya, D B
2008-10-01
Being highly unsaturated, carotenoids are susceptible to isomerization and oxidation during the processing and storage of food. In the present study, the degradation of acyclic lycopene and dicyclic beta-carotene in low-moisture and aqueous model systems, as well as in lyophilized guava, during storage at ambient temperature, in the absence or presence of light, was investigated. Both carotenoids followed first order kinetics under the various conditions investigated. Lycopene degraded much faster than beta-carotene in all the model systems. In a comparison of lycopene isolated from guava, tomato, and watermelon, greater losses were observed with lycopene from tomato. Since the model system was identical in the 3 cases, these results indicated that other compounds from the food sources, co-extracted with lycopene, might have influenced the oxidation. Light consistently and strongly promoted degradation under all conditions studied. The susceptibility of lycopene to degradation was much less in lyophilized guava than in the model systems, showing the marked protective influence of the food matrix. Loss of beta-carotene, found at a concentration of about 18 times lower than lycopene, was only slightly lower than that of lycopene in lyophilized guava, indicating that the effect of matrix and/or the initial concentration overshadowed the structural influence.
Mapping the Conjugate Gradient Algorithm onto High Performance Heterogeneous Computers
2014-05-01
Matrix Storage Formats According to J . Dongarra (Dongerra 2000), the efficiency of most iterative methods, such as CG, can be attributed to the...valh = aij) ⇒ (colh = j ). The ptr integer vector is of length n + 1 and contains the index in val where each matrix row starts. For example, the...first nonzero element of matrix rowm is found at index ptrm of val. By convention, ptrn+1 ≡ nz + 1. Notice that (aij) ⇒ (ptri ≤ j < ptri+1) for all i. An
Immobilized fluid membranes for gas separation
Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang
2014-03-18
Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.
Host cells and methods for producing diacid compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.
The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.
Long-distance dispersal of non-native pine bark beetles from host resources
Kevin Chase; Dave Kelly; Andrew M. Liebhold; Martin K.-F. Bader; Eckehard G. Brockerhoff
2017-01-01
Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. The aim of the present study was to determine the long distance dispersal capabilities of two non-native pine bark beetles (Hylurgus...
Uranium luminescence in La2 Zr2 O7 : effect of concentration and annealing temperature.
Mohapatra, M; Rajeswari, B; Hon, N S; Kadam, R M
2016-12-01
The speciation of a particular element in any given matrix is a prerequisite to understanding its solubility and leaching properties. In this context, speciation of uranium in lanthanum zirconate pyrochlore (La 2 Zr 2 O 7 = LZO), prepared by a low-temperature combustion route, was carried out using a simple photoluminescence lifetime technique. The LZO matrix is considered to be a potential ceramic host for fixing nuclear and actinide waste products generated during the nuclear fuel cycle. Special emphasis has been given to understanding the dynamics of the uranium species in the host as a function of annealing temperature and concentration. It was found that, in the LZO host, uranium is stabilized as the commonly encountered uranyl species (UO 2 2+ ) up to a heat treatment of 500 °C at the surface. Above 500 °C, the uranyl ion is diffused into the matrix as the more symmetric octahedral uranate species (UO 6 6- ). The uranate ions thus formed replace the six-coordinated 'Zr' atoms at regular lattice positions. Further, it was observed that concentration quenching takes place beyond 5 mol% of uranium doping. The mechanism of the quenching was found to be a multipolar interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.R.; Klavetter, E.A.; Hall, I.J.
1984-12-01
The geological formations in the unsaturated zone at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS), are currently being studied for consideration as the host for a radioactive-waste repository; the US Department of Energy is carrying out these studies through the Nevada Nuclear Waste Storage Investigations project. The formations are composed of tuffaceous (tuff) materials that must be evaluated to estimate the rate at which radionuclides would migrate to the accessible environment. According to the available evidence, the flux of water in the unsaturated zone beneath the Yucca Mountain site is low; quantifying such low flow ratesmore » through direct measurements is difficult. To help provide data that can be used to assess unsaturated flow, Pacific Northwest Laboratory (PNL), under contract to Sandia National Laboratories (SNL), performed hydrologic tests on tuffaceous samples from 48 different locations in Yucca Mountain. This report contains the entire set of psychrometer measurements of desaturation curves for tuffs from Yucca Mountain as well as a substantial number of saturated conductivity measurements. 19 references, 132 figures, 23 tables.« less
Prchal, Jan; Junkova, Petra; Strmiskova, Miroslava; Lipov, Jan; Hynek, Radovan; Ruml, Tomas; Hrabal, Richard
2011-09-01
Matrix proteins play multiple roles both in early and late stages of the viral replication cycle. Their N-terminal myristoylation is important for interaction with the host cell membrane during virus budding. We used Escherichia coli, carrying N-myristoyltransferase gene, for the expression of the myristoylated His-tagged matrix protein of Mason-Pfizer monkey virus. An efficient, single-step purification procedure eliminating all contaminating proteins including, importantly, the non-myristoylated matrix protein was designed. The comparison of NMR spectra of matrix protein with its myristoylated form revealed substantial structural changes induced by this fatty acid modification. Copyright © 2011 Elsevier Inc. All rights reserved.
Hydrogen-based electrochemical energy storage
Simpson, Lin Jay
2013-08-06
An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.
Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte
Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT
2011-05-10
An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.
Storage and sustained release of volatile substances from a hollow silica matrix
NASA Astrophysics Data System (ADS)
Wang, Jiexin; Ding, Haomin; Tao, Xia; Chen, Jianfeng
2007-06-01
Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO3 template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 mlperfume/mgcarrier) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.
Computational complexities and storage requirements of some Riccati equation solvers
NASA Technical Reports Server (NTRS)
Utku, Senol; Garba, John A.; Ramesh, A. V.
1989-01-01
The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.
The redwood project: An overview
NASA Technical Reports Server (NTRS)
Cheatham, Sam
1993-01-01
Redwood is a new generation tape subsystem now under development at StorageTek using helical scan technology. This library based storage subsystem is designed for the high performance, deep archival market. The topics are presented in viewgraph form and include the following: subsystem overview, media standards, Redwood developed tape, D3 helical recording format, Redwood cartridge, host software for Redwood libraries, and market opportunities.
Preparation and Storage of High-Titer Lactic Streptococcus Bacteriophages1
Nyiendo, J.; Seidler, Ramon J.; Sandine, W. E.; Elliker, P. R.
1974-01-01
Various techniques were employed for preparation of high-titer bacteriophage lysates of Streptococcus lactis, S. cremoris, and S. diacetilactis strains. Infection of a 4-h host culture in litmus milk at 30 C yielded the highest titers (2 × 109 to 4 × 1011 plaque-forming units/ml) for most phages. Host infection in lactose-containing broth produced similar virus numbers only when 0.1 M tris(hydroxymethyl)aminomethane buffer stabilized the pH. The pH at the time of infection as well as the inoculum phage titer were critical in obtaining high titers. Optimum conditions for infection in broth were coupled with a polyethylene glycol concentration procedure to routinely produce milligram quantities of phage from 1 liter of lysate. Neutralization of whey lysates, as a means of storage, offered no survival advantage over unneutralized samples. Storage of phage lysates in a 15% glycerol whey solution at -22 C yielded a high rate of survival in most cases, even with repeated freezing and thawing, over a period of 24 months. PMID:16349981
Ferroelectric polymer-ceramic composite thick films for energy storage applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Paritosh; Borkar, Hitesh; Singh, B. P.
2014-08-15
We have successfully fabricated large area free standing polyvinylidene fluoride -Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PVDF-PZT) ferroelectric polymer-ceramic composite (wt% 80–20, respectively) thick films with an average diameter (d) ∼0.1 meter and thickness (t) ∼50 μm. Inclusion of PZT in PVDF matrix significantly enhanced dielectric constant (from 10 to 25 at 5 kHz) and energy storage capacity (from 11 to 14 J/cm{sup 3}, using polarization loops), respectively, and almost similar leakage current and mechanical strength. Microstructural analysis revealed the presence of α and β crystalline phases and homogeneous distribution of PZT crystals in PVDF matrix. It was also found that apartmore » from the microcrystals, well defined naturally developed PZT nanocrystals were embedded in PVDF matrix. The observed energy density indicates immense potential in PVDF-PZT composites for possible applications as green energy and power density electronic elements.« less
NASA Astrophysics Data System (ADS)
Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur
2017-05-01
Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison with most oceanic basalts. Cl and B are unfractionated from similarly compatible trace elements, and preserve records of primary melt heterogeneity. Although primitive plagioclase-hosted melt inclusions from the 10 ka Grímsvötn tephra series record few primary signals in their volatile contents, they nevertheless record information about crustal magma processing that is not captured in olivine-hosted melt inclusions suites.
Electrodes for sealed secondary batteries
NASA Technical Reports Server (NTRS)
Boies, D. B.; Child, F. T.
1972-01-01
Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.
Light harvesting with Ge quantum dots embedded in SiO{sub 2} or Si{sub 3}N{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cosentino, Salvatore, E-mail: Salvatore.cosentino@ct.infn.it; Raciti, Rosario; Simone, Francesca
2014-01-28
Germanium quantum dots (QDs) embedded in SiO{sub 2} or in Si{sub 3}N{sub 4} have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 °C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3–9 nm range in the SiO{sub 2} matrix, or in the 1–2 nm range in the Si{sub 3}N{sub 4} matrix, as measured by transmission electron microscopy. Thus, Si{sub 3}N{sub 4} matrix hosts Ge QDs at higher density and more closely spaced thanmore » SiO{sub 2} matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs embedded in Si{sub 3}N{sub 4} matrix in comparison with those in the SiO{sub 2} host. Light absorption by Ge QDs is shown to be more effective in Si{sub 3}N{sub 4} matrix, due to the optical bandgap (0.9–1.6 eV) being lower than in SiO{sub 2} matrix (1.2–2.2 eV). Significant photoresponse with a large measured internal quantum efficiency has been observed for Ge QDs in Si{sub 3}N{sub 4} matrix when they are used as a sensitive layer in a photodetector device. These data will be presented and discussed, opening new routes for application of Ge QDs in light harvesting devices.« less
Structure and assembly of a paramyxovirus matrix protein.
Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G
2012-08-28
Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.
Early matrix change of a nanostructured bone grafting substitute in the rat.
Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte
2009-11-01
A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.
Electronic implementation of associative memory based on neural network models
NASA Technical Reports Server (NTRS)
Moopenn, A.; Lambe, John; Thakoor, A. P.
1987-01-01
An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.
Luquet, G; Testenière, O; Graf, F
1996-04-16
We extracted proteins from the organic matrix of calcareous concretions, which represents the calcium storage form in a terrestrial crustacean. Electrophoretic analyses of water-soluble organic-matrix proteinaceous components revealed 11 polypeptides, 6 of which are probably glycosylated. Among the unglycosylated proteins, we characterized a 23 kDa polypeptide, with an isoelectric point of 5.5, which is able to bind calcium. Its N-terminal sequence is rich in acidic amino acids (essentially aspartic acid). All these characteristics suggest its involvement in the calcium precipitation process within the successive layers of the organic matrix.
USDA-ARS?s Scientific Manuscript database
Matrix metalloproteinase-13 (MMP-13), referred to as collagenase-3, is a proteolytic enzyme that plays a key role in degradation and remodelling of host extracellularmatrix proteins. The objective of this study was to characterize the MMP-13 gene in channel catfish, and to determine its pattern of e...
Host- and microbe determinants that may influence the success of S. aureus colonization
Johannessen, Mona; Sollid, Johanna E.; Hanssen, Anne-Merethe
2012-01-01
Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed. PMID:22919647
Host- and microbe determinants that may influence the success of S. aureus colonization.
Johannessen, Mona; Sollid, Johanna E; Hanssen, Anne-Merethe
2012-01-01
Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25-30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed.
Host-Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response.
Brasil, Thaís Rigueti; Freire-de-Lima, Celio Geraldo; Morrot, Alexandre; Vetö Arnholdt, Andrea Cristina
2017-01-01
Toxoplasma gondii has successfully developed strategies to evade host's immune response and reach immune privileged sites, which remains in a controlled environment inside quiescent tissue cysts. In this review, we will approach several known mechanisms used by the parasite to modulate mainly the murine immune system at its favor. In what follows, we review recent findings revealing interference of host's cell autonomous immunity and cell signaling, gene expression, apoptosis, and production of microbicide molecules such as nitric oxide and oxygen reactive species during parasite infection. Modulation of host's metalloproteinases of extracellular matrix is also discussed. These immune evasion strategies are determinant to parasite dissemination throughout the host taking advantage of cells from the immune system to reach brain and retina, crossing crucial hosts' barriers.
Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai
2017-02-22
High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO 2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO 2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm -3 at 530 MV m -1 , more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm -3 at 600 MV m -1 ). A gratifying high energy density of 9.12 J cm -3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m -1 , which is nearly double to that of pure P(VDF-HFP) (4.76 J cm -3 at 360 MV m -1 ). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO 2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.
NASA Astrophysics Data System (ADS)
Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai
2017-02-01
High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm-3 at 530 MV m-1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm-3 at 600 MV m-1). A gratifying high energy density of 9.12 J cm-3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m-1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm-3 at 360 MV m-1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.
A new necessary condition for Turing instabilities.
Elragig, Aiman; Townley, Stuart
2012-09-01
Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. Copyright © 2012 Elsevier Inc. All rights reserved.
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
What CFOs should know before venturing into the cloud.
Rajendran, Janakan
2013-05-01
There are three major trends in the use of cloud-based services for healthcare IT: Cloud computing involves the hosting of health IT applications in a service provider cloud. Cloud storage is a data storage service that can involve, for example, long-term storage and archival of information such as clinical data, medical images, and scanned documents. Data center colocation involves rental of secure space in the cloud from a vendor, an approach that allows a hospital to share power capacity and proven security protocols, reducing costs.
Aquifer thermal energy (heat and chill) storage
NASA Astrophysics Data System (ADS)
Jenne, E. A.
1992-11-01
As part of the 1992 Intersociety Conversion Engineering Conference (IECEC), held in San Diego, California, 3 - 7 Aug. 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Radiolytic Effects on Fluoride Impurities in a U{sub 3}O{sub 8} Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Icenhour, A.S.
2000-05-01
The safe handling and storage of radioactive materials require an understanding of the effects of radiolysis on those materials. Radiolysis may result in the production of gases (e.g., corrosives) or pressures that are deleterious to storage containers. A study has been performed to address these concerns as they relate to the radiolysis of residual fluoride compounds in uranium oxides.
Efficient system modeling for a small animal PET scanner with tapered DOI detectors.
Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi
2016-01-21
A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.
Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability
NASA Technical Reports Server (NTRS)
Campbell, Sandi G.; Johnston, Chris
2004-01-01
Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability was measured by Northrop Grumman, showing that the leak rate/day of the nanocomposite matrix tank was approximately 80-percent less than that of the neat epoxy matrix tank.
NASA Astrophysics Data System (ADS)
Bailly-Comte, Vincent; Martin, Jonathan B.; Jourde, Hervé; Screaton, Elizabeth J.; Pistre, Séverin; Langston, Abigail
2010-05-01
SummaryKarst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves. We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of the aquifer before the results can be correctly interpreted.
A space efficient flexible pivot selection approach to evaluate determinant and inverse of a matrix.
Jafree, Hafsa Athar; Imtiaz, Muhammad; Inayatullah, Syed; Khan, Fozia Hanif; Nizami, Tajuddin
2014-01-01
This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students. By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse permutations.
The Extracellular Matrix of Fungal Biofilms.
Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R
A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.
Joint Force Quarterly. Number 5, Summer 1994
1994-07-01
terms of a matrix and have set it up to achieve things that matrix organizations facilitate. Matrices compel interaction across organizations; they...provide more joint, synergistic solutions to military problems. One primary result of this interaction between the assess- ment process and JROC is the...the Contingency Tactical Air Control Auto- mated Planning System (CTAPS) are both single-host computer sys- tems that do not support interactive data
Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacramento, R. L.; Alves, B. X.; Silva, B. A.
2015-07-15
We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.
Scalable Directed Self-Assembly Using Ultrasound Waves
2015-09-04
SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such...as a polymer matrix material. The critical difference between the ultrasound technology studied in this project, and other directed self-assembly...of nanoparticles dispersed in a host medium are assembled by means of standing ultrasound waves. Additionally, we have obtained experimental
Estili, Mehdi; Sakka, Yoshio
2014-12-01
Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new reinforcing mechanism at the nanoscale responsible for unprecedented, simultaneous mechanical improvements and highlight the scalable processing method enabling the fabrication of defect-free CNT-concentered ceramics and CNT-graded composites with unprecedented properties. Finally, possible future directions will be briefly presented.
Estili, Mehdi; Sakka, Yoshio
2014-01-01
Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new reinforcing mechanism at the nanoscale responsible for unprecedented, simultaneous mechanical improvements and highlight the scalable processing method enabling the fabrication of defect-free CNT-concentered ceramics and CNT-graded composites with unprecedented properties. Finally, possible future directions will be briefly presented. PMID:27877730
NASA Astrophysics Data System (ADS)
Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara
2015-02-01
The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and 250 MPa.
Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B
2013-09-05
Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast cancer pathology under some conditions, a finding with important implications for development of chemotherapies directed against matrix metalloproteases.
Electrical and Electrorheological Properties of Alumina/Natural Rubber (STR XL) Composites
Tangboriboon, Nuchnapa; Uttanawanit, Nuttapot; Longtong, Mean; Wongpinthong, Piraya; Sirivat, Anuvat; Kunanuruksapong, Ruksapong
2010-01-01
The electrorheological properties (ER) of natural rubber (XL)/alumina (Al2O3) composites were investigated in oscillatory shear mode under DC electrical field strengths between 0 to 2 kV/mm. SEM micrographs indicate a mean particle size of 9.873 ± 0.034 µm and particles that are moderately dispersed in the matrix. The XRD patterns indicate Al2O3 is of the β-phase polytype which possesses high ionic conductivity. The storage modulus (G′) of the composites, or the rigidity, increases by nearly two orders of magnitude, with variations in particle volume fraction and electrical field strength. The increase in the storage modulus is caused the ionic polarization of the alumina particles and the induced dipole moments set up in the natural rubber matrix.
ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yipeng
In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the onemore » from LOCO (Linear Optics from Closed Orbits) response matrix correction.« less
Sterilization of Lung Matrices by Supercritical Carbon Dioxide
Balestrini, Jenna L.; Liu, Angela; Gard, Ashley L.; Huie, Janet; Blatt, Kelly M.S.; Schwan, Jonas; Zhao, Liping; Broekelmann, Tom J.; Mecham, Robert P.; Wilcox, Elise C.
2016-01-01
Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10−6 in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes. PMID:26697757
Hydrogen Storage Performance in Pd/Graphene Nanocomposites.
Zhou, Chunyu; Szpunar, Jerzy A
2016-10-05
We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).
Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge.
Xu, Huacheng; He, Pinjing; Wang, Guanzhao; Shao, Liming; Lee, Duujong
2011-01-01
Dewatered sewage sludge is often stored still before further processing and final disposal. This study showed that anaerobic storage of dewatered sewage sludge could hydrolyze organic matter from the sludge matrix, and increase soluble organic acid content from 90 to 2400 mg/L and soluble organic carbon content from 220 to 1650 mg/L. Correspondingly, the contents of proteins, celluloses and hemicelluloses were reduced by 2-9%. Applying anaerobic storage markedly enhanced the efficiency of the subsequent bio-drying process on stored sludge. Correspondingly, biogas and odor gas were produced immediately after commencing the sludge storage. Anaerobic storage with odor control can be applied as a pretreatment process for dewatered sewage sludge in wastewater treatment plants. Copyright © 2010 Elsevier Ltd. All rights reserved.
High Density Methane Storage in Nanoporous Carbon
NASA Astrophysics Data System (ADS)
Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team
2014-03-01
Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.
MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers.
Niare, Sirama; Almeras, Lionel; Tandina, Fatalmoudou; Yssouf, Amina; Bacar, Affane; Toilibou, Ali; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe
2017-01-01
Identification of the source of mosquito blood meals is an important component for disease control and surveillance. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an effective tool for mosquito blood meal identification, using the abdomens of freshly engorged mosquitoes. In the field, mosquito abdomens are crushed on Whatman filter papers to determine the host feeding patterns by identifying the origin of their blood meals. The aim of this study was to test whether crushing engorged mosquito abdomens on Whatman filter papers was compatible with MALDI-TOF MS for mosquito blood meal identification. Both laboratory reared and field collected mosquitoes were tested. Sixty Anopheles gambiae Giles were experimentally engorged on the blood of six distinct vertebrate hosts (human, sheep, rabbit, dog, chicken and rat). The engorged mosquito abdomens were crushed on Whatman filter papers for MALDI-TOF MS analysis. 150 Whatman filter papers, with mosquitoes engorged on cow and goat blood, were preserved. A total of 77 engorged mosquito abdomens collected in the Comoros Islands and crushed on Whatman filter papers were tested with MALDI-TOF MS. The MS profiles generated from mosquito engorged abdomens crushed on Whatman filter papers exhibited high reproducibility according to the original host blood. The blood meal host was correctly identified from mosquito abdomens crushed on Whatman filter papers by MALDI-TOF MS. The MS spectra obtained after storage were stable regardless of the room temperature and whether or not they were frozen. The MS profiles were reproducible for up to three months. For the Comoros samples, 70/77 quality MS spectra were obtained and matched with human blood spectra. This was confirmed by molecular tools. The results demonstrated that MALDI-TOF MS could identify mosquito blood meals from Whatman filter papers collected in the field during entomological surveys. The application of MALDI-TOF MS has proved to be rapid and successful, making it a new and efficient tool for mosquito-borne disease surveillance.
Computer Analogies: Teaching Molecular Biology and Ecology.
ERIC Educational Resources Information Center
Rice, Stanley; McArthur, John
2002-01-01
Suggests that computer science analogies can aid the understanding of gene expression, including the storage of genetic information on chromosomes. Presents a matrix of biology and computer science concepts. (DDR)
Edlund, U; Albertsson, A C; Singh, S K; Fogelberg, I; Lundgren, B O
2000-05-01
Biodegradable blends of poly(trimethylene carbonate) (PTMC) and poly(adipic anhydride) (PAA) have been proven to be strong candidates for controlled drug delivery polymers in vitro. We now report on the stability, sterilizability and in vivo local tissue response of these matrices. Blend matrices were sterilized by beta-radiation or ethylene oxide gas treatment, stored at different times and temperatures, and analyzed for changes in physicochemical properties. Moisture uptake at different relative humidities and storage times was determined. Sterilization procedures induced hydrolysis of the matrices. Ethylene oxide gas sterilization had a significantly more marked effect upon the matrix properties than radiation treatment. The onset of degradation was reflected in a decrease of crystallinity and molecular weight along with a change of blend composition. A similar onset of matrix degradation was observed upon storage in air. The physicochemical properties of the blends were well preserved upon storage under argon atmosphere. Biocompatibility of PTMC/PAA implants was assessed in the anterior chamber of rabbits eyes for 1 month. At selected post-operative time points, aqueous humor was analyzed for white blood cells and the corneal thickness was measured. The results suggest good biocompatability of PTMC-rich matrices, whereas fast eroding PAA-rich matrices caused inflammatory responses, due to a burst release of degradation products.
Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells[W
Reyes, Francisca C.; Chung, Taijoon; Holding, David; Jung, Rudolf; Vierstra, Richard; Otegui, Marisa S.
2011-01-01
Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals. PMID:21343414
In-Storage Embedded Accelerator for Sparse Pattern Processing
2016-08-13
performance of RAM disk. Since this configuration offloads most of processing onto the FPGA, the host software consists of only two threads for...more. Fig. 13. Document Processed vs CPU Threads Note that BlueDBM efficiency comes from our in-store processing paradigm that uses the FPGA...In-Storage Embedded Accelerator for Sparse Pattern Processing Sang-Woo Jun*, Huy T. Nguyen#, Vijay Gadepally#*, and Arvind* #MIT Lincoln Laboratory
In-Storage Embedded Accelerator for Sparse Pattern Processing
2016-09-13
computation . As a result, a very small processor could be used and still make full use of storage device bandwidth. When the host software sends...Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee et al. "A view of cloud computing ."Communications of the ACM 53, no. 4 (2010...Laboratory, * MIT Computer Science & Artificial Intelligence Laboratory Abstract— We present a novel system architecture for sparse pattern
Ghanaati, Shahram; Schlee, Markus; Webber, Matthew J; Willershausen, Ines; Barbeck, Mike; Balic, Ela; Görlach, Christoph; Stupp, Samuel I; Sader, Robert A; Kirkpatrick, C James
2011-02-01
This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.
Seeking Ways to Break Energy Storage Limits
2016-05-02
system sizes that we simulated. 15. SUBJECT TERMS density functional theory, guest-host structures, carbon nanotubes , free atom limit, geometry...unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Xenon-Buckminsterfullerene (Xe-C60) 3 3. Xe-C980 4 4. Xe-Carbon Nanotube (CNT) 4 5...calculations. 4. Xe-Carbon Nanotube (CNT) Because of our inability to attain guest-host complexes that would achieve energies in excess of the
Porous carbon derived from Sunflower as a host matrix for ultra-stable lithium-selenium battery.
Jia, Min; Niu, Yubin; Mao, Cuiping; Liu, Sangui; Zhang, Yan; Bao, Shu-Juan; Xu, Maowen
2017-03-15
A novel porous carbon material using the spongy tissue of sunflower as raw material is reported for the first time. The obtained porous carbon has an extremely high surface area of 2493.0m 2 g -1 , which is beneficial to focus on encapsulating selenium in it and have an inhibiting effect about diffusion of polyselenides over the charge/discharge processes used as the host matrix for Li-Se battery. The porous carbon/Se composite electrode with 63wt% selenium delivers a high specific capacitance of 319mAhg -1 of the initial capacity, and maintains 290mAhg -1 , representing an extremely high capacity retention of 90.9% after 840 cycles with the rate of 1C. Copyright © 2016. Published by Elsevier Inc.
Radiation hardening of rare-earth doped fiber amplifiers
NASA Astrophysics Data System (ADS)
Vivona, Marilena; Girard, Sylvain; Marcandella, Claude; Pinsard, Emmanuel; Laurent, Arnaud; Robin, Thierry; Cadier, Benoît; Cannas, Marco; Boukenter, Aziz; Ouerdane, Y.
2017-11-01
We investigated the radiation hardening of optical fiber amplifiers operating in space environments. Through a real-time analysis in active configuration, we evaluated the role of Ce in the improvement of the amplifier performance against ionizing radiations. Ce-codoping is an efficient hardening solution, acting both in the limitation of defects in the host glass matrix of RE-doped optical fibers and in the stabilization of lasing properties of the Er3+-ions. On the one hand, in the near-infrared region, radiation induced attenuation measurements show the absence of radiation induced P-related defect species in host glass matrix of the Ce-codoped active fibers; on the other hand, in the Ce-free fiber, the higher lifetime variation shows stronger local modifications around the Er3+-ions with the absence of Ce.
Konorov, Stanislav O; Turner, Robin F B; Blades, Michael W
2007-05-01
Efficient time-resolved coherent anti-Stokes Raman scattering (CARS) of atmospheric nitrogen and ethanol trapped in a nanoporous silica aerogel matrix is demonstrated. Silica aerogel hosts are attractive for analytical CARS spectroscopy due to their high porosity/low density, low refractive index, and low scattering cross-section. Differences between the resonant and nonresonant parts of the nonlinear optical susceptibilities lead to much longer relaxation times for analytes compared to the matrix. Time-resolved CARS can then be used to obtain a nearly background-free measurement at characteristic vibrations of the analyte. These results demonstrate the potential of this approach for rapid, sensitive, background-free analyses of analytes entrapped in the aerogel pores, which may be advantageous for some environmental, chemical, and biological sensing applications.
Storage strategies of eddy-current FE-BI model for GPU implementation
NASA Astrophysics Data System (ADS)
Bardel, Charles; Lei, Naiguang; Udpa, Lalita
2013-01-01
In the past few years graphical processing units (GPUs) have shown tremendous improvements in computational throughput over standard CPU architecture. However, this comes at the cost of restructuring the algorithms to meet the strengths and drawbacks of this GPU architecture. A major drawback is the state of limited memory, and hence storage of FE stiffness matrices on the GPU is important. In contrast to storage on CPU the GPU storage format has significant influence on the overall performance. This paper presents an investigation of a storage strategy in the implementation of a two-dimensional finite element-boundary integral (FE-BI) model for Eddy current NDE applications, on GPU architecture. Specifically, the high dimensional matrices are manipulated by examining the matrix structure and optimally splitting into structurally independent component matrices for efficient storage and retrieval of each component. Results obtained using the proposed approach are compared to those of conventional CPU implementation for validating the method.
Pathomechanisms in Lysosomal Storage Disorders
Walkley, Steven U.; Vanier, Marie T.
2015-01-01
Lysosomal diseases are inherited metabolic disorders caused by defects in a wide spectrum of lysosomal and a few non-lysosomal proteins. In most cases a single type of primary storage material is identified, which has been used to name and classify the disorders: hence the terms sphingolipidoses, gangliosidoses, mucopolysaccharidoses, glycoproteinoses, and so forth. In addition to this primary storage, however, a host of secondary storage products can also be identified, more often than not having no direct link to the primary protein defect. Lipids - glycosphingolipids and phospholipids, as well as cholesterol - are the most ubiquitous and best studied of these secondary storage materials. While in the past typically considered nonspecific and nonconsequential features of these diseases, newer studies suggest direct links between secondary storage and disease pathogenesis and support the view that understanding all aspects of this sequestration process will provide important insights into the cell biology and treatment of lysosomal disease. PMID:19111580
Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology
NASA Astrophysics Data System (ADS)
Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team
Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.
