Sample records for storage modulus increased

  1. Electrically responsive materials based on polycarbazole/sodium alginate hydrogel blend for soft and flexible actuator application.

    PubMed

    Sangwan, Watchara; Petcharoen, Karat; Paradee, Nophawan; Lerdwijitjarud, Wanchai; Sirivat, Anuvat

    2016-10-20

    The electromechanical properties, namely the storage modulus sensitivity and bending, of sodium alginate (SA) hydrogels and polycarbazole/sodium alginate (PCB/SA) hydrogel blends under applied electric field was investigated. The electromechanical properties of the pristine SA were studied under effects of crosslinking types and SA molecular weights, whereas the PCB/SA hydrogel blends were studied under the effect of PCB concentrations. The storage modulus sensitivity and bending of the pristine SA as crosslinked by the ionic crosslinking agent were found to be higher than those of the covalent crosslinking. The storage modulus sensitivity and deflection of the SA increased monotonically with increasing molecular weight. The highest electromechanical response of the PCB/SA hydrogel blends was obtained from the blend with 0.10% v/v PCB as it provided surprisingly the highest ever storage modulus sensitivity, (G'-G'0)/G'0 where G'0 and G' are the storage modulus without and with applied electric field, respectively, at 18.5 under applied electric field strength of 800V/mm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials

    NASA Astrophysics Data System (ADS)

    Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan

    2018-05-01

    In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.

  3. Mechanical properties of kenaf composites using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Loveless, Thomas A.

    Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.

  4. A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks.

    PubMed

    Zare, Yasser; Rhim, Sungsoo; Garmabi, Hamid; Rhee, Kyong Yop

    2018-04-01

    The networks of nanoparticles in nanocomposites cause solid-like behavior demonstrating a constant storage modulus at low frequencies. This study examines the storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes (CNT) nanocomposites. The experimental data of the storage modulus in the plateau regions are obtained by a frequency sweep test. In addition, a simple model is developed to predict the constant storage modulus assuming the properties of the interphase regions and the CNT networks. The model calculations are compared with the experimental results, and the parametric analyses are applied to validate the predictability of the developed model. The calculations properly agree with the experimental data at all polymer and CNT concentrations. Moreover, all parameters acceptably modulate the constant storage modulus. The percentage of the networked CNT, the modulus of networks, and the thickness and modulus of the interphase regions directly govern the storage modulus of nanocomposites. The outputs reveal the important roles of the interphase properties in the storage modulus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    PubMed

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effect of temperature on storage modulus and glass transition temperature of ZnS/PS nanocomposites

    NASA Astrophysics Data System (ADS)

    Agarwal, Sonalika; Awasthi, Kamlendra; Saxena, N. S.

    2018-05-01

    In the present study, a simplified solution casting method has been used for preparation of ZnS/PS nanocomposites, based on mixing the ZnS nano filler in nanometer range with the polymer matrix. The prepared nanocomposites with different concentration (0, 2, 4, 6 & 8 wt %) are structurally characterized through X-ray diffraction (XRD) and transmission electron microscope (TEM). The main objective of this study is to investigate the variation of storage modulus and glass transition temperature (Tg) within temperature range 30oC to 150oC for PS and ZnS/PS nanocomposites and have been performed through dynamic mechanical analyzer (DMA). The result shows that storage modulus and Tg of nanocomposites increase with the increase of ZnS nanoparticles up to 4 wt. % in PS and beyond this wt. %, both storage modulus and Tg decrease. The increasing behavior is due to the good adhesion between the ZnS nanoparticles and PS matrix which indicates that ZnS nanoparticles are capable of reinforcing the PS matrix. Beside this the decreasing behaviour at higher filler concentration (6 and 8 wt. %) is due to the agglomeratation of nanoparticles in polymer matrix.

  7. Bio-composites based on cellulose acetate and kenaf fibers: Processing and properties

    NASA Astrophysics Data System (ADS)

    Pang, C.; Shanks, R. A.; Daver, F.

    2014-05-01

    Research on bio-composites is important because of its positive environmental impact. In this study, bio-composites based on plasticised cellulose acetate and kenaf fibers were prepared by solution casting and compression moulding methods. The fibers were chemically treated to remove lignin, hemicellulose and impurities. Mechanical, morphological and thermal properties of the bio-composites were studied. Introduction of chopped kenaf fibers increased the storage modulus. The flexural storage modulus of the composite was affected with the introduction of moisture. Moisture behaved similar to the effect of plasticiser, it reduced the modulus.

  8. Dynamic mechanical analysis of multi-walled carbon nanotube/HDPE composites.

    PubMed

    Kanagaraj, S; Guedes, R M; Oliveira, Mónica S A; Simões, José A O

    2008-08-01

    Since the discovery of carbon nanotubes (CNTs), their remarkable properties make them ideal candidates to reinforce in advanced composites. In this attempt, an enhancement of mechanical properties of high density polyethylene (HDPE) by adding 1 wt% of CNTs is studied using Dynamic mechanical and Thermal analyzer (DMTA). The chemically treated and functionalized CNTs were homogeneously dispersed with HDPE and the test samples were made using injection molding machine. Using DMTA, storage modulus (E'), loss modulus (E") and damping factor (tan delta) of the sample under oscillating load were studied as a function of frequency of oscillation and temperatures. The storage modulus decreases with an increase of temperature and increases by adding CNTs in the composites where the reinforcing effect of CNT is confirmed. It is concluded that the large scale polymer relaxations in the composites are effectively restrained by the presence of CNTs and thus the mechanical properties of nanocomposites increase. The transition frequency of loss modulus is observed at 1 Hz. The loss modulus decreases with an increase of temperature at below 1 Hz but opposite trend was observed at above 1 Hz. The shift factor could be predicted from Williams-Landel-Ferry (WLF) model which has good agreement with experimental results.

  9. Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles (SLNs).

    PubMed

    Seetapan, Nispa; Bejrapha, Piyawan; Srinuanchai, Wanwisa; Ruktanonchai, Uracha Rungsardthong

    2010-01-01

    In the present study, gamma-oryzanol was incorporated into glycerol behenate (Compritol 888 ATO) nanoparticles (SLNs) at 5 and 10% (w/w) of lipid phase. Increasing lipid phase concentration resulted in increased consistency and particle diameter of SLNs. Upon storage over 60 days at 4, 25 and 40 degrees C, the instability was observed by rheological analysis for all samples due to the formation of gelation. Rheological measurement revealed the increase in storage modulus and critical stress during storage at all temperatures. However, at 40 degrees C, the pronounced instability was observed from the highest increase in storage modulus and a formation of rod-like network structure from scanning electron micrographs. An increase in crystallinity, determined by differential scanning calorimetry, was also found during storage at all temperatures, confirming the instability of SLNs. Particle diameters and zeta potentials of both concentrations at all storage conditions failed to explain the observed instability. These investigations may help to develop formulations of solid lipid nanoparticles, which are optimized with respect to the desired rheological properties.

  10. Bacterial cellulose composites loaded with SiO2 nanoparticles: Dynamic-mechanical and thermal properties.

    PubMed

    Sheykhnazari, Somayeh; Tabarsa, Taghi; Ashori, Alireza; Ghanbari, Abbas

    2016-12-01

    The aim of this paper was to prepare composites of bacterial cellulose (BC) filled with silica (SiO 2 ) nanoparticles to evaluate the influence of the SiO 2 contents (3, 5 and 7wt%) on the thermo-mechanical properties of the composites. BC hydro-gel was immersed in an aqueous solution of silanol derived from tetraethoxysilane (TEOS), the silanol was then converted into SiO 2 in the BC matrix by pressing at 120°C and 2MPa. The BC/SiO 2 translucent sheets were examined by dynamic-mechanical analysis (DMA), thermo gravimetric analysis (TGA), and scanning electron microscopy (SEM). The temperature dependence of the storage modulus, loss modulus and tan delta was determined by DMA. In general, the results revealed that the increment of storage modulus and thermal stability increased concomitantly with the augmentation of SiO 2 content. Therefore, it could be concluded that the mechanical properties of the composites were improved by using high amounts of nano silica. This would be a high aspect ratio of BC capable of connecting the BC matrix and SiO 2 , thereby enhancing a large contact surface and resulting in excellent coherence. A decrease of the storage modulus was consistent with increasing temperature, resulting from softening of the composites. The storage modulus of the composites increased in the order: BC/S7>BC/S5>BC/S3, while the loss modulus and tan delta decreased. On the other hand, the thermal stabilities of all BC/SiO 2 composites were remarkably enhanced as compared to the pristine BC. TGA curves showed that the temperature of decomposition of the pure BC gradually shifted from about 260°C to about 370°C as silica content increased. SEM observations illustrated that the nano-scale SiO 2 was embedded between the voids and nano-fibrils of the BC matrix. Overall, the results indicated that the successful synthesis and superior properties of BC/SiO 2 advocate its effectiveness for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mechanical properties of three layer glass fibre reinforced unsaturated polyester filled with P84 Polyimide

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nik Noor Idayu Nik; Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir

    2017-12-01

    The glass fibre reinforced orthophthalic unsaturated polyester composite was widely used in the pipeline industry as a replacement to the corroded steel pipes. A filler which possesses high mechanical performance at high temperature; P84 Polyimide used as the particulate reinforcement in the unsaturated polyester matrix system to increase the mechanical performance of the glass fibre reinforced unsaturated polyester. The glass fibre composite laminates were prepared through a hand lay-up technique and fabricated into three layer laminate. Prior to be used as the matrix system in the lamination process, the unsaturated polyester resin was mixed with masterbatch P84 Polyimide at three loadings amount of 1, 3, and 5 wt%. The addition of P84 Polyimide at 1, 3, and 5 wt% increased the tensile properties and flexural properties especially at 1 wt% filler loading. As the filler loading increased, the tensile properties and flexural properties showed decreasing pattern. In the dynamic mechanical analysis, the values of storage modulus were taken at two points; 50 °C and 150 °C which were the storage modulus before and after the glass transition temperature. All storage modulus showed fluctuation trend for both before and after Tg. However, the storage modulus of the filled composite laminates after Tg showed higher values than unfilled composite laminates at all filler loading. Since the P84 Polyimide possesses high thermal stability, the presence of P84 Polyimide inside the composite system had assisted in delaying the Tg. In terms of the filler dispersion, the Cole-Cole plot showed an imperfect semi-circular shape which indicated good filler dispersion.

  12. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles.

    PubMed

    Mitsumata, Tetsu; Honda, Atomu; Kanazawa, Hiroki; Kawai, Mika

    2012-10-11

    A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of magnetic particles of 0.30 exhibited a reversible increase by a factor of 1400 of the storage modulus upon a magnetic field of 500 mT, which is the highest value in the past for magnetorheological soft materials. It is considered that the giant magnetoelastic behavior is caused by both high dispersibility and high mobility of magnetic particles in the carrageenan gel. The off-field storage modulus of the magnetic gel at volume fractions below 0.30 obeyed the Krieger-Dougherty equation, indicating random dispersion of magnetic particles. At 500 mT, the storage modulus was higher than 4.0 MPa, which is equal to that of magnetic fluids, indicating that the magnetic particles move and form a chain structure by magnetic fields. Morphological study revealed the evidence that the magnetic particles embedded in the gel were aligned in the direction of magnetic fields, accompanied by stretching of the gel network. We conclude that the giant magnetoelastic phenomenon originates from the chain structure consisting of magnetic particles similar to magnetic fluids.

  13. A novel approach to determine the thermal transition of gum powder/hydro-gels using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Nagamadhu, M.; Jeyaraj, P.; Kumar, G. C. Mohan

    2018-04-01

    The dynamic characterization of materials plays a major role in the present area. The many researchers are worked on solid materials and its characterization, it can be tested using dynamic mechanical analyzer (DMA), however, no such work on powder a semiliquid samples. The powder and liquid samples can also easily characterization as like solid samples using DMA. These powder samples are analyzed with a material pocket method which can be used to accurately determine very low levels of variation in powder properties, due to the high sensitivity of DMA to glass transitions. No such DMA studies on hydrogel and Gum powders. The gum powders are used in various applications start from food industries, pharmacy, natural gums paste, biomedical applications etc. among all this applications gum Ghatti is one of the powders using for varies applications. Around 50 milligrams of Ghatti powders are placed inside material pocket and analyzed storage modulus (G'), loss modulus (G″) and tan delta (δ). Also, understand the curing and glass transition effect using water, glycerin and superplastic from room temperature to 200°C. The result shows that storage modulus decreases with increase in temperature in pure Ghatti powder. The surprising improvement in storage modulus was found with an increase in temperature with addition of water, glycerin, and superplastic. However, loss modulus and tan delta are also having very significant influence and also shows a clear peak of the tan delta. The loss modulus results were found to be improved by adding solidifying agents, along with this water and superplastic better influence. But glycerine found to be hydrogel in nature and thermodynamic properties are much influenced by frequency.

  14. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.

    PubMed

    Garai, Ashesh; Nandi, Arun K

    2008-04-01

    The melt rheology of polyaniline (PANI)-dinonylnaphthalenedisulfonic acid (DNNDSA) gel nanocomposites (GNCs) with organically modified (modified with cetyl trimethylammonium bromide)-montmorillonite (om-MMT) clay has been studied for three different clay concentrations at the temperature range 120-160 degrees C. Field emission scanning electron microscopy (FE-SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dc-conductivity data (approximately 10(-3) S/cm) indicate that the PANI-DNNDSA melt is in sol state and it is not de-doped at that condition. The WAXS data indicate that in GNC-1 sol clay tactoids are in exfoliated state but in the other sols they are in intercalated state. The zero shear viscosity (eta0), storage modulus (G') and loss modulus (G") increase than that of pure gel in the GNCs. The pure sol and the sols of gel nanocomposites (GNCs) exhibit Newtonian behavior for low shear rate (< 6 x 10(-3) s(-1)) and power law variation for the higher shear rate region. The characteristic time (A) increase with increasing clay concentration and the power law index (n) decreases with increase in clay concentration in the GNCs indicating increased shear thinning for the clay addition. Thus the sols of om-clay nanocomposites of PANI-DNNDSA system are easily processible. The storage modulus (G') of GNC sols are higher than that of pure PANI-DNNDSA sol, GNC1 sol shows a maximum of 733% increase in storage modulus and the percent increase decreases with increase in temperature. Exfoliated nature of clay tactoids has been attributed for the above dramatic increase of G'. The PANI-DNNDSA sol nanocomposites behave as a pseudo-solid at higher frequency where G' and loss modulus (G") show a crossover point in the frequency sweep experiment at a fixed temperature. The crossover frequency decreases with increase in clay concentration and it increases with increase in temperature for GNC sols. The pseudo-solid behavior has been explained from jamming or network formation of clay tactoids under shear. A probable explanation of the two apparently contradictory phenomena of shear thinning versus pseudo-solid behavior of the nanocomposite sols is discussed.

  15. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.

    PubMed

    Alothman, Othman Y; Fouad, H; Al-Zahrani, S M; Eshra, Ayman; Al Rez, Mohammed Fayez; Ansari, S G

    2014-08-28

    High Density Polyethylene (HDPE) is one of the most often used polymers in biomedical applications. The limitations of HDPE are its visco-elastic behavior, low modulus and poor bioactivity. To improve HDPE properties, HA nanoparticles can be added to form polymer composite that can be used as alternatives to metals for bone substitutes and orthopaedic implant applications. In our previous work (BioMedical Engineering OnLine 2013), different ratios of HDPE/HA nanocomposites were prepared using melt blending in a co-rotating intermeshing twin screw extruder. The accelerated aging effects on the tensile properties and torsional viscoelastic behavior (storage modulus (G') and Loss modulus (G")) at 80°C of irradiated and non-irradiated HDPE/HA was investigated. Also the thermal behavior of HDPE/HA were studied. In this study, the effects of gamma irradiation on the tensile viscoelastic behavior (storage modulus (E') and Loss modulus (E")) at 25°C examined for HDPE/HA nanocomposites at different frequencies using Dynamic Mechanical Analysis (DMA). The DMA was also used to analyze creep-recovery and relaxation properties of the nanocomposites. To analyze the thermal behavior of the HDPE/HA nanocomposite, Differential Scanning Calorimetry (DSC) was used. The microscopic examination of the cryogenically fractured surface revealed a reasonable distribution of HA nanoparticles in the HDPE matrix. The DMA showed that the tensile storage and loss modulus increases with increasing the HA nanoparticles ratio and the test frequency. The creep-recovery behavior improves with increasing the HA nanoparticle content. Finally, the results indicated that the crystallinity, viscoelastic, creep recovery and relaxation behavior of HDPE nanocomposite improved due to gamma irradiation. Based on the experimental results, it is found that prepared HDPE nanocomposite properties improved due to the addition of HA nanoparticles and irradiation. So, the prepared HDPE/HA nanocomposite appears to have fairly good comprehensive properties that make it a good candidate as bone substitute.

  16. Synthesis and characterization of segmented poly(esterurethane urea) elastomers for bone tissue engineering

    PubMed Central

    Kavlock, Katherine D.; Pechar, Todd W.; Hollinger, Jeffrey O.; Guelcher, Scott A.; Goldstein, Aaron S.

    2007-01-01

    Segmented polyurethanes have been used extensively in implantable medical devices, but their tunable mechanical properties make them attractive for examining the effect of biomaterial modulus on engineered musculoskeletal tissue development. In this study a family of segmented degradable poly(esterurethane urea)s (PEUURs) were synthesized from 1,4-diisocyanatobutane, a poly(ε-caprolactone) (PCL) macrodiol soft segment and a tyramine-1,4-diisocyanatobutane-tyramine chain extender. By systematically increasing the PCL macrodiol molecular weight from 1100 to 2700 Da, the storage modulus, crystallinity and melting point of the PCL segment were systematically varied. In particular, the melting temperature, Tm, increased from 21 to 61°C and the storage modulus at 37°C increased from 52 to 278 MPa with increasing PCL macrodiol molecular weight, suggesting that the crystallinity of the PCL macrodiol contributed significantly to the mechanical properties of the polymers. Bone marrow stromal cells were cultured on rigid polymer films under osteogenic conditions for up to 14 days. Cell density, alkaline phosphatase activity, and osteopontin and osteocalcin expression were similar among PEUURs and comparable to poly(D,L-lactic-coglycolic acid). This study demonstrates the suitability of this family of PEUURs for tissue engineering applications, and establishes a foundation for determining the effect of biomaterial modulus on bone tissue development. PMID:17418651

  17. Analysis of the torsional storage modulus of human hair and its relation to hair morphology and cosmetic processing.

    PubMed

    Wortmann, Franz J; Wortmann, Gabriele; Haake, Hans-Martin; Eisfeld, Wolf

    2014-01-01

    Through measurements of three different hair samples (virgin and treated) by the torsional pendulum method (22°C, 22% RH) a systematic decrease of the torsional storage modulus G' with increasing fiber diameter, i.e., polar moment of inertia, is observed. G' is therefore not a material constant for hair. This change of G' implies a systematic component of data variance, which significantly contributes to the limitations of the torsional method for cosmetic claim support. Fitting the data on the basis of a core/shell model for cortex and cuticle enables to separate this systematic component of variance and to greatly enhance the discriminative power of the test. The fitting procedure also provides values for the torsional storage moduli of the morphological components, confirming that the cuticle modulus is substantially higher than that of the cortex. The results give consistent insight into the changes imparted to the morphological components by the cosmetic treatments.

  18. Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers.

    PubMed

    Tong, Yu; Dong, Xufeng; Qi, Min

    2018-05-09

    The field-induced storage modulus is an important parameter for the applications of magnetorheological (MR) elastomers. In this study, a model mechanism is established to analyze the potential benefits of using flower-like particles as the active phase compared with the benefits of using conventional spherical particles. To verify the model mechanism and to investigate the difference in dynamic viscoelasticity between MREs with spherical particles and flower-like particles, flower-like cobalt particles and spherical cobalt particles with similar particle sizes and magnetic properties are synthesized and used as the active phase to prepare MR elastomers. As the model predicts, MREs with flower-like cobalt particles present a higher crosslink density and enhanced interfacial bond strength, which leads to a higher storage modulus and higher loss modulus with respect to MREs with spherical cobalt particles. The tunable range of the field-induced storage modulus of MREs is also improved upon using the flower-like particles as the active phase.

  19. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women.

    PubMed

    Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P

    2017-04-01

    Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance. Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ageing effects on the diameter, nanomechanical properties and tactile perception of human hair.

    PubMed

    Tang, W; Zhang, S G; Zhang, J K; Chen, S; Zhu, H; Ge, S R

    2016-04-01

    The typical changes to hair associated with ageing are greying, thinning, dryness and brittleness. Research on the influence of ageing on hair properties will enable a detailed understanding of the natural ageing process. The studies were carried out using an SEM (scanning electron microscope), a TriboIndenter and an artificial finger. Three characteristic features of tactile perception that could reflect the perceptual dimensions of the fineness, roughness and slipperiness of hair were extracted. The influences of ageing on the diameter, surface topography, nanomechanical properties and tactile perception of hair were determined. In the three age group hair samples, the children's group hair samples have the smallest diameter. The hair cuticles in the children and young adult groups were relatively complete and less damaged than in the elderly group. The hardness and elastic modulus of the young adult group's hair samples were higher than those in the elderly and children's groups. For all groups, loss modulus E" was smaller than storage modulus E'. Vertical deviations (R) and coefficient of friction (μ) increased, and spectral centroid (SC) decreased, with the increase in age. Ageing decreased the tactile perception of hair. Ageing influences the diameter, surface topography, hardness, loss modulus, storage modulus and tactile perception of human hair. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electrical and Electrorheological Properties of Alumina/Natural Rubber (STR XL) Composites

    PubMed Central

    Tangboriboon, Nuchnapa; Uttanawanit, Nuttapot; Longtong, Mean; Wongpinthong, Piraya; Sirivat, Anuvat; Kunanuruksapong, Ruksapong

    2010-01-01

    The electrorheological properties (ER) of natural rubber (XL)/alumina (Al2O3) composites were investigated in oscillatory shear mode under DC electrical field strengths between 0 to 2 kV/mm. SEM micrographs indicate a mean particle size of 9.873 ± 0.034 µm and particles that are moderately dispersed in the matrix. The XRD patterns indicate Al2O3 is of the β-phase polytype which possesses high ionic conductivity. The storage modulus (G′) of the composites, or the rigidity, increases by nearly two orders of magnitude, with variations in particle volume fraction and electrical field strength. The increase in the storage modulus is caused the ionic polarization of the alumina particles and the induced dipole moments set up in the natural rubber matrix.

  3. The Shock and Vibration Digest. Volume 18, Number 1

    DTIC Science & Technology

    1986-01-01

    polyurethanes reduced the loss factor and emphasized the correlation between molecular storage modulus by increasing the length of the structure and...one tempera- static deformations. He gave storage and loss ture/frequency range is difficult with copoly- moduli for a carbon black filled and an...has been described (18). The shear loss author states that the frequency dependence of and storage moduli of a void-filled polyurethane the elastomers

  4. Analysis of LDPE-ZnO-clay nanocomposites using novel cumulative rheological parameters

    NASA Astrophysics Data System (ADS)

    Kracalik, Milan

    2017-05-01

    Polymer nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of dispersive polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, comparison of loss factor tan δ). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as "storage factor", analogically to loss factor. Then values of storage factor were integrated over specific frequency range and called as "cumulative storage factor". In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach. Next to cumulative storage factor, further cumulative rheological parameters like cumulative complex viscosity, cumulative complex modulus or cumulative storage modulus have been introduced.

  5. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends.

    PubMed

    Temple, Duncan K; Cederlund, Anna A; Lawless, Bernard M; Aspden, Richard M; Espino, Daniel M

    2016-10-06

    The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovine and six human specimens were measured over the frequency range 1 Hz to 88 Hz. Significant differences between bovine and human cartilage viscoelastic properties were assessed using a Mann-Whitney test (p < 0.05). Throughout the range of frequencies tested and for both species, the storage modulus was greater than the loss modulus and both were frequency-dependent. The storage and loss moduli of all human and bovine cartilage specimens presented a logarithmic relationship with respect to frequency. The mean human storage modulus ranged from 31.9 MPa to 43.3 MPa, while the mean bovine storage modulus ranged from 54.0 MPa to 80.5 MPa; bovine storage moduli were 1.7 to 1.9 times greater than the human modulus. Similarly, the loss modulus of bovine cartilage was 2.0 to 2.1 times greater than human. The mean human loss modulus ranged from 5.3 MPa to 8.5 MPa while bovine moduli ranged from 10.6 MPa to 18.1 MPa. Frequency-dependent viscoelastic trends of bovine articular cartilage were consistent with those of human articular cartilage; this includes a similar frequency dependency and high-frequency plateau. Bovine cartilage was, however, 'stiffer' than human by a factor of approximately 2. With these provisos, bovine articular cartilage may be a suitable dynamic model for human articular cartilage.

  6. Viscoelastic properties of uncured resin composites: Dynamic oscillatory shear test and fractional derivative model.

    PubMed

    Petrovic, Ljubomir M; Zorica, Dusan M; Stojanac, Igor Lj; Krstonosic, Veljko S; Hadnadjev, Miroslav S; Janev, Marko B; Premovic, Milica T; Atanackovic, Teodor M

    2015-08-01

    In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties. Isothermal experimental study was conducted on a rheometer with parallel plates. In dynamic oscillatory shear test, storage and loss modulus, as well as the complex viscosity where determined. We assumed four different fractional viscoelastic models, each belonging to one particular class, derivable from distributed-order fractional constitutive equation. The restrictions following from the Second law of thermodynamics are imposed on each model. The optimal parameters corresponding to each model are obtained by minimizing the error function that takes into account storage and loss modulus, thus obtaining the best fit to the experimental data. In the frequency range considered, we obtained that for Wave HV and Wave MV there exist a critical frequency for which loss and storage modulus curves intersect, defining a boundary between two different types of behavior: one in which storage modulus is larger than loss modulus and the other in which the situation is opposite. Loss and storage modulus curves for Ice and Wave do not show this type of behavior, having either elastic, or viscous effects dominating in entire frequency range considered. The developed models may be used to predict behavior of four tested composites in different flow conditions (different deformation speed), thus helping to estimate optimal handling characteristics for specific clinical applications. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Mechanical property assessment of tissue-mimicking phantoms using remote palpation and optical read-out for amplitude of vibration and refractive index modulation.

    PubMed

    Usha Devi, C; Bharat Chandran, R S; Vasu, R Mohan; Sood, Ajay K

    2007-01-01

    A coherent light beam is used to interrogate the focal region within a tissue-mimicking phantom insonified by an ultrasound transducer. The ultrasound-tagged photons exiting from the object carry with them information on local optical path length fluctuations caused by refractive index variations and medium vibration. Through estimation of the force distribution in the focal region of the ultrasound transducer, and solving the forward elastography problem for amplitude of vibration of tissue particles, we observe that the amplitude is directed along the axis of the transducer. It is shown that the focal region interrogated by photons launched along the transducer axis carries phase fluctuations owing to both refractive index variations and particle vibration, whereas the photons launched perpendicular to the transducer axis carry phase fluctuations arising mainly from the refractive index variations, with only smaller contribution from vibration of particles. Monte-Carlo simulations and experiments done on tissue-mimicking phantoms prove that as the storage modulus of the phantom is increased, the detected modulation depth in autocorrelation is reduced, significantly for axial photons and only marginally for the transverse-directed photons. It is observed that the depth of modulation is reduced to a significantly lower and constant value as the storage modulus of the medium is increased. This constant value is found to be the same for both axial and transverse optical interrogation. This proves that the residual modulation depth is owing to refractive index fluctuations alone, which can be subtracted from the overall measured modulation depth, paving the way for a possible quantitative reconstruction of storage modulus. Moreover, since the transverse-directed photons are not significantly affected by storage modulus variations, for a quantitatively accurate read-out of absorption coefficient variation, the interrogating light should be perpendicular to the focusing ultrasound transducer axis.

  8. Long-Term Viscoelastic Response of E-glass/Bismaleimide Composite in Seawater Environment

    NASA Astrophysics Data System (ADS)

    Yian, Zhao; Zhiying, Wang; Keey, Seah Leong; Boay, Chai Gin

    2015-12-01

    The effect of seawater absorption on the long-term viscoelastic response of E-glass/BMI composite is presented in this paper. The diffusion of seawater into the composite shows a two-stage behavior, dominated by Fickian diffusion initially and followed by polymeric relaxation. The Glass transition temperature (Tg) of the composite with seawater absorption is considerably lowered due to the plasticization effect. However the effect of water absorption at 50 °C is found to be reversible after drying process. The time-temperature superposition (TTS) was performed based on the results of Dynamic Mechanical Analysis to construct the master curve of storage modulus. The shift factors exhibit Arrhenius behavior when temperature is well below Tg and Vogel-Fulcher-Tammann (VFT) like behavior when temperature gets close to glass transition region. As a result, a semi-empirical formulation is proposed to account for the seawater absorption effect in predicting long-term viscoelastic response of BMI composites based on temperature dependent storage modulus and TTS. The predicted master curves show that the degradation of storage modulus accelerates with both seawater exposure and increasing temperature. The proposed formulation can be applied to predict the long-term durability of any thermorheologically simple composite materials in seawater environment.

  9. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.

    PubMed

    Bode, Franziska; da Silva, Marcelo Alves; Drake, Alex F; Ross-Murphy, Simon B; Dreiss, Cécile A

    2011-10-10

    This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.

  10. Making the case for high temperature low sag (htls) overhead transmission line conductors

    NASA Astrophysics Data System (ADS)

    Banerjee, Koustubh

    The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.

  11. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate.

    PubMed

    Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak

    2018-05-01

    Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Effect of electron beam irradiation on the properties of crosslinked rubbers

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; Bhowmick, Anil K.

    2000-05-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature ( Tg) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ) Tg decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy.

  13. Molecular interactions in gelatin/chitosan composite films.

    PubMed

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  15. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE PAGES

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim; ...

    2017-10-19

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  16. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles.

    PubMed

    Topouzi, Marianthi; Kontonasaki, Eleana; Bikiaris, Dimitrios; Papadopoulou, Lambrini; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2017-05-01

    Fractures in long span provisional/interim restorations are a common complication. Adequate fracture toughness is necessary to resist occlusal forces and crack propagation, so these restorations should be constructed with materials of improved mechanical properties. The aim of this study was to investigate the possible reinforcement of neat silica nanoparticles and trietoxyvinylsilane-modified silica nanoparticles in a PMMA resin for fixed interim restorations. Composite PMMA-Silica nanoparticles powders were mixed with PMMA liquid and compact bar shaped specimens were fabricated according to the British standard BS EN ISO 127337:2005. The single-edge notched method was used to evaluate fracture toughness (three-point bending test), while the dynamic thermomechanical properties (Storage Modulus, Loss Modulus, tanδ) of a series of nanocomposites with different amounts of nanoparticles (0.25%, 0.50%, 0.75%, 1% w.t.) were evaluated. Statistical analysis was performed and the statistically significant level was set to p<0.05. The fracture toughness of all experimental composites was remarkably higher compared to control. There was a tendency to decrease of fracture toughness, by increasing the concentration of the filler. No statistically significant differences were detected among the modified/unmodified silica nanoparticles. Dynamic mechanical properties were also affected. By increasing the silica nanoparticles content an increase in Storage Modulus was recorded, while Glass Transition Temperature was shifted at higher temperatures. Under the limitations of this in-vitro study, it can be suggested that both neat silica nanoparticles and trietoxyvinylsilane-modified silica nanoparticles, especially at low concentrations, may enhance the overall performance of fixed interim prostheses, as can effectively increase the fracture toughness, the elastic modulus and the Glass Transition Temperature of PMMA resins used in fixed provisional restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influence of electron beam irradiation on mechanical and thermal properties of polypropylene/polyamide blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Shigeya, E-mail: shi-nakamura@hitachi-chem.co.jp; Tokumitsu, Katsuhisa

    The effects of electron beam irradiation on the mechanical and thermal properties of polypropylene (PP) and polyamide6 (PA6) blends-with talc 20 wt% as filler, SEBS-g-MAH as compatibilizer, and triallyl isocyanurate as crosslinking agent-were investigated. Although the tensile and flexural moduli and strengths of the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC could be increased by the application of electron beam irradiation, the impact strength was decreased. Ddifferential scanning calorimetryer measurements showed that the melting temperatures of all PP/PA6 blends were decreased with increases in the electron beam irradiationdose. From dynamic mechanical analyzer results, a storage modulus curve in the plateaumore » region was observed only in the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC; the storage modulus increased with increasing electron beam irradiation dose, indicating that the three-dimensional network developed gradually in the more amorphous PA6. As a result, the most significant improvement observed in heat distortion tests under high load (1.8 MPa) occurred at 200 kGy.« less

  18. Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle

    NASA Astrophysics Data System (ADS)

    Thipdech, Pacharavalee; Sirivat, Anuvat

    2007-03-01

    Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.

  19. Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin.

    PubMed

    Huang, Xiaosong; Netravali, Anil N

    2006-10-01

    Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.

  20. Viscoelasticity and pattern formations in stock market indices

    NASA Astrophysics Data System (ADS)

    Gündüz, Güngör; Gündüz, Aydın

    2017-06-01

    The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution of stock index value although they describe different properties. Entropy fluctuates at fast increase and fast fall of index value, and fluctuation becomes very high at minimum values of the index. The curvature of a circle passing from the two ends of the vector and the point of intersection of its horizontal and vertical components designates the reactivity involved in the market and the radius of circle behaves somehow similar to entropy and Wiener noise. The change of entropy and Wiener noise with radius exhibits patterns with four branches.

  1. Inverse thermoreversible mechanical stiffening and birefringence in methylcellulose/cellulose nanocrystal hydrogel.

    PubMed

    Hynninen, Ville; Hietala, Sami; McKee, Jason Robert; Murtomäki, Lasse; Rojas, Orlando J; Ikkala, Olli; Nonappa, Nonappa

    2018-05-07

    We show that composite hydrogels comprising methyl cellulose (MC) and cellulose nanocrystal (CNC) colloidal rods display a reversible and enhanced rheological storage modulus and optical birefringence upon heating, i.e., inverse thermoreversibility. Dynamic rheology, quantitative polarized optical microscopy (POM), isothermal titration calorimetry (ITC), circular dichroism (CD), and scanning and transmission electron microscopy (SEM and TEM) were used for characterization. The concentration of CNC in aqueous media was varied up to 3.5 wt % (i.e, keeping the concentration below the critical aq. concentration) while maintaining the MC aq. concentration at 1.0 wt %. At 20 °C, MC/CNC underwent gelation upon passing the CNC concentration of 1.5 wt %. At this point the storage modulus (G´) reached a plateau, and the birefringence underwent a stepwise increase, thus suggesting a percolative phenomenon. The storage modulus (G´) of the composite gels was an order of magnitude higher at 60 °C compared to that at 20 °C. ITC results suggested that at 60 °C, the CNC rods were entropically driven to interact with MC chains, which according to recent studies, collapse at this temperature into ring-like, colloidal-scale persistent fibrils with hollow cross-section. Consequently, the increased requirement for space and mutual alignment of components results in enhanced birefringence. At room temperature, ITC shows enthalpic binding between CNCs and MC with the latter comprising an aqueous, molecularly dispersed polymer chains that lead to looser and less birefringent material. TEM, SEM, and CD indicated CNC chiral fragments within MC/CNC composite gel. Thus, their space-filling, thermoreversible assembly within the MC network can be used to tune the rheological properties and to access liquid crystalline properties at low CNC concentrations.

  2. Effect of concentration and temperature on the rheological behavior of collagen solution.

    PubMed

    Lai, Guoli; Li, Yang; Li, Guoying

    2008-04-01

    Dynamic viscoelastic properties of collagen solutions with concentrations of 0.5-1.5% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 32.5 degrees C. All collagen solutions showed a shear-thinning flow behavior. The complex viscosity exhibited an exponential increase and the loss tangent decreased with the increase of collagen concentration (C(COL)) when the C(COL)> or =0.75%. Both storage modulus (G') and loss modulus (G'') increased with the increase of frequency and concentration, but decreased with the increase of temperature and behaved without regularity at 32.5 degrees C. The relaxation times decreased with the increase of temperature for 1.0% collagen solution. According to a three-zone model, dynamic modulus of collagen solutions showed terminal-zone and plateau-zone behavior when C(COL) was no more than 1.25% or the stated temperature was no more than 30 degrees C. The concentrated solution (1.5%) behaved being entirely in plateau zone. An application of the time-temperature superposition (TTS) allowed the construction of master curve and an Arrhenius-type TTS principle was used to yield the activation energy of 161.4 kJ mol(-1).

  3. A study of the influence of micro and nano phase morphology on the mechanical properties of a rubber-modified epoxy resin

    NASA Astrophysics Data System (ADS)

    Russell, Bobby Glenn

    Epoxy resins are thermosets with extraordinary adhesion; high strength; good resistance to creep, heat, and chemicals; and they have low shrinkage. Conversely, these polymers are brittle, they are sensitive to moisture, and they exhibit poor toughness. To improve their toughness, they are often modified by introducing dispersed rubber particles in the primary phase. In this study, the epoxy resin was modified with carboxyl-terminated butadiene acrylonitrile (CTBN), liquid-reactive rubbers. The initiator concentration, percent acrylonitrile in the CTBN rubber, and cure temperatures were altered to give varying materials properties. Statistical analysis of the morphology data showed that the percentage of rubber acrylonitrile had an effect on both the rubber particle size and volume fraction. The cure temperature had an effect on the rubber particle volume and modulus. Plots of the rubber particle size, volume fraction, and modulus versus bulk elastic storage modulus and fracture toughness revealed that rubber particle size had no effect on bulk properties, volume fraction and rubber particle modulus had an effect on both the bulk storage elastic modulus and fracture toughness.

  4. Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.

    2003-01-01

    Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.

  5. Viscoelastic properties, gelation behavior and percolation theory model for the temperature induced forming (TIF) ceramic slurries

    NASA Astrophysics Data System (ADS)

    Yang, Yunpeng

    Controlled ceramic processing is required to produce ceramic parts with few strength-limiting defects and the economic forming of near net shape components. Temperature induced forming (TIF) is a novel ceramic forming process that uses colloidal processing to form ceramic green bodies by physical gelation. The dissertation research shows that TIF alumina suspensions (>40vol%) can be successfully fabricated by using 0.4wt% of ammonium citrate powder and <0.1wt% poly (acrylic acid) (PAA). It is found that increasing the volume fraction of alumina or the molecular weight of polymer will increase the shear viscosity and shear modulus. Larger molecular weight PAA tends to decrease the volume fraction gelation threshold of the alumina suspensions. The author is the first in this field to utilize the continuous percolation theory to interpret the evolution of the storage modulus with temperature for the TIF alumina suspensions. A model that relates the storage modulus with temperature and the volume fraction of solids is proposed. Calculated results using this percolation model show that the storage modulus of the suspensions can be affected by the volume fraction of solids, temperature, volume fraction gelation threshold and the percolation nature. The parameters in this model have been derived from the experimental data. The calculated results fit the measured data well. For the PAA-free TIF alumina suspensions, it is found that the ionization reaction of the magnesium citrate, which is induced by the pH or temperature of the suspensions, controls the flocculation of the suspensions. The percolation theory model was successfully applied to this type of suspension. Compared with the PAA addition TIF suspensions, these suspensions reflect a higher degree of percolation nature, as indicated by a larger value of percolation exponent. These results show that the percolation model proposed in this dissertation can be used to predict the gelation degree of the TIF suspensions. Complex-shape engineering ceramic parts have been successfully fabricated by direct casting using the TIF alumina suspensions, which has a relative density of ˜65%. The sintered sample at 1550°C for 2h is translucent and has a uniform grain size.

  6. Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels.

    PubMed

    Piao, Yongzhe; Chen, Biqiong

    2017-08-01

    Gelatin is an interesting biological macromolecule for biomedical applications. Here, double cross-linked gelatin nanocomposite hydrogels with incorporation of graphene oxide (GO) were synthesized in one pot using glutaraldehyde (GTA) and GTA-grafted GO as double chemical cross-linkers. The nanocomposite hydrogels, in contrast to the neat gelatin hydrogel, exhibited significant increases in mechanical properties by up to 288% in compressive strength, 195% in compressive modulus, 267% in compressive fracture energy and 160% shear storage modulus with the optimal GO concentration. Fourier transform infrared spectroscopy, scanning electron microscopy and swelling tests were implemented to characterize the nanocomposite hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effects of fractional CO2 laser, Nano-hydroxyapatite and MI paste on mechanical properties of bovine enamel after bleaching

    PubMed Central

    Moosavi, Horieh

    2017-01-01

    Background This study investigated the effect of post bleaching treatments to the change of enamel elastic modulus and microhardness after dental bleaching in- vitro. Material and Methods Fifty bovine incisor slab were randomly assigned into five groups (n=10). The samples were bleached for three times; 20 minutes each time, by 40% hydrogen peroxide. Next it was applied fractional CO2 laser for two minutes, Nano- hydroxy apatite (N-HA) and MI-paste for 7 days and 2 minutes per day. The sound enamel and bleached teeth without post treatment remained as control groups. The elastic modulus and microhardness were measured at three times; 24 hours, 1 and 2 months. Data were statistically analyzed by two-way analysis of variance with 95% confidence level. Results Different methods of enamel treatment caused a significant increase in elastic modulus compared to bleached group (P<0.05). Modulus was significantly increased in 1 and 2 months (P<0/001: bleach, P= 0/015: laser, P= 0/008: NHA, P=0/010: MI paste) but there were no significantly difference between 1 and 2 months (P>0.05). There was any significance difference for hardness among treated and control groups, but hardness increased significantly by increasing storage time (P<0.05). Conclusions The use of the protective tested agents can be useful in clinical practice to reduce negative changes of enamel surface after whitening procedures. Key words:Bleaching enamel, CO2 laser, MI pastes, Nano-hydroxy apatite, Microhardness, Elastic modulus. PMID:29410753

  8. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  9. Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk.

    PubMed

    Nguyen, Hanh T H; Afsar, Saeedeh; Day, Li

    2018-06-01

    Goat and sheep milks have long been used to produce a range of dairy products due to their nutritional value and health benefits. Information about the microstructure and rheology of goat and sheep yoghurts, however, is scarce. In this study, the microstructure, texture and rheological properties of cow, goat and sheep yoghurts were investigated and compared. The results show that a longer fermentation and gelation time was required for goat yoghurt with a lower storage modulus compared to cow and sheep yoghurts. Cooling resulted in an increase in the storage modulus at different magnitudes for cow, goat and sheep yoghurts. Goat yoghurt had a smaller particle size and a softer gel, which is linked with a more porous microstructure. The results obtained here demonstrate the effect of different milk types on the properties of yoghurts and provide a better understanding into the link between the microstructure and physical properties of the product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The effect of fiber reinforcement type and water storage on strength properties of a provisional fixed partial denture resin.

    PubMed

    Uzun, Gülay; Keyf, Filiz

    2003-04-01

    Fracture resistance of provisional restorations is an important clinical concern. This property is directly related to transverse strength. Strengthening of provisional fixed partial dentures may result from reinforcement with various fiber types. This study evaluated the effect of fiber type and water storage on the transverse strength of a commercially available provisional resin under two different conditions. The denture resin was reinforced with either glass or aramid fiber or no reinforcement was used. Uniform samples were made from a commercially available autopolymerizing provisional fixed partial denture resin. Sixteen bar-shaped specimens (60 x 10 x 4 mm) were reinforced with pre-treated epoxy resin-coated glass fibers, with aramid fibers, or with no fibers. Eight specimens of each group, with and without fibers, were tested after 24 h of fabrication (immediate group), and after 30-day water storage. A three-point loading test was used to measure the transverse strength, the maximal deflection, and the modulus of elasticity. The Kruskal-Wallis Analysis of Variance was used to examine differences among the three groups, and then the Mann-Whitney U Test and Wilcoxon Signed Ranks Test were applied to determine pair-wise differences. The transverse strength and the maximal deflection values in the immediate group and in the 30-day water storage group were not statistically significant. In the group tested immediately, the elasticity modulus was found to be significant (P = 0.042). In the 30-day water storage group, all the values were statistically insignificant. The highest transverse strength was displayed by the glass-reinforced resin (66.25MPa) in the immediate group. The transverse strength value was 62.04MPa for the unreinforced samples in the immediate group. All the specimens exhibited lower transverse strength with an increase in water immersion time. The transverse strength value was 61.13 MPa for the glass-reinforced resin and was 61.24 MPa for the unreinforced resin. The aramid-reinforced resin decreased from 62.29 to 58.77 MPa. The addition of fiber reinforcement enhanced the physical properties (the transverse strength, the maximal deflection, the modulus of elasticity) of the processed material over that seen with no addition of fiber. Water storage did not statistically affect the transverse strength of the provisional denture resin compared to that of the unreinforced resin. The transverse strength was lowered at water storage but it was not statistically significant. The transverse strength was enhanced by fiber addition compared to the unreinforced resin. The glass fiber was superior to the other fiber. Also the modulus of elasticity was enhanced by fiber addition compared to the unreinforced resin.

  11. Assessment of the physical properties and stability of mixtures of tetracycline hydrochloride ointment and acyclovir cream.

    PubMed

    Inoue, Yutaka; Furuya, Kayoko; Maeda, Rikimaru; Murata, Isamu; Kanamoto, Ikuo

    2013-04-15

    In dermatology, ointments are often mixed as part of drug therapy, but mixing often leads to incompatibility. Three combinations of tetracycline ointment (TC-o) and acyclovir cream (ACV-cr) were prepared at a TC-o:ACV-cr ratio of 1:1 using a brand-name ACV-cr and two generic ACV-cr (samples TC-o+ACV-A, TC-o+ACV-B, and TC-o+ACV-C). Microscopic examination revealed separation in TC-o+ACV-C. Viscosity and elasticity measurement indicated that the storage modulus (G') and loss modulus (G″) of each of the TC-o+ACV-cr mixtures behaved similarly to those of an ACV-cr and the loss tangent (tanδ) behaved similarly to that of a TC ointment. In addition, differences in the storage modulus (G') and loss modulus (G″) of the TC-o+ACV-cr mixtures were noted. To assess stability, each TC-o+ACV-cr mixture was stored away from direct sunlight at 25 °C and an RH of 84% and at 4 °C (in a refrigerator). HPLC revealed that the ACV content in each TC-o+ACV-cr mixture remained at 95-105% for up to 14 days under both sets of storage conditions. A decline in TC content in each TC-o+ACV-cr mixture was not noted with storage at 4 °C but was noted over time with storage at 25 °C and an RH of 84%. In addition, significant differences in the percent decline in TC content in each TC-o+ACV-cr mixture occurred with storage at 25 °C and an RH of 84%. Thus, differences in physical properties and stability may occur when combining brand-name and generic drugs, and temperature and humidity may be the cause of the TC-o's incompatibility. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Comparing five simple vascular storage protocols.

    PubMed

    van Doormaal, Tristan P C; Sluijs, Jurren H; Vink, Aryan; Tulleken, Cornelis A F; van der Zwan, Albert

    2014-11-01

    We aim to find a storage protocol for vessels that preserves their dimensional, histologic, and mechanical characteristics to facilitate reproducible anastomosis experiments and microsurgical training with constant quality. We compared stored rabbit aortas, harvested in a slaughterhouse, using five different protocols with fresh controls. Aortas were preserved for 125 d in (1) NaCl 0.9% at -18°C, (2) Roswell Park Memorial Institute 1640 90% with 10% dimethyl sulfoxide (RPMI/DMSO) at -18°C, (3) RPMI/DMSO at -70°C, (4) glycerol 85% at 4°C, and (5) glycerol in stepwise increased concentrations until 85% at 4°C. After preservation, we measured vessel diameter, wall thickness, and Young's Modulus indicating stiffness. Neurosurgeons compared stored vessels with fresh vessels, blinded for preservation subgroup. We performed histologic assessment blinded for preservation subgroup. Fresh rabbit aortas showed a mean diameter of 2.65 ± 0.14 mm, a mean wall thickness of 126 ± 22 μm, and a Young's Modulus of 11.4 ± 2.4 N/mm(2). NaCl 0.9%-preserved aortas showed a significantly increased vessel diameter and decreased stiffness. RPMI/DMSO-preserved aortas showed no significant differences from fresh aortas in dimensions and mechanical characteristics. Glycerol-preserved tissue showed a significant increase in wall thickness, a related significant decrease in diameter, and increase in stiffness. Neurosurgeons regarded RPMI/DMSO tissue as most comparable with fresh tissue. Histologic assessment revealed no differences between the different protocols and fresh control group. Storage of rabbit aortas in RPMI/DMSO most adequately preserves their dimensional and mechanical properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biomechanical and histological effects of augmented soft tissue mobilization therapy on achilles tendinopathy in a rabbit model.

    PubMed

    Imai, Kan; Ikoma, Kazuya; Chen, Qingshan; Zhao, Chunfeng; An, Kai-Nan; Gay, Ralph E

    2015-02-01

    Augmented soft tissue mobilization (ASTM) has been used to treat Achilles tendinopathy and is thought to promote collagen fiber realignment and hasten tendon regeneration. The objective of this study was to evaluate the biomechanical and histological effects of ASTM therapy on rabbit Achilles tendons after enzymatically induced injury. This study was a non-human bench controlled research study using a rabbit model. Both Achilles tendons of 12 rabbits were injected with collagenase to produce tendon injury simulating Achilles tendinopathy. One side was then randomly allocated to receive ASTM, while the other received no treatment (control). ASTM was performed on the Achilles tendon on postoperative days 21, 24, 28, 31, 35, and 38. Tendons were harvested 10 days after treatment and examined with dynamic viscoelasticity and light microscopy. Cross-sectional area in the treated tendons was significantly greater than in controls. Storage modulus tended to be lower in the treated tendons but elasticity was not significantly increased. Loss modulus was significantly lower in the treated tendons. There was no significant difference found in tangent delta (loss modulus/storage modulus). Microscopy of control tendons showed that the tendon fibers were wavy and type III collagen was well stained. The tendon fibers of the augmented soft tissue mobilization treated tendons were not wavy and type III collagen was not prevalent. Biomechanical and histological findings showed that the Achilles tendons treated with ASTM had better recovery of biomechanical function than did control tendons. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  14. Viscoelastic Parameters for Quantifying Liver Fibrosis: Three-Dimensional Multifrequency MR Elastography Study on Thin Liver Rat Slices

    PubMed Central

    Ronot, Maxime; Lambert, Simon A.; Wagner, Mathilde; Garteiser, Philippe; Doblas, Sabrina; Albuquerque, Miguel; Paradis, Valérie; Vilgrain, Valérie; Sinkus, Ralph; Van Beers, Bernard E.

    2014-01-01

    Objective To assess in a high-resolution model of thin liver rat slices which viscoelastic parameter at three-dimensional multifrequency MR elastography has the best diagnostic performance for quantifying liver fibrosis. Materials and Methods The study was approved by the ethics committee for animal care of our institution. Eight normal rats and 42 rats with carbon tetrachloride induced liver fibrosis were used in the study. The rats were sacrificed, their livers were resected and three-dimensional MR elastography of 5±2 mm liver slices was performed at 7T with mechanical frequencies of 500, 600 and 700 Hz. The complex shear, storage and loss moduli, and the coefficient of the frequency power law were calculated. At histopathology, fibrosis and inflammation were assessed with METAVIR score, fibrosis was further quantified with morphometry. The diagnostic value of the viscoelastic parameters for assessing fibrosis severity was evaluated with simple and multiple linear regressions, receiver operating characteristic analysis and Obuchowski measures. Results At simple regression, the shear, storage and loss moduli were associated with the severity of fibrosis. At multiple regression, the storage modulus at 600 Hz was the only parameter associated with fibrosis severity (r = 0.86, p<0.0001). This parameter had an Obuchowski measure of 0.89+/−0.03. This measure was significantly larger than that of the loss modulus (0.78+/−0.04, p = 0.028), but not than that of the complex shear modulus (0.88+/−0.03, p = 0.84). Conclusion Our high resolution, three-dimensional multifrequency MR elastography study of thin liver slices shows that the storage modulus is the viscoelastic parameter that has the best association with the severity of liver fibrosis. However, its diagnostic performance does not differ significantly from that of the complex shear modulus. PMID:24722733

  15. Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair

    DTIC Science & Technology

    2017-02-01

    dilution groups , tdeg increased with increasing concentration of EDC/NHS. Mechanical testing Values for storage modulus in spontaneous control gels (25.86...red) in 48-well nontreated tissue culture plates. As a positive control , a subset group of gels without tethered growth factor was exposed to 0.3 nM...in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were

  16. Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites

    Treesearch

    Natalie Girouard; Gregory T. Schueneman; Meisha L. Shofner; J. Carson Meredith

    2015-01-01

    In this study, cellulose nanocrystals (CNCs) are incorporated into a waterborne epoxy resin following two processing protocols that vary by order of addition. The processing protocols produce different levels of CNC dispersion in the resulting composites. The more homogeneously dispersed composite has a higher storage modulus and work of fracture at temperatures less...

  17. Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy.

    PubMed

    Gan, Tiansheng; Gong, Xiangjun; Schönherr, Holger; Zhang, Guangzhao

    2016-12-01

    Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (k s ) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, k s is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.

  18. Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy.

    PubMed

    Salehi-Khojin, Amin; Jana, Soumen; Zhong, Wei-Hong

    2007-03-01

    We previously developed a series of reactive graphitic nanofibers (r-GNFs) reinforced epoxy (nano-epoxy) as composite matrices, which have shown good wetting and adhesion properties with continuous fiber. In this work, the thermal-mechanical properties of the nano-epoxy system containing EponTM Resin 828 and Epi-cure Curing Agent W were characterized. Results from three-point bending tests showed that the flexural strength and flexural modulus of this system with 0.30 wt% of reactive nanofibers were increased by 16%, and 21% respectively, over pure epoxy. Fracture toughness increased by ca. 40% for specimens with 0.50 wt% of r-GNFs. By dynamic mechanical analysis (DMA) test, specimens with 0.30 wt% of r-GNFs showed a significant increase in storage modulus E' (by ca. 122%) and loss modulus E" (by ca. 111%) with respect to that of pure epoxy. Also thermo-dilatometry analysis (TDA) was used to measure dimensional change of specimens as a function of temperature, and then, coefficients of thermal expansion (CTE) before and after glass transition temperature (Tg) were obtained. Results implied that nano-epoxy materials had good dimensional stability and reduced CTE values when compared to those of pure epoxy.

