DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelmutov, T.; Bakken, J.; Petravick, D.
Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and themore » Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.« less
User and group storage management the CMS CERN T2 centre
NASA Astrophysics Data System (ADS)
Cerminara, G.; Franzoni, G.; Pfeiffer, A.
2015-12-01
A wide range of detector commissioning, calibration and data analysis tasks is carried out by CMS using dedicated storage resources available at the CMS CERN Tier-2 centre. Relying on the functionalities of the EOS disk-only storage technology, the optimal exploitation of the CMS user/group resources has required the introduction of policies for data access management, data protection, cleanup campaigns based on access pattern, and long term tape archival. The resource management has been organised around the definition of working groups and the delegation to an identified responsible of each group composition. In this paper we illustrate the user/group storage management, and the development and operational experience at the CMS CERN Tier-2 centre in the 2012-2015 period.
Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Steven T., E-mail: sanderson@usgs.gov
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less
Cost implications of uncertainty in CO2 storage resource estimates: A review
Anderson, Steven T.
2017-01-01
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.
Resource Management and Risk Mitigation in Online Storage Grids
ERIC Educational Resources Information Center
Du, Ye
2010-01-01
This dissertation examines the economic value of online storage resources that could be traded and shared as potential commodities and the consequential investments and deployment of such resources. The value proposition of emergent business models such as Akamai and Amazon S3 in online storage grids is capacity provision and content delivery at…
Ouro-Koura, Abdou-Rahim; Sopoh, Emmanuel Ghislain; Sossa, Jerôme Charles; Glèlè-Ahanhanzo, Yolaine; Agueh, Victoire; Ouendo, Edgard-Marius; Ouedraogo, Laurent
2018-01-01
This study aimed to evaluate the performance of the logistics management system (LMS) of malaria control (MC) resources in the Littoral Department, Benin, in 2017. In June 2017, we conducted a cross-sectional evaluative study focusing on the structures for the storage and the disposal of MC resources as well as on staff involved in their management. The performance of the the logistics management system was evaluated on the basis of the observed compliance of the components and sub-components of the "Structure", the "Process" and the "Results" with the norms and standards defined by the Ministry of Health. A total of 36 structures were investigated and secondary target was surveyed. It followed that 52,78% of the structures for the storage and the disposal of MC resources met the requirements for resources storage while only 33.33% of MC resources management staff were trained in logistics management. The performance of the logistics management system of MC resources was inadequate (compliance 59,13 % compared to the expected score). The structure, as well as the process were non-compliant with the standards ( 60,20% and 73.22% compared to the expected score respectively), leading to negative results (41.53% compared to the expected score). The most inadequate sub-component was the logistics management information system (LMIS). This study highlights the role of LMS for better performance of MC resources management. Particular attention should be given to this component.
The INFN-CNAF Tier-1 GEMSS Mass Storage System and database facility activity
NASA Astrophysics Data System (ADS)
Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Favaro, Matteo; Gregori, Daniele; Prosperini, Andrea; Pezzi, Michele; Sapunenko, Vladimir; Zizzi, Giovanni; Vagnoni, Vincenzo
2015-05-01
The consolidation of Mass Storage services at the INFN-CNAF Tier1 Storage department that has occurred during the last 5 years, resulted in a reliable, high performance and moderately easy-to-manage facility that provides data access, archive, backup and database services to several different use cases. At present, the GEMSS Mass Storage System, developed and installed at CNAF and based upon an integration between the IBM GPFS parallel filesystem and the Tivoli Storage Manager (TSM) tape management software, is one of the largest hierarchical storage sites in Europe. It provides storage resources for about 12% of LHC data, as well as for data of other non-LHC experiments. Files are accessed using standard SRM Grid services provided by the Storage Resource Manager (StoRM), also developed at CNAF. Data access is also provided by XRootD and HTTP/WebDaV endpoints. Besides these services, an Oracle database facility is in production characterized by an effective level of parallelism, redundancy and availability. This facility is running databases for storing and accessing relational data objects and for providing database services to the currently active use cases. It takes advantage of several Oracle technologies, like Real Application Cluster (RAC), Automatic Storage Manager (ASM) and Enterprise Manager centralized management tools, together with other technologies for performance optimization, ease of management and downtime reduction. The aim of the present paper is to illustrate the state-of-the-art of the INFN-CNAF Tier1 Storage department infrastructures and software services, and to give a brief outlook to forthcoming projects. A description of the administrative, monitoring and problem-tracking tools that play a primary role in managing the whole storage framework is also given.
Digital Library Storage using iRODS Data Grids
NASA Astrophysics Data System (ADS)
Hedges, Mark; Blanke, Tobias; Hasan, Adil
Digital repository software provides a powerful and flexible infrastructure for managing and delivering complex digital resources and metadata. However, issues can arise in managing the very large, distributed data files that may constitute these resources. This paper describes an implementation approach that combines the Fedora digital repository software with a storage layer implemented as a data grid, using the iRODS middleware developed by DICE (Data Intensive Cyber Environments) as the successor to SRB. This approach allows us to use Fedoras flexible architecture to manage the structure of resources and to provide application- layer services to users. The grid-based storage layer provides efficient support for managing and processing the underlying distributed data objects, which may be very large (e.g. audio-visual material). The Rule Engine built into iRODS is used to integrate complex workflows at the data level that need not be visible to users, e.g. digital preservation functionality.
Earth Science Data Grid System
NASA Astrophysics Data System (ADS)
Chi, Y.; Yang, R.; Kafatos, M.
2004-12-01
The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.
Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz
2017-03-01
Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.
Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.
2015-01-01
Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.
A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies
NASA Technical Reports Server (NTRS)
Kobler, Ben; McCall, Fritz; Smorul, Mike
2006-01-01
The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.
Genetics Home Reference: Pompe disease
... Genetic Testing (2 links) Genetic Testing Registry: Glycogen storage disease type II, infantile Genetic Testing Registry: Glycogen storage disease, type II Other Diagnosis and Management Resources ( ...
An improved resource management model based on MDS
NASA Astrophysics Data System (ADS)
Yuan, Man; Sun, Changying; Li, Pengfei; Sun, Yongdong; He, Rui
2005-11-01
GRID technology provides a kind of convenient method for managing GRID resources. This service is so-called monitoring, discovering service. This method is proposed by Globus Alliance, in this GRID environment, all kinds of resources, such as computational resources, storage resources and other resources can be organized by MDS specifications. However, this MDS is a theory framework, particularly, in a small world intranet, in the case of limit of resources, the MDS has its own limitation. Based on MDS, an improved light method for managing corporation computational resources and storage resources is proposed in intranet(IMDS). Firstly, in MDS, all kinds of resource description information is stored in LDAP, it is well known although LDAP is a light directory access protocol, in practice, programmers rarely master how to access and store resource information into LDAP store, in such way, it limits MDS to be used. So, in intranet, these resources' description information can be stored in RDBMS, programmers and users can access this information by standard SQL. Secondly, in MDS, how to monitor all kinds of resources in GRID is not transparent for programmers and users. In such way, it limits its application scope, in general, resource monitoring method base on SNMP is widely employed in intranet, therefore, a kind of resource monitoring method based on SNMP is integrated into MDS. Finally, all kinds of resources in the intranet can be described by XML, and all kinds of resources' description information is stored in RDBMS, such as MySql, and retrieved by standard SQL, dynamic information for all kinds of resources can be sent to resource storage by SNMP, A prototype resource description, monitoring is designed and implemented in intranet.
Storage quality-of-service in cloud-based scientific environments: a standardization approach
NASA Astrophysics Data System (ADS)
Millar, Paul; Fuhrmann, Patrick; Hardt, Marcus; Ertl, Benjamin; Brzezniak, Maciej
2017-10-01
When preparing the Data Management Plan for larger scientific endeavors, PIs have to balance between the most appropriate qualities of storage space along the line of the planned data life-cycle, its price and the available funding. Storage properties can be the media type, implicitly determining access latency and durability of stored data, the number and locality of replicas, as well as available access protocols or authentication mechanisms. Negotiations between the scientific community and the responsible infrastructures generally happen upfront, where the amount of storage space, media types, like: disk, tape and SSD and the foreseeable data life-cycles are negotiated. With the introduction of cloud management platforms, both in computing and storage, resources can be brokered to achieve the best price per unit of a given quality. However, in order to allow the platform orchestrator to programmatically negotiate the most appropriate resources, a standard vocabulary for different properties of resources and a commonly agreed protocol to communicate those, has to be available. In order to agree on a basic vocabulary for storage space properties, the storage infrastructure group in INDIGO-DataCloud together with INDIGO-associated and external scientific groups, created a working group under the umbrella of the Research Data Alliance (RDA). As communication protocol, to query and negotiate storage qualities, the Cloud Data Management Interface (CDMI) has been selected. Necessary extensions to CDMI are defined in regular meetings between INDIGO and the Storage Network Industry Association (SNIA). Furthermore, INDIGO is contributing to the SNIA CDMI reference implementation as the basis for interfacing the various storage systems in INDIGO to the agreed protocol and to provide an official Open-Source skeleton for systems not being maintained by INDIGO partners.
Primary and Secondary Contamination Mechanisms in ASR Modeling and Design of Practical Management
Aquifer storage and recovery (ASR) is a useful water resource management option for water storage and reuse. Its increased use is recognized in adaptation to the ever increasing problem of water availability, both in timing and flow. Challenges in the ASR process may arise from...
Aquifer storage and recovery (ASR) is a useful water resource management option for water storage and reuse. Its increased use is recognized in adaptation to the ever increasing problem of water availability, both in timing and flow. Challenges in the ASR process may arise from...
Autonomic Management in a Distributed Storage System
NASA Astrophysics Data System (ADS)
Tauber, Markus
2010-07-01
This thesis investigates the application of autonomic management to a distributed storage system. Effects on performance and resource consumption were measured in experiments, which were carried out in a local area test-bed. The experiments were conducted with components of one specific distributed storage system, but seek to be applicable to a wide range of such systems, in particular those exposed to varying conditions. The perceived characteristics of distributed storage systems depend on their configuration parameters and on various dynamic conditions. For a given set of conditions, one specific configuration may be better than another with respect to measures such as resource consumption and performance. Here, configuration parameter values were set dynamically and the results compared with a static configuration. It was hypothesised that under non-changing conditions this would allow the system to converge on a configuration that was more suitable than any that could be set a priori. Furthermore, the system could react to a change in conditions by adopting a more appropriate configuration. Autonomic management was applied to the peer-to-peer (P2P) and data retrieval components of ASA, a distributed storage system. The effects were measured experimentally for various workload and churn patterns. The management policies and mechanisms were implemented using a generic autonomic management framework developed during this work. The experimental evaluations of autonomic management show promising results, and suggest several future research topics. The findings of this thesis could be exploited in building other distributed storage systems that focus on harnessing storage on user workstations, since these are particularly likely to be exposed to varying, unpredictable conditions.
RESOURCE MANAGEMENT AMONG INTENSIVE CARE NURSES: AN ETHNOGRAPHIC STUDY.
Heydari, Abbas; Najar, Ali Vafaee; Bakhshi, Mahmoud
2015-12-01
Nurses are the main users of supplies and equipment applied in the Intensive Care Units (ICUs) which are high-priced and costly. Therefore, understanding ICU nurses' experiences about resource management contributes to the better control of the costs. This study aimed to investigate the culture of nurses' working environment regarding the resource management in the ICUs in Iran. In this study, a focused ethnographic method was used. Twenty-eight informants among ICU nurses and other professional individuals were purposively selected and interviewed. As well, 400 hours of ethnographic observations as a participant observer was used for data gathering. Data analysis was performed using the methods described by Miles and Huberman (1994). Two main themes describing the culture of ICU nurses regarding resource management included (a) consumption monitoring and auditing, and (b) prudent use. The results revealed that the efforts for resource management are conducted in the conditions of scarcity and uncertainty in supply. ICU nurses had a sense of futurism in the supply and use of resources in the unit and do the planning through taking the rules and guidelines as well as the available resources and their values into account. Improper storage of some supplies and equipment was a reaction to this uncertain condition among nurses. To manage the resources effectively, improvement of supply chain management in hospital seems essential. It is also necessary to hold educational classes in order to enhance the nurses' awareness on effective supply chain and storage of the items in the unit stock.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Integrated waste management system costs in a MPC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supko, E.M.
1995-12-01
The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.
Notes on a storage manager for the Clouds kernel
NASA Technical Reports Server (NTRS)
Pitts, David V.; Spafford, Eugene H.
1986-01-01
The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.
FRIEDA: Flexible Robust Intelligent Elastic Data Management Framework
Ghoshal, Devarshi; Hendrix, Valerie; Fox, William; ...
2017-02-01
Scientific applications are increasingly using cloud resources for their data analysis workflows. However, managing data effectively and efficiently over these cloud resources is challenging due to the myriad storage choices with different performance, cost trade-offs, complex application choices and complexity associated with elasticity, failure rates in these environments. The different data access patterns for data-intensive scientific applications require a more flexible and robust data management solution than the ones currently in existence. FRIEDA is a Flexible Robust Intelligent Elastic Data Management framework that employs a range of data management strategies in cloud environments. FRIEDA can manage storage and data lifecyclemore » of applications in cloud environments. There are four different stages in the data management lifecycle of FRIEDA – (i) storage planning, (ii) provisioning and preparation, (iii) data placement, and (iv) execution. FRIEDA defines a data control plane and an execution plane. The data control plane defines the data partition and distribution strategy, whereas the execution plane manages the execution of the application using a master-worker paradigm. FRIEDA also provides different data management strategies, either to partition the data in real-time, or predetermine the data partitions prior to application execution.« less
FRIEDA: Flexible Robust Intelligent Elastic Data Management Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Devarshi; Hendrix, Valerie; Fox, William
Scientific applications are increasingly using cloud resources for their data analysis workflows. However, managing data effectively and efficiently over these cloud resources is challenging due to the myriad storage choices with different performance, cost trade-offs, complex application choices and complexity associated with elasticity, failure rates in these environments. The different data access patterns for data-intensive scientific applications require a more flexible and robust data management solution than the ones currently in existence. FRIEDA is a Flexible Robust Intelligent Elastic Data Management framework that employs a range of data management strategies in cloud environments. FRIEDA can manage storage and data lifecyclemore » of applications in cloud environments. There are four different stages in the data management lifecycle of FRIEDA – (i) storage planning, (ii) provisioning and preparation, (iii) data placement, and (iv) execution. FRIEDA defines a data control plane and an execution plane. The data control plane defines the data partition and distribution strategy, whereas the execution plane manages the execution of the application using a master-worker paradigm. FRIEDA also provides different data management strategies, either to partition the data in real-time, or predetermine the data partitions prior to application execution.« less
An approximate dynamic programming approach to resource management in multi-cloud scenarios
NASA Astrophysics Data System (ADS)
Pietrabissa, Antonio; Priscoli, Francesco Delli; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo
2017-03-01
The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers' requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.
RESOURCE MANAGEMENT AMONG INTENSIVE CARE NURSES: AN ETHNOGRAPHIC STUDY
Heydari, Abbas; Najar, Ali Vafaee; Bakhshi, Mahmoud
2015-01-01
Background: Nurses are the main users of supplies and equipment applied in the Intensive Care Units (ICUs) which are high-priced and costly. Therefore, understanding ICU nurses’ experiences about resource management contributes to the better control of the costs. Objectives: This study aimed to investigate the culture of nurses’ working environment regarding the resource management in the ICUs in Iran. Patients and Methods: In this study, a focused ethnographic method was used. Twenty-eight informants among ICU nurses and other professional individuals were purposively selected and interviewed. As well, 400 hours of ethnographic observations as a participant observer was used for data gathering. Data analysis was performed using the methods described by Miles and Huberman (1994). Results: Two main themes describing the culture of ICU nurses regarding resource management included (a) consumption monitoring and auditing, and (b) prudent use. The results revealed that the efforts for resource management are conducted in the conditions of scarcity and uncertainty in supply. ICU nurses had a sense of futurism in the supply and use of resources in the unit and do the planning through taking the rules and guidelines as well as the available resources and their values into account. Improper storage of some supplies and equipment was a reaction to this uncertain condition among nurses. Conclusions: To manage the resources effectively, improvement of supply chain management in hospital seems essential. It is also necessary to hold educational classes in order to enhance the nurses’ awareness on effective supply chain and storage of the items in the unit stock. PMID:26889097
Earth Science Data Grid System
NASA Astrophysics Data System (ADS)
Chi, Y.; Yang, R.; Kafatos, M.
2004-05-01
The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.
Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities
The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the
Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun
2012-01-01
Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-01
In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less
Hydro pumped storage, international experience: An overview of ASCE task committee report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarechian, A.H.; Rummel, G.
1995-12-31
This paper presents an overview of a report that is being prepared by ASCE Task Committee on Pumped Storage, International Experience. The reader is referred to the committee report that will be available in 1996. Many pumped storage projects in Europe, but particularly in Japan are becoming an indispensable resource in management of loads and resources on the electrical system. They serve to enhance reliability of the system and to provide for efficient utilization of thermal resources. Pumped storage is increasingly being used as a system management tool. To serve such purposes and to function in this key role, pumpedmore » storage projects are designed for very fast loading and unloading, for very fast mode reversals from pumping to generating and visa versa, for synchronous generation, and more importantly for load ramping during the pumping mode. This is achieved by use of variable-speed pump turbine units. The use of variable-speed units has proven so successful in Japan that many older projects are retrofitted with this new feature. Other interesting equipment applications are discussed including utilization of multi-stage unregulated pump turbines for very high heads (up to 1,250 m), and continued extension of the experience for high head reversible Francis unit, currently in excess of 750 m.« less
GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.
Moiwo, Juana Paul; Lu, Wenxi; Tao, Fulu
2012-01-01
Water storage depletion is a worsening hydrological problem that limits agricultural production in especially arid/semi-arid regions across the globe. Quantifying water storage dynamics is critical for developing water resources management strategies that are sustainable and protective of the environment. This study uses GRACE (Gravity Recovery and Climate Experiment), GLDAS (Global Land Data Assimilation System) and measured groundwater data products to quantify water storage in Western Jilin (a proxy for semi-arid wetland ecosystems) for the period from January 2002 to December 2009. Uncertainty/bias analysis shows that the data products have an average error <10% (p < 0.05). Comparisons of the storage variables show favorable agreements at various temporal cycles, with R(2) = 0.92 and RMSE = 7.43 mm at the average seasonal cycle. There is a narrowing soil moisture storage change, a widening groundwater storage loss, and an overall storage depletion of 0.85 mm/month in the region. There is possible soil-pore collapse, and land subsidence due to storage depletion in the study area. Invariably, storage depletion in this semi-arid region could have negative implications for agriculture, valuable/fragile wetland ecosystems and people's livelihoods. For sustainable restoration and preservation of wetland ecosystems in the region, it is critical to develop water resources management strategies that limit groundwater extraction rate to that of recharge rate.