Factorization in large-scale many-body calculations
Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
2013-08-07
One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less
Theorems on symmetries and flux conservation in radiative transfer using the matrix operator theory.
NASA Technical Reports Server (NTRS)
Kattawar, G. W.
1973-01-01
The matrix operator approach to radiative transfer is shown to be a very powerful technique in establishing symmetry relations for multiple scattering in inhomogeneous atmospheres. Symmetries are derived for the reflection and transmission operators using only the symmetry of the phase function. These results will mean large savings in computer time and storage for performing calculations for realistic planetary atmospheres using this method. The results have also been extended to establish a condition on the reflection matrix of a boundary in order to preserve reciprocity. Finally energy conservation is rigorously proven for conservative scattering in inhomogeneous atmospheres.
Low-Density Parity-Check Code Design Techniques to Simplify Encoding
NASA Astrophysics Data System (ADS)
Perez, J. M.; Andrews, K.
2007-11-01
This work describes a method for encoding low-density parity-check (LDPC) codes based on the accumulate-repeat-4-jagged-accumulate (AR4JA) scheme, using the low-density parity-check matrix H instead of the dense generator matrix G. The use of the H matrix to encode allows a significant reduction in memory consumption and provides the encoder design a great flexibility. Also described are new hardware-efficient codes, based on the same kind of protographs, which require less memory storage and area, allowing at the same time a reduction in the encoding delay.
Telemedicine optoelectronic biomedical data processing system
NASA Astrophysics Data System (ADS)
Prosolovska, Vita V.
2010-08-01
The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.
Umari, A.M.; Gorelick, S.M.
1986-01-01
It is possible to obtain analytic solutions to the groundwater flow and solute transport equations if space variables are discretized but time is left continuous. From these solutions, hydraulic head and concentration fields for any future time can be obtained without ' marching ' through intermediate time steps. This analytical approach involves matrix exponentiation and is referred to as the Matrix Exponential Time Advancement (META) method. Two algorithms are presented for the META method, one for symmetric and the other for non-symmetric exponent matrices. A numerical accuracy indicator, referred to as the matrix condition number, was defined and used to determine the maximum number of significant figures that may be lost in the META method computations. The relative computational and storage requirements of the META method with respect to the time marching method increase with the number of nodes in the discretized problem. The potential greater accuracy of the META method and the associated greater reliability through use of the matrix condition number have to be weighed against this increased relative computational and storage requirements of this approach as the number of nodes becomes large. For a particular number of nodes, the META method may be computationally more efficient than the time-marching method, depending on the size of time steps used in the latter. A numerical example illustrates application of the META method to a sample ground-water-flow problem. (Author 's abstract)
Ohtonen, J; Vallittu, P K; Lassila, L V J
2013-02-01
To compare force levels obtained from glass fibre-reinforced composite (FRC) archwires. Specifically, FRC wires were compared with polymer matrices having different dimethacrylate monomer compositions. FRC material (E-glass provided by Stick Tech Ltd, Turku, Finland) with continuous unidirectional glass fibres and four different types of dimethacrylate monomer compositions for the resin matrix were tested. Cross-sectionally round FRC archwires fitting into the 0.3 mm slot of a bracket were divided into 16 groups with six specimens in each group. Glass fibres were impregnated by the manufacturer, and they were initially light-cured by hand light-curing unit or additionally post-cured in light-curing oven. The FRC archwire specimens were tested at 37°C according to a three-point bending test in dry and wet conditions using a span length of 10 mm and a crosshead speed of 1.0 mm/minute. The wires were loaded until final failure. The data were statistically analysed using analysis of variance (ANOVA). The dry FRC archwire specimens revealed higher load values than water stored ones, regardless of the polymer matrix. A majority of the FRC archwires showed higher load values after being post-cured. ANOVA revealed that the polymer matrix, curing method, and water storage had a significant effect (P < 0.05) on the flexural behaviour of the FRC archwire. Polymer matrix composition, curing method, and water storage affected the flexural properties and thus, force level and working range which could be obtained from the FRC archwire.
Di Sante, Laura; Pugnaloni, Armanda; Biavasco, Francesca; Giovanetti, Eleonora; Vignaroli, Carla
2018-05-01
The multicellular behavior designated "red dry and rough" (rdar) morphotype-characterized by production of extracellular matrix mainly comprising curli fimbriae and cellulose-is a potential survival strategy of Escherichia coli outside the host. This study documents the ability of Escherichia cryptic clades, which have recently been recognized as new lineages genetically divergent from E. coli, to grow in unfavorable conditions through expression of distinct phenotypes. Growth under low-temperature and nutrient-poor conditions induced the rdar morphotype in all cryptic clade strains tested, especially after preincubation in broth supplemented with uracil. Such phenotypic response to harsh growth conditions was clearly detected by transmission and scanning electron microscopy, which showed that bacteria were encased in a fibrous matrix. Conversely, cells incubated in rich medium at 37 °C showed no matrix. Uracil enhanced the biosynthesis of matrix components, fostering biofilm production and strain adhesion to abiotic surfaces, as demonstrated by the increase of strong biofilm producers in biofilm assays. Harsh growth conditions also induced catalase activity, resulting in clade strain resistance to hydrogen peroxide oxidative stress. The present findings further support the 'environmental hypothesis' whereby cryptic clades would be able to persist in natural habitats outside the host through the expression of distinct survival phenotypes. Copyright © 2018 Elsevier GmbH. All rights reserved.
Membrane and inclusion body targeting of lyssavirus matrix proteins.
Pollin, Reiko; Granzow, Harald; Köllner, Bernd; Conzelmann, Karl-Klaus; Finke, Stefan
2013-02-01
Lyssavirus matrix proteins (M) support virus budding and have accessory functions that may contribute to host cell manipulation and adaptation to specific hosts. Here, we show that rabies virus (RABV) and European Bat Lyssavirus Type 1 (EBLV-1) M proteins differ in targeting and accumulation at cellular membranes. In contrast to RABV M, EBLV-1 M expressed from authentic EBLV-1 or chimeric RABV accumulated at the Golgi apparatus. Chimeric M proteins revealed that Golgi association depends on the integrity of the entire EBLV-1 M protein. Since RABV and EBLV-1 M differ in the use of cellular membranes for particle formation, differential membrane targeting and transport of M might determine the site of virus production. Moreover, both RABV and EBLV-1 M were for the first time detected within the nucleus and in Negri body-like inclusions bodies. Whereas nuclear M may imply hitherto unknown functions of lyssavirus M in host cell manipulation, the presence of M in inclusion bodies may correlate with regulatory functions of M in virus RNA synthesis. The data strongly support a model in which targeting of lyssavirus M proteins to distinctintracellular sites is a key determinant of diverse features in lyssavirus replication, host adaptation and pathogenesis. © 2012 Blackwell Publishing Ltd.
Automated Composites Processing Technology: Film Module
NASA Technical Reports Server (NTRS)
Hulcher, A. Bruce
2004-01-01
NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.
Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices.
Bahou, Mohammed; Das, Prasanta; Lee, Yu-Fang; Wu, Yu-Jong; Lee, Yuan-Pern
2014-02-14
The quantum solid para-hydrogen (p-H2) has emerged as a new host for matrix isolation experiments. Among several unique characteristics, the diminished cage effect enables the possibility of producing free radicals via either photolysis in situ or bimolecular reactions of molecules with atoms or free radicals that are produced in situ from their precursors upon photo-irradiation. Many free radicals that are unlikely to be produced in noble-gas matrices can be produced readily in solid p-H2. In addition, protonated species can be produced upon electron bombardment of p-H2 containing a small proportion of the precursor during deposition. The application of this novel technique to generate protonated polycyclic aromatic hydrocarbons (PAH) and their neutral counterparts demonstrates its superiority over other methods. The technique of using p-H2 as a matrix host has opened up many possibilities for the preparation of free radicals and unstable species and their spectral characterization. Many new areas of applications and fundamental understanding concerning the p-H2 matrix await further exploration.
NASA Astrophysics Data System (ADS)
Spicer, Graham L. C.; Azarin, Samira M.; Yi, Ji; Young, Scott T.; Ellis, Ronald; Bauer, Greta M.; Shea, Lonnie D.; Backman, Vadim
2016-10-01
In cancer biology, there has been a recent effort to understand tumor formation in the context of the tissue microenvironment. In particular, recent progress has explored the mechanisms behind how changes in the cell-extracellular matrix ensemble influence progression of the disease. The extensive use of in vitro tissue culture models in simulant matrix has proven effective at studying such interactions, but modalities for non-invasively quantifying aspects of these systems are scant. We present the novel application of an imaging technique, Inverse Spectroscopic Optical Coherence Tomography, for the non-destructive measurement of in vitro biological samples during matrix remodeling. Our findings indicate that the nanoscale-sensitive mass density correlation shape factor D of cancer cells increases in response to a more crosslinked matrix. We present a facile technique for the non-invasive, quantitative study of the micro- and nano-scale structure of the extracellular matrix and its host cells.
Fatoux-Ardore, Marie; Peysselon, Franck; Weiss, Anthony; Bastien, Patrick; Pratlong, Francine; Ricard-Blum, Sylvie
2014-02-01
We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ~70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania.
Fatoux-Ardore, Marie; Peysselon, Franck; Weiss, Anthony; Bastien, Patrick; Pratlong, Francine
2014-01-01
We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ∼70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania. PMID:24478075
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J
Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less
Chelonia: A self-healing, replicated storage system
NASA Astrophysics Data System (ADS)
Kerr Nilsen, Jon; Toor, Salman; Nagy, Zsombor; Read, Alex
2011-12-01
Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.
Wang, Guanyao; Huang, Yanhui; Wang, Yuxin; Jiang, Pingkai; Huang, Xingyi
2017-08-09
Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO 3 nanowires (NWs) encapsulated by TiO 2 shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO 3 NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO 2 encapsulated BaTiO 3 NWs. For instance, an ultrahigh energy density of 9.53 J cm -3 at 440 MV m -1 could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm -3 at 360 MV m -1 ). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO 2 @BaTiO 3 -1 NWs at 440 MV m -1 seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO 2 shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.
Ghasemzadeh, Mehran; Hosseini, Ehteramolsadat; Roudsari, Zahra Oushyani; Zadkhak, Parvin
2018-03-01
Platelets storage lesion is mainly orchestrated by platelet activating signals during storage. Reactive oxygen species (ROS) are being considered as important signaling molecules modulating platelet function while their production has also been shown to be augmented by platelet activation. This study investigated to what extent endogenous ROS generation during platelet storage could be correlated with platelet receptor shedding, microvesiculation and adhesive function. 10 PRP-platelet concentrates were subjected to flow cytometry analysis to examine the generation of intraplatelet ROS on days 1, 5 and 7 after storage. In 5 day-stored platelets considering 40% of ROS generation as a cutoff point, samples were divided into two groups of those with higher or lower levels of ROS. The expression of adhesion receptors (GPVI, GPIbα), the amount of microparticles and phosphatidylserine exposure in each group were then examined by flow cytometry. Platelet receptor shedding and adhesion to collagen matrix were respectively measured by western blotting and microscopic assays. Our data showed lowered expression of GPIbα (p < 0.05) and GPVI in samples with ROS > 40% than those with ROS ≤ 40%, whereas receptors shedding and microvesiculation were (p < 0.05) elevated in platelets with higher levels of ROS. Functionally, we observed significantly (p < 0.05) lower levels of platelet adhesion to collagen matrix in samples with ROS generation more than 40%. Taken together, we showed correlations between intraplatelet ROS generation and either platelet receptors or microparticle shedding as well as platelet adhesive capacity to collagen. These findings suggest that augmented ROS generation during storage might be relevant to down-regulation of platelet adhesive function. Copyright © 2018 Elsevier Ltd. All rights reserved.
Active Flash: Out-of-core Data Analytics on Flash Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S
2012-01-01
Next generation science will increasingly come to rely on the ability to perform efficient, on-the-fly analytics of data generated by high-performance computing (HPC) simulations, modeling complex physical phenomena. Scientific computing workflows are stymied by the traditional chaining of simulation and data analysis, creating multiple rounds of redundant reads and writes to the storage system, which grows in cost with the ever-increasing gap between compute and storage speeds in HPC clusters. Recent HPC acquisitions have introduced compute node-local flash storage as a means to alleviate this I/O bottleneck. We propose a novel approach, Active Flash, to expedite data analysis pipelines bymore » migrating to the location of the data, the flash device itself. We argue that Active Flash has the potential to enable true out-of-core data analytics by freeing up both the compute core and the associated main memory. By performing analysis locally, dependence on limited bandwidth to a central storage system is reduced, while allowing this analysis to proceed in parallel with the main application. In addition, offloading work from the host to the more power-efficient controller reduces peak system power usage, which is already in the megawatt range and poses a major barrier to HPC system scalability. We propose an architecture for Active Flash, explore energy and performance trade-offs in moving computation from host to storage, demonstrate the ability of appropriate embedded controllers to perform data analysis and reduction tasks at speeds sufficient for this application, and present a simulation study of Active Flash scheduling policies. These results show the viability of the Active Flash model, and its capability to potentially have a transformative impact on scientific data analysis.« less
CEM V based special cementitious materials investigated by means of SANS method. Preliminary results
NASA Astrophysics Data System (ADS)
Dragolici, A. C.; Balasoiu, M.; Orelovich, O. L.; Ionascu, L.; Nicu, M.; Soloviov, D. V.; Kuklin, A. I.; Lizunov, E. I.; Dragolici, F.
2017-05-01
The management of the radioactive waste assume the conditioning in a cement matrix as an embedding, stable, disposal material. Cement matrix is the first and most important engineering barrier against the migration in the environment of the radionuclides contained in the waste packages. Knowing how the microstructure develops is therefore desirable in order to assess the compatibility of radioactive streams with cement and predict waste form performance during storage and disposal. For conditioning wastes containing radioactive aluminum new formulas of low basicity cements, using coatings as a barrier between the metal and the conditioning environment or introducing a corrosion inhibitor in the matrix system are required. Preliminary microstructure investigation of such improved CEM V based cement matrix is reported.
Investigating the Use of the Intel Xeon Phi for Event Reconstruction
NASA Astrophysics Data System (ADS)
Sherman, Keegan; Gilfoyle, Gerard
2014-09-01
The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. Work supported by the University of Richmond and the US Department of Energy.
Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB.
Vitry, Sandrine; Bruyère, Julie; Hocquemiller, Michaël; Bigou, Stéphanie; Ausseil, Jérôme; Colle, Marie-Anne; Prévost, Marie-Christine; Heard, Jean Michel
2010-12-01
The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.
Li, Meng-Ting; Sun, Yu; Zhao, Kai-Sen; Wang, Zhao; Wang, Xin-Long; Su, Zhong-Min; Xie, Hai-Ming
2016-12-07
We designed and fabricated a fluorophore-containing tetradentate carboxylate ligand-based metal-organic framework (MOF) material with open and semiopen channels, which acted as the host for sulfur trapped in Li-S batteries and sensor of benzene homologues. These channels efficiently provide a π-π* conjugated matrix for the charge transfer and guest molecule trapping. The open channel ensured a much higher loading quantitative of sulfur (S content-active material, 72 wt %; electrode, 50.4 wt %) than most of the MOF/sulfur composites, while the semiopen channel possessing aromatic rings tentacles guaranteed an outstanding specific discharge capacity (1092 mA h g -1 at 0.1 C) accompanied by good cycling stability. To our surprise, benefiting from special π-π* conjugated conditions, compound 1 could be a chemical sensor for benzene homologues, especially for 1,2,4-trimethylbenzene (1,2,4-TMB). This is the first example of MOFs materials serving as a sensor of 1,2,4-TMB among benzene homologues. Our works may be worthy of use for references in other porous materials systems to manufacture more long-acting Li-S batteries and sensitive chemical sensors.
Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut.
Kissoon-Singh, Vanessa; Mortimer, Leanne; Chadee, Kris
2011-01-01
Cysteine proteases of the protozoan parasite Entamoeba histolytica are key virulence factors involved in overcoming host defences. These proteases are cathepsin-like enzymes with a cathepsin-L like structure, but cathepsin-B substrate specificity. In the host intestine, amoeba cysteine proteases cleave colonic mucins and degrade secretory immunoglobulin (Ig) A and IgG rendering them ineffective. They also act on epithelial tight junctions and degrade the extracellular matrix to promote Cell death. They are involved in the destruction of red blood cells and the evasion of neutrophils and macrophages and they activate pro-inflammatory cytokines IL- 1β and IL-18. In short, amoeba cysteine proteases manipulate and destroy host defences to facilitate nutrient acquisition, parasite colonization and/or invasion. Strategies to inhibit the activity of amoeba cysteine proteases could contribute significantly to host protection against E. histolytica.
Scattering Properties of Heterogeneous Mineral Particles with Absorbing Inclusions
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2015-01-01
We analyze the results of numerically exact computer modeling of scattering and absorption properties of randomly oriented poly-disperse heterogeneous particles obtained by placing microscopic absorbing grains randomly on the surfaces of much larger spherical mineral hosts or by imbedding them randomly inside the hosts. These computations are paralleled by those for heterogeneous particles obtained by fully encapsulating fractal-like absorbing clusters in the mineral hosts. All computations are performed using the superposition T-matrix method. In the case of randomly distributed inclusions, the results are compared with the outcome of Lorenz-Mie computations for an external mixture of the mineral hosts and absorbing grains. We conclude that internal aggregation can affect strongly both the integral radiometric and differential scattering characteristics of the heterogeneous particle mixtures.
75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
...-235, clarify the requirements of reconstituted fuel assemblies, add requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding, delete use of nitrogen for draining...
Swaroopa Rani, Tirupaati; Podile, Appa Rao
2014-04-01
Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon. © 2013 Scandinavian Plant Physiology Society.
Tajiri, Naoki; Kaneko, Yuji; Shinozuka, Kazutaka; Ishikawa, Hiroto; Yankee, Ernest; McGrogan, Michael; Case, Casey; Borlongan, Cesar V
2013-01-01
Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.
RALPH: An online computer program for acquisition and reduction of pulse height data
NASA Technical Reports Server (NTRS)
Davies, R. C.; Clark, R. S.; Keith, J. E.
1973-01-01
A background/foreground data acquisition and analysis system incorporating a high level control language was developed for acquiring both singles and dual parameter coincidence data from scintillation detectors at the Radiation Counting Laboratory at the NASA Manned Spacecraft Center in Houston, Texas. The system supports acquisition of gamma ray spectra in a 256 x 256 coincidence matrix (utilizing disk storage) and simultaneous operation of any of several background support and data analysis functions. In addition to special instruments and interfaces, the hardware consists of a PDP-9 with 24K core memory, 256K words of disk storage, and Dectape and Magtape bulk storage.
2009-09-01
asexual spores (sporogenic germination), or by sexual fruit bodies (carpogenic germination) (Webster and Weber 2007). Plating of dried microsclerotia...While drying the fungus does not appear to impact efficacy, it is unknown how prolonged storage might affect the viability and virulence of the organism...agar (Table 1). Warm water temperatures (25 ºC ± 1 ºC) and the presence of a host plant may have affected both germination and sporulation of the
Non-photosynthetic plastids as hosts for metabolic engineering.
Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias
2018-04-13
Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
On the Maximum Storage Capacity of the Hopfield Model
Folli, Viola; Leonetti, Marco; Ruocco, Giancarlo
2017-01-01
Recurrent neural networks (RNN) have traditionally been of great interest for their capacity to store memories. In past years, several works have been devoted to determine the maximum storage capacity of RNN, especially for the case of the Hopfield network, the most popular kind of RNN. Analyzing the thermodynamic limit of the statistical properties of the Hamiltonian corresponding to the Hopfield neural network, it has been shown in the literature that the retrieval errors diverge when the number of stored memory patterns (P) exceeds a fraction (≈ 14%) of the network size N. In this paper, we study the storage performance of a generalized Hopfield model, where the diagonal elements of the connection matrix are allowed to be different from zero. We investigate this model at finite N. We give an analytical expression for the number of retrieval errors and show that, by increasing the number of stored patterns over a certain threshold, the errors start to decrease and reach values below unit for P ≫ N. We demonstrate that the strongest trade-off between efficiency and effectiveness relies on the number of patterns (P) that are stored in the network by appropriately fixing the connection weights. When P≫N and the diagonal elements of the adjacency matrix are not forced to be zero, the optimal storage capacity is obtained with a number of stored memories much larger than previously reported. This theory paves the way to the design of RNN with high storage capacity and able to retrieve the desired pattern without distortions. PMID:28119595
Mantziari, Anastasia; Aakko, Juhani; Kumar, Himanshu; Tölkkö, Satu; du Toit, Elloise; Salminen, Seppo; Isolauri, Erika; Rautava, Samuli
2017-11-01
Human milk is the optimal source of complete nutrition for neonates and it also guides the development of infant gut microbiota. Importantly, human milk can be supplemented with probiotics to complement the health benefits of breastfeeding. Storage of human milk for limited periods of time is often unavoidable, but little is known about the effect of different storage conditions (temperature) on the viability of the added probiotics. Therefore, in this study, we evaluated how different storage conditions affect the viability of two specific widely used probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis (Bb12), in human milk by culturing and quantitative polymerase chain reaction. Our results indicate that LGG and Bb12 remained stable throughout the storage period. Thus, we conclude that human milk offers an appropriate matrix for probiotic supplementation.
Efficient spares matrix multiplication scheme for the CYBER 203
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.
1984-01-01
This work has been directed toward the development of an efficient algorithm for performing this computation on the CYBER-203. The desire to provide software which gives the user the choice between the often conflicting goals of minimizing central processing (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of three types of storage is selected for each diagonal. For each storage type, an initialization sub-routine estimates the CPU and storage requirements based upon results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the resources. The three storage types employed were chosen to be efficient on the CYBER-203 for diagonals which are sparse, moderately sparse, or dense; however, for many densities, no diagonal type is most efficient with respect to both resource requirements. The user-supplied weights dictate the choice.
2018-01-01
ABSTRACT Pseudomonas aeruginosa produces an extracellular biofilm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. In general, the protein component of the biofilm matrix is poorly defined and understudied relative to the other major matrix constituents. While matrix proteins have been suggested to provide many functions to the biofilm, only proteins that play a structural role have been characterized thus far. Here we identify proteins enriched in the matrix of P. aeruginosa biofilms. We then focused on a candidate matrix protein, the serine protease inhibitor ecotin (PA2755). This protein is able to inhibit neutrophil elastase, a bactericidal enzyme produced by the host immune system during P. aeruginosa biofilm infections. We show that ecotin binds to the key biofilm matrix exopolysaccharide Psl and that it can inhibit neutrophil elastase when associated with Psl. Finally, we show that ecotin protects both planktonic and biofilm P. aeruginosa cells from neutrophil elastase-mediated killing. This may represent a novel mechanism of protection for biofilms to increase their tolerance against the innate immune response. PMID:29636440
Medica, D L; Sukhdeo, M V
1997-10-01
Infective larvae (L3) of Strongylus vulgaris have limited energy stores for host finding and for infection. For transmission to occur, the larvae must have sufficient energy to (a) migrate onto grass, where they are ingested by their equine host (host finding), and (b) penetrate into the host gut. This study is designed to test the hypothesis that L3 larvae of S. vulgaris partition their energy stores between locomotory activity (used in host finding) and infection activity (penetration). Chronic locomotory activity was stimulated by incubating S. vulgaris L3 larvae at a constant temperature (38 C). After 8 days of treatment, locomotory activity ceased (exhaustion). Exhausted L3 larvae had significantly decreased total lipid when compared to controls (P < 0.05), but there was no decrease in levels of protein of carbohydrate. Lipids of S. vulgaris L3 larvae are comprised of 9 fatty acids, some of which are depleted in exhausted worms (14:0, 14:1, 16:0, 16:1, 18:1, 18:2), whereas others (18:0, 20:4, 24:0) remain unchanged. These data suggest that specific fatty acids provide the energy source for locomotory activity in S. vulgaris. Exhausted L3 larvae were also less able to penetrate host cecal tissue in in vitro penetration assays when compared to controls (P < 0.05), suggesting that the depletion of individual fatty acids during locomotory activity also reduced infectivity. These data do not support the hypothesis that S. vulgaris L3 larvae partition their energy stores between host-finding and infection activities. A comparison of lipid storage profiles in the L3 larvae of 4 nematode species with similar transmission strategies (S. vulgaris, Strongylus edentatus, Strongylus equinus, and Haemonchus contortus) revealed similarities in the fatty acid composition of these species. These data suggest a relationship between transmission patterns and energy storage strategies in the L3 larvae of nematode parasites of vertebrates.
Kumar, Abhishek; Clement, Shibu; Agrawal, V P
2010-07-15
An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.
Freestanding, heat resistant microporous film for use in energy storage devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekala, Richard W.; Cherukupalli, Srinivas; Waterhouse, Robert R.
Preferred embodiments of a freestanding, heat resistant microporous polymer film (10) constructed for use in an energy storage device (70, 100) implements one or more of the following approaches to exhibit excellent high temperature mechanical and dimensional stability: incorporation into a porous polyolefin film of sufficiently high loading levels of inorganic or ceramic filler material (16) to maintain porosity (18) and achieve low thermal shrinkage; use of crosslinkable polyethylene to contribute to crosslinking the polymer matrix (14) in a highly inorganic material-filled polyolefin film; and heat treating or annealing of biaxially oriented, highly inorganic material-filled polyolefin film above the meltingmore » point temperature of the polymer matrix to reduce residual stress while maintaining high porosity. The freestanding, heat resistant microporous polymer film embodiments exhibit extremely low resistance, as evidenced by MacMullin numbers of less than 4.5.« less
Amperometric Glucose Sensor Using Thermostable Co-Factor Binding Glucose Dehydrogenase
NASA Astrophysics Data System (ADS)
Nakazawa, Yukie; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji
A thermostable mediator-type enzyme glucose sensor was constructed. The electrode was fabricated using chemically cross-linked thermostable co-factor binding glucose dehydrogenase (GDH) from thermophilic bacteria in carbon paste matrix. The electrode responded directly proportional to D-glucose concentration from 0.01 mM to 3 mM in stirred buffer containing 1 mM 1-methoxyphenazinemethosulfate as a mediator with the steady-state mode. The storage stability was examined by incubating the enzyme electrode at 50oC during the measurement. The cross-linked GDH immobilized electrode showed good storage stability. Ninety percent of its initial response was retained after incubation in buffer solution for 9 days at 50oC. The flow injection analysis (FIA) glucose sensing system was also constructed by immobilizing the cross-linked GDH and ferrocene as a mediator in the carbon paste matrix. The FIA system was able to measure 600 samples for 100 h.
NASA Astrophysics Data System (ADS)
Yamamoto, Toshihiro; Nakajima, Yoshiki; Takei, Tatsuya; Fujisaki, Yoshihide; Fukagawa, Hirohiko; Suzuki, Mitsunori; Motomura, Genichi; Sato, Hiroto; Tokito, Shizuo; Fujikake, Hideo
2011-02-01
A new driving scheme for an active-matrix organic light emitting diode (AMOLED) display was developed to prevent the picture quality degradation caused by the hysteresis characteristics of organic thin film transistors (OTFTs). In this driving scheme, the gate electrode voltage of a driving-OTFT is directly controlled through the storage capacitor so that the operating point for the driving-OTFT is on the same hysteresis curve for every pixel after signal data are stored in the storage capacitor. Although the number of OTFTs in each pixel for the AMOLED display is restricted because OTFT size should be large enough to drive organic light emitting diodes (OLEDs) due to their small carrier mobility, it can improve the picture quality for an OTFT-driven flexible OLED display with the basic two transistor-one capacitor circuitry.
Self-Powered Adaptive Switched Architecture Storage
NASA Astrophysics Data System (ADS)
El Mahboubi, F.; Bafleur, M.; Boitier, V.; Alvarez, A.; Colomer, J.; Miribel, P.; Dilhac, J.-M.
2016-11-01
Ambient energy harvesting coupled to storage is a way to improve the autonomy of wireless sensors networks. Moreover, in some applications with harsh environment or when a long service lifetime is required, the use of batteries is prohibited. Ultra-capacitors provide in this case a good alternative for energy storage. Such storage must comply with the following requirements: a sufficient voltage during the initial charge must be rapidly reached, a significant amount of energy should be stored and the unemployed residual energy must be minimised at discharge. To answer these apparently contradictory criteria, we propose a selfadaptive switched architecture consisting of a matrix of switched ultra-capacitors. We present the results of a self-powered adaptive prototype that shows the improvement in terms of charge time constant, energy utilization rate and then energy autonomy.
Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries
Wu, Xiaoyan; Jin, Shifeng; Zhang, Zhizhen; Jiang, Liwei; Mu, Linqin; Hu, Yong-Sheng; Li, Hong; Chen, Xiaolong; Armand, Michel; Chen, Liquan; Huang, Xuejie
2015-01-01
Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na+ ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries. PMID:26601260
National assessment of geologic carbon dioxide storage resources: data
,
2013-01-01
In 2012, the U.S. Geological Survey (USGS) completed the national assessment of geologic carbon dioxide storage resources. Its data and results are reported in three publications: the assessment data publication (this report), the assessment results publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, USGS Circular 1386), and the assessment summary publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, USGS Fact Sheet 2013–3020). This data publication supports the results publication and contains (1) individual storage assessment unit (SAU) input data forms with all input parameters and details on the allocation of the SAU surface land area by State and general land-ownership category; (2) figures representing the distribution of all storage classes for each SAU; (3) a table containing most input data and assessment result values for each SAU; and (4) a pairwise correlation matrix specifying geological and methodological dependencies between SAUs that are needed for aggregation of results.
Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns
NASA Technical Reports Server (NTRS)
Shaeffer, John
2008-01-01
Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.
Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi.
Franzen, Anderson J; Cunha, Marcel M L; Miranda, Kildare; Hentschel, Joachim; Plattner, Helmut; da Silva, Moises B; Salgado, Claudio G; de Souza, Wanderley; Rozental, Sonia
2008-04-01
Melanin is a complex polymer widely distributed in nature and has been described as an important virulence factor in pathogenic fungi. In the majority of fungi, the mechanism of melanin formation remains unclear. In Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis, melanin is stored in intracellular vesicles, named melanosomes. This paper details the ultrastructural aspects of melanin formation, its storage and transportation to the cell wall in the human pathogenic fungus F. pedrosoi. In this fungus, melanin synthesis within melanosomes also begins with a fibrillar matrix formation, displaying morphological and structural features similar to melanosomes from amphibian and mammalian cells. Silver precipitation based on Fontana-Masson technique for melanin detection and immunocytochemistry showed that melanosome fuses with fungal cell membrane where the melanin is released and reaches the cell wall. Melanin deposition in the fungal cell wall occurs in concentric layers. Antibodies raised against F. pedrosoi melanin revealed the sites of melanin production and storage in the melanosomes. In addition, a preliminary description of the elemental composition of this organelle by X-ray microanalysis and elemental mapping revealed the presence of calcium, phosphorus and iron concentrated in its matrix, suggesting a new functional role for these organelles as iron storage compartments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, C.W.; Giraud, K.M.
Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantagesmore » include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)« less
UFO (UnFold Operator) default data format
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissel, L.; Biggs, F.; Marking, T.R.
The default format for the storage of x,y data for use with the UFO code is described. The format assumes that the data stored in a file is a matrix of values; two columns of this matrix are selected to define a function of the form y = f(x). This format is specifically designed to allow for easy importation of data obtained from other sources, or easy entry of data using a text editor, with a minimum of reformatting. This format is flexible and extensible through the use of inline directives stored in the optional header of the file. Amore » special extension of the format implements encoded data which significantly reduces the storage required as compared wth the unencoded form. UFO supports several extensions to the file specification that implement execute-time operations, such as, transformation of the x and/or y values, selection of specific columns of the matrix for association with the x and y values, input of data directly from other formats (e.g., DAMP and PFF), and a simple type of library-structured file format. Several examples of the use of the format are given.« less
Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching
NASA Astrophysics Data System (ADS)
Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.
2017-04-01
In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.
Warren, David J; Nordlund, Marianne S; Paus, Elisabeth
2010-02-28
Calibrator matrix can have significant effects on the commutability of assay standards and on the maintenance of their integrity. We have observed marked instability in progastrin-releasing peptide (proGRP) assay standards traceable to the bovine serum albumin (BSA) used in matrix formulation. Attempts were made to improve calibrator stability using different albumin pretreatments. Observed analyte recoveries in calibrators prepared with untreated BSA were consistently less than 45% after 1 week of storage at 4 degrees C. Pre-treating the BSA by chromatography on immobilized heparin or benzamidine failed to improve calibrator durability with day 7 recoveries of less than 55%. In marked contrast, calibrators formulated with albumin pasteurized at pH 3.0 displayed remarkable stability. Recoveries of >97% were observed after 4 weeks of storage at either 4 degrees C or room temperature. Even calibrators incubated for 4 weeks at 37 degrees C gave recoveries between 91-106%. This improvement was not seen with BSA pasteurized at neutral pH. Albumin pretreatment is straightforward, easily scalable and dramatically improves calibrator stability. Matrix formulated with acid-pasteurized BSA may prove more generally useful when assays are plagued by poor calibrator durability. 2009 Elsevier B.V. All rights reserved.
Approaches to genotyping individual miracidia of Schistosoma japonicum.
Xiao, Ning; Remais, Justin V; Brindley, Paul J; Qiu, Dong-Chuan; Carlton, Elizabeth J; Li, Rong-Zhi; Lei, Yang; Blair, David
2013-12-01
Molecular genetic tools are needed to address questions as to the source and dynamics of transmission of the human blood fluke Schistosoma japonicum in regions where human infections have reemerged, and to characterize infrapopulations in individual hosts. The life stage that interests us as a target for collecting genotypic data is the miracidium, a very small larval stage that consequently yields very little DNA for analysis. Here, we report the successful development of a multiplex format permitting genotyping of 17 microsatellite loci in four sequential multiplex reactions using a single miracidium held on a Whatman Classic FTA indicating card. This approach was successful after short storage periods, but after long storage (>4 years), considerable difficulty was encountered in multiplex genotyping, necessitating the use of whole genome amplification (WGA) methods. WGA applied to cards stored for long periods of time resulted in sufficient DNA for accurate and repeatable genotyping. Trials and tests of these methods, as well as application to some field-collected samples, are reported, along with the discussion of the potential insights to be gained from such techniques. These include recognition of sibships among miracidia from a single host, and inference of the minimum number of worm pairs that might be present in a host.
Interphotoreceptor matrix components in retinal cell transplants.
Juliusson, B; Mieziewska, K; Bergström, A; Wilke, K; Van Veen, T; Ehinger, B
1994-05-01
To further investigate the functional potential of retinal transplants we have used immunocytochemistry to study the distribution of four different interphotoreceptor matrix (IPM)-specific components in rabbit retinal transplants. The different components were: interphotoreceptor retinoid-binding protein (IRBP), chondroitin-6-sulfate, F22 antigen and peanut agglutinin (PNA) binding structures. IRBP acts as a retinoid-transport protein between the neural retina and the retinal pigment epithelium. Chondroitin-6-sulfate is a glycosaminoglycan and a part of the insoluble IPM skeleton. The identity and role of the F22 antigen is not known. However, it is a 250 kDa protein localized to specific extracellular compartments such as teh IPM. PNA is a lectin with a high binding affinity for D-galactose-beta (1-3) N-acetyl-D-galactosamine disaccharide linkages and binds to IPM domains surrounding cones, but not rods. The transplants (15-day-old embryonic rabbit retina) were placed between the neural retina and retinal pigment epithelium in adult hosts. The transplants developed the typical rosette formations with photoreceptors toward the center. IRBP labeling was distinct in the IPM in the host retina. However, no IRBP labeling could be detected in the transplants. The chondroitin-6-sulfate and F22 antibodies strongly labeled the IPM in the host retina and corresponding structures in the center of rosettes. A cone-specific labeling with PNA could be seen in the host retina. In the transplants, however, PNA labeling appeared in association with many more photoreceptors than in the host retina. There is no previous study available on the IPM in retinal cell transplants.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Yang, P.; Gao, B.-C.; Wiscombe, W. J.; Mishchenko, M. I.; Platnick, S.; Huang, H.-L.; Baum, B. A.; Hu, Y. X.; Winkler, D,; Tsay, S.-C.;
2001-01-01
The conventional Lorenz-Mie formalism is extended to the scattering process associated with a coated sphere embedded in an absorbing medium. It is shown that apparent and inherent scattering cross sections of a scattering particle, which are identical in the case of transparent host medium, are different if the host medium is absorptive. Here the inherent single-scattering properties are derived from the near-field information whereas the corresponding apparent counterparts are derived from the far-field asymptotic form of the scattered wave with scaling of host absorption that is assumed to be in an exponential form. The formality extinction and scattering efficiencies defined in the same manner as in the conventional sense can be unbounded. For a nonabsorptive particle embedded in an absorbing medium, the effect of host absorption on the phase matrix elements associated with polarization is significant. This effect, however, is largely reduced for strongly absorptive particles such as soot. For soot particles coated with water, the impurity can substantially reduce the single-scattering albedo of the particle if the size parameter is small. For water-coating soot and hollow ice spheres, it is shown that the phase matrix elements -P(sub 12)/P(sub 11) and P(sub 33)/P(sub 11) are unique if the shell is thin, as compared with the case for thick shell. Furthermore, the radiative transfer equation regarding a multidisperse particle system in an absorbing medium is discussed. It is illustrated that the conventional computation algorithms can be applied to solve the multiple scattering process if the scaled apparent single-scattering properties are applied.
Nonvolatile memory with Co-SiO2 core-shell nanocrystals as charge storage nodes in floating gate
NASA Astrophysics Data System (ADS)
Liu, Hai; Ferrer, Domingo A.; Ferdousi, Fahmida; Banerjee, Sanjay K.
2009-11-01
In this letter, we reported nanocrystal floating gate memory with Co-SiO2 core-shell nanocrystal charge storage nodes. By using a water-in-oil microemulsion scheme, Co-SiO2 core-shell nanocrystals were synthesized and closely packed to achieve high density matrix in the floating gate without aggregation. The insulator shell also can help to increase the thermal stability of the nanocrystal metal core during the fabrication process to improve memory performance.
ERIC Educational Resources Information Center
Technology & Learning, 2005
2005-01-01
In recent years, the widespread availability of networks and the flexibility of Web browsers have shifted the industry from a client-server model to a Web-based one. In the client-server model of computing, clients run applications locally, with the servers managing storage, printing functions, and network traffic. Because every client is…
Visible luminescence of Al2O3 nanoparticles embedded in silica glass host matrix
NASA Astrophysics Data System (ADS)
El Mir, L.; Amlouk, A.; Barthou, C.
2006-11-01
This paper deals with the sol gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ˜30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400 600 and 700 900 nm in 78 300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400 600 and 700 900 nm, respectively.
Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.
Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S
2018-02-22
Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.
NASA Astrophysics Data System (ADS)
Shpotyuk, Ya; Cebulski, J.; Ingram, A.; Shpotyuk, O.
2017-12-01
Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy in application to nanostructurized substances treated within three-term fitting procedure are reconsidered to parameterize their atomic-deficient structural arrangement. In contrast to conventional three-term fitting analysis of the detected PAL spectra based on admixed positron trapping and positronium (Ps) decaying, the nanostructurization due to guest nanoparticles embedded in host matrix is considered as producing modified trapping, which involves conversion between these channels. The developed approach referred to as x3-x2-coupling decomposition algorithm allows estimation free volumes of interfacial voids responsible for positron trapping and bulk lifetimes in nanoparticle-embedded substances. This methodology is validated using experimental data of Chakraverty et al. [Phys. Rev. B71 (2005) 024115] on PAL study of composites formed by guest NiFe2O4 nanocrystals grown in host SiO2 matrix.
Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries
NASA Astrophysics Data System (ADS)
Patel, Manu U. M.; Luong, Nguyen Dang; Seppälä, Jukka; Tchernychova, Elena; Dominko, Robert
2014-05-01
Graphene/cellulose composites were prepared and studied as potential host matrixes for sulphur impregnation and use in Li-S batteries. We demonstrate that with the proper design of a relatively low surface area graphene/cellulose composite, a high electrochemical performance along with good cyclability can be achieved. Graphene cellulose composites are built from two constituents: a two-dimensional electronic conductive graphene and cellulose fibres as a structural frame; together they form a laminar type of pore. The graphene sheets that uniformly anchor sulphur molecules provide confinement ability for polysulphides, sufficient space to accommodate sulphur volumetric expansion, a large contact area with the sulphur and a short transport pathway for both electrons and lithium ions. Nano-cellulose prevents the opening of graphene sheets due to the volume expansion caused by dissolved polysulphides during battery operation. This, in turn, prevents the diffusion of lithium polysulphides into the electrolyte, enabling a long cycle life.
Computer programs for the solution of systems of linear algebraic equations
NASA Technical Reports Server (NTRS)
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
Yu, Shan; Su, Tiantian; Wu, Huijun; Liu, Shiheng; Wang, Di; Zhao, Tianhu; Jin, Zengjun; Du, Wenbin; Zhu, Mei-Jun; Chua, Song Lin; Yang, Liang; Zhu, Deyu; Gu, Lichuan; Ma, Luyan Z
2015-12-01
Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.
Energy levels scheme simulation of divalent cobalt doped bismuth germanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com; Petkova, Petya; Avram, Nicolae M.
The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of dopedmore » BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.« less
Weakly shocked and deformed CM microxenoliths in the Pułtusk H chondrite
NASA Astrophysics Data System (ADS)
KrzesińSka, Agata; Fritz, JöRg
2014-04-01
The Pułtusk meteorite is a brecciated H4-5 chondrite cut by darkened cataclastic zones. Within the breccia, relict type IA, IB, and IIA chondrules, and microxenoliths of carbonaceous CM chondrite lithology occur. This is the first description of foreign clasts in the Pułtusk meteorite. The matrix of the xenoliths was identified by usage of microprobe and Raman spectroscopic analyses. Raman spectra show distinct bands related to the presence of slightly ordered carbonaceous matter at approximately 1320 and 1580-1584 cm-1. Bands related to serpentine group minerals are also visible, especially a peak at 692 cm-1 and moreover other weak bands are interpreted as evidence for tochilinite. We decipher the metamorphic and deformational history of the xenoliths. They experienced aqueous alteration before being incorporated into the unaltered and well-equilibrated parent rock of the Pułtusk chondrite. The xenoliths are weakly shocked as indicated by defects in the crystal structure of silicates and carbonates, but hydrated minerals (serpentine and tochilinite) are still present in the matrix. The carbonaceous matter within the clasts' matrix displays first order D and G Raman bands that suggests it is only slightly ordered as a result of mild thermal processing. Distinct shear bands are present in both the xenoliths and the surrounding rock, which testifies that the xenoliths were affected by a deformational event along with host rock. The host rock was brittly deformed, but the clasts experienced more ductile deformation revealed by semibrittle faulting of minerals, kinking of the tochilinite-cronstedtite matrix, and injections of xenolithic material into the adjacent breccia. We argue that both processes, the high strain-rate shear deformation and the incorporation of the xenoliths into the host Pułtusk breccia, could have been impact-related. The Pułtusk xenoliths are, thus, rather spalled collisional fragments, than trapped fossil micrometeorites.
Grundel, R.; Pavlovic, N.B.
2007-01-01
Determination of which aspects of habitat quality and habitat spatial arrangement best account for variation in a species’ distribution can guide management for organisms such as the Karner blue butterfly (Lycaeides melissa samuelis), a federally endangered subspecies inhabiting savannas of Midwest and Eastern United States. We examined the extent to which three sets of predictors, (1) larval host plant (Lupinus perennis, wild lupine) availability, (2) characteristics of the matrix surrounding host plant patches, and (3) factors affecting a patch’s thermal environment, accounted for variation in lupine patch use by Karner blues at Indiana Dunes National Lakeshore, Indiana and Fort McCoy, Wisconsin, USA. Each predictor set accounted for 7–13% of variation in patch occupancy by Karner blues at both sites and in larval feeding activity among patches at Indiana Dunes. Patch area, an indicator of host plant availability, was an exception, accounting for 30% of variation in patch occupancy at Indiana Dunes. Spatially structured patterns of patch use across the landscape accounted for 9–16% of variation in patch use and explained more variation in larval feeding activity than did spatial autocorrelation between neighboring patches. Because of this broader spatial trend across sites, a given management action may be more effective in promoting patch use in some portions of the landscape than in others. Spatial trend, resource availability, matrix quality, and microclimate, in general, accounted for similar amounts of variation in patch use and each should be incorporated into habitat management planning for the Karner blue butterfly.
Alkaline regenerative fuel cell energy storage system for manned orbital satellites
NASA Technical Reports Server (NTRS)
Martin, R. E.; Gitlow, B.; Sheibley, D. W.
1982-01-01
It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.
Gas storage carbon with enhanced thermal conductivity
Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.
2000-01-01
A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.
A Mobile Device for Measuring Regional Cerebral Circulation
Howard, George; Griffith, David W.; Stump, David A.; Hinschelwood, Laura
1980-01-01
Immobility and costs of currently available regional cerebral blood flow (rCBF) equipment usually require having a single fixed blood flow lab, which cannot be used to study non-ambulatory patients who are often the most interesting to study. After careful study of the information flow between the steps involved in the collection, analysis and display of data, a new rCBF machine has been developed with a mobile satellite and a host processor. The satellite is equipped with a Z-80 microprocessor which controls the data collection, screen formating, data display and communications with the host. The host provides the processing power necessary for moderately complex curve fitting and data storage.
Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos
2016-07-01
Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain
NASA Astrophysics Data System (ADS)
Nimmo, J. R.; Malek-Mohammadi, S.
2012-12-01
Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep unsaturated zones [Pruess, 1999]. Lewis, M.A., H.K. Jones, D.M.J. Macdonald, M. Price, J.A. Barker, T.R. Shearer, A.J. Wesselink, and D.J. Evans (1993), Groundwater storage in British aquifers--Chalk, National Rivers Authority R&D Note, 169, Bristol, UK. Nimmo, J.R. (2010), Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow, Vadose Zone Journal, 9(2), 295-306, doi:10.2136/vzj2009.0085. Price, M., R.G. Low, and C. McCann (2000), Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer, Journal of Hydrology, 233(1-4), 54-71. Pruess, K. (1999), A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability, Water Resources Research, 35(4), 1039-1051.
10 CFR 960.4-2-2 - Geochemistry.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Considering the likely chemical interactions among radionuclides, the host rock, and the ground water, the... the rock matrix, or sorption of radionuclides; inhibit the formation of particulates, colloids... transport of radionuclides by particulates, colloids, or complexes. (3) Mineral assemblages that, when...
10 CFR 960.4-2-2 - Geochemistry.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Considering the likely chemical interactions among radionuclides, the host rock, and the ground water, the... the rock matrix, or sorption of radionuclides; inhibit the formation of particulates, colloids... transport of radionuclides by particulates, colloids, or complexes. (3) Mineral assemblages that, when...
Pricope-Ciolacu, Luminita; Nicolau, Anca Ioana; Wagner, Martin; Rychli, Kathrin
2013-08-16
Nearly all cases of human listeriosis have been associated with consumption of contaminated food, therefore the investigation of the virulence of Listeria (L.) monocytogenes after exposure to environmental conditions in food matrices is critical in order to understand and control its impact on public health. As milk and dairy products have been implicated in more than half of the listeriosis outbreaks, we investigated the in vitro virulence of L. monocytogenes incubated in different milk types at various storage conditions. Incubation in pasteurized milk at refrigeration conditions (4°C) revealed a higher invasion and intracellular proliferation of four different L. monocytogenes strains compared to raw milk using human intestinal epithelial Caco-2 cells. Furthermore the period of storage, which increased L. monocytogenes cell numbers, decreased in vitro virulence. However, L. monocytogenes stored for 3weeks at 4°C in milk are still able to invade and proliferate into the host cell. Interestingly abused storage temperatures (25°C and 30°C) for a short time period (2h) revealed an attenuated impact on the in vitro virulence of L. monocytogenes compared to the storage temperature of 4°C. Regarding the major milk compounds, the level of milk fat significantly affected the in vitro virulence of L. monocytogenes. Pre-incubation in milk with high fat content (3.6%) resulted in a lower invasion capability compared to milk with low fat content. In contrast casein and lactose did not influence the invasiveness of L. monocytogenes into the host cell. In conclusion our study shows that the milk environment and different storage conditions influence the in vitro virulence of L. monocytogenes, both of which have to be considered in the risk assessment of contaminated food. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiriu, D.; Stagi, L.; Carbonaro, C.M.
2016-05-15
Highlights: • A new promising inert matrix as host of luminescent ions is proposed. • Al2SiO5 matrix is free from Rare earths (critical raw materials). • Doping the matrix with Ce and Tb we obtain an efficient green emitter. • Cerium acts as sensitizer for Terbium emission. - Abstract: A new promising inert matrix as host of luminescent ions is proposed. Al2SiO5 samples, doped with rare earths (Ce, Tb single doped and co-doped) are proposed as good prospect for the development of new UV–vis converter with reduced content of rare earths elements. Structural characterization by Raman, XRD spectroscopy and TEMmore » imaging reveals the sillimanite phase and nano sized dimension of the investigated powders. Optical characterization by steady time and time resolved emission spectroscopy for the single doped and co-doped samples allows to identify an efficient energy transfer from Ce to Tb ions under near UV excitation wavelength. The intense green emission observed in the Ce:Tb co-doped Al2SiO5 system suggests its potential application as efficient blue pumped green emitter phosphor to be exploited for white LED: to this purpose we tested the compound in combination with a red emitting doping ion recording for Ce:Tb:Cr:ASO system a correlated color temperature of 6720 K.« less
Mark H. Eisenbies; W. Brian Hughes
2000-01-01
Hydrologic processes are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic produvtivity, biodiversity, and biogeochemical cycling....
Gaster, Richard S; Berger, Aaron J; Monica, Stefanie D; Sweeney, Robert T; Endress, Ryan; Lee, Gordon K
2013-04-01
This study seeks to determine human host response to fetal bovine acellular dermal matrix (ADM) in staged implant-based breast reconstruction. A prospective study was performed for patients undergoing immediate breast reconstruction with tissue expander placement and SurgiMend acellular fetal bovine dermis. At the time of exchange for permanent implant, we obtained tissue specimens of SurgiMend and native capsule. Histological and immunohistochemical assays were performed to characterize the extent of ADM incorporation/degradation, host cell infiltration, neovascularization, inflammation, and host replacement of acellular fetal bovine collagen. Seventeen capsules from 12 patients were included in our study. The average "implantation" time of SurgiMend was 7.8 months (range, 2-23 months). Histological analysis of the biopsy of tissue revealed rare infiltration of host inflammatory cells, even at 23 months. One patient had an infection requiring removal of the tissue expander at 2 months. Contracture, inflammatory changes, edema, and polymorphonuclear leukocyte infiltration were rare in the ADM. An acellular capsule was seen in many cases, at the interface of SurgiMend with the tissue expander. SurgiMend demonstrated a very infrequent inflammatory response. An antibody specific to bovine collagen allowed for direct identification of bovine collagen separate from human collagen. Cellular infiltration and neovascularization of SurgiMend correlated with the quality of the mastectomy skin flap rather than the duration of implantation. Future studies are needed to further characterize the molecular mechanisms underlying tissue incorporation of this product.
Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Osorio, Coralia; Nazareno, Mónica Azucena
2016-07-01
Betalain encapsulation was performed by ionic gelation as a stabilization strategy for these natural pigments. Betalains were extracted from purple cactus fruits and encapsulated in calcium-alginate and in combination of calcium alginate and bovine serum albumin. Beads were characterised by scanning electron microscopy and thermal analysis using differential scanning calorimetry and thermogravimetry. Moisture sorption isotherms were determined. Bead morphology was affected by matrix composition. Pigments storage stability was evaluated at different equilibrium relative humidity and temperatures. Pigment composition of beads was determined by HPLC-MS-MS and degradation products were also analysed after storage; betalamic acid being the major one. Both types of matrices protected the encapsulated pigments, being their storage stability better at low relative humidity than that of the non-encapsulated control material. Antiradical activities of beads were proportional to remaining betalain contents. At high relative humidity, there was no protection and low storage stability was observed in the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage.
Shin, Kyuchul; Kim, Yongkwan; Strobel, Timothy A; Prasad, P S R; Sugahara, Takeshi; Lee, Huen; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2009-06-11
In this study, we demonstrate that tetra-n-butylammonium borohydride [(n-C(4)H(9))(4)NBH(4)] can be used to form a hybrid hydrogen storage material. Powder X-ray diffraction measurements verify the formation of tetra-n-butylammonium borohydride semiclathrate, while Raman spectroscopic and direct gas release measurements confirm the storage of molecular hydrogen within the vacant cavities. Subsequent to clathrate decomposition and the release of physically bound H(2), additional hydrogen was produced from the hybrid system via a hydrolysis reaction between the water host molecules and the incorporated BH(4)(-) anions. The additional hydrogen produced from the hydrolysis reaction resulted in a 170% increase in the gravimetric hydrogen storage capacity, or 27% greater storage than fully occupied THF + H(2) hydrate. The decomposition temperature of tetra-n-butylammonium borohydride semiclathrate was measured at 5.7 degrees C, which is higher than that for pure THF hydrate (4.4 degrees C). The present results reveal that the BH(4)(-) anion is capable of stabilizing tetraalkylammonium hydrates.
Cryptonite: A Secure and Performant Data Repository on Public Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumbhare, Alok; Simmhan, Yogesh; Prasanna, Viktor
2012-06-29
Cloud storage has become immensely popular for maintaining synchronized copies of files and for sharing documents with collaborators. However, there is heightened concern about the security and privacy of Cloud-hosted data due to the shared infrastructure model and an implicit trust in the service providers. Emerging needs of secure data storage and sharing for domains like Smart Power Grids, which deal with sensitive consumer data, require the persistence and availability of Cloud storage but with client-controlled security and encryption, low key management overhead, and minimal performance costs. Cryptonite is a secure Cloud storage repository that addresses these requirements using amore » StrongBox model for shared key management.We describe the Cryptonite service and desktop client, discuss performance optimizations, and provide an empirical analysis of the improvements. Our experiments shows that Cryptonite clients achieve a 40% improvement in file upload bandwidth over plaintext storage using the Azure Storage Client API despite the added security benefits, while our file download performance is 5 times faster than the baseline for files greater than 100MB.« less
Stability of 26 Sedative Hypnotics in Six Toxicological Matrices at Different Storage Conditions.
Mata, Dani C
2016-10-01
Forensic laboratories are challenged with backlogs that produce turnaround times that vary from days to months. Therefore, drug stability is important for interpretation in both antemortem (blood and urine) and postmortem (blood, brain, liver, stomach contents) cases. In this study, 23 benzodiazepines (2-hydroxyethylflurazepam, 7-aminoclonazepam, 7-aminoflunitrazepam, α-hydroxyalprazolam, α-hydroxytriazolam, alprazolam, bromazepam, chlordiazepoxide, clonazepam, demoxepam, desalkylflurazepam, diazepam, estazolam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, nordiazepam, oxazepam, phenazepam, temazepam and triazolam) and three sedative hypnotics (zaleplon, zopiclone and zolpidem) were spiked into the six matrices at two different concentrations for each drug. The samples were stored in either a refrigerator (4°C) or freezer (-20°C) and analyzed in triplicate at various time intervals over an 8-month period using an SWGTOX validated method. The concentrations decreased over time regardless of the initial spiked concentration, and the storage conditions had little effect on the decrease of most drugs. Conversion from drug to metabolite was difficult to determine since all 26 drugs were present in each sample. Zopiclone and phenazepam were the least stable drugs; zopiclone was the only drug that completely disappeared in any matrix (both antemortem and postmortem blood). Urine was the most stable matrix with only phenazepam, 7-aminoclonazepam, 7-aminoflunitrazepam, 2-hydroxyethylflurazepam, and zopiclone decreasing >20% over the 8 months in either storage condition. Postmortem blood, the least stable matrix, had only two drugs, zolpidem and bromazepam, decreasing <20% in the 8-month time period. Further experiments on stability of these drugs should be undertaken to remove the freeze-thaw cycle effect and more thoroughly examining drug-metabolite conversion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pastila, Pirjo; Lassila, Lippo V J; Jokinen, Mikko; Vuorinen, Jyrki; Vallittu, Pekka K; Mäntylä, Tapio
2007-07-01
This study was aimed to determine if short-term water storage would change elastic properties of dental composite materials. Particulate filler composite resin and continuous unidirectional E-glass FRC materials were photopolymerized and additionally post-polymerized by heat for testing elastic properties with the Resonance Ultrasound Spectroscopy method as a function of time in water storage. The test specimens were stored in 37 degrees C water for up to 30 days. About 1% weight increase due to water sorption was observed in both materials with both polymerization methods. Water sorption did not change the resonance frequencies towards lower values, indicating no significant decrease in elastic properties in these materials. Because of high damping of the polymer composite materials leading to wide resonance peaks and low number of the recorded peaks, accurate determination of the elastic properties was not possible. Results suggest that the most likely explanation for the previously observed decrease in bending stiffness of FRC materials is the decreased yield limit of the hydrated polymer matrix. It is important to recognize that water sorption has the effect on mechanical properties of dental composite materials by changing the yield limit of the matrix rather than by changing the elastic properties of the material.
Biochar particle size, shape, and porosity act together to influence soil water properties
Dugan, Brandon; Masiello, Caroline A.; Gonnermann, Helge M.