  19. Viscoelastic properties of orthodontic adhesives used for lingual fixed retainer bonding.

    PubMed

    Papadogiannis, D; Iliadi, A; Bradley, T G; Silikas, N; Eliades, G; Eliades, T

    2017-01-01

    To evaluate the viscoelastic properties of two experimental BPA-free and one BisGMA-based orthodontic resin composite adhesives for bonding fixed retainers. A commercially available BisGMA-based (TXA: Transbond LR) and two bisphenol A-free experimental adhesives (EXA and EXB) were included in the study. The viscoelastic behavior of the adhesives was evaluated under static and dynamic conditions at dry and wet states and at various temperatures (21, 37, 50°C). The parameters determined were shear modulus (G), Young's modulus (E) under static testing and storage modulus (G 1 ), loss tangent (tanδ) and dynamic viscosity (n*) under dynamic testing. Statistical analysis was performed by 2-way ANOVA and Bonferroni post-hoc tests (α=0.05). For static testing, a significant difference was found within material and storage condition variables and a significant interaction between the two independent variables (p<0.001 for G and E). EXA demonstrated the highest G and E values at 21°C/dry group. Dry specimens showed the highest G and E values, but with no significant difference from 21°C/wet specimens, except EXA in G. Wet storage at higher temperatures (37°C and 50°C) adversely affected all the materials to a degree ranging from 40 to 60% (p<0.001). For dynamic testing, a significant difference was also found in material and testing condition groups, with a significant interaction between the two independent variables (p<0.001 for G 1 and n*, p<0.01 for tanδ). Reduction in G 1 , and n* values, and increase in tanδ values were encountered at increased water temperatures. The apparent detrimental effect of high temperature on the reduction of properties of adhesives may contribute to the loss of stiffness of the fixed retainer configuration under ordinary clinical conditions with unfavorable effects on tooth position and stability of the orthodontic treatment result. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  20. Frequency analysis of stress relaxation dynamics in model asphalts

    NASA Astrophysics Data System (ADS)

    Masoori, Mohammad; Greenfield, Michael L.

    2014-09-01

    Asphalt is an amorphous or semi-crystalline material whose mechanical performance relies on viscoelastic responses to applied strain or stress. Chemical composition and its effect on the viscoelastic properties of model asphalts have been investigated here by computing complex modulus from molecular dynamics simulation results for two different model asphalts whose compositions each resemble the Strategic Highway Research Program AAA-1 asphalt in different ways. For a model system that contains smaller molecules, simulation results for storage and loss modulus at 443 K reach both the low and high frequency scaling limits of the Maxwell model. Results for a model system composed of larger molecules (molecular weights 300-900 g/mol) with longer branches show a quantitatively higher complex modulus that decreases significantly as temperature increases over 400-533 K. Simulation results for its loss modulus approach the low frequency scaling limit of the Maxwell model at only the highest temperature simulated. A Black plot or van Gurp-Palman plot of complex modulus vs. phase angle for the system of larger molecules suggests some overlap among results at different temperatures for less high frequencies, with an interdependence consistent with the empirical Christensen-Anderson-Marasteanu model. Both model asphalts are thermorheologically complex at very high frequencies, where they show a loss peak that appears to be independent of temperature and density.

  1. Tunable Mechanical Behavior of Synthetic Organogels as Biofidelic Tissue Simulants

    DTIC Science & Technology

    2013-01-01

    leather , silicone elastomers, soap, lard, and clay (Appleby- Thomas et al., 2011; Jussila et al., 2005; Merkle et al., 2008). In most cases, the tissue...and throughout all experiments reported herein. 2.2. Rheology To measure the shear storage modulus G′, loss modulus G″, and loss tangent tan δ (i.e...magnitude and rate dependence of G′, G″, and tan δ Solvent has a significant impact on the modulus of these gels in two ways: (1) the solvent will

  2. Irradiation Sterilized Gelatin-Water-Glycerol Ternary Gel as an Injectable Carrier for Bone Tissue Engineering.

    PubMed

    Zhao, Yantao; Han, Liwei; Yan, Jun; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2017-01-01

    Injectable gelatin gels offer an attractive option for filling bone defects. The challenge is to fabricate gelatin gels with optimal gelation properties, which can be irradiation sterilized. Here, a gelatin-water-glycerol (GWG) gel is reported for use as a broad-spectrum injectable carrier. This ternary gel is high in glycerol and low in water, and remains stable after gamma irradiation at doses (25 kGy). As an injectable gel, it remains a viscous solution at gelatin concentrations ≤2.0%, at room temperature. Its storage modulus increases dramatically and eventually exceeds the loss modulus around 46-50 °C, indicating a transition from a liquid-like state to an elastic gel-like state. This ternary gel ranges significantly in terms of storage modulus (12-1700 Pa) while demonstrating a narrow pH range (5.58-5.66), depending on the gelatin concentration. Therefore, it can be loaded with a variety of materials. It is highly cytocompatible compared with saline in vivo and culture media in vitro. When loaded with demineralized bone matrix, the composites show favorable injectability, and excellent osteogenesis performance, after irradiation. These features can be attributed to high hydrophilicity and fast degradability. These findings justify that this ternary gel is promising as an irradiation-sterilized and universal injectable delivery system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of airborne-particle abrasion and aqueous storage on flexural properties of fiber-reinforced dowels.

    PubMed

    Petrie, Cynthia S; Walker, Mary P

    2012-06-01

    A great range of clinical failures have been observed with fiber-reinforced dowels, often attributed to fracture or bending of the dowels. This study investigated flexural properties of fiber-reinforced dowels, with and without airborne-particle abrasion, after storage in aqueous environments over time. Scanning electron microscopy (SEM) was used to analyze the mode of failure of dowels. Two dowel systems (ParaPost Fiber Lux and FibreKor) were evaluated. Ten dowels of each system were randomly assigned to one of six experimental groups: 1--control, dry condition; 2--dowels airborne-particle abraded and then stored dry; 3--dowels stored for 24 hours in aqueous solution at 37°C; 4--dowels airborne-particle abraded followed by 24-hour aqueous storage at 37°C; 5--dowels stored for 30 days in aqueous solution at 37°C; 6--dowels airborne-particle abraded followed by 30-day aqueous storage at 37°C. Flexural strength and flexural modulus were tested for all groups according to American Society of Testing and Materials (ASTM) standard D4476. One failed dowel from each group was randomly selected to be evaluated with SEM equipped with energy dispersive spectroscopy (EDS) to characterize the failure pattern. One intact dowel of each system was also analyzed with SEM and EDS for baseline information. Mean flexural modulus and strength of ParaPost Fiber Lux dowels across all conditions were 29.59 ± 2.89 GPa and 789.11 ± 89.88 MPa, respectively. Mean flexural modulus and strength of FibreKor dowels across all conditions were 25.58 ± 1.48 GPa and 742.68 ± 89.81 MPa, respectively. One-way ANOVA and a post hoc Dunnett's t-test showed a statistically significant decrease in flexural strength as compared to the dry control group for all experimental groups stored in water, for both dowel systems (p < 0.05). Flexural modulus for both dowel systems showed a statistically significant decrease only for dowels stored in aqueous solutions for 30 days (p < 0.05). Airborne-particle abrasion did not have an effect on flexural properties for either dowel system (p > 0.05). SEM and EDS analyses revealed differences in composition and failure mode of the two dowel systems. Failed dowels of each system revealed similar failure patterns, irrespective of the experimental group. Aqueous storage had a negative effect on flexural properties of fiber-reinforced dowels, and this negative effect appeared to increase with longer storage times. The fiber/resin matrix interface was the weak structure for the dowel systems tested. © 2012 by the American College of Prosthodontists.

  4. Novel nano-particles as fillers for an experimental resin-based restorative material.

    PubMed

    Rüttermann, S; Wandrey, C; Raab, W H-M; Janda, R

    2008-11-01

    The purpose of this study is to compare the properties of two experimental materials, nano-material (Nano) and Microhybrid, and two trade products, Clearfil AP-X and Filtek Supreme XT. The flexural strength and modulus after 24h water storage and 5000 thermocycles, water sorption, solubility and X-ray opacity were determined according to ISO 4049. The volumetric behavior (DeltaV) after curing and after water storage was investigated with the Archimedes principle. ANOVA was calculated with p<0.05. Clearfil AP-X showed the highest flexural strength (154+/-14 MPa) and flexural modulus (11,600+/-550 MPa) prior to and after thermocycling (117+/-14 MPa and 13,000+/-300 MPa). The flexural strength of all materials decreased after thermocycling, but the flexural modulus decreased only for Filtek Supreme XT. After thermocycling, there were no significant differences in flexural strength and modulus between Filtek Supreme XT, Microhybrid and Nano. Clearfil AP-X had the lowest water sorption (22+/-1.1 microg mm(-3)) and Nano had the highest water sorption (82+/-2.6 microg mm(-3)) and solubility (27+/-2.9 microg mm(-3)) of all the materials. No significant differences occurred between the solubility of Clearfil AP-X, Filtek Supreme XT and Microhybrid. Microhybrid and Nano provided the highest X-ray opacity. Owing to the lower filler content, Nano showed higher shrinkage than the commercial materials. Nano had the highest expansion after water storage. After thermocycling, Nano performed as well as Filtek Supreme XT for flexural strength, even better for X-ray opacity but significantly worse for flexural modulus, water sorption and solubility. The performances of microhybrids were superior to those of the nano-materials.

  5. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    NASA Astrophysics Data System (ADS)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae. Exfoliated graphite (EG) as a sole filler is more effective than carbon nanotube (SWCNT/MWCNT), halloysite nanotube (HNT) or nanoclay as sole fillers in enhancing the loss tangent, if the curing pressure is 2.0 (not 0.5) MPa. The MWCNT, SiC whisker and halloysite nanotube as sole fillers are effective for increasing the storage modulus. The combined use of a storage-modulus-enhancing filler (CNT, SiC whisker or HNT) and a loss-tangent-enhancing filler (EG or nanoclay) gives the best performance. With EG, HNT and 2.0-MPa curing, the loss modulus is increased by 110%, while the flexural strength is decreased by 14% and the flexural modulus is not affected. With nanoclay, HNT and 0.5-MPa curing, the loss modulus is increased by 96%, while the flexural strength and modulus are essentially not affected. The low through-thickness thermal conductivity limits heat dissipation from continuous carbon fiber polymer-matrix composites. This conductivity is increased by up to 60% by raising the curing pressure from 0.1 to 2.0 MPa and up to 33% by incorporation of a filler (61.5 vol.%) at the interlaminar interface. The thermal resistivity is dominated by the lamina resistivity (which is contributed substantially by the intralaminar fiber--fiber interfacial resistivity), with the interlaminar interface thermal resistivity being unexpectedly negligible. The lamina resistivity and intralaminar fiber-fiber interfacial resistivity are decreased by up to 56% by raising the curing pressure and up to 36% by filler incorporation. Thermoelectric structural materials are potentially attractive for large-scale energy harvesting. Through filler incorporation and unprecedented decoupling of the bulk (laminae) and interfacial (interlaminar interfaces) contributions to the Seebeck voltage (through-thickness Seebeck voltage of a crossply continuous carbon fiber/epoxy composite laminate), this work provides thermoelectric power magnitudes at ˜70°C up to 110, 1670 and 11000 microV/K for the laminate, a lamina and an interlaminar interface respectively. The interface provides an apparent thermoelectric effect due to carrier backflow. The interfacial voltage is opposite in sign from the laminate and lamina voltages and is slightly lower in magnitude than the lamina voltage. The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix structural composites has been greatly improved by the use of tellurium particles (13 vol.% of composite), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%) at the interlaminar interface. The thermoelectric power is increased from 8 to 163 microV/K, while the electrical resistivity is decreased from 0.17 to 0.02 O.cm, the thermal conductivity is decreased from 1.31 to 0.51 W/m.K, and the dimensionless thermoelectric figure of merit ZT at 70°C is increased from 9 x 10-6 to 9 x 10-2. Decrease in the curing pressure from 4.0 to 0.5 MPa decreases ZT slightly, mainly due to the increase in electrical resistivity.

  6. A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics

    NASA Astrophysics Data System (ADS)

    Lei, Dong; Liang, Yingjie; Xiao, Rui

    2018-01-01

    We develop a fractional model to describe the thermomechanical behavior of amorphous thermoplastics. The fractional model is composed of two parallel fractional Maxwell elements. The first fractional Maxwell model is used to describe the glass transition, while the second component is aimed at describing the viscous flow. We further derive the analytical solutions for the stress relaxation modulus and complex modulus through Laplace transform. We then demonstrate the model is able to describe the master curves of the stress relaxation modulus, storage modulus and loss modulus, which all show two distinct transition regions. The obtained parameters show that the modulus of the two fractional Maxwell elements differs in 2-3 orders of magnitude, while the relaxation time differs in 7-9 orders of magnitude. Finally, we apply the model to describe the stress response of constant strain rate tests. The model, together with the parameters obtained from fitting the master curve of stress relaxation modulus, can accurately predict the temperature and strain rate dependent stress response.

  7. Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy

    PubMed Central

    Raub, Christopher B.; Suresh, Vinod; Krasieva, Tatiana; Lyubovitsky, Julia; Mih, Justin D.; Putnam, Andrew J.; Tromberg, Bruce J.; George, Steven C.

    2007-01-01

    Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth (∼1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical properties (i.e., SHG and TPF) could be used to predict bulk mechanical properties of collagen hydrogels. We utilized polymerization temperature (4–37°C) and glutaraldehyde to manipulate collagen hydrogel fiber diameter, space-filling properties, and cross-link density. Multiphoton microscopy and scanning electron microscopy reveal that as polymerization temperature decreases (37–4°C) fiber diameter and pore size increase, whereas hydrogel storage modulus (G′, from 23 ± 3 Pa to 0.28 ± 0.16 Pa, respectively, mean ± SE) and mean SHG decrease (minimal change in TPF). In contrast, glutaraldehyde significantly increases the mean TPF signal (without impacting the SHG signal) and the storage modulus (16 ± 3.5 Pa before to 138 ± 40 Pa after cross-linking, mean ± SD). We conclude that SHG and TPF can characterize differential microscopic features of the collagen hydrogel that are strongly correlated with bulk mechanical properties. Thus, optical imaging may be a useful noninvasive tool to assess tissue mechanics. PMID:17172303

  8. Rational interface design of epoxy-organoclay nanocomposites: role of structure-property relationship for silane modifiers.

    PubMed

    Bruce, Alex N; Lieber, Danielle; Hua, Inez; Howarter, John A

    2014-04-01

    Montmorillonite was modified by three silane surfactants with different functionalities to investigate the role of surfactant structure on the properties of a final epoxy-organoclay nanocomposite. N-aminopropyldimethylethoxysilane (APDMES), an aminated monofunctional silane, was chosen as a promising surfactant for several reasons: (1) it will bond to silica in montmorillonite, (2) it will bond to epoxide groups, and (3) to overcome difficulties found with trifunctional aminosilane bonding clay layers together and preventing exfoliation. A trifunctional and non-aminated version of APDMES, 3-aminopropyltriethoxysilane (APTES) and n-propyldimethylmethoxysilane (PDMMS), respectively, was also studied to provide comparison to this rationally chosen surfactant. APDMES and APTES were grafted onto montmorillonite in the same amount, while PDMMS was barely grafted (<1 wt%). The gallery spacing of APDMES organoclay was greater than APTES or PDMMS, but the final nanocomposite gallery spacing was not dependent on the surfactant used. Different concentrations of APDMES modified montmorillonite yielded different properties, as concentration decreased glass transition temperature increased, thermal stability increased, and the storage modulus decreased. Storage modulus, glass transition temperature, and thermal stability were more similar for epoxy-organoclay composites modified with the same concentration of silane surfactant, neat epoxy, and epoxy-montmorillonite nanocomposite. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Influence of nanofillers on the thermal and mechanical behavior of DGEBA-based adhesives for bonded-in timber connections

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Ansell, M. P.; Smedley, D.

    2006-09-01

    Results of an experimental investigation into the thermal behavior and mechanical properties of a room-temperature-cured epoxy adhesive (diglycidyl ether of bisphenol A, DGEBA) cross-linked with polyetheramines and filled with different fillers, namely nanosilica, liquid rubber (CTBN), and clay, are reported. The nanosilica and liquid rubber increased the flexural strength and elastic modulus of the adhesive systems; the addition of clay particles raised the elastic modulus significantly, but embrittled the adhesive. Establishing a correct cure time is very important for bonded-in timber structures, as it will affect the bond strength. A study on the effect of cure time on the flexural strength was carried out, from which it follows that the adhesives should be cured for at least 20 days at room temperature. The damping characteristics and the glass-transition temperature of the adhesives were determined by using a dynamic mechanical thermal analysis. The results showed that the filled adhesives had a higher storage modulus, which was in agreement with the elastic moduli determined from static bending tests. The introduction of the fillers increased its glass-transition temperature considerably.

  10. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites.

    PubMed

    Aw, Yah Yun; Yeoh, Cheow Keat; Idris, Muhammad Asri; Teh, Pei Leng; Hamzah, Khairul Amali; Sazali, Shulizawati Aqzna

    2018-03-22

    Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application .

  11. Mechanical loading influences the viscoelastic performance of the resin-carious dentin complex.

    PubMed

    Toledano, Manuel; Osorio, Raquel; López-López, Modesto T; Aguilera, Fátima S; García-Godoy, Franklin; Toledano-Osorio, Manuel; Osorio, Estrella

    2017-04-04

    The aim of this study was to evaluate the changes in the mechanical behavior and bonding capability of Zn-doped resin-infiltrated caries-affected dentin interfaces. Dentin surfaces were treated with 37% phosphoric acid (PA) followed by application of a dentin adhesive, single bond (SB) (PA+SB) or by 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB (EDTA+SB). ZnO microparticles of 10 wt. % or 2 wt. % ZnCl 2 was added into SB, resulting in the following groups: PA+SB, PA+SB-ZnO, PA+SB-ZnCl 2 , EDTA+SB, EDTA+SB-ZnO, EDTA+SB-ZnCl 2 . Bonded interfaces were stored for 24 h, and tested or submitted to mechanical loading. Microtensile bond strength was assessed. Debonded surfaces were evaluated by scanning electron microscopy and elemental analysis. The hybrid layer, bottom of the hybrid layer, and peritubular and intertubular dentin were evaluated using a nanoindenter. The load/displacement responses were used for the nanodynamic mechanical analysis III to estimate complex modulus, tan delta, loss modulus, and storage modulus. The modulus mapping was obtained by imposing a quasistatic force setpoint to which a sinusoidal force was superimposed. Atomic force microscopy imaging was performed. Load cycling decreased the tan delta at the PA+SB-ZnCl 2 and EDTA+SB-ZnO interfaces. Tan delta was also diminished at peritubular dentin when PA+SB-ZnO was used, hindering the dissipation of energy throughout these structures. Tan delta increased at the interface after using EDTA+SB-ZnCl 2 , lowering the energy for recoil or failure. After load cycling, loss moduli at the interface decreased when using ZnCl 2 as doping agent, increasing the risk of fracture; but when using ZnO, loss moduli was dissimilarly affected if dentin was EDTA-treated. The border between intertubular and peritubular dentin attained the highest discrepancy in values of viscoelastic properties, meaning a risk for cracking and breakdown of the resin-dentin interface. PA used on dentin provoked differences in complex and storage modulus values at the intertubular and peritubular structures, and these differences were higher than when EDTA was employed. In these cases, the long-term performance of the restorative interface will be impaired.

  12. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials.

    PubMed

    Kossivas, Fotis; Angeli, S; Kafouris, D; Patrickios, C S; Tzagarakis, V; Constantinides, C

    2012-06-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)-sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of three-dimensional tissue-mimicking models of cardiac anatomy from 2D MR images using rapid prototyping manufacturing processes was developed. For synthesized elastomers, doping strategies with two different concentrations of the MRI contrast agent Dotarem allowed independent and concurrent control of the imaging characteristics (contrast and relaxivity) during the synthetic process for increased contrast agent absorption, with tremendous potential for non-destructive in vivo use and applications to cardiovascular and cerebrovascular diseases.

  13. Effect of lime concentration on gelatinized maize starch dispersions properties.

    PubMed

    Lobato-Calleros, C; Hernandez-Jaimes, C; Chavez-Esquivel, G; Meraz, M; Sosa, E; Lara, V H; Alvarez-Ramirez, J; Vernon-Carter, E J

    2015-04-01

    Maize starch was lime-cooked at 92 °C with 0.0-0.40% w/w Ca(OH)2. Optical micrographs showed that lime disrupted the integrity of insoluble remnants (ghosts) and increased the degree of syneresis of the gelatinized starch dispersions (GSD). The particle size distribution was monomodal, shifting to smaller sizes and narrower distributions with increasing lime concentration. X-ray patterns and FTIR spectra showed that crystallinity decreased to a minimum at lime concentration of 0.20% w/w. Lime-treated GSD exhibited thixotropic and viscoelastic behaviour. In the linear viscoelastic region the storage modulus was higher than the loss modulus, but a crossover between these moduli occurred in the non-linear viscoelastic region. The viscoelastic properties decreased with increased lime concentration. The electrochemical properties suggested that the amylopectin-rich remnants and the released amylose contained in the continuous matrix was firstly attacked by calcium ions at low lime levels (<0.20% w/w), disrupting the starch gel microstructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment.

    PubMed

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry.

  15. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites.

    PubMed

    Zhao, Jiangqi; Li, Qingye; Zhang, Xiaofang; Xiao, Meijie; Zhang, Wei; Lu, Canhui

    2017-02-10

    Cellulose nanofibers (CNFs) were surface-modified with polyethyleneimine (PEI), which brought plentiful amine groups on the surface of CNFs, leading to a reduced hydrogen bond density between CNFs and consequently less CNFs agglomerates. The amine groups could also react with the epoxy as an effective curing agent that could increase the interfacial crosslinking density and strengthen interfacial adhesion. The tensile strength and Young's modulus of CNFs-PEI/Epoxy nanocomposites were 88.1% and 237.6% higher than those of neat epoxy, respectively. The tensile storage modulus of the nanocomposites also increased significantly at the temperature either below or above the Tg. The coefficient of thermal expansion for the CNFs-PEI/Epoxy nanocomposites was 22.2ppmK -1 , much lower than that of the neat epoxy (88.6ppmK -1 ). In addition, the thermal conductivity of the nanocomposites was observed to increase as well. The exceptional and balanced properties may provide the nanocomposites promising applications in automotive, construction and electronic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment

    PubMed Central

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry. PMID:27537844

  17. Rheological Properties of Graphene Oxide/Konjac Glucomannan Sol.

    PubMed

    Zhu, Wenkun; Duan, Tao; Hu, Zuowen

    2018-05-01

    We have demonstrated there is a significant intermolecular interaction between GO and KGM that results from hydrogen bonding and physical cross-linking by studying the rheological properties of a graphene oxide/konjac glucomannan (GO/KGM) solution. When the addition of GO was 5%, the storage modulus (G') and loss modulus (G″) were only improved by 0.25%. However, G' and G″ were improved by approximately 90% and 73.4%, respectively, when the GO content was increased to 7.5%. The moduli also displayed a relationship between the power function and concentration. Furthermore, the formation mechanism of GO/KGM was investigated by Raman, FT-IR, XPS and SEM. The results suggested that hydrogen bonding and physical crosslinking are generated from the abundant carboxy and hydroxyl groups of graphene oxide and the hydroxyl groups of konjac glucomannan.

  18. A Study on the Influence of Process Parameters on the Viscoelastic Properties of ABS Components Manufactured by FDM Process

    NASA Astrophysics Data System (ADS)

    Dakshinamurthy, Devika; Gupta, Srinivasa

    2018-04-01

    Fused Deposition Modelling (FDM) is a fast growing Rapid Prototyping (RP) technology due to its ability to build parts having complex geometrical shape in reasonable time period. The quality of built parts depends on many process variables. In this study, the influence of three FDM process parameters namely, slice height, raster angle and raster width on viscoelastic properties of Acrylonitrile Butadiene Styrene (ABS) RP-specimen is studied. Statistically designed experiments have been conducted for finding the optimum process parameter setting for enhancing the storage modulus. Dynamic Mechanical Analysis has been used to understand the viscoelastic properties at various parameter settings. At the optimal parameter setting the storage modulus and loss modulus of the ABS-RP specimen was 1008 and 259.9 MPa respectively. The relative percentage contribution of slice height and raster width on the viscoelastic properties of the FDM-RP components was found to be 55 and 31 % respectively.

  19. Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels.

    PubMed

    Mao, Like; Roos, Yrjö H; Miao, Song

    2014-11-26

    Emulsion-filled protein gels (EFP gels) were prepared through a cold-set gelation process, and they were used to deliver volatile compounds. An increase in the whey protein isolate (WPI) content from 4 to 6% w/w did not show significant effect on the gelation time, whereas an increase in the oil content from 5 to 20% w/w resulted in an earlier onset of gelation. Gels with a higher WPI content had a higher storage modulus and water-holding capacity (WHC), and they presented a higher force and strain at breaking, indicating that a more compact gel network was formed. An increase in the oil content contributed to gels with a higher storage modulus and force at breaking; however, this increase did not affect the WHC of the gels, and gels with a higher oil content became more brittle, resulting in a decreased strain at breaking. GC headspace analysis showed that volatiles released at lower rates and had lower air-gel partition coefficients in EFP gels than those in ungelled counterparts. Gels with a higher WPI content had lower release rates and partition coefficients of the volatiles. A change in the oil content significantly modified the partition of volatiles at equilibrium, but it produced a minor effect on the release rate of the volatiles. The findings indicated that EFP gels could be potentially used to modulate volatile release by varying the rheological properties of the gel.

  20. Texture of low-fat Iranian White cheese as influenced by gum tragacanth as a fat replacer.

    PubMed

    Rahimi, J; Khosrowshahi, A; Madadlou, A; Aziznia, S

    2007-09-01

    The effect of different concentrations of gum tragacanth on the textural characteristics of low-fat Iranian White cheese was studied during ripening. A batch of full-fat and 5 batches of low-fat Iranian White cheeses with different gum tragacanth concentrations (without gum or with 0.25, 0.5, 0.75, or 1 g of gum/kg of milk) were produced to study the effects of fat content reduction and gum concentration on the textural and functional properties of the product during ripening. Cheese samples were analyzed with respect to chemical, color, and sensory characteristics, rheological parameters (uniaxial compression and small-amplitude oscillatory shear), and microstructure. Reducing the fat content had an adverse effect on cheese yield, sensory characteristics, and the texture of Iranian White cheese, and it increased the instrumental hardness parameters (i.e., fracture stress, elastic modulus, storage modulus, and complex modulus). However, increasing the gum tragacanth concentration reduced the values of instrumental hardness parameters and increased the whiteness of cheese. Although when the gum concentration was increased, the low-fat cheese somewhat resembled its full-fat counterpart, the interaction of the gum concentration with ripening time caused visible undesirable effects on cheese characteristics by the sixth week of ripening. Cheeses with a high gum tragacanth concentration became very soft and their solid texture declined somewhat.

  1. Amylose-potassium oleate inclusion complex in plain set-style yogurt

    USDA-ARS?s Scientific Manuscript database

    Amylose-potassium oleate inclusion complex (AIC) were used to replace skim milk solids in yogurt. The effect of AIC on yogurt fermentation and small amplitude oscillatory shear flow measurements of storage and loss moduli were studied and compared to full fat samples. Texture, storage modulus, and s...

  2. Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles

    NASA Astrophysics Data System (ADS)

    Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong

    2011-12-01

    Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.

  3. Dynamic mechanical analysis of storage modulus development in light-activated polymer matrix composites.

    PubMed

    Sakaguchi, Ronald L; Shah, Nilam C; Lim, Bum Soon; Ferracane, Jack L; Borgersen, Svenn E

    2002-05-01

    The goal of this study was to evaluate the potential for using dynamic mechanical analysis of tubular geometry in a three-point flexure fixture for monitoring the storage modulus development of a light-activated polymer matrix composite. Composite samples were inserted into PTFE tubes and tested in a three-point bend fixture in a dynamic mechanical analyzer (DMA) at 200 Hz with 20 microm amplitude. Samples were light activated for 60s (385 mW/cm(2) at the composite surface) and storage modulus (E') was measured continuously for the seven light-activated composites studied (one microfill, four hybrids and two unfilled resins). Cores of composite were removed from the PTFE sheath after 13.5 min and evaluated with the same parameters in the DMA. A finite element model of the test configuration was created and used to estimate operating parameters for the DMA. Degree of conversion (DC) was measured using micro-Fourier Transform Infrared (FTIR) spectroscopy for the microfilled composite samples and one hybrid 13.5 and 60 min after light activation. The E' for a generic hybrid and microfilled composite was 13,400+/-1100 and 5900+/-200 MPa, respectively, when cured within the tube and then removed and tested in the DMA. DC was 54.6% for the hybrid and 60.6% for the microfill. A linear regression of E' for the sheath and core vs core alone (r(2)=0.986) indicated a linear scaling of the sheath and core values for E' enabling a correction for estimated E' values of the composite core. This method estimates the storage modulus growth during light-activated polymerization of highly filled dimethacrylates. Although the approach is phenomenological in that quantitative measurements of E' are not made directly from the DMA, estimates of early polymerization kinetics appear to be validated by three different approaches.

  4. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    PubMed

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Quality and sensory acceptability of a chilled functional apple ready-dessert.

    PubMed

    Keenan, D F; Brunton, N P; Gormley, T R; Butler, F

    2012-04-01

    An apple and dairy based ready-dessert with an added prebiotic was stored and chill temperatures and number of quality attributes were monitored during chill (4 °C) storage for 30 days. All ready-desserts were thermally processed by sous vide (P (90) > 10 min). The stability of the dairy component in ready-desserts was monitored by measuring volatile free fatty acids. Changes in these components were more evident in prebiotic-enriched samples compared to controls. However, no significant differences were observed over storage in control and prebiotic-enriched ready-desserts. This was supported by sensory analysis that showed no significant changes over storage in control or prebiotic-enriched samples. Of the other quality parameters, the addition of prebiotic inclusions resulted in lower L and b values and dry matter (p < 0.05), while increasing (p < 0.05) soluble solids content compared to control samples. Fluctuations in some of the quality parameters were also observed over storage. Rheological characteristics, i.e. flow behaviour (n), consistency index (K), storage (G'), loss (G″) and complex (G*) moduli were unaffected by prebiotic inclusion. However, storage affected the rheological characteristics of ready-desserts. A decrease (p < 0.05) in flow behaviour (n) led to concomitant increases in consistency index (K) and complex modulus (G*) values in control samples.

  6. Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Khelidj, B.; Lounis, M.

    2017-01-01

    In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.

  7. Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel.

    PubMed

    Zhang, Xin; Xu, Jiayun; Lang, Chao; Qiao, Shanpeng; An, Guo; Fan, Xiaotong; Zhao, Linlu; Hou, Chunxi; Liu, Junqiu

    2017-06-12

    Self-healing, one of the exciting properties of materials, is frequently used to repair the damage of biological and artificial systems. Here we have used enzymatic catalysis approaches to develop a fast self-healing hydrogel, which has been constructed by dynamic aldimine cross-linking of pillar[5]arene-derivant and dialdehyde-functionalized PEG followed by encapsulation of glucose oxidase (GOx) and catalase (CAT). In specific, the two hydroxyl groups at terminal of PEG 4000 are functionalized with benzaldehydes that can interact with amino-containing pillar[5]arene-derivant through dynamic aldimine cross-links, resulting in reversible dynamic hydrogels. Modulus analysis indicated that storage modulus (G') and loss modulus (G″) of the hydrogel increased obviously as the concentration of dialdehyde-functionalized PEG 4000 (DF-PEG 4000 ) increased or the pH values decreased. Once glucose oxidase (GOx) and catalase (CAT) are located, the hydrogel could be fast repaired, with self-healing efficiency up to 100%. Notably tensile test showed that the repair process of pillararene-based hydrogel can finish in several minutes upon enzyme catalysis, while it needed more than 24 h to achieve this recovery without enzymes. This enzyme-regulated self-healing hydrogel would hold promise for delivering drugs and for soft tissue regeneration in the future.

  8. The impact of long term freezing on the mechanical properties of porcine aortic tissue.

    PubMed

    O'Leary, Siobhan A; Doyle, Barry J; McGloughlin, Tim M

    2014-09-01

    Preservation of the native artery׳s functionality can be important in both clinical and experimental applications. Although, simple cryopreservation techniques offer an attractive solution to this problem, the extent to which freezing affects the tissue׳s properties is widely debated. Earlier assessments of the mechanical properties post-freezing have been limited by one or more of the following: small sample numbers, uncontrolled inter-specimen/animal variability, failure to account for the impact of potential errors in thickness measurements, short storage times and uniaxial test methods. Biaxial mechanical tests were performed on porcine aortic samples (n=89) extracted from superior, middle and inferior regions of five aortas, stored in isotonic saline at -20°C for 1 day, 1 week, 1, 6 and 12 months, thawed and retested. The sample׳s weight and thickness were also measured pre and post-freezing. A total of 178 tests were performed and elastic modulus was assessed by calculating the slope of the Cauchy stress-stretch curve at the low and high stretch regions in both the circumferential (θ) and longitudinal (L) directions. The weight of the samples increased post-freezing. However, in general, no significant difference was found between the elastic modulus of porcine aortic tissue before and after freezing at -20°C and was unaffected by storage time. Although more accurate measuring instruments are warranted to confirm this finding, minor changes to the elastic modulus as a result of freezing were negatively correlated with regional variances i.e. changes in the elastic modulus decreased from the superior to the inferior region. These results indicate that for applications which require preservation of the gross mechanical properties, storing the tissue at -20°C in isotonic saline, for an extended period of time, is acceptable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    PubMed

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Influence of Addition of Carboxyl Functionalized MWCNTs on Performance of Neat and Carbon Fiber Reinforced EPON 862

    DTIC Science & Technology

    2013-05-01

    control system (without CNTs). In addition, storage modulus, glass transition temperature, thermal stability were all improved in MWCNTs modified carbon...curve obtained from Flexural response of different composites (b) variation in flexural properties with the concentration of MWCNTs ...tensile test (b) variation in tensile strength and Young’s modulus with the percentage of MWCNT .... 65 7.4 Fracture morphology of (a) Neat, (b

  11. Polytetramethylene glycol-modified polycyanurate matrices reinforced with nanoclays: synthesis and thermomechanical performance

    NASA Astrophysics Data System (ADS)

    Anthoulis, G. I.; Kontou, E.; Fainleib, A.; Bei, I.

    2009-03-01

    The outstanding improvement in the physical properties of cyanate esters (CEs) compared with those of competitor resins, such as epoxies, has attracted appreciable attention recently. Cyanate esters undergo thermal polycyclotrimerization to give polycyanurates (PCNs). However, like most thermo setting resins, the main draw back of CEs is brittleness. To over come this disadvan tage, CEs can be toughened by the introduction of polytetramethylene glycol (PTMG), a hydroxyl-terminated polyether. How ever, PTMG has a detrimental impact on Young's modulus. To simultaneously enhance both the ductility and the stiffness of CE, we added PTMG and an organoclay (mont morillonite, MMT) to it. A series of PCN/PTMG/MMT nanocomposites with a constant PTMG weight ratio was pre pared, and the resulting nanophase morphology, i.e., the degree of filler dispersion and distribution in the composite and the thermomechanical properties, in terms of glass-transition behaviour, Young's modulus, tensile strength, and elongation at break, were examined using the scanning elec tron micros copy (SEM), a dynamic mechanical analysis (DMA), and stress-strain measurements, re spectively. It was found that, at a content of MMT below 2 wt.%, MMT nanoparticles were distributed uniformly in the matrix, suggesting a lower degree of agglomeration for these materials. In the glassy state, the significant increase in the storage modulus revealed a great stiffening effect of MMT due to its high Young's modulus. The modification with PTMG led to a 233% greater elongation at break compared with that of neat PCN. The nanocomposites exhibited an invariably higher Young's modulus than PCN/PTMG for all the volume factors of organoclay examined, with the 2 wt.% material displaying the most pronounced in crease in the modulus, in agreement with micros copy results.

  12. Formation of core-shell structured complex microparticles during fabrication of magnetorheological elastomers and their magnetorheological behavior

    NASA Astrophysics Data System (ADS)

    Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin

    2016-11-01

    To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.

  13. The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy

    NASA Astrophysics Data System (ADS)

    Ismadi, A. I.; Othman, R. N.

    2017-12-01

    Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.

  14. Rheological characteristics of cold thickened beverages containing xanthan gum-based food thickeners used for dysphagia diets.

    PubMed

    Cho, Hyun M; Yoo, Byoungseung

    2015-01-01

    Cold beverages are commonly thickened with commercial gum-based food thickeners for consumption by patients with dysphagia. In this study, the rheological properties of a thickened water and five thickened beverages (orange juice, apple juice, grape juice, whole milk, and a sport drink) that were prepared with four commercial instant xanthan gum-based thickeners (coded A-D) were investigated at a 3% thickener concentration. All thickened samples showed high shear-thinning behavior with yield stress at the serving temperature of 8°C. The magnitudes of apparent viscosity (ηa,50), consistency index (K), storage modulus (G'), and loss modulus (G'') of the thickened beverages, except for water, with food thickener A were significantly higher compared with other thickeners (B, C, and D) (P<0.05). The largest increases in K values for thickened beverages were observed at 1-hour storage, and at longer times their K values, except for milk, remained approximately constant. Rheological parameters demonstrated statistically significant differences in flow and dynamic behaviors between the cold thickened beverages prepared with the xanthan gum-based food thickeners (P<0.05), indicating that their rheological properties are strongly influenced by the dispersing medium, the type of food thickener, and storage time. In particular, appropriately selecting a commercial food thickener for preparing thickened beverages seems to be of importance for managing dysphagia. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  15. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    PubMed

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  16. High performance light-colored nitrile-butadiene rubber nanocomposites.

    PubMed

    Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin

    2011-12-01

    High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.

  17. Healing efficiency and dynamic mechanical properties of self-healing epoxy systems

    NASA Astrophysics Data System (ADS)

    Guadagno, Liberata; Raimondo, Marialuigia; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Binder, Wolfgang H.

    2014-03-01

    Several systems to develop self-repairing epoxy resins have recently been formulated. In this paper the effect of matrix nature and curing cycle on the healing efficiency and dynamic mechanical properties of self-healing epoxy resins were investigated. We discuss several aspects by transferring self-healing systems from the laboratory scale to real applications in the aeronautic field, such as the possibility to choose systems with increased glass transition temperature, high storage modulus and high values in the healing functionality under real working conditions.

  18. Effects of organoclay to miscibility, mechanical and thermal properties of poly(lactic acid) and propylene-ethylene copolymer blends

    NASA Astrophysics Data System (ADS)

    Wacharawichanant, S.; Ounyai, C.; Rassamee, P.

    2017-07-01

    The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.

  19. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies.

    PubMed

    Pietrucha, Krystyna

    2005-09-28

    This report describes the effect of temperature on the mechanical viscoelastic properties such as: storage modulus (E'), loss modulus (E''), and loss tangent (tandelta) of the collagen sponges modified with hyaluronic acid (HA). In order to detect collagen-HA copolymer denaturation and to assess its thermal stability, the differential scanning calorimetry (DSC) supplemented by thermogravimetric (TG) measurements was used. The denaturation temperature (T(d)) of unmodified collagen samples increased from 69 to 86 degrees C for cross-linked samples, respectively. These temperature dependencies show remarkable changes in E' and E'' at selected temperature up to 226 degrees C for all samples due to the release of loosely and strongly bound water. The influence of HA on the viscoelastic behavior of collagen is manifested by a shift of the tandelta peak associated with the process of decomposition towards higher temperatures resulting in a higher thermo-stability of the modified scaffolds.

  20. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films

    PubMed Central

    Sullivan, Erin M.; Moon, Robert J.; Kalaitzidou, Kyriaki

    2015-01-01

    The focus of this study is to examine the effect of cellulose nanocrystals (CNC) on the properties of polylactic acid (PLA) films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region. PMID:28793701

  1. Correlation between the dielectric and the mechanical behavior of cellulose nanocomposites extracted from the rachis of the date palm tree

    NASA Astrophysics Data System (ADS)

    Ladhar, A.; Arous, M.; Kaddami, H.; Ayadi, Z.; Kallel, A.

    2017-10-01

    In the present study, the dielectric and mechanical properties of natural rubber (NR) based nanocomposites are investigated. Cellulose nanofillers are used in two forms as reinforcing phase: nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC). In the dielectric study, different relaxation phenomena are detected: the α dipolar relaxation, the lignin and hemicelluloses relaxation, the water dipoles relaxation, the interfacial polarization and the ionic conduction. For the interfacial polarization, the dielectric strength Δε showed lower values for NFC-filled nanocomposites than CNC-filled samples. It was explained with higher interactions between induced dipoles and lower mobility, assuring a better adhesion between the NR and the NFC. Moreover, in tensile tests, the elastic modulus increases with filling indicating the reinforcement effect of nanofillers. In addition, the NR-NFC nanocomposites display the highest tensile modulus. This result shows the higher compatibility of NFC with the NR matrix, and the ensuing higher filler/matrix adhesion. In dynamic mechanical analysis (DMA), a significant reinforcing effect of NFC was shown. This effect is manifested with the high storage modulus E‧, suggesting that the interactions between the NR matrix and the NFC fibers were stronger.

  2. Controlling Mechanical Properties of Bis-leucine Oxalyl Amide Gels

    NASA Astrophysics Data System (ADS)

    Chang, William; Carvajal, Daniel; Shull, Kenneth

    2011-03-01

    is-leucine oxalyl amide is a low molecular weight gelator capable of gelling polar and organic solvents. A fundamental understanding of self-assembled systems can lead to new methods in drug delivery and the design of new soft material systems. An important feature of self-assembled systems are the intermolecular forces between solvent and gelator molecule; by changing the environment the gel is in, the mechanical properties also change. In this project two variables were considered: the degree of neutralization present for the gelator molecule from neutral to completely ionized, and the concentration of the gelator molecule, from 1 weight percent to 8 weight percent in 1-butanol. Mechanical properties were studied using displacement controlled indentation techniques and temperature sweep rheometry. It has been found that properties such as the storage modulus, gelation temperature and maximum stress allowed increase with bis-leucine oxalyl amide concentration. The results from this study establish a 3-d contour map between the gelator concentration, the gelator degree of ionization and mechanical properties such as storage modulus and maximum stress allowed. The intermolecular forces between the bis-leucine low molecular weight gelator and 1-butanol govern the mechanical properties of the gel system, and understanding these interactions will be key to rationally designed self-assembled systems.

  3. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  4. Computational Design Tool for the Synthesis and Optimization of Gel Formulations (SOGeF)

    DTIC Science & Technology

    2009-01-01

    ACCOMPLISHMENTS 2.1 Phase I Technical Objectives TIle primary technical objective of the Phase I program was the development of a model(s) to describe the...Figure 37: Storage Modulus G’, Loss Modulus G", and Stress vs. Strain. Yield Stress ~460Pa. (Tri-ethylamine 11% Cabosil) The primary detenninant of...GUI The primary objective of this task was to design and implement a graphical user interface (GUI) for the NN algorithms and gel database files. The

  5. Synthesis of a New Titanate Coupling Agent for the Modification of Calcium Sulfate Whisker in Poly(Vinyl Chloride) Composite

    PubMed Central

    Yuan, Wenjin; Lu, Yunhua; Xu, Shiai

    2016-01-01

    A new titanate coupling agent synthesized from polyethylene glycol (PEG), isooctyl alcohol, and phosphorus pentoxide (P2O5) was used for the modification of calcium sulfate whiskers (CSWs) and the preparation of high-performance CSW/poly(vinyl chloride) (PVC) composites. The titanate coupling agent (sTi) and the modified CSWs (sTi–CSW) were characterized by Fourier transform infrared (FTIR) spectroscopy, and the mechanical, dynamic mechanical, and heat resistant properties and thermostability of sTi–CSW/PVC and CSW/PVC composites were compared. The results show that sTi–CSW/PVC composite with 10 wt. % whisker content has the best performance, and its tensile strength, Young’s modulus, elongation at break, break strength, and impact strength are 67.2 MPa, 1926 MPa, 233%, 51.1 MPa, and 12.75 KJ·m−2, with an increase of 20.9%, 11.5%, 145.3%, 24.6%, and 65.4% compared to that of CSW/PVC composite at the same whisker content. As the whisker content increases, the storage modulus increases, the Vicat softening temperature decreases slightly, and the glass transition temperature increases at first and then decreases. PMID:28773748

  6. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate.

    PubMed

    Sohrabi, Mehri; Hesaraki, Saeed; Kazemzadeh, Asghar

    2014-04-01

    Different biocomposite pastes were prepared from a solid phase that was nanoparticles of sol-gel-derived bioactive glass and different liquid phases including 3% hyaluronic acid solution, sodium alginate solutions (3% and 10 %) or mixtures of hyaluronic acid and sodium alginate (3% or 10 %) solutions in 50:50 volume ratio. Rheological properties of the pastes were measured in both rotatory and oscillatory modes. The washout behavior and in vitro apatite formation of the pastes were determined by soaking them in simulated body fluid under dynamic situation for 14 days. The proliferation and alkaline phosphatase activity of MG-63 osteoblastic cells were also determined using extracts of the pastes. All pastes could be easily injected from the standard syringes with different tip diameters. All pastes exhibited visco-elastic character, but a nonthixotropic paste was obtained using hyaluronic acid in which the loss modulus was higher than the storage modulus. The thixotropy and storage modulus were increasingly improved by adding/using sodium alginate as mixing liquid. Moreover, the pastes in which the liquid phase was sodium alginate or mixture of hyaluronic acid and 10% sodium alginate solution revealed better apatite formation ability and washout resistance than that made of hyaluronic acid alone. No cytotoxicity effects were observed by extracts of the pastes on osteoblasts but better alkaline phosphatase activity was found for the pastes containing hyaluronic acid. Overall, injectable biocomposites can be produced by mixing bioactive glass nanoparticles and sodium alginate/hyaluronic acid polymers. They are potentially useful for hard and even soft tissues treatments. Copyright © 2013 Wiley Periodicals, Inc.

  7. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    PubMed

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  8. Model-based analysis of the torsional loss modulus in human hair and of the effects of cosmetic processing.

    PubMed

    Wortmann, Franz J; Wortmann, Gabriele; Haake, Hans-Martin; Eisfeld, Wolf

    Torsional analysis of single human hairs is especially suited to determine the properties of the cuticle and its changes through cosmetic processing. The two primary parameters, which are obtained by free torsional oscillation using the torsional pendulum method, are storage ( G ') and loss modulus ( G ″). Based on previous work on G ', the current investigation focuses on G ″. The results show an increase of G ″ with a drop of G ' and vice versa , as is expected for a viscoelastic material well below its glass transition. The overall power of G ″ to discriminate between samples is quite low. This is attributed to the systematic decrease of the parameter values with increasing fiber diameter, with a pronounced correlation between G ″ and G '. Analyzing this effect on the basis of a core/shell model for the cortex/cuticle structure of hair by nonlinear regression leads to estimates for the loss moduli of cortex ( G ″ co ) and cuticle ( G ″ cu ). Although the values for G ″ co turn out to be physically not plausible, due to limitations of the applied model, those for G ″ cu are considered as generally realistic against relevant literature values. Significant differences between the loss moduli of the cuticle for the different samples provide insight into changes of the torsional energy loss due to the cosmetic processes and products, contributing toward a consistent view of torsional energy storage and loss, namely, in the cuticle of hair.

  9. Long time response of soft magnetorheological gels.

    PubMed

    An, Hai-Ning; Sun, Bin; Picken, Stephen J; Mendes, Eduardo

    2012-04-19

    Swollen physical magnetorheological (MR) gels were obtained by self-assembling of triblock copolymers containing dispersed soft magnetic particles. The transient rheological responses of these systems were investigated experimentally. Upon sudden application of a homogeneous magnetic field step change, the storage modulus of MR gels continued to increase with time. Such increase trend of the storage modulus could be expressed by a double-exponential function with two distinct modes, a fast and a slow one. The result was compared with the transient rheological response of equivalent MR fluids (paraffin oil without copolymer) and a MR elastomer (PDMS) and interpreted as the consequence of strong rearrangement of the original particle network under magnetic field. Similar to the structure evolution of MR fluids, the ensemble of results suggests that "chaining" and "clustering" processes are also happening inside the gel and are responsible for the rheological behavior, provided they are happening on a smaller length scale (long chains and clusters are hindered). We show that response times of several minutes are typical for the slow response of MR gels. The characteristic time t(2) for the slow process is significantly dependent on the magnetic flux density, the matrix viscoelastic property, particle volume fraction, and sample's initial particle distribution. In order to validate our results, the role of dynamic strain history was clarified. We show that, in the linear viscoelastic region, the particle rearrangement of MR gels was not hindered or accelerated by the dynamic strain history.

  10. Rheological properties of isotropic magnetorheological elastomers featuring an epoxidized natural rubber

    NASA Astrophysics Data System (ADS)

    Azhani Yunus, Nurul; Amri Mazlan, Saiful; Ubaidillah; Choi, Seung-Bok; Imaduddin, Fitrian; Aziz, Siti Aishah Abdul; Khairi, Muntaz Hana Ahmad

    2016-10-01

    This study presents principal field-dependent rheological properties of magnetorheological elastomers (MREs) in which an epoxidized natural rubber (ENR) is adopted as a matrix (in short, we call it ENR-based MREs). The isotropic ENR-based MRE samples are fabricated by mixing the ENR compound with carbonyl iron particles (CIPs) with different weight percentages. The morphological properties of the samples are firstly analysed using the microstructure assessment. The influences of the magnetic field on the viscoelastic properties of ENR-based MREs are then examined through the dynamic test under various excitation frequencies. The microstructure of MRE samples exhibits a homogeneous distribution of CIPs in the ENR matrix. The dramatic increment of storage modulus, loss modulus and loss tangent of the ENR-based MREs are also observed from the field-dependent rheological test. This directly demonstrates that the stiffness and damping properties of the samples can be adjusted by the magnetic field. It is also seen that the CIP content, exciting frequency and the magnetic field essentially influence the dynamic properties of the ENR-based MREs. The strong correlation between the magnetization and the magneto-induced storage modulus could be used as a useful guidance in synthesizing the ENR-based MREs for certain applications.

  11. Encapsulation of grape seed extract in polylactide microcapsules for sustained bioactivity and time-dependent release in dental material applications.

    PubMed

    Yourdkhani, Mostafa; Leme-Kraus, Ariene Arcas; Aydin, Berdan; Bedran-Russo, Ana Karina; White, Scott R

    2017-06-01

    To sustain the bioactivity of proanthocyanidins-rich plant-derived extracts via encapsulation within biodegradable polymer microcapsules. Polylactide microcapsules containing grape seed extract (GSE) were manufactured using a combination of double emulsion and solvent evaporation techniques. Microcapsule morphology, size distribution, and cross-section were examined via scanning electron microscopy. UV-vis measurements were carried out to evaluate the core loading and encapsulation efficiency of microcapsules. The bioactivity of extracts was evaluated after extraction from capsules via solvent partitioning one week or one year post-encapsulation process. Fifteen human molars were cut into 7mm×1.7mm×0.5mm thick mid-coronal dentin beams, demineralized, and treated with either encapsulated GSE, pristine GSE, or left untreated. The elastic modulus of dentin specimens was measured based on three-point bending experiments as an indirect assessment of the bioactivity of grape seed extracts. The effects of the encapsulation process and storage time on the bioactivity of extracts were analyzed. Polynuclear microcapsules with average diameter of 1.38μm and core loading of up to 38wt% were successfully manufactured. There were no statistically significant differences in the mean fold increase of elastic modulus values among the samples treated with encapsulated or pristine GSE (p=0.333), or the storage time (one week versus one year storage at room temperature, p=0.967). Polynuclear microcapsules containing proanthocyanidins-rich plant-derived extracts were prepared. The bioactivity of extracts was preserved after microencapsulation. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Multifunctional structural lithium ion batteries for electrical energy storage applications

    NASA Astrophysics Data System (ADS)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  13. Improved properties of recycled polypropylene by introducing the long chain branched structure through reactive extrusion.

    PubMed

    Li, Yingchun; Jia, Shuai; Du, Shuanli; Wang, Yafei; Lv, Lida; Zhang, Jianbin

    2018-06-01

    An approach originated from preparing long chain branched polypropylene (PP) was applied to modify the properties of recycled PP that involved reactive extrusion to introduce a branched chain structure onto recycled PP under the assistance of chemical reaction between maleic anhydride (MAH) monomer and glycidyl methacrylate (GMA) grafts. The results from Fourier transformed infrared spectroscopy (FTIR) indicated the reaction took place during melt mixing, and the intensity of ester increased with increasing amount of MAH. Several rheological plots including complex viscosity, storage modulus, loss modulus, loss tangent and Cole-Cole plot were used to investigate the rheological properties of recycled PP and modified PP with MAH, which indicated an additional longer relaxation time that was not shown in recycled PP. The effects of branched structure on melting and crystallization behaviors were also investigated, demonstrating the branched chains acted as nucleating agent. Moreover, the branched structure of modified samples gave rise to enhance mechanical properties, especially, the higher impact strength compared with recycled PP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

    PubMed

    Her, Shiuh-Chuan; Lin, Kuan-Yu

    2017-06-16

    To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.

  15. Development and characterization of a synthetic PVC/DEHP myocardial tissue analogue material for CT imaging applications.

    PubMed

    Ramadan, Sherif; Paul, Narinder; Naguib, Hani E

    2018-04-01

    A simple myocardial analogue material has great potential to help researchers in the creation of medical CT Imaging phantoms. This work aims to outline a Bis(2-ethylhexyl) phthalate (DEHP) plasticizer/PVC material to achieve this. DEHP-PVC was manufactured in three ratios, 75, 80, and 85% DEHP by heating at 110 °C for 10 min to promote DEHP-PVC binding followed by heating at 150 °C to melt the blend. The material was then tested utilizing FTIR, tensile testing, dynamic mechanical analysis and imaged with computed tomography. The FTIR testing finds the presence of C-CL and carbonyl bonds that demonstrate the binding required in this plasticized material. The tensile testing finds a modulus of 180-20 kPa that increases with the proportion of plasticizer. The dynamic mechanical analysis finds a linear increase in viscoelastic properties with a storage/loss modulus of 6/.5-120/18 kPa. Finally, the CT number of the material increases with higher PVC content from 55 to 144HU. The 80% DEHP-PVC ratio meets the mechanical and CT properties necessary to function as a myocardial tissue analogue.

  16. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2015-03-30

    In this work, low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) films are prepared with the aim of obtaining environmentally friendly materials containing high TPS content with required packaging properties. Blending of LDPE/LLDPE (70/30 wt/wt) with 5-20 wt% of TPS and 3 wt% of PE-grafted maleic anhydride (PE-g-MA) is performed in a twin-screw extruder, followed by the blowing process. Differential scanning calorimetric results indicate starch has more pronounced effect on crystallization of LLDPE than LDPE. Scanning electron micrograph shows a fairly good dispersion of TPS in PE matrices. Fourier transfer infrared spectra confirm compatibility between polymers using PE-g-MA as the compatibilizer. Storage modulus, loss modulus and complex viscosity increase with incorporation of starch. Tensile strength and elongation-at-break decrease from 18 to 10.5 MPa and 340 to 200%, respectively when TPS increases from 5 to 20%. However, the required mechanical properties for packaging applications are attained when 15 wt% starch is added, as specified in ASTM D4635. Finally 12% increase in water uptake is achieved with inclusion of 15 wt% starch. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of addition of different fibers on rheological characteristics of cake batter and quality of cakes.