Research on Key Technologies of Cloud Computing
NASA Astrophysics Data System (ADS)
Zhang, Shufen; Yan, Hongcan; Chen, Xuebin
With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.
Short-term storage allocation in a filmless hospital
NASA Astrophysics Data System (ADS)
Strickland, Nicola H.; Deshaies, Marc J.; Reynolds, R. Anthony; Turner, Jonathan E.; Allison, David J.
1997-05-01
Optimizing limited short term storage (STS) resources requires gradual, systematic changes, monitored and modified within an operational PACS environment. Optimization of the centralized storage requires a balance of exam numbers and types in STS to minimize lengthy retrievals from long term archive. Changes to STS parameters and work procedures were made while monitoring the effects on resource allocation by analyzing disk space temporally. Proportions of disk space allocated to each patient category on STS were measured to approach the desired proportions in a controlled manner. Key factors for STS management were: (1) sophisticated exam prefetching algorithms: HIS/RIS-triggered, body part-related and historically-selected, and (2) a 'storage onion' design allocating various exam categories to layers with differential deletion protection. Hospitals planning for STS space should consider the needs of radiology, wards, outpatient clinics and clinicoradiological conferences for new and historical exams; desired on-line time; and potential increase in image throughput and changing resources, such as an increase in short term storage disk space.
CO2 sequestration: Storage capacity guideline needed
Frailey, S.M.; Finley, R.J.; Hickman, T.S.
2006-01-01
Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.
Taxonomy for Modeling Demand Response Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Daniel; Kiliccote, Sila; Sohn, Michael
2014-08-01
Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed amore » modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.« less
Four essays on offshore wind power potential, development, regulatory framework, and integration
NASA Astrophysics Data System (ADS)
Dhanju, Amardeep
Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware. It outlines a regulatory framework touching on key elements such as the leasing system, length of tenure, and financial terms for allocating property rights. In addition, the framework also provides recommendations on environmental assessment that would be required prior to lease issuance. The fourth essay analyzes offshore wind power integration using electric thermal storage in housing units. It presents a model of wind generation, heating load and wind driven thermal storage to assess the potential of storage to buffer wind intermittency. The analysis suggests that thermal load matches the seasonal excess of offshore wind during winter months, and that electric thermal storage could provide significant temporal, spatial, and cost advantages for balancing output from offshore wind generation, while also converting a major residential load (space heating) now met by fossil fuels to low carbon energy resources. Together, the four essays provide new analyses of policy, regulatory, and system integration issues that could impede resource development, and also analyze and recommend strategies to manage these issues.
1983-07-01
storage areas were taken into account during the flood routings. AI.36 The computer program REVPULS, developed for this report, reverse Modified Puls...routed the hydrograph at Batavia through the storage upstream of the LVRR embankment. Subtracting this reverse -routed hydrograph from the combined...segments to form a more accurate reconstitution. The hydrographs upstream of Batavia were derived by reverse -routing and prorating by drainage area. Table
Virtual Resources Centers and Their Role in Small Rural Schools.
ERIC Educational Resources Information Center
Freitas, Candido Varela de; Silva, Antonio Pedro da
Virtual resources centers have been considered a pedagogical tool since the increasing development of electronic means allowed for the storage of huge amounts of information and its easy retrieval. Bearing in mind the need for enhancing the appearance of those centers, a discipline of "Management of Resources Centers" was included in a…
An effective XML based name mapping mechanism within StoRM
NASA Astrophysics Data System (ADS)
Corso, E.; Forti, A.; Ghiselli, A.; Magnoni, L.; Zappi, R.
2008-07-01
In a Grid environment the naming capability allows users to refer to specific data resources in a physical storage system using a high level logical identifier. This logical identifier is typically organized in a file system like structure, a hierarchical tree of names. Storage Resource Manager (SRM) services map the logical identifier to the physical location of data evaluating a set of parameters as the desired quality of services and the VOMS attributes specified in the requests. StoRM is a SRM service developed by INFN and ICTP-EGRID to manage file and space on standard POSIX and high performing parallel and cluster file systems. An upcoming requirement in the Grid data scenario is the orthogonality of the logical name and the physical location of data, in order to refer, with the same identifier, to different copies of data archived in various storage areas with different quality of service. The mapping mechanism proposed in StoRM is based on a XML document that represents the different storage components managed by the service, the storage areas defined by the site administrator, the quality of service they provide and the Virtual Organization that want to use the storage area. An appropriate directory tree is realized in each storage component reflecting the XML schema. In this scenario StoRM is able to identify the physical location of a requested data evaluating the logical identifier and the specified attributes following the XML schema, without querying any database service. This paper presents the namespace schema defined, the different entities represented and the technical details of the StoRM implementation.
Efficient Access to Massive Amounts of Tape-Resident Data
NASA Astrophysics Data System (ADS)
Yu, David; Lauret, Jérôme
2017-10-01
Randomly restoring files from tapes degrades the read performance primarily due to frequent tape mounts. The high latency and time-consuming tape mount and dismount is a major issue when accessing massive amounts of data from tape storage. BNL’s mass storage system currently holds more than 80 PB of data on tapes, managed by HPSS. To restore files from HPSS, we make use of a scheduler software, called ERADAT. This scheduler system was originally based on code from Oak Ridge National Lab, developed in the early 2000s. After some major modifications and enhancements, ERADAT now provides advanced HPSS resource management, priority queuing, resource sharing, web-browser visibility of real-time staging activities and advanced real-time statistics and graphs. ERADAT is also integrated with ACSLS and HPSS for near real-time mount statistics and resource control in HPSS. ERADAT is also the interface between HPSS and other applications such as the locally developed Data Carousel, providing fair resource-sharing policies and related capabilities. ERADAT has demonstrated great performance at BNL.
75 FR 19990 - Lake Casitas Resource Management Plan, Ventura County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... RMP would: (1) Ensure safe storage and timely delivery of high-quality water to users while enhancing..., California. The dam, which stores water for irrigation, municipal and industrial use within the Casitas Municipal Water District (CMWD), was completed in November 1958. Lake Casitas has a storage capacity of 254...
Water quality ramifications of manure storage and daily haul during winter and early spring
USDA-ARS?s Scientific Manuscript database
Manure storage is supported by the United States Natural Resources Conservation Service (NRCS) as a nutrient management strategy for controlling air and water quality. Daily haul is still a popular practice on the small farms in northeastern USA but receives criticism over the impact of spreading du...
Food Products Procurement, Receiving and Storage Guide.
ERIC Educational Resources Information Center
Kansas Association of School Business Officials, Haysville.
This guide is intended as a resource document for the beginner in food services and food purchasing. The publication is divided topically by (1) purchasing procedures, (2) specifications and evaluation, (3) sources for purchasing food products, (4) storage of food products and inventory procedures, (5) type of food service management, and (6)…
Final Environmental Assessment for Munitions Storage Area at Langley Air Force Base, Virginia
2004-08-01
Existing Conditions LAND USE Land uses on Langley AFB are grouped by function in distinct geographic areas. For example, aircraft operations and...1998a) is used to coordinate natural resource management. Langley’s Urban Forest Inventory Review and Management Plan (Davey Resource Group 1997...following data to develop noise contours: aircraft types, runway utilization patterns, engine power settings, airspeeds, altitude profiles , flight track
Short Range Planning for Educational Management.
ERIC Educational Resources Information Center
Turksen, I. B.; Holzman, A. G.
A planning cycle for any autonomous university entity contains five basic processes: information storage and retrieval forecasting, resource allocation, scheduling, and a term of study with a feedback loop. The resource allocation process is investigated for the development of shortrange planning models. Dynamic models wth linear and quadratic…
Mass-storage management for distributed image/video archives
NASA Astrophysics Data System (ADS)
Franchi, Santina; Guarda, Roberto; Prampolini, Franco
1993-04-01
The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.
USDA-ARS?s Scientific Manuscript database
Geographical information systems (GIS) software packages have been used for nearly three decades as analytical tools in natural resource management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of fu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzemer, Michael J.; Hart, Edward
Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].
Automating usability of ATLAS Distributed Computing resources
NASA Astrophysics Data System (ADS)
Tupputi, S. A.; Di Girolamo, A.; Kouba, T.; Schovancová, J.; Atlas Collaboration
2014-06-01
The automation of ATLAS Distributed Computing (ADC) operations is essential to reduce manpower costs and allow performance-enhancing actions, which improve the reliability of the system. In this perspective a crucial case is the automatic handling of outages of ATLAS computing sites storage resources, which are continuously exploited at the edge of their capabilities. It is challenging to adopt unambiguous decision criteria for storage resources of non-homogeneous types, sizes and roles. The recently developed Storage Area Automatic Blacklisting (SAAB) tool has provided a suitable solution, by employing an inference algorithm which processes history of storage monitoring tests outcome. SAAB accomplishes both the tasks of providing global monitoring as well as automatic operations on single sites. The implementation of the SAAB tool has been the first step in a comprehensive review of the storage areas monitoring and central management at all levels. Such review has involved the reordering and optimization of SAM tests deployment and the inclusion of SAAB results in the ATLAS Site Status Board with both dedicated metrics and views. The resulting structure allows monitoring the storage resources status with fine time-granularity and automatic actions to be taken in foreseen cases, like automatic outage handling and notifications to sites. Hence, the human actions are restricted to reporting and following up problems, where and when needed. In this work we show SAAB working principles and features. We present also the decrease of human interactions achieved within the ATLAS Computing Operation team. The automation results in a prompt reaction to failures, which leads to the optimization of resource exploitation.
Frequently Asked Questions (FAQs)
DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources , uranium hexafluoride (UF6), UF6 storage and depleted UF6 management. Below is a list of frequently asked management of depleted uranium. Click a question below to see the answer. Uranium and Its Properties What is
NASA Astrophysics Data System (ADS)
Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.
2017-12-01
The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.
Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B
2016-02-01
Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.
Soil and land management in a circular economy.
Breure, A M; Lijzen, J P A; Maring, L
2018-05-15
This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.
Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals.
Wang, Raymond Y; Bodamer, Olaf A; Watson, Michael S; Wilcox, William R
2011-05-01
To develop educational guidelines for the diagnostic confirmation and management of individuals identified by newborn screening, family-based testing after proband identification, or carrier testing in at-risk populations, and subsequent prenatal or postnatal testing of those who are presymptomatic for a lysosomal storage disease. Review of English language literature and discussions in a consensus development panel comprised an international group of experts in the clinical and laboratory diagnosis, treatment and management, newborn screening, and genetic aspects of lysosomal storage diseases. Although clinical trial and longitudinal data were used when available, the evidence in the literature is limited and consequently the recommendations must be considered as expert opinion. Guidelines were developed for Fabry, Gaucher, and Niemann-Pick A/B diseases, glycogen storage type II (Pompe disease), globoid cell leukodystrophy (Krabbe disease), metachromatic leukodystrophy, and mucopolysaccharidoses types I, II, and VI. These guidelines serve as an educational resource for confirmatory testing and subsequent clinical management of presymptomatic individuals suspected to have a lysosomal storage disease; they also help to define a research agenda for longitudinal studies such as the American College of Medical Genetics/National Institutes of Health Newborn Screening Translational Research Network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.
Smart Optical RAM for Fast Information Management and Analysis
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1998-01-01
Statement of Problem Instruments for high speed and high capacity in-situ data identification, classification and storage capabilities are needed by NASA for the information management and analysis of extremely large volume of data sets in future space exploration, space habitation and utilization, in addition to the various missions to planet-earth programs. Parameters such as communication delays, limited resources, and inaccessibility of human manipulation require more intelligent, compact, low power, and light weight information management and data storage techniques. New and innovative algorithms and architecture using photonics will enable us to meet these challenges. The technology has applications for other government and public agencies.
FermiGrid—experience and future plans
NASA Astrophysics Data System (ADS)
Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.
2008-07-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.
FermiGrid - experience and future plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chadwick, K.; Berman, E.; Canal, P.
2007-09-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and themore » Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.« less
Hydraulic Structures for Wetlands
1993-08-01
storage, water treatment to remove undesirable materials, sediment trapping, and ground water recharge. Also required is a knowledge of the operation ... management and maintenance resources that will be available during the life of the project.
Optimal control, investment and utilization schemes for energy storage under uncertainty
NASA Astrophysics Data System (ADS)
Mirhosseini, Niloufar Sadat
Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency operations; (ii) optimal market strategy of buy and sell over 24-hour periods; (iii) optimal storage charge and discharge in much shorter time intervals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... response to climate change. Conservation. The protection, preservation, management, or restoration of... structure and/or function and changes resources, substrate availability, or the physical environment... carbon; climate regulation; water filtration, purification, and storage; soil stabilization; flood...
Code of Federal Regulations, 2013 CFR
2013-07-01
... response to climate change. Conservation. The protection, preservation, management, or restoration of... structure and/or function and changes resources, substrate availability, or the physical environment... carbon; climate regulation; water filtration, purification, and storage; soil stabilization; flood...
Code of Federal Regulations, 2012 CFR
2012-07-01
... response to climate change. Conservation. The protection, preservation, management, or restoration of... structure and/or function and changes resources, substrate availability, or the physical environment... carbon; climate regulation; water filtration, purification, and storage; soil stabilization; flood...
OVERVIEW: CCL PATHOGENS RESEARCH AT NRMRL
The Microbial Contaminants Control Branch (MCCB), Water Supply and Water Resources Division, National Risk Management Research Laboratory, conducts research on microbiological problems associated with source water quality, treatment processes, distribution and storage of drin...
30 CFR 254.1 - Who must submit a spill-response plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who must submit a spill-response plan? 254.1 Section 254.1 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL... spill-response plan? (a) If you are the owner or operator of an oil handling, storage, or transportation...
Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin
NASA Astrophysics Data System (ADS)
Huang, L.; Sabo, J. L.
2017-12-01
Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.
Computers and Mental Health Care Delivery. A Resource Guide to Federal Information.
ERIC Educational Resources Information Center
Levy, Louise
Prepared for the mental health professional or administrator who is involved in the planning, developing, or implementation of an automated information system in a mental health environment, this guide is limited to the electronic processing and storage of information for management and clinical functions. Management application areas include…
Joshua J. Puhlick; Aaron R. Weiskittel; Ivan J. Fernandez; Shawn Fraver; Laura S. Kenefic; Robert S. Seymour; Randall K. Kolka; Lindsey E. Rustad; John C. Brissette
2016-01-01
Developing strategies for reducing atmospheric CO2 is one of the foremost challenges facing natural resource professionals today. The goal of this study was to evaluate total ecosystem and harvested wood product carbon (C) stocks among alternative forest management treatments (selection cutting, shelterwood cutting, commercial clearcutting, and...
Experimental Verification and Integration of a Next Generation Smart Power Management System
NASA Astrophysics Data System (ADS)
Clemmer, Tavis B.
With the increase in energy demand by the residential community in this country and the diminishing fossil fuel resources being used for electric energy production there is a need for a system to efficiently manage power within a residence. The Smart Green Power Node (SGPN) is a next generation energy management system that automates on-site energy production, storage, consumption, and grid usage to yield the most savings for both the utility and the consumer. Such a system automatically manages on-site distributed generation sources such as a PhotoVoltaic (PV) input and battery storage to curtail grid energy usage when the price is high. The SGPN high level control features an advanced modular algorithm that incorporates weather data for projected PV generation, battery health monitoring algorithms, user preferences for load prioritization within the home in case of an outage, Time of Use (ToU) grid power pricing, and status of on-site resources to intelligently schedule and manage power flow between the grid, loads, and the on-site resources. The SGPN has a scalable, modular architecture such that it can be customized for user specific applications. This drove the topology for the SGPN which connects on-site resources at a low voltage DC microbus; a two stage bi-directional inverter/rectifier then couples the AC load and residential grid connect to on-site generation. The SGPN has been designed, built, and is undergoing testing. Hardware test results obtained are consistent with the design goals set and indicate that the SGPN is a viable system with recommended changes and future work.
Khan, Mahfuzur R.; Voss, Clifford I.; Yu, Winston; Michael, Holly A.
2014-01-01
The most difficult water resources management challenge in the Ganges Basin is the imbalance between water demand and seasonal availability. More than 80 % of the annual flow in the Ganges River occurs during the 4-month monsoon, resulting in widespread flooding. During the rest of the year, irrigation, navigation, and ecosystems suffer because of water scarcity. Storage of monsoonal flow for utilization during the dry season is one approach to mitigating these problems. Three conjunctive use management strategies involving subsurface water storage are evaluated in this study: Ganges Water Machine (GWM), Pumping Along Canals (PAC), and Distributed Pumping and Recharge (DPR). Numerical models are used to determine the efficacy of these strategies. Results for the Indian State of Uttar Pradesh (UP) indicate that these strategies create seasonal subsurface storage from 6 to 37 % of the yearly average monsoonal flow in the Ganges exiting UP over the considered range of conditions. This has clear implications for flood reduction, and each strategy has the potential to provide irrigation water and to reduce soil waterlogging. However, GWM and PAC require significant public investment in infrastructure and management, as well as major shifts in existing water use practices; these also involve spatially-concentrated pumping, which may induce land subsidence. DPR also requires investment and management, but the distributed pumping is less costly and can be more easily implemented via adaptation of existing water use practices in the basin.
Concepts for design of an energy management system incorporating dispersed storage and generation
NASA Technical Reports Server (NTRS)
Kirkham, H.; Koerner, T.; Nightingale, D.
1981-01-01
New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.
Concierge: Personal Database Software for Managing Digital Research Resources
Sakai, Hiroyuki; Aoyama, Toshihiro; Yamaji, Kazutsuna; Usui, Shiro
2007-01-01
This article introduces a desktop application, named Concierge, for managing personal digital research resources. Using simple operations, it enables storage of various types of files and indexes them based on content descriptions. A key feature of the software is a high level of extensibility. By installing optional plug-ins, users can customize and extend the usability of the software based on their needs. In this paper, we also introduce a few optional plug-ins: literature management, electronic laboratory notebook, and XooNlps client plug-ins. XooNIps is a content management system developed to share digital research resources among neuroscience communities. It has been adopted as the standard database system in Japanese neuroinformatics projects. Concierge, therefore, offers comprehensive support from management of personal digital research resources to their sharing in open-access neuroinformatics databases such as XooNIps. This interaction between personal and open-access neuroinformatics databases is expected to enhance the dissemination of digital research resources. Concierge is developed as an open source project; Mac OS X and Windows XP versions have been released at the official site (http://concierge.sourceforge.jp). PMID:18974800
NASA Astrophysics Data System (ADS)
Weerasinghe, Harshi; Schneider, Uwe A.