2017-01-01
Many studies report that, under some circumstances, amending soil with biochar can improve field capacity and plant-available water. However, little is known about the mechanisms that control these improvements, making it challenging to predict when biochar will improve soil water properties. To develop a conceptual model explaining biochar’s effects on soil hydrologic processes, we conducted a series of well constrained laboratory experiments using a sand matrix to test the effects of biochar particle size and porosity on soil water retention curves. We showed that biochar particle size affects soil water storage through changing pore space between particles (interpores) and by adding pores that are part of the biochar (intrapores). We used these experimental results to better understand how biochar intrapores and biochar particle shape control the observed changes in water retention when capillary pressure is the main component of soil water potential. We propose that biochar’s intrapores increase water content of biochar-sand mixtures when soils are drier. When biochar-sand mixtures are wetter, biochar particles’ elongated shape disrupts the packing of grains in the sandy matrix, increasing the volume between grains (interpores) available for water storage. These results imply that biochars with a high intraporosity and irregular shapes will most effectively increase water storage in coarse soils. PMID:28598988
NASA Astrophysics Data System (ADS)
Ciszewski, Mateusz; Benke, Grzegorz; Leszczyńska-Sejda, Katarzyna; Kopyto, Dorota
2017-11-01
A new energy storage material based on molybdate active species has been presented. Molybdenum seems to be a perspective material in supercapacitors because of numerous possible metal oxidation states, electrolyte storage by means of various chemical reactions and availability in comparison to other refractory metals. Material synthesized within this research was composed of reduced graphene oxide matrix and peroxomolybdate(VI)-citrate active dimers. It was showed that peroxomolybdate(VI)-citrate structure enhanced electrochemical activity of symmetric supercapacitor. Simple methodology was used to synthesize a composite with pH adjustment as the key step. The specific capacity calculated from galvanostatic charge/discharge curves was as high as 250 F/g. Material was distinguished by good cyclability with 5% capacity loss after 1000 cycles. The increase in charge transfer resistance, induced by metal-oxygen compound within the carbon matrix was relatively low, compared to parent reduced graphene oxide. Amorphous structure of peroxomolybdate(VI)-modified material was observed with slight increase in the interlayer distance in comparison to parent reduced graphene oxide. The height and lateral size of crystallites were also determined. Significant decrease in the specific surface area of peroxomolybdate(VI)-modified composite was observed, in comparison to the parent reduced graphene oxide.
Reesha, K V; Panda, Satyen Kumar; Bindu, J; Varghese, T O
2015-08-01
An antimicrobial packaging material was developed by uniformly embedding 1, 3 and 5% chitosan (w/w) in low density polyethylene matrix using maleic anhydride grafted LDPE as a compatible agent. The materials were mixed by compounding and blown into monolayer films via blown film extrusion. The developed films showed good barrier properties against oxygen. Characterization of the composite films with Fourier transform infrared spectroscopy revealed that chitosan and LDPE interacted well with each other. Overall migration showed better release of chitosan adduct from the LDPE matrix which enhanced the antibacterial properties of the films. The interaction between the LDPE/CS and maleic anhydride grafted LDPE had a decreasing effect on the tensile strength and heat sealing properties. Investigation on antimicrobial properties of LDPE/CS films showed 85-100% inhibition of Escherichia coli. Efficacy of LDPE/CS films was evaluated by using them as packaging material for chilled storage of Tilapia (Oreochromis mossambicus). Analysis of storage quality indices (peroxide value, free fatty acid, total volatile base nitrogen and aerobic plate count) revealed good antibacterial property and extension of shelf life of Tilapia in the chitosan incorporated novel composite films compared to virgin LDPE film. Copyright © 2015 Elsevier B.V. All rights reserved.
Biochar particle size, shape, and porosity act together to influence soil water properties.
Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Gonnermann, Helge M
2017-01-01
Many studies report that, under some circumstances, amending soil with biochar can improve field capacity and plant-available water. However, little is known about the mechanisms that control these improvements, making it challenging to predict when biochar will improve soil water properties. To develop a conceptual model explaining biochar's effects on soil hydrologic processes, we conducted a series of well constrained laboratory experiments using a sand matrix to test the effects of biochar particle size and porosity on soil water retention curves. We showed that biochar particle size affects soil water storage through changing pore space between particles (interpores) and by adding pores that are part of the biochar (intrapores). We used these experimental results to better understand how biochar intrapores and biochar particle shape control the observed changes in water retention when capillary pressure is the main component of soil water potential. We propose that biochar's intrapores increase water content of biochar-sand mixtures when soils are drier. When biochar-sand mixtures are wetter, biochar particles' elongated shape disrupts the packing of grains in the sandy matrix, increasing the volume between grains (interpores) available for water storage. These results imply that biochars with a high intraporosity and irregular shapes will most effectively increase water storage in coarse soils.
Akinbi, Henry; Meinzen-Derr, Jareen; Auer, Christine; Ma, Yan; Pullum, Derek; Kusano, Ryosuke; Reszka, Krzysztof J; Zimmerly, Kira
2010-09-01
Preterm infants are often fed pasteurized donor milk or mother's milk that has been stored frozen for up to 4 weeks. Our objectives were to assess the impact of pasteurization or prolonged storage at -20 degrees C on the immunologic components of human milk and the capability of the different forms of human milk to support bacterial proliferation. The concentrations and activities of major host defense proteins in the whey fractions of mother's milk stored for 4 weeks at -20 degrees C or pasteurized human donor milk were compared with freshly expressed human milk. Proliferation of bacteria incubated in the 3 forms of human milk was assessed. Relative to freshly expressed human milk, the concentrations of lysozyme, lactoferrin, lactoperoxidase, and secretory immunoglobulin A were reduced 50% to 82% in pasteurized donor milk and the activities of lysozyme and lactoperoxidase were 74% to 88% lower (P < 0.01). Proliferation of bacterial pathogens in pasteurized donor milk was enhanced 1.8- to 4.6-fold compared with fresh or frozen human milk (P < 0.01). The immunomodulatory proteins in human milk are reduced by pasteurization and, to a lesser extent, by frozen storage, resulting in decreased antibacterial capability. Stringent procedure to minimize bacterial contamination is essential during handling of pasteurized milk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrant, Marilyn M.; Garcia, Rudy J.; Zhang, Pengchu
2004-09-15
Tomcat-Projects_RF is a software package for analyzing sensor data obtained from a database and displaying the results with Java Servlet Pages (JSP). SQL Views into the dataset are tailored for personnel having different roles in monitoring the items in a storage facility. For example, an inspector, a host treaty compliance officer, a system engineer and software developers were the users identified that would need to access data at different levels of detail, The analysis provides a high level status of the storage facility and allows the user to go deeper into the data details if the user desires.
Ko, Ya-Ping; Flick, Matthew J.
2017-01-01
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151
GPU-accelerated element-free reverse-time migration with Gauss points partition
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong
2018-06-01
An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.
Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds.
Hernandez-Gordillo, Victor; Chmielewski, Jean
2014-08-01
Natural and synthetic three-dimensional (3-D) scaffolds that mimic the microenvironment of the extracellular matrix (ECM), with growth factor storage/release and the display of cell adhesion signals, offer numerous advantages for regenerative medicine and in vitro morphogenesis and oncogenesis modeling. Here we report the design of collagen mimetic peptides (CMPs) that assemble into a highly crosslinked 3-D matrix in response to metal ion stimuli, that may be functionalized with His-tagged cargoes, such as green fluorescent protein (GFP-His8) and human epidermal growth factor (hEGF-His6). The bound hEGF-His6 was found to gradually release from the matrix in vitro and induce cell proliferation in the EGF-dependent cell line MCF10A. The additional incorporation of a cell adhesion sequence (RGDS) at the N-terminus of the CMP creates an environment that facilitated the organization of matrix-encapsulated MCF10A cells into spheroid structures, thus mimicking the ECM environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.
Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V
2013-08-12
The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.
Approaches to genotyping individual miracidia of Schistosoma japonicum
Xiao, Ning; Remais, Justin V.; Brindley, Paul J.; Qiu, Dong-chuan; Carlton, Elizabeth J.; Li, Rong-zhi; Lei, Yang; Blair, David
2013-01-01
Molecular genetic tools are needed to address questions as to the source and dynamics of transmission of the human blood fluke Schistosoma japonicum in regions where human infections have re-emerged, and to characterize infrapopulations in individual hosts. The life-stage that interests us as a target for collecting genotypic data is the miracidium, a very small larval stage that consequently yields very little DNA for analysis. Here, we report the successful development of a multiplex format permitting genotyping of 17 microsatellite loci in four sequential multiplex reactions using a single miracidium held on a Whatman Classic FTA indicating card. This approach was successful after short storage periods, but after long storage (>4 years) considerable difficulty was encountered in multiplex genotyping, necessitating the use of whole genome amplification (WGA) methods. WGA applied to cards stored for long periods of time resulted in sufficient DNA for accurate and repeatable genotyping. Trials and tests of these methods, as well as application to some field-collected samples, are reported, along with discussion of the potential insights to be gained from such techniques. These include recognition of sibships among miracidia from a single host, and inference of the minimum number of worm pairs that might be present in a host. PMID:24013341
Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?
Kumar, Dilip; Barad, Shiri; Sionov, Edward; Prusky, Dov B.
2017-01-01
Storage of freshly harvested fruit is a key factor in modulating their supply for several months after harvest; however, their quality can be reduced by pathogen attack. Fruit pathogens may infect their host through damaged surfaces, such as mechanical injuries occurring during growing, harvesting, and packing, leading to increased colonization as the fruit ripens. Of particular concern are fungal pathogens that not only macerate the host tissue but also secrete significant amounts of mycotoxins. Many studies have described the importance of physiological factors, including stage of fruit development, biochemical factors (ripening, C and N content), and environmental factors (humidity, temperature, water deficit) on the occurrence of mycotoxins. However, those factors usually show a correlative effect on fungal growth and mycotoxin accumulation. Recent reports have suggested that host factors can induce fungal metabolism, leading to the synthesis and accumulation of mycotoxins. This review describes the new vision of host-factor impact on the regulation of mycotoxin biosynthetic gene clusters underlying the complex regulation of mycotoxin accumulation in ripening fruit. PMID:28895896
Transfer matrix calculation for ion optical elements using real fields
NASA Astrophysics Data System (ADS)
Mishra, P. M.; Blaum, K.; George, S.; Grieser, M.; Wolf, A.
2018-03-01
With the increasing importance of ion storage rings and traps in low energy physics experiments, an efficient transport of ion species from the ion source area to the experimental setup becomes essential. Some available, powerful software packages rely on transfer matrix calculations in order to compute the ion trajectory through the ion-optical beamline systems of high complexity. With analytical approaches, so far the transfer matrices are documented only for a few ideal ion optical elements. Here we describe an approach (using beam tracking calculations) to determine the transfer matrix for any individual electrostatic or magnetostatic ion optical element. We verify the procedure by considering the well-known cases and then apply it to derive the transfer matrix of a 90-degree electrostatic quadrupole deflector including its realistic geometry and fringe fields. A transfer line consisting of a quadrupole deflector and a quadrupole doublet is considered, where the results from the standard first order transfer matrix based ion optical simulation program implementing the derived transfer matrix is compared with the real field beam tracking simulations.
NASA Astrophysics Data System (ADS)
Prymak, M. V.; Azhniuk, Yu. M.; Solomon, A. M.; Krasilinets, V. M.; Lopushansky, V. V.; Bodnar, I. V.; Gomonnai, A. V.; Zahn, D. R. T.
2012-07-01
The effect of X-ray irradiation on the optical absorption spectra of CdSe1-xTex nanocrystals embedded in a borosilicate matrix is studied. The observed blue shift of the absorption edge and bleaching of the confinement-related features in the spectra are related to X-ray induced negative ionization of the nanocrystals with charge transfer across the nanocrystal/matrix interface. The radiation-induced changes are observed to recover after longer post-irradiation storage at room temperature.
Vectorization of linear discrete filtering algorithms
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1977-01-01
Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.
Nanocrystal/sol-gel nanocomposites
Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM
2007-06-05
The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.
Nanocrystal/sol-gel nanocomposites
Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM
2012-06-12
The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites
Bacteriorhodopsin films for optical signal processing and data storage
NASA Technical Reports Server (NTRS)
Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)
1996-01-01
This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.
Quantum storage of orbital angular momentum entanglement in an atomic ensemble.
Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can
2015-02-06
Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3%±0.8% and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.
1990-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.
1992-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
Monitoring Technological Change.
ERIC Educational Resources Information Center
Brinkworth, B. J.; Eckersall, K. E.
A project was conducted to design and pilot a scheme for monitoring trade/industry/commerce technological changes and reporting them to Technical and Further Education (TAFE) teachers and authorities. A matrix of information categories was used to facilitate the collection and storage of information relative to technological advancements in the…
Quantitative assessment of anthrax vaccine immunogenicity using the dried blood spot matrix.
Schiffer, Jarad M; Maniatis, Panagiotis; Garza, Ilana; Steward-Clark, Evelene; Korman, Lawrence T; Pittman, Phillip R; Mei, Joanne V; Quinn, Conrad P
2013-03-01
The collection, processing and transportation to a testing laboratory of large numbers of clinical samples during an emergency response situation present significant cost and logistical issues. Blood and serum are common clinical samples for diagnosis of disease. Serum preparation requires significant on-site equipment and facilities for immediate processing and cold storage, and significant costs for cold-chain transport to testing facilities. The dried blood spot (DBS) matrix offers an alternative to serum for rapid and efficient sample collection with fewer on-site equipment requirements and considerably lower storage and transport costs. We have developed and validated assay methods for using DBS in the quantitative anti-protective antigen IgG enzyme-linked immunosorbent assay (ELISA), one of the primary assays for assessing immunogenicity of anthrax vaccine and for confirmatory diagnosis of Bacillus anthracis infection in humans. We have also developed and validated high-throughput data analysis software to facilitate data handling for large clinical trials and emergency response. Published by Elsevier Ltd.
Jiao, Yucong; Han, Dandan; Ding, Yi; Zhang, Xianfeng; Guo, Guannan; Hu, Jianhua; Yang, Dong; Dong, Angang
2015-01-01
Three-dimensional superlattices consisting of nanoparticles represent a new class of condensed materials with collective properties arising from coupling interactions between close-packed nanoparticles. Despite recent advances in self-assembly of nanoparticle superlattices, the constituent materials have been limited to those that are attainable as monodisperse nanoparticles. In addition, self-assembled nanoparticle superlattices are generally weakly coupled due to the surface-coating ligands. Here we report the fabrication of three-dimensionally interconnected nanoparticle superlattices with face-centered cubic symmetry without the presynthesis of the constituent nanoparticles. We show that mesoporous carbon frameworks derived from self-assembled supercrystals can be used as a robust matrix for the growth of nanoparticle superlattices with diverse compositions. The resulting interconnected nanoparticle superlattices embedded in a carbon matrix are particularly suitable for energy storage applications. We demonstrate this by incorporating tin oxide nanoparticle superlattices as anode materials for lithium-ion batteries, and the resulting electrochemical performance is attributable to their unique architectures. PMID:25739732
Gut microbiota dictates the metabolic response of Drosophila to diet
Wong, Adam C.-N.; Dobson, Adam J.; Douglas, Angela E.
2014-01-01
Animal nutrition is profoundly influenced by the gut microbiota, but knowledge of the scope and core mechanisms of the underlying animal–microbiota interactions is fragmentary. To investigate the nutritional traits shaped by the gut microbiota of Drosophila, we determined the microbiota-dependent response of multiple metabolic and performance indices to systematically varied diet composition. Diet-dependent differences between Drosophila bearing its unmanipulated microbiota (conventional flies) and experimentally deprived of its microbiota (axenic flies) revealed evidence for: microbial sparing of dietary B vitamins, especially riboflavin, on low-yeast diets; microbial promotion of protein nutrition, particularly in females; and microbiota-mediated suppression of lipid/carbohydrate storage, especially on high sugar diets. The microbiota also sets the relationship between energy storage and body mass, indicative of microbial modulation of the host signaling networks that coordinate metabolism with body size. This analysis identifies the multiple impacts of the microbiota on the metabolism of Drosophila, and demonstrates that the significance of these different interactions varies with diet composition and host sex. PMID:24577449
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Jiri; Lin, Lin; Shao, Meiyue
We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate themore » density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.« less
Mg-Al and Zn-Fe layered double hydroxides used for organic species storage and controlled release.
Seftel, E M; Cool, P; Lutic, D
2013-12-01
Layered double hydroxides (LDH) containing (Mg and Al) or (Zn and Fe) were prepared by coprecipitation at constant pH, using NaOH and urea as precipitation agents. The most pure LDH phase in the Zn/Fe system was obtained with urea and in Mg/Al system when using NaOH. The incorporation of phenyl-alanine (Phe) anions in the interlayer of the LDH was performed by direct coprecipitation, ionic exchange and structure reconstruction of the mixed oxide obtained by the calcination of the coprecipitated product at 400°C. The reconstruction method and the direct coprecipitation in a medium containing Phe in the initial mixture were less successful in terms of high yields of organic-mineral composite than the ionic exchange method. A spectacular change in sample morphology and yield in exchanged solid was noticed for the Zn3Fe sample obtained by ionic exchange for 6h with Phe solution. A delivery test in PBS of pH=7.4 showed the release of the Phe in several steps up to 25 h indicating different host-guest interactions between the Phe and the LDH matrix. This behavior makes the preparation useful to obtain late delivery drugs, by the incorporation of the anion inside the LDH layer. © 2013.
Ji, Shengnan; Imtiaz, Sumair; Sun, Dan; Xin, Ying; Li, Qian; Huang, Taizhong; Zhang, Zhaoliang; Huang, Yunhui
2017-12-22
Coralline-like N-doped hierarchically porous carbon (CNHPC) was prepared through a hydrothermal carbonization process using a sea pollutant enteromorpha as the starting material. The addition of a small amount of glucose during carbonization improved the yield of carbon, and the inherent N contents, especially for pyrrolic N and pyridinic N atoms. After loading 40 wt. % sulfur, the CNHPC/S composite, as a cathode in a Li-S battery, exhibited an initial discharge capacity of 1617 mAh g -1 (96.5 % of theoretical capacity) at 0.1 C and a capacity loss of 0.05 % per charge-discharge cycle after 500 cycles at 0.5 C with a stable Coulombic efficiency of 100 % in carbonate based electrolyte. Such a great performance can be attributed to the coralline-like hierarchically porous infrastructure and inherently abundant N doping. Given the conversion of waste pollutants into valuable energy-storage materials and the easy process, this work features a promising approach to prepare C/S cathodes for Li-S batteries. The special structural and textural characteristics of CNHPC might be attractive to other practical applications such as supercapacitors and catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D
2013-01-01
American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis.
Atzingen, Marina V; Barbosa, Angela S; De Brito, Thales; Vasconcellos, Silvio A; de Morais, Zenáide M; Lima, Dirce MC; Abreu, Patricia AE; Nascimento, Ana LTO
2008-01-01
Background It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence factors contributing to the pathogenesis of the disease have been identified. Whole-genome sequencing analysis of L. interrogans allowed identification of a repertoire of putative leptospiral surface proteins. Results Here, we report the identification and characterization of a new leptospiral protein that exhibits extracellular matrix-binding properties, called as Lsa21 (leptospiral surface adhesin, 21 kDa). Compatible with its role in adhesion, the protein was shown to be surface-exposed by indirect immunofluorescence. Attachment of Lsa21 to laminin, collagen IV, and plasma fibronectin was specific and dose dependent. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. The gene coding for Lsa21 is present in pathogenic strains belonging to the L. interrogans species but was not found in the saprophytic L. biflexa serovar Patoc strain Patoc 1. Loss of gene expression occurs upon culture attenuation of pathogenic strains. Environmental factors such as osmolarity and temperature affect Lsa21 expression at the transcriptional level. Moreover, anti-Lsa21 serum labeled liver and kidney tissues of human fatal cases of leptospirosis. Conclusion Our data suggest a role of Lsa21 in the pathogenesis of leptospirosis. PMID:18445272
Vítek, Petr; Ascaso, Carmen; Artieda, Octavio; Wierzchos, Jacek
2016-06-01
The Raman imaging method was successfully applied for mapping the distribution of biomolecules (e.g., pigments) associated with cryptoendolithic and hypoendolithic microorganisms, as well as the inorganic host mineral matrix that forms the habitat for the biota. To the best of our knowledge, this is the first comprehensive study in the field of geomicrobiology based on this technique. The studied microbial ecosystem was located nearly 3000 m above sea level within the driest desert on Earth, the Atacama in Chile. Enhancement of carotenoid Raman signal intensity close to the surface was registered at different areas of endolithic colonization dominated by algae, with cyanobacteria present as well. This is interpreted as an adaptation mechanism to the excessive solar irradiation. On the other hand, cyanobacteria synthesize scytonemin as a passive UV-screening pigment (found at both the hypoendolithic and cryptoendolithic positions). The distribution of the scytonemin Raman signal was mapped simultaneously with the surrounding mineral matrix. Thus, mapping was done of the phototrophic microorganisms in their original microhabitat together with the host rock environment. Important information which was resolved from the Raman imaging dataset of the host rock is about the hydration state of Ca-sulfate, demonstrated on the presence of gypsum (CaSO4·2H2O) and the absence of both anhydrite (CaSO4) and bassanite (CaSO4·1/2H2O). Obtaining combined "in situ" simultaneous information from the geological matrix (inorganic) together with the microbial biomolecules (organic) is discussed and concluded as an important advantage of this technique. We discuss how selection of the laser wavelength (785 and 514.5-nm) influences the Raman imaging results.
Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.
van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd
2010-01-01
Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.
NASA Astrophysics Data System (ADS)
Ramalingam, Srikumar
2001-11-01
A highly secure mobile agent system is very important for a mobile computing environment. The security issues in mobile agent system comprise protecting mobile hosts from malicious agents, protecting agents from other malicious agents, protecting hosts from other malicious hosts and protecting agents from malicious hosts. Using traditional security mechanisms the first three security problems can be solved. Apart from using trusted hardware, very few approaches exist to protect mobile code from malicious hosts. Some of the approaches to solve this problem are the use of trusted computing, computing with encrypted function, steganography, cryptographic traces, Seal Calculas, etc. This paper focuses on the simulation of some of these existing techniques in the designed mobile language. Some new approaches to solve malicious network problem and agent tampering problem are developed using public key encryption system and steganographic concepts. The approaches are based on encrypting and hiding the partial solutions of the mobile agents. The partial results are stored and the address of the storage is destroyed as the agent moves from one host to another host. This allows only the originator to make use of the partial results. Through these approaches some of the existing problems are solved.
Hecker, Arnaud; Testenière, Olivier; Marin, Frédéric; Luquet, Gilles
2003-01-30
Orchestia cavimana is a terrestrial crustacean, which cyclically stores calcium in diverticula of the midgut, in the form of calcified amorphous concretions. These concretions are associated with a proteinaceous matrix, the main constituent of the soluble matrix is Orchestin, an acidic calcium-binding protein [Testenière et al., Biochem. J. 361 (2002) 327-335]. In the present paper, we clearly demonstrate that Orchestin is phosphorylated on serine and tyrosine residues, but that calcium binding only occurs via the phosphoserine residues. To our knowledge, this is the first example of an invertebrate mineralization for which a post-translational modification is clearly related to an important function of a calcifying protein.
NASA Astrophysics Data System (ADS)
Balagan, Semyon A.; Nazarov, Vladimir U.; Shevlyagin, Alexander V.; Goroshko, Dmitrii L.; Galkin, Nikolay G.
2018-06-01
We develop an approach and present results of the combined molecular dynamics and density functional theory calculations of the structural and optical properties of the nanometer-sized crystallites embedded in a bulk crystalline matrix. The method is designed and implemented for both compatible and incompatible lattices of the nanocrystallite (NC) and the host matrix, when determining the NC optimal orientation relative to the matrix constitutes a challenging problem. We suggest and substantiate an expression for the cost function of the search algorithm, which is the energy per supercell generalized for varying number of atoms in the latter. The epitaxial relationships at the Si/NC interfaces and the optical properties are obtained and found to be in a reasonable agreement with experimental data. Dielectric functions show significant sensitivity to the NC’s orientation relative to the matrix at energies below 0.5 eV.
Balagan, Semyon Anatolyevich; Nazarov, Vladimir U; Shevlyagin, Alexander Vladimirovich; Goroshko, Dmitrii L; Galkin, N G
2018-05-03
We develop an approach and present results of the combined molecular dynamics and density functional theory calculations of the structural and optical properties of the nanometer-sized crystallites embedded in a bulk crystalline matrix. The method is designed and implemented for both compatible and incompatible lattices of the nanocrystallite (NC) and the host matrix, when determining the NC optimal orientation relative to the matrix constitutes a challenging problem. We suggest and substantiate an expression for the cost function of the search algorithm, which is the energy per supercell generalized for varying number of atoms in the latter. The epitaxial relationships at the Si/NC interfaces and the optical properties are obtained and found to be in a reasonable agreement with experimental data. Dielectric functions show significant sensitivity to the NC's orientation relative to the matrix at energies below 0.5 eV. © 2018 IOP Publishing Ltd.
Polyfluorides and Neat Fluorine as Host Material in Matrix-Isolation Experiments.
Brosi, Felix; Vent-Schmidt, Thomas; Kieninger, Stefanie; Schlöder, Tobias; Beckers, Helmut; Riedel, Sebastian
2015-11-09
The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\\tilde \
A direct method for unfolding the resolution function from measurements of neutron induced reactions
NASA Astrophysics Data System (ADS)
Žugec, P.; Colonna, N.; Sabate-Gilarte, M.; Vlachoudis, V.; Massimi, C.; Lerendegui-Marco, J.; Stamatopoulos, A.; Bacak, M.; Warren, S. G.; n TOF Collaboration
2017-12-01
The paper explores the numerical stability and the computational efficiency of a direct method for unfolding the resolution function from the measurements of the neutron induced reactions. A detailed resolution function formalism is laid out, followed by an overview of challenges present in a practical implementation of the method. A special matrix storage scheme is developed in order to facilitate both the memory management of the resolution function matrix, and to increase the computational efficiency of the matrix multiplication and decomposition procedures. Due to its admirable computational properties, a Cholesky decomposition is at the heart of the unfolding procedure. With the smallest but necessary modification of the matrix to be decomposed, the method is successfully applied to system of 105 × 105. However, the amplification of the uncertainties during the direct inversion procedures limits the applicability of the method to high-precision measurements of neutron induced reactions.
Falah, Mahroo; MacKenzie, Kenneth J D; Knibbe, Ruth; Page, Samuel J; Hanna, John V
2016-11-15
New photoactive composites to efficiently remove organic dyes from water are reported. These consist of Cu2O/TiO2 nanoparticles in a novel inorganic geopolymer matrix modified by a large tertiary ammonium species (cetyltrimethylammonium bromide, CTAB) whose presence in the matrix is demonstrated by FTIR spectroscopy. The CTAB does not disrupt the tetrahedral geopolymer structural silica and alumina units as demonstrated by (29)Si and (27)Al MAS NMR spectroscopy. SEM/EDS, TEM and BET measurements suggest that the Cu2O/TiO2 nanoparticles are homogenously distributed on the surface and within the geopolymer pores. The mechanism of removal of methylene blue (MB) dye from solution consists of a combination of adsorption (under dark conditions) and photodegradation (under UV radiation). MB adsorption in the dark follows pseudo second-order kinetics and is described by Freundlich-Langmuir type isotherms. The performance of the CTAB-modified geopolymer based composites is superior to composites based on unmodified geopolymer hosts, the most effective composite containing 5wt% Cu2O/TiO2 in a CTAB-modified geopolymer host. These composites constitute a new class of materials with excellent potential in environmental protection applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Patel, Arunendra Kumar; Sunder, Aishwarya; Mishra, Shweta; Bajpai, Rakesh
2018-05-01
This paper gives an insight on the synthesis and crystalline properties of Polyvinylidene Fluoride (PVDF) (host matrix) composites impregnated with Cadmium Sulphide (CdS) using Dimethyl formamide (DMF) as the base, prepared by the well known solvent casting technique. The effect of doping concentration of CdS in to the PVDF matrix was studied using X-ray diffraction technique. The structural properties like crystallinity Cr, interplanar distance d, average size of the crystalline region (D), and average inter crystalline separation (R) have been estimated for the developed composite. The crystallinity index, crystallite size and inter crystalline separation is increasing with increase in the concentration of CdS in to the PVDF matrix while the interplanar distance d is decreasing.
NASA Astrophysics Data System (ADS)
Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl
2012-02-01
Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.
Room temperature triplet state spectroscopy of organic semiconductors.
Reineke, Sebastian; Baldo, Marc A
2014-01-21
Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.
Sato, A; Nishida, C; Sato-Kusubata, K; Ishihara, M; Tashiro, Y; Gritli, I; Shimazu, H; Munakata, S; Yagita, H; Okumura, K; Tsuda, Y; Okada, Y; Tojo, A; Nakauchi, H; Takahashi, S; Heissig, B; Hattori, K
2015-01-01
The systemic inflammatory response observed during acute graft-versus-host disease (aGVHD) is driven by proinflammatory cytokines, a 'cytokine storm'. The function of plasmin in regulating the inflammatory response is not fully understood, and its role in the development of aGVHD remains unresolved. Here we show that plasmin is activated during the early phase of aGVHD in mice, and its activation correlated with aGVHD severity in humans. Pharmacological plasmin inhibition protected against aGVHD-associated lethality in mice. Mechanistically, plasmin inhibition impaired the infiltration of inflammatory cells, the release of membrane-associated proinflammatory cytokines including tumor necrosis factor-α (TNF-α) and Fas-ligand directly, or indirectly via matrix metalloproteinases (MMPs) and alters monocyte chemoattractant protein-1 (MCP-1) signaling. We propose that plasmin and potentially MMP-9 inhibition offers a novel therapeutic strategy to control the deadly cytokine storm in patients with aGVHD, thereby preventing tissue destruction.