    PubMed

    Aydogdu, Ayca; Sumnu, Gulum; Sahin, Serpil

    2018-02-01

    The aim of this study was to investigate the effects of addition of dietary fibers on rheological properties of batter and cake quality. Wheat flour was replaced by 5 and 10% (wt%) oat, pea, apple and lemon fibers. All cake batters showed shear thinning behavior. Incorporation of fibers increased consistency index (k), storage modulus (G') and loss modulus (G″). As quality parameters, specific volume, hardness, weight loss, color and microstructure of cakes were investigated. Cakes containing oat and pea fibers (5%) had similar specific volume and texture with control cakes which contained no fiber. As fiber concentration increased, specific volume decreased but hardness increased. No significant difference was found between weight loss of control cake and cakes with oat, pea and apple fibers. Lemon fiber enriched cakes had the lowest specific volume, weight loss and color difference. When microstructural images were examined, it was seen that control cake had more porous structure than fiber enriched cakes. In addition, lemon and apple fiber containing cakes had less porous crumb structure as compared to oat and pea containing ones. Oat and pea fiber (5%) enriched cakes had similar physical properties (volume, texture and color) with control cakes.

  18. High Cycle-life Shape Memory Polymer at High Temperature

    PubMed Central

    Kong, Deyan; Xiao, Xinli

    2016-01-01

    High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g−1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously. PMID:27641148

  19. Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties.

    PubMed

    Torbjörner, A; Karlsson, S; Syverud, M; Hensten-Pettersen, A

    1996-01-01

    The aim of this study was to compare the mechanical properties of a prefabricated root canal post made of carbon fiber reinforced composites (CFRC) with metal posts and to assess the cytotoxic effects elicited. Flexural modulus and ultimate flexural strength was determined by 3 point loading after CRFC posts had been stored either dry or in water. The bending test was carried out with and without preceding thermocycling of the CFRC posts. The cytotoxicity was evaluated by an agar overlay method after dry and wet storage. The values of flexural modulus and ultimate flexural strength were for dry stored CFRC post 82 +/- 6 GPa and 1154 +/- 65 MPa respectively. The flexural values decreased significantly after water storage and after thermocycling. No cytotoxic effects were observed adjacent to any CFRC post. Although fiber reinforced composites may have the potential to replace metals in many clinical situations, additional research is needed to ensure a satisfying life-span.

  20. Influence of Metal Ion and Polymer Core on the Melt Rheology of Metallosupramolecular Films

    DTIC Science & Technology

    2012-01-01

    60:40, ( F ) 50:50. Storage modulus (triangles), loss modulus (circles), and complex viscosity (squares) vs oscillatory angular frequency. Tref = 30 C...λω), where n is the number of cross-links per unit volume, kB is Boltzmann’s constant, T is temperature, and f (λω) is a function describing the...system at hand. For linear polymer melts n can be written as FNA/M where F is the mass density, NA is Avogadro’s number, andM is molecular weight

  1. Viscoelastic properties of graphene-based epoxy resins

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  2. Viscoelastic properties of addition-cured polyimides used in high temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D; Malarik, Diane C.; Robaidek, Jerrold O.

    1991-01-01

    Viscoelastic properties of the addition cured polyimide, PMR-15, were studied using dynamic mechanical and stress relaxation tests. For temperatures below the glass transition temperature, T sub g, the dynamic mechanical properties measured using a temperature scan rate of 10 C/min were strongly affected by the presence of absorbed moisture in the resin. Dynamic mechanical properties measured as a function of time during an isothermal hold provided an indication of chemical changes occurring in the resin. For temperatures above (T sub g + 20 C), the storage modulus increased continuously as a function of time indicating that additional crosslinking is occurring in the resin. Because of these changes in chemical structures, the stress relaxation modulus could not be measured over any useful time interval for temperatures above T sub g. For temperatures below T sub g, dynamic mechanical properties appeared to be unaffected by chemical changes for times exceeding 1 hr. Since the duration of the stress relaxation tests was less than 1 hr, the stress relaxation modulus could be measured. As long as the moisture content of the resin was less than 2 pct, stress relaxation curves measured at different temperatures could be superimposed using horizontal shifts along the log(time) axis with only small shifts along the vertical axis.

  3. Rheological characterization of composites using a vertical oscillation rheometer.

    PubMed

    Lee, In Bog; Cho, Byeong Hoon; Son, Ho Hyun; Um, Chung Moon

    2007-04-01

    The purpose of this study was to investigate the viscoelastic properties related to the handling characteristics of composites. A custom-designed vertical oscillation rheometer (VOR) was used for the rheological measurements of composites. The VOR consists of three parts: (1) a measuring unit, (2) a deformation induction unit, and (3) a force-detecting unit. Two medium-viscous composites, Z100 and Z250, and two packable composites, P60 and SureFil, were tested. A dynamic oscillatory test was used to evaluate the storage modulus (E'), loss modulus (E''), and loss tangent (tan delta) of the composites as a function of frequency (omega) from 0.1 to 20Hz at 23 degrees C. The E' and E'' increased with increasing frequency and showed differences in magnitude among brands. The complex moduli E* of the composites at omega=2 Hz, normalized to that of Z100, were 2.16 (Z250), 4.80 (P60), and 25.21 (SureFil). The magnitudes and frequency characteristic of loss tangent differed significantly among brands. The relationship among the complex modulus E*, the phase angle delta, and the frequency omega was represented by the frequency domain phasor form E*(omega)e(idelta)=E*(omega) angledelta. The viscoelasticities of composites, which influence handling characteristics, are significantly different among brands. The VOR is a relatively simple device for the dynamic rheological measurement of dental composites. The loci of the frequency domain phasor plots in a complex plane are a valuable method of representing the viscoelastic properties of composites.

  4. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid).

    PubMed

    Shi, Xuetao; Zhang, Guangcheng; Phuong, Thanh Vu; Lazzeri, Andrea

    2015-01-19

    The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates) were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid) (PDLA) acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA) indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young's modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  5. Formulation and characterization of a porous, elastomeric biomaterial for vocal fold tissue engineering research

    PubMed Central

    Gaston, Joel; Bartlett, Rebecca S.; Klemuk, Sarah A.

    2014-01-01

    Objectives Biomaterials able to mimic the mechanical properties of vocal fold tissue may be particularly useful for furnishing three dimensional microenvironment allowing for in vitro investigation of cell and molecular responses to vibration. Motivated by the dearth of biomaterials available to be used in an in vitro model for vocal fold tissue, we investigated polyether polyurethane (PEU) matrices which are porous, mechanically tuneable biomaterials that are inexpensive and require only standard laboratory equipment for fabrication. Methods Rheology, dynamic mechanical analysis and scanning electron microscopy were performed on PEU matrices at 5%, 10% and 20% w/v mass concentrations. Results For 5%, 10%, and 20% w/v concentrations, shear storage modulus were 2 kPa, 3.4 kPa, and 6 kPa, respectively with shear loss modulus being 0.2 kPa, 0.38 kPa and 0.62 kPa, respectively. Storage modulus responded to applied frequency as a linear function. Mercury intrusion porosimetry revealed that all three mass concentrations of PEU have similar overall percent porosity, but differ in pore architecture. Conclusions 20 µm diameter pores are ideal for cell seeding, and range of mechanical properties indicates that the higher mass concentration PEU formulations are best suited for mimicking the viscoelastic properties of vocal fold tissue for in vitro research. PMID:24944281

  6. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    NASA Astrophysics Data System (ADS)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  7. Stamp forming optimization for formability and crystallinity

    NASA Astrophysics Data System (ADS)

    Donderwinkel, T. G.; Rietman, B.; Haanappel, S. P.; Akkerman, R.

    2016-10-01

    The stamp forming process is well suited for high volume production of thermoplastic composite parts. The process can be characterized as highly non-isothermal as it involves local quench-cooling of a molten thermoplastic composite blank where it makes contact with colder tooling. The formability of the thermoplastic composite depends on the viscoelastic material behavior of the matrix material, which is sensitive to temperature and degree of crystallinity. An experimental study was performed to determine the effect of temperature and crystallinity on the storage modulus during cooling for a woven glass fiber polyamide-6 composite material. An increase of two decades in modulus was observed during crystallization. As this will significantly impede the blank formability, the onset of crystallization effectively governs the time available for forming. Besides the experimental work, a numerical model is developed to study the temperature and crystallinity throughout the stamp forming process. A process window can be determined by feeding the model with the experimentally obtained data on crystallization.

  8. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C

    2017-08-01

    Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2  s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.

  9. Improved reactive nanoparticles to treat dentin hypersensitivity.

    PubMed

    Toledano-Osorio, Manuel; Osorio, Estrella; Aguilera, Fátima S; Luis Medina-Castillo, Antonio; Toledano, Manuel; Osorio, Raquel

    2018-05-01

    The aim of this study was to evaluate the effectiveness of different nanoparticles-based solutions for dentin permeability reduction and to determine the viscoelastic performance of cervical dentin after their application. Four experimental nanoparticle solutions based on zinc, calcium or doxycycline-loaded polymeric nanoparticles (NPs) were applied on citric acid etched dentin, to facilitate the occlusion and the reduction of the fluid flow at the dentinal tubules. After 24 h and 7 d of storage, cervical dentin was evaluated for fluid filtration. Field emission scanning electron microscopy, energy dispersive analysis, AFM and Nano-DMA analysis were also performed. Complex, storage, loss modulus and tan delta (δ) were assessed. Doxycycline-loaded NPs impaired tubule occlusion and fluid flow reduction trough dentin. Tubules were 100% occluded in dentin treated with calcium-loaded NPs or zinc-loaded NPs, analyzed at 7 d. Dentin treated with both zinc-NPs and calcium-NPs attained the highest reduction of dentinal fluid flow. Moreover, when treating dentin with zinc-NPs, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying calcium-NPs. Zinc-NPs are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanoparticles are then proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanoparticles is encouraged. Erosion from acids provokes dentin hypersensitivity (DH) which presents with intense pain of short duration. Open dentinal tubules and demineralization favor DH. Nanogels based on Ca-nanoparticles and Zn-nanoparticles produced an efficient reduction of fluid flow. Dentinal tubules were filled by precipitation of induced calcium-phosphate deposits. When treating dentin with Zn-nanoparticles, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying Ca-nanoparticles. Zn-nanoparticles are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanogels are, therefore, proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanogels is encouraged. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Some rheological properties of sodium caseinate-starch gels.

    PubMed

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  11. Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.

    2004-01-01

    Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.

  12. Hydrophobic-Interaction-Induced Stiffening of α -Synuclein Fibril Networks

    NASA Astrophysics Data System (ADS)

    Semerdzhiev, Slav A.; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M. A. E.

    2018-05-01

    In water, networks of semiflexible fibrils of the protein α -synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.

  13. Hydrophobic-Interaction-Induced Stiffening of α-Synuclein Fibril Networks.

    PubMed

    Semerdzhiev, Slav A; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M A E

    2018-05-18

    In water, networks of semiflexible fibrils of the protein α-synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.

  14. Characterization of Hybrid Epoxy Nanocomposites

    PubMed Central

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  15. Lecithin-based emulsions for potential use as saliva substitutes in patients with xerostomia--viscoelastic properties.

    PubMed

    Hanning, Sara M; Yu, Tao; Jones, David S; Andrews, Gavin P; Kieser, Jules A; Medlicott, Natalie J

    2013-11-18

    The purpose of the present study was to investigate lecithin-rice bran oil rheological properties with the view to consider these as potential saliva substitutes in patients with severe xerostomia and salivary hypofunction. Pseudo-ternary phase diagrams of rice bran oil, lecithin and water mixtures were constructed and characterised using polarising light microscopy. Viscoelastic properties, which we hypothesise are important determinants in product performance, were analysed using both flow and oscillatory rheology. Rheological properties were influenced by composition, frequency and shear stress. Frequency-dependent viscoelasticity was observed in some formulations where viscosity dominated (tanδ>1) at frequencies under 5 Hz and elasticity dominated (tanδ<1) at higher frequencies. Threshold frequencies were determined for each formulation, where a peak in loss tangent was observed, coinciding with a reduction in the storage modulus and increase in loss modulus. The frequency-dependent behaviour of emulsions are of interest because these combinations exhibit viscous behaviour at low frequencies, which may improve lubrication of the oral cavity at rest, whereas increased elasticity at higher frequencies may improve retention during higher-shear tasks such as swallowing and speaking. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack.

    PubMed

    Plotkin, Marian; Vaibavi, Srirangam Ramanujam; Rufaihah, Abdul Jalil; Nithya, Venkateswaran; Wang, Jing; Shachaf, Yonatan; Kofidis, Theo; Seliktar, Dror

    2014-02-01

    This study compares the effect of four injectable hydrogels with different mechanical properties on the post-myocardial infarction left ventricle (LV) remodeling process. The bioactive hydrogels were synthesized from Tetronic-fibrinogen (TF) and PEG-fibrinogen (PF) conjugates; each hydrogel was supplemented with two levels of additional cross-linker to increase the matrix stiffness as measured by the shear storage modulus (G'). Infarcts created by ligating the left anterior descending coronary artery in a rodent model were treated with the hydrogels, and all four treatment groups showed an increase in wall thickness, arterial density, and viable cardiac tissue in the peri-infarct areas of the LV. Echocardiography and hemodynamics data of the PF/TF treated groups showed significant improvement of heart function associated with the attenuated effects of the remodeling process. Multi-factorial regression analysis indicated that the group with the highest modulus exhibited the best rescue of heart function and highest neovascularization. The results of this study demonstrate that multiple properties of an injectable bioactive biomaterial, and notably the matrix stiffness, provide the multifaceted stimulation necessary to preserve cardiac function and prevent adverse remodeling following a heart attack. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications.

    PubMed

    Kumar, Sachin; Raj, Shammy; Kolanthai, Elayaraja; Sood, A K; Sampath, S; Chatterjee, Kaushik

    2015-02-11

    Toward designing the next generation of resorbable biomaterials for orthopedic applications, we studied poly(ε-caprolactone) (PCL) composites containing graphene. The role, if any, of the functionalization of graphene on mechanical properties, stem cell response, and biofilm formation was systematically evaluated. PCL composites of graphene oxide (GO), reduced GO (RGO), and amine-functionalized GO (AGO) were prepared at different filler contents (1%, 3%, and 5%). Although the addition of the nanoparticles to PCL markedly increased the storage modulus, this increase was largest for GO followed by AGO and RGO. In vitro cell studies revealed that the AGO and GO particles significantly increased human mesenchymal stem cell proliferation. AGO was most effective in augmenting stem cell osteogenesis leading to mineralization. Bacterial studies revealed that interaction with functionalized GO induced bacterial cell death because of membrane damage, which was further accentuated by amine groups in AGO. As a result, AGO composites were best at inhibiting biofilm formation. The synergistic effect of oxygen containing functional groups and amine groups on AGO imparts the optimal combination of improved modulus, favorable stem cell response, and biofilm inhibition in AGO-reinforced composites desired for orthopedic applications. This work elucidates the importance of chemical functionalization of graphene in polymer composites for biomedical applications.

  18. Poromechanical behaviour of a surficial geological barrier during fluid injection into an underlying poroelastic storage formation

    PubMed Central

    Selvadurai, A. P. S.; Kim, Jueun

    2016-01-01

    A competent low permeability and chemically inert geological barrier is an essential component of any strategy for the deep geological disposal of fluidized hazardous material and greenhouse gases. While the processes of injection are important to the assessment of the sequestration potential of the storage formation, the performance of the caprock is important to the containment potential, which can be compromised by the development of cracks and other defects that might be activated during and after injection. This paper presents a mathematical modelling approach that can be used to assess the state of stress in a surficial caprock during injection of a fluid to the interior of a poroelastic storage formation. Important information related to time-dependent evolution of the stress state and displacements of the surficial caprock with injection rates, and the stress state in the storage formation can be obtained from the theoretical developments. Most importantly, numerical results illustrate the influence of poromechanics on the development of adverse stress states in the geological barrier. The results obtained from the mathematical analysis illustrate that the surface heave increases as the hydraulic conductivity of the caprock decreases, whereas the surface heave decreases as the shear modulus of the caprock increases. The results also illustrate the influence of poromechanics on the development of adverse stress states in the caprock. PMID:27118906

  19. Poromechanical behaviour of a surficial geological barrier during fluid injection into an underlying poroelastic storage formation.

    PubMed

    Selvadurai, A P S; Kim, Jueun

    2016-03-01

    A competent low permeability and chemically inert geological barrier is an essential component of any strategy for the deep geological disposal of fluidized hazardous material and greenhouse gases. While the processes of injection are important to the assessment of the sequestration potential of the storage formation, the performance of the caprock is important to the containment potential, which can be compromised by the development of cracks and other defects that might be activated during and after injection. This paper presents a mathematical modelling approach that can be used to assess the state of stress in a surficial caprock during injection of a fluid to the interior of a poroelastic storage formation. Important information related to time-dependent evolution of the stress state and displacements of the surficial caprock with injection rates, and the stress state in the storage formation can be obtained from the theoretical developments. Most importantly, numerical results illustrate the influence of poromechanics on the development of adverse stress states in the geological barrier. The results obtained from the mathematical analysis illustrate that the surface heave increases as the hydraulic conductivity of the caprock decreases, whereas the surface heave decreases as the shear modulus of the caprock increases. The results also illustrate the influence of poromechanics on the development of adverse stress states in the caprock.

  20. Effect of radiation induced crosslinking and degradation of ETFE films

    NASA Astrophysics Data System (ADS)

    Zen, H. A.; Ribeiro, G.; Geraldes, A. N.; Souza, C. P.; Parra, D. F.; Lugão, A. B.

    2013-03-01

    In this study the ETFE film with 125 μm of thickness was placed inside a nylon bag and filled with either acetylene, nitrogen or oxygen. Following the procedure, the samples were irradiated at 5, 10 and 20 kGy. The physical and chemical properties of the modified and pristine films were evaluated by rheological and thermal analyses (TG and DSC), X-ray diffraction (XRD) and infrared spectroscopy (IR-ATR). In rheological analysis the storage modulus (G') indicates opposite profiles when the atmospheres (acetylene and oxygen) are evaluated according to the absorbed dose. For the samples submitted to radiation under oxygen atmosphere it is possible to observe the degradation process with the low levels of the storage modulus. The changes in the degree of crystallinity were verified in all modified samples when compared to the pristine polymer and this behavior was confirmed by DSC analysis. A decrease in the intensity of crystalline peak by X-ray diffraction was observed.

  1. Weak interfaces for UV cure nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Houle, Frances; Fornof, Ann; Simonyi, Eva; Miller, Dolores; Truong, Hoa

    2008-03-01

    Nanoimprint lithography using a photocurable organic resist provides a means of patterning substrates with a spatial resolution in the few nm range. The usefulness of the technique is limited by defect generation during template removal, which involves fracture at the interface between the template and the newly cured polymer. Although it is critical to have the lowest possible interfacial fracture toughness (Gc less than 0.1 Jm-2) to avoid cohesive failure in the polymer, there is little understanding on how to achieve this using reacting low viscosity resist fluids. Studies of debonding of a series of free-radical cured polyhedral silsesquioxane crosslinker formulations containing selected reactive diluents from fluorosilane-coated quartz template materials will be described. At constant diluent fraction the storage modulus of cured resists follows trends in initial reaction rate, not diluent Tg. Adhesion is uncorrelated with both Tg and storage modulus. XPS studies of near-interface compositions indicate that component segregation within the resist fluid on contact with the template, prior to cure, plays a significant role in controlling the fracture process.

  2. Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition

    PubMed Central

    Zhang, Xiangming; Gan, Rong Z.

    2012-01-01

    The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1 to 40 Hz at three different temperatures: 5°, 25° and 37°C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E’ and the loss modulus E” were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element (FE) model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear. PMID:22820983

  3. Importance of Age on the Dynamic Mechanical Behavior of Intertubular and Peritubular Dentin

    PubMed Central

    Ryou, Heonjune; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2014-01-01

    An experimental evaluation of human coronal dentin was performed using nanoscopic Dynamic Mechanical Analysis (nanoDMA). The primary objectives were to quantify any unique changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the microstructure and mechanical behavior of the mineral deposited within the lumens. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18–25 versus 54–83 yrs) for either the intertubular or peritubular tissue. However, there were significant differences in the dampening behavior between the young and old dentin, as represented in the loss modulus and tanδ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral. PMID:25498296

  4. Improvement and Optimization of Internal Damping in Fiber Reinforced Composite Materials

    DTIC Science & Technology

    1986-03-03

    Resin Casting ............. 61 5.0 TESTS ON DISCONTINUOUS ALIGNED FIBER REINFORCED COMPOSITES . . . ...................... 63 5.1 Experimental...After some :x..iipulation [ 61 , the longitudinal storage modulus is given by: Vf -+-- -~V (2.9) Eý Eý E P9. t z[(R /r) - ] + cosha.t I-. . 10 where 1...the storage moduluii were fitted with a linear regression given by E . . 61 E’ = 571252.737 + 55.647 x f (psi) (4.1) m Where f is the frequency in

  5. Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.

    2012-08-01

    This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.

  6. Characterizing protein-protein-interaction in high-concentration monoclonal antibody systems with the quartz crystal microbalance.

    PubMed

    Hartl, Josef; Peschel, Astrid; Johannsmann, Diethelm; Garidel, Patrick

    2017-12-13

    Making use of a quartz crystal microbalance (QCM), concentrated solutions of therapeutic antibodies were studied with respect to their behavior under shear excitation with frequencies in the MHz range. At high protein concentration and neutral pH, viscoelastic behavior was found in the sense that the storage modulus, G', was nonzero. Fits of the frequency dependence of G'(ω) and G''(ω) (G'' being the loss modulus) using the Maxwell-model produced good agreement with the experimental data. The fit parameters were the relaxation time, τ, and the shear modulus at the inverse relaxation time, G* (at the "cross-over frequency" ω C = 1/τ). The influence of two different pharmaceutical excipients (histidine and citrate) was studied at variable concentrations of the antibody and variable pH. In cases, where viscoelasticity was observed, G* was in the range of a few kPa, consistent with entropy-driven interactions. τ was small at low pH, where the antibody carries a positive charge. τ increased with increasing pH. The relaxation time τ was found to be correlated with other parameters quantifying protein-protein interactions, namely the steady shear viscosity (η), the second osmotic virial coefficient as determined with both self-interaction chromatography (B 22,SIC ) and static light scattering (B 22,SLS ), and the diffusion interaction parameter as determined with dynamic light scattering (k D ). While B 22 and k D describe protein-protein interactions in diluted samples, the QCM can be applied to concentrated solutions, thereby being sensitive to higher-order protein-protein interactions.

  7. Tissue-level Mechanical Properties of Bone Contributing to Fracture Risk

    PubMed Central

    Nyman, Jeffry S.; Granke, Mathilde; Singleton, Robert C.; Pharr, George M.

    2016-01-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown. PMID:27263108

  8. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    PubMed

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  9. Dispersion of carbon nanotubes in vinyl ester polymer composites

    NASA Astrophysics Data System (ADS)

    Pena-Paras, Laura

    This work focused on a parametric study of dispersions of different types of carbon nanotubes in a polymer resin. Single-walled (SWNTs), double-walled (DWNTs), multi-walled (MWNTs) and XD-grade carbon nanotubes (XD-CNTs) were dispersed in vinyl ester (VE) using an ultra-sonic probe at a fixed frequency. The power, amplitude, and mixing time parameters of sonication were correlated to the electrical and mechanical properties of the composite materials in order to optimize dispersion. The quality of dispersion was quantified by Raman spectroscopy and verified through optical and scanning electron microscopy. By Raman, the CNT distribution, unroping, and damage was monitored and correlated with the composite properties for dispersion optimization. Increasing the ultrasonication energy was found to improve the distribution of all CNT materials and to decrease the size of nanotube ropes, enhancing the electrical conductivity and storage modulus. However, excessive amounts of energy were found to damage CNTs, which negatively affected the properties of the composite. Based on these results the optimum dispersion energy inputs were determined for the different composite materials. The electrical resistivity was lowered by as much as 14, 13, 13, and 11 orders of magnitude for SWNT/VE, DWNT/VE, MWNT/VE, and XD-CNT/VE respectively, compared to the neat resin. The storage modulus was also increased compared to the neat resin by 77%, 82%, 45%, 40% and 85% in SWNT, SAP-f-SWNT, DWNT, MWNT and XD-CNT/VE composites, respectively. This study provides a detailed understanding of how the properties of, nanocomposites are determined by the composite mixing parameters and the distribution, concentration, shape and size of the CNTs. Importantly, it indicates the importance of the need for dispersion metrics to correlate and understand these properties.

  10. Acoustic attenuation due to transformation twins in CaCl2: Analogue behaviour for stishovite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Schranz, Wilfried; Carpenter, Michael A.

    2012-09-01

    CaCl2 undergoes a tetragonal (P42/mnm) to orthorhombic (Pnnm) transition as a function of temperature which is essentially the same as occurs in stishovite at high pressures. It can therefore be used as a convenient analogue material for experimental studies. In order to investigate variations in elastic properties associated with the transition and possible anelastic loss behaviour related to the mobility of ferroelastic twin walls in the orthorhombic phase, the transition in polycrystalline CaCl2 has been examined using resonant ultrasound spectroscopy (RUS) at high frequencies (0.1-1.5 MHz) in the temperature interval 7-626 K, and dynamic mechanical analysis (DMA) at low frequencies (0.1-50 Hz) in the temperature interval 378-771 K. RUS data show steep softening of the shear modulus as the transition temperature is approached from above and substantial acoustic dissipation in the stability field of the orthorhombic structure. DMA data show softening of the storage modulus, which continues through to a minimum ˜20 K below the transition point and is followed by stiffening with further lowering of temperature. There is no obvious acoustic dissipation associated with the transition, as measured by tan δ, however. The elastic softening and stiffening matches the pattern expected for a pseudoproper ferroelastic transition as predicted elsewhere. Acoustic loss behaviour at high frequencies fits with the pattern of behaviour expected for a twin wall loss mechanism but with relaxation times in the vicinity of ˜10-6 s. With such short relaxation times, the shear modulus of CaCl2 at frequencies corresponding to seismic frequencies would include relaxations of the twin walls and is therefore likely to be significantly lower than the intrinsic shear modulus. If these characteristics apply also to twin wall mobility in stishovite, the seismic signature of the orthorhombic phase should be an unusually soft shear modulus but with no increase in attenuation.

  11. Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending

    NASA Astrophysics Data System (ADS)

    Farajollahi, Meisam; Sassani, Farrokh; Naserifar, Naser; Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Madden, John D. W.

    2016-11-01

    Trilayer bending actuators are charge driven devices that have the ability to function in air and provide large mechanical amplification. The electronic and mechanical properties of these actuators are known to be functions of their charge state making prediction of their responses more difficult when they operate over their full range of deformation. In this work, a combination of state space representation and a two-dimensional RC transmission line model are used to implement a nonlinear time variant model for conducting polymer-based trilayer actuators. Electrical conductivity and Young’s modulus of electromechanically active PEDOT conducting polymer containing films as a function of applied voltage were measured and incorporated into the model. A 16% drop in Young’s modulus and 24 times increase in conductivity are observed by oxidizing the PEDOT. A closed form formulation for radius of curvature of trilayer actuators considering asymmetric and location dependent Young’s modulus and conductivity in the conducting polymer layers is derived and implemented in the model. The nonlinear model shows the capability to predict the radius of curvature as a function of time and position with reasonable consistency (within 4%). The formulation is useful for general trilayer configurations to calculate the radius of curvature as a function of time. The proposed electrochemical modeling approach may also be useful for modeling energy storage devices.

  12. Standardized static and dynamic evaluation of myocardial tissue properties.

    PubMed

    Ramadan, Sherif; Paul, Narinder; Naguib, Hani E

    2017-03-20

    Quantifying the mechanical behaviors of soft biological tissues is of considerable research interest. However, validity and reproducibility between different researchers and apparatus is questionable. This study aims to quantify the mechanical properties of myocardium while investigating methodologies that can standardize biological tissue testing. Tensile testing was performed to obtain Young's modulus and a dynamic mechanical analysis (DMA) determined the viscoelastic properties. A frequency range of 0.5 Hz (30bpm) to 3.5 Hz (210bpm) was analyzed. For tensile testing three different preconditioning settings were tested: no load, 0.05 N preload, and a cyclic preload at 2.5% strain and 10 cycles. Samples were placed in saline and tested at 37 °C. Five ovine and five porcine hearts were tested. Cyclic loading results in the most consistent moduli values. The modulus of ovine/porcine tissue was mean = 0.05/.06 MPa, SD = 0.02/0.03 MPa. The storage/loss modulus varied from = 0.02/0.003 MPa at 0.5 Hz to 0.04/0.008 MPa at 3.5 Hz; Stiffness increases linearly from 400 to 800 N m -1 with a tan delta around 0.175. Static analysis of the mechanical properties of myocardial tissue confirms that; preconditioning is necessary for reproducibility, and DMA provides a platform for reproducible testing of soft biological tissues.

  13. Improvement of rheological properties of firm acid gels by skim milk heating is conserved after stirring.

    PubMed

    Cayot, P; Fairise, J F; Colas, B; Lorient, D; Brulé, G

    2003-11-01

    The enhancement of the strength of set acid gels by heating milk was related to rheological parameters (water retention capacity, storage modulus) of corresponding stirred gels. To obtain accurate rheological data from stirred gel it was necessary to maintain a constant granulometry of gel particles and to recognize time after stirring as a contributing factor. Two hours after stirring, the gel exhibited a higher storage modulus when milk was heated above 80 degrees C. A measurement of viscosity of just-stirred yoghurt was sufficient to predict correctly the quality of a stirred gel analysed by viscoelastic measurements. Increased resistance to syneresis of just-stirred gels was related to higher viscosity. The quantity of beta-lactoglobulin (beta-Ig) bound to casein micelles explains the improvement of these gel qualities. We have considered that the structure of the initial firm gel (mesostructure level) was conserved in fragments within the stirred gel. Consequently, the explanation given by various authors for the effect of heating milk on the properties of set gels can also be applied to stirred gels. The same mechanism, described in literature for structure formation of set gels from acidified milk is purposed to explain the role of heating milk on the recovery of gel structure after stirring. The beta-Ig association with casein micelles during heating favoured micelle connections during the acidification. It also favoured the association of gel fragments after stirring during the recovery in gel structure.

  14. Thermomechanical properties and transparency of self-reinforced polylactide composites with stereocomplex polylactide nanofibers

    NASA Astrophysics Data System (ADS)

    Kurokawa, Naruki; Hotta, Atsushi

    By compounding stereocomplex polylactide (sc-PLA) nanofibers into poly(L-lactide) (PLLA), we obtained an sc-PLA/PLLA composite with high transparency and sufficient mechanical properties. One of the major problems in the practical use of PLLA is its poor thermomechanical properties especially in the amorphous state: when heated, the storage modulus of pure PLLA drastically decreases through its glass transition temperature (Tg 68 degree). The fiber composite method could be an efficient way to solve the problem, while possibly avoiding marked reduction in its transparency. To maintain the high transparency of the original PLLA, the sc-PLA fiber diameter was optimized to be lower than the optical wavelength. In addition, to enhance the transparency, the reflective index should be closer and the sc-PLA fiber surface should be compatible with the PLLA matrix. Thus, the sc-PLA fibers of 367 nm in the average diameter were mixed with PLLA to improve its thermomechanical properties. At the sc-PLA nanofiber concentration of 15 weight percent, the storage modulus was increased by 21.8 times as compared with that of PLLA at 80 degree. It was also found that the transparency of PLLA did not drastically change after compounding. The work was supported by a Grant-in-Aid for Scientific Research (A) from JSPS: KAKENHIà (No. 15H02298 to A.H.), 2016 Keio University Doctorate Student Grant-in-Aid Program (N.K.), and MEXT Grant-in-Aid for the Program for Leading Graduate Schools (N.K.).

  15. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi.

    PubMed

    Yin, Tao; Park, Jae W

    2014-05-01

    Gelation properties of Alaska pollock surimi as affected by addition of nano-scaled fish bone (NFB) at different levels (0%, 0.1%, 0.25%, 0.5%, 1% and 2%) were investigated. Breaking force and penetration distance of surimi gels after setting increased significantly as NFB concentration increased up to 1%. The first peak temperature and value of storage modulus (G'), which is known to relate to the unfolding and aggregation of light meromyosin, increased as NFB concentration increased. In addition, 1% NFB treatment demonstrated the highest G' after gelation was completed. The activity of endogenous transglutaminase (TGase) in Alaska pollock surimi increased as NFB calcium concentration increased. The intensity of myosin heavy chain cross-links also increased as NFB concentration increased indicating the formation of more ε-(γ-glutamyl) lysine covalent bond by endogenous TGase and calcium ions from NFB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials.

    PubMed

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M

    2010-05-01

    It is suggested that fibre-reinforced composite (FRC) posts have lower elastic moduli than metal posts and this will reduce the incidence of root fracture. However, the mechanical properties may be altered in the oral environment. The aims of this study were to determine the effect on the flexural properties of FRC and metal post materials produced by: (1) a thermocycling regime which was clinically relevant and representative of that which would occur during 1 year in the mouth and (2) storage for 1 year at body temperature. Nine FRC and two metal post material samples were sealed in polythene sleeves and thermocycled between 10 degrees C and 50 degrees C for 10,000 cycles. Additional samples were stored dry at 37 degrees C for 1 year. The flexural strength and moduli were determined by three-point bending and compared with untreated control samples. Thermocycling and storage at 37 degrees C for 1 year decreased the mean flexural modulus of all materials. This was statistically significant for 8 of 11 materials after thermocycling, and 4 of 11 materials after storage at 37 degrees C (p<0.05). Thermocycling and storage at 37 degrees C produced a non-significant increase in yield strength for both metal post materials. Thermocycling significantly increased the flexural strength of Postec while it decreased for the other FRC materials. Storage at 37 degrees C increased the flexural strength of three FRC materials (significantly for Postec) while it was decreased among the other materials. Although some of the changes noticed in flexural properties were statistically significant, it is doubtful that they are of sufficient magnitude to affect clinical performance.

  17. Measurement of viscosity and elasticity of lubricants at high pressures

    NASA Technical Reports Server (NTRS)

    Rein, R. G., Jr.; Charng, T. T.; Sliepcevich, C. M.; Ewbank, W. J.

    1975-01-01

    The oscillating quartz crystal viscometer has been used to investigate possible viscoelastic behavior in synthetic lubricating fluids and to obtain viscosity-pressure-temperature data for these fluids at temperatures to 300 F and pressures to 40,000 psig. The effect of pressure and temperature on the density of the test fluids was measured concurrently with the viscosity measurements. Viscoelastic behavior of one fluid, di-(2-ethylhexyl) sebacate, was observed over a range of pressures. These data were used to compute the reduced shear elastic (storage) modulus and reduced loss modulus for this fluid at atmospheric pressure and 100 F as functions of reduced frequency.

  18. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Cui, Jing; Qiao, Jichao; Bai, Jie; Kou, Hongchao; Wang, Jun

    2015-04-01

    Dynamic mechanical behavior of a Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G' and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  19. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinshan, E-mail: ljsh@nwpu.edu.cn; Cui, Jing; Bai, Jie

    2015-04-21

    Dynamic mechanical behavior of a Ti{sub 50}Zr{sub 20}Nb{sub 12}Cu{sub 5}Be{sub 13} bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  20. A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae).

    PubMed

    Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele

    2006-09-01

    The stems of large trees serve in transport, storage, and support; however, the degree to which these roles are reflected in their morphology is not always apparent. The large, water-filled stems of baobab trees (Adansonia spp.) are generally assumed to serve a water storage function, yet recent studies indicate limited use of stored water. Through an analysis of wood structure and composition, we examined whether baobab morphology reflects biomechanical constraints rather than water storage capacity in the six Madagascar baobab species. Baobab wood has a high water content (up to 79%), low wood density (0.09-0.17 g · cm(-3)), high parenchyma content (69-88%), and living cells beyond 35 cm into the xylem from the cambium. Volumetric construction cost of the wood is several times lower than in more typical trees, and the elastic modulus approaches that of parenchyma tissue. Safety factors calculated from estimated elastic buckling heights were low, indicating that baobabs are not more overbuilt than other temperate and tropical trees, yet the energy investment in stem material is comparable to that in temperate deciduous trees. Furthermore, the elastic modulus of the wood decreases with water content, such that excessive water withdrawal from the stem could affect mechanical stability.

  1. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    NASA Astrophysics Data System (ADS)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  2. The rheological and textural characterization of Soluplus®/Vitamin E composites.

    PubMed

    Salawi, Ahmad; Nazzal, Sami

    2018-07-30

    Soluplus® is a graft amphiphilic copolymer that is frequently used as an excipient in solid dosage forms as a dissolution and a solubility enhancer. We discovered that Soluplus® can be dissolved in vitamin E. The result is a tacky and highly adhesive material. Our research objective was to evaluate the rheological, adhesive, and textural properties of the Soluplus®/Vitamin E composites. In this study, Soluplus® was dissolved under heat in vitamin E at increasing concentrations from 0 to 40% (by weight). The flow behavior of the Soluplus®/Vitamin E composites was determined by applying shear stress using an advanced AR2000 rheometer. Under the linear viscoelastic region (LVR), the rheological properties of the blends such as dynamic viscosity (η'), storage modulus (G'), loss modulus (G″), and the phase angle tangent (tan δ) were measured. Hardness, adhesiveness, and cohesiveness of the blends were also measured with a TA.XT plus texture analyzer. Rheological analysis showed that the viscosity of the Soluplus®/Vitamin E composites increased with an increase in Soluplus® concentration but decreased as the temperature increased from 20 to 90 °C. The adhesiveness of the blends also significantly increased with an increase in Soluplus® concentration. The results from this study indicated that Soluplus®/Vitamin E composites have the potential to be exploited in applications where the use of highly adhesive material is desirable. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Energy Harvesting and Storage Systems for Future AF Vehicles

    DTIC Science & Technology

    2012-05-18

    mechanical testing setup/procedures to determine the Young’s modulus and fracture strength of solar energy harvesting modules. Figure D1 SEM micrograph of...failure modes. (4 configurations; 2 repetitions) Table D3. Summary of mechanical testing activity The goal of the test is to determine the fracture ...

  4. Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method

    PubMed Central

    Dang, Baokang; Chen, Yipeng; Shen, Xiaoping; Chen, Bo; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    A polyethylene/wood-fiber composite loaded with nano-ZnO was prepared by a facile hot-press method and was used for the photocatalytic degradation of organic compounds as well as for microwave absorption. ZnO nanoparticles with an average size of 29 nm and polyethylene (PE) powders were dispersed on the wood fibers’ surface through a viscous cationic polyacrylamide (CPAM) solution. The reflection loss (RL) value of the resulting composite was −21 dB, with a thickness of 3.5 mm in the frequency of 17.17 GHz. The PE/ZnO/wood-fiber (PZW) composite exhibited superior photocatalytic activity (84% methyl orange degradation within 300 min) under UV light irradiation. ZnO nanoparticels (NPs) increased the storage modulus of the PZW composite, and the damping factor was transferred to the higher temperature region. The PZW composite exhibited the maximum flexural strength of 58 MPa and a modulus of elasticity (MOE) of 9625 MPa. Meanwhile, it also displayed dimensional stability (thickness swelling value of 9%). PMID:29099777

  5. Dynamic mechanical thermal properties of the dental light-cured nanohybrid composite Kalore, GC: effect of various food/oral simulating liquids.

    PubMed

    Sideridou, Irini D; Vouvoudi, Evangelia C; Adamidou, Evanthia A

    2015-02-01

    The aim of this work is the study of the dynamic mechanical thermal properties (viscoelastic properties) of a current dental commercial light-cured nanohybrid resin composite, Kalore, GC (GC Corporation, Tokyo, Japan) along with the study of the effect of some food/oral simulating liquids (FSLs) on these properties. Dynamic mechanical thermal analysis (DMTA) tests were performed on a Diamond Dynamic Mechanical Thermal Analyzer in bending mode. A frequency of 1Hz and a temperature range of 25-185°C were applied, while the heating rate of 2°C/min was selected to cover mouth temperature and the material's likely Tg. The properties were determined after storage in air, distilled water, heptane, ethanol/water solution (75% v/v) or absolute ethanol at 37°C for up to 1h, 1, 7 or 30 days. Storage modulus, loss modulus and tangent delta (tanδ) were plotted against temperature. The glass transition temperatures are taken from the peak of the tangent tanδ versus temperature curves. Moreover, some factors indicating the heterogeneity of the polymer matrix, such as the width (ΔT) at the half of tanδ peak and the "ζ" parameter were determined. All samples analyzed after storage for 1h or 1 day in the aging media showed two Tg values. All samples analyzed after storage for 7 or 30 days in the ageing media showed a unique Tg value. Storage of Kalore GC in dry air, water or heptane at 37°C for 7 days caused post-curing reactions. Storage in air or water for 30 days did not seem to cause further effects. Storage in heptane for 30 days may cause plasticization and probably some degradation of the filler-silane bond and polymer matrix. Storage in ethanol/water solution (75% v/v) or ethanol for 7 days seems to cause post-curing reactions and degradation reactions of the matrix-filler bonds. Storage in ethanol for 30 days caused a strong change of the sample morphology and the DMTA results were not reliable. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Dynamic rheological properties of dough as affected by amylases from various sources.

    PubMed

    Doğan, Ismail S

    2002-12-01

    The effect of alpha-amylases from cereal, fungal, and bacterial sources on dough dynamic rheological properties was investigated. Dynamic rheological study of flour-and-water doughs during resting period showed significant changes in dough rheological properties as a function of alpha-amylases. Addition of alpha-amylases caused a time-dependent decrease in G', storage modulus. The enzyme action on starch during baking increased viscous flow properties. These changes were temperature-dependent. The thermal inactivation temperature of alpha-amylase plays an important role in modification of starch. Rheological changes in dough will alter the machinability of the dough and the quality of end products.

  7. Understanding the role of monolayers in retarding evaporation from water storage bodies

    NASA Astrophysics Data System (ADS)

    Fellows, Christopher M.; Coop, Paul A.; Lamb, David W.; Bradbury, Ronald C.; Schiretz, Helmut F.; Woolley, Andrew J.

    2015-03-01

    Retardation of evaporation by monomolecular films by a 'barrier model' does not explain the effect of air velocity on relative evaporation rates in the presence and absence of such films. An alternative mechanism for retardation of evaporation attributes reduced evaporation to a reduction of surface roughness, which in turn increases the effective vapour pressure of water above the surface. Evaporation suppression effectiveness under field conditions should be predictable from measurements of the surface dilational modulus of monolayers and research directed to optimising this mechanism should be more fruitful than research aimed at optimising a monolayer to provide an impermeable barrier.

  8. Viscoelastic properties of addition-cured polyimides used in high temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Malarik, Diane C.; Robaidek, Jerrold O.

    1991-01-01

    The viscoelastic properties of an addition-cured polyimide, PMR-15, were evaluated through dynamic mechanical and stress relaxation testing. Below the glass transition temperature, the dynamic mechanical properties of the composites are strongly affected by the absorbed moisture in the resin. At temperature 20 C and more above the glass transition temperature, the storage modulus increases continuously with time, indicating that additional crosslinking is occurring in the resin. For resin moisture contents less than 2 percent, stress relaxation curves measured at different temperatures can be superimposed using horizontal shifts along the log(time) axis with only small shifts along the vertical axis.

  9. Structural relaxation driven increase in elastic modulus for a bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Harpreet Singh; Aditya, Ayyagari V.; Mukherjee, Sundeep, E-mail: sundeep.mukherjee@unt.edu

    2015-01-07

    The change in elastic modulus as a function of temperature was investigated for a zirconium-based bulk metallic glass. High temperature nano-indentation was done over a wide temperature range from room temperature to the glass-transition. At higher temperature, there was a transition from inhomogeneous to homogeneous deformation, with a decrease in serrated flow and an increase in creep displacement. Hardness was found to decrease, whereas elastic modulus was found to increase with temperature. The increase in elastic modulus for metallic glass at higher temperature was explained by diffusive rearrangement of atoms resulting in free volume annihilation. This is in contrast tomore » elastic modulus increase with temperature for silicate glasses due to compaction of its open three dimensional coordinated structure without any atomic diffusion.« less

  10. Systematic dynamic viscoelasticity measurements for chitin nanofibers prepared with various concentrations, disintegration times, acidities, and crystalline structures.

    PubMed

    Suenaga, Shin; Osada, Mitsumasa

    2018-04-17

    Dynamic viscoelasticities were measured for chitin nanofiber (ChNF) dispersions prepared with various concentrations, disintegration times, acidities, and crystalline structures. The 0.05 w/v% dispersions of pH neutral ChNFs continuously exhibited elastic behavior. The 0.05 w/v% dispersions of acidified ChNFs, on the other hand, transitioned from a colloidal dispersion to a critical gel and then exhibited elastic behavior with increasing ChNF concentration. A double-logarithmic chart of the concentration vs. the storage modulus was prepared and indicated the fractal dimension and the nanostructure in the dispersion. The results determined that the neutral α- and β-ChNFs were dispersed but showed some remaining aggregations and that the acidified β-ChNFs were completely individualized. In addition, the α-chitin steadily disintegrated with increasing disintegration time, and the aspect ratio of the β-chitin decreased as a result of the exscessive disintegration. The storage moduli of the ChNFs were greater than those of chitin solutions, nanorods, and nanowhiskers with the same solids concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Cryopreservation of amniotic membrane with and without glycerol additive.

    PubMed

    Wagner, Malina; Walter, Peter; Salla, Sabine; Johnen, Sandra; Plange, Niklas; Rütten, Stephan; Goecke, Tamme W; Fuest, Matthias

    2018-06-01

    Amniotic membrane (AM) is an essential tool in ocular surface reconstruction. In this study, we analyzed the differential effects of glycerol and straight storage at - 80 °C for up to 6 months on the structural, biological, and mechanical properties of amniotic membrane (AM). Human placentae of 11 different subjects were analyzed. AMs were stored at - 80 °C, either with a 1:1 mixture of Dulbecco's modified Eagle medium and glycerol (glycerol) or without any medium or additives (straight). Histological image analysis, tensile strength, cell viability, and basic fibroblast growth factor (bFGF) secretion were evaluated at 0.5, 1, 3, and 6 months. Histologically, neither glycerol nor straight storage significantly altered the epithelial or stromal structure of the AM. However, the cell number of the stroma was significantly reduced during the freezing process, independently of the storage method (p = 0.05-0.001). Tensile strength and Young's modulus were not influenced by the storage method, but longer storage periods significantly increased the tensile strength of the AMs (p = 0.028). Cell viability was higher in glycerol rather than straight AM samples for up to 3 months of storage (p = 0.047-0.03). Secretion of bFGF at 3 months of storage was significantly higher in glycerol versus straight frozen AM samples (p = 0.04). Glycerol led to higher cell viability and higher bFGF secretion for up to 3 months of AM storage. However, no significant differences between the two methods were observed at 6 months of storage at - 80 °C.

  12. Dental adhesives and strategies for displacement of water/solvents from collagen fibrils.

    PubMed

    Matuda, Larissa Sgarbosa de Araújo; Marchi, Giselle Maria; Aguiar, Thaiane Rodrigues; Leme, Ariene Arcas; Ambrosano, Gláucia M B; Bedran-Russo, Ana Karina

    2016-06-01

    To evaluate the influence of temperature of evaporation in adhesive systems with different solvents on the apparent modulus of elasticity and mass change of macro-hybrid layers modified by proanthocyanidins (PACs). Adhesive resin beams (A) from Single Bond Plus (SB), Excite (EX) and One Step Plus (OS) were prepared after solvent evaporation at 23°C or 40°C (n=12). Macro-hybrid layers (M) (n=12) were prepared using demineralized dentin beams sectioned from extracted human third molars. The demineralized dentin specimens were infiltrated with each one of the three adhesive systems at 23°C or 40°C; with or without prior dentin treatment with PACs for 10min. The apparent modulus of elasticity (E) and mass change (Wmc, %) of adhesives beams and resin-infiltrated specimens were assessed in dry and wet conditions after immersion in water (24h, 1, 3 and 6 months). The E was statistically analyzed by Tukey-Kramer test and the Wmc, % by Kruskal Wallis, and Dunn (α=0.05). Solvent evaporation at 40°C resulted in higher E values for adhesive resin beams at all storage conditions, regardless of the adhesive system (p<0.05). Increased mass loss (3 months: -0.01%; 6 months: -0.05%) was observed in One Step resin beams (p≤0.05). In the macro-hybrid layer models the pretreatment with PACs along with solvent evaporation at 40°C increased E and decreased the Wmc, % (3 months: -2.5; 6 months: 2.75%) for adhesives evaluated over time (p<0.05). No significant differences in ratio (resin/dentin) were found for the macro-hybrid layers (p>0.05). Improved solvent evaporation at higher temperature, and increased collagen cross-linking induced by PACs, enhanced the mechanical properties resulting in highly stable macro-hybrid layers over 6 months storage. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Rheological Differences of Waxy Barley Flour Dispersions Mixed with Various Gums

    PubMed Central

    Kim, Chong-Yeon; Yoo, Byoungseung

    2017-01-01

    Rheological properties of waxy barley flour (WBF) dispersions mixed with various gums (carboxyl methyl celluleose, guar gum, gum arabic, konjac gum, locust bean gum, tara gum, and xanthan gum) at different gum concentrations were examined in steady and dynamic shear. WBF-gum mixture samples showed a clear trend of shear-thinning behavior and had a non-Newtonian nature with yield stress. Rheological tests indicated that the flow and dynamic rheological parameter (apparent viscosity, consistency index, yield stress, storage modulus, and loss modulus) values of WBF dispersions mixed with gums, except for gum arabic, were significantly higher than those of WBF with no gum, and also increased with an increase in gum concentration. In particular, konjac gum at 0.6% among other gums showed the highest rheological parameter values. Tan δ values of WBF-xanthan gum mixtures were lower than those of other gums, showing that there is a more pronounced synergistic effect on the elastic properties of WBF in the presence of xanthan gum. Such synergistic effect was hypothesized by considering thermodynamic compatibility between xanthan gum and WBF. These rheological results suggest that in the WBF-gum mixture systems, the addition of gums modified the flow and viscoelastic properties of WBF, and that these modifications were dependent on the type of gum and gum concentration. PMID:28401089

  14. Effect of egg freshness on texture and baking characteristics of batter systems formulated using egg, flour and sugar.

    PubMed

    Xing, Liting; Niu, Fuge; Su, Yujie; Yang, Yanjun

    2016-04-01

    The aim of this work was to evaluate the effects of egg freshness on baking properties and final qualities in batter systems. Batters were made with eggs of different freshness, and the properties of batter systems were studied through rheological analysis, rapid viscosity analysis (RVA), differential scanning calorimetry (DSC), batter density and expansion rate during the baking and cooling processes. Moreover, the qualities of final baked systems were investigated, including specific volume and texture profile analysis (TPA). The flow behavior of batters showed that the consistency index (K) decreased as the Haugh unit (HU) value decreased, while the flow behavior index (n) increased. Both the storage modulus (G') and loss modulus (G″) determined by mechanical spectra at 20 °C decreased with decreasing HU. RVA and DSC determinations revealed that lower-HU samples had a lower viscosity in the baking process and a shorter time for starch gelatinization and egg protein denaturation. Observation of the batter density revealed an increasing change, which was reflected by a decrease in the specific volume of final models. TPA showed significant differences in hardness and chewiness, but no significant differences in springiness and cohesiveness were found. The egg freshness affected the properties of batter systems. © 2015 Society of Chemical Industry.

  15. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    PubMed Central

    Bikiaris, Dimitrios

    2010-01-01

    In the last few years, great attention has been paid to the preparation of polypropylene (PP) nanocomposites using carbon nanotubes (CNTs) due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  16. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed; Marco, Carlos; Ellis, Gary

    2012-07-12

    The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity η, storage modulus G', and loss modulus G″ increased with SWCNT content. In the low-frequency region, G' and G″ became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in η and G' due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites.

  17. Effect of hydrocolloids on the physico-chemical and rheological properties of reconstituted sweetened yoghurt powder.

    PubMed

    Seth, Dibyakanta; Mishra, Hari Niwas; Deka, Sankar Chandra

    2018-03-01

    The consistency of sweetened yoghurt (misti dahi) is a desired characteristic which is attributed to the casein protein network formation during fermentation. Unfortunately, this property is lost in reconstituted sweetened yoghurt (RSY) due to the irreversible nature of protein denaturation during spray drying. Therefore, this study aimed to increase the consistency of RSY using different hydrocolloids. The effects addition of guar gum, pectin, κ-carrageenan and gelatin (0.1%w/v each) on the physico-chemical, microbial, rheological and sensory properties of RSY were investigated. RSY with 40% total solids demonstrated the rheological properties which are very similar to those of fresh sweetened yoghurt. RSY containing different hydrocolloids further increased the rheological properties. The dynamic rheological study revealed that the magnitude of storage modulus (G'), loss modulus (G″), and loss tangent (tan δ) were significantly influenced by the addition of hydrocolloids and gelatin exhibited highest dynamic moduli in RSY. However, κ-carrageenan added RSY was preferred sensorially as the rheological properties were very close to gelatin added RSY. Addition of hydrocolloids significantly increased the starter bacteria count and pH and reduced water expulsion rate (P < 0.05). Addition of hydrocolloids can improve the rheological properties of reconstituted yoghurt. The study concluded that the addition of κ-carrageenan showed better results in terms of rheological and sensory properties of RSY. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Mathematical inference in one point microrheology

    NASA Astrophysics Data System (ADS)

    Hohenegger, Christel; McKinley, Scott

    2016-11-01

    Pioneered by the work of Mason and Weitz, one point passive microrheology has been successfully applied to obtaining estimates of the loss and storage modulus of viscoelastic fluids when the mean-square displacement obeys a local power law. Using numerical simulations of a fluctuating viscoelastic fluid model, we study the problem of recovering the mechanical parameters of the fluid's memory kernel using statistical inference like mean-square displacements and increment auto-correlation functions. Seeking a better understanding of the influence of the assumptions made in the inversion process, we mathematically quantify the uncertainty in traditional one point microrheology for simulated data and demonstrate that a large family of memory kernels yields the same statistical signature. We consider both simulated data obtained from a full viscoelastic fluid simulation of the unsteady Stokes equations with fluctuations and from a Generalized Langevin Equation of the particle's motion described by the same memory kernel. From the theory of inverse problems, we propose an alternative method that can be used to recover information about the loss and storage modulus and discuss its limitations and uncertainties. NSF-DMS 1412998.