2010-05-01
Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms in GIS, potential water storage sites are identified for constructing regional reservoirs. Subsequently, sites are prioritized based on runoff generation potential (m3 per unit area), and geographical suitability for constructing storage structures. The results from the spatial analysis are used as input for the optimization model. Allocation of resources and appropriate dimension for dams and associated structures are identified using the optimization model. The model evaluates the capability of alternative reservoirs for cost-efficient water management. The Geographic Information System is used to store, analyze, and integrate spatially explicit and non-spatial attribute information whereas the algebraic modeling platform is used to develop the dynamic optimization model. The results of this methodology are validated over space against satellite remote sensing data and existing data on reservoir capacities and runoff. The method is suitable for application of on-farm water storage structures, water distribution networks, and moisture conservation structures in a global context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The management of hazardous waste at treatment, storage, and disposal facilities (TSDFs) plays a large and critical role in the Resource Conservation and Recovery Act (RCRA) regulatory scheme. The training module presents an overview of the general TSDF standards found in 40 CFR Parts 264/265, Subparts A through E.
System and Method for Providing a Climate Data Persistence Service
NASA Technical Reports Server (NTRS)
Schnase, John L. (Inventor); Ripley, III, William David (Inventor); Duffy, Daniel Q. (Inventor); Thompson, John H. (Inventor); Strong, Savannah L. (Inventor); McInerney, Mark (Inventor); Sinno, Scott (Inventor); Tamkin, Glenn S. (Inventor); Nadeau, Denis (Inventor)
2018-01-01
A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
Yu, Dantong; Katramatos, Dimitrios; Sim, Alexander; Shoshani, Arie
2014-04-22
A cross-domain network resource reservation scheduler configured to schedule a path from at least one end-site includes a management plane device configured to monitor and provide information representing at least one of functionality, performance, faults, and fault recovery associated with a network resource; a control plane device configured to at least one of schedule the network resource, provision local area network quality of service, provision local area network bandwidth, and provision wide area network bandwidth; and a service plane device configured to interface with the control plane device to reserve the network resource based on a reservation request and the information from the management plane device. Corresponding methods and computer-readable medium are also disclosed.
Grid data access on widely distributed worker nodes using scalla and SRM
NASA Astrophysics Data System (ADS)
Jakl, P.; Lauret, J.; Hanushevsky, A.; Shoshani, A.; Sim, A.; Gu, J.
2008-07-01
Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of the largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.
Genetics Home Reference: neutral lipid storage disease with myopathy
... inflammation of the pancreas (pancreatitis), reduced thyroid activity (hypothyroidism), and type 2 diabetes (the most common form ... Diagnosis and Management Resources (2 links) MedlinePlus Encyclopedia: Hypothyroidism MedlinePlus Encyclopedia: Type 2 Diabetes General Information from ...
ERIC Educational Resources Information Center
Husby, Ole
1990-01-01
The challenges and potential benefits of automating university libraries are reviewed, with special attention given to cooperative systems. Aspects discussed include database size, the role of the university computer center, storage modes, multi-institutional systems, resource sharing, cooperative system management, networking, and intelligent…
Solid Waste Management: Abstracts From the Literature - 1964.
ERIC Educational Resources Information Center
Connolly, John A.; Stainback, Sandra E.
The Solid Waste Disposal Act of 1965 (Public Law 89-272, Title II) and its amending legislation, the Resource Recovery Act of 1970 (Public Law 91-512, Title I), authorize collection, storage, and retrieval of information relevant to all aspects of solid-waste management. As part of this effort, the U.S. Environmental Protection Agency's…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Socolof, M.L.; Curtis, A.H.; Blasing, T.J.
1995-08-01
DOE needs to continue the safe and efficient management of SNF on ORR, based on the requirement for future SNF storage capacity and implementation of the ROD for the PEIS. DOE is proposing to implement the ROD through proper management of SNF on ORR, including the possible construction and operation of a dry cask storage facility. This report describes the potentially affected environment and analyzes impacts on various resources due to the proposed action. The information provided in this report is intended to support the Environmental Assessment being prepared for the proposed activities. Construction of the dry cask storage facilitymore » would result in minimal or no impacts on groundwater, surface water, and ecological resources. Contaminated soils excavated during construction would result in negligible risk to human health and to biota. Except for noise from trucks and equipment, operation of the dry cask storage facility would not be expected to have any impact on vegetation, wildlife, or rare plants or animals. Noise impacts would be minimal. Operation exposures to the average SNF storage facility worker would not exceed approximately 0.40 mSv/year (40 mrem/year). The off-site population dose within an 80-km (50-mile) radius of ORR from SNF operations would be less than 0.052 person-Sv/year (5.2 person-rem/year). Impacts from incident-free transportation on ORR would be less than 1.36 X 10{sup -4} occupational fatal cancers and 4.28 X 10{sup -6} public fatal cancers. Credible accident scenarios that would result in the greatest probable risks would cause less than one in a million cancer fatalities to workers and the public.« less
Timely topics on spent fuel storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selin, I.
1994-12-31
The history of spent fuel management in this country has taken several turns, with a final resolution still out of reach. Several repository programs started, stalled ans stopped. The latest effort at Yucca Mountain is progressing but, at best, is years from the early phases of licensing, much less the actual underground disposal of spent fuel. A monitored retrieval storage [MRS] facility was expected to start accepting commercial spent fuel beginning in 1998, but no such facility is clearly on the horizon. All of these recent developments changed the circumstances that we face in spent fuel management. The obvious conclusionmore » is that an increasing number of plants, both operating and permanently shut-down reactors, will have to provide for additional spent fuel storage on-site for a longer period than originally planned, and even after plant decommissioning, prudence requires that provision be made for continual, stand-alone, on-site storage. After pool capacity is reached, most utilities opt for some sort of dry storage. But the dry storage option has triggered an unprecedented amount of local opposition at many sites, further taxing NRC and industry resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob
Hydropower plant (HPP) generation comprises a considerable portion of bulk electricity generation and is delivered with a low-carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which include wind and solar. Increasing penetration levels of wind and solar lead to a lower inertia on the electric grid, which poses stability challenges. In recent years, breakthroughs in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments of renewable energy resources on electric grids. If integrated with scalable, multi-time-step energy storage so that the total output can be controlled, multiple run-of-the-river (ROR)more » HPPs can be deployed. Although the size of a single energy storage system is much smaller than that of a typical reservoir, the ratings of storages and multiple ROR HPPs approximately equal the rating of a large, conventional HPP. This paper proposes cohesively managing multiple sets of energy storage systems distributed in different locations. This paper also describes the challenges associated with ROR HPP system architecture and operation.« less
NASA Astrophysics Data System (ADS)
A, A.; Gleeson, T. P.; Wada, Y.; Mishra, V.
2017-12-01
The availability and depletion of groundwater resources - a possible threat to food and water security - are impacted by both pumping and climate variability, although the relative importance of these two drivers is rarely quantified. Here we show that long-term change in the monsoon precipitation is a major driver of groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. GRACE and observation well data show that groundwater storage has declined in north India with a rate of 2 cm/year and increased in the south India by 1 to 2 cm/year during the period of 2002-2013. A large fraction of total variability in groundwater storage is influenced by precipitation in northcentral and southern India. Groundwater storage variability in the northwestern India is mainly explained by variability in abstraction for irrigation, which is influenced by precipitation. Declines in precipitation in north India is linked with the Indian Ocean warming, suggesting a previously unrecognised teleconnection between ocean temperatures and groundwater storage. These results have strong implications for management of groundwater resources under current and future climate conditions in India.
Collection, storage, retrieval, and publication of water-resources data
Showen, C. R.
1978-01-01
This publication represents a series of papers devoted to the subject of collection, storage, retrieval, and publication of hydrologic data. The papers were presented by members of the U.S. Geological Survey at the International Seminar on Organization and Operation of Hydrologic Services, Ottawa, Canada, July 15-16, 1976, sponsored by the World Meteorological Organization. The first paper, ' Standardization of Hydrologic Measurements, ' by George F. Smoot discusses the need for standardization of the methods and instruments used in measuring hydrologic data. The second paper, ' Use of Earth Satellites for Automation of Hydrologic Data Collection, ' by Richard W. Paulson discusses the use of inexpensive battery-operated radios to transmit realtime hydrologic data to earth satellites and back to ground receiving stations for computer processing. The third paper, ' Operation Hydrometeorological Data-Collection System for the Columbia River, ' by Nicholas A. Kallio discusses the operation of a complex water-management system for a large river basin utilizing the latest automatic telemetry and processing devices. The fourth paper, ' Storage and Retrieval of Water-Resources Data, ' by Charles R. Showen discusses the U.S. Geological Survey 's National Water Data Storage and Retrieval System (WATSTORE) and its use in processing water resources data. The final paper, ' Publication of Water Resources Data, ' by S. M. Lang and C. B. Ham discusses the requirement for publication of water-resources data to meet the needs of a widespread audience and for archival purposes. (See W78-09324 thru W78-09328) (Woodard-USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby
To advance understanding of the interactions between human activities and the water cycle, an integrated terrestrial water cycle component has been developed for Earth system models. This includes a land surface model fully coupled to a river routing model and a generic water management model to simulate natural and regulated flows. A global integrated assessment model and its regionalized version for the U.S. are used to simulate water demand consistent with the energy technology and socio-economics scenarios. Human influence on the hydrologic cycle includes regulation and storage from reservoirs, consumptive use and withdrawal from multiple sectors ( irrigation and non-irrigation)more » and overall redistribution of water resources in space and time. As groundwater provides an important source of water supply for irrigation and other uses, the integrated modeling framework has been extended with a simplified representation of groundwater as an additional supply source, and return flow generated from differences between withdrawals and consumptive uses from both groundwater and surface water systems. The groundwater supply and return flow modules are evaluated by analyzing the simulated regulated flow, reservoir storage and supply deficit for irrigation and non-irrigation sectors over major hydrologic regions of the conterminous U.S. The modeling framework is then used to provide insights on the reliability of water resources by isolating the reliability due to return flow and/or groundwater sources of water. Our results show that high sectoral ratio of withdrawals over consumptive demand adds significant stress on the water resources management that can be alleviated by reservoir storage capacity. The return flow representation therefore exhibits a clear east-west contrast in its hydrologic signature, as well as in its ability to help meet water demand. Groundwater use has a limited hydrologic signature but the most pronounced signature is in terms of decreasing water supply deficit. The combined return flow and groundwater use signature conserves the east-west constrast with overall uncertainties due to the groundwater-return flow representation, varying ratios combined with different hydroclimate conditions, storage infrastructures, sectoral water uses and dependence on groundwater. The redistribution of surface and groundwater by human activities, and the uncertainties in their representation have important implications to the water and energy balances in the Earth system and land-atmosphere interactions.« less
Summary appraisals of the Nation's ground-water resources; Caribbean region
Gómez-Gómez, Fernando; Heisel, James E.
1980-01-01
Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.
Groundwater Change in Storage Estimation by Using Monitoring Wells Data
NASA Astrophysics Data System (ADS)
Flores, C. I.
2016-12-01
In present times, remarkable attention is being given to models and data in hydrology, regarding their role in meeting water management requirements to enable well-informed decisions. Water management under the Sustainable Groundwater Management Act (SGMA) is currently challenging, due to it requires that groundwater sustainability agencies (GSAs) formulate groundwater sustainability plans (GSPs) to comply with new regulations and perform a responsible management to secure California's groundwater resources, particularly when droughts and climate change conditions are present. In this scenario, water budgets and change in groundwater storage estimations are key components for decision makers, but their computation is often difficult, lengthy and uncertain. Therefore, this work presents an innovative approach to integrate hydrologic modeling and available groundwater data into a single simplified tool, a proxy function, that estimate in real time the change in storage based on monitoring wells data. A hydrologic model was developed and calibrated for water years 1970 to 2015, the Yolo County IWFM, which was applied to generate the proxy as a study case, by regressing simulated change in storage versus change in head for the cities of Davis and Woodland area, and obtain a linear function dependent on heads variations over time. Later, the proxy was applied to actual groundwater data in this region to predict the change in storage. Results from this work provide proxy functions to approximate change in storage based on monitoring data for daily, monthly and yearly frameworks, being as well easily transferable to any spreadsheet or database to perform simply yet crucial computations in real time for sustainable groundwater management.
When a hazardous waste management unit stops receiving waste at the end of its active life, it must be cleaned up, closed, monitored, and maintained in accordance with the Resource Conservation and Recovery Ac
Grid Data Access on Widely Distributed Worker Nodes Using Scalla and SRM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakl, Pavel; /Prague, Inst. Phys.; Lauret, Jerome
2011-11-10
Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of themore » largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jesse L.
2000-06-01
Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources developmentmore » and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and treatment abilities. The proposal was typically described as complementing an already generous nature, not simply subduing it. Its implementation was limited by political tensions, and fifteen years later, a scaled-down version was constructed. Well levels recovered, but within a decade were declining due to increasing withdrawals. I assert that the approach in Santa Clara Valley was a forerunner to more recent innovations in natural resource management in California and beyond.« less
Conjunctive management of multi-reservoir network system and groundwater system
NASA Astrophysics Data System (ADS)
Mani, A.; Tsai, F. T. C.
2015-12-01
This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.
Job submission and management through web services: the experience with the CREAM service
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Fina, S. D.; Ronco, S. D.; Dorigo, A.; Gianelle, A.; Marzolla, M.; Mazzucato, M.; Sgaravatto, M.; Verlato, M.; Zangrando, L.; Corvo, M.; Miccio, V.; Sciaba, A.; Cesini, D.; Dongiovanni, D.; Grandi, C.
2008-07-01
Modern Grid middleware is built around components providing basic functionality, such as data storage, authentication, security, job management, resource monitoring and reservation. In this paper we describe the Computing Resource Execution and Management (CREAM) service. CREAM provides a Web service-based job execution and management capability for Grid systems; in particular, it is being used within the gLite middleware. CREAM exposes a Web service interface allowing conforming clients to submit and manage computational jobs to a Local Resource Management System. We developed a special component, called ICE (Interface to CREAM Environment) to integrate CREAM in gLite. ICE transfers job submissions and cancellations from the Workload Management System, allowing users to manage CREAM jobs from the gLite User Interface. This paper describes some recent studies aimed at assessing the performance and reliability of CREAM and ICE; those tests have been performed as part of the acceptance tests for integration of CREAM and ICE in gLite. We also discuss recent work towards enhancing CREAM with a BES and JSDL compliant interface.
MERRA/AS: The MERRA Analytic Services Project Interim Report
NASA Technical Reports Server (NTRS)
Schnase, John; Duffy, Dan; Tamkin, Glenn; Nadeau, Denis; Thompson, Hoot; Grieg, Cristina; Luczak, Ed; McInerney, Mark
2013-01-01
MERRA AS is a cyberinfrastructure resource that will combine iRODS-based Climate Data Server (CDS) capabilities with Coudera MapReduce to serve MERRA analytic products, store the MERRA reanalysis data collection in an HDFS to enable parallel, high-performance, storage-side data reductions, manage storage-side driver, mapper, reducer code sets and realized objects for users, and provide a library of commonly used spatiotemporal operations that can be composed to enable higher-order analyses.
Spatial and Temporal Self-Calibration of a Hydroeconomic Model
NASA Astrophysics Data System (ADS)
Howitt, R. E.; Hansen, K. M.
2008-12-01
Hydroeconomic modeling of water systems where risk and reliability of water supply are of critical importance must address explicitly how to model water supply uncertainty. When large fluctuations in annual precipitation and significant variation in flows by location are present, a model which solves with perfect foresight of future water conditions may be inappropriate for some policy and research questions. We construct a simulation-optimization model with limited foresight of future water conditions using positive mathematical programming and self-calibration techniques. This limited foresight netflow (LFN) model signals the value of storing water for future use and reflects a more accurate economic value of water at key locations, given that future water conditions are unknown. Failure to explicitly model this uncertainty could lead to undervaluation of storage infrastructure and contractual mechanisms for managing water supply risk. A model based on sequentially updated information is more realistic, since water managers make annual storage decisions without knowledge of yet to be realized future water conditions. The LFN model runs historical hydrological conditions through the current configuration of the California water system to determine the economically efficient allocation of water under current economic conditions and infrastructure. The model utilizes current urban and agricultural demands, storage and conveyance infrastructure, and the state's hydrological history to indicate the scarcity value of water at key locations within the state. Further, the temporal calibration penalty functions vary by year type, reflecting agricultural water users' ability to alter cropping patterns in response to water conditions. The model employs techniques from positive mathematical programming (Howitt, 1995; Howitt, 1998; Cai and Wang, 2006) to generate penalty functions that are applied to deviations from observed data. The functions are applied to monthly flows across key nodes on the network and to annual carryover storage at ground and surface water storage facilities. To our knowledge, this is the first hydroeconomic model to perform spatial and temporal calibration simultaneously. The base for the LFN model is CALVIN, a hydroeconomic optimization model of the California water system developed at the University of California, Davis (Draper, et al. 2003). The LFN model, programmed in GAMS, is nonlinear, which permits incorporation of dynamic groundwater pumping costs that reflect head elevation. Hydropower production, also nonlinear in storage levels, could be added in the future. In this paper, we describe model implementation and performance over a sequence of water years drawn from the historical hydrologic record in California. Preliminary findings indicate that calibration occurs within acceptable limits and simulations replicate base case results well. Cai, X., and Wang, D. 2006. "Calibrating Holistic Water Resources-Economic Models." Journal of Water Resources Planning and Management November-December. Draper, A.J., M.W. Jenkins, K.W. Kirby, J.R. Lund, and R.E. Howitt. 2003. "Economic-Engineering Optimization for California Water Management." Journal of Water Resources Planning and Management 129(3):155-164. Howitt, R.E. 1995. "Positive Mathematical Programming." American Journal of Agricultural Economics 77:329-342. Howitt, R.E. 1998. "Self-Calibrating Network Flow Models." Working Paper, Department of Agricultural and Resource Economics, University of California, Davis. October 1998. class="ab'>
Summary appraisals of the Nation's ground-water resources; Pacific Northwest region
Foxworthy, Bruce L.