Characterization of membrane association of Rinderpest virus matrix protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subhashri, R.; Shaila, M.S.
2007-04-20
Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M proteinmore » gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein.« less
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927
NASA Astrophysics Data System (ADS)
Ibrahim, Nik Noor Idayu Nik; Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir
2017-12-01
The glass fibre reinforced orthophthalic unsaturated polyester composite was widely used in the pipeline industry as a replacement to the corroded steel pipes. A filler which possesses high mechanical performance at high temperature; P84 Polyimide used as the particulate reinforcement in the unsaturated polyester matrix system to increase the mechanical performance of the glass fibre reinforced unsaturated polyester. The glass fibre composite laminates were prepared through a hand lay-up technique and fabricated into three layer laminate. Prior to be used as the matrix system in the lamination process, the unsaturated polyester resin was mixed with masterbatch P84 Polyimide at three loadings amount of 1, 3, and 5 wt%. The addition of P84 Polyimide at 1, 3, and 5 wt% increased the tensile properties and flexural properties especially at 1 wt% filler loading. As the filler loading increased, the tensile properties and flexural properties showed decreasing pattern. In the dynamic mechanical analysis, the values of storage modulus were taken at two points; 50 °C and 150 °C which were the storage modulus before and after the glass transition temperature. All storage modulus showed fluctuation trend for both before and after Tg. However, the storage modulus of the filled composite laminates after Tg showed higher values than unfilled composite laminates at all filler loading. Since the P84 Polyimide possesses high thermal stability, the presence of P84 Polyimide inside the composite system had assisted in delaying the Tg. In terms of the filler dispersion, the Cole-Cole plot showed an imperfect semi-circular shape which indicated good filler dispersion.
Wu, Ying; Jiang, Yu; Shi, Jinan; Gu, Lin; Yu, Yan
2017-06-01
TiO 2 as an anode for sodium-ion batteries (NIBs) has attracted much recent attention, but poor cyclability and rate performance remain problematic owing to the intrinsic electronic conductivity and the sluggish diffusivity of Na ions in the TiO 2 matrix. Herein, a simple process is demonstrated to improve the sodium storage performance of TiO 2 by fabricating a 1D, multichannel, porous binary-phase anatase-TiO 2 -rutile-TiO 2 composite with oxygen-deficient and high grain-boundary density (denoted as a-TiO 2- x /r-TiO 2- x ) via electrospinning and subsequent vacuum treatment. The introduction of oxygen vacancies in the TiO 2 matrix enables enhanced intrinsic electronic conductivity and fast sodium-ion diffusion kinetics. The porous structure offers easy access of the liquid electrolyte and a short transport path of Na + through the pores toward the TiO 2 nanoparticle. Furthermore, the high density of grain boundaries between the anatase TiO 2 and rutile TiO 2 offer more interfaces for a novel interfacial storage. The a-TiO 2- x /r-TiO 2- x shows excellent long cycling stability (134 mAh g -1 at 10 C after 4500 cycles) and superior rate performance (93 mAh g -1 after 4500 cycles at 20 C) for sodium-ion batteries. This simple and effective process could serve as a model for the modification of other materials applied in energy storage systems and other fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microwave fixation enhances gluten fibril formation in wheat endosperm
USDA-ARS?s Scientific Manuscript database
The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...
Making the case for high temperature low sag (htls) overhead transmission line conductors
NASA Astrophysics Data System (ADS)
Banerjee, Koustubh
The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.
Sheykhnazari, Somayeh; Tabarsa, Taghi; Ashori, Alireza; Ghanbari, Abbas
2016-12-01
The aim of this paper was to prepare composites of bacterial cellulose (BC) filled with silica (SiO 2 ) nanoparticles to evaluate the influence of the SiO 2 contents (3, 5 and 7wt%) on the thermo-mechanical properties of the composites. BC hydro-gel was immersed in an aqueous solution of silanol derived from tetraethoxysilane (TEOS), the silanol was then converted into SiO 2 in the BC matrix by pressing at 120°C and 2MPa. The BC/SiO 2 translucent sheets were examined by dynamic-mechanical analysis (DMA), thermo gravimetric analysis (TGA), and scanning electron microscopy (SEM). The temperature dependence of the storage modulus, loss modulus and tan delta was determined by DMA. In general, the results revealed that the increment of storage modulus and thermal stability increased concomitantly with the augmentation of SiO 2 content. Therefore, it could be concluded that the mechanical properties of the composites were improved by using high amounts of nano silica. This would be a high aspect ratio of BC capable of connecting the BC matrix and SiO 2 , thereby enhancing a large contact surface and resulting in excellent coherence. A decrease of the storage modulus was consistent with increasing temperature, resulting from softening of the composites. The storage modulus of the composites increased in the order: BC/S7>BC/S5>BC/S3, while the loss modulus and tan delta decreased. On the other hand, the thermal stabilities of all BC/SiO 2 composites were remarkably enhanced as compared to the pristine BC. TGA curves showed that the temperature of decomposition of the pure BC gradually shifted from about 260°C to about 370°C as silica content increased. SEM observations illustrated that the nano-scale SiO 2 was embedded between the voids and nano-fibrils of the BC matrix. Overall, the results indicated that the successful synthesis and superior properties of BC/SiO 2 advocate its effectiveness for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Climate oscillations and episodic or recurrent processes interact with evolution, ecology and biogeography determining the structure and complex mosaic that is the biosphere. Parasites and parasite-host assemblages, within an expansive environmental matrix determined by climate, are key components...
Wolf, Matthew T.; Carruthers, Christopher A.; Dearth, Christopher L.; Crapo, Peter M.; Huber, Alexander; Burnsed, Olivia A.; Londono, Ricardo; Johnson, Scott A.; Daly, Kerry A.; Stahl, Elizabeth C.; Freund, John M.; Medberry, Christopher J.; Carey, Lisa E.; Nieponice, Alejandro; Amoroso, Nicholas J.; Badylak, Stephen F.
2013-01-01
Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors which contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explantation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. The present study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model. PMID:23873846
Masoumi, Kambiz; Forouzan, Arash; Barzegari, Hassan; Asgari Darian, Ali; Rahim, Fakher; Zohrevandi, Behzad; Nabi, Somayeh
2016-01-01
Introduction: Traffic accidents are the 8th cause of mortality in different countries and are expected to rise to the 3rd rank by 2020. Based on the Haddon matrix numerous factors such as environment, host, and agent can affect the severity of traffic-related traumas. Therefore, the present study aimed to evaluate the effective factors in severity of these traumas based on Haddon matrix. Methods: In the present 1-month cross-sectional study, all the patients injured in traffic accidents, who were referred to the ED of Imam Khomeini and Golestan Hospitals, Ahvaz, Iran, during March 2013 were evaluated. Based on the Haddon matrix, effective factors in accident occurrence were defined in 3 groups of host, agent, and environment. Demographic data of the patients and data regarding Haddon risk factors were extracted and analyzed using SPSS version 20. Results: 700 injured people with the mean age of 29.66 ± 12.64 years (3-82) were evaluated (92.4% male). Trauma mechanism was car-pedestrian in 308 (44%) of the cases and car-motorcycle in 175 (25%). 610 (87.1%) cases were traffic accidents and 371 (53%) occurred in the time between 2 pm and 8 pm. Violation of speed limit was the most common violation with 570 (81.4%) cases, followed by violation of right-of-way in 57 (8.1%) patients. 59.9% of the severe and critical injuries had occurred on road accidents, while 61.3% of the injuries caused by traffic accidents were mild to moderate (p < 0.001). The most common mechanisms of trauma for critical injuries were rollover (72.5%), motorcycle-pedestrian (23.8%), and car-motorcycle (13.14%) accidents (p < 0.001). Conclusion: Based on the results of the present study, the most important effective factors in severity of traffic accident-related traumas were age over 50, not using safety tools, and undertaking among host-related factors; insufficient environment safety, road accidents and time between 2 pm and 8 pm among environmental factors; and finally, rollover, car-pedestrian, and motorcycle-pedestrian accidents among the agent factors PMID:27274517
Investigation of residual stresses in shape memory alloy (SMA) composites
NASA Astrophysics Data System (ADS)
Berman, Justin Bradley
Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol/glass/epoxy beams showed a large increase in the effective austenitic start temperature (As) of 9.3°C. The elevation of the effective As together with other observations of warpage development indicates that plastic flow may have occurred in nitinol wires when embedded in glass/epoxy. These observations reinforce the need to train nitinol wires at modest recovery levels when embedding in relatively stiff materials.
Storage system architectures and their characteristics
NASA Technical Reports Server (NTRS)
Sarandrea, Bryan M.
1993-01-01
Not all users storage requirements call for 20 MBS data transfer rates, multi-tier file or data migration schemes, or even automated retrieval of data. The number of available storage solutions reflects the broad range of user requirements. It is foolish to think that any one solution can address the complete range of requirements. For users with simple off-line storage requirements, the cost and complexity of high end solutions would provide no advantage over a more simple solution. The correct answer is to match the requirements of a particular storage need to the various attributes of the available solutions. The goal of this paper is to introduce basic concepts of archiving and storage management in combination with the most common architectures and to provide some insight into how these concepts and architectures address various storage problems. The intent is to provide potential consumers of storage technology with a framework within which to begin the hunt for a solution which meets their particular needs. This paper is not intended to be an exhaustive study or to address all possible solutions or new technologies, but is intended to be a more practical treatment of todays storage system alternatives. Since most commercial storage systems today are built on Open Systems concepts, the majority of these solutions are hosted on the UNIX operating system. For this reason, some of the architectural issues discussed focus around specific UNIX architectural concepts. However, most of the architectures are operating system independent and the conclusions are applicable to such architectures on any operating system.
USDA-ARS?s Scientific Manuscript database
The extracellular matrix (ECM) plays an important role in maintenance of white adipose tissue (WAT) architecture and function, and proper ECM remodeling is critical to support WAT malleability to accomodate changes in energy storage needs. Obesity and adipocyte hypertrophy places a strain on the EC...
Structural performance analysis and redesign
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1978-01-01
Program performs stress buckling and vibrational analysis of large, linear, finite-element systems in excess of 50,000 degrees of freedom. Cost, execution time, and storage requirements are kept reasonable through use of sparse matrix solution techniques, and other computational and data management procedures designed for problems of very large size.
Experimental Optoelectronic Associative Memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1992-01-01
Optoelectronic associative memory responds to input image by displaying one of M remembered images. Which image to display determined by optoelectronic analog computation of resemblance between input image and each remembered image. Does not rely on precomputation and storage of outer-product synapse matrix. Size of memory needed to store and process images reduced.
Lithium electrode and an electrical energy storage device containing the same
Lai, San-Cheng
1976-07-13
An improved lithium electrode structure comprises an alloy of lithium and silicon in specified proportions and a supporting current-collecting matrix in intimate contact with said alloy. The lithium electrode of the present invention is utilized as the negative electrode in a rechargeable electrochemical cell.
On-site detection of packaged squid freshness
NASA Astrophysics Data System (ADS)
Ahmad, Noor Azizah; Heng, Lee Yook; Salam, Faridah; Hanifah, Sharina Abu
2018-04-01
The development of indicator label for detection of total volatile basic nitrogen (TVB-N) is described. Dye extract from edible plants containing anthocyanins was immobilized onto iota-carrageenan as polymer matrix. TVB-N detection worked based on pH increase as the basic deterioration volatile amines generated in the package headspace. Results showed that the indicator label has changed color from blue to green after 12 hours of storage at ambient conditions. The TVB-N value was 38.9648 mg /100 g which is exceeded of acceptability level for seafood products. The pH value of squid flesh has also increased during storage. The colour values of L * and a * negative increases while b* negative decrease with increasing storage time. The indicator label is potentially used as freshness indicator for squid at ambient conditions.
Modeling blur in various detector geometries for MeV radiography
NASA Astrophysics Data System (ADS)
Winch, Nicola M.; Watson, Scott A.; Hunter, James F.
2017-03-01
Monte Carlo transport codes have been used to model the detector blur and energy deposition in various detector geometries for applications in MeV radiography. Segmented scintillating detectors, where low Z scintillators combined with a high-Z metal matrix, can be designed in which the resolution increases with increasing metal fraction. The combination of various types of metal intensification screens and storage phosphor imaging plates has also been studied. A storage phosphor coated directly onto a metal intensification screen has superior performance over a commercial plate. Stacks of storage phosphor plates and tantalum intensification screens show an increase in energy deposited and detective quantum efficiency with increasing plate number, at the expense of resolution. Select detector geometries were tested by comparing simulation and experimental modulation transfer functions to validate the approach.
Ageing of a neutron shielding used in transport/storage casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nizeyiman, Fidele; Alami, Aatif; Issard, Herve
2012-07-11
In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.
Preparation of fine powdered composite for latent heat storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz
Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particlemore » size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.« less
Research of ceramic matrix for a safe immobilization of radioactive sludge waste
NASA Astrophysics Data System (ADS)
Dorofeeva, Ludmila; Orekhov, Dmitry
2018-03-01
The research and improvement of the existing method for radioactive waste hardening by fixation in a ceramic matrix was carried out. For the samples covered with the sodium silicate and tested after the storage on the air the speed of a radionuclides leaching was determined. The properties of a clay ceramics and the optimum conditions of sintering were defined. The experimental data about the influence of a temperature mode sintering, water quantities, sludge and additives in the samples on their mechanical durability and a water resistance were obtained. The comparative analysis of the conducted research is aimed at improvement of the existing method of the hardening radioactive waste by inclusion in a ceramic matrix and reveals the advantages of the received results over analogs.
Big geo data surface approximation using radial basis functions: A comparative study
NASA Astrophysics Data System (ADS)
Majdisova, Zuzana; Skala, Vaclav
2017-12-01
Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for big scattered datasets in n-dimensional space. It is a non-separable approximation, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.
Fate of 14C-acrylamide in roasted and ground coffee during storage.
Baum, Matthias; Böhm, Nadine; Görlitz, Jessica; Lantz, Ingo; Merz, Karl Heinz; Ternité, Rüdiger; Eisenbrand, Gerhard
2008-05-01
Acrylamide (AA) is formed during heating of carbohydrate rich foods in the course of the Maillard reaction. AA has been classified as probably carcinogenic to humans. Storage experiments with roasted coffee have shown that AA levels decrease depending on storage time and temperature. In the present study the fate of AA lost during storage of roasted and ground (R&G) coffee was studied, using 14C-labeled AA as radiotracer. Radiolabel was measured in coffee brew, filter residue, and volatiles. In the brew, total (14)C-label decreased during storage of R&G coffee, while activity in the filter residue built up concomitantly. [2,3-14C]-AA (14C-AA) was the only 14C-related water extractable low molecular compound in the brew detected by radio-HPLC. No formation of volatile 14C-AA-related compounds was detected during storage and coffee brewing. Close to 90% of the radiolabel in the filter residue (spent R&G coffee, spent grounds) remained firmly bound to the matrix, largely resisting extraction by aqueous ammonia, ethyl acetate, chloroform, hexane, and sequential polyenzymatic digest. Furanthiols, which are abundant as aroma components in roasted coffee, have not been found to be involved in the formation of covalent AA adducts and thus do not contribute substantially to the decrease of AA during storage.
NASA Astrophysics Data System (ADS)
Brandl, Miriam B.; Beck, Dominik; Pham, Tuan D.
2011-06-01
The high dimensionality of image-based dataset can be a drawback for classification accuracy. In this study, we propose the application of fuzzy c-means clustering, cluster validity indices and the notation of a joint-feature-clustering matrix to find redundancies of image-features. The introduced matrix indicates how frequently features are grouped in a mutual cluster. The resulting information can be used to find data-derived feature prototypes with a common biological meaning, reduce data storage as well as computation times and improve the classification accuracy.
Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Haiqing L.
2016-01-01
We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.
Building an organic block storage service at CERN with Ceph
NASA Astrophysics Data System (ADS)
van der Ster, Daniel; Wiebalck, Arne
2014-06-01
Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an "organic" storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.
Mass storage system reference model, Version 4
NASA Technical Reports Server (NTRS)
Coleman, Sam (Editor); Miller, Steve (Editor)
1993-01-01
The high-level abstractions that underlie modern storage systems are identified. The information to generate the model was collected from major practitioners who have built and operated large storage facilities, and represents a distillation of the wisdom they have acquired over the years. The model provides a common terminology and set of concepts to allow existing systems to be examined and new systems to be discussed and built. It is intended that the model and the interfaces identified from it will allow and encourage vendors to develop mutually-compatible storage components that can be combined to form integrated storage systems and services. The reference model presents an abstract view of the concepts and organization of storage systems. From this abstraction will come the identification of the interfaces and modules that will be used in IEEE storage system standards. The model is not yet suitable as a standard; it does not contain implementation decisions, such as how abstract objects should be broken up into software modules or how software modules should be mapped to hosts; it does not give policy specifications, such as when files should be migrated; does not describe how the abstract objects should be used or connected; and does not refer to specific hardware components. In particular, it does not fully specify the interfaces.
1988-07-28
r R ~l~ F COPV en Data Entered) AT ION PAGE -ErOP RCoMrE-EoNGFOP. A D-A 204 928 1Z. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4...PAGE (When Data Entered) Ada Compiler Validation Summary Repor-: Compiler Name: DACS-386/UNIX, Version 4.2 Certificate Number: 880728S1.09141 Host...which have the STORAGE SIZE length clause were changed to comment lines under the direction of the AVF Manager . These modified tests ran to a successful
Enabling Object Storage via shims for Grid Middleware
NASA Astrophysics Data System (ADS)
Cadellin Skipsey, Samuel; De Witt, Shaun; Dewhurst, Alastair; Britton, David; Roy, Gareth; Crooks, David
2015-12-01
The Object Store model has quickly become the basis of most commercially successful mass storage infrastructure, backing so-called ”Cloud” storage such as Amazon S3, but also underlying the implementation of most parallel distributed storage systems. Many of the assumptions in Object Store design are similar, but not identical, to concepts in the design of Grid Storage Elements, although the requirement for ”POSIX-like” filesystem structures on top of SEs makes the disjunction seem larger. As modern Object Stores provide many features that most Grid SEs do not (block level striping, parallel access, automatic file repair, etc.), it is of interest to see how easily we can provide interfaces to typical Object Stores via plugins and shims for Grid tools, and how well experiments can adapt their data models to them. We present evaluation of, and first-deployment experiences with, (for example) Xrootd-Ceph interfaces for direct object-store access, as part of an initiative within GridPP[1] hosted at RAL. Additionally, we discuss the tradeoffs and experience of developing plugins for the currently-popular Ceph parallel distributed filesystem for the GFAL2 access layer, at Glasgow.
Costa, Mayra Garcia Maia; Ooki, Gabriela Namur; Vieira, Antônio Diogo Silva; Bedani, Raquel; Saad, Susana Marta Isay
2017-02-22
The effect of açai pulp ice cream and of its supplementation with inulin (I), whey protein concentrate (WC), and/or whey protein isolate (WI) on the viability and resistance to simulated gastrointestinal stress of the probiotic Lactobacillus (Lb.) rhamnosus GG strain throughout storage at -18 °C for up to 112 days was evaluated and morphological changes during stress were monitored. Lb. rhamnosus GG viability was stable in all formulations for up to 112 days of storage, preserving populations around 9 log CFU g -1 . Compared to the fresh culture, Lb. rhamnosus GG showed higher survival under simulated gastrointestinal conditions when incorporated into açai ice cream, indicating that the presence of the food matrix contributed to the microorganism survival. A reduction of at least 5 log cycles of Lb. rhamnosus GG was observed in all formulations after the gastrointestinal simulation in all storage periods assessed. The addition of I, WC, and/or WI did not show any significant effect on the probiotic survival under simulated gastrointestinal stress (p < 0.05). Compared to the fresh culture, fewer morphological changes were observed when the probiotic was added to ice cream. Thus, the açai pulp ice cream was shown to be a suitable matrix for Lb. rhamnosus GG, improving its survival under in vitro simulated gastrointestinal conditions.
Weiss, Julia; Ros-Chumillas, Maria; Peña, Leandro; Egea-Cortines, Marcos
2007-01-30
Recombinant DNA technology is an important tool in the development of plant varieties with new favourable features. There is strong opposition towards this technology due to the potential risk of horizontal gene transfer between genetically modified plant material and food-associated bacteria, especially if genes for antibiotic resistance are involved. Since horizontal transfer efficiency depends on size and length of homologous sequences, we investigated the effect of conditions required for orange juice processing on the stability of DNA from three different origins: plasmid DNA, yeast genomic DNA and endogenous genomic DNA from transgenic sweet orange (C. sinensis L. Osb.). Acidic orange juice matrix had a strong degrading effect on plasmid DNA which becomes apparent in a conformation change from supercoiled structure to nicked, linear structure within 5h of storage at 4 degrees C. Genomic yeast DNA was degraded during exposure to acidic orange juice matrix within 4 days, and also the genomic DNA of C. sinensis suffered degradation within 2 days of storage as indicated by amplification results from transgene markers. Standard pasteurization procedures affected DNA integrity depending on the method and time used. Our data show that the current standard industrial procedures to pasteurize orange juice as well as its acidic nature causes a strong degradation of both yeast and endogenous genomic DNA below sizes reported to be suitable for horizontal gene transfer.
2012-01-01
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (NA = 6 × 1023). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson’s disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of “synaptic plasticity” affecting short-term memory, long-term memory, and forgetting. PMID:23050060
Aleinikoff, John N.; Selby, David; Slack, John F.; Day, Warren C.; Pillers, Renee M.; Cosca, Michael A.; Seeger, Cheryl; Fanning, C. Mark; Samson, Iain
2016-01-01
Rare earth element (REE)-rich breccia pipes (600,000 t @ 12% rare earth oxides) are preserved along the margins of the 136-million metric ton (Mt) Pea Ridge magnetite-apatite deposit, within Mesoproterozoic (~1.47 Ga) volcanic-plutonic rocks of the St. Francois Mountains terrane in southeastern Missouri, United States. The breccia pipes cut the rhyolite-hosted magnetite deposit and contain clasts of nearly all local bedrock and mineralized lithologies.Grains of monazite and xenotime were extracted from breccia pipe samples for SHRIMP U-Pb geochronology; both minerals were also dated in one polished thin section. Monazite forms two morphologies: (1) matrix granular grains composed of numerous small (<50 μm) crystallites intergrown with rare xenotime, thorite, apatite, and magnetite; and (2) coarse euhedral, glassy, bright-yellow grains similar to typical igneous or metamorphic monazite. Trace element abundances (including REE patterns) were determined on selected grains of monazite (both morphologies) and xenotime. Zircon grains from two samples of host rhyolite and two late felsic dikes collected underground at Pea Ridge were also dated. Additional geochronology done on breccia pipe minerals includes Re-Os on fine-grained molybdenite and 40Ar/39Ar on muscovite, biotite, and K-feldspar.Ages (±2σ errors) obtained by SHRIMP U-Pb analysis are as follows: (1) zircon from the two host rhyolite samples have ages of 1473.6 ± 8.0 and 1472.7 ± 5.6 Ma; most zircon in late felsic dikes is interpreted as xenocrystic (age range ca. 1522–1455 Ma); a population of rare spongy zircon is likely of igneous origin and yields an age of 1441 ± 9 Ma; (2) pale-yellow granular monazite—1464.9 ± 3.3 Ma (no dated xenotime); (3) reddish matrix granular monazite—1462.0 ± 3.5 Ma and associated xenotime—1453 ± 11 Ma; (4) coarse glassy-yellow monazite—1464.8 ± 2.1, 1461.7 ± 3.7 Ma, with rims at 1447.2 ± 4.7 Ma; and (5) matrix monazite (in situ)—1464.1 ± 3.6 and 1454.6 ± 9.6 Ma, and matrix xenotime (in situ)—1468.0 ± 8.0 Ma. Two slightly older ages of cores are about 1478 Ma. The young age of rims on the coarse glassy monazite coincides with an Re-Os age of 1440.6 ± 9.2 Ma determined in this study for molybdenite intergrown with quartz and allanite, and with the age of monazite inclusions in apatite from the magnetite ore (Neymark et al., 2016). A 40Ar/39Ar age of 1473 ± 1 Ma was obtained for muscovite from a breccia pipe sample.Geochronology and trace element geochemical data suggest that the granular matrix monazite and xenotime (in polygonal texture), and cores of coarse glassy monazite precipitated from hydrothermal fluids during breccia pipes formation at about 1465 Ma. The second episode of mineral growth at ca. 1443 Ma may be related to faulting and fluid flow that rebrecciated the pipes. The ca. 10-m.y. gap between the ages of host volcanic rocks and breccia pipe monazite and xenotime suggests that breccia pipe mineral formation cannot be related to the felsic magmatism represented by the rhyolitic volcanic rocks, and hence is linked to a different magmatic-hydrothermal system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rush, Jason; Holubnyak, Yevhen; Watney, Willard
This DOE-funded project evaluates the utility of seismic volumetric curvature (VC) for predicting stratal and structural architecture diagnostic of paleokarst reservoirs. Of special interest are applications geared toward carbon capture, utilization, and storage (CCUS). VC has been championed for identifying faults (offset <¼ λ) that cannot be imaged by conventional 3-D seismic attributes such as coherence. The objective of this research was to evaluate VC-techniques for reducing uncertainties in reservoir compartmentalization studies and seal risk assessments especially for saline aquifers. A 2000-ft horizontal lateral was purposefully drilled across VC-imaged lineaments—interpreted to record a fractured and a fault-bounded doline—to physically confirmmore » their presence. The 15-mi² study area is located in southeastern Bemis-Shutts Field, which is situated along the crest of the Central Kansas Uplift (CKU) in Ellis County, Kansas. The uppermost Arbuckle (200+ ft) has extensive paleokarst including collapsed paleocaverns and dolines related to exceedingly prolonged pre-Simpson (Sauk–Tippecanoe) and/or pre-Pennsylvanian subaerial exposure. A lateral borehole was successfully drilled across the full extent (~1100 ft) of a VC-inferred paleokarst doline. Triple combo (GR-neutron/density-resistivity), full-wave sonic, and borehole micro-imager logs were successfully run to TD on drill-pipe. Results from the formation evaluation reveal breccias (e.g., crackle, mosaic, chaotic), fractures, faults, vugs (1-6"), and unaffected host strata consistent with the pre-spud interpretation. Well-rounded pebbles were also observed on the image log. VC-inferred lineaments coincide with 20–80-ft wide intervals of high GR values (100+ API), matrix-rich breccias, and faults. To further demonstrate their utility, VC attributes are integrated into a geocellular modeling workflow: 1) to constrain the structural model; 2) to generate facies probability grids, and; 3) to collocate petrophysical models to separate-vug rock fabrics along solution-enlarged fault and fracture systems. Simulation-based studies demonstrate a potential alternative field development model for developing CO 2 storage sites that target carbonate reservoirs overprinted by paleokarst. Simulation results for this complex reservoir indicate that individual fault blocks could function as discrete containers for CO 2 storage thereby reducing the risk of plume migration outside the legally defined extent of the permitted storage site. Vertically extensive, anastomosing, solution-enlarged fault/fracture systems — infilled by clay-rich sediments — would operate as non-to-low permeability vertical "curtains" that restrict CO 2 movement beyond the confines of the CO 2 storage site. Such a location could be developed in a checker-board fashion with CO 2 injection operations occurring in one block and surveillance operations occurring in the adjacent block. Such naturally partitioned reservoirs may be ideal candidates for reducing risks associated with CO 2 plume breakthrough.« less
Ortiz Martinez, Camila; Pereira Ruiz, Suelen; Carvalho Fenelon, Vanderson; Rodrigues de Morais, Gutierrez; Luciano Baesso, Mauro; Matioli, Graciette
2016-05-01
Agrobacterium sp. IFO 13140 cells were immobilized on a loofa sponge and used to produce curdlan over five successive cycles. The interaction between microbial cells and the loofa sponge as well as the produced curdlan were characterized by Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectrometry. The purity of the curdlan was also evaluated. The storage stability of the immobilized cells was assessed and the produced curdlan was used in a functional yogurt formulation. The average curdlan production by immobilized cells was 17.84 g L(-1) . The presence of the microorganism in the sponge was confirmed and did not cause alterations in the matrix, and the chemical structure of the curdlan was the same as that of commercial curdlan. The purity of both was similar. The immobilized cells remained active after 300 days of storage at -18 °C. The use of the produced curdlan in a functional yogurt resulted in a product with lower syneresis. A large number of cells physically adhered to the surface of loofa sponge fibers, and its use as an immobilization matrix to produce curdlan was effective. The use of the produced curdlan in yogurt allowed the development of a more stable product. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Anirudhan, T S; Nair, Syam S; Nair, Anoop S
2016-11-05
A novel efficient transdermal (TD) lidocaine (LD) delivery device based on chitosan (CS) and hyaluronic acid (HA) was successfully developed in the present investigation. CS was grafted with glycidyl methacrylate (GMA) and butyl methacrylate (BMA) to fabricate a versatile material with improved adhesion and mechanical properties. HA was hydrophobically modified by covalently conjugating 3-(dimethylamino)-1-propylamine (DMPA) to encapsulate poorly water soluble LD and was uniformly dispersed in modified CS matrix. The prepared materials were characterized through FTIR, NMR, XRD, SEM, TEM and tensile assay. The dispersion of amine functionalized HA (AHA) on modified CS matrix offered strong matrix - filler interaction, which improved the mechanical properties and drug retention behavior of the device. In vitro skin permeation study of LD was performed with modified Franz diffusion cell using rat skin and exhibited controlled release. The influence of storage time on release profile was investigated and demonstrated that after the initial burst, LD release profile of the device after 30 and 60days storage was identical to that of a device which was not stored. In vivo skin adhesion test and skin irritation assay in human subjects, water vapor permeability and environmental fitness test was performed to judge its application in biomedical field. All results displayed that the fabricated device is a potential candidate for TD LD administration to the systemic circulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anfora, Gianfranco; Vitagliano, Silvia; Larsson, Mattias C; Witzgall, Peter; Tasin, Marco; Germinara, Giacinto S; De Cristofaro, Antonio
2014-04-01
Phthorimaea operculella is a key pest of potato. The authors characterised the P. operculella olfactory system, selected the most bioactive host plant volatiles and evaluated their potential application in pest management. The electrophysiological responses of olfactory receptor neurons (ORNs) housed in long sensilla trichodea of P. operculella to plant volatiles and the two main sex pheromone components were evaluated by the single-cell recording (SCR) technique. The four most SCR-active volatiles were tested in a laboratory oviposition bioassay and under storage warehouse conditions. The sensitivity of sensilla trichodea to short-chained aldehydes and alcohols and the existence of ORNs tuned to pheromones in females were characterised. Male recordings revealed at least two types of ORN, each of which typically responded to one of the two pheromone components. Hexanal, octanal, nonanal and 1-octen-3-ol significantly disrupted the egg-laying behaviour in a dose-dependent manner. Octanal reduced the P. operculella infestation rate when used under storage conditions. This work provides new information on the perception of plant volatiles and sex pheromones by P. operculella. Laboratory and warehouse experiments show that the use of hexanal, octanal, nonanal and 1-octen-3-ol as host recognition disruptants and/or oviposition deterrents for P. operculella control appears to be a promising strategy. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu
2016-02-01
Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.