  19. Immediate versus one-month wet storage fatigue of restorative materials.

    PubMed

    Gladys, S; Braem, M; Van Meerbeek, B; Lambrechts, P; Vanherle, G

    1998-03-01

    Immediate finishing is a highly desirable property of restorative materials. In general, the resin composites, the polyacid-modified resin composites and resin-modified glass-ionomers are finished immediately after light-curing. For the conventional glass-ionomers a waiting period of 24 h is recommended. Therefore, the objective of this study was to investigate whether immediate finishing and application of cyclic loading under water spray on resin-modified glass-ionomers, a conventional glass-ionomer, a polyacid-modified resin composite and a resin composite are reflected in their Young's modulus and fatigue resistance after 1-month wet storage compared with a control group that could mature untroubled for 1 month. From this study, it could be concluded that there is a material-dependent response on immediate finishing. For the conventional glass-ionomer, the waiting period of 24 h is highly advisable. The resin composite suffered more than the other test materials. A second statement is that one must be cautious by the extrapolation of findings obtained on quasi static tests (Young's modulus) towards dynamic properties (flexural fatigue limit).

  20. Rheological Behavior of Tomato Fiber Suspensions Produced by High Shear and High Pressure Homogenization and Their Application in Tomato Products

    PubMed Central

    Sun, Ping; Adhikari, Benu P.; Li, Dong

    2018-01-01

    This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890

  1. Application of nanoscopic dynamic mechanical analysis for evaluating the mechanical behavior of hard tissues and bonded interfaces

    NASA Astrophysics Data System (ADS)

    Ryou, Heonjune

    2011-12-01

    In this study Dynamic Mechanical Analysis (DMA) was applied to dentin, the macro hybrid layer and intact hybrid layers of the bonded dental restorative interface using nanoindentation. Both intertubular and peritubular dentin were evaluated by DMA using discrete and scanning mode nanoindentation. The complex (E*), loss (E"), and storage (E') moduli were quantified over a range of indentation loads and scanning frequencies. The storage modulus of the peritubular cuff (22.19 GPa0.05). A model bonded interface (i.e. the macro hybrid) was evaluated using scanning DMA. A new approach for hydrating samples using ethylene glycol solution was developed and then applied to identify the importance of hydration on the measured properties. Fully hydrated samples exhibited mean values of E*, E' and E" of 3.54 GPa, 3.42 GPa and 0.86 GPa, respectively, whereas fully dehydrated samples exhibited values of 4.01 GPa, 3.88 GPa and 0.94 GPa, respectively. There were significant differences in the complex modulus (p<0.05) and storage modulus (p<0.001) between the hydrated and dehydrated conditions. However, differences in the loss moduli with hydration were not significantly different (p>0.05). A dynamic loading frequency of 100 Hz and scanning frequency of 0.2 Hz were identified to provide the most reliable results in scanning the collagen-based systems. Lastly, the optimal testing parameters obtained from studying the macro hybrid layer were used to evaluate intact resin-dentin bonded interfaces. The property maps clearly distinguished variations in properties as a function of the constituents. It was identified that scanning based nanoDMA is a potent tool for evaluating mechanical properties of the hybrid layer but testing parameters and maintenance of the hydration are critical to the interpretation of apparent mechanical behavior.

  2. Effects of multi-walled carbon nanotubes on rheological and physical properties of polyamide-based thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Bae, Won-Sik; Kwon, Oh Joo; Kim, Byoung Chul; Chae, Dong Wook

    2012-09-01

    The polyamide-based thermoplastic elastomers (Pebax®) were melt compounded with multi-walled carbon nanotubes (MWNTs: 0.25˜5 wt%) and the variation of rheological and physical properties with MWNT contents was investigated. The crystallization temperature (Tc) of the nanocomposites with 0.5 wt% MWNTs was most increased by ca. 8oC, but it was decreased by further addition. In addition, the presence of MWNTs broadened the Tc peak with increasing nanotube contents. In contrast, the melting behavior was little influenced by the presence of MWNTs for all compositions. The incorporation of MWNTs increased the complex viscosity with MWNT contents and the abrupt increase was observed from 1 wt%. In addition, lower Newtonian flow region became disappearing with increasing MWNT contents, exhibiting notable shear thinning behavior from 1 wt% loading. Storage modulus was increased with MWNT contents in a similar manner to viscosity. Casson plot demonstrated a non-zero positive intercept for all the samples. In particular, the abrupt increase of yield stress was observed from 1 wt% loading. In the Cole-Cole plot, the nanocomposites gave a deviated curve from pure Pebax and the slope was decreased with increasing MWNT contents. The relaxation time calculated from viscoelastic parameters was increased with nanotube contents, but the increasing extents were reduced with increasing frequency. From 2 wt% MWNTs, the electrical conductivity was observed, indicating that the electrical percolation existed between 1.5 and 2 wt%. At 0.25 wt% loading the tensile strength was slightly increased, but it was gradually decreased by further addition. The introduction of MWNTs increased the tensile modulus with nanotube contents. In addition, ductile properties were reduced with increasing MWNT contents, resulting in low toughness.

  3. Effects of Reorientation of Graphene Platelets (GPLs) on Young's Modulus of Polymer Composites under Bi-Axial Stretching.

    PubMed

    Feng, Chuang; Wang, Yu; Yang, Jie

    2018-01-07

    Effects of bi-axial stretching induced reorientation of graphene platelets (GPLs) on the Young's modulus of GPL/polymer composites is studied by Mori-Tanaka micromechanics model. The dispersion state of the GPLs in polymer matrix is captured by an orientation distribution function (ODF), in which two Euler angles are used to identify the orientation of the GPLs. Compared to uni-axial stretching, the increase of the stretching strain in the second direction enhances the re-alignment of GPL fillers in this direction while it deteriorates the re-alignment of the fillers in the other two directions. Comprehensive parametric study on the effects of the out-of-plane Young's modulus, stretching strain, strain ratio, Poisson's ratio and weight fraction and GPL dimension on the effective Young's moduli of the composites in the three directions are conducted. It is found that the out-of-plane Young's modulus has limited effects on the overall Young's modulus of the composites. The second stretching enhances the Young's modulus in this direction while it decreases the Young's modulus in the other two directions. The results demonstrate the increase of Poisson's ratio is favorable in increasing the Young's modulus of the composites. GPLs with larger diameter-to-thickness ratio have better reinforcing effect on the Young's modulus of GPL/polymer nanocomposites.

  4. A Carboxyl-Terminated Polybutadiene Liquid Rubber Modified Epoxy Resin with Enhanced Toughness and Excellent Electrical Properties

    NASA Astrophysics Data System (ADS)

    Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zuo, Jing; Liu, Xiangrong

    2016-07-01

    The modification of epoxy (EP) resin with carboxyl-terminated polybutadiene (CTPB) liquid rubber was carried out in this work. The chemical reaction between the oxirane ring of EP and the carboxyl group of CTPB and kinetic parameters were investigated by Fourier transform infrared and differential scanning calorimetry. The resulting pre-polymers were cured with methyl hexahydrophthalic anhydride. Scanning electron microscopic observations indicate that the micro-sized CTPB particles dispersed uniformly in the EP matrix formed a two-phase morphology, mainly contributing to the improved toughness of the modified network. The best overall mechanical performance was achieved with 20 phr CTPB; above it, a fall in the strength and modulus was observed. The storage modulus and loss declined with the CTPB concentration due to its lower modulus and plasticizing effect from dynamic mechanical analysis measurements. Moreover, due to the weak polarity and excellent electrical insulation of CTPB, the CTPB-modified EP presented higher electrical resistivities and breakdown strength, and low dielectric permittivity and loss compared with neat EP.

  5. A new class of magnetorheological elastomers based on waste tire rubber and the characterization of their properties

    NASA Astrophysics Data System (ADS)

    Ubaidillah; Imaduddin, Fitrian; Li, Yancheng; Amri Mazlan, Saiful; Sutrisno, Joko; Koga, Tsuyoshi; Yahya, Iwan; Choi, Seung-Bok

    2016-11-01

    This paper proposes a new type of magnetorheological elastomer (MRE) using rubber from waste tires and describes its performance characteristics. In this work, scrap tires were utilized as a primary matrix for the MRE without incorporation of virgin elastomers. The synthesis of the scrap tire based MRE adopted a high-temperature high-pressure sintering technique to achieve the reclaiming of vulcanized rubber. The material properties of the MRE samples were investigated through physical and viscoelastic examinations. The physical tests confirmed several material characteristics—microstructure, magnetic, and thermal properties-while the viscoelastic examination was conducted with a laboratory-made dynamic compression apparatus. It was observed from the viscoelastic examination that the proposed MRE has magnetic-field-dependent properties of the storage modulus, loss modulus, and loss tangent at different excitation frequencies and strain amplitudes. Specifically, the synthesized MRE showed a high zero field modulus, a reasonable MR effect under maximum applied current, and remarkable damping properties.

  6. Study of Reactive Melt Processing Behavior of Externally Plasticized Cellulose Acetate in Presence of Isocyanate

    PubMed Central

    Erdmann, Rafael; Kabasci, Stephan; Kurek, Joanna; Zepnik, Stefan

    2014-01-01

    Two types of externally plasticized cellulose acetate (CA) were chemically modified using 4,4'-methylene diphenyl diisocyanate (MDI) as crosslinking agent. Crosslinking was performed in the molten state by means of melt mixing in an internal mixer. The viscoelastic properties of the non-crosslinked, externally plasticized CA show typical temperature dependence, similar to conventional thermoplastics. A strong increase in storage modulus is observed with increasing crosslink density indicating that the crosslinked compounds exhibit predominately elastic response. The complex viscosity also increases considerably with increasing crosslink density and does not reach the typical Newtonian plateau at low radial frequencies any more. The viscoelastic properties correlate well with the data recorded online during reactive melt processing in the internal mixer. In comparison to the non-crosslinked CA, the crosslinked compounds show higher glass transition temperature, higher VICAT softening temperatures, improved thermal stability and lower plasticizer evaporation at evaluated temperatures. PMID:28788273

  7. Study of Reactive Melt Processing Behavior of Externally Plasticized Cellulose Acetate in Presence of Isocyanate.

    PubMed

    Erdmann, Rafael; Kabasci, Stephan; Kurek, Joanna; Zepnik, Stefan

    2014-12-04

    Two types of externally plasticized cellulose acetate (CA) were chemically modified using 4,4'-methylene diphenyl diisocyanate (MDI) as crosslinking agent. Crosslinking was performed in the molten state by means of melt mixing in an internal mixer. The viscoelastic properties of the non-crosslinked, externally plasticized CA show typical temperature dependence, similar to conventional thermoplastics. A strong increase in storage modulus is observed with increasing crosslink density indicating that the crosslinked compounds exhibit predominately elastic response. The complex viscosity also increases considerably with increasing crosslink density and does not reach the typical Newtonian plateau at low radial frequencies any more. The viscoelastic properties correlate well with the data recorded online during reactive melt processing in the internal mixer. In comparison to the non-crosslinked CA, the crosslinked compounds show higher glass transition temperature, higher VICAT softening temperatures, improved thermal stability and lower plasticizer evaporation at evaluated temperatures.

  8. Influences of modified bacterial cellulose nanofibers (BCNs) on structural, thermophysical, optical, and barrier properties of poly ethylene-co-vinyl acetate (EVA) nanocomposite.

    PubMed

    Ghadikolaei, Shila Shirdel; Omrani, Abdollah; Ehsani, Morteza

    2018-04-14

    The BCNs were chemically modified using acetic anhydride with the aim of improving its dispersion and interfacial adhesion. Acetylation of BCNs was confirmed by FT-IR spectroscopy. Morphology studies using TEM and SEM revealed that a reasonable dispersion of the modified BCNs in the EVA matrix was accomplished. The DSC data displayed a little shift in the T g to higher temperatures with the incorporation of both modified and unmodified BCNs. Increased thermal stability of the nanocomposites consisting acetylated BCNs was confirmed by TGA technique. DMA measurements highlighted that the storage modulus increased and the damping properties decreased for the nanocomposites with regard to the neat EVA. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Evaluation of the methylene blue addition in binary polymeric systems composed by poloxamer 407 and Carbopol 934P using quality by design: rheological, textural, and mucoadhesive analysis.

    PubMed

    Junqueira, Mariana Volpato; Borghi-Pangoni, Fernanda Belincanta; Ferreira, Sabrina Barbosa de Souza; Bruschi, Marcos Luciano

    2016-12-01

    This study describes the investigation about the physicochemical behavior of methylene blue (Mb) addition to systems containing poloxamer 407 (Polox), Carbopol 934P (Carb), intended to be locally used by photodynamic therapy. A factorial design 2 3 (plus center point) was used to analyze the rheological, mucoadhesive and textural properties of the preparations. Systems containing the lower concentrations of Polox (15 and 17.5%, w/w) exhibited pseudoplastic flow and low degrees of rheopexy. On the other hand, at higher Polox concentration (20%, w/w) the systems display plastic flow and thixotropy. Carb and Mb exhibited a negative influence for the consistency and flow behavior index, due to the interaction between them. For most of the formulations, the increase of Polox and Mb content significantly increased storage modulus, loss modulus and dynamic viscosity. The systems display a sol-gel transition temperature, existing as a liquid at room temperature and gel at 29-37 °C. Increasing the temperature and the polymer concentration, the compressional properties of systems significantly increased. The mucoadhesion was noted to all formulations, except to systems composed by 15% (w/w) of Polox. The analyses enabled to understand and predict the performance of formulations and the polymer-Mb interactions, tailoring to the suit systems (Polox/Carb/Mb): 17.5/0.50/0.20 and 20/0.15/0.25.

  10. Hydrogen storage in lithium hydride: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Banger, Suman; Nayak, Vikas; Verma, U. P.

    2018-04-01

    First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.

  11. Adhesion in ceramics and magnetic media

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  12. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry

    PubMed Central

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-01-01

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725

  13. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry.

    PubMed

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-07-21

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young's modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties.

  14. Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications.

    PubMed

    Badgayan, Nitesh Dhar; Sahu, Santosh Kumar; Samanta, Sutanu; Rama Sreekanth, P S

    2018-04-01

    A thrust on improvement of different properties of polymer has taken a contemporary route with advent of nanofillers. Although several nanofillers are existent; MultiWalled Carbon Nanotubes- (MWCNTs) and h-Boron Nitride nanoplatelets-(h-BNNPs) unique combination of 1D and 2D dimensional geometry aids an advantage of B-C-N triad elemental effects on properties of tested samples. The current study aims to investigate the effects of MWCNT and h-BNNP reinforcement in High Density Polyethylene (HDPE) for high load bearing areas of medical applications requiring both elastic and viscous behavior. The results were analyzed keeping a view of its application in areas like HDPE based fracture fixation plates, acetabular cups and others. The composite and hybrid samples with different loadings were prepared after surface modification of nanofillers by mechanical mixing and molding technique. The dynamic nano-mechanical properties like storage modulus, loss modulus and tan delta were assessed for each sample during frequency swept from 10 to 220 Hz. The viscoelastic properties like h c /h m , H/E, elastic-plastic deformation were investigated and evaluated. At a frequency of 10 Hz, the storage and loss modulus of 0.1 CNT increased by 37.56% and decreased by 23.52% respectively on comparison with pure HDPE. This infers a good elastic as well as viscous behavior. Overall elastic behavior of 0.1 CNT was confirmed from tan delta evaluation. The interaction between B-C-N elemental triad had significant effect on creep strength, visco-damping property (h c /h m and H/E), elastic plastic displacement and pile-up and sink-in behavior. Highest creep strength and visco-damping property was exhibited by 0.25 CNT/0.15 BNNP hybrid. The elastic-plastic displacement of hybrid composite was noted as least, which decreased by 30% on comparison with pure HDPE. It can be inferred that presence of 1D-MWCNT and 2D-h-BNNP had significant effect on important dynamic viscoelastic and creep properties of HDPE based hybrid composites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles.

    PubMed

    Peters, Abby E; Comerford, Eithne J; Macaulay, Sophie; Bates, Karl T; Akhtar, Riaz

    2017-07-01

    Tissue material properties are crucial to understanding their mechanical function, both in healthy and diseased states. However, in certain circumstances logistical limitations can prevent testing on fresh samples necessitating one or more freeze-thaw cycles. To date, the nature and extent to which the material properties of articular cartilage are altered by repetitive freezing have not been explored. Therefore, the aim of this study is to quantify how articular cartilage mechanical properties, measured by nanoindentation, are affected by multiple freeze-thaw cycles. Canine cartilage plugs (n = 11) from medial and lateral femoral condyles were submerged in phosphate buffered saline, stored at 3-5°C and tested using nanoindentation within 12h. Samples were then frozen at -20°C and later thawed at 3-5°C for 3h before material properties were re-tested and samples re-frozen under the same conditions. This process was repeated for all 11 samples over three freeze-thaw cycles. Overall mean and standard deviation of shear storage modulus decreased from 1.76 ± 0.78 to 1.21 ± 0.77MPa (p = 0.91), shear loss modulus from 0.42 ± 0.19 to 0.39 ± 0.17MPa (p=0.70) and elastic modulus from 5.13 ± 2.28 to 3.52 ± 2.24MPa (p = 0.20) between fresh and three freeze-thaw cycles respectively. The loss factor increased from 0.31 ± 0.38 to 0.71 ± 1.40 (p = 0.18) between fresh and three freeze-thaw cycles. Inter-sample variability spanned as much as 10.47MPa across freezing cycles and this high-level of biological variability across samples likely explains why overall mean "whole-joint" trends do not reach statistical significance across the storage conditions tested. As a result multiple freeze-thaw cycles cannot be explicitly or statistically linked to mechanical changes within the cartilage. However, the changes in material properties observed herein may be sufficient in magnitude to impact on a variety of clinical and scientific studies of cartilage, and should be considered when planning experimental protocols. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effects of Reorientation of Graphene Platelets (GPLs) on Young’s Modulus of Polymer Composites under Bi-Axial Stretching

    PubMed Central

    Yang, Jie

    2018-01-01

    Effects of bi-axial stretching induced reorientation of graphene platelets (GPLs) on the Young’s modulus of GPL/polymer composites is studied by Mori-Tanaka micromechanics model. The dispersion state of the GPLs in polymer matrix is captured by an orientation distribution function (ODF), in which two Euler angles are used to identify the orientation of the GPLs. Compared to uni-axial stretching, the increase of the stretching strain in the second direction enhances the re-alignment of GPL fillers in this direction while it deteriorates the re-alignment of the fillers in the other two directions. Comprehensive parametric study on the effects of the out-of-plane Young’s modulus, stretching strain, strain ratio, Poisson’s ratio and weight fraction and GPL dimension on the effective Young’s moduli of the composites in the three directions are conducted. It is found that the out-of-plane Young’s modulus has limited effects on the overall Young’s modulus of the composites. The second stretching enhances the Young’s modulus in this direction while it decreases the Young’s modulus in the other two directions. The results demonstrate the increase of Poisson’s ratio is favorable in increasing the Young’s modulus of the composites. GPLs with larger diameter-to-thickness ratio have better reinforcing effect on the Young’s modulus of GPL/polymer nanocomposites. PMID:29316669

  17. Effect of nanoparticles dispersion on viscoelastic properties of epoxy–zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  18. Effect of nanoparticles dispersion on viscoelastic properties of epoxy-zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  19. Measurement of Young's modulus in the in vivo human vocal folds.

    PubMed

    Tran, Q T; Berke, G S; Gerratt, B R; Kreiman, J

    1993-08-01

    Currently, surgeons have no objective means to evaluate and optimize results of phonosurgery intraoperatively. Instead, they usually judge the vocal folds subjectively by visual inspection or by listening to the voice. This paper describes a new device that measures Young's (elastic) modulus values for the human vocal fold intraoperatively. Physiologically, the modulus of the vocal fold may be important in determining the nature of vocal fold vibration in normal and pathologic states. This study also reports the effect of recurrent laryngeal nerve stimulation on Young's modulus of the human vocal folds, measured by means of transcutaneous nerve stimulation techniques. Young's modulus increased with increases in current stimulation to the recurrent laryngeal nerve. Ultimately, Young's modulus values may assist surgeons in optimizing the results of various phonosurgeries.

  20. Measurements of unjacketed moduli of porous rock

    NASA Astrophysics Data System (ADS)

    Tarokh, A.; Makhnenko, R. Y.; Labuz, J.

    2017-12-01

    Coupling of stress and pore pressure appears in a number of applications dealing with subsurface (sedimentary) rock, including petroleum exploration and waste storage. Poroelastic analyses consider the compressibility of the solid constituents forming the rock, and often times solid bulk modulus Ks is assumed to be the same as the dominant mineral bulk modulus. In fact, there are two different parameters describing solid compressibility of a porous rock: the unjacketed bulk modulus Ks' and the unjacketed pore modulus Ks". Experimental techniques are developed to measure the two poroelastic parameters of fluid-saturated porous rock under the unjacketed condition. In an unjacketed experiment, the rock without a membrane is loaded by the fluid in a pressure vessel. The confining fluid permeates the connected pore space throughout the interior of the rock. Therefore, changes in mean stress P will produce equal changes in pore pressure p, i.e. ΔP = Δp. The test can also be performed with a jacketed rock specimen by applying equal increments of mean stress and pore pressure. The unjacketed bulk modulus, Ks', is obtained by measuring the bulk strain with resistive strain gages. The unjacketed pore modulus, Ks", the pore volume counterpart to Ks', is a measure of the change in pore pressure per unit pore volume strain under the unjacketed condition. Several indirect estimates of Ks" have been reported but limitations of these approaches do not provide an accurate value. We present direct measurements of Ks" with detailed calibration on the system volumetric response. The results indicate that for Dunnville sandstone Ks' and Ks" are equal while for Berea sandstone, a difference between the two moduli exists, which is explained by the presence of non-connected pores. The experiments also strongly suggest that both Ks' and Ks" are independent of effective stress.

  1. Dynamic mechanical thermal analysis of composite resins with CQ and PPD as photo-initiators photoactivated by QTH and LED units.

    PubMed

    Brandt, William Cunha; Silva, Cristina Gomes; Frollini, Elisabete; Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mário Alexandre Coelho

    2013-08-01

    The aim of this study was to evaluate the thermal and mechanical properties of the composite resins containing the photo-initiators camphorquinone (CQ) and/or phenyl-propanodione (PPD) when photoactivated with halogen lamp (XL2500/3M-ESPE), monowave (UltraBlueIS/DMC) and polywave (UltraLume5/Ultradent) LED units. A blend of BisGMA, UDMA, BisEMA and TEGDMA was prepared with the same wt% of photo-initiators CQ and/or PPD and 65wt% of silaneted filler particles. Compression strength (CS), diametral tensile strength (DTS) and diametral modulus (DM) were tested. Thermogravimetric analysis (TGA) was made and the lost residual monomer were verified. Dynamic mechanical thermal analysis (DMTA) was used for to analyze the glass transition temperature (Tg) and the storage modulus in 37°C. Degree of conversion (DC) was accomplished in the same samples of DMA using middle-infrared spectroscopy (mid-IR). CQ, CQ/PPD and PPD obtained the same results for all mechanical properties (CS, DTS and DM), lost residual monomer and storage modulus in 37°C, regardless LCU used. The results of Tg showed that the combination PPD-UltraLume5 produced the highest values. DC showed that the combination CQ-UltraLume5 resulted in the highest values and PPD-XL2500 in the lowest DC values. The study shows that PPD is not only effective photosensitizers, but also photocrosslinking agents for dental composite resins with a similar efficiency to CQ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures.

    PubMed

    Hussain, Raza; Vatankhah, Hamed; Singh, Ajaypal; Ramaswamy, Hosahalli S

    2016-10-05

    In this study, effects of a 30min high pressure (HP) treatment (200-600MPa) at room temperature on the rheological, thermal and morphological properties of resistant corn starch (RS) (5% w/w) and locust bean gum (LBG) (0.25, 0.50 and 1.0% w/v) dispersions were evaluated. Results showed that the storage modulus (G'), loss modulus (G''), and apparent viscosity values of starch/gum (RS/LBG) mixtures were enhanced with an increase pressure level, and demonstrated a bi-phasic behavior. HP treated RS/LBG samples were predominantly either solid like (G'>G'') or viscous (G''>G'), depending on the pressure level and LBG concentrations. Differential scanning calorimetry (DSC) analysis of the pressurized mixtures showed a major effect on gelatinization temperatures (To, Tp,), and it was observed that RS/LBG mixtures gelatinized completely at ≥400MPa with a 30min holding time. Confocal laser scanning microscopy (CLSM) images confirmed that at 600MPa, RS/LBG mixtures retained granular structures and their complete disintegration was not observed even at the endpoint of the gelatinization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.

    PubMed

    Liu, Jibao; Yu, Dawei; Zhang, Jian; Yang, Min; Wang, Yawei; Wei, Yuansong; Tong, Juan

    2016-07-01

    The rheological behavior of sludge is of serious concern in anaerobic digestion. This study investigated the rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment (MW-H2O2). The results showed that MW-H2O2 pretreatment resulted in the improvement of sludge flowability and weakening of its viscoelastic properties. Further positive effects on the rheological properties of digested sludge during anaerobic digestion were observed. The flowability was improved with a low level of apparent viscosity. The decrease of the consistency index and increase of the flow behavior index indicated that the strength of the inner structures and non-Newtonian flow characteristics of digested sludge weakened. Both the storage modulus (G') and loss modulus (G″) decreased, indicating that the viscoelastic behavior became weak. These effects were possibly attributed to the changes of the digested sludge micro-structures, such as extracellular polymeric substances (EPS). This study concluded that anaerobic digestion for treating sewage sludge combined with pretreatment is a more favorable option than single anaerobic digestion from the perspective of rheology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The many ways sputum flows - Dealing with high within-subject variability in cystic fibrosis sputum rheology.

    PubMed

    Radtke, Thomas; Böni, Lukas; Bohnacker, Peter; Fischer, Peter; Benden, Christian; Dressel, Holger

    2018-04-21

    We evaluated test-retest reliability of sputum viscoelastic properties in clinically stable patients with cystic fibrosis (CF). Data from a prospective, randomized crossover study was used to determine within-subject variability of sputum viscoelasticity (G', storage modulus and G", loss modulus at 1 and 10 rad s -1 ) and solids content over three consecutive visits. Precision of sputum properties was quantified by within-subject standard deviation (SD ws ), coefficient of variation (CV) and intraclass correlation coefficients (ICC). Fifteen clinically stable adults with CF (FEV 1 range 24-94% predicted) were included. No differences between study visits (mean ± SD 8 ± 2 days) were observed for any sputum rheology measure. CV's for G', G" and solids content ranged between 40.3-45.3% and ICC's between 0.21-0.42 indicating poor to fair test-retest reliability. Short-term within-subject variability of sputum properties is high in clinically stable adults with CF. Investigators applying shear rheology experiments in future prospective studies should consider using multiple measurements aiming to increase precision of sputum rheological outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effects of heating and calcium and phosphate mineral supplementation on the physical properties of rennet-induced coagulation of camel and cow milk gels.

    PubMed

    Kamal, Mohammad; Foukani, Mohammed; Karoui, Romdhane

    2017-05-01

    The physical properties of rennet-induced coagulation of preheated camel and cow milk gels (50 and 70 °C for 10 min) enriched with calcium chloride (CaCl2) and hydrogen phosphate dihydrate (Na2HPO42H2O) were evaluated using the dynamic low amplitude oscillatory shear analysis. The storage modulus (G') and loss modulus (G") of camel milk gels showed significant (P < 0·05) lower values than those of cow milk gels. The preheating of camel milk at 50 °C affected negatively the gelation properties, while the preheating at 70 °C prevented the formation of rennet-induced milk gels. No effect was observed on the gelation properties of cow milk gels. The CaCl2 added at 10 and 20 mM to preheated camel and cow milk reduced significantly (P < 0·05) the gelation time and increased the gel firmness. In contrast, Na2HPO42H2O added at 10 and 20 mM induced the formation of weak gels for preheated camel and cow milk at 50 °C, and even no gelation for preheated camel milk at 70 °C.

  6. Design, synthesis, and characterization of lightly sulfonated multigraft acrylate-based copolymer superelastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misichronis, Konstantinos; Wang, Weiyu; Cheng, Shiwang

    2018-01-29

    Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2–3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone.more » Here, in this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.« less

  7. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  8. Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.

    Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent results in a FRP composite with properties that can be matched to reinforced composites prepared with styrene. Significantly, at one-third the monomer loading (corresponding to two-thirds the number of double bonds), trans, trans-muconate produces approximately the same storage modulus and glass transition temperature as maleic anhydride, while exhibiting a superior loss modulus. Altogether, this work demonstrates the novel synthesis of performance-differentiated FRP composites using renewably-sourced monomers.« less

  9. Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites

    DOE PAGES

    Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.; ...

    2017-03-14

    Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent results in a FRP composite with properties that can be matched to reinforced composites prepared with styrene. Significantly, at one-third the monomer loading (corresponding to two-thirds the number of double bonds), trans, trans-muconate produces approximately the same storage modulus and glass transition temperature as maleic anhydride, while exhibiting a superior loss modulus. Altogether, this work demonstrates the novel synthesis of performance-differentiated FRP composites using renewably-sourced monomers.« less

  10. Eco-friendly soluble soybean polysaccharide/nanoclay Na+ bionanocomposite: Properties and characterization.

    PubMed

    Salarbashi, Davoud; Noghabi, Mostafa Shahidi; Bazzaz, Bibi Sedigheh Fazly; Shahabi-Ghahfarrokhi, Iman; Jafari, Behrouz; Ahmadi, Reza

    2017-08-01

    The impact of montmorillonite (MMT) as a nanofiller at different concentrations (5, 10, 15wt.%) on the physicochemical and functional properties of nanocomposite film based on soluble soybean polysaccharide (SSPS) was investigated. The results showed that an increase in MMT concentration was accompanied by a decrease in water solubility, thickness, and elongation at break. Furthermore, tensile strength increased when MMT concentration was increased to 10wt.%. Atomic force and scanning electron micrographs showed a significant agglomeration at MMT 15wt.%. With added MMT, the level of whiteness, greenness, and yellowness of SSPS film increased (P<0.05). Dynamic mechanical thermal analysis indicated that the storage modulus of nanocomposites increased when the MMT was increased to 10wt.%. Furthermore, Fourier transform infrared spectrophotometry demonstrated that no considerable changes occurred in the functional groups of the SSPS when MMT was added. Antimicrobial tests revealed that antibacterial and anti-mold activities were unlikely from reinforced nanocomposites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. From repulsive to attractive glass: A rheological investigation.

    PubMed

    Zhou, Zhi; Jia, Di; Hollingsworth, Javoris V; Cheng, He; Han, Charles C

    2015-12-21

    Linear rheological properties and yielding behavior of polystyrene core and poly (N-isopropylacrylamide) (PNIPAM) shell microgels were investigated to understand the transition from repulsive glass (RG) to attractive glass (AG) and the A3 singularity. Due to the volume phase transition of PNIPAM in aqueous solution, the microgel-microgel interaction potential gradually changes from repulsive to attractive. In temperature and frequency sweep experiments, the storage modulus (G') and loss modulus (G″) increased discontinuously when crossing the RG-to-AG transition line, while G' at low frequency exhibited a different volume fraction (Φ) dependence. By fitting the data of RG and AG, and then extrapolating to high volume fraction, the difference between RG and AG decreased and the existence of A3 singularity was verified. Dynamic strain sweep experiments were conducted to confirm these findings. RG at 25 °C exhibited one-step yielding, whereas AG at 40 °C showed a typical two-step yielding behavior; the first yielding strain remained constant and the second one gradually decreased as the volume fraction increased. By extrapolating the second yield strain to that of the first one, the predicted A3 singularity was at 0.61 ± 0.02. At 37 °C, when Φeff = 0.59, AG showed one step yielding as the length of the attractive bond increased. The consistency and agreement of the experimental results reaffirmed the existence of A3 singularity, where the yielding behavior of RG and AG became identical.

  12. Expression, crosslinking, and developing modulus master curves of recombinant resilin.

    PubMed

    Khandaker, Md Shahriar K; Dudek, Daniel M; Beers, Eric P; Dillard, David A

    2017-05-01

    Resilin is a disordered elastomeric protein found in specialized regions of insect cuticles, where low stiffness and high resilience are required. Having a wide range of functions that vary among insect species, resilin operates across a wide frequency range, from 5Hz for locomotion to 13kHz for sound production. We synthesize and crosslink a recombinant resilin from clone-1 (exon-1+exon-2) of the gene, and determine the water content (approximately 80wt%) and dynamic mechanical properties, along with estimating surface energies relevant for adhesion. Dynamic moduli master curves have been developed, by applying the time-temperature superposition principle (TTSP) and time-temperature concentration superposition principle (TTCSP), and compared with reported master curves for natural resilin from locusts, dragonflies, and cockroaches. To our knowledge, this is the first time dynamic moduli master curves have been developed to explore the dynamic mechanical properties of recombinant resilin and compare with resilin behavior. The resulting master curves show that the synthetic resilin undergoes a pronounced transition with increasing ethanol concentrations, with the storage modulus increasing by approximately three orders of magnitude. Although possibly a glass transition, alternate explanations include the formation of intramolecular hydrogen bonds or that the chitin binding domain (ChBD) in exon-2 might change the secondary structure of the normally disordered exon-1 into more ordered conformations that limit deformation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum/soy protein isolate hydrogels prepared by laccase and heat treatment

    USDA-ARS?s Scientific Manuscript database

    Two types of corn fiber gum (CFGs) were extracted from corn fibers (CFs) obtained from wet or dry corn milling processing. Both CFGs could form hydrogels when induced via laccase, but CFGs isolated from wet milled CFs exhibited higher storage modulus (G') and better mechanical strength as obtained f...

  14. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    NASA Astrophysics Data System (ADS)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  15. The influence of low temperatures on dynamic mechanical properties of animal bone

    NASA Astrophysics Data System (ADS)

    Mardas, Marcin; Kubisz, Leszek; Mielcarek, Slawomir; Biskupski, Piotr

    2009-01-01

    Different preservation methods are currently used in bone banks, even though their effects on allograft quality are not fully understood. Freezing is one of the most popular methods of preservation in tissue banking. Yet, there is not a lot of data on dynamic mechanical properties of frozen bone. Material used in this study was femoral bones from adult bovine that were machine cut and frozen to the temperature 140°C. Both elastic modulus and loss modulus were measured at 1, 3, 5, 10, and 20 Hz in the temperature range of 30-200°C. Differences between frozen and control samples were observed. The frequency increase always led to the increase in elastic modulus values and decrease in loss modulus values. Freezing reduced the elastic modulus values of about 25% and the loss modulus values of about 45% when measured at 20°C.

  16. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    PubMed Central

    Li, Qingde; Gao, Xun; Cheng, Wanli; Han, Guangping

    2017-01-01

    Red pottery clay (RPC) was modified using a silane coupling agent, and the modified RPC (mRPC) was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA) and ultraviolet (UV)-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence) and ΔE* (color) reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading. PMID:28772470

  17. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite.

    PubMed

    Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M

    2010-04-01

    The effect of radiation processing and filler morphology on the biodegradation and biomechanical stability of a poly(propylene fumarate)/hydroxyapatite composite was investigated. Radiation processing influenced both cross-linking and biodegradation of the composites. Irradiation with a dose of 3 Mrad resulted in enhanced cross-linking, mechanical properties and a higher storage modulus which are favourable for dimensional stability of the implant. The particle morphology of the added hydroxyapatite in the highly cross-linked state significantly influenced the biomechanical and interfacial stability of the composites. Reorganization of agglomerated hydroxyapatite occurred in the cross-linked polymeric matrix under dynamic mechanical loading under simulated physiological conditions. Such a reorganization may increase the damping characteristics of the composite.

  18. Tunable Properties of Exfoliated Polyvinylalcohol Nanocomposites by In Situ Coprecipitation of Layered Double Hydroxides

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Yuen, Richard K. K.; Hu, Yuan

    2017-10-01

    Poly(vinyl alcohol) (PVA) nanocomposites were prepared by a “one step” method based on the coprecipitation of layered double hydroxide (LDH) nanosheets in the polymer aqueous solution. The morphology, fire resistance properties, mechanical and optical properties of the PVA/LDH nanocomposites were studied. The LDH nanosheets were homogeneously dispersed in the PVA matrix as indicated by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) characterization. Meanwhile, the peak of heat release rate (pHRR) and total heat release (THR) were decreased by 58% and 28%, respectively. Storage modulus at 30 °C was increased, and the transmittance of more than 90% at the visible region was obtained upon addition of 5 wt% LDH.

  19. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation

    NASA Technical Reports Server (NTRS)

    Collinsworth, Amy M.; Zhang, Sarah; Kraus, William E.; Truskey, George A.

    2002-01-01

    The effect of differentiation on the transverse mechanical properties of mammalian myocytes was determined by using atomic force microscopy. The apparent elastic modulus increased from 11.5 +/- 1.3 kPa for undifferentiated myoblasts to 45.3 +/- 4.0 kPa after 8 days of differentiation (P < 0.05). The relative contribution of viscosity, as determined from the normalized hysteresis area, ranged from 0.13 +/- 0.02 to 0.21 +/- 0.03 and did not change throughout differentiation. Myosin expression correlated with the apparent elastic modulus, but neither myosin nor beta-tubulin were associated with hysteresis. Microtubules did not affect mechanical properties because treatment with colchicine did not alter the apparent elastic modulus or hysteresis. Treatment with cytochalasin D or 2,3-butanedione 2-monoxime led to a significant reduction in the apparent elastic modulus but no change in hysteresis. In summary, skeletal muscle cells exhibited viscoelastic behavior that changed during differentiation, yielding an increase in the transverse elastic modulus. Major contributors to changes in the transverse elastic modulus during differentiation were actin and myosin.

  20. Multiresolution MR elastography using nonlinear inversion

    PubMed Central

    McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.

    2012-01-01

    Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674

  1. Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

    Treesearch

    Nusheng Chen; Junyong Zhu; Zhaohui Tong

    2016-01-01

    This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...

  2. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)

  3. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  4. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats.

    PubMed

    Xiang, Chunhui; Frey, Margaret W

    2016-04-07

    Tensile strength, Young's modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber-fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young's modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber-fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young's modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young's modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young's modulus of the electrospun nylon 6 non-woven fiber mats.

  5. The optimal density of cellular solids in axial tension.

    PubMed

    Mihai, L Angela; Alayyash, Khulud; Wyatt, Hayley

    2017-05-01

    For cellular bodies with uniform cell size, wall thickness, and shape, an important question is whether the same volume of material has the same effect when arranged as many small cells or as fewer large cells. To answer this question, for finite element models of periodic structures of Mooney-type material with different structural geometry and subject to large strain deformations, we identify a nonlinear elastic modulus as the ratio between the mean effective stress and the mean effective strain in the solid cell walls, and show that this modulus increases when the thickness of the walls increases, as well as when the number of cells increases while the volume of solid material remains fixed. Since, under the specified conditions, this nonlinear elastic modulus increases also as the corresponding mean stress increases, either the mean modulus or the mean stress can be employed as indicator when the optimum wall thickness or number of cells is sought.

  6. Empirical potential influence and effect of temperature on the mechanical properties of pristine and defective hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2017-06-01

    The major objective of this work is to present results of a classical molecular dynamics study to investigate the effect of changing the cut-off distance in the empirical potential on the stress-strain relation and also the temperature dependent Young’s modulus of pristine and defective hexagonal boron nitride. As the temperature increases, the computed Young’s modulus shows a significant decrease along both the armchair and zigzag directions. The computed Young’s modulus shows a trend in keeping with the structural anisotropy of h-BN. The variation of Young’s modulus with system size is elucidated. The observed mechanical strength of h-BN is significantly affected by the vacancy and Stone-Wales type defects. The computed room temperature Young’s modulus of pristine h-BN is 755 GPa and 769 GPa respectively along the armchair and zigzag directions. The decrease of Young’s modulus with increase in temperature has been analyzed and the results show that the system with zigzag edge shows a higher value of Young’s modulus in comparison to that with armchair edge. As the temperature increases, the computed stiffness decreases and the system with zigzag edge possesses a higher value of stiffness as compared to the armchair counterpart and this behaviour is consistent with the variation of Young’s modulus. The defect analysis shows that presence of vacancy type defects leads to a higher Young’s modulus, in the studied range with different percentage of defect concentration, in comparison with Stone-Wales defect. The variations in the peak position of the computed radial distribution function reveals the changes in the structural features of systems with zigzag and armchair edges in the presence of applied stress.

  7. Matrix polymer species have distinct effects on the mechanics of bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Kovach, Kristin; Davis-Fields, Megan; Gordon, Vernita

    2015-03-01

    Biofilms are aggregates of microorganisms embedded in a self-produced extracellular polymer matrix. The matrix confers protection to these microorganisms against mechanical and chemical stresses that they may experience in their environment. The bacterium Pseudomonas aeruginosa is widely used as a model biofilm-forming organism because it is an opportunistic human pathogen common in hospital-acquired infections, in chronic wounds, and in cystic fibrosis lung disease. P. aeruginosa strain PA01 forms biofilms that are primarily structured by the extracellular polysaccharides Pel and Psl. Using bulk rheological measurements, we show that these polysaccharides each play a unique role in the mechanical robustness of the biofilm. Psl increases the elastic storage modulus while Pel increases the ductility of the biofilm. Increased expression of either Psl or Pel increases the yield stress by about the same amount. Identifying the mechanism(s) by which these polymers contribute to the mechanical toughness of the biofilm could allow new approaches to effective biofilm clearance, by revealing targets for disruption that would weaken the biofilm.

  8. Can Degradation of Adhesive Interfaces Due to Water Storage Affect Stress Distributions? A Finite-Element Stress Analysis Study.

    PubMed

    Belli, Sema; Eraslan, Oğuz; Eskitaşcıoğlu, Gürcan

    The aim of this finite-element stress analysis (FEA) was to determine the effect of degradation due to water storage on stress distributions in root-filled premolar models restored with composite using either a self-etch (SE) or an etch-and-rinse (E&R) adhesive. Four premolar FEA models including root filling, MOD cavity, and composite restorations were created. The cavities were assumed to be treated by SE or E&R adhesives and stored in water for 18 months. The elastic properties of the adhesive-dentin interface after 24-h and 18-month water storage were obtained from the literature and applied to the FEA models. A 300-N load was applied on the functional cusps of the models. The SolidWorks/Cosmosworks structural analysis program was used and the results were presented considering the von Mises stresses. Stresses in the cervical region increased over time on the load-application side of the main tooth models (SE: 84.11 MPa to 87.51 MPa; E&R: 100.24 MPa to 120.8 MPa). When the adhesive interfaces (hybrid layer, adhesive layer) and dentin were evaluated separately, the stresses near the root canal orifices increased over time in both models; however, this change was more noticeable in the E&R models. Stresses at the cavity corners decreased in the E&R model (within the adhesive layer), while SE models showed the opposite (within the hybrid layer). Change in the elastic modulus of the adhesive layer, hybrid layer, and dentin due to water storage has an effect on stresses in root-filled premolar models. The location and the level of the stresses differed depending on the adhesive used.

  9. An experimental investigation of creep and viscoelastic properties using depth-sensing indentation techniques

    NASA Astrophysics Data System (ADS)

    Lucas, Barry Neal

    Indentation Creep. Using depth-sensing indentation techniques at both room and elevated temperatures, the dependency of the indentation hardness on the variables of indentation strain rate and temperature, and the existence of a steady state behavior in an indentation creep test with a Berkovich indenter were investigated. The indentation creep response of five materials, Pb-65 at% In (at RT), high purity indium (from RT to 75sp°C), high purity aluminum (from RT to 250sp°C), an amorphous alumina film (at RT), and sapphire (at RT), was measured. It was shown that the indentation strain rate, defined as h/h, could be held constant during an experiment using a Berkovich indenter by controlling the loading rate such that the loading rate divided by the load, P/P, remained constant. The temperature dependence of indentation creep in indium and aluminum was found to be the same as that for uniaxial creep. By performing P/P change experiments, it was shown that a steady state path independent hardness could be reached in an indentation test with a Berkovich indenter. Viscoelasticity. Using a frequency specific dynamic indentation technique, a method to measure the linear viscoelastic properties of polymers was determined. The polymer tested was poly-cis 1,4-isoprene. By imposing a small harmonic force excitation on the specimen during the indentation process and measuring the displacement response at the same frequency, the complex modulus, G*, of the polymer was determined. The portion of the displacement signal "in phase" with the excitation represents the elastic response of the contact and is related to the stiffness, S, of the contact and to the storage modulus, Gsp', of the material. The "out of phase" portion of the displacement signal represents the damping, Comega where omega = 2 pi f, of the contact, and thus the loss modulus, Gsp{''}, of the material. It was shown that both the storage, S, and loss, Comega components of the response scale as the respective component of the complex modulus multiplied by the square root of the contact area.

  10. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    NASA Astrophysics Data System (ADS)

    Sreeram, Arvind

    Conjugated polymers have found several applications in recent years, in energy conversion and storage devices such as organic light emitting diodes, solar cells, batteries, and super capacitors. Thin films of polymers used for these applications need to be mechanically and thermally stable to withstand the harsh operating conditions. Although there is significant information on the optoelectronic properties of many of these polymers, there are only few studies on their mechanical properties. There is little information in the literature on how processing of these films influence mechanical properties. In the first part of this study, poly(p-phenylene vinylene) (PPV) films were prepared by thermolytic conversion of poly[p -phenylene (tetrahydrothiophenium)ethylene chloride] precursor films, at different temperatures and the kinetics of reaction was investigated using thermogravimetry and Fourier transform infrared (FTIR) spectroscopy. The mechanical properties of the films, studied using nanoindentation, showed a dependence on the extent of conversion and chemical composition of the films. The presence of chemical defects (e.g., carbonyl groups, detected using FTIR spectroscopy), was also found to have a noticeable effect on the modulus and hardness of the films. The storage modulus, E', and plasticity decreased with an increase in conversion, whereas the loss modulus, E", showed the opposite trend. Both the precursor and the fully-converted PPV films were found to have significantly lower E" than E', consistent with the glassy nature of the polymers at room temperature. In the second part of the study, polyacetylene films were synthesized by acid-catalyzed dehydration reaction of poly(vinyl alcohol) (PVA) precursor films. The kinetics of this reaction was monitored by thermogravimetry. The chemical structure of the conjugated polymer films was characterized by Raman and IR spectroscopy. Polyacetylene films incorporated with 1-propyl-3-methylimidazolium ionic liquid (IL) could be obtained in a single step reaction. The incorporation of IL in the film, not only greatly improved its mechanical properties, by acting as a plasticizer, but also imparted a dual mechanism of charge transport. The segments of conjugated double bonds imparted electronic conductivity to the films, and the IL resulted in ionic conductivity. The presence of both electronic and ionic conduction pathways in the films was confirmed by electrochemical impedance spectroscopy (EIS). These IL-imbibed conjugated polymer films are promising as materials for electrochemical energy conversion and storage. In the third part of this work, conjugated polymer films containing multiwalled carbon nanotubes (MWNT) and graphene nanoplatelets (GNP) were synthesized and characterized. PPV--MWNT nanocomposite films and PA--GNP nanocomposite films were characterized using a variety of analytical techniques including transmission electron microscopy, quasistatic and dynamic nanoindentaiton, electrochemical impedance spectroscopy, and cyclic voltammetry. Potential application of these films is in electrochemical supercapacitors.

  11. Tuning the Elastic Modulus of Hydrated Collagen Fibrils

    PubMed Central

    Grant, Colin A.; Brockwell, David J.; Radford, Sheena E.; Thomson, Neil H.

    2009-01-01

    Abstract Systematic variation of solution conditions reveals that the elastic modulus (E) of individual collagen fibrils can be varied over a range of 2–200 MPa. Nanoindentation of reconstituted bovine Achilles tendon fibrils by atomic force microscopy (AFM) under different aqueous and ethanol environments was carried out. Titration of monovalent salts up to a concentration of 1 M at pH 7 causes E to increase from 2 to 5 MPa. This stiffening effect is more pronounced at lower pH where, at pH 5, e.g., there is an ∼7-fold increase in modulus on addition of 1 M KCl. An even larger increase in modulus, up to ∼200 MPa, can be achieved by using increasing concentrations of ethanol. Taken together, these results indicate that there are a number of intermolecular forces between tropocollagen monomers that govern the elastic response. These include hydration forces and hydrogen bonding, ion pairs, and possibly the hydrophobic effect. Tuning of the relative strengths of these forces allows rational tuning of the elastic modulus of the fibrils. PMID:19948128

  12. Characterization of time-dependent changes in strength and stiffness of Florida base materials : final report, October 2008.

    DOT National Transportation Integrated Search

    2008-10-01

    Resilient modulus and Youngs modulus are parameters increasingly used to fundamentally characterize the behavior : of pavement materials both in the laboratory and in the field. This study documents the small-strain Youngs modulus : and larger-...

  13. Relaxation of the bulk modulus in partially molten dunite?

    NASA Astrophysics Data System (ADS)

    Cline, C. J.; Jackson, I.

    2016-11-01

    To address the possibility of melt-related bulk modulus relaxation, a forced oscillation experiment was conducted at seismic frequencies on a partially molten synthetic dunite specimen (melt fraction = 0.026) utilizing the enhanced capacity of the Australian National University attenuation apparatus to operate in both torsional and flexural oscillation modes. Shear modulus and dissipation data are consistent with those for melt-bearing olivine specimens previously tested in torsion, with a pronounced dissipation peak superimposed on high-temperature background. Flexural data exhibit a monotonic decrease in complex Young's modulus with increasing temperature under transsolidus temperatures. The observed variation of Young's modulus is well described by the relationship 1/E 1/3G, without requiring relaxation of the bulk modulus. At high homologous temperatures, when shear modulus is low, extensional and flexural oscillation measurements have little resolution of bulk modulus, and thus, only pressure oscillation measurements can definitively constrain bulk properties at these conditions.

  14. Performance of magnetorheological elastomer based green epoxidized natural rubber/sucrose acetate isobutyrate hybrid matrix

    NASA Astrophysics Data System (ADS)

    Khairi, Muntaz Hana Ahmad; Amri Mazlan, Saiful; Aziz, Siti Aishah Abdul; Ubaidillah; Tan Shilan, Salihah

    2018-04-01

    This study introduces a sucrose acetate isobutyrate (SAIB) as a novel additive of magnetorheological elastomers (MREs). The MREs utilized an epoxidized natural rubber (ENR) as the matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt%. The viscosity of the compound was observed using a viscometer. Meanwhile, the microstructures were observed by using field emission scanning electron microscope (FESEM). Rheological properties regarding shear storage modulus were measured by using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the MREs-based ENR/SAIB had a decrement in their viscosity by 40% reduction. Moreover, the magnetorheological (MR) effect increased by 23% as the increment of magnetic fields. The morphological photograph showed that the CIPs embedded well within the matrix. The fabricated MREs samples were strain dependent, where all MREs samples exhibit the deteriorating trend when increasing the strain amplitude.

  15. Influence of extreme low temperature conditions on the dynamic mechanical properties of carbon fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zaoutsos, S. P.; Zilidou, M. C.

    2017-12-01

    In the current study dynamic mechanical analysis (DMA) is performed in CFRPs that have been exposed for certain periods of time to extreme low temperatures. Through experimental data arising from respective DMA tests the influence of low temperature exposure (-40 °C) on the dynamic mechanical properties is studied. DMA tests were conducted in CFRP specimens in three point bending mode at both frequency and thermal scans in order to determine the viscoelastic response of the material in low temperatures. All experimental tests were run both for aged and pristine materials for comparison purposes. The results occurred reveal that there is deterioration both on transition temperature (Tg) and storage modulus values while there is also a moderate increase in the damping ability of the tested material as expressed by the factor tanδ as the period of exposure to low temperature increases.

  16. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Remiš, T.

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).

  17. Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles.

    PubMed

    Song, Fei; Zhang, Li-Ming; Shi, Jun-Feng; Li, Nan-Nan

    2010-12-01

    The supramolecular hydrogels derived from low-molecular-mass gelators represent a unique class of soft matters and have important potential applications in biomedical fields, separation technology and cosmetic science. However, they suffer usually from weak mechanical and viscoelastic properties. In this work, we carry out the in situ hybridization of clay nanoparticles (Laponite RD) into the supramolecular hydrogel formed from a low-molecular-mass hydrogelator, 2,6-di[N-(carboxyethyl carbonyl)amino]pyridine (DAP), and investigate the viscoelastic and structural characteristics of resultant hybrid hydrogel. It was found that a small concentration of Laponite RD could lead to a significant increase in the storage modulus, loss modulus or complex viscosity. Compared with neat DAP hydrogel, the hybrid hydrogel has a greater hydrogel strength and a lower relaxation exponent. In particular, the enhancement of the clay nanoparticles to the viscoelastic properties of the DAP hydrogel is more effective in the case of higher DAP concentration. By relating its macroscopic elastic properties to a scaling fractal model, such a hybrid hydrogel was confirmed to be in the strong-link regime and to have a more complex network structure with a higher fractal dimension when compared with neat DAP hydrogel. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. A covalently cross-linked gel derived from the epidermis of the pilot whale Globicephala melas.

    PubMed

    Baum, C; Fleischer, L-G; Roessner, D; Meyer, W; Siebers, D

    2002-01-01

    The rheological properties of the stratum corneum of the pilot whale (Globicephala melas) were investigated with emphasis on their significance to the self-cleaning abilities of the skin surface smoothed by a jelly material enriched with various hydrolytic enzymes. The gel formation of the collected fluid was monitored by applying periodic-harmonic oscillating loads using a stress-controlled rheometer. In the mechanical spectrum of the gel, the plateau region of the storage modulus G' (<1200 Pa) and the loss modulus G" (>120 Pa) were independent of frequency (omega = 43.98 to 0.13 rad x s(-1), tau = 15 Pa, T = 20 degrees C), indicating high elastic performance of a covalently cross-linked viscoelastic solid. In addition, multi-angle laser light scattering experiments (MALLS) were performed to analyse the potential time-dependent changes in the weight-average molar mass of the samples. The observed increase showed that the gel formation is based on the assembly of covalently cross-linked aggregates. The viscoelastic properties and the shear resistance of the gel assure that the enzyme-containing jelly material smoothing the skin surface is not removed from the stratum corneum by shear regimes during dolphin jumping. The even skin surface is considered to be most important for the self-cleaning abilities of the dolphin skin against biofouling.