1979-01-01
Management opportunities in the region include: (1) Development of new supplies and additional uses of ground water; (2) protection and enhancement of water quality; (3) reduction of waterlogging; (4) energy development from some ground-water reservoirs; (5) improving access to the ground water; (6) increased use of underground space for storage and disposal; and (7) greater use of advanced management and conservation techniques. Conjunctive use of surface and ground water to provide greater available supplies probably is the most promising water-management opportunity. However, if the full potential of the ground-water resources is to be realized, important constraints, including present water-right structures and serious deficiencies in information, must be overcome.
Infrastructures for Distributed Computing: the case of BESIII
NASA Astrophysics Data System (ADS)
Pellegrino, J.
2018-05-01
The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.
DOT National Transportation Integrated Search
2009-11-01
The Great Lakes Maritime Information Delivery System (GLMIDS) is designed to facilitate the acquisition, storage, management, analysis and exchange of data between analysts and decision-makers within maritime commerce. (See http://maritime.utoledo.ed...
Kumar, Ramesh; Shaikh, Babar Tasneem; Somrongthong, Ratana; Chapman, Robert S
2015-01-01
Background and Objective: Infectious waste management practices among health care workers in the tertiary care hospitals have been questionable. The study intended to identify issues that impede a proper infectious waste management. Methods: Besides direct observation, in-depths interviews were conducted with the hospital administrators and senior management involved in healthcare waste management during March 2014. We looked at the processes related to segregation, collection, storage and disposal of hospital waste, and identified variety of issues in all the steps. Results: Serious gaps and deficiencies were observed related to segregation, collection, storage and disposal of the hospital wastes, hence proving to be hazardous to the patients as well as the visitors. Poor safety, insufficient budget, lack of trainings, weak monitoring and supervision, and poor coordination has eventually resulted in improper waste management in the tertiary hospitals of Rawalpindi. Conclusion: Study has concluded that the poor resources and lack of healthcare worker’s training in infectious waste results in poor waste management at hospitals. PMID:26430405
Data federation strategies for ATLAS using XRootD
NASA Astrophysics Data System (ADS)
Gardner, Robert; Campana, Simone; Duckeck, Guenter; Elmsheuser, Johannes; Hanushevsky, Andrew; Hönig, Friedrich G.; Iven, Jan; Legger, Federica; Vukotic, Ilija; Yang, Wei; Atlas Collaboration
2014-06-01
In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the wide area network and staging of remote data files to local disk. To support job-brokering decisions, a time-dependent cost-of-data-access matrix is made taking into account network performance and key site performance factors. The system's response to production-scale physics analysis workloads, either from individual end-users or ATLAS analysis services, is discussed.
NASA Astrophysics Data System (ADS)
Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.
2017-10-01
Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.
Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, Mumin; Akkaya, Kemal
Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the publickeys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need ofmore » keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.« less
Modeling the Impact of Energy and Water Prices on Reservoir and Aquifer Management
NASA Astrophysics Data System (ADS)
Dale, L. L.; Vicuna, S.; Faybishenko, B.
2008-12-01
Climate change and polices to limit carbon emissions are likely to increase energy and water scarcity and raise prices. These price impacts affect the way that reservoirs and aquifers should be managed to maximize the value of water and energy outputs. In this paper, we use a model of storage in a specific region to illustrate how energy and water prices affect optimal reservoir and aquifer management. We evaluate reservoir-aquifer water management in the Merced water basin in California, applying an optimization model of storage benefits associated with different management options and input prices. The model includes two submodels: (a) a monthly nonlinear submodel for optimization of the conjunctive energy/water use and (b) an inter-annual stochastic dynamic programming submodel used for determining an operating rule matrix which maximizes system benefits for given economic and hydrologic conditions. The model input parameters include annual inflows, initial storage, crop water demands, crop prices and electricity prices. The model is used to determine changes in net energy generation and water delivery and associated changes in water storage levels caused by changes in water and energy output prices. For the scenario of water/energy tradeoffs for a pure reservoir (with no groundwater use), we illustrate the tradeoff between the agricultural water use and hydropower generation (MWh) for different energy/agriculture price ratios. The analysis is divided into four steps. The first and second steps describe these price impacts on reservoirs and aquifers, respectively. The third step covers price impacts on conjunctive reservoir and aquifer management. The forth step describes price impacts on reservoir and aquifer storage in the more common historical situation, when these facilities are managed separately. The study indicates that optimal reservoir and aquifer storage levels are a positive function of the energy to water price ratio. The study also concludes that conjunctive use of a reservoir and an aquifer tends to force convergence in the long term, multiyear, average groundwater and reservoir storage heads. The results of this study can be used for developing an efficient strategy of managing energy and water resources in different regions across a broad range of climatic, agricultural, and economic scenarios.
Assessment of Residential Rain Barrel Water Quality and Use in Cincinnati, Ohio
The collection, storage, and reuse of rainwater collected in rain barrels from urban rooftop areas assists municipalities in achieving stormwater management objectives and in some areas also serves as an adjunct resource for domestic water supplies. In this study, rainwater reuse...
Use of Hyperspectral Remote Sensing to Evaluate Efficacy of Aquatic Plant Management
USDA-ARS?s Scientific Manuscript database
Invasive aquatic weeds negatively affect biodiversity, fluvial dynamics, water quality, and water storage and conveyance for a variety of human resource demands. In California’s Sacramento-San Joaquin River Delta one submersed species - Brazilian waterweed (Egeria densa) - and one floating species ...
National assessment of geologic carbon dioxide storage resources: results
,
2013-01-01
In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery replacement storage resource (KRRSR) is a conservative estimate that represents only the amount of CO2 at subsurface conditions that could replace the volume of known hydrocarbon production. The mean national KRRSR, determined from production volumes rather than the geologic model of buoyant and residual traps that make up TASR, is 13 Gt. The estimated storage resources are dominated by residual trapping class 2, which accounts for 89 percent of the total resources. The Coastal Plains Region of the United States contains the largest storage resource of any region. Within the Coastal Plains Region, the resources from the U.S. Gulf Coast area represent 59 percent of the national CO2 storage capacity.
Water resources management in karst aquifers - concepts and modeling approaches
NASA Astrophysics Data System (ADS)
Sauter, M.; Schmidt, S.; Abusaada, M.; Reimann, T.; Liedl, R.; Kordilla, J.; Geyer, T.
2011-12-01
Water resources management schemes generally imply the availability of a spectrum of various sources of water with a variability of quantity and quality in space and time, and the availability and suitability of storage facilities to cover various demands of water consumers on quantity and quality. Aquifers are generally regarded as suitable reservoirs since large volumes of water can be stored in the subsurface, water is protected from contamination and evaporation and the underground passage assists in the removal of at least some groundwater contaminants. Favorable aquifer properties include high vertical hydraulic conductivities for infiltration, large storage coefficients and not too large hydraulic gradients / conductivities. The latter factors determine the degree of discharge, i.e. loss of groundwater. Considering the above criteria, fractured and karstified aquifers appear to not really fulfill the respective conditions for storage reservoirs. Although infiltration capacity is relatively high, due to low storativity and high hydraulic conductivities, the small quantity of water stored is rapidly discharged. However, for a number of specific conditions, even karst aquifers are suitable for groundwater management schemes. They can be subdivided into active and passive management strategies. Active management options include strategies such as overpumping, i.e. the depletion of the karst water resources below the spring outflow level, the construction of subsurface dams to prevent rapid discharge. Passive management options include the optimal use of the discharging groundwater under natural discharge conditions. System models that include the superposition of the effect of the different compartments soil zone, epikarst, vadose and phreatic zone assist in the optimal usage of the available groundwater resources, while taking into account the different water reservoirs. The elaboration and implementation of groundwater protection schemes employing well established vulnerability assessment techniques ascertain the respective groundwater quality. In this paper a systematic overview is provided on karst groundwater management schemes illustrating the specific conditions allowing active or passive management in the first place as well as the employment of various types of adapted models for the design of the different management schemes. Examples are provided from karst systems in Israel/Palestine, where a large 4000sqkm basin is being managed as a whole, the South of France, where the Lez groundwater development scheme illustrates the optimal use of overpumping from the conduit system, providing additional water for the City of Montpellier during dry summers and at the same time increasing recharge and assisting in the mitigation of flooding during high winter discharge conditions. Overpumping could be an option in many Mediterranean karst catchments since karst conduit development occurred well below today's spring discharge level. Other examples include the construction of subsurface dams for hydropower generation in the Dinaric karst and reduction of discharge. Problems of leakage and general feasibility are discussed.
Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization
NASA Astrophysics Data System (ADS)
Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.
2016-06-01
Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.
An infrastructure for ontology-based information systems in biomedicine: RICORDO case study.
Wimalaratne, Sarala M; Grenon, Pierre; Hoehndorf, Robert; Gkoutos, Georgios V; de Bono, Bernard
2012-02-01
The article presents an infrastructure for supporting the semantic interoperability of biomedical resources based on the management (storing and inference-based querying) of their ontology-based annotations. This infrastructure consists of: (i) a repository to store and query ontology-based annotations; (ii) a knowledge base server with an inference engine to support the storage of and reasoning over ontologies used in the annotation of resources; (iii) a set of applications and services allowing interaction with the integrated repository and knowledge base. The infrastructure is being prototyped and developed and evaluated by the RICORDO project in support of the knowledge management of biomedical resources, including physiology and pharmacology models and associated clinical data. The RICORDO toolkit and its source code are freely available from http://ricordo.eu/relevant-resources. sarala@ebi.ac.uk.
Energy storage at the threshold: Smart mobility and the grid of the future
NASA Astrophysics Data System (ADS)
Crabtree, George
2018-01-01
Energy storage is poised to drive transformations in transportation and the electricity grid that personalize access to mobility and energy services, not unlike the transformation of smart phones that personalized access to people and information. Storage will work with other emerging technologies such as electric vehicles, ride-sharing, self-driving and connected cars in transportation and with renewable generation, distributed energy resources and smart energy management on the grid to create mobility and electricity as services matched to customer needs replacing the conventional one-size-fits-all approach. This survey outlines the prospects, challenges and impacts of the coming mobility and electricity transformations.
Garn, H.S.
2002-01-01
This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin District of the U.S. Geological Survey, Water Resources Division, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of District personnel in following these policies and procedures including those related to safety and training are presented.
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 etmore » seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321more » et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less
Liu, Hu; Su, Rong-jia; Wu, Min-jie; Zhang, Yi; Qiu, Xiang-jun; Feng, Jian-gang; Xie, Ting; Lu, Shu-liang
2012-06-01
To form a wound information management scheme with objectivity, standardization, and convenience by means of wound information management system. A wound information management system was set up with the acquisition terminal, the defined wound description, the data bank, and related softwares. The efficacy of this system was evaluated in clinical practice. The acquisition terminal was composed of the third generation mobile phone and the software. It was feasible to get access to the wound information, including description, image, and therapeutic plan from the data bank by mobile phone. During 4 months, a collection of a total of 232 wound treatment information was entered, and accordingly standardized data of 38 patients were formed automatically. This system can provide standardized wound information management by standardized techniques of acquisition, transmission, and storage of wound information. It can be used widely in hospitals, especially primary medical institutions. Data resource of the system makes it possible for epidemiological study with large sample size in future.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
Cloud access to interoperable IVOA-compliant VOSpace storage
NASA Astrophysics Data System (ADS)
Bertocco, S.; Dowler, P.; Gaudet, S.; Major, B.; Pasian, F.; Taffoni, G.
2018-07-01
Handling, processing and archiving the huge amount of data produced by the new generation of experiments and instruments in Astronomy and Astrophysics are among the more exciting challenges to address in designing the future data management infrastructures and computing services. We investigated the feasibility of a data management and computation infrastructure, available world-wide, with the aim of merging the FAIR data management provided by IVOA standards with the efficiency and reliability of a cloud approach. Our work involved the Canadian Advanced Network for Astronomy Research (CANFAR) infrastructure and the European EGI federated cloud (EFC). We designed and deployed a pilot data management and computation infrastructure that provides IVOA-compliant VOSpace storage resources and wide access to interoperable federated clouds. In this paper, we detail the main user requirements covered, the technical choices and the implemented solutions and we describe the resulting Hybrid cloud Worldwide infrastructure, its benefits and limitations.
Frameworks for amending reservoir water management
Mower, Ethan; Miranda, Leandro E.
2013-01-01
Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.
The Czech National Grid Infrastructure
NASA Astrophysics Data System (ADS)
Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.
2017-10-01
The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.
Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah
2017-03-24
Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.
Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah
2017-01-01
Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure. PMID:28338632
NASA Astrophysics Data System (ADS)
Burchfield, E. K.
2014-12-01
The island nation of Sri Lanka is divided into two agro-climatic zones: the southwestern wet zone and the northeastern dry zone. The dry zone is exposed to drought-like conditions for several months each year. Due to the sporadic nature of rainfall, dry zone livelihoods depend on the successful storage, capture, and distribution of water. Traditionally, water has been captured in rain-fed tanks and distributed through a system of dug canals. Recently, the Sri Lankan government has diverted the waters of the nation's largest river through a system of centrally managed reservoirs and canals and resettled farmers to cultivate this newly irrigated land. This study uses remotely sensed MODIS and LANDSAT imagery to compare vegetation health and cropping patterns in these distinct water management regimes under different conditions of water scarcity. Of particular interest are the socioeconomic, infrastructural, and institutional factors that affect cropping patterns, including field position, water storage capacity, and control of water resources. Results suggest that under known conditions of water scarcity, farmers cultivate other field crops in lieu of paddy. Cultivation changes depend to a large extent on the institutional distance between water users and water managers as well as the fragmentation of water resources within the system.
Knies, David; Wittmüß, Philipp; Appel, Sebastian; Sawodny, Oliver; Ederer, Michael; Feuer, Ronny
2015-10-28
The coccolithophorid unicellular alga Emiliania huxleyi is known to form large blooms, which have a strong effect on the marine carbon cycle. As a photosynthetic organism, it is subjected to a circadian rhythm due to the changing light conditions throughout the day. For a better understanding of the metabolic processes under these periodically-changing environmental conditions, a genome-scale model based on a genome reconstruction of the E. huxleyi strain CCMP 1516 was created. It comprises 410 reactions and 363 metabolites. Biomass composition is variable based on the differentiation into functional biomass components and storage metabolites. The model is analyzed with a flux balance analysis approach called diurnal flux balance analysis (diuFBA) that was designed for organisms with a circadian rhythm. It allows storage metabolites to accumulate or be consumed over the diurnal cycle, while keeping the structure of a classical FBA problem. A feature of this approach is that the production and consumption of storage metabolites is not defined externally via the biomass composition, but the result of optimal resource management adapted to the diurnally-changing environmental conditions. The model in combination with this approach is able to simulate the variable biomass composition during the diurnal cycle in proximity to literature data.
Technical Note: Seasonality in alpine water resources management - a regional assessment
NASA Astrophysics Data System (ADS)
Vanham, D.; Fleischhacker, E.; Rauch, W.
2008-01-01
Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.
75 FR 28056 - Cachuma Lake Resource Management Plan, Santa Barbara County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
...: (1) Ensure safe storage and timely delivery of high-quality water to users while enhancing natural... provides irrigation, domestic, and municipal and industrial water supplies to the City of Santa Barbara, Goleta Water District, Montecito Water District, Carpinteria Valley Water District, and Santa Ynez River...
Resources for Archives: Developing Collections, Constituents, Colleagues, and Capital
ERIC Educational Resources Information Center
Primer, Ben
2009-01-01
The essential element for archival success is to be found in the quality of management decisions made and public services provided. Archivists can develop first-class archives operations through understanding the organizational context; planning; hiring, retaining, and developing staff; meeting archival standards for storage and access; and…
Grossman, Robert L.; Heath, Allison; Murphy, Mark; Patterson, Maria; Wells, Walt
2017-01-01
Data commons collocate data, storage, and computing infrastructure with core services and commonly used tools and applications for managing, analyzing, and sharing data to create an interoperable resource for the research community. An architecture for data commons is described, as well as some lessons learned from operating several large-scale data commons. PMID:29033693
Information management systems for pharmacogenomics.
Thallinger, Gerhard G; Trajanoski, Slave; Stocker, Gernot; Trajanoski, Zlatko
2002-09-01
The value of high-throughput genomic research is dramatically enhanced by association with key patient data. These data are generally available but of disparate quality and not typically directly associated. A system that could bring these disparate data sources into a common resource connected with functional genomic data would be tremendously advantageous. However, the integration of clinical and accurate interpretation of the generated functional genomic data requires the development of information management systems capable of effectively capturing the data as well as tools to make that data accessible to the laboratory scientist or to the clinician. In this review these challenges and current information technology solutions associated with the management, storage and analysis of high-throughput data are highlighted. It is suggested that the development of a pharmacogenomic data management system which integrates public and proprietary databases, clinical datasets, and data mining tools embedded in a high-performance computing environment should include the following components: parallel processing systems, storage technologies, network technologies, databases and database management systems (DBMS), and application services.
First Experiences with CMS Data Storage on the GEMSS System at the INFN-CNAF Tier-1
NASA Astrophysics Data System (ADS)
Andreotti, D.; Bonacorsi, D.; Cavalli, A.; Pra, S. Dal; Dell'Agnello, L.; Forti, Alberto; Grandi, C.; Gregori, D.; Gioi, L. Li; Martelli, B.; Prosperini, A.; Ricci, P. P.; Ronchieri, Elisabetta; Sapunenko, V.; Sartirana, A.; Vagnoni, V.; Zappi, Riccardo
A brand new Mass Storage System solution called "Grid-Enabled Mass Storage System" (GEMSS) -based on the Storage Resource Manager (StoRM) developed by INFN, on the General Parallel File System by IBM and on the Tivoli Storage Manager by IBM -has been tested and deployed at the INFNCNAF Tier-1 Computing Centre in Italy. After a successful stress test phase, the solution is now being used in production for the data custodiality of the CMS experiment at CNAF. All data previously recorded on the CASTOR system have been transferred to GEMSS. As final validation of the GEMSS system, some of the computing tests done in the context of the WLCG "Scale Test for the Experiment Program" (STEP'09) challenge were repeated in September-October 2009 and compared with the results previously obtained with CASTOR in June 2009. In this paper, the GEMSS system basics, the stress test activity and the deployment phase -as well as the reliability and performance of the system -are overviewed. The experiences in the use of GEMSS at CNAF in preparing for the first months of data taking of the CMS experiment at the Large Hadron Collider are also presented.
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
Optimization of tomographic reconstruction workflows on geographically distributed resources
Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.