Living in the matrix: assembly and control of Vibrio cholerae biofilms
Teschler, Jennifer K.; Zamorano-Sánchez, David; Utada, Andrew S.; Warner, Christopher J. A.; Wong, Gerard C. L.; Linington, Roger G.; Yildiz, Fitnat H.
2015-01-01
Preface Nearly all bacteria form biofilms as a strategy for survival and persistence. Biofilms are associated with biotic and abiotic surfaces and are composed of aggregates of cells that are encased by a self-produced or acquired extracellular matrix. Vibrio cholerae has been studied as a model organism for understanding biofilm formation in environmental pathogens, as it spends much of its life cycle outside of the human host in the aquatic environment. Given the important role of biofilm formation in the V. cholerae life cycle, the molecular mechanisms underlying this process and the signals that trigger biofilm assembly or dispersal have been areas of intense investigation over the past 20 years. In this Review, we discuss V. cholerae surface attachment, various matrix components and the regulatory networks controlling biofilm formation. PMID:25895940
Serve, Anja; Pieler, Michael Martin; Benndorf, Dirk; Rapp, Erdmann; Wolff, Michael Werner; Reichl, Udo
2015-11-03
A method for the purification of influenza virus particles using novel magnetic sulfated cellulose particles is presented and compared to an established centrifugation method for analytics. Therefore, purified influenza A virus particles from adherent and suspension MDCK host cell lines were characterized on the protein level with mass spectrometry to compare the viral and residual host cell proteins. Both methods allowed one to identify all 10 influenza A virus proteins, including low-abundance proteins like the matrix protein 2 and nonstructural protein 1, with a similar impurity level of host cell proteins. Compared to the centrifugation method, use of the novel magnetic sulfated cellulose particles reduced the influenza A virus particle purification time from 3.5 h to 30 min before mass spectrometry analysis.
NASA Astrophysics Data System (ADS)
Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo
2017-07-01
The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and columnar and equiaxial crystallization. According to the obtained results, the formation of the orbicular granitoid of Caldera may have initiated 1) during the generation of a magmatic fracture in the crystallization front of the Relincho pluton, where the water released by the host crystal mush was dissolved in the new batch of dioritic magma. 2) The high influx of water-rich liquids induced superheating conditions in the newly intruding magma that became a depolymerized liquid, where the only solid particules were the small irregular fragments of the host mush dragged from the fracture walls. 3) Volatile exsolution promoted crystallization under undercooling conditions. 4) Undercooling and nucleation around the core (cold germs) involved the physical and geochemical fractionation between two sub-systems: a gabbroic sub-system that comprises the solid paragénesis with a residual water-rich liquid and a granodioritic sub-system. 5) The orbicules, including core and inner shell, behaved as viscous bodies (crystals + residual liquid) floating in the granodioritic magma. 6) Higher undercooling rates occurred at the starting stage, close to the liquidus, promoting columnar crystallization around the cores and formation of the shells. Conversely, in the granodioritic matrix sub-system, equiaxial crystallization was promoted by low relative crystallization rates. 7) The rest of the crystallization process evolved later in the outer shell and the matrix, as suggested by the poikilitic textures observed in both sides of the orbicule contact, and under conditions close to the solidus of both sub-systems (shell and matrix). The water-rich residual liquid expelled during the orbicular shell crystallization was mingled with the partially crystallized matrix magma, generating the pegmatitic domains with large Kfs megacrysts.
Hendler, Netta; Wildeman, Jurjen; Mentovich, Elad D; Schnitzler, Tobias; Belgorodsky, Bogdan; Prusty, Deepak K; Rimmerman, Dolev; Herrmann, Andreas; Richter, Shachar
2014-03-01
Optically active bio-composite blends of conjugated polymers or oligomers are fabricated by complexing them with bovine submaxilliary mucin (BSM) protein. The BSM matrix is exploited to host hydrophobic extended conjugated π-systems and to prevent undesirable aggregation and render such materials water soluble. This method allows tuning the emission color of solutions and films from the basic colors to the technologically challenging white emission. Furthermore, electrically driven light emitting biological devices are prepared and operated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smith, Tracey J; Barrett, Ann; Anderson, Danielle; Wilson, Marques A; Young, Andrew J; Montain, Scott J
2015-05-01
Development of n-3 fortified, shelf-stable foods is facilitated by encapsulated docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), since natural n-3 food sources cannot withstand high temperature and prolonged shelf life. Organoleptic stability of n-3 fortified, shelf-stable foods has been demonstrated, but chemical changes in the food matrix throughout storage could conceivably impact digestibility of the protein-based encapsulant thereby compromising n-3 bioavailability. We assessed the effect of prolonged high-temperature storage and variations in food matrix (proteinaceous or carbohydrate) on the time course and magnitude of blood fatty acids changes associated with ingestion of n-3 fortified foods. Low-protein (i.e., cake) and high-protein (i.e., meat sticks) items were supplemented with 600 mg encapsulated DHA+EPA, and frozen either immediately after production (FRESH) or after 6 months storage at 100°F (STORED). Fourteen volunteers consumed one item per week (randomized) for 4 weeks. Blood samples obtained at baseline, 2, 4, and 6 h post-consumption were analyzed for circulating long-chain omega 3 fatty acids (LCn3). There was no difference in LCn3 area under the curve between items. LCn3 in response to cakes peaked at 2-h (FRESH: 54.0 ± 16.8 μg/mL, +18%; STORED: 53.0 ± 13.2 μg/mL, +20%), while meats peaked at 4-h (FRESH: 51.9 ± 12.5 μg/mL, +22%; STORED: 53.2 ± 16.9 μg/mL, +18%). There were no appreciable differences in time course or magnitude of n-3 appearance in response to storage conditions for either food types. Thus, bioavailability of encapsulated DHA/EPA, within low- and high-protein food items, was not affected by high-temperature shelf-storage. A shelf-stable, low- or high-protein food item with encapsulated DHA/EPA is suitable for use in shelf-stable foods.
Generalized Stability Conditions for an Ultra-Low Energy Electrostatic Charged Particle Storage Ring
NASA Astrophysics Data System (ADS)
Sullivan, Michael
A low energy (~50 eV) electrostatic storage ring has been constructed that can store a recirculating bunch of either electrons or ions. The charged particle bunch 'orbits' within an apparatus consisting of four lenses and two hemispherical deflector analysers, arranged in a 'race-track' configuration of length 64.1 cm. A theoretical study, using transfer matrices from charged particle optics for a 'symmetric' configuration of lens potentials, has been previously completed by Hammond et al. [New J. Phys. 11 (2009) 043033]. That approach was capable of predicting modes of storage which appeared as a resonant-like pattern. An 'asymmetric' configuration, new in this work and extending the previous study to apply to a more general case, has been completed and will be presented alongside experimental results. The level of agreement between the theoretical and experimental results is found to be excellent, and the robustness of the matrix formalism has eliminated the need to rely on computer simulation to achieve storage. This asymmetric arrangement of the lenses allows for greater flexibility in the operation of the ring, creating the potential for a more diverse range of applications and potentially aid in the design of future rings. Several spectra for both electrons and positive ions are presented to provide an indication as to how the charged particle bunch evolves as more orbits are completed. The number of counts inevitably decreases as a function of orbit number due to loss mechanisms. Enhanced measurement techniques, as well as the matrix theory, have made storage of the bunch for over a hundred orbits routine, corresponding to over 65 m travelled, and this is observed directly from the spectra. The application of the storage ring as a multi-pass time-of-flight mass spectrometer has been studied. The isotopes of krypton and xenon have been made to completely separate from one another out of a single pulse of ions. This is observed to occur after ~15 orbits of the ring, roughly 10 m of distance. Initial results have indicated that the mass resolution is approximately 5000. Limitations and potential improvements to the mass resolution are presented.
Acoustic 3D modeling by the method of integral equations
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
Immobilization of Lipase Inhibitor on the Biopolymers from Agaricus bisporus Cell Walls
2017-01-01
Summary One of the methods for curing obesity is the inclusion of some substances with the antilipase activity in the diet and thus reducing the uptake of fat components from food. The aim of this research is to provide a stabilized form of lipase inhibitor by immobilization of enzyme on the biopolymers from Agaricus bisporus cell walls. The phenolic compounds extracted from the rapeseed were considered as the lipase inhibitor. The activity of the inhibitor was considerably reduced in the gastric juice, as well as at temperatures above 37 °C and during its storage, which determined the suitability of the inhibitor for stabilization on the matrix. The effectiveness of the phenolic compound stabilization was investigated by means of immobilization on the biopolymers from Agaricus bisporus cell wall matrix. The biopolymers used were β-glucan, chitin, melanin and proteins. A number of samples, which differed both in the content of the inhibitor (from 1 to 16%) and in the ratio of biopolymers in the matrix composition, was obtained. The conditions of immobilization (temperature, duration of the process) were also varied. The expediency of obtaining the sample with the inhibitor content of 12% and matrix containing 47.9% of glucan, 18.8% of chitin, 18.8% of melanin and 11.1% of proteins was shown. The best immobilization was carried out at 20–25 °C for 30 min. Thermal analysis and infrared spectroscopy data confirmed that immobilization of the lipase inhibitor on the matrix was due to the hydrogen bonds. The immobilized inhibitor had higher pH stability and higher thermal stability than the original one. The remaining activity of the immobilized inhibitor was higher than the original one after incubation in the gastric acid and bile. The immobilized inhibitor was characterized by a low loss of activity after 12 months of storage. PMID:29540987
Vilanova, L; Teixidó, N; Torres, R; Usall, J; Viñas, I
2012-07-16
Fruit ripening is a complex process that involves a variety of biochemical changes and is also associated with increased susceptibility to pathogens. The present study determined the effects of fruit maturity and storage conditions on the infection capacity of a host (P. expansum) and non-host (P. digitatum) pathogen on apple. A range of inoculum concentrations and two different storage temperatures were utilized. Exposure to P. expansum at 20 °C resulted in significant differences in rot dynamics in apples collected at the earliest harvest date compared to all later harvest dates and inoculum concentrations assayed. Greater differences in infection capacity between harvests were obtained when fruit was stored at low temperature (0 °C). In contrast, P. digitatum was able to infect apples only under specific conditions and disease symptoms were limited to the initial wound inoculation site. When apples were resistant to P. digitatum, a visible browning reaction around the infection site was observed. Histochemical analyses of tissues surrounding the wound site were conducted. A positive reaction for lignin was observed in immature apples as early as 1 day after inoculation with either pathogen. Experiments conducted with the non-host pathogen indicated that lignification was an essential component of resistance in apples harvested prior to maturity or at commercial maturity. Apples harvested at an over-mature stage and inoculated with P. digitatum did not show evidence of staining for lignin until 7 days post-inoculation. Control samples only showed positive reaction in immature harvest. Results demonstrated that the maturity stage of fruit is an important factor in apple resistance to both P. expansum and P. digitatum and that lignin accumulation seems to play an important role when resistance is observed. Moreover, this is the first report demonstrating that P. digitatum, a non-host pathogen, has a limited capacity to infect apples. Copyright © 2012 Elsevier B.V. All rights reserved.
The missing link in parasite manipulation of host behaviour.
Herbison, Ryan; Lagrue, Clement; Poulin, Robert
2018-04-03
The observation that certain species of parasite my adaptively manipulate its host behaviour is a fascinating phenomenon. As a result, the recently established field of 'host manipulation' has seen rapid expansion over the past few decades with public and scientific interest steadily increasing. However, progress appears to falter when researchers ask how parasites manipulate behaviour, rather than why. A vast majority of the published literature investigating the mechanistic basis underlying behavioural manipulation fails to connect the establishment of the parasite with the reported physiological changes in its host. This has left researchers unable to empirically distinguish/identify adaptive physiological changes enforced by the parasites from pathological side effects of infection, resulting in scientists relying on narratives to explain results, rather than empirical evidence. By contrasting correlative mechanistic evidence for host manipulation against rare cases of causative evidence and drawing from the advanced understanding of physiological systems from other disciplines it is clear we are often skipping over a crucial step in host-manipulation: the production, potential storage, and release of molecules (manipulation factors) that must create the observed physiological changes in hosts if they are adaptive. Identifying these manipulation factors, via associating gene expression shifts in the parasite with behavioural changes in the host and following their effects will provide researchers with a bottom-up approach to unraveling the mechanisms of behavioural manipulation and by extension behaviour itself.
Koo, H.; Falsetta, M.L.; Klein, M.I.
2013-01-01
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647
The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.
Koo, H; Falsetta, M L; Klein, M I
2013-12-01
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.
Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks
NASA Astrophysics Data System (ADS)
Knowles, Kyler Reser
Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to alter the physical, volumetric, and mechanical properties of the glassy networks. Chain rigidity was found to directly control deformation mechanisms, which were related to the yielding behavior of the epoxy network series. The unique benefit to our approach is the ability to separate the role of rigidity - an intramolecular parameter - from intermolecular phenomena which otherwise influence network properties.
Applicability of the Effective-Medium Approximation to Heterogeneous Aerosol Particles.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li
2016-01-01
The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.
Optimization of super-resolution processing using incomplete image sets in PET imaging.
Chang, Guoping; Pan, Tinsu; Clark, John W; Mawlawi, Osama R
2008-12-01
Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POVs). The number of low-resolution images used defines the processing time and memory storage necessary to generate the SR image. In this paper, the authors propose two optimized SR implementations (ISR-1 and ISR-2) that require only a subset of the low-resolution images (two sides and diagonal of the image matrix, respectively), thereby reducing the overall processing time and memory storage. In an N x N matrix of low-resolution images, ISR-1 would be generated using images from the two sides of the N x N matrix, while ISR-2 would be generated from images across the diagonal of the image matrix. The objective of this paper is to investigate whether the two proposed SR methods can achieve similar performance in contrast and signal-to-noise ratio (SNR) as the SR image generated from a complete set of low-resolution images (CSR) using simulation and experimental studies. A simulation, a point source, and a NEMA/IEC phantom study were conducted for this investigation. In each study, 4 (2 x 2) or 16 (4 x 4) low-resolution images were reconstructed from the same acquired data set while shifting the reconstruction grid to generate images from different POVs. SR processing was then applied in each study to combine all as well as two different subsets of the low-resolution images to generate the CSR, ISR-1, and ISR-2 images, respectively. For reference purpose, a native reconstruction (NR) image using the same matrix size as the three SR images was also generated. The resultant images (CSR, ISR-1, ISR-2, and NR) were then analyzed using visual inspection, line profiles, SNR plots, and background noise spectra. The simulation study showed that the contrast and the SNR difference between the two ISR images and the CSR image were on average 0.4% and 0.3%, respectively. Line profiles of the point source study showed that the three SR images exhibited similar signal amplitudes and FWHM. The NEMA/IEC study showed that the average difference in SNR among the three SR images was 2.1% with respect to one another and they contained similar noise structure. ISR-1 and ISR-2 can be used to replace CSR, thereby reducing the total SR processing time and memory storage while maintaining similar contrast, resolution, SNR, and noise structure.
Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective.
Hübner, Olaf; Himmel, Hans-Jörg
2018-02-19
Metal cluster models are of high relevance for establishing new mechanistic concepts for heterogeneous catalysis. The high reactivity and particular selectivity of metal clusters is caused by the wealth of low-lying electronically excited states that are often thermally populated. Thereby the metal clusters are flexible with regard to their electronic structure and can adjust their states to be appropriate for the reaction with a particular substrate. The matrix isolation technique is ideally suited for studying excited state reactivity. The low matrix temperatures (generally 4-40 K) of the noble gas matrix host guarantee that all clusters are in their electronic ground-state (with only a very few exceptions). Electronically excited states can then be selectively populated and their reactivity probed. Unfortunately, a systematic research in this direction has not been made up to date. The purpose of this review is to provide the grounds for a directed approach to understand cluster reactivity through matrix-isolation studies combined with quantum chemical calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses
NASA Astrophysics Data System (ADS)
Matzke, Hj.; Vernaz, E.
High level nuclear waste from reprocessing of spent nuclear fuel has to be solidified in a stable matrix for safe long-time storage. Vitrification in borosilicate glasses is the technique accepted worldwide as the best combination of engineering constraints from fabrication and physicochemical properties of the matrix. A number of different glasses was developed in different national programs. The criteria and the reasons for selecting the final compositions are described briefly. Emphasis is placed on the French product R7T7 and on thermal and physicochemical properties though glasses developed in other national projects (e.g., the German product GP 98/12, etc.) are also treated. The basic physical and mechanical properties and the chemical durability of the glass in contact with water are described. The basic mechanisms of aqueous corrosion are discussed and the evolving modelling of the leaching process is dealt with, as well as effects of container material, backfill, etc. The thermal behavior has also been studied and extensive data exist on diffusion of glass constituents (Na) and of interesting elements of the waste such as the alkalis Rb and Cs or the actinides U and Pu, as well as on crystallization processes in the glass during storage at elevated temperatures. Emphasis is placed on the radiation stability of the glasses, based on extensive studies using short-lived actinides (e.g., 244Cm) or ion implantation to produce the damage expected during long storage at an accelerated rate. The radiation stability is shown to be very good, if realistic damage conditions are used. The knowledge accumulated in the past years is used to evaluate and predict the long-term evolution of the glass under storage conditions.
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.
2006-01-01
Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-01-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-08-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.
Berry phase in controlled light propagation and storage
NASA Astrophysics Data System (ADS)
Raczyński, Andrzej; Zaremba, Jarosław; Zielińska-Raczyńska, Sylwia
2018-04-01
It is shown that during light storage in an atomic medium in the Λ configuration, with not only the amplitude of the control field but also its phase changing adiabatically, a photon gains a Berry (geometric) phase. In the case of the tripod configuration with two probe fields the Berry phase is replaced by a 2 ×2 matrix. The probe fields are shown to be superpositions of two modes, each of them being characterized not only by its own velocity but also by its own Berry phase. If after light storage photons are released backwards, the contributions of the two modes interfere and the distribution of the outgoing photons can be steered by changing the difference between the Berry phases of the modes, due to the choice of the control field at the storage and release stages. In particular, one can turn a single photon of one of the probe fields into a photon of the other field or essentially modify coherent states of the incoming pulses.
Tan, Phui Yee; Tan, Tai Boon; Chang, Hon Weng; Tey, Beng Ti; Chan, Eng Seng; Lai, Oi Ming; Baharin, Badlishah Sham; Nehdi, Imededdine Arbi; Tan, Chin Ping
2018-02-15
Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reddy, P Vineel; Puri, Rupangi Verma; Khera, Aparna; Tyagi, Anil K
2012-02-01
Iron is one of the crucial elements required for the growth of Mycobacterium tuberculosis. However, excess free iron becomes toxic for the cells because it catalyzes the production of reactive oxygen radicals, leading to oxidative damage. Hence, it is essential for the pathogen to have the ability to store intracellular iron in an iron-rich environment and utilize it under iron depletion. M. tuberculosis has two iron storage proteins, namely BfrA (Rv1876; a bacterioferritin) and BfrB (Rv3841; a ferritin-like protein). However, the demonstration of biological significance requires the disruption of relevant genes and the evaluation of the resulting mutant for its ability to survive in the host and cause disease. In this study, we have disrupted bfrA and bfrB of M. tuberculosis and demonstrated that these genes are crucial for the storage and supply of iron for the growth of bacteria and to withstand oxidative stress in vitro. In addition, the bfrA bfrB double mutant (H37Rv ΔbfrA ΔbfrB) exhibited a marked reduction in its ability to survive inside human macrophages. Guinea pigs infected with H37Rv ΔbfrA ΔbfrB exhibited a marked diminution in the dissemination of the bacilli to spleen compared to that of the parental strain. Moreover, guinea pigs infected with H37Rv ΔbfrA ΔbfrB exhibited significantly reduced pathological damage in spleen and lungs compared to that of animals infected with the parental strain. Our study clearly demonstrates the importance of these iron storage proteins in the survival and pathogenesis of M. tuberculosis in the host and establishes them as attractive targets for the development of new inhibitors against mycobacterial infections.
Cramer, Alisha J.; Cole, Jacqueline M.
2017-05-08
The ever-increasing demands of the modern world continue to place substantial strain on the environment. To help alleviate the damage done to the natural world, the encapsulation of small molecules or ions (guests) into porous inorganic structural frameworks (hosts) provides a potential remedy for some of the environmental concerns facing us today. These concerns include the removal of harmful pollutants from water or air, the safe entrapment of nuclear waste materials, or the purification and storage of small molecules that act as alternative fuel sources. For this study, we review the trends in using inorganic materials as hostmedia for themore » removal or storage of various wastes and alternative fuels. In conclusion, we cover the treatment of water contaminated with dyes or heavy metals, air pollution alleviation via CO 2, SO x, NO x, and volatile organic compound containment, nuclear waste immobilization, and storage for H 2 and methane as alternative fuels.« less
Improved osteochondral allograft preservation using serum-free media at body temperature.
Garrity, Joseph T; Stoker, Aaron M; Sims, Hannah J; Cook, James L
2012-11-01
Osteochondral allografts (OCAs) are currently preserved at 4°C and used within 28 days of donor harvest. The window of opportunity for implantation is limited to 14 days due to a 2-week disease testing protocol. Osteochondral allograft tissues stored at 37°C will have significantly higher chondrocyte viability, as well as superior biochemical and biomechanical properties, than those stored at 4°C. Controlled laboratory study. Osteochondral allografts from 15 adult canine cadavers were aseptically harvested within 4 hours of death. Medial and lateral femoral condyles were stored in Media 1, similar to the current standard, or Media 2, an anti-inflammatory and chondrogenic media containing dexamethasone and transforming growth factor-β3, at 4°C or 37°C for up to 56 days. Chondrocyte viability, glycosaminoglycan (GAG) and collagen (hydroxyproline [HP]) content, biomechanical properties, and collagen II and aggrecan content were assessed at days 28 and 56. Five femoral condyles were stored overnight and assessed the next day to serve as controls. Storage in Media 1 at 37°C maintained chondrocyte viability at significantly higher levels than in any other media-temperature combination and at levels not significantly different from controls. Osteochondral allografts stored in either media at 4°C showed a significant decrease in chondrocyte viability throughout storage. Glycosaminoglycan and HP content were maintained through 56 days of storage in OCAs in Media 1 at 37°C. There were no significant differences in elastic or dynamic moduli among groups at day 56. Qualitative immunohistochemistry demonstrated the presence of collagen II and aggrecan throughout all layers of cartilage. Osteochondral allograft viability, matrix content and composition, and biomechanical properties were maintained at "fresh" levels through 56 days of storage in Media 1 at 37°C. Osteochondral allografts stored at 4°C were unable to maintain viability or matrix integrity through 28 days of storage. These findings suggest that storage of OCAs in a defined media at 37°C is superior to current protocols (4°C) for tissue preservation prior to transplantation. Storage of OCAs in serum-free chemically defined media at 37°C can increase the "window of opportunity" for implantation of optimal tissue from 14 days to 42 days after disease testing clearance.
Garcia-Gonzalez, Eva; Genersch, Elke
2013-11-01
Paenibacillus larvae, the aetiological agent of American foulbrood (AFB) of honey bees, causes a fatal intestinal infection in larvae and invades the haemocoel by breaching the midgut. The peritrophic matrix lining the midgut epithelium in insects constitutes an effective barrier against abrasive food particles, xenobiotics, toxins and pathogens. Pathogens like P. larvae entering the host through the gut first need to overcome this barrier. To better understand AFB pathogenesis, we analysed the fate of the peritrophic matrix in honey bee larvae during P. larvae infection. Using histochemical techniques, we first established that chitin is a major component of the honey bee larval peritrophic matrix. Rearing larvae on a diet containing a fluorochrome blocking formation of the peritrophic matrix or a bacterial endochitinase revealed that a fully formed peritrophic matrix is essential for larval survival. Larvae infected by P. larvae showed total degradation of the peritrophic matrix enabling the bacteria to directly attack the epithelial cells. Carbon source utilization tests confirmed that P. larvae is able to metabolize colloidal chitin. We propose that P. larvae degrades the peritrophic matrix to allow direct access of the bacteria or of bacterial toxins to the epithelium to prepare the breakthrough of the epithelial layer. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Bartonella entry mechanisms into mammalian host cells.
Eicher, Simone C; Dehio, Christoph
2012-08-01
The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.
A comparison of two methods of eluting insect DNA from Flinders Technology Associates Cards
USDA-ARS?s Scientific Manuscript database
Flinders Technology Associates (FTA) technology lyses cells and stabilizes DNA for room-temperature storage in a single step but it has been infrequently used with arthropods. One possible reason is the paucity of quick and inexpensive protocols to subsequently elute the DNA from the card matrix. Th...
Alginate encapsulation of Begonia microshoots for short-term storage and distribution
USDA-ARS?s Scientific Manuscript database
Synthetic seeds were formed from in vitro grown Begonia cultivars (Sweetheart Mix and BabyWing White) shoot tips using 3% sodium alginate in Murashige and Skoog medium (MS) salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by releasin...
Optimization of a Strontium Aluminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bone, Alexandria N.
2017-08-01
Strontium aluminate with Eu 2+ and Dy 3+ has been at the forefront of emerging applications for storage phosphors since its discovery in 1996. In this study, the emission intensity and luminescence lifetime of SrAl 2O 4: Eu 2+, Dy 3+ were enhanced by partial substitution of Ca 2+ into Sr 2+ sites in the matrix.
Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect
Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...
2015-03-09
Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires-orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm 3 that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This research provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less
Barr, Dana B.; Wang, Richard Y.; Needham, Larry L.
2005-01-01
Biomonitoring of exposure is a useful tool for assessing environmental exposures. The matrices available for analyses include blood, urine, breast milk, adipose tissue, and saliva, among others. The sampling can be staged to represent the particular time period of concern: preconceptionally from both parents, from a pregnant woman during each of the three trimesters, during and immediately after childbirth, from the mother postnatally, and from the child as it develops to 21 years of age. The appropriate sample for biomonitoring will depend upon matrix availability, the time period of concern for a particular exposure or health effect, and the different classes of environmental chemicals to be monitored. This article describes the matrices available for biomonitoring during the life stages being evaluated in the National Children’s Study; the best biologic matrices for exposure assessment for each individual chemical class, including consideration of alternative matrices; the analytical methods used for analysis, including quality control procedures and less costly alternatives; the costs of analysis; optimal storage conditions; and chemical and matrix stability during long-term storage. PMID:16079083
De Gregorio, Gian Luca; Agosta, Rita; Giannuzzi, Roberto; Martina, Francesca; De Marco, Luisa; Manca, Michele; Gigli, Giuseppe
2012-03-25
Four different species of ionically conductive polymers were synthesized and successfully implemented to formulate novel quasi-solid electrolytes for dye solar cells. A power conversion efficiency superior to 85% of the correspondent liquid electrolyte as well as an excellent cell's stability was demonstrated after 500 days of storage.
research focused on developing and understanding the atomic layer deposition of atomically thin Pt-group metal systems, such as Ru, Pt, and Pd. Her first postdoctoral research at the Colorado School of Mines NREL where her main area of research is synthesizing and testing novel host materials for H2 storage
NASA Astrophysics Data System (ADS)
Tian, Zhiwei; Wang, Junye
2018-02-01
Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.