  19. Amylose-potassium oleate inclusion complex in plain set-style yogurt.

    PubMed

    Singh, Mukti; Byars, Jeffrey A; Kenar, James A

    2014-05-01

    Health and wellness aspirations of U.S. consumers continue to drive the demand for lower fat from inherently beneficial foods such as yogurt. Removing fat from yogurt negatively affects the gel strength, texture, syneresis, and storage of yogurt. Amylose-potassium oleate inclusion complexes (AIC) were used to replace skim milk solids to improve the quality of nonfat yogurt. The effect of AIC on fermentation of yogurt mix and strength of yogurt gel was studied and compared to full-fat samples. Texture, storage modulus, and syneresis of yogurt were observed over 4 weeks of storage at 4 °C. Yogurt mixes having the skim milk solids partially replaced by AIC fermented at a similar rate as yogurt samples with no milk solids replaced and full-fat milk. Initial viscosity was higher for yogurt mixes with AIC. The presence of 3% AIC strengthened the yogurt gel as indicated by texture and rheology measurements. Yogurt samples with 3% AIC maintained the gel strength during storage and resulted in low syneresis after storage for 4 wk. © 2014 Institute of Food Technologists®

  20. Investigation of γ-(2,3-Epoxypropoxy)propyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt.

    PubMed

    Zhang, Canlin; Yu, Jianying; Xue, Lihui; Sun, Yubin

    2017-01-19

    γ-(2,3-Epoxypropoxy)propyltrimethoxy silane surface modified layered double hydroxides (KH560-LDHs) were prepared and used to improve the ultraviolet ageing resistance of asphalt. The results of X-ray photoelectron spectrometry (XPS) indicated that KH560 has been successfully grafted onto the surface of LDHs. The agglomeration of LDHs particles notably reduced after KH560 surface modification according to scanning electron microscopy (SEM), which implied that the KH560 surface modification was helpful to promote the dispersibility of LDHs in asphalt. Then, the influence of KH560-LDHs and LDHs on the physical and rheological properties of asphalt before and after UV ageing was thoroughly investigated. The storage stability test showed that the difference in softening point (Δ S ) of LDHs modified asphalt decreased from 0.6 °C to 0.2 °C at an LDHs content of 1% after KH560 surface modification, and the tendency became more pronounced with the increase of LDH content, indicating that KH560 surface modification could improve the stability of LDHs in asphalt. After UV ageing, the viscous modulus ( G'' ) of asphalt significantly reduced, and correspondingly, the elastic modulus ( G' ) and rutting factor ( G */sin δ) rapidly increased. Moreover, the asphaltene increased and the amount of "bee-like" structures of the asphalt decreased. Compared with LDHs, KH560-LDHs obviously restrained performance deterioration of the asphalt, and helped to relieve the variation of the chemical compositions and morphology of asphalt, which suggested that the improvement of KH560-LDHs on UV ageing resistance of asphalt was superior to LDHs.

  1. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling

    NASA Astrophysics Data System (ADS)

    Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto

    In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.

  2. On the mobility of iron particles embedded in elastomeric silicone matrix

    NASA Astrophysics Data System (ADS)

    Rabindranath, R.; Böse, H.

    2013-02-01

    In this contribution the rheological and magnetorheological properties of different polydimethylsiloxane (PDMS) based magnetorheological elastomers (MRE) are presented and discussed. In order to investigate the mobility of the iron particles with respect to the rheological characteristics, the iron particles were silanized with vinyltrimethoxysilane to enable a reaction between the modified particle and the cross-linking agent of the silicone elastomer. In addition, the vinyl-functionalized particles were further modified by the coupling of the superficial vinyl groups with a long-chain hydride terminated PDMS, which enables a reaction pathway with the vinyl terminated PDMS. On the other hand, the iron particles were treated with surfactants such as fatty acids, calcium and aluminum soaps, respectively, prior to vulcanization in order to increase the mobility of the iron particles in the elastomeric matrix. It was found, that both, the modification with the long-chain hydride terminated PDMS as well as the treatment with surfactants lead to an increase of the storage modulus G', the loss modulus G" and the loss factor tan δ in the magnetic field. It is concluded that both modifications, the coupling with long-chain hydride terminated PDMS as well as the treatment with surfactants, provide a greater mobility of the iron particles and hence a greater friction represented by the increase of the loss factor tan δ. Consequently it is assumed that untreated iron particles are less mobile in the rubber matrix due to covalent bonding with the silicone components, most likely due to the reaction of the hydroxyl groups on the metal surface with the silane groups of the cross-linking agent.

  3. Tube-like natural halloysite/poly(tetrafluoroethylene) nanocomposites: simultaneous enhancement in thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Gamini, Suresh; Vasu, V.; Bose, Suryasarathi

    2017-04-01

    In the current study, PTFE (polytetrafluroethylene) matrix is reinforced with different wt% (2%-10%) of Halloysite nanotubes (HNTs). PTFE samples are fabricated with 2 wt% increment and are designated from ‘B’to ‘F’ and designation ‘A’ refers to neat PTFE. Thermal and mechanical characterization of the fabricated composites is studied. The calorimetric measurements showed enhanced degree of crystallinity of the nanocomposites, which is from 57.83% to 74.7%. The dynamic mechanical analysis results have shown enhanced storage modulus and loss modulus and reduced damping behaviour, without affecting glass transition temperature. Moreover, significant improvements in mechanical properties are observed from the experimental results. The results are discussed and validated with the existing literature. The phase and the fracture morphology of the nanocomposites is studied using scanning electron microscope and discussed herein.

  4. Effect of storage time on the viscoelastic properties of elastomeric impression materials.

    PubMed

    Papadogiannis, Dimitris; Lakes, Roderic; Palaghias, George; Papadogiannis, Yiannis

    2012-01-01

    The aim of this study was to evaluate creep and viscoelastic properties of dental impression materials after different storage times. Six commercially available impression materials (one polyether and five silicones) were tested after being stored for 30 min to 2 weeks under both static and dynamic testing. Shear and Young's moduli, dynamic viscosity, loss tangent and other viscoelastic parameters were calculated. Four of the materials were tested 1 h after setting under creep for three hours and recovery was recorder for 50 h. The tested materials showed differences among them, while storage time had significant influence on their properties. Young's modulus E ranged from 1.81 to 12.99 MPa with the polyether material being the stiffest. All of the materials showed linear viscoelastic behavior exhibiting permanent deformation after 50h of creep recovery. As storage time affects the materials' properties, pouring time should be limited in the first 48 h after impression. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.

    PubMed

    Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N

    2016-04-01

    The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.

  6. Mechanical modeling and characteristic study for the adhesive contact of elastic layered media

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo

    2017-11-01

    This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.

  7. Gamma irradiation induced effects of butyl rubber based damping material

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong

    2018-04-01

    The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.

  8. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    PubMed Central

    Xiang, Chunhui; Frey, Margaret W.

    2016-01-01

    Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats. PMID:28773397

  9. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLAmore » comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.« less

  10. A method for the inline measurement of milk gel firmness using an optical sensor.

    PubMed

    Arango, O; Castillo, M

    2018-05-01

    At present, selection of cutting time during cheesemaking is made based on subjective methods, which has effects on product homogeneity and has prevented complete automation of cheesemaking. In this work, a new method for inline monitoring of curd firmness is presented. The method consisted of developing a model that correlates the backscatter ratio of near infrared light during milk coagulation with the rheological storage modulus. The model was developed through a factorial design with 2 factors: protein concentration (3.4 and 5.1%) and coagulation temperature (30 and 40°C). Each treatment was replicated 3 times; the model was calibrated with the first replicate and validated using the remaining 2 replicates. The coagulation process was simultaneously monitored using an optical sensor and small-amplitude oscillatory rheology. The model was calibrated and successfully validated at the different protein concentrations and coagulation temperatures studied, predicting the evolution of storage modulus during milk coagulation with coefficient of determination values >0.998 and standard error of prediction values <3.4 Pa. The results demonstrated that the proposed method allows inline monitoring of curd firming in cheesemaking and cutting the curd at a proper firmness to each type of cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Design and mechanical properties of insect cuticle.

    PubMed

    Vincent, Julian F V; Wegst, Ulrike G K

    2004-07-01

    Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.

  12. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    PubMed

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  13. The effect of pH on the rheology of mixed gels containing whey protein isolate and xanthan-curdlan hydrogel.

    PubMed

    Shiroodi, Setareh Ghorban; Lo, Y Martin

    2015-11-01

    The ultimate goal of this work was to examine the effect of xanthan-curdlan hydrogel complex (XCHC) on the rheology of whey protein isolate (WPI) within the pH range of 4-7 upon heating and cooling. Dynamic rheological properties of WPI and XCHC were studied individually and in combination, as a function of time or temperature. For pure WPI, gels were pH-dependent, and in all pH values except 7, gels formed upon first heating from 40 to 90 °C. At pH 7, WPI did not form gel upon first heating, and the storage modulus (G') started to increase during the holding time at 90 °C. The onset of gelation temperature of WPI was lower in acidic pH ranges compared to the neutral pH. In mixed gels, the presence of XCHC increased the G' of the gels. The rheological behaviour was pH-dependent and initially was controlled by XCHC; however, after the consolidation of WPI network, the behaviour was led by the whey protein isolate. Results showed that XCHC had a synergistic effect on enhancing the elastic modulus of the gels after the consolidation of WPI network. Based on the results of this study, it is possible to use these biopolymers in the formulation of frozen dairy-based products and enable food manufactures to improve the textural and physicochemical properties, and as a result the consumer acceptance of the food product.

  14. Physical and thermal properties of blood storage bags: implications for shipping frozen components on dry ice.

    PubMed

    Hmel, Peter J; Kennedy, Anthony; Quiles, John G; Gorogias, Martha; Seelbaugh, Joseph P; Morrissette, Craig R; Van Ness, Kenneth; Reid, T J

    2002-07-01

    Frozen blood components are shipped on dry ice. The lower temperature (-70 degrees C in contrast to usual storage at -30 degrees C) and shipping conditions may cause a rent in the storage bag, breaking sterility and rendering the unit useless. The rate of loss can reach 50 to 80 percent. To identify those bags with lower probability of breaking during shipment, the thermal and physical properties of blood storage bags were examined. Blood storage bags were obtained from several manufacturers and were of the following compositions: PVC with citrate, di-2-ethylhexylphthalate (DEHP), or tri-2-ethylhexyl-tri-mellitate (TEHTM) plasticizer; polyolefin (PO); poly(ethylene-co-vinyl acetate) (EVA); or fluorinated polyethylene propylene (FEP). The glass transition temperature (Tg) of each storage bag was determined. Bag thickness and measures of material strength (tensile modulus [MT] and time to achieve 0.5 percent strain [T0.5%]) were evaluated. M(T) and T0.5% measurements were made at 25 and -70 degrees C. Response to applied force at -70 degrees C was measured using an impact testing device and a drop test. The Tg of the bags fell into two groups: 70 to 105 degrees C (PO, FEP) and -50 to -17 degrees C (PVC with plasticizer, EVA). Bag thickness ranged from 0.14 to 0.41 mm. Compared to other materials, the ratios of M(T) and T0.5% for PVC bags were increased (p < or = 0.001) indicating that structural changes for PVC were more pronounced upon cooling from 25 to -70 degrees C. Bags containing EVA were more shock resistant, resulting in the lowest rate of breakage (10% breakage) when compared with PO (60% breakage, p = 0.0573) or PVC (100% breakage, p = 0.0001). Blood storage bags made of EVA appear better suited for shipping frozen blood components on dry ice and are cost-effective replacements for PVC bags. For the identification of blood storage bags meeting specific storage requirements, physical and thermal analyses of blood storage bags may be useful and remove empiricism from the process.

  15. Effects of biaxial strains on electronic and elastic properties of hexagonal XSi2 (X = Cr, Mo, W) from first-principles

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo

    2018-02-01

    Structural, electronic properties and elastic anisotropy of hexagonal C40 XSi2 (X = Cr, Mo, W) under equibiaxial in-plane strains are systematically studied using first-principle calculations. The energy gaps show significant changes with biaxial strains, whereas they are always indirect band-gap materials for -6% <ɛxx < 6%. All elastic constants, bulk modulus, shear modulus, Young's modulus increase (decrease) almost linearly with increasing compressive (tensile) strains. The evolutions of BH /GH ratio and Poisson's ratio indicate that these compounds have a better (worse) ductile behaviour under compressive (tensile) strains. A set of 3D plots show a larger directional variability in the Young's modulus E and shear modulus G at different strains for the three compounds, which is consist with the values of anisotropy factors. Moreover, the evolution of Debye temperature and anisotropy of sound velocities with biaxial strains are discussed.

  16. Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans

    NASA Astrophysics Data System (ADS)

    Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.

    2017-04-01

    This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.

  17. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime

    NASA Astrophysics Data System (ADS)

    Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.

    2011-10-01

    Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.

  18. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.

    PubMed

    Okamoto, R J; Clayton, E H; Bayly, P V

    2011-10-07

    Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G″ (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.

  19. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  20. Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization.

    PubMed

    Wang, X W; Zhang, C-A; Wang, P L; Zhao, J; Zhang, W; Ji, J H; Hua, K; Zhou, J; Yang, X B; Li, X P

    2012-05-08

    Poly(butylene succinate) (PBS)/graphene oxide (GO) nanocomposites were facilely prepared via in situ polymerization. The properties of the nanocomposites were studied using FTIR, XRD, and (1)H NMR, and the state of dispersion of GO in the PBS matrix was examined by SEM. The crystallization and melting behavior of the PBS matrix in the presence of dispersed GO nanosheets have been studied by DSC and polarized optical microscopy. Through the mechnical testing machine and DMA, PBS/GO nanocomposites with 3% GO have shown a 43% increase in tensile strength and a 45% improvement in storage modulus. This high performance of the nanocomposites is mainly attributed to the high strength of graphene oxide combined with the strong interfacial interactions in the uniformly dispersed PBS/GO nanocomposites.

  1. Synthesis, Characterization, and Cross-Linking Strategy of a Quercetin-Based Epoxidized Monomer as a Naturally-Derived Replacement for BPA in Epoxy Resins.

    PubMed

    Kristufek, Samantha L; Yang, Guozhen; Link, Lauren A; Rohde, Brian J; Robertson, Megan L; Wooley, Karen L

    2016-08-23

    The natural polyphenolic compound quercetin was functionalized and cross-linked to afford a robust epoxy network. Quercetin was selectively methylated and functionalized with glycidyl ether moieties using a microwave-assisted reaction on a gram scale to afford the desired monomer (Q). This quercetin-derived monomer was treated with nadic methyl anhydride (NMA) to obtain a cross-linked network (Q-NMA). The thermal and mechanical properties of this naturally derived network were compared to those of a conventional diglycidyl ether bisphenol A-derived counterpart (DGEBA-NMA). Q-NMA had similar thermal properties [i.e., glass transition (Tg ) and decomposition (Td ) temperatures] and comparable mechanical properties (i.e., Young's Modulus, storage modulus) to that of DGEBA-NMA. However, it had a lower tensile strength and higher flexural modulus at elevated temperatures. The application of naturally derived, sustainable compounds for the replacement of commercially available petrochemical-based epoxies is of great interest to reduce the environmental impact of these materials. Q-NMA is an attractive candidate for the replacement of bisphenol A-based epoxies in various specialty engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mechanical properties of resin cements with different activation modes.

    PubMed

    Braga, R R; Cesar, P F; Gonzaga, C C

    2002-03-01

    Dual-cured cements have been studied in terms of the hardness or degree of conversion achieved with different curing modes. However, little emphasis is given to the influence of the curing method on other mechanical properties. This study investigated the flexural strength, flexural modulus and hardness of four proprietary resin cements. Materials tested were: Enforce and Variolink II (light-, self- and dual-cured), RelyX ARC (self- and dual-cured) and C & B (self-cured). Specimens were fractured using a three-point bending test. Pre-failure loads corresponding to specific displacements of the cross-head were used for flexural modulus calculation. Knoop hardness (KHN) was measured on fragments obtained after the flexural test. Tests were performed after 24 h storage at 37 degrees C. RelyX ARC dual-cured showed higher flexural strength than the other groups. RelyX ARC and Variolink II depended upon photo-activation to achieve higher hardness values. Enforce showed similar hardness for dual- and self-curing modes. No correlation was found between flexural strength and hardness, indicating that other factors besides the degree of cure (e.g. filler content and monomer type) affect the flexural strength of composites. No statistical difference was detected in the flexural modulus among the different groups.

  3. Monitoring the Cure State of Thermosetting Resins by Ultrasound.

    PubMed

    Lionetto, Francesca; Maffezzoli, Alfonso

    2013-09-05

    The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors' research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  4. Monitoring the Cure State of Thermosetting Resins by Ultrasound

    PubMed Central

    Lionetto, Francesca; Maffezzoli, Alfonso

    2013-01-01

    The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing. PMID:28788306

  5. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid) Reinforced with Cellulose Nanocrystals

    PubMed Central

    Lim, Lim Sze; Rosli, Noor Afizah; Ahmad, Ishak; Mat Lazim, Azwan; Mohd Amin, Mohd Cairul Iqbal

    2017-01-01

    pH-sensitive poly(acrylic acid) (PAA) hydrogel reinforced with cellulose nanocrystals (CNC) was prepared. Acrylic acid (AA) was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide) with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD) data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system. PMID:29156613

  6. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  8. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    PubMed

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  9. Nanoindentation mapping of a wood-adhesive bond

    NASA Astrophysics Data System (ADS)

    Konnerth, J.; Valla, A.; Gindl, W.

    2007-08-01

    A mapping experiment of a wood phenol-resorcinol-formaldehyde adhesive bond was performed by means of grid nanoindentation. The variability of the modulus of elasticity and the hardness was evaluated for an area of 17 μm by 90 μm. Overall, the modulus of elasticity of the adhesive was clearly lower than the modulus of wood cell walls, whereas the hardness of the adhesive was slightly higher compared to cell walls. A very slight trend of decreasing modulus of elasticity was found with increasing distance from the immediate bond line. However, the trend was superimposed by a high variability of the modulus of elasticity in dependence on the position in the wood cell wall. The unexpectedly high variation of the modulus between 12 and 24 GPa may be explained by the interaction between the helical orientation of the cellulose microfibrils in the S2 layer of the wood cell wall and the geometry of the three-sided Berkovich type indenter pyramid used. Corresponding to the very slight decrease in modulus with increasing distance from the bond line, a similar but clearer trend was found for hardness. Both trends of changing mechanical properties of wood cell walls with varying distance from the bond line are attributed to effects of adhesive penetration into the wood cell wall.

  10. Elasto-optics in double-coated optical fibers induced by axial strain and hydrostatic pressure.

    PubMed

    Yang, Yu-Ching; Lee, Haw-Long; Chou, Huann-Ming

    2002-04-01

    Stresses, microbending loss, and refractive-index changes induced simultaneously by axial strain and hydrostatic pressure in double-coated optical fibers are analyzed. The lateral pressure and normal stresses in the optical fiber, primary coating, and secondary coating are derived. Also presented are the microbending loss and refractive-index changes in the glass fiber. The normal stresses are affected by axial strain, hydrostatic pressure, material properties, and thickness of the primary and secondary coatings. It is found that microbending loss decreases with increasing thickness, the Young's modulus, and the Poisson's ratio of the secondary coating but increases with the increasing Young's modulus and Poisson's ratio of the primary coating. Similarly, changes in refractive index in the glass fiber decrease with the increasing Young's modulus and Poisson's ratio of the secondary coating but increase with the increasing Young's modulus and Poisson's ratio of the primary coating. Therefore, to minimize microbending loss induced simultaneously by axial strain and hydrostatic pressure in the glass fiber, the polymeric coatings should be suitably selected. An optimal design procedure is also indicated.

  11. Ultrasonic Seismic Wave Elastic Moduli and Attenuation, Petro physical Models and Work Flows for Better Subsurface Imaging Related to Monitoring of Sequestrated Supercritical CO2 and Geothermal Energy Exploration

    NASA Astrophysics Data System (ADS)

    Harbert, W.; Delaney, D.; Mur, A. J.; Purcell, C.; Zorn, E.; Soong, Y.; Crandall, D.; Haljasmaa, I.

    2016-12-01

    To better understand the petrophysical response at ultrasonic frequencies in rhyolite and carbonate (relevant to CO2 storage and CO2 enhanced oil recovery) lithologies we conducted core analysis incorporating variation in temperature, effective pressure and pore filling fluid. Ultrasonic compressive and shear wave (VP, VS1 and VS2) velocities were measured allowing calculation of the Bulk modulus (K), Young's modulus (E), Lamè's first parameter (λ), Shear modulus (G), Poisson's ratio (ν), and P-wave modulus (M). In addition, from the ultrasonic waveform data collected, we employed the spectral ratio method to estimate the quality factor. Carbonate samples were tested dry, using atmospheric gas as the pore phase, and with deionized water, oil, and supercritical CO2. We observed that Qp was directly proportional to effective pressure in our rhyolite samples. In addition, we observed effects of core anisotropy on Qp, however this was not apparent in higher porosity samples. Increasing effective pressure seems to decrease the effects of ultrasonic P-wave anisotropy. Qp was inversely proportional to temperature, however this was not observed for higher porosity samples. Qp was highly dependent on the rock porosity. Higher porosity samples displayed significantly lower values of Qp. In our experiments we observed that ultrasonic wave scattering due to heterogeneities in the carbonate samples was dominant. Although we observed lower μρ values, trends in our data strongly agreed with the model proposed workers interpreting AVO trends in a LMR cross plot space. We found that μρ was proportional to temperature while λρ was temperature independent and that λρ-μρ trends were extremely dependent on porosity. Higher porosity results in lower values for both λρ and μρ. The presence of fluids causes a distinct shift in λρ values, an observation which could provide insight into subsurface exploration using amplitude variation with offset (AVO) classification. We present approaches to incorporate these laboratory results into well log calibrated MATLAB based Gassmann-Biot fluid substitution models incorporating compliant porosity, Thomsen parameters models that utilize orthorhombic velocity anisotropy to predict seismic responses.

  12. Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.

    PubMed

    Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker

    2014-02-15

    Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  14. Temperature dependence of the elastic moduli and damping for polycrystalline LiF-22 pct CaF2 eutectic salt

    NASA Technical Reports Server (NTRS)

    Wolfenden, A.; Lastrapes, G.; Duggan, M. B.; Raj, S. V.

    1991-01-01

    Young's and shear moduli and damping were measured for as-cast polycrystalline LiF-(22 mol pct)CaF2 eutectic specimens as a function of temperature using the piezoelectric ultrasonic composite oscillator technique. The shear modulus decreased with increasing temperature from about 40 GPa at 295 K to about 30 GPa at 1000 K, while the Young modulus decreased from about 115 GPa at 295 K to about 35 GPa at 900 K. These values are compared with those derived from the rule of mixtures using elastic moduli data for LiF and CaF2 single crystals. It is shown that, while the shear modulus data agree reasonably well with the predicted trend, there is a large discrepancy between the theoretical calculations and the Young modulus values, where this disagreement increases with increasing temperature.

  15. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    PubMed

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

  16. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  17. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    PubMed

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  18. Mechanical properties of ultrahigh molecular weight PHEMA hydrogels synthesized using initiated chemical vapor deposition.

    PubMed

    Bose, Ranjita K; Lau, Kenneth K S

    2010-08-09

    In this work, poly(2-hydroxyethyl methacrylate) (PHEMA), a widely used hydrogel, is synthesized using initiated chemical vapor deposition (iCVD), a one-step surface polymerization that does not use any solvents. iCVD synthesis is capable of producing linear stoichiometric polymers that are free from entrained unreacted monomer or solvent and, thus, do not require additional purification steps. The resulting films, therefore, are found to be noncytotoxic and also have low nonspecific protein adsorption. The kinetics of iCVD polymerization are tuned so as to achieve rapid deposition rates ( approximately 1.5 microm/min), which in turn yield ultrahigh molecular weight polymer films that are mechanically robust with good water transport and swellability. The films have an extremely high degree of physical chain entanglement giving rise to high tensile modulus and storage modulus without the need for chemical cross-linking that compromises hydrophilicity.

  19. Viscoelastic Properties and Morphology of Mumio-based Medicated Hydrogels

    NASA Astrophysics Data System (ADS)

    Zandraa, Oyunchimeg; Jelínková, Lenka; Roy, Niladri; Sáha, Tomáš; Kitano, Takeshi; Saha, Nabanita

    2011-07-01

    Novel medicated hydrogels were prepared (by moist heat treatment) with PVA, agar, mumio, mare's milk (MM), seabuckthorn oil (SB oil) and salicylic acid (SA) for wound dressing/healing application. Scanning electron micrographs (SEM) show highly porous structure of these hydrogels. The swelling behaviour of the hydrogels in physiological solution displays remarkable liquid absorption property. The knowledge obtained from rheological investigations of these-systems may be highly useful for the characterization of the newly developed topical formulations. In the present study, an oscillation frequency sweep test was used for the evaluation of storage modulus (G'), loss modulus (G″), and complex viscosity (η*) of five different formulations, over an angular frequency range from 0.1 to 100 rad.s-1. The influence of healing agents and swelling effect on the rheological properties of mumio-based medicated hydrogels was investigated to judge its application on uneven surface of body.

  20. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites.

    PubMed

    Zhang, Qiming; Xia, Zhilin; Cheng, Yi-Bing; Gu, Min

    2018-03-22

    Emerging as an inevitable outcome of the big data era, long data are the massive amount of data that captures changes in the real world over a long period of time. In this context, recording and reading the data of a few terabytes in a single storage device repeatedly with a century-long unchanged baseline is in high demand. Here, we demonstrate the concept of optical long data memory with nanoplasmonic hybrid glass composites. Through the sintering-free incorporation of nanorods into the earth abundant hybrid glass composite, Young's modulus is enhanced by one to two orders of magnitude. This discovery, enabling reshaping control of plasmonic nanoparticles of multiple-length allows for continuous multi-level recording and reading with a capacity over 10 terabytes with no appreciable change of the baseline over 600 years, which opens new opportunities for long data memory that affects the past and future.

  1. Melt-state rheology, solid-state mechanical properties and microstructure of polymer-clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Somwangthanaroj, Anongnat

    Polymer/clay nanocomposites have the potential usefulness in industrial applications such as automotive and packaging due to their strong, light-weight and inexpensive properties. However, to respond to needs of various applications it is crucial to understand the crystallization and rheological properties of these materials. Our initial hypothesis was that the processing conditions such as shear rate, shear strain and temperature affect the crystallization kinetics of intercalated polypropylene nanocomposites. Another hypothesis was that the compatibilizer, PP-MA, affects the role of the nucleating agent, sodium benzoate. The final hypothesis was that the rheological properties of nanocomposites depend on the degree of clay dispersion. By means of time-resolved small-angle light scattering, we were able to demonstrate that clay enhances the crystallization kinetics in nanocomposites and its result differs significantly from that of pure polypropylene. Characteristic crystallization times are extracted from the time evolution of integral measures of the angularly dependent parallel polarized and cross polarized light scattering intensity. Flow acceleration of crystallization kinetics has been observed for the polymer nanocomposites at applied strain rates for which flow has only modest effect on polypropylene crystallization. Furthermore, we were able to conclude that the addition of the nucleating agent sodium benzoate in the presence of polypropylene grafted maleic anhydride is not effective in accelerating crystallization. The rheological properties of two types of polypropylene/clay nanocomposites, with different degrees of clay dispersion have been measured in both linear and non-linear viscoelastic regime. In the linear viscoelastic regime, the storage and loss modulus of nanocomposites increases when clay loading increases. The storage and loss modulus of unsonicated nanocomposites are higher than the sonicated ones because the ultrasonic processing alters the structure of clay and polymer blend in sonicated nanocomposite. Non-linear rheology addresses the possible structure of particulate domains of clays in polymers. From this research, we demonstrated the possible effect of clay and compatibilizer on the crystallization kinetics and the effect of structure of clay and polymer matrix on rheological properties. To understand how clay enhances the mechanical properties, we still need to investigate where the clay actually resides and how the polymer crystallite forms.

  2. Effect of emulsifier type and concentration, aqueous phase volume and wax ratio on physical, material and mechanical properties of water in oil lipsticks.

    PubMed

    Beri, A; Norton, J E; Norton, I T

    2013-12-01

    Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aims of this work were (i) to investigate the effect of emulsifier type (polymer vs. monomer, and saturated vs. unsaturated chain) and concentration on droplet size and (ii) to investigate the effect of wax ratio (carnauba wax, microcrystalline wax, paraffin wax and performalene) and aqueous phase volume on material properties (Young's modulus, point of fracture, elastic modulus and viscous modulus). Emulsion formation was achieved using a high shear mixer. Results showed that the saturated nature of the emulsifier had very little effect on droplet size, neither did the use of an emulsifier with a larger head group (droplet size ~18-25 μm). Polyglycerol polyricinoleate (PGPR) resulted in emulsions with the smallest droplets (~3-5 μm), as expected from previous studies that show that it produces a thick elastic interface. The results also showed that both Young's modulus and point of fracture increase with increasing percentage of carnauba wax (following a power law dependency of 3), but decrease with increasing percentage of microcrystalline wax, suggesting that the carnauba wax is included in the overall wax network formed by the saturated components, whereas the microcrystalline wax forms irregular crystals that disrupt the overall wax crystal network. Young's modulus, elastic modulus and viscous modulus all decrease with increasing aqueous phase volume in the emulsions, although the slope of the decrease in elastic and viscous moduli is dependent on the addition of solid wax, as a result of strengthening the network. This work suggests the potential use for emulsions in lipstick applications, particularly when PGPR is used as an emulsifier, and with the addition of solid wax, as it increases network strength. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. In Vivo Brillouin Analysis of the Aging Crystalline Lens.

    PubMed

    Besner, Sebastien; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun

    2016-10-01

    To analyze the age dependence of the longitudinal modulus of the crystalline lens in vivo using Brillouin scattering data in healthy subjects. Brillouin scans were performed along the crystalline lens in 56 eyes from 30 healthy subjects aged from 19 to 63 years. Longitudinal elastic modulus was acquired along the sagittal axis of the lens with a transverse and axial resolution of 4 and 60 μm, respectively. The relative lens stiffness was computed, and correlations with age were analyzed. Brillouin axial profiles revealed nonuniform longitudinal modulus within the lens, increasing from a softer periphery toward a stiffer central plateau at all ages. The longitudinal modulus at the central plateau showed no age dependence in a range of 19 to 45 years and a slight decrease with age from 45 to 63 years. A significant intersubject variability was observed in an age-matched analysis. Importantly, the extent of the central stiff plateau region increased steadily over age from 19 to 63 years. The slope of change in Brillouin modulus in the peripheral regions were nearly age-invariant. The adult human lens showed no measurable age-related increase in the peak longitudinal modulus. The expansion of the stiff central region of the lens is likely to be the major contributing factor to age-related lens stiffening. Brillouin microscopy may be useful in characterizing the crystalline lens for the optimization of surgical or pharmacological treatments aimed at restoring accommodative power.

  4. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers.

    PubMed

    Kalita, Viktor M; Snarskii, Andrei A; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016)10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  5. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    NASA Astrophysics Data System (ADS)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  6. Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns

    DOE PAGES

    Hiremath, Nitilaksha; Lu, Xinyi; Evora, Maria Cecilia; ...

    2016-07-29

    Recently carbon nanotube (CNT) yarns have been gaining importance as an approach to harvest the excellent properties of the CNTs. However, the properties of CNT yarns at this stage are well below the expected value. Investigation of the structure of CNT yarns and possible approaches to enhance the strength and modulus are reported. Scanning electron microscopy and focused ion beam imaging reveal the inherently porous structure and poor orientation, emphasizing the need to enhance packing of CNT bundles in the yarns for increased strength and modulus. Densification of CNT yarn by toluene or polystyrene increases the strength by 140 ormore » 172 % and modulus by 79 or 218 %, respectively, as compared to that of the pristine yarn. E-beam irradiation was investigated as a means to introduce crosslinking and enhanced internanotubes bonding to increase strength and modulus. However, the irradiation resulted in generation of defects and damages to the yarn contributing to reduction in strength and modulus. Raman spectroscopy studies on the irradiated samples reveal the change in bonding characteristics resulting in poor mechanical properties. As a result, denser packing of nanotubes and increased interaction without any damage is the key to improve the properties of CNT yarns.« less

  7. Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiremath, Nitilaksha; Lu, Xinyi; Evora, Maria Cecilia

    Recently carbon nanotube (CNT) yarns have been gaining importance as an approach to harvest the excellent properties of the CNTs. However, the properties of CNT yarns at this stage are well below the expected value. Investigation of the structure of CNT yarns and possible approaches to enhance the strength and modulus are reported. Scanning electron microscopy and focused ion beam imaging reveal the inherently porous structure and poor orientation, emphasizing the need to enhance packing of CNT bundles in the yarns for increased strength and modulus. Densification of CNT yarn by toluene or polystyrene increases the strength by 140 ormore » 172 % and modulus by 79 or 218 %, respectively, as compared to that of the pristine yarn. E-beam irradiation was investigated as a means to introduce crosslinking and enhanced internanotubes bonding to increase strength and modulus. However, the irradiation resulted in generation of defects and damages to the yarn contributing to reduction in strength and modulus. Raman spectroscopy studies on the irradiated samples reveal the change in bonding characteristics resulting in poor mechanical properties. As a result, denser packing of nanotubes and increased interaction without any damage is the key to improve the properties of CNT yarns.« less

  8. Computational modeling of the effective Young's modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model.

    PubMed

    Ghavanloo, Esmaeal; Izadi, Razie; Nayebi, Ali

    2018-02-28

    Estimating the Young's modulus of a structure in the nanometer size range is a difficult task. The reliable determination of this parameter is, however, important in both basic and applied research. In this study, by combining molecular dynamics (MD) simulations and continuum shell theory, we designed a new approach to determining the Young's modulus values of different spherical fullerenes. The results indicate that the Young's modulus values of fullerene molecules decrease nonlinearly with increasing molecule size and understandably tend to the Young's modulus of an ideal flat graphene sheet at large molecular radii. To the best of our knowledge, this is first time that a combined atomistic-continuum method which can predict the Young's modulus values of fullerene molecules with high precision has been reported.

  9. High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering.

    PubMed

    Teller, Sean S; Farran, Alexandra J E; Xiao, Longxi; Jiao, Tong; Duncan, Randall L; Clifton, Rodney J; Jia, Xinqiao

    2012-10-01

    The biomechanical function of the vocal folds (VFs) depends on their viscoelastic properties. Many conditions can lead to VF scarring that compromises voice function and quality. To identify candidate replacement materials, the structure, composition, and mechanical properties of native tissues need to be understood at phonation frequencies. Previously, the authors developed the torsional wave experiment (TWE), a stress-wave-based experiment to determine the linear viscoelastic shear properties of small, soft samples. Here, the viscoelastic properties of porcine and human VFs were measured over a frequency range of 10-200 Hz. The TWE utilizes resonance phenomena to determine viscoelastic properties; therefore, the specimen test frequency is determined by the sample size and material properties. Viscoelastic moduli are reported at resonance frequencies. Structure and composition of the tissues were determined by histology and immunochemistry. Porcine data from the TWE are separated into two groups: a young group, consisting of fetal and newborn pigs, and an adult group, consisting of 6-9-month olds and 2+-year olds. Adult tissues had an average storage modulus of 2309±1394 Pa and a loss tangent of 0.38±0.10 at frequencies of 36-200 Hz. The VFs of young pigs were significantly more compliant, with a storage modulus of 394±142 Pa and a loss tangent of 0.40±0.14 between 14 and 30 Hz. No gender dependence was observed. Histological staining showed that adult porcine tissues had a more organized, layered structure than the fetal tissues, with a thicker epithelium and a more structured lamina propria. Elastin fibers in fetal VF tissues were immature compared to those in adult tissues. Together, these structural changes in the tissues most likely contributed to the change in viscoelastic properties. Adult human VF tissues, recovered postmortem from adult patients with a history of smoking or disease, had an average storage modulus of 756±439 Pa and a loss tangent of 0.42±0.10. Contrary to the results of some other investigators, no significant frequency dependence was observed. This lack of observable frequency dependence may be due to the modest frequency range of the experiments and the wide range of stiffnesses observed within nominally similar sample types.

  10. High-Frequency Viscoelastic Shear Properties of Vocal Fold Tissues: Implications for Vocal Fold Tissue Engineering

    PubMed Central

    Teller, Sean S.; Farran, Alexandra J.E.; Xiao, Longxi; Jiao, Tong; Duncan, Randall L.

    2012-01-01

    The biomechanical function of the vocal folds (VFs) depends on their viscoelastic properties. Many conditions can lead to VF scarring that compromises voice function and quality. To identify candidate replacement materials, the structure, composition, and mechanical properties of native tissues need to be understood at phonation frequencies. Previously, the authors developed the torsional wave experiment (TWE), a stress-wave-based experiment to determine the linear viscoelastic shear properties of small, soft samples. Here, the viscoelastic properties of porcine and human VFs were measured over a frequency range of 10–200 Hz. The TWE utilizes resonance phenomena to determine viscoelastic properties; therefore, the specimen test frequency is determined by the sample size and material properties. Viscoelastic moduli are reported at resonance frequencies. Structure and composition of the tissues were determined by histology and immunochemistry. Porcine data from the TWE are separated into two groups: a young group, consisting of fetal and newborn pigs, and an adult group, consisting of 6–9-month olds and 2+-year olds. Adult tissues had an average storage modulus of 2309±1394 Pa and a loss tangent of 0.38±0.10 at frequencies of 36–200 Hz. The VFs of young pigs were significantly more compliant, with a storage modulus of 394±142 Pa and a loss tangent of 0.40±0.14 between 14 and 30 Hz. No gender dependence was observed. Histological staining showed that adult porcine tissues had a more organized, layered structure than the fetal tissues, with a thicker epithelium and a more structured lamina propria. Elastin fibers in fetal VF tissues were immature compared to those in adult tissues. Together, these structural changes in the tissues most likely contributed to the change in viscoelastic properties. Adult human VF tissues, recovered postmortem from adult patients with a history of smoking or disease, had an average storage modulus of 756±439 Pa and a loss tangent of 0.42±0.10. Contrary to the results of some other investigators, no significant frequency dependence was observed. This lack of observable frequency dependence may be due to the modest frequency range of the experiments and the wide range of stiffnesses observed within nominally similar sample types. PMID:22741523

  11. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis.

    PubMed

    Helfenstein-Didier, C; Andrade, R J; Brum, J; Hug, F; Tanter, M; Nordez, A; Gennisson, J-L

    2016-03-21

    The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.

  12. Elastic Modulus Determination of Normal and Glaucomatous Human Trabecular Meshwork

    PubMed Central

    Last, Julie A.; Pan, Tingrui; Ding, Yuzhe; Reilly, Christopher M.; Keller, Kate; Acott, Ted S.; Fautsch, Michael P.; Murphy, Christopher J.; Russell, Paul

    2011-01-01

    Purpose. Elevated intraocular pressure (IOP) is a risk factor for glaucoma. The principal outflow pathway for aqueous humor in the human eye is through the trabecular meshwork (HTM) and Schlemm's canal (SC). The junction between the HTM and SC is thought to have a significant role in the regulation of IOP. A possible mechanism for the increased resistance to flow in glaucomatous eyes is an increase in stiffness (increased elastic modulus) of the HTM. In this study, the stiffness of the HTM in normal and glaucomatous tissue was compared, and a mathematical model was developed to predict the impact of changes in stiffness of the juxtacanalicular layer of HTM on flow dynamics through this region. Methods. Atomic force microscopy (AFM) was used to measure the elastic modulus of normal and glaucomatous HTM. According to these results, a model was developed that simulated the juxtacanalicular layer of the HTM as a flexible membrane with embedded pores. Results. The mean elastic modulus increased substantially in the glaucomatous HTM (mean = 80.8 kPa) compared with that in the normal HTM (mean = 4.0 kPa). Regional variation was identified across the glaucomatous HTM, possibly corresponding to the disease state. Mathematical modeling suggested an increased flow resistance with increasing HTM modulus. Conclusions. The data indicate that the stiffness of glaucomatous HTM is significantly increased compared with that of normal HTM. Modeling exercises support substantial impairment in outflow facility with increased HTM stiffness. Alterations in the biophysical attributes of the HTM may participate directly in the onset and progression of glaucoma. PMID:21220561

  13. Fluid Effects on Shear for Seismic Waves in Finely Layered Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J G

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus of the layered system (namely the uniaxial shear) contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored in this modulus by an amount that ranges from the smallest to the largest effective shear moduli of the VTI system. But, since there are five shear moduli in play, the overall increase in shear energy due to fluids is reducedmore » by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of overall shear modulus, being about 20% of the allowed range as liquid is fully substituted for gas. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% decreases the shear wave speed and, thereby, partially offsets the effect of this shear modulus increase. The final result is an increase of shear wave speed on the order of 5 to 10%. This increase is shown to be possible under most favorable circumstances - i.e. when the shear modulus fluctuations are large (resulting in strong anisotropy) and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), resulting short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity.« less

  14. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage.

    PubMed

    Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D

    2010-06-01

    In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, p<0.001), Ef (to 31.3±41.3% [corrected] of control values, p=0.046), Em (to 6.4±8.5% of control values, p<0.0001), and an increase in k (to 2676.7±2562.0% of control values, p=0.004) were observed at day 12 of refrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures.

  15. Nonlinearity of bituminous mixtures

    NASA Astrophysics Data System (ADS)

    Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.

    2018-02-01

    This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).

  16. Effectiveness of Flame Retardants in TufFoam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abelow, Alexis Elizabeth; Nissen, April; Massey, Lee Taylor

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  17. Exceptionally strong hydrogels through self-assembly of an indole-capped dipeptide.

    PubMed

    Martin, Adam D; Robinson, Andrew B; Mason, Alexander F; Wojciechowski, Jonathan P; Thordarson, Pall

    2014-12-21

    The synthesis of a new hydrogelator with an indole capping group, 1, is reported. 1 forms exceptionally strong hydrogels in a variety of environments, with values for the storage modulus G' amongst the highest reported for supramolecular hydrogels. These gels exhibit strong bundling characteristics, which gives the high values for G' observed. Cell viability studies show that at low concentrations, 1 is biocompatible, however upon self-assembly at higher concentrations, cytotoxic effects are observed.

  18. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.

    PubMed

    Esparza, Yussef; Bandara, Nandika; Ullah, Aman; Wu, Jianping

    2018-09-01

    Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity.

    PubMed

    Wahid, Fazli; Zhou, Ya-Ning; Wang, Hai-Song; Wan, Tong; Zhong, Cheng; Chu, Li-Qiang

    2018-04-07

    Injectable and self-healing hydrogels have found numerous applications in drug delivery, tissue engineering and 3D cell culture. Herein, we report an injectable self-healing carboxymethyl chitosan (CMCh) supramolecular hydrogels cross-linked by zinc ions (Zn 2+ ). Supramolecular hydrogels were obtained by simple addition of metal ions solution to CMCh solution at an appropriate pH value. The mechanical properties of these hydrogels were adjustable by the concentration of Zn 2+ . For example, the hydrogel with the highest concentration of Zn 2+ (CMCh-Zn4) showed strongest mechanical properties (storage modulus~11,000Pa) while hydrogel with the lowest concentration of Zn 2+ (CMCh-Zn1) showed weakest mechanical properties (storage modulus~220Pa). As observed visually and confirmed rheologically, the CMCh-Zn1 hydrogel with the lowest Zn 2+ concentration showed thixotropic property. CMCh-Zn1 hydrogel also presented injectable property. Moreover, the antibacterial properties of the prepared supramolecular hydrogels were studied against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by agar well diffusion method. The results revealed Zn 2+ dependent antibacterial properties against both kinds of strains. The inhibition zones were ranging from ~11-24mm and ~10-22mm against S. aureus and E. coli, respectively. We believe that the prepared supramolecular hydrogels could be used as a potential candidate in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires.

    PubMed

    Kusy, Robert P; Whitley, John Q

    2007-02-01

    In recent years, nickel-titanium (Ni-Ti) archwires have been developed that undergo thermal transitions. Before the practitioner can fully utilize these products, the effect of those transitions within the clinical application must be understood. The transitional temperatures and mechanical stiffnesses of 3 archwire alloys--stainless steel, beta-titanium, and Ni-Ti--were investigated were for 7 products. Among the nickel-titanium alloys, 2 were thought to represent classic Ni-Ti products and 3 copper (Cu)-Ni-Ti products. By using 2 techniques, differential scanning calorimetry to measure heat flow and dynamic mechanical analysis to measure storage modulus, transition temperatures were evaluated from -30 degrees C to +80 degrees C. With regard to the first technique, no transitions were observed for the stainless steel alloy, the beta-titanium alloy, and 1 of the 2 classic Ni-Ti products. For the other classic Ni-Ti product, however, a martensitic-austenitic transition was suggested on heating, and a reverse transformation was suggested on cooling. As expected, the Cu-Ni-Ti 27, 35, and 40 products manifested austenitic finish temperatures of 29.3 degrees C, 31.4 degrees C, and 37.3 degrees C, respectively, as the enthalpy increased from 2.47 to 3.18 calories per gram. With regard to the second technique, the storage modulus at a low frequency of 0.1 Hz paralleled static mechanical tests for the stainless steel alloy (183 gigapascal [GPa]), the beta-titanium alloy (64 GPa), and the Nitinol Classic (3M Unitek, Monrovia, Calif) product that represented a stable martensitic phase (41 GPa). The remaining 4 Ni-Ti products generally varied from 20 to 35 GPa when the low-temperature or martensitic phase was present and from 60 to 70 GPa after the high-temperature or austenitic phase had formed. From the clinical viewpoint, the Orthonol (Rocky Mountain Orthodontics, Denver, Colo), Cu-Ni-Ti 27, Cu-Ni-Ti 35, and Cu-Ni-Ti 40 (SDS/Ormco, Glendora, Calif) products increased at least twofold in stiffness as temperature increased, best emulating the stiffness of Nitinol Classic below the transformational temperature and the stiffness of TMA (SDS/Ormco, Glendora, Calif) above the transformational temperature. Of the 3 Cu-Ni-Ti products, the least differences were found between Cu-Ni-Ti 27 and Cu-Ni-Ti 35, thereby questioning the justification for 3 similar products.

  1. Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Jinhee; Pham, Viet Hung; Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk

    2014-05-01

    Alkylamine-functionalized graphene oxides (FGOs) have superior dispersibility in low-polar solvents and, as a result, they interact with low-polar polymers such as polystyrene. In this work, the functionalization of graphene oxide using three types of alkylamines, octylamine (OA), dodecylamine (DDA), and hexadecylamine (HDA), was performed, and nanocomposites of polystyrene (PS) and FGOs were prepared via solution blending. Different dispersions of FGOs over PS were obtained for the three alkylamines, and the properties of the PS composites were influenced by the length of the alkylamine. A better thermal stability was observed with a longer chain length of the alkylamine. On the other hand, functionalization with the shortest chain length alkylamine resulted in the highest increase in the storage modulus (3,640 MPa, 140%) at a 10 wt.% loading of FGO.

  2. Comparison of water gel desserts from fish skin and pork gelatins using instrumental measurements.

    PubMed

    Zhou, Peng; Regenstein, Joe M

    2007-05-01

    The objective of this study was to compare water gel desserts from various gelatins using instrumental measurements. The puncture test and texture profile analysis (TPA) with compression were determined at 25% and 75% deformation; the melting properties were determined rheologically by monitoring the change of storage modulus (G') with increasing temperature. The measurements with 25% deformation were always nondestructive, while measurements with 75% deformation were mostly destructive. Desserts made from Alaska pollock gelatin (AG) or gelatin mixtures containing AG were more resistant to the destruction caused by the large deformation than tilapia gelatin and pork gelatins. In addition, the gel dessert made from AG melted at a lower temperature than those from tilapia skin gelatin and pork gelatins, while desserts made from gelatin mixtures reflected the melting properties of the separate gelatins.

  3. Factors that influence muscle shear modulus during passive stretch.

    PubMed

    Koo, Terry K; Hug, François

    2015-09-18

    Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream

    PubMed Central

    2015-01-01

    The effects of low molecular-weight collagen peptides derived from porcine skin were investigated on the physicochemical and sensorial properties of chocolate ice cream. Collagen peptides less than 1 kDa in weight were obtained by sub-critical water hydrolysis at a temperature of 300℃ and a pressure of 80 bar. Ice cream was then prepared with gelatin powder and porcine skin hydrolysate (PSH) stabilizers mixed at seven different ratios (for a total of 0.5 wt%). There was no significant difference in color between the resulting ice cream mixtures. The increase in apparent viscosity and shear thinning of the ice cream was more moderate with PSH added than with gelatin. Moreover, the samples containing more than 0.2 wt% PSH had enhanced melting resistance, while the mixture with 0.2 wt% PSH had the lowest storage modulus at -20℃ and the second highest loss modulus at 10℃, indicating that this combination of hydrocolloids leads to relatively softer and creamier chocolate ice cream. Among the seven types of ice creams tested, the mixture with 0.2 wt% PSH and 0.3 wt% gelatin had the best physicochemical properties. However, in sensory evaluations, the samples containing PSH had lower chocolate flavor scores and higher off-flavor scores than the sample prepared with just 0.5 wt% gelatin due to the strong off-flavor of PSH. PMID:26761823

  5. Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream.

    PubMed

    Li, Liying; Kim, Jae-Hyeong; Jo, Yeon-Ji; Min, Sang-Gi; Chun, Ji-Yeon

    2015-01-01

    The effects of low molecular-weight collagen peptides derived from porcine skin were investigated on the physicochemical and sensorial properties of chocolate ice cream. Collagen peptides less than 1 kDa in weight were obtained by sub-critical water hydrolysis at a temperature of 300℃ and a pressure of 80 bar. Ice cream was then prepared with gelatin powder and porcine skin hydrolysate (PSH) stabilizers mixed at seven different ratios (for a total of 0.5 wt%). There was no significant difference in color between the resulting ice cream mixtures. The increase in apparent viscosity and shear thinning of the ice cream was more moderate with PSH added than with gelatin. Moreover, the samples containing more than 0.2 wt% PSH had enhanced melting resistance, while the mixture with 0.2 wt% PSH had the lowest storage modulus at -20℃ and the second highest loss modulus at 10℃, indicating that this combination of hydrocolloids leads to relatively softer and creamier chocolate ice cream. Among the seven types of ice creams tested, the mixture with 0.2 wt% PSH and 0.3 wt% gelatin had the best physicochemical properties. However, in sensory evaluations, the samples containing PSH had lower chocolate flavor scores and higher off-flavor scores than the sample prepared with just 0.5 wt% gelatin due to the strong off-flavor of PSH.

  6. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics.

    PubMed

    Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K

    2018-04-01

    The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and characterization of cellulose nanocrystals as reinforcing agent in solely palm based polyurethane foam

    NASA Astrophysics Data System (ADS)

    Septevani, Athanasia Amanda; Annamalai, Pratheep K.; Martin, Darren J.

    2017-11-01

    The increasing awareness of the environment and the economy of petroleum resources has driven the development of alternative processes and raw materials based on sustainable and renewable biomaterials with excellent properties. This study is aimed to use biologically renewable cellulose nanocrystals (CNC) as reinforcing agent to enhance the properties of polyurethane foams (PUF) based on solely palm-polyol. Rod-like shape cellulose nanocrystals (CNC) was successfully isolated from cotton based resources via strong acid hydrolysis with the average width, length and aspect ratio about 14.7 ± 4.9 nm, 167.7 ± 23.2 nm and 11.4, respectively. The crystallinity of CNC was confirmed by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) and was found at 82.8% and 83.8%, respectively. This obtained cellulose nanocrystals (CNC) at a loading of 0.4 wt. % was then incorporated via solvent-free sonication method in the model of palm based polyurethane foam. The preliminary results showed that the effect of CNC on the mechanical properties afforded a significant improvement on the compressive strength and modulus without affecting much their tensile strength. The results on thermal stability and thermal transitions were found unchanged whereas the storage modulus revealed substantial improvement with the presence of CNC with almost two fold from 0.7 MPa to 1.3 MPa (˜86 %).

  8. Acetylation of banana (Musa paradisiaca L.) and corn (Zea mays L.) starches using a microwave heating procedure and iodine as catalyst: II. Rheological and structural studies.

    PubMed

    Sánchez-Rivera, Mirna M; Almanza-Benitez, Sirlen; Bello-Perez, Luis A; Mendez-Montealvo, Guadalupe; Núñez-Santiago, María C; Rodriguez-Ambriz, Sandra L; Gutierrez-Meráz, Felipe

    2013-02-15

    The effect of iodine concentration on the acetylation of starches with low and moderate degree of substitution (DS<0.5) and its impact on the physicochemical feature and structural features was evaluated. The acetylated starches were prepared with 0.03 mol anhydroglucose unit, 0.12 mol of anhydride acetic, and 0.6, 0.9 or 1.4 mM of molecular iodine as catalyst in a sealed Teflon vessel using microwave heating (600 W/2 min). Pasting profile and rheological properties were obtained under steady flow; dynamic oscillatory test was used. Structural features were obtained by HPSEC-RI. In acetylated starches, DS and acetyl groups increased when the iodine concentration increased, corn starch showed higher values than banana starch. The viscosity of acetylated starches decreased relative to unmodified starches while, acetylated corn starch had lower value than acetylated banana starch. In the flow curves, a non-Newtonian pattern (shear-thinning) was shown in the pastes of native and modified starches. Storage modulus (G') and loss modulus (G") showed low dependence on frequency (G'αω(0.1); G"αω(0.2)) on frequency sweep test, which is characteristic of a viscoelastic gel. Debranched native banana and corn starches presented trimodal chain-length distribution. The pattern was maintained in the acetylated starches, but with different level of short and long chains. The structural differences in native and acetylated samples explain the rheological characteristics in both starches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2006-07-01

    This study investigated the effect of alloying titanium with gold, silver, or copper on the elastic properties of the alloys. A series of binary titanium alloys was made with four concentrations of gold, silver, or copper (5, 10, 20, and 30 mass%) in an argon-arc melting furnace. The Young's moduli and Poisson's ratios of the alloy castings were determined with an ultrasonic-pulse method. The density of each alloy was previously measured by the Archimedes' principle. Results were analyzed using one-way ANOVA and the Scheffé's test. The densities of Ti-Au, Ti-Ag, and Ti-Cu alloys monotonically increased as the concentration of alloying elements increased. As the concentration of gold or silver increased to 20%, the Young's modulus significantly decreased, followed by a subsequent increase in value. As the concentration of copper increased, the Young's modulus monotonically increased. The Young's moduli of all the Ti-Cu alloys were significantly higher than that of the titanium. The density of all the experimental alloys was virtually independent of the alloy phases, while the Young's moduli and Poisson's ratios of the alloys were dependent. The addition of gold or silver slightly reduced the Young's modulus of the titanium when the alloy phase was single alpha. The increase in the Young's modulus of the Ti-Cu alloys is probably due to the precipitation of intermetallic compound Ti2Cu. Copper turned out to be a moderate stiffener that gains a Young's modulus of titanium up to 20% at the copper concentration of 30 mass%.

  10. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    NASA Astrophysics Data System (ADS)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  11. Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG

    NASA Astrophysics Data System (ADS)

    Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar

    2018-03-01

    The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.

  12. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.