2016-01-01
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks. PMID:27359149
Optimization of tomographic reconstruction workflows on geographically distributed resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar
New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less
Burruss, Robert
2009-01-01
Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible.
Burruss, R.C.
2009-01-01
Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible. ?? 2009 Elsevier Ltd. All rights reserved.
Globally distributed software defined storage (proposal)
NASA Astrophysics Data System (ADS)
Shevel, A.; Khoruzhnikov, S.; Grudinin, V.; Sadov, O.; Kairkanov, A.
2017-10-01
The volume of the coming data in HEP is growing. The volume of the data to be held for a long time is growing as well. Large volume of data - big data - is distributed around the planet. The methods, approaches how to organize and manage the globally distributed data storage are required. The distributed storage has several examples for personal needs like own-cloud.org, pydio.com, seafile.com, sparkleshare.org. For enterprise-level there is a number of systems: SWIFT - distributed storage systems (part of Openstack), CEPH and the like which are mostly object storage. When several data center’s resources are integrated, the organization of data links becomes very important issue especially if several parallel data links between data centers are used. The situation in data centers and in data links may vary each hour. All that means each part of distributed data storage has to be able to rearrange usage of data links and storage servers in each data center. In addition, for each customer of distributed storage different requirements could appear. The above topics are planned to be discussed in data storage proposal.
Aggregation of carbon dioxide sequestration storage assessment units
Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.
2013-01-01
The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.
From Drought to Recovery: a GRACE-Based Assessment of Groundwater Storage Variations in California
NASA Astrophysics Data System (ADS)
McEvoy, A.; Famiglietti, J. S.; Liu, P. W.; Reager, J. T., II
2017-12-01
The 2011-2015 drought in California was the most severe on record and significantly depleted state water reserves. However, after the consecutive wet winters of 2015-16 and 2016-17, water storage in reservoirs, soil, snowpack, and aquifers began recovering and the state government lifted the drought emergency for all California counties except four. But is the drought really "over"? Quantifiable metrics of groundwater storage are necessary to provide such evidence, yet in situ measurements are sparse at best. Here we holistically test whether California state water resources have fully recovered in the Sacramento, San Joaquin, and Tulare Lake basins of California, using remote sensing satellite observations, in situ measurements, and numerical models. Specifically, we partition water storage into four components of the terrestrial water cycle: soil moisture, snow water equivalent, surface water, and groundwater. We derive soil moisture and snow water equivalent from the North American Land Data Assimilation System (NLDAS) and we use the California Data Exchange Center (CDEC) network to measure in situ reservoir storage. To estimate changes in groundwater storage, we subtract these three components from the total water storage derived from the Gravity Recovery and Climate Experiment (GRACE) satellite. Preliminary results show that the groundwater storage plummeted to a record low during the 2011-2015 drought. The results also show a rapid recovery in total water storage from 2015-2017. Moreover, we find that groundwater accounts for, on average, 60% of the total water storage variations in the study basins. Our results hold social significance when placed in the context of arid California: Did the groundwater recover? Is this the largest recovery that California can expect? Finally, our results have implications for the utility of remote sensing to inform water resource management decisions.
INFN-Pisa scientific computation environment (GRID, HPC and Interactive Analysis)
NASA Astrophysics Data System (ADS)
Arezzini, S.; Carboni, A.; Caruso, G.; Ciampa, A.; Coscetti, S.; Mazzoni, E.; Piras, S.
2014-06-01
The INFN-Pisa Tier2 infrastructure is described, optimized not only for GRID CPU and Storage access, but also for a more interactive use of the resources in order to provide good solutions for the final data analysis step. The Data Center, equipped with about 6700 production cores, permits the use of modern analysis techniques realized via advanced statistical tools (like RooFit and RooStat) implemented in multicore systems. In particular a POSIX file storage access integrated with standard SRM access is provided. Therefore the unified storage infrastructure is described, based on GPFS and Xrootd, used both for SRM data repository and interactive POSIX access. Such a common infrastructure allows a transparent access to the Tier2 data to the users for their interactive analysis. The organization of a specialized many cores CPU facility devoted to interactive analysis is also described along with the login mechanism integrated with the INFN-AAI (National INFN Infrastructure) to extend the site access and use to a geographical distributed community. Such infrastructure is used also for a national computing facility in use to the INFN theoretical community, it enables a synergic use of computing and storage resources. Our Center initially developed for the HEP community is now growing and includes also HPC resources fully integrated. In recent years has been installed and managed a cluster facility (1000 cores, parallel use via InfiniBand connection) and we are now updating this facility that will provide resources for all the intermediate level HPC computing needs of the INFN theoretical national community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia
Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.
Cryogenic Fluid Management Technology for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.
2010-01-01
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.
Errando-Smet, C; Müller-Arteaga, C; Hernández, M; Roset, M
2018-02-07
To explore the management of lower urinary tract symptoms (LUTS) in men in Spain and assess the compliance with recommendations established in the European Association of Urology (EAU) guidelines. MERCURY was an epidemiological and cross-sectional study which involved 227 Urology Units across Spain assessing adult male patients with mixed LUTS and persisting storage symptoms. Sociodemographic, clinical and resource use data for the 6 months prior to study inclusion were collected. Additionally, through a theoretical clinical case, clinicians described their attitude toward the diagnostic and therapeutic management of males with mixed LUTS and persisting storage symptoms during the first and second visits. Answer options given to clinicians about LUTS management were aligned with those recommended by EAU guidelines. 610 patients included in the study were evaluated. 87.7% of them consumed some health resource mainly due to: urologist visits (79.7%), PSA determination (76.6%) and treatment with alpha-blockers (37.5%) and alpha-blockers plus antimuscarinics (37.2%). According to the theoretical clinical case, urologists preference toward diagnostic tools and pharmacological treatment in first visit were mainly PSA determination (97.7%), digital rectal examination (91.4%) and treatment with alphablockers as monotherapy (56.6%), whereas in the second visit uroflowmetry (48.9%), voiding diary (40.3%) and treatment with alpha-blockers plus antimuscarinics (70.6%) were mainly preferred. Urologists attitude toward management of male patients with mixed LUTS and persisting storage symptoms is aligned with that recommended in the EAU guidelines. Copyright © 2018 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel
2014-05-01
The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water markets by economic optimization, without considering the potential effect of transaction costs. These methods and tools have been applied to the Jucar River basin (Spain). The results show the potential of economic instruments in setting incentives for a more efficient management of water resources systems. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536), SAWARES (Plan Nacional I+D+i 2008-2011, CGL2009-13238-C02-01 and C02-02), SCARCE (Consolider-Ingenio 2010 CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness; and EC 7th Framework Project ENHANCE (n. 308438) Reference: Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J., 2013. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plann. Manage., 139(5): 583-592.
Risk, liability, and economic issues with long-term CO2 storage—A review
Anderson, Steven T.
2017-01-01
Given a scarcity of commercial-scale carbon capture and storage (CCS) projects, there is a great deal of uncertainty in the risks, liability, and their cost implications for geologic storage of carbon dioxide (CO2). The probabilities of leakage and the risk of induced seismicity could be remote, but the volume of geologic CO2 storage (GCS) projected to be necessary to have a significant impact on increasing CO2 concentrations in the atmosphere is far greater than the volumes of CO2 injected thus far. National-level estimates of the technically accessible CO2storage resource (TASR) onshore in the United States are on the order of thousands of gigatons of CO2 storage capacity, but such estimates generally assume away any pressure management issues. Pressure buildup in the storage reservoir is expected to be a primary source of risk associated with CO2 storage, and only a fraction of the theoretical TASR could be available unless the storage operator extracts the saltwater brines or other formation fluids that are already present in the geologic pore space targeted for CO2 storage. Institutions, legislation, and processes to manage the risk, liability, and economic issues with CO2 storage in the United States are beginning to emerge, but will need to progress further in order to allow a commercial-scale CO2 storage industry to develop in the country. The combination of economic tradeoffs, property rights definitions, liability issues, and risk considerations suggests that CO2 storage offshore of the United States may be more feasible than onshore, especially during the current (early) stages of industry development.
NASA Astrophysics Data System (ADS)
Zhao, F. R.; Healey, S. P.; McCarter, J. B.; Garrard, C.; Zhu, Z.; Huang, C.
2016-12-01
Natural disturbances and land management directly alter C stored in biomass and soil pools, and forest recovery following these events are critical for long-term regional C balance. The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of different land ownerships within similar environmental settings, making it an ideal site to examine the impacts of land management, disturbance and forest recovery on regional C dynamics. Recent advances in the remote sensing of vegetation condition and change, along with new techniques linking remote sensing with inventory records, have allowed investigations that are much more tightly constrained to actual landscape environments instead of hypothetical or generalized conditions. These new capabilities are built into the Forest Carbon Management Framework (ForCaMF), which is being used by the National Forest System to not only model, but to monitor across very specific management units, the impact of different kinds of disturbance on carbon storage. In this study, we used the ForCaMF approach to examine three C related management questions in GYE National Parks and National Forests: 1) what was the carbon storage impact of fire disturbance and management activities from 1985 to 2010 in the GYE National Parks and National Forests? 2) Using an historic fire that occurred in 1988 as a basis for comparison, what difference would active post-fire forest restoration make in subsequent C storage? 3) In light of the fact that GYE National Forests significantly reduced harvest rates in the 1990s, how would maintaining high harvest rates of the 1980s impacted C storage? Simulation results show that recent forest fires in the GYE National Parks induced an accumulative C storage loss of about 12 Mg/ha, compared with C storage loss up to 2 Mg/ha in the GYE National Forests by harvests. If the high harvest rates as of the 1980s had been maintained, C emissions from the National Forests ( 11 Mg/ha) would approach fire-induced C storage loss in the National Parks during the study interval. New monitoring techniques such as ForCaMF leverage broadly available but locally specific monitoring resources to assess C dynamics on real landscapes. Resulting insights should have very practical applications in support of adaptive forest management across the country.
iSDS: a self-configurable software-defined storage system for enterprise
NASA Astrophysics Data System (ADS)
Chen, Wen-Shyen Eric; Huang, Chun-Fang; Huang, Ming-Jen
2018-01-01
Storage is one of the most important aspects of IT infrastructure for various enterprises. But, enterprises are interested in more than just data storage; they are interested in such things as more reliable data protection, higher performance and reduced resource consumption. Traditional enterprise-grade storage satisfies these requirements at high cost. It is because traditional enterprise-grade storage is usually designed and constructed by customised field-programmable gate array to achieve high-end functionality. However, in this ever-changing environment, enterprises request storage with more flexible deployment and at lower cost. Moreover, the rise of new application fields, such as social media, big data, video streaming service etc., makes operational tasks for administrators more complex. In this article, a new storage system called intelligent software-defined storage (iSDS), based on software-defined storage, is described. More specifically, this approach advocates using software to replace features provided by traditional customised chips. To alleviate the management burden, it also advocates applying machine learning to automatically configure storage to meet dynamic requirements of workloads running on storage. This article focuses on the analysis feature of iSDS cluster by detailing its architecture and design.
Risk based inspection for atmospheric storage tank
NASA Astrophysics Data System (ADS)
Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin
2016-04-01
Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.
Distance Learning and Cloud Computing: "Just Another Buzzword or a Major E-Learning Breakthrough?"
ERIC Educational Resources Information Center
Romiszowski, Alexander J.
2012-01-01
"Cloud computing is a model for the enabling of ubiquitous, convenient, and on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and other services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." This…
Fire effects on temperate forest soil C and N storage
Lucas E. Nave; Eric D. Vance; Christopher W. Swanston; Peter S. Curtis
2011-01-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting...
Tier 3 batch system data locality via managed caches
NASA Astrophysics Data System (ADS)
Fischer, Max; Giffels, Manuel; Jung, Christopher; Kühn, Eileen; Quast, Günter
2015-05-01
Modern data processing increasingly relies on data locality for performance and scalability, whereas the common HEP approaches aim for uniform resource pools with minimal locality, recently even across site boundaries. To combine advantages of both, the High- Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality via coordinated caches. In accordance with HEP Tier 3 activities, the design incorporates two major assumptions: First, only a fraction of data is accessed regularly and thus the deciding factor for overall throughput. Second, data access may fallback to non-local, making permanent local data availability an inefficient resource usage strategy. Based on this, the HPDA design generically extends available storage hierarchies into the batch system. Using the batch system itself for scheduling file locality, an array of independent caches on the worker nodes is dynamically populated with high-profile data. Cache state information is exposed to the batch system both for managing caches and scheduling jobs. As a result, users directly work with a regular, adequately sized storage system. However, their automated batch processes are presented with local replications of data whenever possible.
Townend, William K; Cheeseman, Christopher R
2005-10-01
This paper presents guidelines that can be used by managers of healthcare facilities to evaluate and assess the quality of resources and waste management at their facilities and enabling the principles of sustainable development to be addressed. The guidelines include the following key aspects which need to be considered when completing an assessment. They are: (a) general management; (b) social issues; (c) health and safety; (d) energy and water use; (e) purchasing and supply; (f) waste management (responsibility, segregation, storage and packaging); (g) waste transport; (h) recycling and re-use; (i) waste treatment; and (j) final disposal. They identify actions required to achieve a higher level of performance which can readily be applied to any healthcare facility, irrespective of the local level of social, economic and environmental development. The guidelines are presented, and the characteristics of facilities associated with sustainable (level 4) and unsustainable (level 0) healthcare resource and wastes management are outlined. They have been used to assess a major London hospital, and this highlighted a number of deficiencies in current practice, including a lack of control over purchasing and supply, and very low rates of segregation of municipal solid waste from hazardous healthcare waste.
The Stream Depletion Model Paradox and a First Solution
NASA Astrophysics Data System (ADS)
Malama, B.
2017-12-01
Hitherto, stream depletion models available in the hydrogeology literature use the xed head Dirichletboundary condition at the stream, and as such do not account for groundwater pumping induced streamdrawdown. They simply treat stream depletion as the decrease in stream discharge due capture by pumping,the groundwater that would discharge to the stream without pumping. We refer to this model predictedstream depletion without stream drawdown as the depletion paradox. It is intuitively clear, however, thatadverse impacts of long-term groundwater abstraction in the neighborhood of a stream include streamdrawdown, which has led to many a dry streambed in the American west and other arid regions. Streamdrawdown is especially acute for low stream ows. A mathematical model that allows for transient streamdrawdown is proposed by introducing the concept of stream storage. The model simply extends the constanthead model at the stream by including a mass-balance condition. The model is developed for a fullypenetrating stream and groundwater abstraction in a conned aquifer. The dependence of model predictedstream depletion and drawdown on stream storage, streambed conductance, aquifer anisotropy, and radialdistance to the pumping well is evaluated. The model is shown to reduce to that of Hantush in the limitas stream storage becomes innitely large, and to the Theis solution with a no- ow boundary at the streamlocation when stream storage gets vanishingly small. The results suggest that using xed stream stage modelsleads to an underestimation the late-time aquifer drawdwon response to pumping in the neighborhood of astream because it correspond to innite stream storage. This is especially critical for management of surfacewater and groundwater resources in systems subjected to prolonged groundwater abstraction and measurablestream drawdown. The model also shows a maximum stream depletion rate, beyond which stream ow to thewell diminishes and eventually vanishes. This suggests that models with xed stream stage overestimate theavailable groundwater supply from streams to pumping wells because of the inherent assumption of innitestream storage. This has implications for sustainable management of groundwater resources near streams.
ERISTAR: Earth Resources Information Storage, Transformation, Analysis, and Retrieval
NASA Technical Reports Server (NTRS)
1972-01-01
The National Aeronautics and Space Administration (NASA) and the American Society for Engineering Education (ASEE) have sponsored faculty fellowship programs in systems engineering design for the past several years. During the summer of 1972 four such programs were conducted by NASA, with Auburn University cooperating with Marshall Space Flight Center (MSFC). The subject for the Auburn-MSFC design group was ERISTAR, an acronym for Earth Resources Information Storage, Transformation, Analysis and Retrieval, which represents an earth resources information management network of state information centers administered by the respective states and linked to federally administered regional centers and a national center. The considerations for serving the users and the considerations that must be given to processing data from a variety of sources are described. The combination of these elements into a national network is discussed and an implementation plan is proposed for a prototype state information center. The compatibility of the proposed plan with the Department of Interior plan, RALI, is indicated.
NETL CO 2 Storage prospeCtive Resource Estimation Excel aNalysis (CO 2-SCREEN) User's Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanguinito, Sean M.; Goodman, Angela; Levine, Jonathan
This user’s manual guides the use of the National Energy Technology Laboratory’s (NETL) CO 2 Storage prospeCtive Resource Estimation Excel aNalysis (CO 2-SCREEN) tool, which was developed to aid users screening saline formations for prospective CO 2 storage resources. CO 2- SCREEN applies U.S. Department of Energy (DOE) methods and equations for estimating prospective CO 2 storage resources for saline formations. CO2-SCREEN was developed to be substantive and user-friendly. It also provides a consistent method for calculating prospective CO 2 storage resources that allows for consistent comparison of results between different research efforts, such as the Regional Carbon Sequestration Partnershipsmore » (RCSP). CO 2-SCREEN consists of an Excel spreadsheet containing geologic inputs and outputs, linked to a GoldSim Player model that calculates prospective CO 2 storage resources via Monte Carlo simulation.« less
NASA Astrophysics Data System (ADS)
Zhao, F.; Huang, C.; Healey, S. P.; McCarter, J. B.; Garrard, C.; Zhu, Z.
2015-12-01
Natural disturbances and land management directly change C stored in biomass and soil pools, and can have indirect impacts on long-term C balance. The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of different land ownerships within similar environmental settings, making it an ideal site to examine the impacts of management and disturbances on regional carbon dynamics. Recent advances in the remote sensing of vegetation condition and change, along with new techniques linking remote sensing with inventory records, have allowed investigations that are much more tightly constrained to actual landscape environment, instead of hypothetical or generalized conditions. These new capabilities are built into the Forest Carbon Management Framework (ForCaMF), which is being used by the National Forest System to not only model, but to monitor across very specific management units, the impact of different kinds of disturbance on carbon storage. In this study, we used the ForCaMF approach to evaluate carbon effects of natural disturbances (e.g. wildfire) and land management (e.g. harvests) in GYE National Parks, Wilderness Area and National Forests. As might be expected, wildfire has been the dominant disturbance factor in the carbon cycle of GYE's administratively protected areas since the mid-1980s, while harvests have dominated storage trends on the managed land in the region's National Forests. Moving beyond this monitoring result but maintaining the same fidelity to historical vegetation patterns, we are also able to simulate alternative disturbance scenarios to provide landscape-specific insights to forest managers. We can estimate likely carbon storage impacts in GYE protected areas, for example, if more active fire suppression had been pursued since the mid-1980s. Likewise, we can identify differences in current carbon storage on managed lands if high harvest rates during the same period had been moderated. We discuss emerging links between carbon storage and management in GYE, and we consider the potential for expanding this kind of analysis using globally available satellite resources and nationally available inventory data.