Electromagnetic scattering calculations on the Intel Touchstone Delta
NASA Technical Reports Server (NTRS)
Cwik, Tom; Patterson, Jean; Scott, David
1992-01-01
During the first year's operation of the Intel Touchstone Delta system, software which solves the electric field integral equations for fields scattered from arbitrarily shaped objects has been transferred to the Delta. To fully realize the Delta's resources, an out-of-core dense matrix solution algorithm that utilizes some or all of the 90 Gbyte of concurrent file system (CFS) has been used. The largest calculation completed to date computes the fields scattered from a perfectly conducting sphere modeled by 48,672 unknown functions, resulting in a complex valued dense matrix needing 37.9 Gbyte of storage. The out-of-core LU matrix factorization algorithm was executed in 8.25 h at a rate of 10.35 Gflops. Total time to complete the calculation was 19.7 h-the additional time was used to compute the 48,672 x 48,672 matrix entries, solve the system for a given excitation, and compute observable quantities. The calculation was performed in 64-b precision.
Ionic cross-linked polyether and silica gel mixed matrix membranes for CO 2 separation from flue gas
Sekizkardes, Ali K.; Zhou, Xu; Nulwala, Hunaid B.; ...
2017-09-22
Mixed matrix membranes (MMMs) were prepared by incorporating 10 wt%, 20 wt% and 30 wt% silica gel filler particles into novel ionic cross-linked polyether (IXPE) polymers. Porous silica gel has the advantage of high surface area that can increase the free volume and permeability in a polymer film while also being commercially available and low cost. The MMMs featured high chemical and thermal stability as well as a modest improvement in storage modulus. These features are due to the excellent interfacial interaction between silica gel filler particles and the polymer matrix. Increasing the loading of silica gel particles in MMMsmore » resulted in higher permeability up to 120 Barrer for CO 2, which is about 40% higher than the neat polymer matrix. Finally, most importantly, the MMMs maintained a very high CO 2/N 2 selectivity performance of around 41 for all particle loadings that were tested.« less
A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction
Kumar, B.; Huang, C. -H.; Sadayappan, P.; ...
1995-01-01
In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required working storagemore » of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less
Schmidt-Ullrich, R.; Wallach, D. F. H.; Lightholder, J.
1979-01-01
In order to characterize parasite-induced host cell membrane antigens, the plasma membranes of Plasmodium knowlesi-infected rhesus erythrocytes have been compared with those of normal red cells and purified schizonts by immunochemical and biochemical techniques. Host cell membranes and schizonts were separated by differential centrifugation following nitrogen decompression. Isolated schizonts were further fractionated into several subcellular compartments. Crossed-immune electrophoresis, against monkey anti-schizont serum, of Triton X-100-solubilized material identified 7 P. knowlesi-specific antigens, of which 4 could be detected only in the host cell membranes. These membranes also contained 3 proteins, with relative molecular masses of 55 000, 65 000 and 90 000 and isoelectric points at pH 4.5, 4.5 and 5.2, respectively, which are lacking in normal membranes. Pulse-chase experiments with (14C)-glucosamine showed that these parasite-induced host cell membrane components are glycoproteins. ImagesFig. 1Fig. 2 PMID:120762
NASA Technical Reports Server (NTRS)
Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don
1998-01-01
Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.
Storage for greater-than-Class C low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beitel, G.A.
1991-12-31
EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less
NASA Astrophysics Data System (ADS)
Rousell, Don H.; Fedorowich, John S.; Dressler, Burkhard O.
2003-02-01
The Sudbury Structure, formed by meteorite impact at 1850 Ma, consists of three major components: (1) the Sudbury Basin; (2) the Sudbury Igneous Complex, which surrounds the basin as an elliptical collar; and (3) breccia bodies in the footwall known as Sudbury Breccia. In general, the breccia consists of subrounded fragments set in a dark, fine-grained to aphanitic matrix. A comparison of the chemical composition of host rocks, clasts and matrices indicates that brecciation was essentially an in-situ process. Sudbury Breccia forms irregular-shaped bodies or dikes that range in size from mm to km scale. Contacts with the host rocks are commonly sharp. The aspect ratio of most clasts is approximately 2 with the long axes parallel to dike walls. The fractal dimension (Dr)=1.55. Although there appears to be some concentration of brecciation within concentric zones, small Sudbury Breccia bodies within and outside these zones have more or less random strikes and steep dips. Sudbury Breccia bodies near an embayment structure tend to be subparallel to the base of the Sudbury Igneous Complex. Sudbury Breccia occurs as much as 80 km from the outer margin of the Sudbury Igneous Complex. In an inner zone, 5 to 15 km wide, breccia comprises 5% of exposed bedrock with an increase in brecciation intensity in embayment structures. Sudbury Breccia may be classified into three types based on the nature of the matrix: clastic, pseudotachylite and microcrystalline. Clastic Sudbury Breccia, the dominant type in the Southern Province, is characterized by flow-surface structures. Possibly, a sudden rise in pore pressure caused explosive dilation and fragmentation, followed by fluidization and flowage into extension fractures. Pseudotachylite Sudbury Breccia, mainly confined to Archean rocks, apparently formed by comminution and frictional melting. Microcrystalline Sudbury Breccia formed as a result of the thermal metamorphism, of the North Range footwall, by the Sudbury Igneous Complex. This produced a zone, approximately 1.2 km wide, wherein the matrix of the breccia either recrystallized or, locally, melted. An overprint of regional metamorphism obliterated contact effects in the South Range footwall. The Ni-Cu-PGE magmatic sulphide deposits may be classified into four types based on structural setting: Sudbury Igneous Complex-footwall contact, footwall, offset, and sheared deposits. Sudbury Breccia is the main host for footwall deposits (e.g., McCreedy East, Victor, Lindsley). Sudbury Breccia locally hosts mineralization in radial (e.g., Parkin and Copper Cliff) and concentric (e.g., Frood-Stobie) offset dikes.
Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity.
Lei, Wen; Xiao, Weiping; Li, Jingde; Li, Gaoran; Wu, Zexing; Xuan, Cuijuan; Luo, Dan; Deng, Ya-Ping; Wang, Deli; Chen, Zhongwei
2017-08-30
Inspired by the excellent absorption capability of spongelike bacterial cellulose (BC), three-dimensional hierarchical porous carbon fibers doped with an ultrahigh content of N (21.2 atom %) (i.e., nitrogen-doped carbon fibers, NDCFs) were synthesized by an adsorption-swelling strategy using BC as the carbonaceous material. When used as anode materials for sodium-ion batteries, the NDCFs deliver a high reversible capacity of 86.2 mAh g -1 even after 2000 cycles at a high current density of 10.0 A g -1 . It is proposed that the excellent Na + storage performance is mainly due to the defective surface of the NDCFs created by the high content of N dopant. Density functional theory (DFT) calculations show that the defect sites created by N doping can strongly "host" Na + and therefore contribute to the enhanced storage capacity.
The Dielectric Permittivity of Crystals in the Reduced Hartree-Fock Approximation
NASA Astrophysics Data System (ADS)
Cancès, Éric; Lewin, Mathieu
2010-07-01
In a recent article (Cancès et al. in Commun Math Phys 281:129-177, 2008), we have rigorously derived, by means of bulk limit arguments, a new variational model to describe the electronic ground state of insulating or semiconducting crystals in the presence of local defects. In this so-called reduced Hartree-Fock model, the ground state electronic density matrix is decomposed as {γ = γ^0_per + Q_{ν,\\varepsilon_F}}, where {γ^0_per} is the ground state density matrix of the host crystal and {Q_{ν,\\varepsilon_F}} the modification of the electronic density matrix generated by a modification ν of the nuclear charge of the host crystal, the Fermi level ɛ F being kept fixed. The purpose of the present article is twofold. First, we study in more detail the mathematical properties of the density matrix {Q_{ν,\\varepsilon_F}} (which is known to be a self-adjoint Hilbert-Schmidt operator on {L^2(mathbb{R}^3)}). We show in particular that if {int_{mathbb{R}^3} ν neq 0, Q_{ν,\\varepsilon_F}} is not trace-class. Moreover, the associated density of charge is not in {L^1(mathbb{R}^3)} if the crystal exhibits anisotropic dielectric properties. These results are obtained by analyzing, for a small defect ν, the linear and nonlinear terms of the resolvent expansion of {Q_{ν,\\varepsilon_F}}. Second, we show that, after an appropriate rescaling, the potential generated by the microscopic total charge (nuclear plus electronic contributions) of the crystal in the presence of the defect converges to a homogenized electrostatic potential solution to a Poisson equation involving the macroscopic dielectric permittivity of the crystal. This provides an alternative (and rigorous) derivation of the Adler-Wiser formula.
Romano, Julia D.
2017-01-01
Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite’s capability in scavenging neutral lipids from host LD. PMID:28570716
Evaluation of a solid matrix for collection and ambient storage of RNA from whole blood
2014-01-01
Background Whole blood gene expression-based molecular diagnostic tests are becoming increasingly available. Conventional tube-based methods for obtaining RNA from whole blood can be limited by phlebotomy, volume requirements, and RNA stability during transport and storage. A dried blood spot matrix for collecting high-quality RNA, called RNA Stabilizing Matrix (RSM), was evaluated against PAXgene® blood collection tubes. Methods Whole blood was collected from 25 individuals and subjected to 3 sample storage conditions: 18 hours at either room temperature (baseline arm) or 37°C, and 6 days at room temperature. RNA was extracted and assessed for integrity by Agilent Bioanalyzer, and gene expression was compared by RT-qPCR across 23 mRNAs comprising a clinical test for obstructive coronary artery disease. Results RSM produced RNA of relatively high integrity across the various tested conditions (mean RIN ± 95% CI: baseline arm, 6.92 ± 0.24; 37°C arm, 5.98 ± 0.48; 6-day arm, 6.72 ± 0.23). PAXgene samples showed comparable RNA integrity in both baseline and 37°C arms (8.42 ± 0.17; 7.92 ± 0.1 respectively) however significant degradation was observed in the 6-day arm (3.19 ± 1.32). Gene expression scores on RSM were highly correlated between the baseline and 37°C and 6-day study arms (median r = 0.96, 0.95 respectively), as was the correlation to PAXgene tubes (median r = 0.95, p < 0.001). Conclusion RNA obtained from RSM shows little degradation and comparable RT-qPCR performance to PAXgene RNA for the 23 genes analyzed. Further development of this technology may provide a convenient method for collecting, shipping, and storing RNA for gene expression assays. PMID:24855452
Development of advanced polymer nanocomposite capacitors
NASA Astrophysics Data System (ADS)
Mendoza, Miguel
The current development of modern electronics has driven the need for new series of energy storage devices with higher energy density and faster charge/discharge rate. Batteries and capacitors are two of the most widely used energy storage devices. Compared with batteries, capacitors have higher power density and significant higher charge/discharge rate. Therefore, high energy density capacitors play a significant role in modern electronic devices, power applications, space flight technologies, hybrid electric vehicles, portable defibrillators, and pulse power applications. Dielectric film capacitors represent an exceptional alternative for developing high energy density capacitors due to their high dielectric constants, outstanding breakdown voltages, and flexibility. The implementation of high aspect ratio dielectric inclusions such as nanowires into polymer capacitors could lead to further enhancement of its energy density. Therefore, this research effort is focused on the development of a new series of dielectric capacitors composed of nanowire reinforced polymer matrix composites. This concept of nanocomposite capacitors combines the extraordinary physical and chemical properties of the one-dimension (1D) nanoceramics and high dielectric strength of polymer matrices, leading to a capacitor with improved dielectric properties and energy density. Lead-free sodium niobate (NaNbO3) and lead-containing lead magnesium niobate-lead titanate (0.65PMN-0.35PT) nanowires were synthesized following hydrothermal and sol-gel approaches, respectively. The as-prepared nanowires were mixed with a polyvinylidene fluoride (PVDF) matrix using solution-casting method for nanocomposites fabrication. The dielectric constants and breakdown voltages of the NaNbO3/PVDF and 0.65PMN-0.35PT/PVDF nanocomposites were measured under different frequency ranges and temperatures in order to determine their maximum energy (J/cm3) and specific (J/g) densities. The electrical properties of the synthesized nanoceramics were compared with commercially available barium titanate (BaTiO3) and lead zirconate titanate Pb(ZrxTi1-x)O3 powders embedded into a PVDF matrix. The resulting dielectric film capacitors represent an excellent alternative energy storage device for future high energy density applications.
A minimal SATA III Host Controller based on FPGA
NASA Astrophysics Data System (ADS)
Liu, Hailiang
2018-03-01
SATA (Serial Advanced Technology Attachment) is an advanced serial bus which has a outstanding performance in transmitting high speed real-time data applied in Personal Computers, Financial Industry, astronautics and aeronautics, etc. In this express, a minimal SATA III Host Controller based on Xilinx Kintex 7 serial FPGA is designed and implemented. Compared to the state-of-art, registers utilization are reduced 25.3% and LUTs utilization are reduced 65.9%. According to the experimental results, the controller works precisely and steady with the reading bandwidth of up to 536 MB per second and the writing bandwidth of up to 512 MB per second, both of which are close to the maximum bandwidth of the SSD(Solid State Disk) device. The host controller is very suitable for high speed data transmission and mass data storage.
Kolusheva, S; Yossef, R; Kugel, A; Katz, M; Volinsky, R; Welt, M; Hadad, U; Drory, V; Kliger, M; Rubin, E; Porgador, A; Jelinek, R
2012-07-17
We demonstrate a novel array-based diagnostic platform comprising lipid/polydiacetylene (PDA) vesicles embedded within a transparent silica-gel matrix. The diagnostic scheme is based upon the unique chromatic properties of PDA, which undergoes blue-red transformations induced by interactions with amphiphilic or membrane-active analytes. We show that constructing a gel matrix array hosting PDA vesicles with different lipid compositions and applying to blood plasma obtained from healthy individuals and from patients suffering from disease, respectively, allow distinguishing among the disease conditions through application of a simple machine-learning algorithm, using the colorimetric response of the lipid/PDA/gel matrix as the input. Importantly, the new colorimetric diagnostic approach does not require a priori knowledge on the exact metabolite compositions of the blood plasma, since the concept relies only on identifying statistically significant changes in overall disease-induced chromatic response. The chromatic lipid/PDA/gel array-based "fingerprinting" concept is generic, easy to apply, and could be implemented for varied diagnostic and screening applications.
Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep
2010-04-25
Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNAmore » Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.« less
The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?
Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka
2013-03-01
Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics.
The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?
Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka
2013-01-01
Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics. PMID:23946727
Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae
2011-01-01
Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail. PMID:21489243
Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction.
Skalski, Joseph H; Kottom, Theodore J; Limper, Andrew H
2015-09-01
Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.
2017-12-01
Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.
USDA-ARS?s Scientific Manuscript database
The structure and composition of the oocyst wall are primary factors determining the survival of Cryptosporidium parvum oocysts outside the host. An external polymer matrix (glycocalyx) may mediate interactions with environmental surfaces and, thus, affect the transport of oocysts in water, soil, an...
Terai, Shuji; Tsuchiya, Atsunori
2017-02-01
The treatment of liver cirrhosis is currently being standardized and developed specifically to reduce activation of hepatic stellate cells (HSCs), inhibit fibrosis, increase degradation of matrix components, and reduce activated myofibroblasts. Cell therapy can be applied in the treatment of liver cirrhosis; however, the characteristic features of this therapy differ from those of other treatments because of the involvement of a living body origin and production of multiple cytokines, chemokines, matrix metalloproteinases (MMPs), and growth factors. Thus, cell therapies can potentially have multiple effects on the damaged liver, including alleviating liver cirrhosis and stimulating liver regeneration with affecting the host cells. Cell therapies initially involved autologous bone marrow cell infusion, and have recently developed to include the use of specific cells such as mesenchymal stem cells and macrophages. The associated molecular mechanisms, routes of administration, possibility of allogeneic cell therapy, and host conditions appropriate for cell therapies are now being extensively analyzed. In this review, we summarize the status and future prospects of cell therapy for liver cirrhosis.
Noniterative MAP reconstruction using sparse matrix representations.
Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J
2009-09-01
We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.
Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.
Yuan, C L; Lee, P S
2008-09-03
A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.
Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage †
Barber, Peter; Balasubramanian, Shiva; Anguchamy, Yogesh; Gong, Shushan; Wibowo, Arief; Gao, Hongsheng; Ploehn, Harry J.; zur Loye, Hans-Conrad
2009-01-01
This review summarizes the current state of polymer composites used as dielectric materials for energy storage. The particular focus is on materials: polymers serving as the matrix, inorganic fillers used to increase the effective dielectric constant, and various recent investigations of functionalization of metal oxide fillers to improve compatibility with polymers. We review the recent literature focused on the dielectric characterization of composites, specifically the measurement of dielectric permittivity and breakdown field strength. Special attention is given to the analysis of the energy density of polymer composite materials and how the functionalization of the inorganic filler affects the energy density of polymer composite dielectric materials.
Development of programs for computing characteristics of ultraviolet radiation
NASA Technical Reports Server (NTRS)
Dave, J. V.
1972-01-01
Efficient programs were developed for computing all four characteristics of the radiation scattered by a plane-parallel, turbid, terrestrial atmospheric model. They were developed (FORTRAN 4) and tested on the IBM /360 computers with 2314 direct access storage facility. The storage requirement varies between 200K and 750K bytes depending upon the task. The scattering phase matrix (or function) is expanded in a Fourier series whose number of terms depend upon the zenith angles of the incident and scattered radiations, as well as on the nature of aerosols. A Gauss-Seidel procedure is used for obtaining the numerical solution of the transfer equation.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
Housel, Lisa M.; Wang, Lei; Abraham, Alyson; ...
2018-02-19
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Housel, Lisa M.; Wang, Lei; Abraham, Alyson
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
The effects of frozen tissue storage conditions on the integrity of RNA and protein.
Auer, H; Mobley, J A; Ayers, L W; Bowen, J; Chuaqui, R F; Johnson, L A; Livolsi, V A; Lubensky, I A; McGarvey, D; Monovich, L C; Moskaluk, C A; Rumpel, C A; Sexton, K C; Washington, M K; Wiles, K R; Grizzle, W E; Ramirez, N C
2014-10-01
Unfixed tissue specimens most frequently are stored for long term research uses at either -80° C or in vapor phase liquid nitrogen (VPLN). There is little information concerning the effects such long term storage on tissue RNA or protein available for extraction. Aliquots of 49 specimens were stored for 5-12 years at -80° C or in VPLN. Twelve additional paired specimens were stored for 1 year under identical conditions. RNA was isolated from all tissues and assessed for RNA yield, total RNA integrity and mRNA integrity. Protein stability was analyzed by surface-enhanced or matrix-assisted laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS, MALDI-TOF-MS) and nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). RNA yield and total RNA integrity showed significantly better results for -80° C storage compared to VPLN storage; the transcripts that were preferentially degraded during VPLN storage were these involved in antigen presentation and processing. No consistent differences were found in the SELDI-TOF-MS, MALDI-TOF-MS or nLC-ESI-MS/MS analyses of specimens stored for more than 8 years at -80° C compared to those stored in VPLN. Long term storage of human research tissues at -80° C provides at least the same quality of RNA and protein as storage in VPLN.
NASA Technical Reports Server (NTRS)
1973-01-01
The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.
NASA Astrophysics Data System (ADS)
Tokumitsu, Seika; Murakami, Yukon; Oda, Hisaya; Kawabe, Yutaka
2018-01-01
Trivalent cerium is an important luminescent center giving light emission in short wavelength region depending on host materials. Sol-gel formed silica glass is an ideal matrix due to its high transparency, robustness, and low-temperature processability, but the emission from cerium in silica matrix is often mixed up with that from defects in the matrix, making it difficult to obtain well-determined characteristics. Bright emission from Ce ions peaking at about 400 nm was observed in sol-gel silica glasses synthesized with aluminum co-dopant. From luminescence decay time, the origin was confirmed to be d-f transition in trivalent Ce. From dependence of emission characteristics and UV absorbance on aluminum concentration, it was found that the co-dopant plays an important role to convert the optically inactive tetravalent ions to emissive trivalent state.
Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai
2017-03-01
Rapid evolution of energy storage devices expedites the development of high-energy-density materials with excellent flexibility and easy processing. The search for such materials has triggered the development of high-dielectric-constant (high-k) polymer nanocomposites. However, the enhancement of k usually suffers from sharp reduction of breakdown strength, which is detrimental to substantial increase of energy storage capability. Herein, the combination of bio-inspired fluoro-polydopamine functionalized BaTiO 3 nanowires (NWs) and a fluoropolymer matrix offers a new thought to prepare polymer nanocomposites. The elaborate functionalization of BaTiO 3 NWs with fluoro-polydopamine has guaranteed both the increase of k and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. The nanocomposite with 5 vol % functionalized BaTiO 3 NWs discharges an ultrahigh energy density of 12.87 J cm -3 at a relatively low electric field of 480 MV m -1 , more than three and a half times that of biaxial-oriented polypropylene (BOPP, 3.56 J cm -3 at 600 MV m -1 ). This superior energy storage capability seems to rival or exceed some reported advanced nanoceramics-based materials at 500 MV m -1 . This new strategy permits insights into the construction of polymer nanocomposites with high energy storage capability.
Gu, Xin; Mildner, David F. R.; Cole, David R.; ...
2016-04-28
Pores within organic matter (OM) are a significant contributor to the total pore system in gas shales. These pores contribute most of the storage capacity in gas shales. Here we present a novel approach to characterize the OM pore structure (including the porosity, specific surface area, pore size distribution, and water accessibility) in Marcellus shale. By using ultrasmall and small-angle neutron scattering, and by exploiting the contrast matching of the shale matrix with suitable mixtures of deuterated and protonated water, both total and water-accessible porosity were measured on centimeter-sized samples from two boreholes from the nanometer to micrometer scale withmore » good statistical coverage. Samples were also measured after combustion at 450 °C. Analysis of scattering data from these procedures allowed quantification of OM porosity and water accessibility. OM hosts 24–47% of the total porosity for both organic-rich and -poor samples. This porosity occupies as much as 29% of the OM volume. In contrast to the current paradigm in the literature that OM porosity is organophilic and therefore not likely to contain water, our results demonstrate that OM pores with widths >20 nm exhibit the characteristics of water accessibility. In conclusion, our approach reveals the complex structure and wetting behavior of the OM porosity at scales that are hard to interrogate using other techniques.« less
Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J
2017-01-01
Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xin; Mildner, David F. R.; Cole, David R.
Pores within organic matter (OM) are a significant contributor to the total pore system in gas shales. These pores contribute most of the storage capacity in gas shales. Here we present a novel approach to characterize the OM pore structure (including the porosity, specific surface area, pore size distribution, and water accessibility) in Marcellus shale. By using ultrasmall and small-angle neutron scattering, and by exploiting the contrast matching of the shale matrix with suitable mixtures of deuterated and protonated water, both total and water-accessible porosity were measured on centimeter-sized samples from two boreholes from the nanometer to micrometer scale withmore » good statistical coverage. Samples were also measured after combustion at 450 °C. Analysis of scattering data from these procedures allowed quantification of OM porosity and water accessibility. OM hosts 24–47% of the total porosity for both organic-rich and -poor samples. This porosity occupies as much as 29% of the OM volume. In contrast to the current paradigm in the literature that OM porosity is organophilic and therefore not likely to contain water, our results demonstrate that OM pores with widths >20 nm exhibit the characteristics of water accessibility. In conclusion, our approach reveals the complex structure and wetting behavior of the OM porosity at scales that are hard to interrogate using other techniques.« less
Dervisevic, Muamer; Custiuc, Esma; Çevik, Emre; Şenel, Mehmet
2015-08-15
A novel nanocomposite host matrix for enzyme immobilization of xanthine oxidase was developed by incorporating MWCNT in poly(GMA-co-VFc) copolymer film. In the food industry fish is a product with a very low commercial life, and a high variability as well elevated level of xanthine is an important biomarker as a sign of spoilage. The fabricated process was characterized by scanning electron microscopy (SEM), and the electrochemical behaviors of the biosensor were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared enzyme electrodes exhibited maximum response at pH 7.0 and 45°C +0.35 V and reached 95% of steady-state current in about ∼ 4 s and its sensitivity was 16 mAM(-1). Linear ranges (2-28 μM, 28-46 and 46-86 μM), analytical performance and a low detection limit 0.12 μM obtained from the xanthine biosensor gives reliable results in measuring xanthine concentration in the fish meat. All the results indicating that the resulting biosensor exhibited a good response to xanthine that was related to the addition of MWCNT in the polymeric mediator film which played an important role in the biosensor performance. In addition, the biosensor exhibited high good storage stability and satisfactory anti-interference ability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparative Proteomic Insights into the Lactate Responses of Halophilic Salinicoccus roseus W12
Wang, Hongyan; Wang, Limin; Yang, Han; Cai, Yumeng; Sun, Lifan; Xue, Yanfen; Yu, Bo; Ma, Yanhe
2015-01-01
Extremophiles use adaptive mechanisms to survive in extreme environments, which is of great importance for several biotechnological applications. A halophilic strain, Salinicoccus roseus W12, was isolated from salt lake in Inner Mongolia, China in this study. The ability of the strain to survive under high sodium conditions (including 20% sodium lactate or 25% sodium chloride, [w/v]) made it an ideal host to screen for key factors related to sodium lactate resistance. The proteomic responses to lactate were studied using W12 cells cultivated with or without lactate stress. A total of 1,656 protein spots in sodium lactate-treated culture and 1,843 spots in NaCl-treated culture were detected by 2-dimensional gel electrophoresis, and 32 of 120 significantly altered protein spots (fold change > 2, p < 0.05) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Among 21 successfully identified spots, 19 proteins were upregulated and 2 were downregulated. The identified proteins are mainly involved in metabolism, cellular processes and signaling, and information storage and processing. Transcription studies confirmed that most of the encoding genes were upregulated after the cells were exposed to lactate in 10 min. Cross-protecting and energy metabolism-related proteins played an important role in lactate tolerance for S. roseus W12. PMID:26358621
Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40.
Wijesinghe, Kaveesha J; Stahelin, Robert V
2015-12-30
Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D.
2013-01-01
American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis. PMID:23762370
NASA Astrophysics Data System (ADS)
Rahman, Md. Wasikur
2017-06-01
The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.
NASA Astrophysics Data System (ADS)
Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.
2017-12-01
Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.
NASA Astrophysics Data System (ADS)
Ballard, S.; Hipp, J. R.; Encarnacao, A.; Young, C. J.; Begnaud, M. L.; Phillips, W. S.
2012-12-01
Seismic event locations can be made more accurate and precise by computing predictions of seismic travel time through high fidelity 3D models of the wave speed in the Earth's interior. Given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from SALSA3D, our global, seamless 3D tomographic P-velocity model. Typical global 3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S; Hoffman, J; McNitt-Gray, M
Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
Yang, C L; Wei, H Y; Adler, A; Soleimani, M
2013-06-01
Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results.
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
NASA Astrophysics Data System (ADS)
Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir
2016-06-01
Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
Emergency Destruction of Information Storing Media. Appendix 1. Analysis Matrix
1987-12-01
DM0F (Tow. Mm~k DW) -7 PAME COunT 7he MDA Report was prepared 1w lbs Cmrnimr Specs md Naval VUrfee Sytem Coinmd sad t&e NOSomi CMPW Seemby Come. It...destruction. B-6 - I I Destruct Method: METANICALM ATION, abm e achion Storage Medium: Magnetic, Recording, Tape, Carridps (Cassettes Wafers
Local interconnection neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jiajun; Zhang Li; Yan Dapen
1993-06-01
The idea of a local interconnection neural network (LINN) is presentd and compared with the globally interconnected Hopfield model. Under the storage limit requirement, LINN is shown to offer the same associative memory capability as the global interconnection neural network while having a much smaller interconnection matrix. LINN can be readily implemented optically using the currently available spatial light modulators. 15 refs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter
2016-07-26
This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less
Effects of Extended Freezer Storage on the Integrity of Human Milk.
Ahrabi, Ali Faraghi; Handa, Deepali; Codipilly, Champa N; Shah, Syed; Williams, Janet E; McGuire, Mark A; Potak, Debra; Aharon, Grace Golda; Schanler, Richard J
2016-10-01
To examine the integrity (pH, bacterial counts, host defense factors, nutrient contents, and osmolality) of freshly expressed and previously refrigerated human milk subjected to long-term freezer storage. Mothers donated 100 mL of freshly expressed milk. Samples were divided into baseline, storage at -20°C (fresh frozen) for 1, 3, 6, and 9 months, and prior storage at +4°C for 72 hours (refrigerated frozen) before storage at -20°C for 1 to 9 months. Samples were analyzed for pH, total bacterial colony count, gram-positive and gram-negative colony counts, and concentrations of total protein, fat, nonesterified fatty acids, lactoferrin, secretory IgA, and osmolality. Milk pH, total bacterial colony count, and Gram-positive colony counts decreased significantly with freezer storage (P < .001); bacterial counts decreased most rapidly in the refrigerated frozen group. The gram-negative colony count decreased significantly over time (P < .001). Nonesterified fatty acid concentrations increased significantly with time in storage (P < .001). Freezing for up to 9 months did not affect total protein, fat, lactoferrin, secretory IgA, or osmolality in either group. Freezer storage of human milk for 9 months at -20°C is associated with decreasing pH and bacterial counts, but preservation of key macronutrients and immunoactive components, with or without prior refrigeration for 72 hours. These data support current guidelines for freezer storage of human milk for up to 9 months for both freshly expressed and refrigerated milk. Copyright © 2016 Elsevier Inc. All rights reserved.