  13. Alteration of Dentin-Enamel Mechanical Properties Due to Dental Whitening Treatments

    PubMed Central

    Zimmerman, B.; Datko, L.; Cupelli, M.; Alapati, S.; Dean, D.; Kennedy, M.

    2010-01-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0GPa versus 113.4GPa), while smaller increases were observed in the dentin (17.9GPa versus 27.9GPa). Likewise, there was an increase in the hardness of enamel (2.0GPa versus 4.3GPa) and dentin (0.5GPa versus 0.7GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips™, Opalescence™ or UltraEtch™ caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips™ showed a reduction in the elastic modulus of enamel (55.3GPa to 32.7GPa) and increase in the elastic modulus of dentin (17.2GPa to 24.3GPa). Opalescence™ treatments did not significantly affect the enamel properties, but did result in a decrease in modulus of dentin (18.5GPa to 15.1GPa). Additionally, as expected, UltraEtch™ treatment decreased the modulus and hardness of enamel (48.7GPa to 38.0GPa and 1.9GPa to 1.5GPa, respectively) and dentin (21.4GPa to 15.0GPa and 1.9GPa to 1.5GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. PMID:20346902

  14. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  15. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  16. AN ACOUSTICAL STUDY OF LOW TEMPERATURE AGING IN Al-4.2% Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, M.E.; Chiou, C.

    1958-08-01

    While Gunier-Preston zones are growing in Al-4.2% - Cu at room temperature, Young's modulus, measured dynamically, increases about 0.4%. From the change in modulus with time the exponent of time in the rate equation for growth of ths zones was deduced to be 1/2. From a comparison of the raas of increase of modulus at 1, 28, and 42 deg C an activation energy of 12 to 14 kcal per mole is computed. These findings support the idea that copper atoms are supplies along dislocation channels to growing zones. (auth)

  17. In Vivo Brillouin Analysis of the Aging Crystalline Lens

    PubMed Central

    Besner, Sebastien; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun

    2016-01-01

    Purpose To analyze the age dependence of the longitudinal modulus of the crystalline lens in vivo using Brillouin scattering data in healthy subjects. Methods Brillouin scans were performed along the crystalline lens in 56 eyes from 30 healthy subjects aged from 19 to 63 years. Longitudinal elastic modulus was acquired along the sagittal axis of the lens with a transverse and axial resolution of 4 and 60 μm, respectively. The relative lens stiffness was computed, and correlations with age were analyzed. Results Brillouin axial profiles revealed nonuniform longitudinal modulus within the lens, increasing from a softer periphery toward a stiffer central plateau at all ages. The longitudinal modulus at the central plateau showed no age dependence in a range of 19 to 45 years and a slight decrease with age from 45 to 63 years. A significant intersubject variability was observed in an age-matched analysis. Importantly, the extent of the central stiff plateau region increased steadily over age from 19 to 63 years. The slope of change in Brillouin modulus in the peripheral regions were nearly age-invariant. Conclusions The adult human lens showed no measurable age-related increase in the peak longitudinal modulus. The expansion of the stiff central region of the lens is likely to be the major contributing factor to age-related lens stiffening. Brillouin microscopy may be useful in characterizing the crystalline lens for the optimization of surgical or pharmacological treatments aimed at restoring accommodative power. PMID:27699407

  18. "Green" composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites.

    PubMed

    Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E

    2006-03-22

    In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of <10 wt %, but there is a decrease beyond 10 wt %. The tensile modulus increases with fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.

  19. Mechanical Anisotropic and Electronic Properties of Amm2-carbon under Pressure*

    NASA Astrophysics Data System (ADS)

    Xing, Meng-Jiang; Li, Xiao-Zhen; Yu, Shao-Jun; Wang, Fu-Yan

    2017-09-01

    Structural, electronic properties and mechanical anisotropy of Amm2-carbon are investigated utilizing frist-principles calculations by Cambridge Serial Total Energy Package (CASTEP) code. The work is performed with the generalized gradient approximation in the form of Perdew-Burke-Ernzerhof (PBE), PBEsol, Wu and Cohen (WC) and local density approximation in the form of Ceperley and Alder data as parameterized by Perdew and Zunger (CA-PZ). The mechanical anisotropy calculations show that Amm2-carbon exhibit large anisotropy in elastic moduli, such as Poisson’s ratio, shear modulus and Young’s modulus, and other anisotropy factors, such as the shear anisotropic factor and the universal anisotropic index AU. It is interestingly that the anisotropy in shear modulus and Young’s modulus, universal anisotropic index and the shear anisotropic factor all increases with increasing pressure, but the anisotropy in Poisson’s ratio decreases. The band structure calculations reveal that Amm2-carbon is a direct-band-gap semiconductor at ambient pressure, but with the pressure increasing, it becomes an indirect-band-gap semiconductor.

  20. Temperature Dependent Mechanical Property of PZT Film: An Investigation by Nanoindentation

    PubMed Central

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains. PMID:25768957

  1. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is tomore » use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for restoring the ability of degraded EPR to be compliant and resist fracture. The results of this research reveal that absorption of chemical treatments can lower the glass transition temperature and modulus of EPR. Chemical treatments pursued thus far have proven ineffective at restoring EPR strength and elongation at break. Future work will combine the plasticizer modalities found to successfully increase the volume of the EPR, reduce EPR glass transition temperature and reduce EPR modulus with promising chemistries that will repair the damage of the polymer, potentially using the plasticizer as a host for the new chemistry.« less

  2. Effect of salt on the glass transition of condensed tapioca starch systems.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert A; Kasapis, Stefan

    2017-08-15

    This work examines the effect of including hydrated NaCl and CaCl 2 (up to 6% w/w) on the physicochemical properties of condensed tapioca starch. Samples were prepared by hot pressing at 120°C to produce condensed systems that covered a range of moisture contents from 7.34% w/w (23% relative humidity) to 19.52% w/w (75% relative humidity). Tensile storage modulus and heat flow measurements were taken using DMA and MDSC, which were accompanied by FTIR, WAXD and ESEM. Increasing the salt level enhances the mechanical strength of starch in the glassy state and shifts the glass transition temperature to a higher value. Antiplasticising effects of NaCl and CaCl 2 on the non-phosphorylated tapioca starch are indistinguishable from each other. Observations are complemented by intensification of absorbance peaks in FTIR spectra and a systematic change in shape and intensity of diffraction patterns with increasing addition of salt consistent with interactions between added ions and macromolecule. Copyright © 2017. Published by Elsevier Ltd.

  3. Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages.

    PubMed

    Kouzounis, Dimitrios; Lazaridou, Athina; Katsanidis, Eugenios

    2017-08-01

    Sunflower oil was structured with monoglycerides and phytosterols. The properties of the oleogels were studied by optical microscopy, large deformation mechanical measurements, dynamic rheometry and differential scanning calorimetry. The interaction between monoglycerides and phytosterols resulted in stronger oleogel networks with a differentiated crystalline structure, increased hardness and gel strength, increased storage modulus (G') values and decreased melting temperatures compared to monoglycerides oleogels. The oleogel structured with 15:5 monoglycerides to phytosterols weight ratio was selected to replace 50% of the pork backfat in frankfurter sausages. The control treatment (FSS1) presented higher values of hardness, brittleness, gumminess and chewiness than the oleogel-substituted samples (FSS2), whereas cohesiveness and elasticity did not present any differences. Instrumental color measurements indicated that FSS1 samples had higher a*, lower L* and similar b* values compared to FSS2. No differences were detected in the oxidation levels and sensory evaluation revealed similar overall liking for the two treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ionic cross-linked polyether and silica gel mixed matrix membranes for CO 2 separation from flue gas

    DOE PAGES

    Sekizkardes, Ali K.; Zhou, Xu; Nulwala, Hunaid B.; ...

    2017-09-22

    Mixed matrix membranes (MMMs) were prepared by incorporating 10 wt%, 20 wt% and 30 wt% silica gel filler particles into novel ionic cross-linked polyether (IXPE) polymers. Porous silica gel has the advantage of high surface area that can increase the free volume and permeability in a polymer film while also being commercially available and low cost. The MMMs featured high chemical and thermal stability as well as a modest improvement in storage modulus. These features are due to the excellent interfacial interaction between silica gel filler particles and the polymer matrix. Increasing the loading of silica gel particles in MMMsmore » resulted in higher permeability up to 120 Barrer for CO 2, which is about 40% higher than the neat polymer matrix. Finally, most importantly, the MMMs maintained a very high CO 2/N 2 selectivity performance of around 41 for all particle loadings that were tested.« less

  5. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  6. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.

    PubMed

    Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis

    2012-01-01

    The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules.

  7. Cement paste prior to setting: A rheological approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellotto, Maurizio, E-mail: maurizio.bellotto@bozzetto.it

    2013-10-15

    The evolution of cement paste during the dormant period is analyzed via small amplitude oscillation rheological measurements. Cement paste, from the very first moments after mixing cement and water, shows the formation of an elastic gel whose strength is rapidly increasing over time. Up to the onset of Portlandite precipitation G′(t) increases by more than 2 orders of magnitude and in the acceleratory period G′(t) continues steadily to increase. A microstructural modification is likely to occur between the dormant and the acceleratory period. At low deformations in the linearity domain the storage modulus G′(ω) exhibits a negligible frequency dependence. Atmore » higher deformations cement paste shows a yield stress which increases on increasing paste concentration. The presence of superplasticizers decreases the yield stress and increases the gelation threshold of the paste. Above the gelation threshold the evolution of cement paste with superplasticizers follows similar trends to the neat paste. -- Highlights: •The gelation of cement paste during the dormant period is analyzed via rheometry. •The observed evolution is proposed to be related to the pore structure refinement. •Similarities are observed with colloidal gels and colloidal glasses.« less

  8. Experimental comparison of manufacturing techniques of toughened and nanoreinforced polyamides

    NASA Astrophysics Data System (ADS)

    Siengchin, S.; Bergmann, C.; Dangtungee, R.

    2011-11-01

    Composites consisting of polyamide-6 (PA-6), nitrile rubber (NBR), and sodium fluorohectorite (FH) or alumina silicate (Sungloss; SG) were produced by different techniques with latex precompounding. Their tensile and thermomechanical properties were determined by using tensile tests and a dynamic-mechanical analysis, performed at various temperatures. The PA-6/NBR composite systems produced by the direct melt compounding outperformed those obtained by using the masterbatch technique with respect to the strength and ductility, but the latter ones had a higher storage modulus.

  9. Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices.

    PubMed

    Benson, Jim; Kovalenko, Igor; Boukhalfa, Sofiane; Lashmore, David; Sanghadasa, Mohan; Yushin, Gleb

    2013-12-03

    Pulsed electrodeposition of polyaniline (PANI) allows the fabrication of flexible, electrically conductive, nonwoven PANI-carbon nanotube (PANI-CNT) composite fabrics. They possess specific tensile strength and a modulus of toughness higher than that of aluminum matrix composites, titanium and aluminum alloys, steels, and many other structural materials. Electrochemical tests show that these nanocomposites additionally offer excellent cycle stability and ion electro-sorption and storage properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    NASA Astrophysics Data System (ADS)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  11. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    NASA Astrophysics Data System (ADS)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  12. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams.

    PubMed

    Ardanuy, Mònica; Antunes, Marcelo; Velasco, José Ignacio

    2012-02-01

    Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Sustainable Hydrogels Based on Lignin-Methacrylate Copolymers with Enhanced Water Retention and Tunable Material Properties.

    PubMed

    Rajan, Kalavathy; Mann, Jeffrey K; English, Eldon; Harper, David P; Carrier, Danielle Julie; Rials, Timothy G; Labbé, Nicole; Chmely, Stephen C

    2018-04-12

    Synthesizing lignin-based copolymers would valorize a major coproduct stream from pulp and paper mills and biorefineries as well as reduce the dependence on petrochemical-based consumer goods. In this study, we used organosolv lignin isolated from hybrid poplar ( Populus trichocarpa × P. deltoides) to generate lignin-containing methacrylate hydrogels. The copolymer hydrogels were synthesized by first grafting 2-hydroxyethyl methacrylate (HEMA) onto lignin (OSLH) via esterification and then by free radical polymerization of OSLH with excess HEMA. The copolymer hydrogels were prepared with different stoichiometric ratios of OSLH (e.g., 0, 10, 20, and 40 wt %) with respect to HEMA. Copolymerization with OSLH led to an increase in cross-linking density, which in turn enhanced the hydrogel's material properties; we report up to 39% improvement in water retention, 20% increase in thermostability, and up to a 3 order increase in magnitude of the storage modulus ( G'). The copolymer's properties, such as water retention and glass transition temperature, could be tuned by altering the percent functionalization of lignin OH groups and the ratio of OSLH to HEMA.

  14. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization.

    PubMed

    Feng, Xinhao; Yang, Zhaozhe; Chmely, Stephen; Wang, Qingwen; Wang, Siqun; Xie, Yanjun

    2017-08-01

    Various contents of lignin-coated cellulose nanocrystals (L-CNC) were incorporated into methacrylate (MA) resin and their mixture was used to prepare nanocomposites via 3D stereolithography (3D-SL) printing. Gaps were found between the L-CNC and MA matrix in 3D-SL printed nanocomposites before postcure. However, gaps decreased after postcure due to interactions between the L-CNC and MA molecules. Mechanical properties increased with the addition of 0.1% and 0.5% L-CNC after postcure, and the thermal stability was improved at 0.5% L-CNC. Dynamic mechanical analysis demonstrated that incorporation of L-CNC increased the storage modulus in the rubbery plateau. The loss factor had two transition regions, which gradually changed by merging together with increasing L-CNC content, and a broadening of the transition region was observed after postcure. In particular, the mechanical and thermal properties of 3D-SL printed nanocomposites, after postcure, exhibited higher improvement than those before postcure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan.

    PubMed

    Stoyneva, Veselina; Momekova, Denitsa; Kostova, Bistra; Petrov, Petar

    2014-01-01

    Original pH sensitive cryogels, based on two biodegradable natural polymers chitosan (CS) and 2-hydroxyethylcellulose (HEC), were obtained via cryogenic treatment of semi-dilute aqueous solutions and UV induced crosslinking in frozen state. H₂O₂ and N,N'-methylenebisacrylamide (BisAAm) were used as photoinitiator and crosslinking agent, respectively. BisAAm facilitated the formation of polymer co-network and increased both the gel fraction yield and mechanical strength of cryogels. The influence of chitosan content on the physico-mechanical properties of HEC-CS cryogels was investigated. In general, the increase of CS fraction in the polymer co-network increased the degree of swelling and enhanced significantly the storage modulus of materials. All HEC-CS cryogels obtained were opalescent sponge-like materials, which quickly release/uptake water due to their open porous structure. The incorporation of CS provided pH dependent swelling and good bioadhesive properties of cryogels. HEC-CS cryogels were further exploited as drug delivery systems of the highly water soluble drug metronidazole belonging to BCS Class l. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Fabrication and viscoelastic characteristics of waste tire rubber based magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Ubaidillah; Choi, H. J.; Mazlan, S. A.; Imaduddin, F.; Harjana

    2016-11-01

    In this study, waste tire rubber (WTR) was successfully converted into magnetorheological (MR) elastomer via high-pressure and high-temperature reclamation. The physical and rheological properties of WTR based MR elastomers were assessed for performance. The revulcanization process was at the absence of magnetic fields. Thus, the magnetizable particles were allowed to distribute randomly. To confirm the particle dispersion in the MR elastomer matrix, an observation by scanning electron microscopy was used. The magnetization saturation and other magnetic properties were obtained through vibrating sample magnetometer. Rheological properties including MR effect were examined under oscillatory loadings in the absence and presence of magnetic fields using rotational rheometer. The WTR based MR elastomer exhibited tunable intrinsic properties under presentation of magnetic fields. The storage and loss modulus, along with the loss factor, changed with increases in frequency and during magnetization. Interestingly, a Payne effect phenomenon was seen in all samples during dynamic swept strain testing. The Payne effect was significantly increased with incremental increases in the magnetic field. This phenomenon was interpreted as the process of formation-destruction-reformation undergone by the internal network chains in the MR elastomers.

  17. Micromechanics of soil responses in cyclic simple shear tests

    NASA Astrophysics Data System (ADS)

    Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George

    2017-06-01

    Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.

  18. The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model.

    PubMed

    Wang, Ying; You, Guoxing; Chen, Peipei; Li, Jianjun; Chen, Gan; Wang, Bo; Li, Penglong; Han, Dong; Zhou, Hong; Zhao, Lian

    2016-03-01

    The mechanical properties of red blood cells (RBCs) are critical to the rheological and hemodynamic behavior of blood. Although measurements of the mechanical properties of RBCs have been studied for many years, the existing methods, such as ektacytometry, micropipette aspiration, and microfluidic approaches, still have limitations. Mechanical changes to RBCs during storage play an important role in transfusions, and so need to be evaluated pre-transfusion, which demands a convenient and rapid detection method. We present a microfluidic approach that focuses on the mechanical properties of single cell under physiological shear flow and does not require any high-end equipment, like a high-speed camera. Using this method, the images of stretched RBCs under physical shear can be obtained. The subsequent analysis, combined with mathematic models, gives the deformability distribution, the morphology distribution, the normalized curvature, and the Young's modulus (E) of the stored RBCs. The deformability index and the morphology distribution show that the deformability of RBCs decreases significantly with storage time. The normalized curvature, which is defined as the curvature of the cell tail during stretching in flow, suggests that the surface charge of the stored RBCs decreases significantly. According to the mathematic model, which derives from the relation between shear stress and the adherent cells' extension ratio, the Young's moduli of the stored RBCs are also calculated and show significant increase with storage. Therefore, the present method is capable of representing the mechanical properties and can distinguish the mechanical changes of the RBCs during storage. The advantages of this method are the small sample needed, high-throughput, and easy-use, which make it promising for the quality monitoring of RBCs.

  19. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE PAGES

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  20. Viscoelastic characterization of thin-film polymers exposed to low Earth orbit

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Farrow, Allan; Strganac, Thomas

    1993-01-01

    The materials made available through the Long Duration Exposure Facility (LDEF) satellite provide a set of specimens that can be well characterized and have a known exposure history with reference to atomic oxygen and ultraviolet radiation exposure. Mechanical characteristics measured from control samples and exposed samples provide a data base for predicting the behavior of polymers in low earth orbit. Samples of 1.0 mil thick low density polyethylene were exposed to the low earth orbit environment for a period of six years. These materials were not directly exposed to ram atomic oxygen and offer a unique opportunity for measuring the effect of atomic oxygen and UV radiation on mechanical properties with little concern to the effect of erosion. The viscoelastic characteristics of these materials were measured and compared to the viscoelastic characteristics of control samples. To aid in differentiating the effects of changes in crystallinity resulting from thermal cycling, from the effects of changes in chemical structure resulting from atomic oxygen/UV attack to the polymer, a second set of control specimens, annealed to increase crystallinity, were measured as well. The resulting characterization of these materials will offer insight into the impact of atomic oxygen/UV on the mechanical properties of polymeric materials. The viscoelastic properties measured for the control, annealed, and exposed specimens were the storage and loss modulus as a function of frequency and temperature. From these datum is calculated the viscoelastic master curve derived using the principle of time/temperature superposition. Using the master curve, the relaxation modulus is calculated using the method of Ninomiya and Ferry. The viscoelastic master curve and the stress relaxation modulus provide a direct measure of the changes in the chemical or morphological structure. In addition, the effect of these changes on long-term and short-term mechanical properties is known directly. It should be noted that the dependence on directionality for the polymer films was considered since these films were manufactured by a blown-film process.

  1. The Effect of Microstructure and Pre-strain on the Change in Apparent Young's Modulus of a Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Kupke, A.; Hodgson, P. D.; Weiss, M.

    2017-07-01

    The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.

  2. Frequency-dependent complex modulus of the uterus: preliminary results

    NASA Astrophysics Data System (ADS)

    Kiss, Miklos Z.; Hobson, Maritza A.; Varghese, Tomy; Harter, Josephine; Kliewer, Mark A.; Hartenbach, Ellen M.; Zagzebski, James A.

    2006-08-01

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa.

  3. Use of inorganic Fullerene-like WS2 to produce new high-performance polyphenylene sulfide nanocomposites: role of the nanoparticle concentration.

    PubMed

    Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Gómez-Herrero, Julio; Jiménez, Ignacio

    2009-07-30

    The use of tungsten disulfide (WS2) nanoparticles offers the opportunity to produce novel and advanced polymer-based nanocomposite materials via melt blending. The developed materials, based on the high-performance engineering thermoplastic polyphenylene sulfide (PPS), display a unique nanostructure on variation of the nanoparticle concentration, as confirmed by time-resolved synchrotron X-ray diffraction. The cold-crystallization kinetics and morphology of PPS chains under confined conditions in the nanocomposite, as determined by differential scanning calorimetry (DSC) and atomic force microscopy (AFM), also manifest a dependence on the IF-WS2 concentration which are unexpected for polymer nanocomposites. The addition of IF-WS2 with concentrations greater than or equal to 0.5 wt % of IF-WS2 remarkably improves the mechanical performance of PPS with an increase in the storage modulus of 40-75%.

  4. Rheology and mechanics of polyether(ether)ketone - Polyetherimide blends for composites in aeronautics

    NASA Astrophysics Data System (ADS)

    Rosa, Mattia; Grassia, Luigi; D'Amore, Alberto; Carotenuto, Claudia; Minale, Mario

    2016-05-01

    In the present work rheological and mechanical properties of PEEK-PEI blends were investigated. Besides the pure components, blends with PEI concentration ranging from 10% to 90% in mass were considered. Oscillatory experiments in controlled atmosphere were conducted at different frequencies and temperatures. The frequency responses at different temperatures allowed using the TTS principle to reconstruct the master curves. All systems showed a shear thinning behavior and a flux index increasing with the percentage of PEI. The zero-shear viscosity was computed with the implementation of the Cross model and showed a decreasing behavior with the percentage of PEI. The relaxation time estimated from the crossover value of storage and loss moduli didn't change significantly with blend composition, suggesting the non-sensibility of the elasticity of the system. Lastly, tensile tests were executed to investigate the dependence of Young modulus in the different blends.

  5. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    NASA Astrophysics Data System (ADS)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  6. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.

    PubMed

    Forgacs, Gabor; Newman, Stuart A; Hinner, Bernhard; Maier, Christian W; Sackmann, Erich

    2003-02-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.

  7. Studies on thermo-mechanical properties of chemically treated jute-polyester composite

    NASA Astrophysics Data System (ADS)

    Chaudhari, Vikas; Chandekar, Harichandra; Saboo, Jayesh; Mascarenhas, Adlete

    2018-03-01

    The effect of chemical treatments on jute-polyester composites is studied in this paper. The jute fabrics are chemically treated with NaOH and benzoyl chloride and its tensile and visco-elastic properties are compared with untreated jute composite. The NaOH treated jute-polyester composite show superior tensile strength and modulus compared to other jute-polyester composites. The glass transition temperature obtained from DMA shift to higher temperature for composites in comparison to polyester resin, this is due to restriction of mobility in chains due to introduction of jute reinforcement. The DMA results also show favourable results towards NaOH treatment i.e. higher storage modulus and lower tan δ values relative to untreated jute-polyester composite. The benzoyl treated jute-polyester composite however do not show promising results which may be attributed to the fact that the adhesion properties associated with similar ester functional groups in the benzoyl treated jute fabric and polyester resin were not obtained.

  8. Preparation process and properties of exfoliated graphite nanoplatelets filled Bisphthalonitrile nanocomposites

    NASA Astrophysics Data System (ADS)

    Lei, Yajie; Hu, Guo-Hua; Zhao, Rui; Guo, Heng; Zhao, Xin; Liu, Xiaobo

    2012-11-01

    Exfoliated graphite nanoplatelets (xGnP) filled 4,4'-Bis (3,4-dicyanophenoxy) biphenyl (BPh) nanocomposites were prepared by a resin transfer molding process. The rheological behavior of the BPh pre-polymer, and the morphology and electrical, mechanical and thermal properties of the xGnP/BPh nanocomposites were systematically investigated. The results showed that the xGnP/BPh pre-polymer possessed a higher complex viscosity and storage modulus than the pure BPh and that the xGnP could significantly enhance the mechanical and electrical properties of the resulted nanocomposites. The electrical percolation threshold of the xGnP/BPh nanocomposites was between 5 and 10 wt% xGnP. The flexural strength and modulus of the xGnP/BPh nanocomposites with 10 wt% xGnP exhibited maximum values and their thermal stabilities were greatly improved. Those novel xGnP/BPh nanocomposites could have advanced applications in areas like aerospace and military industry.

  9. Mechanical relaxation in a Zr-based bulk metallic glass: Analysis based on physical models

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Pelletier, J. M.

    2012-08-01

    The mechanical relaxation behavior in a Zr55Cu30Ni5Al10 bulk metallic glass is investigated by dynamic mechanical analysis in both temperature and frequency domains. Master curves can be obtained for the storage modulus G' and for the loss modulus G'', confirming the validity of the time-temperature superposition principle. Different models are discussed to describe the main (α) relaxation, e.g., Debye model, Havriliak-Negami (HN) model, Kohlrausch-Williams-Watt (KWW) model, and quasi-point defects (QPDs) model. The main relaxation in bulk metallic glass cannot be described using a single relaxation time. The HN model, the KWW model, and the QPD theory can be used to fit the data of mechanical spectroscopy experiments. However, unlike the HN model and the KWW model, some physical parameters are introduced in QPD model, i.e., atomic mobility and correlation factor, giving, therefore, a new physical approach to understand the mechanical relaxation in bulk metallic glasses.

  10. Abnormal elastic modulus behavior in a crystalline-amorphous core-shell nanowire system.

    PubMed

    Lee, Jeong Hwan; Choi, Su Ji; Kwon, Ji Hwan; Van Lam, Do; Lee, Seung Mo; Kim, An Soon; Baik, Hion Suck; Ahn, Sang Jung; Hong, Seong Gu; Yun, Yong Ju; Kim, Young Heon

    2018-06-13

    We investigated the elastic modulus behavior of crystalline InAs/amorphous Al2O3 core-shell heterostructured nanowires with shell thicknesses varying between 10 and 90 nm by conducting in situ tensile tests inside a transmission electron microscope (TEM). Counterintuitively, the elastic modulus behaviors of InAs/Al2O3 core-shell nanowires differ greatly from those of bulk-scale composite materials, free from size effects. According to our results, the elastic modulus of InAs/Al2O3 core-shell nanowires increases, peaking at a shell thickness of 40 nm, and then decreases in the range of 50-90 nm. This abnormal behavior is attributed to the continuous decrease in the elastic modulus of the Al2O3 shell as the thickness increases, which is caused by changes in the atomic/electronic structure during the atomic layer deposition process and the relaxation of residual stress/strain in the shell transferred from the interfacial mismatch between the core and shell materials. A novel method for estimating the elastic modulus of the shell in a heterostructured core-shell system was suggested by considering these two effects, and the predictions from the suggested method coincided well with the experimental results. We also found that the former and latter effects account for 89% and 11% of the change in the elastic modulus of the shell. This study provides new insight by showing that the size dependency, which is caused by the inhomogeneity of the atomic/electronic structure and the residual stress/strain, must be considered to evaluate the mechanical properties of heterostructured nanowires.

  11. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping.

    PubMed

    Natale, L C; Rodrigues, M C; Xavier, T A; Simões, A; de Souza, D N; Braga, R R

    2015-01-01

    To compare the ion release and mechanical properties of a calcium hydroxide (Dycal) and two calcium silicate (MTA Angelus and Biodentine) cements. Calcium and hydroxyl ion release in water from 24-h set cements were calculated from titration with HCl (n = 3). Calcium release after 7, 14, 21 and 28 days at pH 5.5 and 7.0 was measured using ICP-OES (n = 6). Flexural strength (FS) and modulus (E) were tested after 48-h storage, and compressive strength (CS) was tested after 48 h and 7 days (n = 10). Ion release and mechanical data were subjected to anova/Tukey and Kruskal-Wallis/Mann-Whitney tests, respectively (α = 0.05). Titration curves revealed that Dycal released significantly fewer ions in solution than calcium silicates (P < 0.001). Calcium release remained constant at pH 7.0, whilst at pH 5.5, it dropped significantly by 24% after 21 days (P < 0.05). At pH 5.5, MTA Angelus released significantly more calcium than Dycal (P < 0.01), whilst Biodentine had superior ion release than Dycal at pH 7.0 (P < 0.01). Biodentine had superior flexural strength, flexural modulus and compressive strength than the other cements, whilst MTA Angelus had higher modulus than Dycal (P < 0.001). Immediate calcium and hydroxyl ion release in solution was significantly lower for Dycal. In general, all materials released constant calcium levels over 28 days, but release from Dycal was significantly lower than Biodentine and MTA Angelus depending on pH conditions. Biodentine had substantially higher strength and modulus than MTA Angelus and Dycal, both of which demonstrated low stress-bearing capabilities. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes

    PubMed Central

    2016-01-01

    PURPOSE This study inspects the effect of incorporating halloysite nanotubes (HNTs) into polymethyl methacrylate (PMMA) resin on its flexural strength, hardness, and Young's modulus. MATERIALS AND METHODS Four groups of acrylic resin powder were prepared. One group without HNTs was used as a control group and the other three groups contained 0.3, 0.6 and 0.9 wt% HNTs. For each one, flexural strength, Young's modulus and hardness values were measured. One-way ANOVA and Tukey's test were used for comparison (P<.05). RESULTS At lower concentration (0.3 wt%) of HNT, there was a significant increase of hardness values but no significant increase in both flexural strength and Young's modulus values of PMMA resin. In contrast, at higher concentration (0.6 and 0.9 wt%), there was a significant decrease in hardness values but no significant decrease in flexural strength and Young's modulus values compared to those of the control group. CONCLUSION Addition of lower concentration of halloysite nanotubes to denture base materials could improve some of their mechanical properties. Improving the mechanical properties of acrylic resin base material could increase the patient satisfaction. PMID:27350849

  13. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.

    PubMed

    Poyraz, Bayram; Tozluoğlu, Ayhan; Candan, Zeki; Demir, Ahmet; Yavuz, Mustafa

    2017-11-01

    This study reports on the effects of organic polyvinyl alcohol (PVA) and inorganic silica polymer on properties of Celluclast-treated nanofibrillated cellulose composites. Nanofibrillated cellulose was isolated from Eucalyptus camaldulensis and prior to high-pressure homogenizing was pretreated with Celluclast enzyme in order to lower energy consumption. Three nanocomposite films were fabricated via the casting process: nanofibrillated cellulose (CNF), nanocellulose-PVA (CNF-P) and nanocellulose-silica (CNF-Si). Chemical characterization, crystallization and thermal stability were determined using FT-IR and TGA. Morphological alterations were monitored with SEM. The Young's and storage moduli of the nanocomposites were determined via a universal testing machine and DTMA. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. The crystallinity values of the nanocomposites calculated from the FT-IR were in agreement with the TGA results, showing that the lowest crystallinity value was in the CNF-Si. The CNF-P displayed the highest tensile strength. At a high temperature interval, the storage modulus of the CNF-Si was greater than that of the CNF or CNF-P. The CNF-Si also exhibited a completed singular relaxation process, while the CNF and the CNF-P processes were uncompleted. Consequently, in terms of industrial applications, although the CNF-P composite had mechanical advantages, the CNF-Si composite displayed the best thermo-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mineral trioxide aggregate enriched with iron disulfide nanostructures: an evaluation of their physical and biological properties.

    PubMed

    Argueta-Figueroa, Liliana; Delgado-García, José J; García-Contreras, René; Martínez-Alvarez, Omar; Santos-Cruz, José; Oliva-Martínez, Carlos; Acosta-Torres, Laura S; de la Fuente-Hernández, Javier; Arenas-Arrocena, Ma C

    2018-06-01

    The purpose of this study was to characterize mineral trioxide aggregates (MTA) enriched with iron disulfide (FeS 2 ) nanostructures at different concentrations, and to investigate their storage modulus, radiopacity, setting time, pH, cytotoxicity, and antimicrobial activity. Iron disulfide nanostructures [with particle size of 0.357 ± 0.156 μm (mean ± SD)] at weight ratios of 0.2, 0.4, 0.6, 0.8, and 1.0 wt% were added to white MTA (wMTA). The radiopacity, rheological properties, setting time, and pH, as well as the cytotoxicity (assessed using the MTT assay) and antibacterial activity (assessed using the broth microdilution test) were determined for MTA/FeS 2 nanostructures. The nanostructures did not modify the radiopacity values of wMTA (~6 mm of aluminium); however, they reduced the setting time from 18.2 ± 3.20 min to 13.7 ± 1.8 min, and the storage modulus was indicative of a good stiffness. Whereas the wMTA/FeS 2 nanostructures did not induce cytotoxicity when in contact with human pulp cells (HPCs) and human gingival fibroblasts (HGFs), they showed bacteriostatic activity against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis. Adding FeS 2 nanostructures to MTA might be an option for improving the root canal sealing and antibacterial effects of wMTA in endodontic treatments. © 2018 Eur J Oral Sci.

  15. Alteration of dentin-enamel mechanical properties due to dental whitening treatments.

    PubMed

    Zimmerman, B; Datko, L; Cupelli, M; Alapati, S; Dean, D; Kennedy, M

    2010-05-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0 GPa versus 113.4 GPa), while smaller increases were observed in the dentin (17.9 GPa versus 27.9 GPa). Likewise, there was an increase in the hardness of enamel (2.0 GPa versus 4.3 GPa) and dentin (0.5 GPa versus 0.7 GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in the literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips, Opalescence or UltraEtch caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips showed a reduction in the elastic modulus of enamel (55.3 GPa to 32.7 GPa) and increase in the elastic modulus of dentin (17.2 GPa to 24.3 GPa). Opalescence treatments did not significantly affect the enamel properties, but did result in a decrease in the modulus of dentin (18.5 GPa to 15.1 GPa). Additionally, as expected, UltraEtch treatment decreased the modulus and hardness of enamel (48.7 GPa to 38.0 GPa and 1.9 GPa to 1.5 GPa, respectively) and dentin (21.4 GPa to 15.0 GPa and 1.9 GPa to 1.5 GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. Published by Elsevier Ltd.

  16. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.

    PubMed

    Qin, Qingquan; Xu, Feng; Cao, Yongqing; Ro, Paul I; Zhu, Yong

    2012-08-20

    The effect of clamping on resonance frequency and thus measured Young's modulus of nanowires (NWs) is systematically investigated via a combined experimental and simulation approach. ZnO NWs are used in this work as an example. The resonance tests are performed in situ inside a scanning electron microscope and the NWs are cantilevered on a tungsten probe by electron-beam-induced deposition (EBID) of hydrocarbon. EBID is repeated several times to deposit more hydrocarbons at the same location. The resonance frequency increases with the increasing clamp size until approaching that under the "fixed" boundary condition. The critical clamp size is identified as a function of NW diameter and NW Young's modulus. This work: 1) exemplifies the importance of considering the effect of clamping in measurements of Young's modulus using the resonance method, and 2) demonstrates that the true Young's modulus can be measured if the critical clamp size is reached. Design guidelines on the critical clamp size are provided. Such design guidelines can be extended to other one-dimensional nanostructures such as carbon nanotubes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pressure-volume relations and bulk modulus under pressure of tetrahedral compounds

    NASA Astrophysics Data System (ADS)

    Soma, T.; Takahashi, Y.; Kagaya, H.-M.

    1985-03-01

    The pressure-volume relation and the compression effect on the bulk modulus of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe are investigated from the electronic theory of solids by using a recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The calculated results of the pressure-volume relations involving the pressure-induced phase transition are useful when comparing with the experimental data under high pressure. The calculated bulk modulus of these compounds increases as the crystal volume decreases. Further, the pressure derivative of bulk modulus is not constant and decreases with the reduction of the crystal volume.

  18. Comparative study of the synbiotic effect of inulin and fructooligosaccharide with probiotics with regard to the various properties of fermented soy milk.

    PubMed

    Mishra, Shalini; Mishra, H N

    2018-01-01

    Numerous combinations of probiotics were explored to find the suitable starter culture for the development of synbiotic soy yoghurt which can give good product characteristics and may be acceptable among consumers. Prebiotics (fructooligosaccharide (FOS) and inulin) were supplemented in an attempt to reduce the after-taste of soymilk, improve acidification profile and growth of probiotics. The addition of prebiotics in soy milk significantly enhanced the acidification rate (10.82 to 23.00 × 10 -3 pH units/min) and condensed the fermentation completion time. FOS-supplemented fermented soy milk showed better acidification and post-acidification profile as compared to inulin supplemented samples. The Streptococcus salivarius subsp. thermophilus (ST) - Lactobacillus acidophilus (LA) with FOS gave the better textural properties with firmer gel (350.10), lower adhesiveness (-93.10) and springiness (0.92), higher gumminess (164.50) and average cohesiveness (0.47). FOS-supplemented ST-LA-fermented samples showed good gel characteristics with higher elastic modulus (1672.39 Pa), viscous modulus (416.41 Pa), complex modulus (1723.53 Pa), lower tan δ (14) and higher overall acceptability scores (7.40) on a 9-point hedonic scale. Developed synbiotic soy fermented milk showed more than the 9 log cfu/ml count throughout storage which is required for probiotic functional food.

  19. Dynamic mechanical properties of straight titanium alloy arch wires.

    PubMed

    Kusy, R P; Wilson, T W

    1990-10-01

    Eight straight-wire materials were studied: an orthodontic titanium-molybdenum (Ti-Mo) product, TMA; three orthodontic nickel-titanium (Ni-Ti) products, Nitinol, Titanal, and Orthonol; three prototype alloys, a martensitic, an austenitic, and a biphasic alloy; and a hybrid shape-memory-effect product, Biometal. Each wire was prepared with a length-to-cross-sectional area of at least 3600 cm-1. With an Autovibron Model DDV-II-C used in the tensile mode, each sample was scanned from -120 to +200 degrees C at 2 degrees C/min. From the data base, plots of the log storage modulus, log tan delta, and percent change in length vs. temperature were generated. Results showed that the dynamic mechanical properties of the alloys within this TI system are quite different. The Ti-Mo alloy, TMA, was invariant with temperature, having a modulus of 7.30 x 10(11) dyne/cm2 (10.6 x 10(6) psi). The three cold-worked alloys--Nitinol, Titanal, and Orthonol--appeared to be similar, having a modulus of 5.74 x 10(11) dyne/cm2 (8.32 x 10(6) psi). The biphasic shape-memory alloy displayed a phase transformation near ambient temperature; whereas the hybrid shape-memory product, Biometal, underwent a 3-5% change in length during its transformation between 95 and 125 degrees C. Among the Ni-Ti wires tested, several different types of alloys were represented by this intermetallic material.

  20. Highly stretchable HA/SA hydrogels for tissue engineering.

    PubMed

    Zhu, Chengcheng; Yang, Rui; Hua, Xiaobin; Chen, Hong; Xu, Jumei; Wu, Rile; Cen, Lian

    2018-04-01

    A highly stretchable hyaluronic acid (HA)/sodium alginate (SA) hydrogel was developed in this study based on an interpenetrating polymer network. HA/SA hydrogels were prepared by mixing two polysaccharides followed by covalent crosslinking via epoxy groups on HA molecules and ionic crosslinking via divalent ions on SA chains sequentially. The effect of HA/SA ratio on the pore size and distribution, swelling ratio, elongation and rheological properties as well as protein loading and release properties of HA/SA hydrogels was explored. Moreover, a surface modification method, layer-by-layer (LBL) assembly technique, was applied to modify the hydrogel to evaluate the hydrogel's tenability in varying biological performance. It was then shown that the hydrogels had the pore sizes ranging from 100 to 50 μm. With the increase in SA content of the resulting hydrogels, the pore size, swelling ratio, and storage modulus (G') and loss modulus (G″) of the hydrogel all decreased, whereas the in vitro bulk weight loss was fastened. Moreover, elongation at break (EB) value increased first, reached a peak value and then decreased, that is HA8/SA1 (HA:SA = 8:1) had the highest EB value of 417%. This hydrogel could retain 33.2% of the pre-loaded protein even after 72 h, which could be further attenuated when LBL was used to shell the hydrogel. The growth of fibroblasts on HA8/SA1 hydrogel gave preliminary assessment on its suitability as a cellular carrier, while the LBL modified HA8/SA1 hydrogel also favored the anchoring of keratinocytes, further enhancing its cell carrier role for tissue regeneration, especially skin engineering.

  1. First principles investigation of structural, mechanical, dynamical and thermodynamic properties of AgMg under pressure

    NASA Astrophysics Data System (ADS)

    Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong

    2017-12-01

    The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.

  2. Methacrylamide grafted elastomer composites reinforced with biobased particles

    USDA-ARS?s Scientific Manuscript database

    Modulus of rubber can be improved with grafting of unsaturated monomers. To increase the modulus of bio-based rubber composites, methacrylamide was grafted onto natural rubber composites reinforced with bio-based hydrophilic particles. Rubber particles in water were modified with methacrylamide usin...

  3. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement.

    PubMed

    Wang, Xiaotong; Wei, Changzheng; Cao, Bin; Jiang, Lixia; Hou, Yongtai; Chang, Jiang

    2018-05-30

    A major challenge in three-dimensional (3D) printing of hydrogels is the fabrication of stable constructs with high precision and good mechanical properties and biocompatibility. Existing methods typically feature complicated reinforcement steps or use potentially toxic components, such as photocuring polymers and crosslinking reagents. In this study, we used a thermally sensitive hydrogel, hydroxybutyl chitosan (HBC), for 3D-printing applications. For the first time, we demonstrated that this modified polysaccharide is affected by the specific ion effect. As the salt concentration was increased and stronger kosmotropic anions were used, the lower critical solution temperature of the HBC decreased and the storage modulus was improved, indicating a more hydrophobic structure and stronger molecular chain interactions. On the basis of the thermosensitivity and the ion effects of HBC, a 25-layered hydrogel scaffold with strong mechanical properties and an elaborate structure was prepared via a 3D-printing method and one-step ionic post-treatment. In particular, the scaffold treated with 10% NaCl solution exhibited a tunable elastic modulus of 73.2 kPa to 40 MPa and excellent elastic recovery, as well as biodegradability and cytocompatibility, suggesting the potential for its applications to cartilage tissue repair. By simply controlling the temperature and salt concentrations, this novel approach provides a convenient and green route to improving the structural accuracy and regulating the properties of 3D-printed hydrogel constructs.

  4. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  5. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    PubMed

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  6. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    PubMed Central

    Claver, Irakoze Pierre; Zhang, Haihua; Li, Qin; Zhu, Kexue; Zhou, Huiming

    2010-01-01

    Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP) and the water solubility index (WSI) of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA) showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU) than raw sorghum starch (454 BU/RVU). For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC) revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp) at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′) and loss modulus (G″) of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods. PMID:21152287

  7. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes.

    PubMed

    Liu, Zhenbin; Zhang, Min; Bhandari, Bhesh

    2018-06-10

    This paper studied the rheological, microstructural and 3D printing characteristics of mashed potatoes (MP) with gums of xanthan (XG), guar (GG), k-carrageenan (KG) and k-carrageenan- xanthan gum blend (KG-XG). Addition of gums increased the viscosity, storage modulus (G'), and loss modulus (G″) of MP except XG. Creep results indicated that self-supporting performance followed decreasing order of KG > KG-XG > GG > contorl > XG. Fourier Transform infrared spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR) results well explained the behavior by enhancing hydrogen bonding and constraining water molecules' mobility. KG-MP samples possessed good self-supporting performance but with rough surface and lots of defective points. The parts printed using XG-MP were "fatter" than target objects but with a smooth surface structure. This probably because the excellent extrudability (more fluid-like behavior, tanδ 0.185) but with poor self-supporting ability indicated by lower G' and greater creep strain 0.88%. The printed objects using KG-XG-MP possessed a smooth surface structure (visual appearance), and good printing precision indicated by the lowest dimensional printing deviation for a printed cuboid shape (2.19%, 2.20%, 2% for length, width, height direction, respectively). This was probably because the creaminess effect provided by XG render the printed objects a smooth surface structure, while KG provided MP with sufficient mechanical strength (proper G' and load bearing capacity) to be capable of self-supporting. Copyright © 2017. Published by Elsevier B.V.

  8. Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration

    PubMed Central

    Pajovich, Harrison T.; Banerjee, Ipsita A.

    2017-01-01

    Fucoidan (Fuc), a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel) were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc–Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN) derived from the E-F hand domain, known for its calcium binding properties. To mimic the components of the extracellular matrix of bone tissue, the Fuc–Gel–MTN assemblies were incubated in simulated body fluid (SBF) to induce biomineralization, resulting in the formation of β-tricalcium phosphate, and hydroxyapatite (HAp). The formed Fuc–Gel–MTN–beta–TCP/HAP scaffolds were found to display an average Young’s Modulus value of 0.32 GPa (n = 5) with an average surface roughness of 91 nm. Rheological studies show that the biomineralized scaffold exhibited higher storage and loss modulus compared to the composites formed before biomineralization. Thermal phase changes were studied through DSC and TGA analysis. XRD and EDS analyses indicated a biphasic mixture of β-tricalcium phosphate and hydroxyapatite and the composition of the scaffold. The scaffold promoted cell proliferation, differentiation and displayed actin stress fibers indicating the formation of cell-scaffold matrices in the presence of MT3C3-E1 mouse preosteoblasts. Osteogenesis and mineralization were found to increase with Fuc–Gel–MTN–beta–TCP/HAP scaffolds. Thus, we have developed a novel scaffold for possible applications in bone tissue engineering. PMID:29036882

  9. Rheological properties of ice cream mixes and frozen ice creams containing fat and fat replacers.

    PubMed

    Adapa, S; Dingeldein, H; Schmidt, K A; Herald, T J

    2000-10-01

    Ice cream mixes and frozen ice creams at milk fat levels of 12%, 8%, 6%, 6% plus a protein-based fat replacer, and 6% plus a carbohydrate-based fat replacer were evaluated for viscoelastic properties by dynamic testing with sinusoidal oscillatory tests at various frequencies. The storage modulus (G'), loss modulus (G"), and tan delta (G"/G') were calculated for all the treatments to determine changes in the viscous and elastic properties of the mixes and frozen ice creams due to fat content. In ice cream mixes, G' and G" exhibited a strong frequency dependence. The G" was higher than G' throughout the frequency range (1 to 8 Hz) examined, without any crossover, except for the 12% mix. Elastic properties of the ice cream mixes decreased as fat content decreased. Tan delta values indicated that fat replacers did not enhance the elastic properties of the ice cream mixes. In all frozen ice creams, G' and G" again showed a frequency dependence throughout the range tested (0.5 to 10 Hz). The amount of fat in ice creams and the degree of fat destabilization affected the elasticity in the frozen product. Even though the ice creams did not have significant elastic properties, when compared as a group the samples with higher fat content had higher elastic properties. The addition of protein-based and carbohydrate-based fat replacers did not enhance the elastic properties of the ice creams but did increase the viscous properties.

  10. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    PubMed Central

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  11. On-chip and freestanding elastic carbon films for micro-supercapacitors

    DOE PAGES

    Huang, Peihua; Lethien, C.; Pinaud, S.; ...

    2016-02-11

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility ofmore » further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.« less

  12. On-chip and freestanding elastic carbon films for micro-supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peihua; Lethien, C.; Pinaud, S.

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility ofmore » further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.« less

  13. Obtention and characterization of dried gels prepared with whey proteins, honey and hydrocolloids mixture.

    PubMed

    Rodriguez, Ana C; Torrez Irigoyen, Martín R; Navarro, Alba S; Yamul, Diego K

    2017-11-01

    Large amounts of honey and liquid whey derived from the dairy industry are produced in Argentina. Honey is exported in bulk and whey is transformed into whey protein concentrates and isolates. The objective of this work was to investigate the effect of pH, composition and storage time on the properties of dried gels with honey, whey proteins and hydrocolloids. Color properties varied according to pH and composition. The fracture stress of dried gels prepared with corn starch was higher than that of gels prepared with guar gum in all conditions assayed. Young's modulus was higher at pH 7 for both compositions and increased with storage time. Rubbery characteristics were found in dried gels with guar gum, while both corn starch and guar gum made the microstructure rougher. Multivariate analysis showed that samples could be grouped by pH. Panelists preferred pH 7 products over acidic ones, and no significant differences in sensory properties were found using either corn starch or guar gum in the formulation. The results demonstrated that it is possible to generate a new product, which may open new applications for honey and whey in food formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Nanoscopic Dynamic Mechanical Properties of Intertubular and Peritubular Dentin

    PubMed Central

    Ryou, Heon; Romberg, Elaine; Pashley, David H.; Tay, Franklin R.; Arola, Dwayne

    2011-01-01

    An experimental evaluation of intertubular and peritubular dentin was performed using nanoindentation and Dynamic Mechanical Analysis (DMA). The objective of the investigation was to evaluate the differences in dynamic mechanical behavior of these two constituents and to assess if their response is frequency dependent. Specimens of hydrated coronal dentin were evaluated by DMA using single indents over a range in parametric conditions and using scanning probe microscopy. The complex (E*), storage (E’) and loss moduli (E”) of the intertubular and peritubular dentin were evaluated as a function of the dynamic loading frequency and static load in the fully hydrated condition. The mean complex E* (19.6 GPa) and storage E’ (19.2 GPa) moduli of the intertubular dentin were significantly lower than those quantities of peritubular dentin (E* = 31.1 GPa, p< 0.05; E’ = 30.3 GPa, p< 0.05). There was no significant influence of dynamic loading frequency on these measures. Though there was no significant difference in the loss modulus (E”) between the two materials (p> 0.05), both constituents exhibited a significant increase in E” with dynamic load frequency and reduction in the quasi-static component of indentation load. The largest difference in dynamic behavior of the two tissues was noted at small quasi-static indentation loads and the highest frequency. PMID:22340680

  15. Effects of ablation depth and repair time on the corneal elastic modulus after laser in situ keratomileusis.

    PubMed

    Wang, Xiaojun; Li, Xiaona; Chen, Weiyi; He, Rui; Gao, Zhipeng; Feng, Pengfei

    2017-01-17

    The biomechanical properties of the cornea should be taken into account in the refractive procedure in order to perform refractive surgery more accurately. The effects of the ablation depth and repair time on the elastic modulus of the rabbit cornea after laser in situ keratomileusis (LASIK) are still unclear. In this study, LASIK was performed on New Zealand rabbits with different ablation depth (only typical LASIK flaps were created; residual stroma bed was 50 or 30% of the whole cornea thickness respectively). The animals without any treatment were served as normal controls. The corneal thickness was measured by ultrasonic pachymetry before animals were humanly killed after 7 or 28 days post-operatively. The corneal elastic modulus was measured by uniaxial tensile testing. A mathematical procedure considering the actual geometrics of the cornea was created to analyze the corneal elastic modulus. There were no obvious differences among all groups in the elastic modulus on after 7 days post-operatively. However, after 28th days post-operatively, there was a significant increase in the elastic modulus with 50 and 30% residual stroma bed; only the elastic modulus of the cornea with 30% residual stroma bed was significantly higher than that of 7 days. Changes in elastic modulus after LASIK suggest that this biomechanical effect may correlate with the ablation depth and repair time.

  16. Impact of the release rate of magnesium ions in multiple emulsions (water-in-oil-in-water) containing BSA on the resulting physical properties and microstructure of soy protein gel.

    PubMed

    Zhu, Qiaomei; Zhao, Ling; Zhang, Hui; Saito, Masayoshi; Yin, Lijun

    2017-04-01

    The objective of present study was to prepare multiple water-in-oil-in-water (W/O/W) emulsions that exhibit different release rates of magnesium ions; and assess their utility as coagulants in improving tofu quality. W/O/W emulsions containing bovine serum albumin (BSA) and magnesium chloride (MgCl 2 ) were developed for controlled release applications. An increasing BSA concentration led to an increase in viscosity and droplet size of W/O/W double emulsions, as well as a decreased release rate of encapsulated Mg 2+ from emulsions. The gelation process of soy protein was simulated by conducting dynamic viscoelastic measurements. The rate constant (k) and saturated storage modulus (G' sat ) values of soy protein gel decreased as BSA concentration increased, suggesting that BSA could slow the release of magnesium ions from double emulsions. Confocal laser scanning microscopy (CLSM) results showed that increased concentration of BSA created a more homogeneous microstructure of soy protein gels with smaller pores within the gel network structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dynamics and order-disorder transitions in bidisperse diblock copolymer blends

    NASA Astrophysics Data System (ADS)

    Wang, Yueqiang; Li, Xuan; Tang, Ping; Yang, Yuliang

    2011-03-01

    We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G‧ corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, ( χN) ODT, whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in ( χN) ODT. To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in ( χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT.

  18. Finite element analysis for transverse carpal ligament tensile strain and carpal arch area.

    PubMed

    Yao, Yifei; Erdemir, Ahmet; Li, Zong-Ming

    2018-05-17

    Mechanics of carpal tunnel soft tissue, such as fat, muscle and transverse carpal ligament (TCL), around the median nerve may render the median nerve vulnerable to compression neuropathy. The purpose of this study was to understand the roles of carpal tunnel soft tissue mechanical properties and intratunnel pressure on the TCL tensile strain and carpal arch area (CAA) using finite element analysis (FEA). Manual segmentation of the thenar muscles, skin, fat, TCL, hamate bone, and trapezium bone in the transverse plane at distal carpal tunnel were obtained from B-mode ultrasound images of one cadaveric hand. Sensitivity analyses were conducted to examine the dependence of TCL tensile strain and CAA on TCL elastic modulus (0.125-10 MPa volar-dorsally; 1.375-110 MPa transversely), skin-fat and thenar muscle initial shear modulus (1.6-160 kPa for skin-fat; 0.425-42.5 kPa for muscle), and intratunnel pressure (60-480 mmHg). Predictions of TCL tensile strain under different intratunnel pressures were validated with the experimental data obtained on the same cadaveric hand. Results showed that skin, fat and muscles had little effect on the TCL tensile strain and CAA changes. However, TCL tensile strain and CAA increased with decreased elastic modulus of TCL and increased intratunnel pressure. The TCL tensile strain and CAA increased linearly with increased pressure while increased exponentially with decreased elastic modulus of TCL. Softening the TCL by decreasing the elastic modulus may be an alternative clinical approach to carpal tunnel expansion to accommodate elevated intratunnel pressure and alleviate median nerve compression neuropathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness.

    PubMed

    Lepetit, J

    2007-05-01

    This work concerns the relationship between meat tenderness and the rubber-like properties, i.e. pressure and elastic modulus, that endomysium and perimysium connective tissues develop when meat has been heated to a temperature above which collagen contracts. For rest length meats with similar intramuscular connective tissue morphology, and which are at the same ageing state and pH, the elastic modulus of the collagenous fraction of connective tissues is approximately proportional to the total number of collagen cross-links present per volume of meat. Calculations from various published experiments concerned with the effect on tenderness of muscle type, animal age, type, and sex from different species show that this modulus follows most of the variations of meat toughness. Moreover, the proportionality between the increase in this elastic modulus and the increase in meat toughness approaches unity in situations where toughness mainly depends on connective tissues. This work demonstrates the decisive role of rubber-like properties of connective tissues in meat tenderness variations.