Adult age differences in the storage of information in working memory.
Foos, P W; Wright, L
1992-01-01
The performance of 97 young and 91 old persons were compared to determine if a deficiency in working memory resources for processing, storage, or allocation could be detected. Persons simultaneously performed a storage and one of two processing tasks while instructed to allocate resources to processing, storage, or both tasks. The storage task involved remembering the names of one, three, or five persons. Processing tasks involved solving addition problems presented on flashcards or answering common knowledge questions. Results showed increased age differences on the storage task as demands for resources increased but no differences on processing tasks. Individuals seemed unable to allocate resources as instructed. A comparison of young-old and old-old groups showed the same results as those obtained comparing young and old groups and support the hypothesis of a deficiency of storage, but not processing, resources in working memory for old, especially old-old, adults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainstworth, Nathan; Johnson, Brian; Lundstrom, Blake
Presentation for NAPS 2015 associated with conference publication CP-64392. Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions.
Evaluating Water Storage Variations in the MENA region using GRACE Satellite Data
NASA Astrophysics Data System (ADS)
Lopez, O.; Houborg, R.; McCabe, M. F.
2013-12-01
Terrestrial water storage (TWS) variations over large river basins can be derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites. These signals are useful for determining accurate estimates of water storage and fluxes over areas covering a minimum of 150,000 km2 (length scales of a few hundred kilometers) and thus prove to be a valuable tool for regional water resources management, particularly for areas with a lack of in-situ data availability or inconsistent monitoring, such as the Middle East and North Africa (MENA) region. This already stressed arid region is particularly vulnerable to climate change and overdraft of its non-renewable freshwater sources, and thus direction in managing its resources is a valuable aid. An inter-comparison of different GRACE-derived TWS products was done in order to provide a quantitative assessment on their uncertainty and their utility for diagnosing spatio-temporal variability in water storage over the MENA region. Different processing approaches for the inter-satellite tracking data from the GRACE mission have resulted in the development of TWS products, with resolutions in time from 10 days to 1 month and in space from 0.5 to 1 degree global gridded data, while some of them use input from land surface models in order to restore the original signal amplitudes. These processing differences and the difficulties in recovering the mass change signals over arid regions will be addressed. Output from the different products will be evaluated and compared over basins inside the MENA region, and compared to output from land surface models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ravindra; Reilly, James T.; Wang, Jianhui
Deregulation of the electric utility industry, environmental concerns associated with traditional fossil fuel-based power plants, volatility of electric energy costs, Federal and State regulatory support of “green” energy, and rapid technological developments all support the growth of Distributed Energy Resources (DERs) in electric utility systems and ensure an important role for DERs in the smart grid and other aspects of modern utilities. DERs include distributed generation (DG) systems, such as renewables; controllable loads (also known as demand response); and energy storage systems. This report describes the role of aggregators of DERs in providing optimal services to distribution networks, through DERmore » monitoring and control systems—collectively referred to as a Distributed Energy Resource Management System (DERMS)—and microgrids in various configurations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOPKINS, A.M.
2007-02-20
The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building.more » The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.« less
Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.
Shrestha, Narayan Kumar; Du, Xinzhong; Wang, Junye
2017-12-01
Proper management of blue and green water resources is important for the sustainability of ecosystems and for the socio-economic development of river basins such as the Athabasca River Basin (ARB) in Canada. For this reason, quantifying climate change impacts on these water resources at a finer temporal and spatial scale is often necessary. In this study, we used a Soil and Water Assessment Tool (SWAT) to assess climate change impacts on fresh water resources, focusing explicitly on the impacts to both blue and green water. We used future climate data generated by the Canadian Center for Climate Modelling and Analysis Regional Climate Model (CanRCM4) with a spatial resolution of 0.22°×0.22° (~25km) for two emission scenarios (RCP 4.5 and 8.5). Results projected the climate of the ARB to be wetter by 21-34% and warmer by 2-5.4°C on an annual time scale. Consequently, the annual average blue and green water flow was projected to increase by 16-54% and 11-34%, respectively, depending on the region, future period, and emission scenario. Furthermore, the annual average green water storage at the boreal region was expected to increase by 30%, while the storage was projected to remain fairly stable or decrease in other regions, especially during the summer season. On average, the fresh water resources in the ARB are likely to increase in the future. However, evidence of temporal and spatial heterogeneity could pose many future challenges to water resource planners and managers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Characterization of California Central Coast Aquifers using Pneumatic Slug Tests
NASA Astrophysics Data System (ADS)
Aurelius, S.; Platt, D.; Whetsler, B.; Malama, B.
2017-12-01
The recent prolonged drought in California, where about 75% of the population depends to some extent ongroundwater, has led to increased stresses on the state's groundwater resources due to reduced recharge andincreased abstraction to supplement dwindling surface water supplies for irrigation and other urban uses.These factors have conspired to cause historic lows in groundwater levels, lost aquifer storage capacity dueincreased potential for land subsidence, and degraded water quality in coastal aquifers faced with increasedrates of seawater intrusion. Groundwater accounts for about a third of the total water uses in California,with some coastal communities being 100% dependent on groundwater. Irrigation accounts for over 60%of all state groundwater withdrawals in California. In light of this, the state of California recently passedthe Sustainable Groundwater Management Act (SGMA) aimed at bringing the State's groundwater basinsinto sustainable regimes of abstraction, recharge and storage. Groundwater ow models are critical to thesuccessful implementation of the SGMA legislation. However, the usefulness of the models is severely limitedby a lack of detailed knowledge of aquifer properties at spatial scales that allow for accurate projections tobe made about groundwater basin sustainability by resource managers. We report here the results of highresolution pneumatic slug tests performed in two shallow aquifers in San Luis Obispo County on the CaliforniaCentral Coast to obtain detailed information about aquifer properties, including permeability and storage,and their spatial variability.
Establishing an academic biobank in a resource-challenged environment.
Soo, Cassandra Claire; Mukomana, Freedom; Hazelhurst, Scott; Ramsay, Michele
2017-05-24
Past practices of informal sample collections and spreadsheets for data and sample management fall short of best-practice models for biobanking, and are neither cost effective nor efficient to adequately serve the needs of large research studies. The biobank of the Sydney Brenner Institute for Molecular Bioscience serves as a bioresource for institutional, national and international research collaborations. It provides high-quality human biospecimens from African populations, secure data and sample curation and storage, as well as monitored sample handling and management processes, to promote both non-communicable and infectious-disease research. Best-practice guidelines have been adapted to align with a low-resource setting and have been instrumental in the development of a quality-management system, including standard operating procedures and a quality-control regimen. Here, we provide a summary of 10 important considerations for initiating and establishing an academic research biobank in a low-resource setting. These include addressing ethical, legal, technical, accreditation and/or certification concerns and financial sustainability.
Establishing an academic biobank in a resource-challenged environment
Soo, C C; Mukomana, F; Hazelhurst, S; Ramsay, M
2018-01-01
Past practices of informal sample collections and spreadsheets for data and sample management fall short of best-practice models for biobanking, and are neither cost effective nor efficient to adequately serve the needs of large research studies. The biobank of the Sydney Brenner Institute for Molecular Bioscience serves as a bioresource for institutional, national and international research collaborations. It provides high-quality human biospecimens from African populations, secure data and sample curation and storage, as well as monitored sample handling and management processes, to promote both non-communicable and infectious-disease research. Best-practice guidelines have been adapted to align with a low-resource setting and have been instrumental in the development of a quality-management system, including standard operating procedures and a quality-control regimen. Here, we provide a summary of 10 important considerations for initiating and establishing an academic research biobank in a low-resource setting. These include addressing ethical, legal, technical, accreditation and/or certification concerns and financial sustainability. PMID:28604319
Challenges for data storage in medical imaging research.
Langer, Steve G
2011-04-01
Researchers in medical imaging have multiple challenges for storing, indexing, maintaining viability, and sharing their data. Addressing all these concerns requires a constellation of tools, but not all of them need to be local to the site. In particular, the data storage challenges faced by researchers can begin to require professional information technology skills. With limited human resources and funds, the medical imaging researcher may be better served with an outsourcing strategy for some management aspects. This paper outlines an approach to manage the main objectives faced by medical imaging scientists whose work includes processing and data mining on non-standard file formats, and relating those files to the their DICOM standard descendents. The capacity of the approach scales as the researcher's need grows by leveraging the on-demand provisioning ability of cloud computing.
NASA Astrophysics Data System (ADS)
Karasu, İ. G.; Yilmaz, K. K.; Yilmaz, M. T.
2017-12-01
Estimation of the groundwater storage change and its interannual variability is critical over Konya Closed Basin which has excessive agricultural production. The annual total precipitation falling over the region is not sufficient to compensate the agricultural irrigation needs of the region. This leds many to use groundwater as the primary water resource, which resulted in significant drop in the groundwater levels. Accordingly, monitoring of the groundwater change is critical for sustainable water resources management. Gravity Recovery and Climate Experiment (GRACE) observations and Global Land Data Assimilation System (GLDAS) have been succesfully used over many locations to monitor the change in the groundwater storages. In this study, GRACE-derived terrestrial water storage estimates and GLDAS model soil moisture, canopy water, snow water equivalent and surface runoff simulations are used to retrieve the change in the groundwater storage over Konya Closed Basin streching over 50,000 km2 area. Initial comparisons show the declining trend in GRACE and GLDAS combined groundwater storage change estimates between 2002 and 2016 are consistent with the actual groundwater level change observed at ground stations. Even though many studies recommend GRACE observations to be used over regions larger than 100,000 km2 - 200,000 km2 area, results show GRACE remote sensing and GLDAS modeled groundwater change information are skillful to monitor the large mass changes occured as a result of the excessive groundwater exploitation over Konya Closed Basin with 50,000 km2 area.
NASA Technical Reports Server (NTRS)
Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy
2011-01-01
The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.
Classification of CO2 Geologic Storage: Resource and Capacity
Frailey, S.M.; Finley, R.J.
2009-01-01
The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of these terms and how storage classification changes as new data become available. ?? 2009 Elsevier Ltd. All rights reserved.
Desert basins of the Southwest
Leake, Stanley A.; Konieczki, Alice D.; Rees, Julie A.H.
2000-01-01
Ground water is among the Nation’s most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from overuse and contamination. Because ground-water systems typically respond slowly to human actions, a long-term perspective is needed to manage this valuable resource. This publication is one in a series of fact sheets that describe ground-water-resource issues across the United States, as well as some of the activities of the U.S. Geological Survey that provide information to help others develop, manage, and protect ground-water resources in a sustainable manner. Ground-water resources in the Southwest are among the most overused in the United States. Natural recharge to aquifers is low and pumping in many areas has resulted in lowering of water tables. The consequences of large-scale removal of water from storage are becoming increasingly evident. These consequences include land subsidence; loss of springs, streams, wetlands and associated habitat; and degradation of water quality. Water managers are now seeking better ways of managing ground-water resources while looking for supplemental sources of water. This fact sheet reviews basic information on ground water in the desert basins of the Southwest. Also described are some activities of the U.S. Geological Survey (USGS) that are providing scientific information for sustainable management of ground-water resources in the Southwest. Ground-water sustainability is defined as developing and using ground water in a way that can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences.
Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon
NASA Astrophysics Data System (ADS)
Neumann, P.; Haggerty, R.
2012-12-01
A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.
The Wide-area Energy Management System Phase 2 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.
2010-08-31
The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resultingmore » system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.« less
An Efficient Resource Management System for a Streaming Media Distribution Network
ERIC Educational Resources Information Center
Cahill, Adrian J.; Sreenan, Cormac J.
2006-01-01
This paper examines the design and evaluation of a TV on Demand (TVoD) system, consisting of a globally accessible storage architecture where all TV content broadcast over a period of time is made available for streaming. The proposed architecture consists of idle Internet Service Provider (ISP) servers that can be rented and released dynamically…
Deelman, E.; Callaghan, S.; Field, E.; Francoeur, H.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T.H.; Kesselman, C.; Maechling, P.; Mehringer, J.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.
2006-01-01
This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid. ?? 2006 IEEE.
The Design of Data Disaster Recovery of National Fundamental Geographic Information System
NASA Astrophysics Data System (ADS)
Zhai, Y.; Chen, J.; Liu, L.; Liu, J.
2014-04-01
With the development of information technology, data security of information system is facing more and more challenges. The geographic information of surveying and mapping is fundamental and strategic resource, which is applied in all areas of national economic, defence and social development. It is especially vital to national and social interests when such classified geographic information is directly concerning Chinese sovereignty. Several urgent problems that needs to be resolved for surveying and mapping are how to do well in mass data storage and backup, establishing and improving the disaster backup system especially after sudden natural calamity accident, and ensuring all sectors rapidly restored on information system will operate correctly. For overcoming various disaster risks, protect the security of data and reduce the impact of the disaster, it's no doubt the effective way is to analysis and research on the features of storage and management and security requirements, as well as to ensure that the design of data disaster recovery system suitable for the surveying and mapping. This article analyses the features of fundamental geographic information data and the requirements of storage management, three site disaster recovery system of DBMS plan based on the popular network, storage and backup, data replication and remote switch of application technologies. In LAN that synchronous replication between database management servers and the local storage of backup management systems, simultaneously, remote asynchronous data replication between local storage backup management systems and remote database management servers. The core of the system is resolving local disaster in the remote site, ensuring data security and business continuity of local site. This article focuses on the following points: background, the necessity of disaster recovery system, the analysis of the data achievements and data disaster recovery plan. Features of this program is to use a hardware-based data hot backup, and remote online disaster recovery support for Oracle database system. The achievement of this paper is in summarizing and analysing the common characteristics of disaster of surveying and mapping business system requirements, while based on the actual situation of the industry, designed the basic GIS disaster recovery solutions, and we also give the conclusions about key technologies of RTO and RPO.
Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.
Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei
2016-01-29
In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.
Technical-economic modelling of integrated water management: wastewater reuse in a French island.
Xu, P; Valette, F; Brissaud, F; Fazio, A; Lazarova, V
2001-01-01
An integrated technical-economic model is used to address water management issues in the French island of Noirmoutier. The model simulates potable water production and supply, potable and non potable water demand and consumption, wastewater collection, treatment and disposal, water storage, transportation and reuse. A variety of water management scenarios is assessed through technical, economic and environmental evaluation. The scenarios include wastewater reclamation and reuse for agricultural and landscape irrigation as well as domestic non potable application, desalination of seawater and brackish groundwater for potable water supply. The study shows that, in Noirmoutier, wastewater reclamation and reuse for crop irrigation is the most cost-effective solution to the lack of water resources and the protection of sensitive environment. Some water management projects which are regarded as having less economic benefit in the short-term may become competitive in the future, as a result of tightened environmental policy, changed public attitudes and advanced water treatment technologies. The model provides an appropriate tool for water resources planning and management.
Infrastructure Systems for Advanced Computing in E-science applications
NASA Astrophysics Data System (ADS)
Terzo, Olivier
2013-04-01
In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.
A Queue Simulation Tool for a High Performance Scientific Computing Center
NASA Technical Reports Server (NTRS)
Spear, Carrie; McGalliard, James
2007-01-01
The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.
Water-resources optimization model for Santa Barbara, California
Nishikawa, Tracy
1998-01-01
A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.
CHEMICAL STORAGE: MYTHS VERSUS REALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, F
A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes althoughmore » helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.« less
Geology and water resources of the Spanish Valley area, Grand and San Juan Counties, Utah
Sumsion, C.T.
1971-01-01
This water-resources investigation was initiated in order to provide an estimate of the average annual water yield of the Mill Creek-Pack Creek drainage basin, the parts of that total yield available as surface water and ground water, the amount of ground water that might be recovered for beneficial use, and the effect of this use on the usable ground-water storage within the valley fill in Spanish and Moab Valleys. Detailed information has been sought which is basic to the establishment of sound policies for the development and management of water resources. The investigation was carried out as part of water-resources investigations in Utah with the Utah Division of Water Rights, Department of Natural Resources. Fieldwork was done during the period July 1967-November 1969.
NASA Technical Reports Server (NTRS)
Vachon, R. I.; Obrien, J. F., Jr.; Lueg, R. E.; Cox, J. E.
1972-01-01
The 1972 Systems Engineering program at Marshall Space Flight Center where 15 participants representing 15 U.S. universities, 1 NASA/MSFC employee, and another specially assigned faculty member, participated in an 11-week program is discussed. The Fellows became acquainted with the philosophy of systems engineering, and as a training exercise, used this approach to produce a conceptional design for an Earth Resources Information Storage, Transformation, Analysis, and Retrieval System. The program was conducted in three phases; approximately 3 weeks were devoted to seminars, tours, and other presentations to subject the participants to technical and other aspects of the information management problem. The second phase, 5 weeks in length, consisted of evaluating alternative solutions to problems, effecting initial trade-offs and performing preliminary design studies and analyses. The last 3 weeks were occupied with final trade-off sessions, final design analyses and preparation of a final report and oral presentation.
Grid computing enhances standards-compatible geospatial catalogue service
NASA Astrophysics Data System (ADS)
Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang
2010-04-01
A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.
Managing water quality under drought conditions in the Llobregat River Basin.
Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín
2015-01-15
The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.
30 CFR 57.16012 - Storage of incompatible substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of incompatible substances. 57.16012 Section 57.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16012 Storage of incompatible substances. Chemical substances, including...
30 CFR 56.16012 - Storage of incompatible substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of incompatible substances. 56.16012 Section 56.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16012 Storage of incompatible substances. Chemical substances, including...
30 CFR 57.16012 - Storage of incompatible substances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of incompatible substances. 57.16012 Section 57.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16012 Storage of incompatible substances. Chemical substances, including...
30 CFR 56.16012 - Storage of incompatible substances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of incompatible substances. 56.16012 Section 56.16012 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16012 Storage of incompatible substances. Chemical substances, including...
NASA Astrophysics Data System (ADS)
Miro, M.; Famiglietti, J. S.