Carroll, Ian M; Ringel-Kulka, Tamar; Siddle, Jennica P; Klaenhammer, Todd R; Ringel, Yehuda
2012-01-01
The handling and treatment of biological samples is critical when characterizing the composition of the intestinal microbiota between different ecological niches or diseases. Specifically, exposure of fecal samples to room temperature or long term storage in deep freezing conditions may alter the composition of the microbiota. Thus, we stored fecal samples at room temperature and monitored the stability of the microbiota over twenty four hours. We also investigated the stability of the microbiota in fecal samples during a six month storage period at -80°C. As the stability of the fecal microbiota may be affected by intestinal disease, we analyzed two healthy controls and two patients with irritable bowel syndrome (IBS). We used high-throughput pyrosequencing of the 16S rRNA gene to characterize the microbiota in fecal samples stored at room temperature or -80°C at six and seven time points, respectively. The composition of microbial communities in IBS patients and healthy controls were determined and compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. The composition of the microbiota in fecal samples stored for different lengths of time at room temperature or -80°C clustered strongly based on the host each sample originated from. Our data demonstrates that fecal samples exposed to room or deep freezing temperatures for up to twenty four hours and six months, respectively, exhibit a microbial composition and diversity that shares more identity with its host of origin than any other sample.
NASA Astrophysics Data System (ADS)
Brett, Gareth; Barnett, Matthew
2014-12-01
Liquid Air Energy Storage (LAES) provides large scale, long duration energy storage at the point of demand in the 5 MW/20 MWh to 100 MW/1,000 MWh range. LAES combines mature components from the industrial gas and electricity industries assembled in a novel process and is one of the few storage technologies that can be delivered at large scale, with no geographical constraints. The system uses no exotic materials or scarce resources and all major components have a proven lifetime of 25+ years. The system can also integrate low grade waste heat to increase power output. Founded in 2005, Highview Power Storage, is a UK based developer of LAES. The company has taken the concept from academic analysis, through laboratory testing, and in 2011 commissioned the world's first fully integrated system at pilot plant scale (300 kW/2.5 MWh) hosted at SSE's (Scottish & Southern Energy) 80 MW Biomass Plant in Greater London which was partly funded by a Department of Energy and Climate Change (DECC) grant. Highview is now working with commercial customers to deploy multi MW commercial reference plants in the UK and abroad.
NASA Technical Reports Server (NTRS)
Hull, Gary; Ranade, Sanjay
1993-01-01
With over 5000 units sold, the Storage Tek Automated Cartridge System (ACS) 4400 tape library is currently the most popular large automated tape library. Based on 3480/90 tape technology, the library is used as the migration device ('nearline' storage) in high-performance mass storage systems. In its maximum configuration, one ACS 4400 tape library houses sixteen 3480/3490 tape drives and is capable of holding approximately 6000 cartridge tapes. The maximum storage capacity of one library using 3480 tapes is 1.2 TB and the advertised aggregate I/O rate is about 24 MB/s. This paper reports on an extensive set of tests designed to accurately assess the performance capabilities and operational characteristics of one STK ACS 4400 tape library holding approximately 5200 cartridge tapes and configured with eight 3480 tape drives. A Cray Y-MP EL2-256 was configured as its host machine. More than 40,000 tape jobs were run in a variety of conditions to gather data in the areas of channel speed characteristics, robotics motion, time taped mounts, and timed tape reads and writes.
Response of sugar beet recombinant inbred lines to post-harvest rot fungi
USDA-ARS?s Scientific Manuscript database
Sugar beet is commonly stored in outdoor piles prior to processing. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been little work done on host resistance to p...
USDA-ARS?s Scientific Manuscript database
Sweet potato is a nutritional source worldwide. Soft rot caused by Rhizopus spp. is a major limiting factor in the storage of produce, rendering it potentially unsafe for human consumption. In this study, Rhizopus oryzae was used to develop a concept of postharvest disease control by weakening the p...
Development of matrix-based theophylline sustained-release microtablets.
Rey, H; Wagner, K G; Wehrlé, P; Schmidt, P C
2000-01-01
Microtablets containing high theophylline content (from 60% to 80%) based on a Eudragit RS PO matrix were produced on a rotary tablet press. The influence of the compaction pressure, the plasticizer content used for the granulation of theophylline particles, and the amount of theophylline on the drug release were investigated. The effects of surface area and the addition of magnesium stearate as a hydrophobic agent on the drug release were studied. The storage stabilities of the release rate at room temperature and at 50 degrees C were also determined. Dissolution profiles expressed as percentage of theophylline dissolved were obtained over 8 hr in 900 ml of purified water at 37 degrees C and 75 rpm. It was observed that the compaction pressure (from 200 MPa to 250 MPa) had no effect on the theophylline release. The use of triethyl citrate (TEC) as a plasticizer in the granulation of theophylline enhanced the physical properties of the microtablets. Theophylline content in the range 60% to 80% did not affect the drug release. The theophylline release obtained was a function of the quotient surface area/tablet weight and therefore was dependent on the tablet diameter. To reduce the dissolution rates, magnesium stearate was added in a concentration up to 50% of the matrix material. Tablets of this hydrophobic formulation fulfilled the requirements of USP 23 for theophylline sustained-release preparations. Storage at room temperature for 3 months and at 50 degrees C for 2 months showed no significant influence on the theophylline release.
Zhou, Quanlin; Oldenburg, Curtis M.; Spangler, Lee H.; ...
2017-01-05
Analytical solutions with infinite exponential series are available to calculate the rate of diffusive transfer between low-permeability blocks and high-permeability zones in the subsurface. Truncation of these series is often employed by neglecting the early-time regime. Here in this paper, we present unified-form approximate solutions in which the early-time and the late-time solutions are continuous at a switchover time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the first coefficient dependent only on the dimensionless area-to-volume ratio. The last two coefficients are either determined analytically for isotropic blocks (e.g., spheresmore » and slabs) or obtained by fitting the exact solutions, and they solely depend on the aspect ratios for rectangular columns and parallelepipeds. For the late-time solutions, only the leading exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic rectangular blocks. The optimal switchover time is between 0.157 and 0.229, with highest relative approximation error less than 0.2%. The solutions are used to demonstrate the storage of dissolved CO 2 in fractured reservoirs with low-permeability matrix blocks of single and multiple shapes and sizes. These approximate solutions are building blocks for development of analytical and numerical tools for hydraulic, solute, and thermal diffusion processes in low-permeability matrix blocks.« less
Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter
2006-05-01
Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.
Meng, Yan-Fen; Guo, Xian-Guo; Men, Xing-Yuan; Wu, Dian
2008-02-28
To investigate the ecological niches of sucking lice (Phthiraptera: Anoplura) on the body surface of small mammal hosts and the co-evolutionary relationship between lice and mammal hosts in Yunnan Province. Thirty species of small mammals were captured and used as 30 resource sequences. The distribution and composition of the dominant 22 species of sucking lice on the body surface of the 30 species small mammal hosts were analyzed as the utilization proportion for each resource sequence. The niche breadth and proportional similarity were measured. SPSS 13.0 statistical software was used for analyzing the niche overlap matrix of sucking lice by hierarchical clustering analysis, and a dendrogram was made. The niche breadth was narrow for most species of sucking louse. Among the detected species, Hoplopleura pacifica showed the widest niche breadth, but only 0.1536. Indices of niche proportional similarity of most sucking lice were relatively small from 0.0005 to 0.4695. The 22 species of sucking lice were classified into 16 niche overlap groups, by lambda = 5.5, through a hierarchical clustering analysis for the niche overlaps, and the clustering process of most sucking lice was late. The sucking lice have a high specificity for hosts, of which different species show an apparent niche divergence on host selection. The results reveal a high coevolution between sucking lice and the mammal hosts.
Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.
Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P
2014-11-01
Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes
Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell
2014-01-01
ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. PMID:25210190
Quantifying induced effects of subsurface renewable energy storage
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas
2015-04-01
New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry of Education and Research (BMBF).
Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beznosyuk, Sergey A., E-mail: bsa1953@mail.ru; Maslova, Olga A., E-mail: maslova-o.a@mail.ru; Zhukovsky, Mark S., E-mail: zhukovsky@list.ru
2015-10-27
The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru{submore » 256}, Rh{sub 256}, Pd{sub 256}) accumulate next storage energies: E{sub Ru} = 2.27 eV/at, E{sub Rh} = 1.67 eV/at, E{sub Pd} = 3.02 eV/at.« less
Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes
NASA Astrophysics Data System (ADS)
Pang, Quan; Liang, Xiao; Kwok, Chun Yuen; Nazar, Linda F.
2016-09-01
Amid burgeoning environmental concerns, electrochemical energy storage has rapidly gained momentum. Among the contenders in the ‘beyond lithium’ energy storage arena, the lithium-sulfur (Li-S) battery has emerged as particularly promising, owing to its potential to reversibly store considerable electrical energy at low cost. Whether or not Li-S energy storage will be able to fulfil this potential depends on simultaneously solving many aspects of its underlying conversion chemistry. Here, we review recent developments in tackling the dissolution of polysulfides — a fundamental problem in Li-S batteries — focusing on both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and polysulfides. We also discuss smart cathode architectures enabled by recent materials engineering, especially for high areal sulfur loading, as well as innovative electrolyte design to control the solubility of polysulfides. Key factors that allow long-life and high-loading Li-S batteries are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, Alisha J.; Cole, Jacqueline M.
The ever-increasing demands of the modern world continue to place substantial strain on the environment. To help alleviate the damage done to the natural world, the encapsulation of small molecules or ions (guests) into porous inorganic structural frameworks (hosts) provides a potential remedy for some of the environmental concerns facing us today. These concerns include the removal of harmful pollutants from water or air, the safe entrapment of nuclear waste materials, or the purification and storage of small molecules that act as alternative fuel sources. For this study, we review the trends in using inorganic materials as hostmedia for themore » removal or storage of various wastes and alternative fuels. In conclusion, we cover the treatment of water contaminated with dyes or heavy metals, air pollution alleviation via CO 2, SO x, NO x, and volatile organic compound containment, nuclear waste immobilization, and storage for H 2 and methane as alternative fuels.« less
High Throughput Strontium Isotope Method for Monitoring Fluid Flow Related to Geological CO2 Storage
NASA Astrophysics Data System (ADS)
Capo, R. C.; Wall, A. J.; Stewart, B. W.; Phan, T. T.; Jain, J. C.; Hakala, J. A.; Guthrie, G. D.
2012-12-01
Natural isotope tracers, such as strontium (Sr), can be a unique and powerful component of a monitoring strategy at a CO2 storage site, facilitating both the quantification of reaction progress for fluid-rock interactions and the tracking of brine migration caused by CO2 injection. Several challenges must be overcome, however, to enable the routine use of isotopic tracers, including the ability to rapidly analyze numerous aqueous samples with potentially complex chemical compositions. In a field situation, it might be necessary to analyze tens of samples over a short period of time to identify subsurface reactions and respond to unexpected fluid movement in the host formation. These conditions require streamlined Sr separation chemistry for samples ranging from pristine groundwaters to those containing high total dissolved solids, followed by rapid measurement of isotope ratios with high analytical precision. We have optimized Sr separation chemistry and MC-ICP-MS methods to provide rapid and precise measurements of isotope ratios in geologic, hydrologic, and environmental samples. These improvements will allow an operator to independently prepare samples for Sr isotope analysis off-site using fast, low cost chemical separation procedures and commercially available components. Existing vacuum-assisted Sr separation procedures were modified by using inexpensive disposable parts to eliminate cross contamination. Experimental results indicate that the modified columns provide excellent separation of Sr from chemically complex samples and that Sr can be effectively isolated from problematic matrix elements (e.g., Ca, Ba, K) associated with oilfield brines and formation waters. The separation procedure is designed for high sample throughput in which batches of 24 samples can be processed in approximately 2 hours, and are ready for Sr isotope measurements by MC-ICP-MS immediately after collection from the columns. Precise Sr isotope results can be achieved by MC-ICP-MS with a throughput of 4 to 5 samples per hour. Our mean measured value of NIST Sr isotope standard SRM 987 is 0.710265 ± 0.000014 (2σ, n = 94). A range of brines and CO2-rich fluids analyzed by this method yielded results within the analytical uncertainty of 87Sr/86Sr ratios previously determined by standard column separation and thermal ionization mass spectrometry. This method provides a fast and effective way to use Sr isotopes for monitoring purposes related to geological CO2 storage.
An Estimation Approach to Extract Multimedia Information in Distributed Steganographic Images
2007-07-01
image steganography (DIS) [8] is a new method of concealing secret information in several host images , leaving...distributed image steganography , steganalysis, estimation, image quality matrix 1 Introduction Steganography is a method that hides secret information...used to sufficiently hide a secret image . Another emerging image steganographic technique is referred to as distributed image steganography
USDA-ARS?s Scientific Manuscript database
Vesicular stomatitis virus (VSV) is an important vector-borne pathogen of bovine and equine species, causing a reportable vesicular disease. The matrix (M) protein of VSV is multifunctional and plays a key role in cytopathogenesis, apoptosis, host protein shut-off, and virion assembly/budding. Our ...
Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems.
Fonseca, Keila B; Gomes, David B; Lee, Kangwon; Santos, Susana G; Sousa, Aureliana; Silva, Eduardo A; Mooney, David J; Granja, Pedro L; Barrias, Cristina C
2014-01-13
Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.
BCYCLIC: A parallel block tridiagonal matrix cyclic solver
NASA Astrophysics Data System (ADS)
Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.
2010-09-01
A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.
NASA Astrophysics Data System (ADS)
Khairi, Muntaz Hana Ahmad; Amri Mazlan, Saiful; Aziz, Siti Aishah Abdul; Ubaidillah; Tan Shilan, Salihah
2018-04-01
This study introduces a sucrose acetate isobutyrate (SAIB) as a novel additive of magnetorheological elastomers (MREs). The MREs utilized an epoxidized natural rubber (ENR) as the matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt%. The viscosity of the compound was observed using a viscometer. Meanwhile, the microstructures were observed by using field emission scanning electron microscope (FESEM). Rheological properties regarding shear storage modulus were measured by using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the MREs-based ENR/SAIB had a decrement in their viscosity by 40% reduction. Moreover, the magnetorheological (MR) effect increased by 23% as the increment of magnetic fields. The morphological photograph showed that the CIPs embedded well within the matrix. The fabricated MREs samples were strain dependent, where all MREs samples exhibit the deteriorating trend when increasing the strain amplitude.
How bacteria hack the matrix and dodge the bullets of immunity.
Paulsson, Magnus; Riesbeck, Kristian
2018-06-30
Haemophilus influenzae , Moraxella catarrhalis and Pseudomonas aeruginosa are common Gram-negative pathogens associated with an array of pulmonary diseases. All three species have multiple adhesins in their outer membrane, i.e. surface structures that confer the ability to bind to surrounding cells, proteins or tissues. This mini-review focuses on proteins with high affinity for the components of the extracellular matrix such as collagen, laminin, fibronectin and vitronectin. Adhesins are not structurally related and may be lipoproteins, transmembrane porins or large protruding trimeric auto-transporters. They enable bacteria to avoid being cleared together with mucus by attaching to patches of exposed extracellular matrix, or indirectly adhering to epithelial cells using matrix proteins as bridging molecules. As more adhesins are being unravelled, it is apparent that bacterial adhesion is a highly conserved mechanism, and that most adhesins target the same regions on the proteins of the extracellular matrix. The surface exposed adhesins are prime targets for new vaccines and the interactions between proteins are often possible to inhibit with interfering molecules, e.g heparin. In conclusion, this highly interesting research field of microbiology has unravelled host-pathogen interactions with high therapeutic potential. Copyright ©ERS 2018.
Varney, Shawn; Hirshon, Jon Mark; Dischinger, Patricia; Mackenzie, Colin
2006-01-01
The Haddon Matrix offers a classic epidemiological model for studying injury prevention. This methodology places the public health concepts of agent, host, and environment within the three sequential phases of an injury-producing incident-pre-event, event, and postevent. This study uses this methodology to illustrate how it could be applied in systematically preparing for a mass casualty disaster such as an unconventional sarin attack in a major urban setting. Nineteen city, state, federal, and military agencies responded to the Haddon Matrix chemical terrorism preparedness exercise and offered feedback in the data review session. Four injury prevention strategies (education, engineering, enforcement, and economics) were applied to the individual factors and event phases of the Haddon Matrix. The majority of factors identified in all phases were modifiable, primarily through educational interventions focused on individual healthcare providers and first responders. The Haddon Matrix provides a viable means of studying an unconventional problem, allowing for the identification of modifiable factors to decrease the type and severity of injuries following a mass casualty disaster such as a sarin release. This strategy could be successfully incorporated into disaster planning for other weapons attacks that could potentially cause mass casualties.
The role of parasites in the dynamics of a reindeer population.
Albon, S D; Stien, A; Irvine, R J; Langvatn, R; Ropstad, E; Halvorsen, O
2002-01-01
Even though theoretical models show that parasites may regulate host population densities, few empirical studies have given support to this hypothesis. We present experimental and observational evidence for a host-parasite interaction where the parasite has sufficient impact on host population dynamics for regulation to occur. During a six year study of the Svalbard reindeer and its parasitic gastrointestinal nematode Ostertagia gruehneri we found that anthelminthic treatment in April-May increased the probability of a reindeer having a calf in the next year, compared with untreated controls. However, treatment did not influence the over-winter survival of the reindeer. The annual variation in the degree to which parasites depressed fecundity was positively related to the abundance of O. gruehneri infection the previous October, which in turn was related to host density two years earlier. In addition to the treatment effect, there was a strong negative effect of winter precipitation on the probability of female reindeer having a calf. A simple matrix model was parameterized using estimates from our experimental and observational data. This model shows that the parasite-mediated effect on fecundity was sufficient to regulate reindeer densities around observed host densities. PMID:12184833
Nyholm, S V; McFall-Ngai, M J
1998-10-01
The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.
In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures.
Fantino, Erika; Chiappone, Annalisa; Calignano, Flaviana; Fontana, Marco; Pirri, Fabrizio; Roppolo, Ignazio
2016-07-19
Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP) system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs) in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites.
Effect of chiral symmetry on chaotic scattering from Majorana zero modes.
Schomerus, H; Marciani, M; Beenakker, C W J
2015-04-24
In many of the experimental systems that may host Majorana zero modes, a so-called chiral symmetry exists that protects overlapping zero modes from splitting up. This symmetry is operative in a superconducting nanowire that is narrower than the spin-orbit scattering length, and at the Dirac point of a superconductor-topological insulator heterostructure. Here we show that chiral symmetry strongly modifies the dynamical and spectral properties of a chaotic scatterer, even if it binds only a single zero mode. These properties are quantified by the Wigner-Smith time-delay matrix Q=-iℏS^{†}dS/dE, the Hermitian energy derivative of the scattering matrix, related to the density of states by ρ=(2πℏ)^{-1}TrQ. We compute the probability distribution of Q and ρ, dependent on the number ν of Majorana zero modes, in the chiral ensembles of random-matrix theory. Chiral symmetry is essential for a significant ν dependence.
Hu, Michael Z [Knoxville, TN; Kosacki, Igor [Oak Ridge, TN
2010-01-05
An ion conducting membrane has a matrix including an ordered array of hollow channels and a nanocrystalline electrolyte contained within at least some or all of the channels. The channels have opposed open ends, and a channel width of 1000 nanometers or less, preferably 60 nanometers or less, and most preferably 10 nanometers or less. The channels may be aligned perpendicular to the matrix surface, and the length of the channels may be 10 nanometers to 1000 micrometers. The electrolyte has grain sizes of 100 nanometers or less, and preferably grain sizes of 1 to 50 nanometers. The electrolyte may include grains with a part of the grain boundaries aligned with inner walls of the channels to form a straight oriented grain-wall interface or the electrolyte may be a single crystal. In one form, the electrolyte conducts oxygen ions, the matrix is silica, and the electrolyte is yttrium doped zirconia.
Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery.
Dinopoulos, Haralampos T H; Giannoudis, Peter V
2006-11-01
Demineralised bone matrix (DBM) acts as an osteoconductive, and possibly as an osteoinductive, material. It is widely used in orthopaedic, neurosurgical, plastic and dental areas. More than 500,000 bone grafting procedures with DBM are performed annually in the US. It does not offer structural support, but it is well suited for filling bone defects and cavities. The osteoinductive nature of DBM is presumably attributed to the presence of matrix-associated bone morphogenetic proteins (BMPs) and growth factors, which are made available to the host environment by the demineralisation process. Clinical results have not been uniformly favourable; however, a variable clinical response is attributed partly to nonuniform processing methods found among numerous bone banks and commercial suppliers. DBMs remain reasonably safe and effective products. The ultimate safe bone-graft substitute, one that is osteoconductive, osteoinductive, osteogenic and mechanically strong, remains elusive.
Park, Arnold; Yun, Tatyana; Vigant, Frederic; Pernet, Olivier; Won, Sohui T; Dawes, Brian E; Bartkowski, Wojciech; Freiberg, Alexander N; Lee, Benhur
2016-05-01
The budding of Nipah virus, a deadly member of the Henipavirus genus within the Paramyxoviridae, has been thought to be independent of the host ESCRT pathway, which is critical for the budding of many enveloped viruses. This conclusion was based on the budding properties of the virus matrix protein in the absence of other virus components. Here, we find that the virus C protein, which was previously investigated for its role in antagonism of innate immunity, recruits the ESCRT pathway to promote efficient virus release. Inhibition of ESCRT or depletion of the ESCRT factor Tsg101 abrogates the C enhancement of matrix budding and impairs live Nipah virus release. Further, despite the low sequence homology of the C proteins of known henipaviruses, they all enhance the budding of their cognate matrix proteins, suggesting a conserved and previously unknown function for the henipavirus C proteins.
Anomalous dynamics of intruders in a crowded environment of mobile obstacles
Sentjabrskaja, Tatjana; Zaccarelli, Emanuela; De Michele, Cristiano; Sciortino, Francesco; Tartaglia, Piero; Voigtmann, Thomas; Egelhaaf, Stefan U.; Laurati, Marco
2016-01-01
Many natural and industrial processes rely on constrained transport, such as proteins moving through cells, particles confined in nanocomposite materials or gels, individuals in highly dense collectives and vehicular traffic conditions. These are examples of motion through crowded environments, in which the host matrix may retain some glass-like dynamics. Here we investigate constrained transport in a colloidal model system, in which dilute small spheres move in a slowly rearranging, glassy matrix of large spheres. Using confocal differential dynamic microscopy and simulations, here we discover a critical size asymmetry, at which anomalous collective transport of the small particles appears, manifested as a logarithmic decay of the density autocorrelation functions. We demonstrate that the matrix mobility is central for the observed anomalous behaviour. These results, crucially depending on size-induced dynamic asymmetry, are of relevance for a wide range of phenomena ranging from glassy systems to cell biology. PMID:27041068
Conformational plasticity of the Ebola virus matrix protein.
Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried
2014-11-01
Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.
Latka, Agnieszka; Maciejewska, Barbara; Majkowska-Skrobek, Grazyna; Briers, Yves; Drulis-Kawa, Zuzanna
2017-04-01
Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.
Communication between filamentous pathogens and plants at the biotrophic interface.
Yi, Mihwa; Valent, Barbara
2013-01-01
Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.
The Interface between Fungal Biofilms and Innate Immunity.
Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E
2017-01-01
Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.
Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C
2011-10-01
A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Turroni, Francesca; Serafini, Fausta; Foroni, Elena; Duranti, Sabrina; O’Connell Motherway, Mary; Taverniti, Valentina; Mangifesta, Marta; Milani, Christian; Viappiani, Alice; Roversi, Tommaso; Sánchez, Borja; Santoni, Andrea; Gioiosa, Laura; Ferrarini, Alberto; Delledonne, Massimo; Margolles, Abelardo; Piazza, Laura; Palanza, Paola; Bolchi, Angelo; Guglielmetti, Simone; van Sinderen, Douwe; Ventura, Marco
2013-01-01
Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity. PMID:23776216
Candida Biofilms and the Host: Models and New Concepts for Eradication
Tournu, Hélène; Van Dijck, Patrick
2012-01-01
Biofilms define mono- or multispecies communities embedded in a self-produced protective matrix, which is strongly attached to surfaces. They often are considered a general threat not only in industry but also in medicine. They constitute a permanent source of contamination, and they can disturb the proper usage of the material onto which they develop. This paper relates to some of the most recent approaches that have been elaborated to eradicate Candida biofilms, based on the vast effort put in ever-improving models of biofilm formation in vitro and in vivo, including novel flow systems, high-throughput techniques and mucosal models. Mixed biofilms, sustaining antagonist or beneficial cooperation between species, and their interplay with the host immune system are also prevalent topics. Alternative strategies against biofilms include the lock therapy and immunotherapy approaches, and material coating and improvements. The host-biofilm interactions are also discussed, together with their potential applications in Candida biofilm elimination. PMID:22164167
Nguyen, Chau T T; Kim, Jeongyun; Yoo, Kil Sun; Lim, Sooyeon; Lee, Eun Jin
2014-12-17
Ultraviolet (UV)-A, -B, and -C were radiated to full-ripe blueberries (cv. 'Duke'), and their effects on fruit qualities and phytonutrients during subsequent cold storage were investigated. The blueberries were exposed to each UV light at 6 kJ/m(2) and then stored at 0 °C for 28 days. Weight loss and decay of the fruits after UV treatment were significantly decreased during the cold storage. The total phenolics and antioxidant activities of blueberries after UV-B and -C treatments were always higher than those of the control and UV-A treatment. Individual anthocyanins were markedly increased during the 3 h after the UV-B and -C treatments. The correlation matrix between total phenolics, anthocyanins, and antioxidant activity measured by the 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) assay indicated a significantly close correlation with the individual anthocyanin contents. It was confirmed that the prestorage treatments of UV-B and -C increased the storability and phytochemical accumulation of the full-ripe 'Duke' blueberries during cold storage.
NASA Astrophysics Data System (ADS)
Arredondo Romero, Eduardo; Nakamura, Yukio; Yamashita, Yasumitsu; Ichikawa, Hisashi; Goto, Shingi; Osatomi, Kiyoshi; Nozaki, Yukinori
From the point of view of utilization of shells as a waste product of fishery industry, the cryoprotective effect of chitin made from shell of crustaceans (Japanese fan lobster and Japanese swimming crab) and cartilage of cephalopods (spear squid) are studied. Chitin from the shells and cartilage were added to lizard fish myofibrils, and the changes of unfrozen water in myofibrils and ATPase activity of myofibrillar protein were observed during frozen storage at -250°C for 120days. The amount of unfrozen water were increased by addition of three kinds of chitin, and decreased moderately during forzen storage. Whereas, in the chitin free sample, the amount of unfrozen water were decreased rapidly during frozen storage. Changes of ATPase activity of samples showed similar tendency to that of the amount of unfrozen water. The present moderate cryoprotective effect of chitin and data of unfrozen water and ATPase activity of myofibrillar protein suggest the importance of the amount of unfrozen water in frozen matrix.
Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodium-Ion Storage.
Cho, Se Youn; Kang, Minjee; Choi, Jaewon; Lee, Min Eui; Yoon, Hyeon Ji; Kim, Hae Jin; Leal, Cecilia; Lee, Sungho; Jin, Hyoung-Joon; Yun, Young Soo
2018-04-01
Na-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN-2800 prepared by heating at 2800 °C has a distinctive sp 2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm -1 , presenting significantly high rate capability at 600 C (60 A g -1 ) and stable cycling behaviors over 40 000 cycles as an anode for Na-ion storage. The results of this study show the unusual graphitization behaviors of a char-type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN-2800, even surpassing those of supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xia, Xinhui; Chao, Dongliang; Zhang, Yongqi; Zhan, Jiye; Zhong, Yu; Wang, Xiuli; Wang, Yadong; Shen, Ze Xiang; Tu, Jiangping; Fan, Hong Jin
2016-06-01
A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2 O3 nanoflakes, Co3 O4 nanowires, Co3 O4 -CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2 O3 /CNTs core/branch composite arrays as the host for Na(+) storage are investigated in detail. This V2 O3 /CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g(-1) at 0.1 A g(-1) and outstanding high-rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g(-1) , and 70% after 10 000 cycles at 10 A g(-1) ). Kinetics analysis reveals that the Na(+) storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Long-term data storage in diamond.
Dhomkar, Siddharth; Henshaw, Jacob; Jayakumar, Harishankar; Meriles, Carlos A
2016-10-01
The negatively charged nitrogen vacancy (NV - ) center in diamond is the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Although most work so far has focused on the NV - optical and spin properties, control of the charge state promises complementary opportunities. One intriguing possibility is the long-term storage of information, a notion we hereby introduce using NV-rich, type 1b diamond. As a proof of principle, we use multicolor optical microscopy to read, write, and reset arbitrary data sets with two-dimensional (2D) binary bit density comparable to present digital-video-disk (DVD) technology. Leveraging on the singular dynamics of NV - ionization, we encode information on different planes of the diamond crystal with no cross-talk, hence extending the storage capacity to three dimensions. Furthermore, we correlate the center's charge state and the nuclear spin polarization of the nitrogen host and show that the latter is robust to a cycle of NV - ionization and recharge. In combination with super-resolution microscopy techniques, these observations provide a route toward subdiffraction NV charge control, a regime where the storage capacity could exceed present technologies.