  20. Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.

    PubMed

    Yin, Jie; Retsch, Markus; Thomas, Edwin L; Boyce, Mary C

    2012-04-03

    The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.

  1. Processing and Characterization of Graphene/Polyimide-Nickel Oxide Hybrid Nanocomposites for Advanced Energy Storage in Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Okafor, Patricia A.

    This research is focused on enhancing electrochemical properties/energy storage capabilities of graphene-polyimide composites. The composite's dense morphology/structure limits ionic penetration owing to high bulk resistances resulting in poor electrochemical performance. Modification of the composite's morphology by incorporation of facile pores during curing increases total available surface area to electrolyte species. Presence of pores increases adsorption sites for double layer formation and increases overall capacitance. In this work, aromatic polyimide precursors were reacted in the presence of nano-graphene fillers to synthesize graphene-polyimide composite films. The resulting composite was very stiff and dense with a high glass transition temperature (Tg) of 400 °C and storage modulus of 7.20 GPa. Selective decomposition of a thermally labile poly(acrylic ester) resin introduced into the composite during synthesis creates pores of varying size and shapes which increases available surface area of embedded stacked graphene sheets available for ion adsorption and double layer formation. Proper control over pore size and specific surface area of pores was required to ensure good performance in terms of both power delivery rate and energy storage capacity. Dynamic mechanical studies on modified composite showed very good mechanical property while shifts in imide peaks to lower wave numbers in Raman and Fourier transform spectroscopy (FTIR) confirms presence of chemical interaction between graphene filler and polymer matrix confirming uniform dispersion of fillers in the material. Thermogravimetric analysis (TGA) shows thermal stability for the composite systems at temperatures above 700°C. To further optimize material's energy storage capabilities, a hybrid composite was formed by depositing relatively cheap nickel oxide onto the modified porous composite system by a two-step process. A remarkable improvement in electrochemical properties up to an order of magnitude was observed. Electrochemical performance of the hybrid system showed strong dependence on deposition current density, deposition time and substrate pore morphology. Increased NiO particle size (aggregates) was observed with increased deposition time and current density which had a significant impact on charge transfer resistance and specific capacitance. Several correlations were made between composite's morphology and obtained properties. The material's morphology showed direct correlation with double layer capacitance, charge capacity, bulk resistance and sheet conductivity measured using cyclic voltammetry (CV), cyclic charge discharge (CCD), electrochemical impedance spectroscopy (EIS) and four probe measurements respectively. It was observed that smaller well distributed pores showed enhanced properties compared to larger pores. Material's overall performance shows a linear dependence on porosity. The overall electrochemical and electrical behavior of the system is directly linked to the composite's morphology and structure as will be demonstrated in this thesis work.

  2. Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.

    2017-03-01

    The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.

  3. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    PubMed

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Micromechanical analysis on anisotropy of structured magneto-rheological elastomer

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.

    2015-07-01

    This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.

  5. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.

    PubMed

    Horkay, F; Tasaki, I; Basser, P J

    2000-01-01

    The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent cations vary continuously and smoothly in the gel despite the abrupt change in the gel volume. The individual elastic, mixing, and ionic contributions to the free energy of the gel were separately determined as a function of the degree of network swelling to elucidate the thermodynamics of swelling. Shear modulus measurements performed at different Ca2+ concentrations suggest that Ca2+ does not form stable cross-links between the polymer chains. At low and moderate swelling ratios the concentration dependence of the shear modulus follows a power law behavior, G variation of phi n, with n = 0.34 +/- 0.03. At high swelling degrees, however, the shear modulus increases with increasing swelling. The value of the Flory-Huggins interaction parameter, chi, determined from osmotic swelling pressure and shear modulus measurements, strongly depends on the ionic composition of the equilibrium solution and increases with increasing Ca2+ concentration.

  6. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites

    NASA Astrophysics Data System (ADS)

    Youness, Rasha A.; Taha, Mohammed A.; Ibrahim, Medhat A.

    2017-12-01

    Titanium-containing carbonated hydroxyapatite (Ti-CHA) nanocomposite powders, with different CHA contents, have been prepared using high-energy ball milling method. The effect of sintering temperatures, 900, 1100 and 1300 °C on molecular structure and microstructure of these samples were examined by XRD; Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Furthermore, their mechanical properties including hardness, longitudinal modulus, Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by ultrasonic non-destructive technique. Moreover, bioactivity of sintered samples at different firing temperatures was assessed by immersing them in simulated body fluid at 37 ± 0.5 °C for 7 days and then, analyzed by FTIR spectroscopy. The results pointed out that increasing sintering temperature up to 1100 °C caused significant increases in densities and mechanical properties of these nanocomposite samples. However, further increase of firing temperature to 1300 °C was responsible for complete CHA decomposition and the resultant α-tricalcium (α-TCP) phase greatly affected these properties. On the contrary, better bioactivity was observed for sintered samples at 900 °C only. However, increase of sintering temperature of these samples up to 1300 °C led to severe decrease in their bioactivity due to the formation of highly soluble α-TCP phase.

  7. The study of stiffness modulus values for AC-WC pavement

    NASA Astrophysics Data System (ADS)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  8. Effect of pH on the rheological properties of borate crosslinked hydroxypropyl guar gum hydrogel and hydroxypropyl guar gum.

    PubMed

    Wang, Shibin; Tang, Hongbiao; Guo, Jianchun; Wang, Kunjie

    2016-08-20

    pH is an important factor affecting the performance of polymer fluid. The rheological properties of hydroxypropyl guar gum (HPG) base fluid and the structural strength, rheological properties, viscoelastic properties and thixotropy properties of HPG gel depend largely on the pH values. For the base fluid, an apparent viscosity-increasing effect was observed over the pH range from 7 to 11, and the apparent viscosity gradually decreased at pH 11.5-14, exhibiting electrostatic repulsion behavior and steric effects. For the HPG gel, at pH 7-12.5, the gel possessed higher apparent viscosity, higher elastic modulus (G'), lower tanδ (the ratio of the viscous modulus to the elastic modulus) and an "8"-shaped hysteresis loop, indicating stronger gel structure strength and the elastic dominant property. At pH 13-13.5, the gel samples exhibited the transition from a pseudoplastic fluid to a Newtonian fluid, and their viscosity, elastic modulus decreased but tanδ increased with the increase in pH values, exhibiting gradually weakened elastic properties. When the pH was 14, the gel mainly exhibited viscous characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of fiber fractions of prickly pear cactus (nopal) on quality and sensory properties of wheat bread rolls.

    PubMed

    Guevara-Arauza, Juan Carlos; Bárcenas, Diego Guadalupe; Ortega-Rivas, Enrique; Martínez, Jaime David Pérez; Hernández, Jaime Reyes; de Jesús Ornelas-Paz, José

    2015-05-01

    In this study the addition of total fiber (TF), insoluble fiber (IF), and soluble fiber (SF) from nopal to wheat flour used to make bread rolls was assessed. The rheological properties of dough as well as quality, texture, sensorial and physical characteristics of the crumb rolls produced were evaluated. The storage (23.50 MPa) and loss modulus (11.95 MPa) for SF-dough were the lowest indicating that a less visco-elastic behavior was obtained. Polarized light microscopy showed that a more homogeneous size and a better distribution of starch granules were developed into SF-dough. Crumb hardness (3.25-4.78 N) and chewiness (0.31-0.81 N) of SF-rolls were lower than the control experiment (3.99-5.81 N and 0.35-1.01 N respectively). Springiness for all treatments was constant (1.0) compared with the control (1.02-0.87) for 2 days of storage. The lowest cohesiveness values (0.24-014) were computed by IF treatment for a similar storage time. The specific crumb volume increased by 12.46, 9.03 and 1.10 % by the addition of SF, TF and IF respectively. The lowest rate of staling was shown by SF-rolls (0.199) and it was followed by TF (0.296), IF (0.381) and control (0.458) treatments. As a result, the highest scores on quality (9.3 out of 10) and sensorial attributes (from 8.9 up to 9.7) were assigned to SF-rolls.

  10. Relationship between mechanical properties of one-step self-etch adhesives and water sorption.

    PubMed

    Hosaka, Keiichi; Nakajima, Masatoshi; Takahashi, Masahiro; Itoh, Shima; Ikeda, Masaomi; Tagami, Junji; Pashley, David H

    2010-04-01

    The purpose of this study was to evaluate the relationship between changes in the modulus of elasticity and ultimate tensile strength of one-step self-etch adhesives, and their degree of water sorption. Five one-step self-etch adhesives, Xeno IV (Dentsply Caulk), G Bond (GC Corp.), Clearfil S3 Bond (Kuraray Medical Inc.), Bond Force (Tokuyama Dental Corp.), and One-Up Bond F Plus (Tokuyama Dental Corp.) were used. Ten dumbelled-shaped polymers of each adhesive were used to obtain the modulus of elasticity by the three-point flexural bending test and the ultimate tensile strength by microtensile testing. The modulus of elasticity and the ultimate tensile strength were measured in both dry and wet conditions before/after immersion in water for 24h. Water sorption was measured, using a modification of the ISO-4049 standard. Each result of the modulus of elasticity and ultimate tensile strength was statistically analyzed using a two-way ANOVA and the result of water sorption was statistically analyzed using a one-way ANOVA. Regression analyses were used to determine the correlations between the modulus of elasticity and the ultimate tensile strength in dry or wet states, and also the percent decrease in these properties before/after immersion of water vs. water sorption. In the dry state, the moduli of elasticity of the five adhesive polymers varied from 948 to 1530 MPa, while the ultimate tensile strengths varied from 24.4 to 61.5 MPa. The wet specimens gave much lower moduli of elasticity (from 584 to 1073 MPa) and ultimate tensile strengths (from 16.5 to 35.0 MPa). Water sorption varied from 32.1 to 105.8 g mm(-3). The moduli of elasticity and ultimate tensile strengths of the adhesives fell significantly after water-storage. Water sorption depended on the constituents of the adhesive systems. The percent decreases in the ultimate tensile strengths of the adhesives were related to water sorption, while the percent reductions in the moduli of elasticity of the adhesives were not related to water sorption. Copyright (c) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis.

    PubMed

    Reiter, Rolf; Freise, Christian; Jöhrens, Korinna; Kamphues, Carsten; Seehofer, Daniel; Stockmann, Martin; Somasundaram, Rajan; Asbach, Patrick; Braun, Jürgen; Samani, Abbas; Sack, Ingolf

    2014-05-07

    Despite the success of elastography in grading hepatic fibrosis by stiffness related noninvasive markers the relationship between viscoelastic constants in the liver and tissue structure remains unclear. We therefore studied the mechanical properties of 16 human liver specimens with different degrees of fibrosis, inflammation and steatosis by wideband magnetic resonance elastography (MRE) and static indentation experiments providing the specimens׳ static Young׳s modulus (E), dynamic storage modulus (G') and dynamic loss modulus (G″). A frequency-independent shear modulus μ and a powerlaw exponent α were obtained by fitting G' and G″ using the two-parameter sprinpot model. The mechanical parameters were compared to the specimens׳ histology derived parameters such as degree of Fibrosis (F), inflammation score and fat score, amount of hydroxyproline (HYP) used for quantification of collagen, blood markers and presurgery in vivo function tests. The frequency averaged parameters G', G″ and μ were significantly correlated with F (G': R=0.762, G″: R=0.830; μ: R=0.744; all P<0.01) and HYP (G': R=0.712; G″: R=0.720; μ: R=0.731; all P<0.01). The powerlaw exponent α displayed an inverse correlation with F (R=-0.590, P=0.034) and a trend of inverse correlation with HYP (R=-0.470, P=0.089). The static Young׳s modulus E was less correlated with F (R=0.587, P=0.022) and not sensitive to HYP. Although inflammation was highly correlated with F (R=0.773, P<0.001), no interaction was discernable between inflammation and mechanical parameters measured in this study. Other histological and blood markers as well as liver function test were correlated with neither F nor the measured mechanical parameters. In conclusion, viscoelastic constants measured by wideband MRE are highly sensitive to histologically proven fibrosis. Our results suggest that, in addition to the amount of connective tissue, subtle structural changes of the viscoelastic matrix determine the sensitivity of mechanical tissue properties to hepatic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    NASA Astrophysics Data System (ADS)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  13. Mechanical, dielectric, and physicochemical properties of impregnating resin based on unsaturated polyesterimides

    NASA Astrophysics Data System (ADS)

    Fetouhi, Louiza; Petitgas, Benoit; Dantras, Eric; Martinez-Vega, Juan

    2017-10-01

    This work aims to characterize the dielectric and the mechanical properties of a resin based on an unsaturated polyesterimide diluted in methacrylate reactive diluents used in the impregnation of rotating machines. The broadband dielectric spectrometry and the dynamic mechanical analysis were used to quantify the changes in dielectric and mechanical properties of the network PEI resin, as a function of temperature and frequency. The network characterizations highlight the presence of two main relaxations, α and α', confirmed by the differential scanning calorimetry analysis, showing the complexity of the chemical composition of this resin. The dielectric spectroscopy shows a significant increase in the dielectric values due to an increase of the material conductivity, while the mechanical spectroscopy shows an important decrease of the polymer rigidity and viscosity expressed by an important decrease in the storage modulus. The PEI resin shows a high reactivity when it is submitted in successive heating ramps, which involves in a post-cross-linking reaction. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  14. Deposition of Electrically Conductive Coatings on Castable Polyurethane Elastomers by the Flame Spraying Process

    NASA Astrophysics Data System (ADS)

    Ashrafizadeh, H.; McDonald, A.; Mertiny, P.

    2016-02-01

    Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.

  15. The Effect of Oat Fibre Powder Particle Size on the Physical Properties of Wheat Bread Rolls

    PubMed Central

    Kurek, Marcin; Wyrwisz, Jarosław; Piwińska, Monika; Wierzbicka, Agnieszka

    2016-01-01

    Summary In response to the growing interest of modern society in functional food products, this study attempts to develop a bakery product with high dietary fibre content added in the form of an oat fibre powder. Oat fibre powder with particle sizes of 75 µm (OFP1) and 150 µm (OFP2) was used, substituting 4, 8, 12, 16 and 20% of the flour. The physical properties of the dough and the final bakery products were then measured. Results indicated that dough with added fibre had higher elasticity than the control group. The storage modulus values of dough with OFP1 most closely approximated those of the control group. The addition of OFP1 did not affect significantly the colour compared to the other samples. Increasing the proportion of oat fibre powder resulted in increased firmness, which was most prominent in wheat bread rolls with oat fibre powder of smaller particle sizes. The addition of oat fibre powder with smaller particles resulted in a product with the rheological and colour parameters that more closely resembled control sample. PMID:27904392

  16. Influence of molecular weight and degree of substitution of various carboxymethyl celluloses on unheated and heated emulsion-type sausage models.

    PubMed

    Gibis, Monika; Schuh, Valerie; Allard, Karin; Weiss, Jochen

    2017-03-01

    Four carboxymethyl celluloses (CMCs) differing in molecular weight (M W ) and degree of substitution (°DS) were initially characterized in NaCl solution (0.1 M) and on properties of emulsion-type sausage models. The impact of the different CMCs (0-2 wt%) on the rheological behavior and firmness of an emulsion-type sausage models containing 1.8wt% NaCl was studied. Rheology (unheated/heated) and firmness (heated) showed an increasing effect with increasing CMC concentrations. Addition of>1wt% CMC led to a decrease in storage modulus of the unheated/heated batter and to a decrease in firmness of heated independent of the CMC-type used. CLSM revealed that high amounts of CMCs prevented formation of a coherent protein matrix. Water-binding capacity indicated that CMC contributed to the water-retention capability of sausage batters. Small differences between the CMCs were observed using various °DS and similar M W. Results indicate that the addition of low CMC concentrations (≤0.5wt%) may help to reduce fat content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells

    PubMed Central

    Chang, Fei-Chien; Tsao, Ching-Ting; Lin, Anqi; Zhang, Mengying; Levengood, Sheeny Lan; Zhang, Miqin

    2016-01-01

    Mechanical properties of the extracellular matrix have a profound effect on the behavior of anchorage-dependent cells. However, the mechanisms that define the effects of matrix stiffness on cell behavior remains unclear. Therefore, the development and fabrication of synthetic matrices with well-defined stiffness is invaluable for studying the interactions of cells with their biophysical microenvironment in vitro. We demonstrate a methoxypolyethylene glycol (mPEG)-modified chitosan hydrogel network where hydrogel stiffness can be easily modulated under physiological conditions by adjusting the degree of mPEG grafting onto chitosan (PEGylation). We show that the storage modulus of the hydrogel increases as PEGylation decreases and the gels exhibit instant self-recovery after deformation. Breast cancer cells cultured on the stiffest hydrogels adopt a more malignant phenotype with increased resistance to doxorubicin as compared with cells cultured on tissue culture polystyrene or Matrigel. This work demonstrates the utility of mPEG-modified chitosan hydrogel, with tunable mechanical properties, as an improved replacement of conventional culture system for in vitro characterization of breast cancer cell phenotype and evaluation of cancer therapies. PMID:27595012

  18. Do xylem fibers affect vessel cavitation resistance?

    PubMed

    Jacobsen, Anna L; Ewers, Frank W; Pratt, R Brandon; Paddock, William A; Davis, Stephen D

    2005-09-01

    Possible mechanical and hydraulic costs to increased cavitation resistance were examined among six co-occurring species of chaparral shrubs in southern California. We measured cavitation resistance (xylem pressure at 50% loss of hydraulic conductivity), seasonal low pressure potential (P(min)), xylem conductive efficiency (specific conductivity), mechanical strength of stems (modulus of elasticity and modulus of rupture), and xylem density. At the cellular level, we measured vessel and fiber wall thickness and lumen diameter, transverse fiber wall and total lumen area, and estimated vessel implosion resistance using (t/b)(h)(2), where t is the thickness of adjoining vessel walls and b is the vessel lumen diameter. Increased cavitation resistance was correlated with increased mechanical strength (r(2) = 0.74 and 0.76 for modulus of elasticity and modulus of rupture, respectively), xylem density (r(2) = 0.88), and P(min) (r(2) = 0.96). In contrast, cavitation resistance and P(min) were not correlated with decreased specific conductivity, suggesting no tradeoff between these traits. At the cellular level, increased cavitation resistance was correlated with increased (t/b)(h)(2) (r(2) = 0.95), increased transverse fiber wall area (r(2) = 0.89), and decreased fiber lumen area (r(2) = 0.76). To our knowledge, the correlation between cavitation resistance and fiber wall area has not been shown previously and suggests a mechanical role for fibers in cavitation resistance. Fiber efficacy in prevention of vessel implosion, defined as inward bending or collapse of vessels, is discussed.

  19. Low-Cost and High-Impact Environmental Solutions for Military Composite Structures

    DTIC Science & Technology

    2005-12-15

    moduli of UPE polymers are considerably increased when neopentyl glycol is used as the polyol instead of ethylene glycol in the formulations [56...general purpose unsaturated polyester based on phthalic anhydride, ethylene glycol , and maleic anhydride. The VIAPAL 570G was a colorless solid in the...modulus. In this case, the neopentyl center of the Bisphenol A backbone of the VE 828 polymer may be responsible for increased modulus values. The

  20. Determination of mechanical properties of polymer film materials

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Rutherford, J. L.

    1975-01-01

    Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.

  1. Effect of CNTs dispersion on the thermal and mechanical properties of Cu/CNTs nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhsan, Ali Samer, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Ahmad, Faiz, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Yusoff, Puteri Sri Melor Megat Bt, E-mail: puteris@petronas.com.my

    2014-10-24

    Modified technique of metal injection molding (MIM) was used to fabricate multiwalled carbon nanotube (CNT) reinforced Cu nanocomposites. The effect of adding different amount of CNTs (0-10 vol.%) on the thermal and mechanical behaviour of the fabricated nanocomposites is presented. Scanning electron microscope analysis revealed homogenous dispersion of CNTs in Cu matrices at different CNTs contents. The experimentally measured thermal conductivities of Cu/CNTs nanocomposites showed extraordinary increase (76% higher than pure sintered Cu) with addition of 10 vol.% CNTs. As compared to the pure sintered Cu, increase in modulus of elasticity (Young's modulus) of Cu/CNTs nanocomposites sintered at 1050°C formore » 2.5 h was measured to be 48%. However, in case of 7.5 vol.% CNTs, Young's modulus was increased significantly about 51% compared to that of pure sintered Cu.« less

  2. Analysis of Load Stress for Asphalt Pavement of Lean Concrete Base

    NASA Astrophysics Data System (ADS)

    Lijun, Suo; Xinwu, Wang

    The study revealed that whether it is early distresses in asphalt pavement or not depends largely on working performance of base. In the field of asphalt pavement, it is widely accepted that lean concrete base, compared with the general semi-rigid base, has better working performance, such as high strength and good eroding resistance. Problem of early distresses in asphalt pavement, which caused by more traffic loadings, can be settled effectively when lean concrete is used in asphalt pavement. Traffic loading is important parameter used in the analysis of the new pavement design. However, few studies have done extensive and intensive research on the load stress for asphalt pavement of lean concrete base. Because of that, it is necessary to study the load stress for the asphalt pavement. In the paper, first of all, three-dimension finite element model of the asphalt pavement is created for the aim of doing mechanical analysis for the asphalt pavement. And then, the two main objectives of this study are investigated. One is analysis for load stress of lean concrete base, and the other is analysis for load stress of asphalt surface. The results show that load stress of lean concrete base decreases, decrease and increase with increase of base's thickness, surface's thickness and ratio of base's modulus to foundation's modulus respectively. So far as the asphalt surface is concerned, maximum shearing stress, which is caused by load, is evident in asphalt surface which is located in transverse contraction joint of lean concrete base of asphalt pavement. Maximum shearing stress decrease, decrease, decrease and increase respectively with increase of the surface's modulus, the surface's thickness, base's thickness and ratio of base's modulus to foundation's modulus.

  3. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  4. Rapid assessment of crystal orientation in semi-crystalline polymer films using rotational zone annealing and impact of orientation on mechanical properties

    DOE PAGES

    Ye, Changhuai; Wang, Chao; Wang, Jing; ...

    2017-08-17

    Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less

  5. Rapid assessment of crystal orientation in semi-crystalline polymer films using rotational zone annealing and impact of orientation on mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Changhuai; Wang, Chao; Wang, Jing

    Crystal orientation in semi-crystalline polymers tends to enhance their performance, such as increased yield strength and modulus, along the orientation direction. Zone annealing (ZA) orients the crystal lamellae through a sharp temperature gradient that effectively directs the crystal growth, but the sweep rate (V ZA) of this gradient significantly impacts the extent of crystal orientation. Here in this work, we demonstrate rotational zone annealing (RZA) as an efficient method to elucidate the influence of V ZA on the crystal morphology of thin films in a single experiment using isotactic poly(1-butene), PB-1, as a model semi-crystalline polymer. These RZA results aremore » confirmed using standard, serial linear ZA to tune the structure from an almost unidirectional oriented morphology to weakly oriented spherulites. The overall crystallinity is only modestly changed in comparison to isothermal crystallization (maximum of 55% from ZA vs. 48% for isothermal crystallization). However, the average grain size increases and the spherulites become anisotropic from ZA. Due to these structural changes, the Young's modulus of the oriented films, both parallel and perpendicular to the spherulite orientation direction, is significantly increased by ZA. The modulus does become anisotropic after ZA due to the directionality in the crystal structure, with more than a threefold increase in the modulus parallel to the orientation direction for the highest oriented film in comparison to the modulus from isothermal crystallization. Lastly, RZA enables rapid identification of conditions to maximize orientation of crystals in thin polymer films, which could find utility in determining conditions to improve crystallinity and performance in organic electronics.« less

  6. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton

    2015-11-01

    Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  8. Rheologic properties of flowable, conventional hybrid, and condensable composite resins.

    PubMed

    Lee, In-Bog; Son, Ho-Hyun; Um, Chung-Moon

    2003-06-01

    This research was undertaken to investigate the viscoelastic properties related to handling characteristics of five commercial flowable, two conventional hybrid and two condensable composite resins and to investigate the effect on the viscosity of filler volume fraction of composites. A dynamic oscillatory shear test was used to evaluate the storage shear modulus (G'), loss shear modulus (G"), loss tangent (tan delta) and complex viscosity (eta(*)) of the composite resins as a function of frequency (omega)-dynamic frequency sweep test from 0.01 to 100 rad/s at 25 degrees C-using an Advanced Rheometric Expansion System. To investigate the effect on the viscosity of the composites of the filler volume fraction, the filler weight% and filler volume% were measured by the Archimedes' principle using a pyknometer. The complex viscosity eta(*) of flowable composites was lower than that of the hybrid composites and significant differences were observed between brands. The complex viscosity eta(*) of condensable composites was higher than that of hybrid composites. The order of complex viscosity eta(*) at omega=10 rad/s in order of decreasing viscosity was as follows, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it and Revolution. The complex viscosity of flowable composites, normalized with respect to Z-100, was 0.04-0.56 but Synergy compact was 2.158 times higher than that of Z-100. The patterns of the change of loss tangent (tan delta) of the composite resins with increasing frequency were significantly different between brands. Phase angles delta ranged from 30.9 to 78.1 degrees at omega=10 rad/s. All composite resins exhibit pseudoplastic behavior with increasing shear rate. The relationships between the complex shear modulus G(*), the phase angle delta, and the shear rate omega were represented by the frequency domain phasor form, G(*)(omega)=G(*)e(i delta)=G(*) 90 degree angle delta. Only a weak relationship was found between filler volume% and the viscosity of the composite resins. This investigation shows that the viscoelasticity of composites in the same class is significantly different between brands. This rheologic property of composite resins influences the handling characteristics of the materials. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composite resins.

  9. Relationships between perceptual attributes and rheology in over-the-counter vaginal products: a potential tool for microbicide development.

    PubMed

    Mahan, Ellen D; Zaveri, Toral; Ziegler, Gregory R; Hayes, John E

    2014-01-01

    Vaginal microbicides are believed to have substantial potential to empower women to protect themselves from HIV, although clinical trials to date have had mixed results at best. Issues with patient adherence in these trials suggest additional emphasis should be placed on optimizing acceptability. Acceptability is driven, in part, by the sensory properties of the microbicide, so better understanding of the relationships between sensory properties and the physical and rheological properties of microbicides should facilitate the simultaneous optimization of sensory properties in parallel with the biophysical properties required for drug deployment. Recently, we have applied standard methods to assess the potential acceptability of microbicide prototypes ex vivo and to quantify the sensory properties of microbicide surrogates. Here, we link quantitative perceptual data to the rheological properties of 6 over-the counter (OTC) vaginal products used as ex vivo microbicide surrogates. Shear-thinning behavior (n) and tan δ (10 rad/s) showed no relationship with any perceptual attributes while shear storage modulus, G' (10 rad/s) was correlated with some attributes, but did not appear to be a strong predictor of sensory properties. Conversely, the storage loss modulus, G" (10 rad/s) and the consistency coefficient, K, were correlated with several sensory attributes: stickiness, rubberiness, and uniform thickness for G'' and stickiness, rubberiness, and peaking for K. Although these relationships merit confirmation in later studies, this pilot study suggests rheological principles can be used to understand the sensory properties evoked by microbicide surrogates assessed ex vivo. Additional work is needed to determine if these findings would apply for microbicides in vivo.

  10. Validated linear dynamic model of electrically-shunted magnetostrictive transducers with application to structural vibration control

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.

    2017-03-01

    This paper presents a linear model of the fully-coupled electromechanical behavior of a generally-shunted magnetostrictive transducer. The impedance and admittance representations of the model are reported. The model is used to derive the effect of the shunt’s electrical impedance on the storage modulus and loss factor of the transducer without neglecting the inherent resistance of the transducer’s coil. The expressions are normalized and then shown to also represent generally-shunted piezoelectric materials that have a finite leakage resistance. The generalized expressions are simplified for three shunts: resistive, series resistive-capacitive, and inductive, which are considered for shunt damping, resonant shunt damping, and stiffness tuning, respectively. For each shunt, the storage modulus and loss factor are plotted for a wide range of the normalized parameters. Then, important trends and their impact on different applications are discussed. An experimental validation of the transducer model is presented for the case of resistive and resonant shunts. The model closely predicts the measured response for a variety of operating conditions. This paper also introduces a model for the dynamic compliance of a vibrating structure that is coupled to a magnetostrictive transducer for shunt damping and resonant shunt damping applications. This compliance is normalized and then shown to be analogous to that of a structure that is coupled to a piezoelectric material. The derived analogies allow for the observations and equations in the existing literature on structural vibration control using shunted piezoelectric materials to be directly applied to the case of shunted magnetostrictive transducers.

  11. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouared, Abderrahmane; Kazemirad, Siavash; Montagnon, Emmanuel

    2016-04-15

    Purpose: Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. Methods: A FEM model was developed to solve the inverse wave propagationmore » problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). Results: Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%–38% for the shear modulus G′ and 9%–67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G′ and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. Conclusions: The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.« less

  12. Graphene Nanobubbles Produced by Water Splitting.

    PubMed

    An, Hongjie; Tan, Beng Hau; Moo, James Guo Sheng; Liu, Sheng; Pumera, Martin; Ohl, Claus-Dieter

    2017-05-10

    Graphene nanobubbles are of significant interest due to their ability to trap mesoscopic volumes of gas for various applications in nanoscale engineering. However, conventional protocols to produce such bubbles are relatively elaborate and require specialized equipment to subject graphite samples to high temperatures or pressures. Here, we demonstrate the formation of graphene nanobubbles between layers of highly oriented pyrolytic graphite (HOPG) with electrolysis. Although this process can also lead to the formation of gaseous surface nanobubbles on top of the substrate, the two types of bubbles can easily be distinguished using atomic force microscopy. We estimated the Young's modulus, internal pressure, and the thickness of the top membrane of the graphene nanobubbles. The hydrogen storage capacity can reach ∼5 wt % for a graphene nanobubble with a membrane that is four layers thick. The simplicity of our protocol paves the way for such graphitic nanobubbles to be utilized for energy storage and industrial applications on a wide scale.

  13. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  14. Passively Adaptive Inflatable Structure for the Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L..

    1998-01-01

    An inflatable structural system is described for the Shooting Star Experiment that is a technology demonstrator flight for solar thermal propulsion. The inflatable structure is a pressurized assembly used in orbit to support a fresnel lens for focusing sunlight into a thermal storage engine. When the engine temperature reaches a preset level, the propellant is injected into the storage engine, absorbs heat from a heat exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is an adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Further, the polyimide film material used for construction of the inflatable is highly nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. A series of tests is described for characterizing the structure in response to various operating conditions.

  15. Measurement of the temperature dependence of Young's modulus of cartilage by phase-sensitive optical coherence elastography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C H; Li, J; Singh, M

    2014-08-31

    The development of an effective system to monitor the changes in the elastic properties of cartilage tissue with increasing temperature in laser reconstruction is an urgent practical task. In this paper, the use of phase-sensitive optical coherence elastography for detection of elastic waves in the sample has allowed Young's modulus of cartilage tissue to be measured directly during heating. Young's modulus was calculated from the group velocity of propagation of elastic waves excited by means of a system supplying focused air pulses. The measurement results are in agreement with the results of measurements of the modulus of elasticity under mechanicalmore » compression. The technique developed allows for noninvasive measurements; its development is promising for the use in vivo. (laser biophotonics)« less

  16. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  17. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  18. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    PubMed

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer.

  19. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles

    PubMed Central

    Merkel, Timothy J.; Jones, Stephen W.; Herlihy, Kevin P.; Kersey, Farrell R.; Shields, Adam R.; Napier, Mary; Luft, J. Christopher; Wu, Huali; Zamboni, William C.; Wang, Andrew Z.; Bear, James E.; DeSimone, Joseph M.

    2011-01-01

    It has long been hypothesized that elastic modulus governs the biodistribution and circulation times of particles and cells in blood; however, this notion has never been rigorously tested. We synthesized hydrogel microparticles with tunable elasticity in the physiological range, which resemble red blood cells in size and shape, and tested their behavior in vivo. Decreasing the modulus of these particles altered their biodistribution properties, allowing them to bypass several organs, such as the lung, that entrapped their more rigid counterparts, resulting in increasingly longer circulation times well past those of conventional microparticles. An 8-fold decrease in hydrogel modulus correlated to a greater than 30-fold increase in the elimination phase half-life for these particles. These results demonstrate a critical design parameter for hydrogel microparticles. PMID:21220299

  20. Determination of Young's modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Ratnam, M. M.; Azid, I. A.; Mutharasu, D.

    2011-11-01

    Young's moduli of various epoxy coated polyethylene terephthalate (PET) micro-cantilevers were determined from the deflection results obtained using the phase-shift shadow moiré (PSSM) method. The filler materials for epoxy coatings were aluminum and graphite powders that were mixed with epoxy at various percentages. Young's moduli were calculated from theory based on the deflection results. The PET micro-cantilever coated with aluminum-epoxy coating showed increasing value of Young's modulus when the ratios of the aluminum-epoxy were increased. The graphite-epoxy coating on the PET micro-cantilever also showed the same trend. The experimental results also show that Young's modulus of the graphite-epoxy coating is higher than aluminum-epoxy coating in comparison at the same mixing ratio.

  1. Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films.

    PubMed

    Zhang, Lei; Prosser, Jacob H; Feng, Gang; Lee, Daeyeon

    2012-10-21

    Nanoparticle thin films (NTFs) exhibit multifunctionality, making them useful for numerous advanced applications including energy storage and conversion, biosensing and photonics. Poor mechanical reliability and durability of NTFs, however, limit their industrial and commercial applications. Atomic layer deposition (ALD) represents a unique opportunity to enhance the mechanical properties of NTFs at a relatively low temperature without drastically changing their original structure and functionality. In this work, we study how ALD of different materials, Al(2)O(3), TiO(2), and SiO(2), affects the mechanical properties of TiO(2) and SiO(2) NTFs. Our results demonstrate that the mechanical properties of ALD-reinforced NTFs are dominantly influenced by the mechanical properties of the ALD materials rather than by the compositional matching between ALD and nanoparticle materials. Among the three ALD materials, Al(2)O(3) ALD provides the best enhancement in the modulus and hardness of the NTFs. Interestingly, Al(2)O(3) ALD is able to enhance not only the modulus and hardness but also the toughness of NTFs. Our study presents an additional benefit of depositing nanometer scale ALD layers in NTFs; that is, we find that the hardness and modulus of ultrathin ALD layers (<5 nm) can be estimated from the mechanical properties of ALD-reinforced NTFs using a simple mixing rule. This investigation also provides insight into the use of nanoindentation for testing the mechanical properties of ultrathin ALD-reinforced NTFs.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki-Seok; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs-g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N{sub 1S} peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT-g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G') and loss modulus (G'') weremore » significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. - Graphical abstract: This describes the increase of mechanical properties in NH-MWNTs-g-PMMA hybrid composites with different NH-MWNT contents. Highlights: > Aminized carbon nanotubes are used as reinforcement for poly(methylmethacrylate). > Poly(methylmethacrylate) is grafted on aminized carbon nanotubes by thermal reaction. > Grafting of carbon nanotubes and polymer provide enhanced physical properties. > It was due to the strong interaction between carbon nanotubes and polymer matrix.« less

  3. Tensile Properties and Microstructure of Inconel 718 Fabricated with Electron Beam Freeform Fabrication (EBF(sup 3))

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hibberd, Joshua

    2009-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.

  4. Effect of varying molecular weight of dextran on acrylic-derivatized dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.

    PubMed

    Sahota, Tarsem; Sawicka, Kirsty; Taylor, Joan; Tanna, Sangeeta

    2011-03-01

    Dextran methacrylate (dex-MA) and concanavalin A (con A)-methacrylamide were photopolymerized to produce covalently cross-linked glucose-sensitive gels for the basis of an implantable closed-loop insulin delivery device. The viscoelastic properties of these polymerized gels were tested rheologically in the non-destructive oscillatory mode within the linear viscoelastic range at glucose concentrations between 0 and 5% (w/w). For each cross-linked gel, as the glucose concentration was raised, a decrease in storage modulus, loss modulus and complex viscosity (compared at 1 Hz) was observed, indicating that these materials were glucose responsive. The higher molecular weight acrylic-derivatized dextrans [degree of substitution (DS) 3 and 8%] produced higher complex viscosities across the glucose concentration range. These studies coupled with in vitro diffusion experiments show that dex-MA of 70 kDa and DS (3%) was the optimum mass average molar mass to produce gels that show reduced component leach, glucose responsiveness, and insulin transport useful as part of a self-regulating insulin delivery device.

  5. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  6. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols.

    PubMed

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Chen, Qian; Kong, Baohua

    2016-05-01

    The objective of this study was to investigate the emulsifying properties and oxidative stability of emulsions prepared with porcine myofibrillar proteins (MPs) and different lipids, including lard, glycerolized lard (GL) and purified glycerolized lard (PGL). The GL and PGL emulsions had significantly higher emulsifying activity indices and emulsion stability indices than the lard emulsion (P<0.05). The PGL emulsion presented smaller droplet sizes, thus decreasing particle aggregation and improving emulsion stability. The static and dynamic rheological observations of the emulsions showed that the emulsions had pseudo-plastic behavior, and the PGL emulsion presented a larger viscosity and a higher storage modulus (G') and loss modulus (G'') compared with the other two emulsions (P<0.05). The formation of thiobarbituric acid-reactive substances, carbonyl contents and total sulfhydryl contents was not significantly different between the emulsions with PGL, GL and lard (P<0.05). In general, lard diacylglycerols enhanced emulsifying abilities and had no adverse effects on the oxidation stability of the emulsions prepared with MPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. How does the molecular network structure influence PDMS elastomer wettability?

    NASA Astrophysics Data System (ADS)

    Melillo, Matthew; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, and the extent of dilution of the curing mixture on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling. Furthermore, we have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.

  8. Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus

    NASA Astrophysics Data System (ADS)

    Miyoshi, Tetsu; Ohga, Juro

    2013-09-01

    To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.

  9. Construction of three-dimensional DNA hydrogels from linear building blocks.

    PubMed

    Nöll, Tanja; Schönherr, Holger; Wesner, Daniel; Schopferer, Michael; Paululat, Thomas; Nöll, Gilbert

    2014-08-04

    A three-dimensional DNA hydrogel was generated by self-assembly of short linear double-stranded DNA (dsDNA) building blocks equipped with sticky ends. The resulting DNA hydrogel is thermoresponsive and the length of the supramolecular dsDNA structures varies with temperature. The average diffusion coefficients of the supramolecular dsDNA structures formed by self-assembly were determined by diffusion-ordered NMR spectroscopy (DOSY NMR) for temperatures higher than 60 °C. Temperature-dependent rheological measurements revealed a gel point of 42±1 °C. Below this temperature, the resulting material behaved as a true gel of high viscosity with values for the storage modulus G' being significantly larger than that for the loss modulus G''. Frequency-dependent rheological measurements at 20 °C revealed a mesh size (ξ) of 15 nm. AFM analysis of the diluted hydrogel in the dry state showed densely packed structures of entangled chains, which are also expected to contain multiple interlocked rings and catenanes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.

    PubMed

    Wu, Shu-Wei; Liu, Xifeng; Miller, A Lee; Cheng, Yu-Shiuan; Yeh, Ming-Long; Lu, Lichun

    2018-07-15

    In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties. After oxidation of thiols into disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4 kPa). Oscillatory frequency sweep showed a positive correlation between storage modulus and cross-liking density as well. Additionally, there was no cytotoxicity observed to mesenchymal stem cells, fibroblasts and osteoblasts. We suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for tissue regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Viscoelasticity of Depletion-Induced Emulsion Gels

    NASA Astrophysics Data System (ADS)

    Meller, Amit; Stavans, Joel; Gisler, Thomas; Weitz, David A.

    1997-03-01

    The presence of non-adsorbing polymer in an oil-in-water emulsion results in a depletion attraction between the emulsion droplets, causing a phase separation into an droplet-rich phase and a polymer-rich phase largely devoid of emulsion droplets. At high enough droplet concentration, however, this phase separation is kinetically arrested to a gel-like state where large (diameter>50 μm) clusters of droplets are weakly connected via ramifications, leading to a measurable elastic modulus. We measure the mean-square displacement <Δ r ^2 (t)> of a droplet of size a inside a cluster using diffusing wave spectroscopy (DWS); by means of a generalized Stokes-Einstein relation we obtain frequency dependent storage and loss moduli G'(ω) and G''(ω), respectively. G'(ω) reaches a plateau at frequencies between 1 rad/s and 100 rad/s; this plateau modulus is found to scale with the hard-sphere energy density k_BT/a^3; within the clusters the droplets are densely packed, yet remain undeformed, the droplet volume fraction being determined by the osmotic pressure exerted by the polymer.

  12. Ultrasound aided smooth dispensing for high viscoelastic epoxy in microelectronic packaging.

    PubMed

    Chen, Yun; Li, Han-Xiong; Shan, Xiuyang; Gao, Jian; Chen, Xin; Wang, Fuliang

    2016-01-01

    Epoxy dispensing is one of the most critical processes in microelectronic packaging. However, due its high viscoelasticity, dispensing of epoxy is extremely difficult, and a lower viscoelasticity epoxy is desired to improve the process. In this paper, a novel method is proposed to achieve a lowered viscoelastic epoxy by using ultrasound. The viscoelasticity and molecular structures of the epoxies were compared and analyzed before and after experimentation. Different factors of the ultrasonic process, including power, processing time and ultrasonic energy, were studied in this study. It is found that elasticity is more sensitive to ultrasonic processing while viscosity is little affected. Further, large power and long processing time can minimize the viscoelasticity to ideal values. Due to the reduced loss modulus and storage modulus after ultrasonic processing, smooth dispensing is demonstrated for the processed epoxy. The subsequently color temperature experiments show that ultrasonic processing will not affect LED's lighting. It is clear that the ultrasonic processing will have good potential to aide smooth dispensing for high viscoelastic epoxy in electronic industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate.

    PubMed

    Liu, Xujie; Chen, Yan; Huang, Qianli; He, Wei; Feng, Qingling; Yu, Bo

    2014-09-22

    In order to get a water-soluble in situ gel-forming system, a thiolated chitosan, chitosan-4-thio-butylamidine (CS-TBA) conjugate was synthesized and used to replace the unmodified chitosan in the application of the in situ gel-forming system. A novel thermo-sensitive hydrogel was prepared based on CS-TBA/hydroxyapatite (HA)/beta-glycerophosphate disodium (β-GP). The gel formation, rheological properties, morphology, degradation, cytotoxicity, as well as protein release process of the novel gel system were investigated in this study. The CS-TBA/HA/β-GP gel showed a higher storage modulus (G') and loss modulus (G″) and a decreased bovine serum albumin (BSA) release rate which was maintained the protein release for a longer time compared with the unmodified chitosan (CS)/HA/β-GP gel, due to the existence of thiol groups and/or disulfide bonds. The CS-TBA/HA/β-GP gel has a porous structure with a uniform distribution of nano-hydroxyapatite, an appropriate degradation rate and low cytotoxicity, showing potential applications in drug delivery and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mechanical properties of thermal protection system materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less

  15. Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papi, M.; Paoletti, P.; Geraghty, B.

    We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.

  16. The velocity, refractive index, and equation of state of liquid ammonia at high temperatures and high pressures.

    PubMed

    Li, Fangfei; Li, Min; Cui, Qiliang; Cui, Tian; He, Zhi; Zhou, Qiang; Zou, Guangtian

    2009-10-07

    The high temperature and high pressure Brillouin scattering studies of liquid ammonia have been performed in a diamond anvil cell. Acoustic velocity, refractive index, adiabatic bulk modulus, and the equation of state of liquid ammonia were determined at temperatures up to 410 K and at pressures up to the solidification point. Velocity and refractive index increase smoothly with increasing pressure along isothermals but decrease slightly with the temperature increase. The bulk modulus increases linearly with pressure and its slope dB/dP decreases slightly with increasing temperature from 6.67 at 297 K to 5.94 at 410 K.

  17. Temperature-responsive and biodegradable PVA:PVP k30:poloxamer 407 hydrogel for controlled delivery of human growth hormone (hGH).

    PubMed

    Taheri, Azade; Atyabi, Fatemeh; Dinarvnd, Rassoul

    2011-01-01

    Recombinant human growth hormone (rhGH) is used for replacement therapy of pediatric hypopituitary dwarfism. Growth rate in children was observed to be better on the daily injection schedule compared with the currently used therapeutic regimen of thrice a week injection. Thus, a controlled release formulation would overcome the drawback of traditional rhGH therapy such as the need for multiple injections. Poloxamers are a family of triblock copolymers consisting of two hydrophilic blocks of polyoxyethylene separated by a hydrophobic block of polyoxypropylene, which form micelles at low concentrations and form clear thermally reversible gels at high concentrations. We used poloxamer gels to develop a controlled release formulation of hGH. The objective of this study was to develop an in situ gel forming drug delivery system for hGH using the minimum possible ratio of poloxamer 407 (P407). Decreasing the concentration of poloxamer could reduce the risk of hypertriglyceridemia induction. Different additives were added to the poloxamer formulations. It was observed that among different additives polyvinylpyrrolidone k30 (PVP k30) and polyvinyl alcohol (PVA) decrease poloxamer concentration required to form in situ gelation from 18% to 10%. The dynamic viscoelastic properties of the samples were determined. Both the storage modulus and the loss modulus of the samples increased abruptly as the temperature passed a certain point. It can be concluded that combining P407 and PVP and PVA could be a promising strategy for preparation of thermally reversible in situ gel forming delivery systems of hGH with low poloxamer concentration.

  18. Rheological study of physical cross-linked quaternized cellulose hydrogels induced by β-glycerophosphate.

    PubMed

    You, Jun; Zhou, Jinping; Li, Qian; Zhang, Lina

    2012-03-20

    As a weak base, β-glycerophosphate (β-GP) was used to spontaneously initiate gelation of quaternized cellulose (QC) solutions at body temperature. The QC/β-GP solutions are flowable below or at room temperature but gel rapidly under physiological conditions. In order to clarify the sol-gel transition process of the QC/β-GP systems, the complex was investigated by dynamic viscoelastic measurements. The shear storage modulus (G') and loss modulus (G″) as a function of (1) concentration of β-GP (c(β-GP)), (2) concentration of QC (c(QC)), (3) degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the anhydroglucose unit) of QC, (4) viscosity-average molecular weight (M(η)) of QC, and (5) solvent medium were studied by the oscillatory rheology. The sol-gel transition temperature of QC/β-GP solutions decreased with an increase of c(QC) and c(β-GP), the M(η) of QC, and a decrease of the DS of QC and pH of the solvent. The sol-gel transition temperature and time could be easily controlled by adjusting the concentrations of QC and β-GP, M(η) and DS of QC, and the solvent medium. Gels formed after heating were irreversible; i.e., after cooling to lower temperature they could not be dissolved to become liquid again. The aggregation and entanglement of QC chains, electrostatic interaction, and hydrogen bonding between QC and β-GP were the main factors responsible for the irreversible sol-gel transition behavior of QC/β-GP systems.

  19. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and ultimate tensile strength were found to all increased as the NW diameter decreased. For the temperature effect study, a brief review on brittle-to-ductile transition (BDT) of silicon (Si) is presented. BDT temperature shows decreasing trend as size of the sample decrease. However, controversial results have been reported in terms of brittle or ductile behaviors for Si NWs at room temperature. A microelectromechanical systems (MEMS) thermal actuator (ETA) was designed to test NW without involving external heating. To circumvent undesired heating of the end effector, heat sink beams that can be co-fabricated with the thermal actuator were introduced. A combined modeling and experimental study was conducted to access the effect of such heat sink beams. Temperature distribution was measured and simulated using Raman scattering and multiphysics finite element method, respectively. Our results demonstrated that heat sink beams are effective in reducing the temperature of the thermal actuator. To get elevated temperature in a controllable fashion, a comb drive actuator was designed with separating actuation and heating mechanisms. Multiphysics finite element analysis (coupled electrical-thermal-mechanical) was used to optimize structure design and minimize undesired thermal loading/unloading. A Si NW with diameter of 50 nm was tested on the device under different temperatures. Stress strain curves at different temperatures revealed that plastic deformation occurs at temperature of 55 °C. For interfacial mechanics, we report an experimental study on the friction between Ag and ZnO NW tips (ends) and a gold substrate. An innovative experimental method based on column buckling theory was developed for the friction measurements. Direct measurements of the static friction force and interfacial shear strength between Si NWs and poly(dimethylsiloxane) (PDMS) is reported. The static friction and shear strength were found to increase rapidly and then decrease with the increasing ultraviolet/ozone (UVO) treatment of PDMS.

  20. Characterization of the dynamic behaviour of flax fibre reinforced composites using vibration measurements

    NASA Astrophysics Data System (ADS)

    El-Hafidi, Ali; Birame Gning, Papa; Piezel, Benoit; Fontaine, Stéphane

    2017-10-01

    Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.

  1. Correlation between elastic and plastic deformations of partially cured epoxy networks

    NASA Astrophysics Data System (ADS)

    Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik

    2018-05-01

    The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.

  2. Biodegradability of plastics.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  3. Biodegradability of Plastics

    PubMed Central

    Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515

  4. Chronic In Vivo Load Alteration Induces Degenerative Changes in the Rat Tibiofemoral Joint

    PubMed Central

    Roemhildt, M. L.; Beynnon, B. D.; Gauthier, A. E.; Gardner-Morse, M.; Ertem, F.; Badger, G. J.

    2012-01-01

    Objective We investigated the relationship between the magnitude and duration of sustained compressive load alteration and the development of degenerative changes in the rat tibiofemoral joint. Methods A varus loading device was attached to the left hind limb of mature rats to apply increased compression to the medial compartment and decreased compression to the lateral compartment of the tibiofemoral joint of either 0% or 100% body weight for 0, 6 or 20 weeks. Compartment-specific assessment of the tibial plateaus included biomechanical measures (articular cartilage aggregate modulus, permeability and Poisson’s ratio, and subchondral bone modulus) and histological assessments (articular cartilage, calcified cartilage, and subchondral bone thicknesses, degenerative scoring parameters, and articular cartilage cellularity). Results Increased compression in the medial compartment produced significant degenerative changes consistent with the development of osteoarthritis including a progressive decrease in cartilage aggregate modulus (43% and 77% at 6 and 20 weeks), diminished cellularity (38% and 51% at 6 and 20 weeks), and increased histological degeneration. At 20 weeks, medial compartment articular cartilage thickness deceased 30% while subchondral bone thickness increased 32% and subchondral bone modulus increased 99%. Decreased compression in the lateral compartment increased calcified cartilage thickness, diminished region-specific subchondral bone thickness and revealed trends for reduced cellularity and decreased articular cartilage thickness at 20 weeks. Conclusions Altered chronic joint loading produced degenerative changes consistent with those observed clinically with the development of osteoarthritis and may replicate the slow development of non-traumatic osteoarthritis in which mechanical loads play a primary etiological role. PMID:23123358

  5. Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration.

    PubMed

    Wang, Ruican; Guo, Shuntang

    2016-11-15

    This study aims to clarify the roles played by endogenous small molecular components in soymilk coagulation process and the properties of gels. Soymilk samples with decreasing levels of small molecules were prepared by ultrafiltration, to reduce the amount of phytate and salts. CaSO4-induced coagulation process was analyzed using rheological methods. Results showed that removal of free small molecules decreased the activation energy of protein coagulation, resulting in accelerated reaction and increased gel strength. However, too fast a reaction led to the drop in storage modulus (G'). Microscopic observation suggested that accelerated coagulation generated a coarse and non-uniform gel network with large pores. This network could not hold much water, leading to serious syneresis. Endogenous small molecules in soymilk were vital in the fine gel structure. Coagulation rate could be controlled by adjusting the amount of small molecules to obtain tofu products with the optimal texture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender

    PubMed Central

    Wang, Youyong; Song, Yongming; Du, Jun; Xi, Zhenhao; Wang, Qingwen

    2017-01-01

    Polylactide (PLA)/wood flour composite foam were prepared through a batch foaming process. The effect of the chain extender on the crystallization behavior and dynamic rheological properties of the PLA/wood flour composites were investigated as well as the crystal structure and cell morphology of the composite foams. The incorporation of the chain extender enhanced the complex viscosity and storage modulus of PLA/wood flour composites, indicating the improved melt elasticity. The chain extender also led to a decreased crystallization rate and final crystallinity of PLA/wood flour composites. With an increasing chain extender content, a finer and more uniform cell structure was formed, and the expansion ratio of PLA/wood flour composite foams was much higher than without the chain extender. Compared to the unfoamed composites, the crystallinity of the foamed PLA/wood flour composites was improved and the crystal was loosely packed. However, the new crystalline form was not evident. PMID:28846604

  7. Viscoelastic behavior of mineralized (CaCO3) chitin based PVP-CMC hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Čadež, Vida; Saha, Nabanita; Sikirić, Maja Dutour; Saha, Petr

    2017-05-01

    Enhancement of the mechanical as well as functional properties of the perspective mineralized PVP-CMC-CaCO3 hydrogel scaffold applicable for bone tissue engineering is quite essential. Therefore, the incorporation feasibility of chitin, a bioactive, antibacterial and biodegradable material, was examined in order to test its ability to enchance mechanical properties of the PVP-CMC-CaCO3 hydrogel scaffold. Chitin based PVP-CMC hydrogels were prepared and characterized both as non-mineralized and mineralized (CaCO3) form of hydrogel scaffolds. Both α-chitin (commercially bought) and β-chitin (isolated from the cuttlebone) were individually tested. It was observed that at 1% strain all hydrogel scaffolds have linear trend, with highly pronounced elastic properties in comparison to viscous ones. The complex viscosity has directly proportional behavior with negative slope against angular frequency within the range of ω = 0.1 - 100 rad.s-1. Incorporation of β-chitin increased storage modulus of all mineralized samples, making it interesting for further research.

  8. Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan microgels.

    PubMed

    Riederer, Michael S; Requist, Brennan D; Payne, Karin A; Way, J Douglas; Krebs, Melissa D

    2016-11-05

    In this work, an emulsion crosslinking method was developed to produce chitosan-genipin microgels which acted as an injectable and microporous scaffold. Chitosan was characterized with respect to pH by light scattering and aqueous titration. Microgels were characterized with swelling, light scattering, and rheometry of densely-packed microgel solutions. The results suggest that as chitosan becomes increasingly deprotonated above the pKa, repulsive forces diminish and intermolecular attractions cause pH-responsive chain aggregation; leading to microgel-microgel aggregation as well. The microgels with the most chitosan and least cross-linker showed the highest yield stress and a storage modulus of 16kPa when condensed as a microgel paste at pH 7.4. Two oppositely-charged growth factors could be encapsulated into the microgels and endothelial cells were able to proliferate into the 3D microgel scaffold. This work motivates further research on the applications of the chitosan microgel scaffold as an injectable and microporous scaffold in regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites.