2016-12-01
In California, traditional water management has focused heavily on surface water, leaving many basins in a state of critical overdraft and lacking in established frameworks for groundwater management. However, new groundwater legislation, the 2014 Sustainable Groundwater Management Act (SGMA), presents an important opportunity for water managers and hydrologists to develop novel methods for managing statewide groundwater resources. Integrating scientific advances in groundwater monitoring with hydrologically-sound methods can go a long way in creating a system that can better govern the resource. SGMA mandates that groundwater management agencies employ the concept of sustainable yield as their primary management goal but does not clearly define a method to calculate it. This study will develop a hydrologically-based method to quantify sustainable yield that follows the threshold framework under SGMA. Using this method, sustainable yield will be calculated for two critically-overdrafted groundwater basins in California's Central Valley. This measure will also utilize groundwater monitoring data and downscaled remote sensing estimates of groundwater storage change from NASA's GRACE satellite to illustrate why data matters for successful management. This method can be used as a basis for the development of SGMA's groundwater management plans (GSPs) throughout California.
Human impacts on terrestrial hydrology: climate change versus pumping and irrigation
NASA Astrophysics Data System (ADS)
Ferguson, Ian M.; Maxwell, Reed M.
2012-12-01
Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holst, Kent; Huff, Georgianne; Schulte, Robert H.
2012-01-01
The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issuesmore » related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.« less
Food and Nutrition. Volume II. Units VI-VIII: Fruit, Fats, Vegetables, Legumes, Grains, Meats.
ERIC Educational Resources Information Center
Honse, Elizabeth Linsenbardt
These instructional materials are intended as a guide for the instructor of a secondary home economics course in food and nutrition. Topics covered in the three units are time, energy, and resource management; selection, care, preparation, and storage of food (seven lessons on dairy foods; fats and oils; cereals and breads; fruits and vegetables;…
Appraisal of Scientific Resources for Emergency Management.
1983-09-01
water, communications, computers, and oil refineries or storage facilities. In addition, the growth of the number of operative nuclear power plants ...one from a nuclear power plant accident); one involved hazardous waste disposal problems; and finally two involved wartime scenarios, one focusing on...pro- tection research, radiological protection from nuclear power plant accidents, concepts and operation of public shelters, and post attack
A ground-based method of assessing urban forest structure and ecosystem services
David J. Nowak; Daniel E. Crane; Jack C. Stevens; Robert E. Hoehn; Jeffrey T. Walton; Jerry Bond
2008-01-01
To properly manage urban forests, it is essential to have data on this important resource. An efficient means to obtain this information is to randomly sample urban areas. To help assess the urban forest structure (e.g., number of trees, species composition, tree sizes, health) and several functions (e.g., air pollution removal, carbon storage and sequestration), the...
Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawson, Mark; Sanchez, Eddie Paul
2013-12-30
Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business modelsmore » for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.« less
Rising Water Storage in the Niger River basin: Clues and Cause
NASA Astrophysics Data System (ADS)
Werth, S.
2016-12-01
Heavily populated west African regions along the Niger River are affected by climate and land cover changes, altering the distribution of water resources. To maintain a reliable water supply in the region, water management authorities require knowledge of hydrological changes at various spatial and temporal scales. Local and regional studies reported rising water tables over the last decades as a consequence of complex responses on land use change in the Sahel zone. The spatial extend of this responses is not well understood, as of yet. Thus, this study provides an in-depth investigation of long-term changes in the water storages of Niger River basin and its sub-regions by analyzing more than a decade of satellite based gravity data from the Gravity Recovery And Climate Change (GRACE) satellites. Soil moisture data from four global hydrological models serve to separate freshwater resources (WR) from GRACE-based terrestrial water storage variations. Surface water variations from a global water storage model and trends from altimetry data were applied to separate the groundwater component from WR trends. Errors of all datasets are taken into account. Trends in WR are positive, except for the tropical Upper Niger with negative trends. For the Niger basin, a rise in GW stocks was detected. On the subbasin scale, GW changes are positive for the Sahelian Middle Niger and the Benue. The findings confirm previous observations of water tables in the Sahel and tropical zones, indicating that reported effects of land use change are relevant on large, i.e. basin and subbasin, scales. Our results have implications for Niger water management strategies. While areas with rising water storage are stocking a comfortable backup to mitigate possible future droughts and to deliver water to remote areas with no access to rivers or reservoirs. Increasing groundwater recharges may be accompanied by a reduction in water quality. This study helps to inform authority's decision to address risks for affected communities.
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...
From safe yield to sustainable development of water resources - The Kansas experience
Sophocleous, M.
2000-01-01
This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better understood and overly simplistic solutions avoided. (C) 2000 Elsevier Science B.V.This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involv
I/O-aware bandwidth allocation for petascale computing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Zhou; Yang, Xu; Zhao, Dongfang
In the Big Data era, the gap between the storage performance and an appli- cation's I/O requirement is increasing. I/O congestion caused by concurrent storage accesses from multiple applications is inevitable and severely harms the performance. Conventional approaches either focus on optimizing an ap- plication's access pattern individually or handle I/O requests on a low-level storage layer without any knowledge from the upper-level applications. In this paper, we present a novel I/O-aware bandwidth allocation framework to coordinate ongoing I/O requests on petascale computing systems. The motivation behind this innovation is that the resource management system has a holistic view ofmore » both the system state and jobs' activities and can dy- namically control the jobs' status or allocate resource on the y during their execution. We treat a job's I/O requests as periodical subjobs within its lifecycle and transform the I/O congestion issue into a classical scheduling problem. Based on this model, we propose a bandwidth management mech- anism as an extension to the existing scheduling system. We design several bandwidth allocation policies with different optimization objectives either on user-oriented metrics or system performance. We conduct extensive trace- based simulations using real job traces and I/O traces from a production IBM Blue Gene/Q system at Argonne National Laboratory. Experimental results demonstrate that our new design can improve job performance by more than 30%, as well as increasing system performance.« less
A Customized Drought Decision Support Tool for Hsinchu Science Park
NASA Astrophysics Data System (ADS)
Huang, Jung; Tien, Yu-Chuan; Lin, Hsuan-Te; Liu, Tzu-Ming; Tung, Ching-Pin
2016-04-01
Climate change creates more challenges for water resources management. Due to the lack of sufficient precipitation in Taiwan in fall of 2014, many cities and counties suffered from water shortage during early 2015. Many companies in Hsinchu Science Park were significantly influenced and realized that they need a decision support tool to help them managing water resources. Therefore, a customized computer program was developed, which is capable of predicting the future status of public water supply system and water storage of factories when the water rationing is announced by the government. This program presented in this study for drought decision support (DDSS) is a customized model for a semiconductor company in the Hsinchu Science Park. The DDSS is programmed in Java which is a platform-independent language. System requirements are any PC with the operating system above Windows XP and an installed Java SE Runtime Environment 7. The DDSS serves two main functions. First function is to predict the future storage of Baoshan Reservoir and Second Baoshan Reservoir, so to determine the time point of water use restriction in Hsinchu Science Park. Second function is to use the results to help the company to make decisions to trigger their response plans. The DDSS can conduct real-time scenario simulations calculating the possible storage of water tank for each factory with pre-implementation and post-implementation of those response plans. In addition, DDSS can create reports in Excel to help decision makers to compare results between different scenarios.
Conceptual design for the National Water Information System
Edwards, Melvin D.; Putnam, Arthur L.; Hutchison, Norman E.
1986-01-01
The Water Resources Division of the U.S. Geological Survey began the design and development of a National Water Information System (NWIS) in 1983. The NWIS will replace and integrate the existing data systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information Program, and Water Resources Scientific Information Center. The NWIS has been designed as an interactive, distributed data system. The software system has been designed in a modular manner which integrates existing software functions and allows multiple use of software modules. The data base has been designed as a relational data model that allows integrated storage of the existing water data, water-use data, and water-data indexing information by using a common relational data base management system. The NWIS will be operated on microcomputers located in each of the Water Resources Division's District offices and many of its State, subdistrict, and field offices. The microcomputers will be linked together through a national telecommunication network maintained by the U. S. Geological Survey. The NWIS is scheduled to be placed in operation in 1990.
Hasson, Uri; Skipper, Jeremy I; Wilde, Michael J; Nusbaum, Howard C; Small, Steven L
2008-01-15
The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data.
Hasson, Uri; Skipper, Jeremy I.; Wilde, Michael J.; Nusbaum, Howard C.; Small, Steven L.
2007-01-01
The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data. PMID:17964812
Pooling the resources of the CMS Tier-1 sites
Apyan, A.; Badillo, J.; Cruz, J. Diaz; ...
2015-12-23
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community.The long shutdown of the LHC in 2013-2014 was an opportunity to revisit thismore » mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems.With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Lastly, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape.In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.« less
Pooling the resources of the CMS Tier-1 sites
NASA Astrophysics Data System (ADS)
Apyan, A.; Badillo, J.; Diaz Cruz, J.; Gadrat, S.; Gutsche, O.; Holzman, B.; Lahiff, A.; Magini, N.; Mason, D.; Perez, A.; Stober, F.; Taneja, S.; Taze, M.; Wissing, C.
2015-12-01
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community. The long shutdown of the LHC in 2013-2014 was an opportunity to revisit this mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems. With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Finally, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape. In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...
30 CFR 57.16003 - Storage of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of hazardous materials. 57.16003 Section 57.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16003 Storage of hazardous materials. Materials that can create hazards if...
30 CFR 56.16003 - Storage of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of hazardous materials. 56.16003 Section 56.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16003 Storage of hazardous materials. Materials that can create hazards if...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...
30 CFR 56.16003 - Storage of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of hazardous materials. 56.16003 Section 56.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16003 Storage of hazardous materials. Materials that can create hazards if...
30 CFR 57.16003 - Storage of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of hazardous materials. 57.16003 Section 57.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16003 Storage of hazardous materials. Materials that can create hazards if...
Necessary storage as a signature of discharge variability: towards global maps
NASA Astrophysics Data System (ADS)
Takeuchi, Kuniyoshi; Masood, Muhammad
2017-09-01
This paper proposes the use of necessary storage to smooth out discharge variability to meet a discharge target as a signature of discharge variability in time. Such a signature has a distinct advantage over other statistical indicators such as standard deviation (SD) or coefficient of variation (CV) as it expresses hydrological variability in human terms, which directly indicates the difficulty and ease of managing discharge variation for water resource management. The signature is presented in the form of geographical distribution, in terms of both necessary storage (km3) and normalized necessary storage (months), and is related to the basin characteristics of hydrological heterogeneity. The signature is analyzed in different basins considering the Hurst equation of range as a reference. The slope of such a relation and the scatter of departures from the average relation are analyzed in terms of their relationship with basin characteristics. As a method of calculating necessary storage, the flood duration curve (FDC) and drought duration curve (DDC) methods are employed in view of their relative advantage over other methods to repeat the analysis over many grid points. The Ganges-Brahmaputra-Meghna (GBM) basin is selected as the case study and the BTOPMC hydrological model with Water and Global Change (WATCH) Forcing Data (WFD) is used for estimating FDC and DDC. It is concluded that the necessary storage serves as a useful signature of discharge variability, and its analysis could be extended to the entire globe and in this way seek new insights into hydrological variability in the storage domain at a larger range of scales.
Puttock, Alan; Graham, Hugh A; Cunliffe, Andrew M; Elliott, Mark; Brazier, Richard E
2017-01-15
Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m 3 in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl -1 , average leaving site: 39±37mgl -1 ). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues that are faced in agricultural landscapes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Managed aquifer recharge through off-season irrigation in agricultural regions
Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.
2017-01-01
Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.
Managed aquifer recharge through off-season irrigation in agricultural regions
NASA Astrophysics Data System (ADS)
Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.
2017-08-01
Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.
NASA Technical Reports Server (NTRS)
Jackman, A. E.; Fabos, J. G.; Carlozzi, C. C.
1982-01-01
A management construct is described which forms part of an overall landscape ecological planning model which has as a principal objective the extension of the traditional descriptive land use mapping capabilities of geographic information systems into land management realms. It is noted that geographic information systems appear to be moving to more comprehensive methods of data handling and storage, such as relational and hierarchical data management systems, and a clear need has simultaneously arisen therefore for planning assessment techniques and methodologies which can actually use such complex levels of data in a systematic, yet flexible and scenario dependent way. The descriptive of mapping method proposed broaches such issues and utilizes a current New England bioenergy scenario, stimulated by the use of hardwoods for household heating purposes established in the post oil crisis era and the increased awareness of the possible landscape and ecological ramifications of the continued increasing use of the resource.
Closing the loop: integrating human impacts on water resources to advanced land surface models
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.; Nie, W.; Rodell, M.; Kumar, S.; Li, B.
2016-12-01
Advanced Land Surface Models (LSMs), including those used in the North American Land Data Assimilation System (NLDAS), offer a physically consistent and spatially and temporally complete analysis of the distributed water balance. These models are constrained both by physically-based process representation and by observations ingested as meteorological forcing or as data assimilation updates. As such, they have become important tools for hydrological monitoring and long-term climate analysis. The representation of water management, however, is extremely limited in these models. Recent advances have brought prognostic irrigation routines into models used in NLDAS, while assimilation of Gravity Recovery and Climate Experiment (GRACE) derived estimates of terrestrial water storage anomaly has made it possible to nudge models towards observed states in water storage below the root zone. But with few exceptions these LSMs do not account for the source of irrigation water, leading to a disconnect between the simulated water balance and the observed human impact on water resources. This inconsistency is unacceptable for long-term studies of climate change and human impact on water resources in North America. Here we define the modeling challenge, review instances of models that have begun to account for water withdrawals (e.g., CLM), and present ongoing efforts to improve representation of human impacts on water storage across models through integration of irrigation routines, water withdrawal information, and GRACE Data Assimilation in NLDAS LSMs.
Power Management for Space Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2001-01-01
Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.
Exploiting volatile opportunistic computing resources with Lobster
NASA Astrophysics Data System (ADS)
Woodard, Anna; Wolf, Matthias; Mueller, Charles; Tovar, Ben; Donnelly, Patrick; Hurtado Anampa, Kenyi; Brenner, Paul; Lannon, Kevin; Hildreth, Mike; Thain, Douglas
2015-12-01
Analysis of high energy physics experiments using the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) can be limited by availability of computing resources. As a joint effort involving computer scientists and CMS physicists at Notre Dame, we have developed an opportunistic workflow management tool, Lobster, to harvest available cycles from university campus computing pools. Lobster consists of a management server, file server, and worker processes which can be submitted to any available computing resource without requiring root access. Lobster makes use of the Work Queue system to perform task management, while the CMS specific software environment is provided via CVMFS and Parrot. Data is handled via Chirp and Hadoop for local data storage and XrootD for access to the CMS wide-area data federation. An extensive set of monitoring and diagnostic tools have been developed to facilitate system optimisation. We have tested Lobster using the 20 000-core cluster at Notre Dame, achieving approximately 8-10k tasks running simultaneously, sustaining approximately 9 Gbit/s of input data and 340 Mbit/s of output data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-06-17
The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less
Fire effects on temperate forest soil C and N storage.
Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S
2011-06-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
30 CFR 57.4130 - Surface electric substations and liquid storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.4130 - Surface electric substations and liquid storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.4130 - Surface electric substations and liquid storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.4130 - Surface electric substations and liquid storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
Stochastic simulation of power systems with integrated renewable and utility-scale storage resources
NASA Astrophysics Data System (ADS)
Degeilh, Yannick
The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i.e., respond to quick variations in the loads and renewable resource outputs in a manner that maintains the power balance, by incorporating appropriate ramping requirement constraints in the formulation of the SOP. The simulation approach makes use of Monte Carlo simulation techniques to represent the impacts of the sources of uncertainty on the side-by-side power system and market operations. As such, we systematically sample the "input'' random processes -- namely the buyer demands, renewable resource outputs and conventional generation resource available capacities -- to generate the realizations, or sample paths, that we use in the emulation of the transmission-constrained day-ahead markets via SOP . As a result, we obtain realizations of the market outcomes and storage resource operations that we can use to approximate their statistics. The approach not only has the capability to emulate the side-by-side power system and energy market operations with the explicit representation of the chronology of time-dependent phenomena -- including storage cycles of charge/discharge -- and constraints imposed by the transmission network in terms of deliverability of the energy, but also to provide the figures of merit for all metrics to assess the economics, reliability and the environmental impacts of the performance of those operations. Our efforts to address the implementational aspects of the methodology so as to ensure computational tractability for large-scale systems over longer periods include relaxing the SOP, the use of a "warm-start'' technique as well as representative simulation periods, parallelization and variance reduction techniques. Our simulation approach is useful in power system planning, operations and investment analysis. There is a broad range of applications of the simulation methodology to resource planning studies, production costing issues, investment analysis, transmission utilization, reliability analysis, environmental assessments, policy formulation and to answer quantitatively various what-if questions. We demonstrate the capabilities of the simulation approach by carrying out various studies on modified IEEE 118- and WECC 240-bus systems. The results of our representative case studies effectively illustrate the synergies among wind and ESRs. Our investigations clearly indicate that energy storage and wind resources tend to complement each other in the reduction of wholesale purchase payments in the DAMs and the improvement of system reliability. In addition, we observe that CO2 emission impacts with energy storage depend on the resource mix characteristics. An important finding is that storage seems to attenuate the "diminishing returns'' associated with increased penetration of wind generation. Our studies also evidence the limited ability of integrated ESRs to enhance the wind resource capability to replace conventional resources from purely a system reliability perspective. Some useful insights into the siting of ESRs are obtained and they indicate the potentially significant impacts of such decisions on the network congestion patterns and, consequently, on the LMPs. Simulation results further indicate that the explicit representation of ramping requirements on the conventional units at the DAM level causes the expected total wholesale purchase payments to increase, thereby mitigating the benefits of wind integration. The stricter ramping requirements are also shown to impact the revenues of generators that do not even provide any ramp capability services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apyan, A.; Badillo, J.; Cruz, J. Diaz
The CMS experiment at the LHC relies on 7 Tier-1 centres of the WLCG to perform the majority of its bulk processing activity, and to archive its data. During the first run of the LHC, these two functions were tightly coupled as each Tier-1 was constrained to process only the data archived on its hierarchical storage. This lack of flexibility in the assignment of processing workflows occasionally resulted in uneven resource utilisation and in an increased latency in the delivery of the results to the physics community.The long shutdown of the LHC in 2013-2014 was an opportunity to revisit thismore » mode of operations, disentangling the processing and archive functionalities of the Tier-1 centres. The storage services at the Tier-1s were redeployed breaking the traditional hierarchical model: each site now provides a large disk storage to host input and output data for processing, and an independent tape storage used exclusively for archiving. Movement of data between the tape and disk endpoints is not automated, but triggered externally through the WLCG transfer management systems.With this new setup, CMS operations actively controls at any time which data is available on disk for processing and which data should be sent to archive. Thanks to the high-bandwidth connectivity guaranteed by the LHCOPN, input data can be freely transferred between disk endpoints as needed to take advantage of free CPU, turning the Tier-1s into a large pool of shared resources. The output data can be validated before archiving them permanently, and temporary data formats can be produced without wasting valuable tape resources. Lastly, the data hosted on disk at Tier-1s can now be made available also for user analysis since there is no risk any longer of triggering chaotic staging from tape.In this contribution, we describe the technical solutions adopted for the new disk and tape endpoints at the sites, and we report on the commissioning and scale testing of the service. We detail the procedures implemented by CMS computing operations to actively manage data on disk at Tier-1 sites, and we give examples of the benefits brought to CMS workflows by the additional flexibility of the new system.« less
Leveraging the Cloud for Robust and Efficient Lunar Image Processing
NASA Technical Reports Server (NTRS)
Chang, George; Malhotra, Shan; Wolgast, Paul
2011-01-01
The Lunar Mapping and Modeling Project (LMMP) is tasked to aggregate lunar data, from the Apollo era to the latest instruments on the LRO spacecraft, into a central repository accessible by scientists and the general public. A critical function of this task is to provide users with the best solution for browsing the vast amounts of imagery available. The image files LMMP manages range from a few gigabytes to hundreds of gigabytes in size with new data arriving every day. Despite this ever-increasing amount of data, LMMP must make the data readily available in a timely manner for users to view and analyze. This is accomplished by tiling large images into smaller images using Hadoop, a distributed computing software platform implementation of the MapReduce framework, running on a small cluster of machines locally. Additionally, the software is implemented to use Amazon's Elastic Compute Cloud (EC2) facility. We also developed a hybrid solution to serve images to users by leveraging cloud storage using Amazon's Simple Storage Service (S3) for public data while keeping private information on our own data servers. By using Cloud Computing, we improve upon our local solution by reducing the need to manage our own hardware and computing infrastructure, thereby reducing costs. Further, by using a hybrid of local and cloud storage, we are able to provide data to our users more efficiently and securely. 12 This paper examines the use of a distributed approach with Hadoop to tile images, an approach that provides significant improvements in image processing time, from hours to minutes. This paper describes the constraints imposed on the solution and the resulting techniques developed for the hybrid solution of a customized Hadoop infrastructure over local and cloud resources in managing this ever-growing data set. It examines the performance trade-offs of using the more plentiful resources of the cloud, such as those provided by S3, against the bandwidth limitations such use encounters with remote resources. As part of this discussion this paper will outline some of the technologies employed, the reasons for their selection, the resulting performance metrics and the direction the project is headed based upon the demonstrated capabilities thus far.