    PubMed

    Fan, Mingcong; Hu, Ting; Zhao, Siming; Xiong, Shanbai; Xie, Jing; Huang, Qilin

    2017-03-01

    The changes in fish myofibrillar protein/cassava starch composites in the starch fraction range from 0 to 1, with their total content maintained at 60mg/mL, were investigated in terms of textural properties, rheological behaviours, morphology, spatial distribution and protein molecular structure. The results revealed that the starch fraction of 0.5 was a critical point for the conversion of the protein matrix to starch matrix and conversion of the gel from elastic to weak. Moreover, the protein-starch synergistic effect on the storage modulus was strongest at fractions of 0.5 and 0.6, due to the formation of a semi-interpenetrating network, with more amylose from the melted starch granules interpenetrated with the protein molecules, and the absorption of water by the starch granules to concentrate the protein matrix. Additionally, no covalent interaction between the protein and starch occurred with increasing starch fraction, thus having no significant influence on the protein secondary structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of MUF/Epoxy Microcapsules on Mechanical Properties and Fractography of Epoxy Materials

    NASA Astrophysics Data System (ADS)

    Ni, Zhuo; Lin, Yuhao; Du, Xuexiao

    2017-12-01

    Melamine-urea-formaldehyde (MUF) microcapsules were synthesized, morphology, shell thickness, average diameter and interface morphology were studied by scanning electron microscope (SEM). The spherical MUF microcapsules are size normal distribution without adhesion and accumulation, being compact, rough and uneven with a thickness of 3.2μm and a core contents is approximate 70%. A latent imidazoleas the curing agent for a cross-linking chemical reaction for cracking repairing. A good dispersion of MUF microcapsules and a good interfacial bonding are obtained. Effects of MUF microcapsule size and content on bending property and dynamic mechanical propertywere investigated. Both bending strength and storage modulus of the composite are considerably reduced with an increasing addition of the microcapsules whereas the glass transition temperatures are almost not influenced. Significant toughening effects of MUF microcapsules on the epoxy composites are observed at the conditions of different content and size of microcapsule especially at low microcapsule contents and small microcapsule sizes.

  11. Depth-Dependent Transverse Shear Properties of the Human Corneal Stroma

    PubMed Central

    Petsche, Steven J.; Chernyak, Dimitri; Martiz, Jaime; Levenston, Marc E.

    2012-01-01

    Purpose. To measure the transverse shear modulus of the human corneal stroma and its profile through the depth by mechanical testing, and to assess the validity of the hypothesis that the shear modulus will be greater in the anterior third due to increased interweaving of lamellae. Methods. Torsional rheometry was used to measure the transverse shear properties of 6 mm diameter buttons of matched human cadaver cornea pairs. One cornea from each pair was cut into thirds through the thickness with a femtosecond laser and each stromal third was tested individually. The remaining intact corneas were tested to measure full stroma shear modulus. The shear modulus from a 1% shear strain oscillatory test was measured at various levels of axial compression for all samples. Results. After controlling for axial compression, the transverse shear moduli of isolated anterior layers were significantly higher than central and posterior layers. Mean modulus values at 0% axial strain were 7.71 ± 6.34 kPa in the anterior, 1.99 ± 0.45 kPa in the center, 1.31 ± 1.01 kPa in the posterior, and 9.48 ± 2.92 kPa for full thickness samples. A mean equilibrium compressive modulus of 38.7 ± 8.6 kPa at 0% axial strain was calculated from axial compression measured during the shear tests. Conclusions. Transverse shear moduli are two to three orders of magnitude lower than tensile moduli reported in the literature. The profile of shear moduli through the depth displayed a significant increase from posterior to anterior. This gradient supports the hypothesis and corresponds to the gradient of interwoven lamellae seen in imaging of stromal cross-sections. PMID:22205608

  12. Degree of cure and fracture properties of experimental acid-resin modified composites under wet and dry conditions

    PubMed Central

    López-Suevos, Francisco; Dickens, Sabine H.

    2008-01-01

    Objective Evaluate the effects of core structure and storage conditions on the mechanical properties of acid-resin modified composites and a control material by three-point bending and conversion measurements 15 min and 24 h after curing. Methods The monomers pyromellitic dimethacrylate (PMDM), biphenyldicarboxylic-acid dimethacrylate (BPDM), (isopropylidene-diphenoxy)bis(phthalic-acid) dimethacrylate (IPDM), oxydiphthalic-acid dimethacrylate (ODPDM), and Bis-GMA were mixed with triethyleneglycol dimethacrylate (TEGDMA) in a 40/60 molar ratio, and photo-activated. Composite bars (Barium-oxide-glass/resin = 3/1 mass ratio, (2 × 2 × 25) mm, n = 5) were light-cured for 1 min per side. Flexural strength (FS), elastic modulus (E), and work-of-fracture (WoF) were determined in three-point bending after 15 min (stored dry); and after 24 h under dry and wet storage conditions at 37 °C. Corresponding degrees of conversion (DC) were evaluated by Fourier transform infrared spectroscopy. Data was statistically analyzed (2-way analysis of variance, ANOVA, Holm-Sidak, p < 0.05). Results Post-curing significantly increased FS, E and DC in nearly all cases. WoF did not change, or even decreased with time. For all properties ANOVA found significant differences and interactions of time and material. Wet storage reduced the moduli and the other properties measured with the exception of FS and WoF of ODPDM; DC only decreased in BPDM and IPDM composites. Significance Differences in core structure resulted in significantly different physical properties of the composites studied with two phenyl rings connected by one ether linkage as in ODPDM having superior FS, WoF and DC especially after 24 h under wet conditions. As expected, post-curing significantly contributed to the final mechanical properties of the composites, while wet storage generally reduced the mechanical properties. PMID:17980422

  13. Elastic modulus of nanomaterials: resonant contact-AFM measurement and reduced-size effects (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Nysten, Bernard; Fretigny, Christian; Cuenot, Stephane

    2005-05-01

    Resonant contact atomic force microscopy (resonant C-AFM) is used to quantitatively measure the elastic modulus of polymer nanotubes and metallic nanowires. To achieve this, an oscillating electric field is applied between the sample holder and the microscope head to excite the oscillation of the cantilever in contact with the nanostructures suspended over the pores of a membrane. The resonance frequency of the cantilever with the tip in contact with a nanostructure is shifted to higher values with respect to the resonance frequency of the free cantilever. It is demonstrated that the system can simply be modeled by a cantilever with the tip in contact with two springs. The measurement of the frequency shift enables the direct determination of the spring stiffness, i.e. the nanowires or nanotube stiffness. The method also enables the determination of the boundary conditions of the nanobeam on the membrane. The tensile elastic modulus is then simply determined using the classical theory of beam deflection. The obtained results for the larger nanostructures fairly agree to the values reported in the literature for the macroscopic elastic modulus of the corresponding materials. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The increase of the apparent elastic modulus for the smaller diameters is attributed to the surface tension effects. It is thus demonstrated that resonant C-AFM enables the measurement of the elastic modulus and of the surface tension of nanomaterials.

  14. Effect of Treated Coconut Shell and Fiber on the Resilient Modulus of Double-layer Porous Asphalt at Different Aging

    NASA Astrophysics Data System (ADS)

    Ting, T. L.; Ramadhansyah, P. J.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Ibrahim, M. H. Wan; Jayanti, D. S.; Abdullahi, A. M.

    2018-04-01

    Coconut shell (CS) and coconut fiber (CF) are new waste products that have been of growing interest recently in the highway asphalt pavement industry. This study investigated the effect of CS and CF on the resilient modulus of double-layer porous asphalt (DLPA). CS aggregate 5 mm in size was substituted for the DLPA at 5%, 10%, and 15% by weight, while CF was added to the asphalt at 0.3% and 0.5% by weight. Before mixing with other aggregates, the CS and CF were treated with 5%wt Sodium hydroxide (NaOH) to reduce their water absorption ability. The samples were prepared via the Marshall method. The result shows that DLPA with 10% CS aggregate has better resilient modulus under 25 °C for unaged and aged samples compared with the other substitution percentages. However, the sample with CF has a lower resilient modulus because the amount of CF has increased. In general, the substitution of 10% CS provided better resilient modulus among the other percentages.

  15. Study on axial strength of a channel-shaped pultruded GFRP member

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yukihiro; Satake, Chito; Nisida, Kenji

    2017-10-01

    Fiber reinforced polymers (FRP) are widely used in vehicle and aerospace applications because of their lightweight and high-strength characteristics. Additionally, FRPs are increasingly applied to building structures. However, the elastic modulus of glass fiber reinforced polymers (GFRPs) is lower than that of steel. Hence, the evaluating the buckling strength of GFRP members for design purpose is necessary. The buckling strength is determined by Euler buckling mode as well as local buckling. In this study investigated the compressive strength of GFRP members subjected to axial compression through experiments and theoretical calculations. The adopted GFRP member was a channel-shaped GFRP, which was molded via pultrusion, at various lengths. Although, the mechanical properties as longitudinal elastic modulus and fiber volume fraction and strength of GFRP members subjected, to axial can be easily evaluated, evaluating transverse elastic modulus and shear modulus in typical material tests is difficult in standard section. Therefore the composite law was used in this study. As a result, we confirmed that the axial strength of a GFRP member could be calculated by a theoretical evaluation method utilizing longitudinal elastic modulus and fiber volume fraction.

  16. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less

  17. Mechanical properties of an experimental soft lining material based on urethane oligomer.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2005-09-01

    The purpose of this study was to investigate the apparent viscosities and mechanical properties of two experimental light-curing soft lining materials (SLM-1 and SLM-2) based on soft-type urethane oligomers, as well as the shear bond strength and dye penetration between the denture base resin and the polymerized SLMs after storage in water. The apparent viscosities of SLM-1 and SLM-2 were 144.0-146.9 and 1.9 Pa x s respectively. After storage in water for two prescribed periods (one day and three months), the mechanical properties of the SLMs on the overall were 10.6-20.6 MPa for elastic modulus, 69.3-72.1 for hardness, and 3.8-4.0 MPa for adhesive strength. Tensile strength was observed to decrease after three months' storage in water, when compared to that after one-day storage (p < 0.01). Water sorption rates also differed significantly (p < 0.05)--namely 3.0 and 2.8 mg/cm2 for SLM-1 after one day and three months respectively, and 2.0 and 2.2 mg/cm2 for SLM-2. As for dye penetration, no infiltration was observed at the denture base resin-SLM interface after three months' storage. Based on the results of this study, it seemed like the SLMs possess many suitable properties for use with a new technique that we recently developed for preparing denture base resin and soft lining material.

  18. Elasticity and anelasticity of microcrystalline aluminum samples having various deformation and thermal histories

    NASA Astrophysics Data System (ADS)

    Betekhtin, V. I.; Kadomtsev, A. G.; Kardashev, B. K.

    2006-08-01

    The effect of the amplitude of vibrational deformation on the elastic modulus and internal friction of microcrystalline aluminum samples produced by equal-channel angular pressing was studied. The samples have various deformation and thermal histories. The elastic and inelastic (microplastic) properties of the samples are investigated. As the degree of plastic deformation increases, the Young’s modulus E, the amplitude-independent decrement δi, and the microplastic flow stress σ increase. As the annealing temperature increases, the quantities δi and σ decrease noticeably and the modulus E exhibits a more complex behavior. The experimental data are discussed under the assumption that the dislocation mobility depends on both the spectrum of point defects and the internal stresses, whose level is determined by the degree of plastic deformation and the temperature of subsequent annealing. The concept of internal stresses is also used to analyze the data on the effect of the degree of deformation and annealing on the rupture strength of the samples.

  19. The effect of boron concentration on the structure and elastic properties of Ru-Ir alloys: first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen

    2018-04-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.

  20. EFFECTS OF TRITIUM EXPOSURE ON UHMW-PE, PTFE, AND VESPEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E; Kirk Shanahan, K

    2006-05-31

    Samples of three polymers, Ultra-High Molecular Weight Polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, also known as Teflon{reg_sign}), and Vespel{reg_sign} polyimide were exposed to 1 atmosphere of tritium gas at ambient temperature for varying times up to 2.3 years in closed containers. Sample mass and size measurements (to calculate density), spectra-colorimetry, dynamic mechanical analysis (DMA), and Fourier-transform infrared spectroscopy (FT-IR) were employed to characterize the effects of tritium exposure on these samples. Changes of the tritium exposure gas itself were characterized at the end of exposure by measuring total pressure and by mass spectroscopic analysis of the gas composition. None of the polymersmore » exhibited significant changes of density. The color of initially white UHMW-PE and PTFE dramatically darkened to the eye and the color also significantly changed as measured by colorimetry. The bulk of UHMW-PE darkened just like the external surfaces, however the fracture surface of PTFE appeared white compared to the PTFE external surfaces. The white interior could have been formed while the sample was breaking or could reflect the extra tritium dose at the surface directly from the gas. The dynamic mechanical response of UHMW-PE was typical of radiation effects on polymers- an initial stiffening (increased storage modulus) and reduction of viscous behavior after three months exposure, followed by lowering of the storage modulus after one year exposure and longer. The storage modulus of PTFE increased through about nine months tritium exposure, then the samples became too weak to handle or test using DMA. Characterization of Vespel{reg_sign} using DMA was problematic--sample-to-sample variations were significant and no systematic change with tritium exposure could be discerned. Isotopic exchange and incorporation of tritium into UHMW-PE (exchanging for protium) and into PTFE (exchanging for fluorine) was observed by FT-IR using an attenuated total reflectance method. No significant change in the Vespel{reg_sign} infrared spectrum was observed after three months exposure. Protium significantly pressurized the UHMW-PE containers during exposure to about nine atmospheres (the initial pressure was one atmosphere of tritium). This is consistent with the well-known production of hydrogen by irradiation of polyethylene by ionizing radiation. The total pressure in the PTFE containers decreased, and a mass balance reveals that the observed decrease is consistent with the formation of small amounts of {sup 3}HF, which is condensed at ambient temperature. No significant change of pressure occurred in the Vespel{reg_sign} containers; however the composition of the gas became about 50% protium, showing that Vespel{reg_sign} interacted with the tritium gas atmosphere to some degree. The relative resistance to degradation from tritium exposure is least for PTFE, more for UHMW-PE, and the most for Vespel{reg_sign}, which is consistent with the known relative resistance of these polymers to gamma irradiation. This qualitatively agrees with the concept of equivalent effects for equivalent absorbed doses of radiation damage of polymers. Some of the changes of different polymers are qualitatively similar; however each polymer exhibited unique property changes when exposed to tritium. Information from this study that can be applied to a tritium facility is: (1) the relative resistance to tritium degradation of the three polymers studied is the same as the relative resistance to gamma irradiation in air (so relative rankings of polymer resistance to ionizing radiation can be used as a relative ranking for assessing tritium compatibility and polymer selection); and (2) all three polymers changed the gas atmosphere during tritium exposure--UHMW-PE and Vespel{reg_sign} exposed to tritium formed H{sub 2} gas (UHMW-PE much more so), and PTFE exposed to tritium formed {sup 3}HF. This observation of forming {sup 3}HF supports the general concept of minimizing chlorofluorocarbon polymers in tritium systems.« less

  1. High Temperature Mechanical Properties of Free-Standing HVOF CoNiCrAlY Coatings by Lateral Compression of Circular Tube

    NASA Astrophysics Data System (ADS)

    Waki, Hiroyuki; Nakamura, Kyousuke; Yamaguchi, Itsuki; Kobayashi, Akira

    MCrAlY, M means Co and/or Ni, sprayed coating is used to protect a super alloy substrate from corrosion or oxidation in a gas turbine blade. However, the mechanical properties are not well-known, because there are few proper measurement methods for a thin coating at high temperature. Authors have developed the new easy method to measure the mechanical properties using the lateral compression of a circular tube. The method is useful to apply to a thin coating because it does not need chucking and manufacturing a test piece is very easy. The method is also easily applicable to high temperature measurement. In this study, high temperature mechanical properties, Young's modulus, bending strength and fracture strain, of CoNiCrAlY coatings by HVOF were systematically measured. The results obtained were as follows: Young's modulus and bending strength suddenly decreased beyond 400˜450°C. The Young's modulus and bending strength thermally treated at higher than 1050°C was significantly higher than that of virgin CoNiCrAlY coating. It was found that higher thermal treatment in atmosphere was the most effective in increasing the Young's modulus and bending strength. It was also found that the improvement of Young's modulus was primarily caused by not the effect of TGO but the sintering and diffusion of unfused particles. On the contrary, the fracture strain increased beyond 400°C differently from the bending strength. The fracture strains of CoNiCrAlY thermally treated in vacuum were higher than those of CoNiCrAlY treated in atmosphere. It was found that higher thermal treatment in vacuum was the most effective in increasing the fracture strain.

  2. Large-diameter carbon-composite monofilaments. [production method and characteristics of carbon composite monofilaments

    NASA Technical Reports Server (NTRS)

    Bradshaw, W. G.; Pinoli, P. C.; Karlak, R. F.

    1974-01-01

    Large-diameter carbon composite monofilaments with high strength and high modulus were produced by pregging multifiber carbon bundles with suitable organic resins and pyrolysing them together. Two approaches were developed to increase the utilization of fiber tensile strength by minimizing stress concentration defects induced by dissimilar shrinkage during pyrolysis. These were matrix modification to improve char yield and strain-to-failure and fiber-matrix copyrolysis to alleviate matrix cracking. Highest tensile strength and modulus were obtained by heat treatments to 2873 K to match fiber and matrix strain-to-failure and develop maximum monofilament tensile-strength and elastic modulus.

  3. Mechanical, lattice dynamical and electronic properties of CeO2 at high pressure: First-principles studies

    NASA Astrophysics Data System (ADS)

    Li, Mei; Jia, Huiling; Li, Xueyan; Liu, Xuejie

    2016-01-01

    The elastic constants (Cij), bulk modulus (B), shear modulus (G) and elastic modulus (E) of cubic fluorite CeO2 under high pressure have been studied using the plane-wave pseudopotential method based on density functional theory. The calculated results show that the mechanical properties (Cij, B, G and E) of CeO2 increase with increasing pressure, and the phase transition of CeO2 occurs beyond the pressure of 130 GPa. From the calculated phonon spectrum using Parlinsk-Li-Kawasoe method, we found that CeO2 appears imaginary frequency at 140 GPa, which indicates phase transition. The energy band, density of states and charge density of CeO2 under high pressure are calculated using GGA+U method. It is found that the high pressure makes the electron delocalization and Ce-O covalent bonding enhanced. As pressure increases, the band gap between O2p and Ce4f states near the Fermi level increases, and CeO2 nonmetallic nature promotes. The present research results in a better understanding of how CeO2 responds to compression.

  4. First-principles investigation of mechanical and electronic properties of tetragonal NbAl3 under tension

    NASA Astrophysics Data System (ADS)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2018-06-01

    Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.

  5. Mechanical properties of graphene oxides.

    PubMed

    Liu, Lizhao; Zhang, Junfeng; Zhao, Jijun; Liu, Feng

    2012-09-28

    The mechanical properties, including the Young's modulus and intrinsic strength, of graphene oxides are investigated by first-principles computations. Structural models of both ordered and amorphous graphene oxides are considered and compared. For the ordered graphene oxides, the Young's modulus is found to vary from 380 to 470 GPa as the coverage of oxygen groups changes, respectively. The corresponding variations in the Young's modulus of the amorphous graphene oxides with comparable coverage are smaller at 290-430 GPa. Similarly, the ordered graphene oxides also possess higher intrinsic strength compared with the amorphous ones. As coverage increases, both the Young's modulus and intrinsic strength decrease monotonically due to the breaking of the sp(2) carbon network and lowering of the energetic stability for the ordered and amorphous graphene oxides. In addition, the band gap of the graphene oxide becomes narrower under uniaxial tensile strain, providing an efficient way to tune the electronic properties of graphene oxide-based materials.

  6. Material modeling of biofilm mechanical properties.

    PubMed

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Synthesis and characterization of novel thermoplastic elastomers employing polyhedral oligomeric silsesquioxane physical crosslinks

    NASA Astrophysics Data System (ADS)

    Seurer, Bradley

    Polyhedral oligomeric silsesquioxanes (POSS) are molecularly precise isotropic particles with average diameters of 1-2 nm. A typical T 8 POSS nanoparticle has an inorganic Si8O12 core surrounded by eight aliphatic or aromatic groups attached to the silicon vertices of the polyhedron promoting solubility in conventional solvents. Previously, efficient synthetic methods have been developed whereby one of the aliphatic groups on the periphery is substituted by a functional group capable of undergoing either homo- or copolymerization. In the current investigations, preparative methods for the chemical incorporation of POSS macromonomers in a series elastomers have been developed. Analysis of the copolymers using WAXD reveals that pendant POSS groups off the polymer backbones aggregate, and can crystallize as nanocrystals. From both line-broadening of the diffraction maxima, and also the oriented diffraction in a drawn material, the individual POSS sub-units are crystallizing as anisotropically shaped crystallites. The formation of POSS particle aggregation is strongly dependent on the nature of the polymeric matrix and the POSS peripheral group. X-ray studies show aggregation of POSS in ethylene-propylene elastomers occurred only with a phenyl periphery, whereas POSS particles with isobutyl and ethyl peripheries disperse within the polymer matrix. By altering the polymer matrix to one containing chain repulsive fluorine units, aggregation is observed with both the phenyl and isobutyl peripheries. Altering the polymer chain to poly(dimethylcyclooctadiene), POSS aggregates with isobutyl, ethyl, cyclopentyl, and phenyl peripheries. The formation of POSS nanocrystals increases the mechanical properties of these novel thermoplastic elastomers, including an increase in the tensile storage modulus and formation of a rubbery plateau region. Tensile tests of these elastomers show an increase in elastic modulus with increasing POSS loading. The elongation at break was as high as 720%. Cyclic tensile test show some hysteresis of the elastomers. However, the curves show Mullins effect behavior, commonly seen in elastomers. Elastomers with POSS dispersion, however, show poor mechanical properties. These results demonstrate the novel material property gains by the incorporation and aggregation of POSS in thermoplastic elastomers, as well as the influence of the POSS periphery.

  8. Development of model hydroxyapatite bone scaffolds with multiscale porosity for potential load bearing applications

    NASA Astrophysics Data System (ADS)

    Dellinger, Jennifer Gwynne

    2005-11-01

    Model hydroxyapatite (HA) bone scaffolds consisting of a latticed pattern of rods were fabricated by a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. An optimal HA paste formulation for this method was developed. Local porosity, i.e. microporosity (1--30 mum) and sintering porosity (less than 1 mum), were produced by including polymer microsphere porogens in the HA pastes and by controlling the sintering of the scaffolds. Scaffolds with and without local porosity were evaluated with and without in vitro accelerated degradation. Percent weight loss of the scaffolds and calcium and phosphorus concentrations in solution increased with degradation time. After degradation, compressive strength and modulus decreased significantly for scaffolds with local porosity, but did not change significantly for scaffolds without local porosity. The compressive strength and modulus of scaffolds without local porosity were comparable to human cortical bone and were significantly greater than the scaffolds with local porosity. Micropores in HA disks caused surface pits that increased the surface roughness as compared to non-microporous HA disks. Mouse mesenchymal stem cells extended their cell processes into these microporous pits on HA disks in vitro. ALP expression was prolonged, cell attachment strength increased, and ECM production appeared greater on microporous HA disks compared to non-microporous HA disks and tissue culture treated polystyrene controls. Scaffolds with and without microporosity were implanted in goats bones. Microporous scaffolds with rhBMP-2 increased the percent of the scaffold filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone inside scaffolds was aligned near the rods junctions whereas lamellar bone was aligned in a more random configuration away from the rod junctions. Microporous scaffolds stained darkly with toluidine blue beneath areas of contact with new bone. This staining might indicate either extracellular matrix (ECM) in the rods or dye bound to the degrading scaffold. Although the presence of microporous topography alone did not influence bone healing in vivo, micropores were shown to provide tailorability of scaffold mechanical properties, provide a location for the storage and controlled release of a growth factor, and provide a location for bone integration inside the scaffold rods.

  9. Yielding in a strongly aggregated colloidal gel: 2D simulations and theory

    NASA Astrophysics Data System (ADS)

    Roy, Saikat; Tirumkudulu, Mahesh

    2015-11-01

    We investigated the micro-structural details and the mechanical response under uniaxial compression of the strongly aggregating gel starting from low to high packing fraction.The numerical simulations account for short-range inter-particle attractions, normal and tangential deformation at particle contacts,sliding and rolling friction, and preparation history. It is observed that in the absence of rolling resistance(RR),the average coordination number varies only slightly with compaction whereas it is significant in the presence of RR. The particle contact distribution is isotropic throughout the consolidation process. In both cases, the yield strain is constant with the volume fraction. The modulus values are very similar at different attraction, and with and without RR implying that the elastic modulus does not scale with attraction.The modulus was found to be a weak function of the preparation history. The increase in yield stress with volume fraction is a consequence of the increased elastic modulus of the network. However, the yield stress scales similarly both with and without RR. The power law exponent of 5.4 is in good agreement with previous simulation results. A micromechanical theory is also proposed to describe the stress versus strain relation for the gelled network.

  10. Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature

    DOE PAGES

    Lipp, M. J.; Jenei, Zs.; Cynn, H.; ...

    2017-10-31

    Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less

  11. Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipp, M. J.; Jenei, Zs.; Cynn, H.

    Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less

  12. Silk-based anisotropical 3D biotextiles for bone regeneration.

    PubMed

    Ribeiro, Viviana P; Silva-Correia, Joana; Nascimento, Ana I; da Silva Morais, Alain; Marques, Alexandra P; Ribeiro, Ana S; Silva, Carla J; Bonifácio, Graça; Sousa, Rui A; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2017-04-01

    Bone loss in the craniofacial complex can been treated using several conventional therapeutic strategies that face many obstacles and limitations. In this work, novel three-dimensional (3D) biotextile architectures were developed as a possible strategy for flat bone regeneration applications. As a fully automated processing route, this strategy as potential to be easily industrialized. Silk fibroin (SF) yarns were processed into weft-knitted fabrics spaced by a monofilament of polyethylene terephthalate (PET). A comparative study with a similar 3D structure made entirely of PET was established. Highly porous scaffolds with homogeneous pore distribution were observed using micro-computed tomography analysis. The wet state dynamic mechanical analysis revealed a storage modulus In the frequency range tested, the storage modulus values obtained for SF-PET scaffolds were higher than for the PET scaffolds. Human adipose-derived stem cells (hASCs) cultured on the SF-PET spacer structures showed the typical pattern for ALP activity under osteogenic culture conditions. Osteogenic differentiation of hASCs on SF-PET and PET constructs was also observed by extracellular matrix mineralization and expression of osteogenic-related markers (osteocalcin, osteopontin and collagen type I) after 28 days of osteogenic culture, in comparison to the control basal medium. The quantification of convergent macroscopic blood vessels toward the scaffolds by a chick chorioallantoic membrane assay, showed higher angiogenic response induced by the SF-PET textile scaffolds than PET structures and gelatin sponge controls. Subcutaneous implantation in CD-1 mice revealed tissue ingrowth's accompanied by blood vessels infiltration in both spacer constructs. The structural adaptability of textile structures combined to the structural similarities of the 3D knitted spacer fabrics to craniofacial bone tissue and achieved biological performance, make these scaffolds a possible solution for tissue engineering approaches in this area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.

    PubMed

    Cao, Ye; Lee, Bae Hoon; Peled, Havazelet Bianco; Venkatraman, Subbu S

    2016-10-01

    Biosynthetic poly(ethylene glycol) (PEG)-based hydrogels have been extensively investigated as extracellular matrix (ECM) mimicking gels as they retain the benefits of both ECM (biological cues) and synthetic hydrogels (tunable mechanical properties). In this article, we developed and characterized a new gelatin-PEG (GP) hydrogel that retains the benefits of gelatin and synthetic hydrogels. In this strategy, the thiolation of gelatin was accomplished by reacting with Traut's reagent; the thiolated gelatin was then conjugated to one end of PEG diacrylate (PEGDA) by Michael-type addition reaction. Two kinds of GP precursors, GP30 and GP60, were synthesized by changing the amount of Traut's reagent, while the weight ratio between thiolated-gelatin and PEGDA of GP30 and GP60 was 1.451:1 and 0.785:1, respectively. Finally, neonatal human dermal fibroblasts were encapsulated into the hydrogel by cross-linking the remaining double bonds of precursor under ultraviolet light. These GP hydrogels can encapsulate the fibroblasts in situ with high cell viability. Moreover, the behaviors of cells within the GP hydrogels can be modulated by varying the cross-linking density of GP hydrogel (storage modulus from 40 to 2000 Pa). In particular, this article showed that a minimum amount of cell-binding motifs (gelatin >2.30 wt/vol % and 44.0% dry weight percentage) are required for attachment; and appropriate initial rheological and structural properties (storage modulus <∼100 Pa and mesh size >∼150 nm) can accelerate the attachment of cells and improve cell viability. Hence, this mixed-hydrogel platform allows an easily control hydrogel structure and modulates cell behavior to reconstruct new tissue in the three-dimensional microenvironments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2401-2411, 2016. © 2016 Wiley Periodicals, Inc.

  14. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties.

    PubMed

    Barcellos, Daphne Câmara; Fonseca, Beatriz Maria; Pucci, César Rogério; Cavalcanti, Bruno das Neves; Persici, Erasmo De Souza; Gonçalves, Sérgio Eduardo de Paiva

    2016-07-01

    This study assessed a 6 month resin/dentin bond's durability and cytotoxic effect of Zn-doped model dentin adhesives. The mechanical and physicochemical properties were also tested. A model etch-and-rinse single-bottle adhesive was formulated (55wt.% Bis-GMA, 45wt.% HEMA, 0.5wt.% CQ, 0.5wt.% DMAEMA) and Zinc methacrylate (Zn-Mt) or ZnO nanoparticles (ZnOn) were added to the model's adhesive, resulting in three groups: Group Control (control model adhesive); Group Zn-Mt (1wt.% Zn-Mt incorporated to adhesive) and Group ZnOn (1wt.% ZnOn incorporated to adhesive). The microtensile bond strength (mTBS) was assessed after 24h or 6 months in water storage. Mechanical properties (diametral tensile strength/DTS, flexural strength/FS, flexural modulus/FM, resilience modulus/RM, and compressive strength/CS) and physicochemical properties (polymerization shrinkage/PS, contact angle/CA, water sorption/WS, and water solubility/WS) were also tested. Cytotoxicity was evaluated with SRB biochemical assay. No significant difference in the DTS, FS, FM, CS, CA, WS, and WS were found when 1% of ZnOn or Zn-Mt was added to the model dentin adhesive. Group Zn-Mt decreased the RM of adhesive. Groups Zn-Mt and ZnOn decreased the PS of adhesives. Group ZnOn reduced the cytotoxicity of adhesive. Group ZnOn preserved mTBS after 6 months storage without degradation areas as seen by SEM analysis. The 1wt.% ZnOn may preserve the integrity of the hybrid layer and may reduce cytotoxicity and polymerization shrinkage of model dentin adhesive. The addition of Zn-Mt to the adhesive had no beneficial effects. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  15. Relationships between Perceptual Attributes and Rheology in Over-the-Counter Vaginal Products: A Potential Tool for Microbicide Development

    PubMed Central

    Mahan, Ellen D.; Zaveri, Toral; Ziegler, Gregory R.; Hayes, John E.

    2014-01-01

    Vaginal microbicides are believed to have substantial potential to empower women to protect themselves from HIV, although clinical trials to date have had mixed results at best. Issues with patient adherence in these trials suggest additional emphasis should be placed on optimizing acceptability. Acceptability is driven, in part, by the sensory properties of the microbicide, so better understanding of the relationships between sensory properties and the physical and rheological properties of microbicides should facilitate the simultaneous optimization of sensory properties in parallel with the biophysical properties required for drug deployment. Recently, we have applied standard methods to assess the potential acceptability of microbicide prototypes ex vivo and to quantify the sensory properties of microbicide surrogates. Here, we link quantitative perceptual data to the rheological properties of 6 over-the counter (OTC) vaginal products used as ex vivo microbicide surrogates. Shear-thinning behavior (n) and tan δ (10 rad/s) showed no relationship with any perceptual attributes while shear storage modulus, G’ (10 rad/s) was correlated with some attributes, but did not appear to be a strong predictor of sensory properties. Conversely, the storage loss modulus, G” (10 rad/s) and the consistency coefficient, K, were correlated with several sensory attributes: stickiness, rubberiness, and uniform thickness for G’’ and stickiness, rubberiness, and peaking for K. Although these relationships merit confirmation in later studies, this pilot study suggests rheological principles can be used to understand the sensory properties evoked by microbicide surrogates assessed ex vivo. Additional work is needed to determine if these findings would apply for microbicides in vivo. PMID:25188244

  16. Bone Density and Cortical Structure after Pediatric Renal Transplantation

    PubMed Central

    Terpstra, Anniek M.; Kalkwarf, Heidi J.; Shults, Justine; Zemel, Babette S.; Wetzsteon, Rachel J.; Foster, Bethany J.; Strife, C. Frederic; Foerster, Debbie L.

    2012-01-01

    The impact of renal transplantation on trabecular and cortical bone mineral density (BMD) and cortical structure is unknown. We obtained quantitative computed tomography scans of the tibia in pediatric renal transplant recipients at transplantation and 3, 6, and 12 months; 58 recipients completed at least two visits. We used more than 700 reference participants to generate Z-scores for trabecular BMD, cortical BMD, section modulus (a summary measure of cortical dimensions and strength), and muscle and fat area. At baseline, compared with reference participants, renal transplant recipients had significantly lower mean section modulus and muscle area; trabecular BMD was significantly greater than reference participants only in transplant recipients younger than 13 years. After transplantation, trabecular BMD decreased significantly in association with greater glucocorticoid exposure. Cortical BMD increased significantly in association with greater glucocorticoid exposure and greater decreases in parathyroid hormone levels. Muscle and fat area both increased significantly, but section modulus did not improve. At 12 months, transplantation associated with significantly lower section modulus and greater fat area compared with reference participants. Muscle area and cortical BMD did not differ significantly between transplant recipients and reference participants. Trabecular BMD was no longer significantly elevated in younger recipients and was low in older recipients. Pediatric renal transplant associated with persistent deficits in section modulus, despite recovery of muscle, and low trabecular BMD in older recipients. Future studies should determine the implications of these data on fracture risk and identify strategies to improve bone density and structure. PMID:22282589

  17. Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films

    PubMed Central

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H.; Jayasuriya, A. Champa

    2016-01-01

    The aim of this study is to determine the nano and micro mechanical properties for uncross-linked and cross-linked chitosan films. Specifically, we looked at nanoindentation hardness, microhardness, and elastic modulus. It is important to study the nano and microscale mechanical properties of chitosan since chitosan has been widely used for biomedical applications. Using the solvent-cast method, the chitosan films were prepared at room temperature on the cleaned glass plates. The chitosan solution was prepared by dissolving chitosan in acetic acid 1% (v/v). Tripolyphosphate (TPP) was used to create the cross-links between amine groups in chitosan and phosphate groups in TPP. In this study, atomic force microscopy was used to measure the nanoindentation hardness and surface topography of the uncross-linked and cross-linked chitosan films. Elastic modulus was then calculated from the nanoindentation results. The effective elastic modulus was determined by microhardness with some modifications to previous theories. The microhardness of the chitosan films were measured using Vicker’s hardness meter under three different loads. Our results show that the microhardness and elastic modulus for cross-linked chitosan films are higher than the uncross-linked films. However, the cross-linked chitosan films show increased brittleness when compared to uncross-linked films. By increasing the load magnitude, the microhardness increases for both uncross-linked and cross-linked chitosan films. PMID:22100082

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdova, Maria; Liu, Xuwen; Franssila, Sami, E-mail: sami.franssila@aalto.fi

    The investigation of mechanical properties of atomic layer deposition HfO{sub 2} films is important for implementing these layers in microdevices. The mechanical properties of films change as a function of composition and structure, which accordingly vary with deposition temperature and post-annealing. This work describes elastic modulus, hardness, and wear resistance of as-grown and annealed HfO{sub 2}. From nanoindentation measurements, the elastic modulus and hardness remained relatively stable in the range of 163–165 GPa and 8.3–9.7 GPa as a function of deposition temperature. The annealing of HfO{sub 2} caused significant increase in hardness up to 14.4 GPa due to film crystallization and densification. Themore » structural change also caused increase in the elastic modulus up to 197 GPa. Wear resistance did not change as a function of deposition temperature, but improved upon annealing.« less

  19. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    PubMed

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Surface topography, nano-mechanics and secondary structure of wheat gluten pretreated by alternate dual-frequency ultrasound and the correlation to enzymolysis.

    PubMed

    Zhang, Yanyan; Wang, Bei; Zhou, Cunshan; Atungulu, Griffiths G; Xu, Kangkang; Ma, Haile; Ye, Xiaofei; Abdualrahman, Mohammed A Y

    2016-07-01

    The effects of alternate dual-frequency ultrasound (ADFU) pretreatment on the degree of hydrolysis (DH) of wheat gluten (WG) and angiotensin I-converting enzyme (ACE) inhibitory activity were investigated in this research. The surface topography, nano-mechanics and secondary structure of WG were also determined using atomic force microscope (AFM) and circular dichroism (CD). The correlations of ACE inhibitory activity and DH with surface topography, nano-mechanics and secondary structure of WG were determined using Pearson's correlation analysis. The results showed that with an increase in either pretreatment duration or power, the ACE inhibitory activity of the hydrolysate also increases, reaching maximum at 10 min and 150 W/L, respectively, and then decreases thereafter. Similarly, AFM analysis showed that as the pretreatment duration or power increases, the surface roughness also increase and again a decrease occurs thereafter. As the pretreatment duration or power increased, the Young's modulus and adhesion of WG also increased and then declined. Young's modulus and adhesions average values were compared with ACE inhibitory activity reversely. The result of the CD spectra analysis exhibited losses in the relative percentage of α-helix of WG. Pearson's correlation analysis showed that the average values of Young's modulus and the relative percentage of α-helix correlated with ACE inhibitory activity of the hydrolysates linearly and significantly (P<0.05); the relative percentage of β-sheet correlated linearly with DH of WG significantly (P<0.05). In conclusion, ADFU pretreatment is an efficient method in proteolysis due to its physical and chemical effect on the Young's modulus, α-helix and β-sheet of WG. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanna, V.; Olson, R.A.; Jennings, H.M.

    The effects of drying on mortars containing Portland cement blended with fly ash or slag on the shrinkage, extent of surface cracking, pore size distribution as measured by mercury intrusion porosimetry, flexural strength, fracture toughness, and Young`s modulus are reported. Specimens were exposed to conditions of 100% relative humidity (RH), 50% RH, and/or oven-drying at 105 C. Drying coarsened the pore structure and increased the density of surface cracks, but surprisingly increased the flexural strength and the fracture toughness, and as anticipated lowered the Young`s modulus. This was regardless of the content of mineral admixture.

  3. Evaluation of mechanical and transport properties of Zr2CoSi Heusler alloy

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Khandy, S. A.; Bhat, T. M.; Gupta, D. C.

    2017-05-01

    Systematic investigation of mechanical and transport properties of Zr2CoSi within the density functional theory have been analysed. From the elastic constants, the shear modulus, Young's modulus, Poisson's ratio, we conclude the ductile nature of alloy. Thermoelectric properties show that Zr2CoSi as an n-type thermoelectric material with a higher increase in Seebeck coefficient with temperature. Further the power factor analysis confirms the heavily doping of the alloy fruitful for increase in thermoelectric performance and its use for the future thermoelectric spin generators.

  4. Mechanical interaction between neighboring muscles in human upper limb: Evidence for epimuscular myofascial force transmission in humans.

    PubMed

    Yoshitake, Yasuhide; Uchida, Daiki; Hirata, Kosuke; Mayfield, Dean L; Kanehisa, Hiroaki

    2018-06-06

    To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Influence of Cofermentation by Amylolytic Lactobacillus plantarum and Lactococcus lactis Strains on the Fermentation Process and Rheology of Sorghum Porridge

    PubMed Central

    Byaruhanga, Yusuf B.; Muyanja, Charles M. B. K.; Aijuka, Matthew; Schüller, Reidar B.; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A.

    2012-01-01

    Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G′), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials. PMID:22610432

  6. Influence of cofermentation by amylolytic Lactobacillus plantarum and Lactococcus lactis strains on the fermentation process and rheology of sorghum porridge.

    PubMed

    Mukisa, Ivan M; Byaruhanga, Yusuf B; Muyanja, Charles M B K; Aijuka, Matthew; Schüller, Reidar B; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A

    2012-08-01

    Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G'), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials.

  7. Rheological Behaviors of Thickened Infant Formula Prepared with Xanthan Gum-Based Food Thickeners for Dysphagic Infants.

    PubMed

    Yoon, Sung-No; Yoo, Byoungseung

    2017-06-01

    Thickened infant formula (TIF) prepared with commercial xanthan gum (XG)-based food thickeners are commonly used to care for infants with swallowing difficulties or regurgitation. In this study, the rheological properties of TIF prepared with four commercial food thickeners (coded A-D) were determined as a function of thickener concentration, thickener type, and setting time because the selection of an appropriate food thickener for TIF preparation is necessary for managing dysphagia in infants. The flow and dynamic rheological properties of TIF were investigated at three different concentrations (1.0, 2.0, and 3.0% w/w) of XG-based thickener. The flow properties of TIF were described by the power law and Casson models. All TIF samples demonstrated high shear-thinning (n = 0.12-0.33) behavior at all concentrations (1.0-3.0%). Their apparent viscosity (η a,50 ), consistency index (K), yield stress (σ oc ), storage modulus (G'), and loss modulus (G″) increased with an increase in thickener concentration. In general, TIF with thickener A had much higher values for all flow parameters at each thickener concentration when compared to TIF with other thickeners (B, C, and D). However, the n values of TIF samples with thickener A were much lower, indicating that they are less slimy and have better mouthfeel than those of TIF samples with other thickeners. All TIF samples with different thickeners produced different thickening patterns over a setting time. The flow and dynamic rheological parameters demonstrated differences in the rheological behaviors between XG-based thickeners, indicating that their rheological properties are related to the concentration and type of thickener as well as the setting time. These results suggest the importance of considering not only the concentration and type of thickeners but also the time being administered after its addition to effectively treat dysphagic infants. In addition, selecting an appropriate commercial food thickener appears to be of great importance for the safe and easy swallowing of dysphagic infants.

  8. Determination of correlation between backflow volume and mitral valve leaflet young modulus from two dimensional echocardiogram images

    NASA Astrophysics Data System (ADS)

    Jong, Rudiyanto P.; Osman, Kahar; Adib, M. Azrul Hisham M.

    2012-06-01

    Mitral valve prolapse without proper monitoring might lead to a severe mitral valve failure which eventually leads to a sudden death. Additional information on the mitral valve leaflet condition against the backflow volume would be an added advantage to the medical practitioner for their decision on the patients' treatment. A study on two dimensional echocardiography images has been conducted and the correlations between the backflow volume of the mitral regurgitation and mitral valve leaflet Young modulus have been obtained. Echocardiogram images were analyzed on the aspect of backflow volume percentage and mitral valve leaflet dimensions on different rates of backflow volume. Young modulus values for the mitral valve leaflet were obtained by using the principle of elastic deflection and deformation on the mitral valve leaflet. The results show that the backflow volume increased with the decrease of the mitral valve leaflet Young modulus which also indicate the condition of the mitral valve leaflet approaching failure at high backflow volumes. Mitral valve leaflet Young modulus values obtained in this study agreed with the healthy mitral valve leaflet Young modulus from the literature. This is an initial overview of the trend on the prediction of the behaviour between the fluid and the structure of the blood and the mitral valve which is extendable to a larger system of prediction on the mitral valve leaflet condition based on the available echocardiogram images.

  9. Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick

    2017-04-01

    The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an important role in controlling strength anisotropy in porous sandstones. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  10. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide.

    PubMed

    Zhong, Rui; Zhang, Zhao; Zhao, Hongguo; He, Xianru; Wang, Xin; Zhang, Rui

    2018-05-30

    Graphene oxide (GO), modified with anti-aging agent p -phenylenediamine (PPD), was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G') and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn⁻Wall⁻Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO⁻PPD. In addition, mechanical properties (tensile strength and elongation at break) of both before and after aged NBR/GO⁻PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  11. Rheology of Membrane-Attached Minimal Actin Cortices.

    PubMed

    Nöding, Helen; Schön, Markus; Reinermann, Corinna; Dörrer, Nils; Kürschner, Aileen; Geil, Burkhard; Mey, Ingo; Heussinger, Claus; Janshoff, Andreas; Steinem, Claudia

    2018-04-26

    The actin cortex is a thin cross-linked network attached to the plasma membrane, which is responsible for the cell's shape during migration, division, and growth. In a reductionist approach, we created a minimal actin cortex (MAC) attached to a lipid membrane to correlate the filamentous actin architecture with its viscoelastic properties. The system is composed of a supported 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine bilayer doped with the receptor lipid phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P 2 ) to which a constitutively active mutant of ezrin, which is a direct membrane-cytoskeleton linker, is bound. The formation of the MAC on the supported lipid bilayer is analyzed as a function of increasing PtdIns(4,5)P 2 /ezrin pinning points, revealing an increase in the intersections between actin filaments, that is, the node density of the MAC. Bead tracking microrheology on the membrane-attached actin network provides information about its viscoelastic properties. The results show that ezrin serves as a dynamic cross-linker for the actin cortex attached to the lipid bilayer and that the stiffness of the network is influenced by the pinning point density, relating the plateau storage modulus G 0 to the node density of the MAC.

  12. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    PubMed

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  13. Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers.

    PubMed

    Fogelström, Linda; Malmström, Eva; Johansson, Mats; Hult, Anders

    2010-06-01

    The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this through the introduction of an unmodified nanoclay, montmorillonite (Na(+)MMT), in a polymer resin based on the hyperbranched polyester Boltorn H30. Smooth and transparent films were prepared from both the neat and the nanoparticle-filled hyperbranched resins. X-ray diffraction (XRD) and transmission electron microscopy (TEM) corroborated a mainly exfoliated structure in the nanocomposite films, which was also supported by results from dynamic mechanical analysis (DMA). Furthermore, DMA measurements showed a 9-16 degrees C increase in Tg and a higher storage modulus-above and below the T(g)-both indications of a more cross-linked network, for the clay-containing film. Thermogravimetric analysis (TGA) demonstrated the influence of the nanofiller on the thermal properties of the nanocomposites, where a shift upward of the decomposition temperature in oxygen atmosphere is attributed to the improved barrier properties of the nanoparticle-filled materials. Conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, with the introduction of clay, and all coatings exhibited excellent chemical resistance and adhesion.

  14. Physical and chemical properties of some new perfluoropolyalkylether lubricants prepared by direct fluorination

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Bierschenk, T. R.; Juhlke, T. J.; Kawa, H.; Lagow, R. J.

    1993-01-01

    A series of perfluoropolyalkylether (PFPAE) fluids was synthesized by direct fluorination. Viscosity-temperature properties, oxidation stabilities, oxidation-corrosion properties, bulk modulus, lubricity, surface tension and density were measured. It was shown that as the carbon to oxygen ratio in the polymer repeating unit decreases, the viscometric properties improve, the fluids may become poorer boundary lubricants, the bulk modulus increases, the surface tension increases and the fluid density increases. The presence of difluoromethylene oxide units in the polymer does not significantly lower the oxidation and oxidation-corrosion stabilities as long as the difluoromethylene oxide units are separated by other units.

  15. Effect of extraoral aging conditions on mechanical properties of maxillofacial silicone elastomer.

    PubMed

    Hatamleh, Muhanad M; Polyzois, Gregory L; Silikas, Nick; Watts, David C

    2011-08-01

    The purpose of this study was to investigate the effect of extraoral human and environmental conditions on the mechanical properties (tensile strength and modulus, elongation, tear strength hardness) of maxillofacial silicone elastomer. Specimens were fabricated using TechSil-S25 silicone elastomer (Technovent Ltd, Leeds, UK). Eight groups were prepared (21 specimens in each group; eight tensile, eight tear, five hardness) and conditioned differently as follows (groups 1 through 8): Dry storage for 24 hours; dry storage in dark for 6 months; storage in simulated sebum solution for 6 months; storage in simulated acidic perspiration for 6 months; accelerated artificial daylight aging under controlled moisture for 360 hours; outdoor weathering for 6 months; storage in antimicrobial silicone-cleaning solution for 30 hours; and mixed conditioning of sebum storage and light aging for 360 hours. The conditioning period selected simulated a prosthesis being in service for up to 12 months. Tensile and tear test specimens were fabricated and tested according to the International Standards Organization (ISO) standards no. 37 and 34, respectively. Shore A hardness test specimens were fabricated and tested according to the American Standards for Testing and Materials (ASTM) D 2240. Data were analyzed with one-way ANOVA, Bonferroni, and Dunnett's T3 post hoc tests (p < 0.05). Weibull analysis was also used for tensile strength and tear strength. Statistically significant differences were evident among all properties tested. Mixed conditioning of simulated sebum storage under accelerated artificial daylight aging significantly degraded mechanical properties of the silicone (p < 0.05). Mechanical properties of maxillofacial elastomers are adversely affected by human and environmental factors. Mixed aging of storage in simulated sebum under accelerated daylight aging was the most degrading regime. Accelerated aging of silicone specimens in simulated sebum under artificial daylight for 12 months of simulated clinical service greatly affected functional properties of silicone elastomer; however, in real practice, the effect is modest, since sebum concentration is lower, and daylight is less concentrated. © 2011 by The American College of Prosthodontists.

  16. The effect of porosity on the mechanical properties of porous titanium scaffolds: comparative study on experimental and analytical values

    NASA Astrophysics Data System (ADS)

    Khodaei, Mohammad; Fathi, Mohammadhossein; Meratian, Mahmood; Savabi, Omid

    2018-05-01

    Reducing the elastic modulus and also improving biological fixation to the bone is possible by using porous scaffolds. In the present study, porous titanium scaffolds containing different porosities were fabricated using the space holder method. Pore distribution, formed phases and mechanical properties of titanium scaffolds were studied by Scanning Electron Microscope (SEM), x-ray diffraction (XRD) and cold compression test. Then the results of compression test were compared to the Gibson-Ashby model. Both experimentally measured and analytically calculated elastic modulus of porous titanium scaffolds decreased by porosity increment. The compliance between experimentally measured and analytically calculated elastic modulus of titanium scaffolds are also increased by porosity increment.

  17. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  18. Effects of thermal and high hydrostatic pressure processing and storage on the content of polyphenols and some quality attributes of fruit smoothies.

    PubMed

    Keenan, Derek F; Brunton, Nigel; Gormley, Ronan; Butler, Francis

    2011-01-26

    The aim of the present study was the evaluation of high hydrostatic pressure (HHP) processing on the levels of polyphenolic compounds and selected quality attributes of fruit smoothies compared to fresh and mild conventional pasteurization processing. Fruit smoothie samples were thermally (P(70) > 10 min) or HHP processed (450 MPa/1, 3, or 5 min/20 °C) (HHP1, HHP3, and HHP5, respectively). The polyphenolic content, color difference (ΔE), sensory acceptability, and rheological (G'; G''; G*) properties of the smoothies were assessed over a storage period of 30 days at 4 °C. Processing had a significant effect (p < 0.001) on the levels of polyphenolic compounds in smoothies. However, this effect was not consistent for all compound types. HHP processed samples (HHP1 and HHP3) had higher (p < 0.001) levels of phenolic compounds, for example, procyanidin B1 and hesperidin, than HHP5 samples. Levels of flavanones and hydroxycinnamic acid compounds decreased (p < 0.001) after 30 days of storage at 2-4 °C). Decreases were particularly notable between days 10 and 20 (hesperidin) and days 20 and 30 (chlorogenic acid) (p < 0.001). There was a wide variation in ΔE values recorded over the 30 day storage period (p < 0.001), with fresh and thermally processed smoothies exhibiting lower color change than their HHP counterparts (p < 0.001). No effect was observed for the type of process on complex modulus (G*) data, but all smoothies became less rigid during the storage period (p < 0.001). Despite minor product deterioration during storage (p < 0.001), sensory acceptability scores showed no preference for either fresh or processed (thermal/HHP) smoothies, which were deemed acceptable (>3) by panelists.

  19. Mechanically switchable polymer fibers for sensing in biological conditions

    NASA Astrophysics Data System (ADS)

    McMillan, Sean; Rader, Chris; Jorfi, Mehdi; Pickrell, Gary; Foster, E. Johan

    2017-02-01

    The area of in vivo sensing using optical fibers commonly uses materials such as silica and polymethyl methacrylate, both of which possess much higher modulus than human tissue. The mechanical mismatch between materials and living tissue has been seen to cause higher levels of glial encapsulation, scarring, and inflammation, leading to failure of the implanted medical device. We present the use of a fiber made from polyvinyl alcohol (PVA) for use as an implantable sensor as it is an easy to work with functionalized polymer that undergoes a transition from rigid to soft when introduced to water. This ability to switch from stiff to soft reduces the severity of the immune response. The fabricated PVA fibers labeled with fluorescein for sensing applications showed excellent response to various stimuli while exhibiting mechanical switchability. For the dry fibers, a tensile storage modulus of 4700 MPa was measured, which fell sharply to 145 MPa upon wetting. The fibers showed excellent response to changing pH levels, producing values that were detectable in a range consistent with those seen in the literature and in proposed applications. The results show that these mechanically switchable fibers are a viable option for future sensing applications.

  20. Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens.

    PubMed

    Al-Enizi, Abdullah M; Ahamad, Tansir; Al-Hajji, Abdullah Baker; Ahmed, Jahangeer; Chaudhary, Anis Ahmad; Alshehri, Saad M

    2018-04-01

    In the present study, stable copper nanoparticles (CuNPs) were successfully prepared in the hydrogel matrix. The prepared nanocomposite (HCuNPs) was characterized via x-ray diffraction (XRD), electron microscopy (TEM), and energy-dispersive (EDX) and x-ray photoelectron spectroscopic (XPS) studies. The wide scan XPS spectra support the presence of C, N and O in neat hydrogel; while, the XPS spectra of HCuNPs demonstrate the presence of Cu along with C, N, and O elements. TEM studies show the formation of spherical shaped CuNPs in the size range from 7 to 12nm. The rheology results reveal that the storage modulus (G') of the HCuNPs was found to be higher than the loss modulus (G"). Additionally, the antibacterial activities and cytotoxic were carried out against urinary tract infection (UTI) microbes and HeLa (cervical) cells respectively. The antibacterial results reveal that HCuNPs composites show higher zone of inhibition against these pathogens then that of corresponding hydrogel matrix. The cytotoxic effects suggest that the prepared nanocomposite could be used as promising candidates for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

Top