NASA Technical Reports Server (NTRS)
Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Rice, Jim; Gillis, Robert; Sims, Chris; Sellers, Donna; Bailey, Darrell (Technical Monitor)
2002-01-01
The Telescience Resource Kit (TReK) is a PC based ground control system. It can be used by a single individual or in a group environment to monitor and control spacecraft systems and payloads. Capabilities include data receipt, data processing, data storage, data management, and data transmission. Commercial-Off-The-Shelf (COTS) hardware and software have been employed to reduce development costs, operations and maintenance costs, and to effectively take advantage of new commercial products as they become available. The TReK system is currently being used to monitor and control payloads aboard the International Space Station. It is located at sites around the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okwen, Roland; Frailey, Scott; Leetaru, Hannes
2014-09-30
The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO 2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef,more » fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO 2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to normalized baseline E ranges ranks fluvial deltaic and turbidite highest and shelf carbonate lowest. The estimated average normalized baseline E of turbidite, and shelf carbonate depositional environments are 42.5% and 13.1%, with corresponding standard deviations of 11.3%, and 3.10%, respectively. Simulations of different plume management techniques suggest that the horizontal well, multi-well injection with brine production from blanket vertical producers are the most efficient E enhancement strategies in seven of eight depositional environments; for the fluvial deltaic depositional environment, vertical well with blanket completions is the most efficient. This study estimates normalized baseline E ranges for eight depositional environments, which can be used to assess the CO 2 storage resource of candidate formations. This study also improves the general understanding of depositional environment’s influence on E. The lessons learned and results obtained from this study can be extrapolated to formations in other US basins with formations of similar depositional environments, which should be used to further refine regional and national storage resource estimates in future editions of the Carbon Utilization and Storage Atlas of the United States. Further study could consider the economic feasibility of the E enhancement strategies identified here.« less
Wei, Zuoan; Yin, Guangzhi; Wang, J G; Wan, Ling; Li, Guangzhi
2013-01-01
Rapid development of China's economy demands for more mineral resources. At the same time, a vast quantity of mine tailings, as the waste byproduct of mining and mineral processing, is being produced in huge proportions. Tailings impoundments play an important role in the practical surface disposal of these large quantities of mining waste. Historically, tailings were relatively small in quantity and had no commercial value, thus little attention was paid to their disposal. The tailings were preferably discharged near the mines and few tailings storage facilities were constructed in mainland China. This situation has significantly changed since 2000, because the Chinese economy is growing rapidly and Chinese regulations and legislation require that tailings disposal systems must be ready before the mining operation begins. Consequently, data up to 2008 shows that more than 12 000 tailings storage facilities have been built in China. This paper reviews the history of tailings disposal in China, discusses three cases of tailings dam failures and explores failure mechanisms, and the procedures commonly used in China for planning, design, construction and management of tailings impoundments. This paper also discusses the current situation, shortcomings and key weaknesses, as well as future development trends for tailings storage facilities in China.
Application and Prospect of Big Data in Water Resources
NASA Astrophysics Data System (ADS)
Xi, Danchi; Xu, Xinyi
2017-04-01
Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.
2013-01-01
Analyzing and storing data and results from next-generation sequencing (NGS) experiments is a challenging task, hampered by ever-increasing data volumes and frequent updates of analysis methods and tools. Storage and computation have grown beyond the capacity of personal computers and there is a need for suitable e-infrastructures for processing. Here we describe UPPNEX, an implementation of such an infrastructure, tailored to the needs of data storage and analysis of NGS data in Sweden serving various labs and multiple instruments from the major sequencing technology platforms. UPPNEX comprises resources for high-performance computing, large-scale and high-availability storage, an extensive bioinformatics software suite, up-to-date reference genomes and annotations, a support function with system and application experts as well as a web portal and support ticket system. UPPNEX applications are numerous and diverse, and include whole genome-, de novo- and exome sequencing, targeted resequencing, SNP discovery, RNASeq, and methylation analysis. There are over 300 projects that utilize UPPNEX and include large undertakings such as the sequencing of the flycatcher and Norwegian spruce. We describe the strategic decisions made when investing in hardware, setting up maintenance and support, allocating resources, and illustrate major challenges such as managing data growth. We conclude with summarizing our experiences and observations with UPPNEX to date, providing insights into the successful and less successful decisions made. PMID:23800020
NASA Astrophysics Data System (ADS)
Han, Z.; Long, D.; Hong, Y.
2017-12-01
Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.
Investigating Groundwater Depletion and Aquifer Degradation in Central Valley California from Space
NASA Astrophysics Data System (ADS)
Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.
2017-12-01
The Central Valley in California includes one of the world's largest and yet most stressed aquifer systems. The large demand for groundwater, accelerated by population growth and extreme droughts, has been depleting the region's groundwater resources for decades. However, the lack of dense monitoring networks and inaccurate information on geophysical aquifer response pose serious challenges to water management efforts in the area and put the groundwater at high risk. Here, we performed a joint analysis of large SAR interferometric data sets acquired by ALOS L-band satellite in conjunction with the groundwater level observations across the Central Valley. We used 420 L-band SAR images acquired on the ascending orbit track during period Dec 24, 2006 - Jan 1, 2010, and generated more than 1600 interferograms with a pixel size of 100 m × 100 m. We also use data from 1600 observational wells providing continuous measurements of groundwater level within the study period for our analysis. We find that in the south and near Tulare Lake, north of Tule and south of Kaweah basin in San Joaquin valley, the subsidence rate is greatest at up to 20-25 cm/yr, while in Sacramento Valley the subsidence rate is lower at 1-3 cm/yr. From the characterization of the elastic and inelastic storage coefficients, we find that Kern, Tule, Tulare, Kaweah and Merced basins in the San Joaquin Valley are more susceptible to permanent compaction and aquifer storage loss. Kern County shows 0.23%-1.8% of aquifer storage loss during the study period, and has higher percentage loss than adjacent basins such as Tule and Tulare Lake with 0.15%-1.2% and 0.2 %-1.5% loss, respectively. Overall, we estimate that the aquifers across the valley lost a total of 28 km3 of groundwater and 2% of their storage capacity during the study period. Our unique observational evidence including valley-wide estimate of mechanical properties of aquifers and model results will not only facilitate monitoring water deficits and estimating water storage variations, but is also useful to water managers, policy makers, and the communities living in water-stressed regions for development and management plans. Ongoing analysis using data from Envisat, Sentinel-1 and Radarasat-1 satellites will further play a key role is characterizing the evolution of groundwater resources.
Cryogenics and the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)
1997-01-01
Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management technology as it applies to the current human Mars mission scenarios.
National assessment of geologic carbon dioxide storage resources: methodology implementation
Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.
2013-01-01
In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.
Water-resources activities in Florida, 1988-89
Glenn, Mildred E.
1989-01-01
This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1988. These activities are part of the Federal program of appraising the Nation 's water resources. Included are brief descriptions of the nature and scope of all active studies, summaries of significant results for 1988 and anticipated accomplishments during 1989. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water-resources investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be used. Water data and information required to implement sound water-management programs in highly urbanized areas relate to the quantity and quality of storm runoff, sources of aquifer contamination, injection of wastes into deep strata, underground storage of freshwater, artificial recharge of aquifers, environmental effects of reuse of water, and effects of land development on changes in ground-and surface-water quality. In some parts of the State broad areas are largely rural. Future growth is anticipated in many of these. This report is intended to inform those agencies vitally interested in the water resources of Florida as to the current status and objectives of the U.S. Geological Survey cooperative program. The mission of this program is to collect, interpret, and publish information on water resources. Almost all of this work is done in cooperation with other public agencies. (USGS)
Globus Identity, Access, and Data Management: Platform Services for Collaborative Science
NASA Astrophysics Data System (ADS)
Ananthakrishnan, R.; Foster, I.; Wagner, R.
2016-12-01
Globus is software-as-a-service for research data management, developed at, and operated by, the University of Chicago. Globus, accessible at www.globus.org, provides high speed, secure file transfer; file sharing directly from existing storage systems; and data publication to institutional repositories. 40,000 registered users have used Globus to transfer tens of billions of files totaling hundreds of petabytes between more than 10,000 storage systems within campuses and national laboratories in the US and internationally. Web, command line, and REST interfaces support both interactive use and integration into applications and infrastructures. An important component of the Globus system is its foundational identity and access management (IAM) platform service, Globus Auth. Both Globus research data management and other applications use Globus Auth for brokering authentication and authorization interactions between end-users, identity providers, resource servers (services), and a range of clients, including web, mobile, and desktop applications, and other services. Compliant with important standards such as OAuth, OpenID, and SAML, Globus Auth provides mechanisms required for an extensible, integrated ecosystem of services and clients for the research and education community. It underpins projects such as the US National Science Foundation's XSEDE system, NCAR's Research Data Archive, and the DOE Systems Biology Knowledge Base. Current work is extending Globus services to be compliant with FEDRAMP standards for security assessment, authorization, and monitoring for cloud services. We will present Globus IAM solutions and give examples of Globus use in various projects for federated access to resources. We will also describe how Globus Auth and Globus research data management capabilities enable rapid development and low-cost operations of secure data sharing platforms that leverage Globus services and integrate them with local policy and security.
On the Modeling and Management of Cloud Data Analytics
NASA Astrophysics Data System (ADS)
Castillo, Claris; Tantawi, Asser; Steinder, Malgorzata; Pacifici, Giovanni
A new era is dawning where vast amount of data is subjected to intensive analysis in a cloud computing environment. Over the years, data about a myriad of things, ranging from user clicks to galaxies, have been accumulated, and continue to be collected, on storage media. The increasing availability of such data, along with the abundant supply of compute power and the urge to create useful knowledge, gave rise to a new data analytics paradigm in which data is subjected to intensive analysis, and additional data is created in the process. Meanwhile, a new cloud computing environment has emerged where seemingly limitless compute and storage resources are being provided to host computation and data for multiple users through virtualization technologies. Such a cloud environment is becoming the home for data analytics. Consequently, providing good performance at run-time to data analytics workload is an important issue for cloud management. In this paper, we provide an overview of the data analytics and cloud environment landscapes, and investigate the performance management issues related to running data analytics in the cloud. In particular, we focus on topics such as workload characterization, profiling analytics applications and their pattern of data usage, cloud resource allocation, placement of computation and data and their dynamic migration in the cloud, and performance prediction. In solving such management problems one relies on various run-time analytic models. We discuss approaches for modeling and optimizing the dynamic data analytics workload in the cloud environment. All along, we use the Map-Reduce paradigm as an illustration of data analytics.
Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations
Buscheck, Thomas A.
2012-01-01
Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.
NASA Astrophysics Data System (ADS)
Allen, D. M.; Henry, C.; Demon, H.; Kirste, D. M.; Huang, J.
2011-12-01
Sustainable management of groundwater resources, particularly in water stressed regions, requires estimates of groundwater recharge. This study in southern Mali, Africa compares approaches for estimating groundwater recharge and understanding recharge processes using a variety of methods encompassing groundwater level-climate data analysis, GRACE satellite data analysis, and recharge modelling for current and future climate conditions. Time series data for GRACE (2002-2006) and observed groundwater level data (1982-2001) do not overlap. To overcome this problem, GRACE time series data were appended to the observed historical time series data, and the records compared. Terrestrial water storage anomalies from GRACE were corrected for soil moisture (SM) using the Global Land Data Assimilation System (GLDAS) to obtain monthly groundwater storage anomalies (GRACE-SM), and monthly recharge estimates. Historical groundwater storage anomalies and recharge were determined using the water table fluctuation method using observation data from 15 wells. Historical annual recharge averaged 145.0 mm (or 15.9% of annual rainfall) and compared favourably with the GRACE-SM estimate of 149.7 mm (or 14.8% of annual rainfall). Both records show lows and peaks in May and September, respectively; however, the peak for the GRACE-SM data is shifted later in the year to November, suggesting that the GLDAS may poorly predict the timing of soil water storage in this region. Recharge simulation results show good agreement between the timing and magnitude of the mean monthly simulated recharge and the regional mean monthly storage anomaly hydrograph generated from all monitoring wells. Under future climate conditions, annual recharge is projected to decrease by 8% for areas with luvisols and by 11% for areas with nitosols. Given this potential reduction in groundwater recharge, there may be added stress placed on an already stressed resource.
Development of a Probabilistic Assessment Methodology for Evaluation of Carbon Dioxide Storage
Burruss, Robert A.; Brennan, Sean T.; Freeman, P.A.; Merrill, Matthew D.; Ruppert, Leslie F.; Becker, Mark F.; Herkelrath, William N.; Kharaka, Yousif K.; Neuzil, Christopher E.; Swanson, Sharon M.; Cook, Troy A.; Klett, Timothy R.; Nelson, Philip H.; Schenk, Christopher J.
2009-01-01
This report describes a probabilistic assessment methodology developed by the U.S. Geological Survey (USGS) for evaluation of the resource potential for storage of carbon dioxide (CO2) in the subsurface of the United States as authorized by the Energy Independence and Security Act (Public Law 110-140, 2007). The methodology is based on USGS assessment methodologies for oil and gas resources created and refined over the last 30 years. The resource that is evaluated is the volume of pore space in the subsurface in the depth range of 3,000 to 13,000 feet that can be described within a geologically defined storage assessment unit consisting of a storage formation and an enclosing seal formation. Storage assessment units are divided into physical traps (PTs), which in most cases are oil and gas reservoirs, and the surrounding saline formation (SF), which encompasses the remainder of the storage formation. The storage resource is determined separately for these two types of storage. Monte Carlo simulation methods are used to calculate a distribution of the potential storage size for individual PTs and the SF. To estimate the aggregate storage resource of all PTs, a second Monte Carlo simulation step is used to sample the size and number of PTs. The probability of successful storage for individual PTs or the entire SF, defined in this methodology by the likelihood that the amount of CO2 stored will be greater than a prescribed minimum, is based on an estimate of the probability of containment using present-day geologic knowledge. The report concludes with a brief discussion of needed research data that could be used to refine assessment methodologies for CO2 sequestration.
NASA Astrophysics Data System (ADS)
Solander, K.; David, C. H.; Reager, J. T.; Famiglietti, J. S.
2013-12-01
The ability to reasonably replicate reservoir behavior in terms of storage and outflow is important for studying the potential human impacts on the terrestrial water cycle. Developing a simple method for this purpose could facilitate subsequent integration in a land surface or global climate model. This study attempts to simulate monthly reservoir outflow and storage using a simple, temporally-varying set of heuristics equations with input consisting of in situ records of reservoir inflow and storage. Equations of increasing complexity relative to the number of parameters involved were tested. Only two parameters were employed in the final equations used to predict outflow and storage in an attempt to best mimic seasonal reservoir behavior while still preserving model parsimony. California reservoirs were selected for model development due to the high level of data availability and intensity of water resource management in this region relative to other areas. Calibration was achieved using observations from eight major reservoirs representing approximately 41% of the 107 largest reservoirs in the state. Parameter optimization was accomplished using the minimum RMSE between observed and modeled storage and outflow as the main objective function. Initial results obtained for a multi-reservoir average of the correlation coefficient between observed and modeled storage (resp. outflow) is of 0.78 (resp. 0.75). These results combined with the simplicity of the equations being used show promise for integration into a land surface or a global climate model. This would be invaluable for evaluations of reservoir management impacts on the flow regime and associated ecosystems as well as on the climate at both regional and global scales.
Guest, Julian F; Ingram, Andy; Ayoub, Nadia; Hendriksz, Christian J; Murphy, Elaine; Rahman, Yusof; McKiernan, Patrick; Mundy, Helen; Deegan, Patrick
2018-01-01
To estimate clinical progression and resource utilisation together with the associated costs of managing children and adults with LAL Deficiency, at a tertiary referral centre in the UK. A retrospective chart review was undertaken of patients in the UK with a confirmed diagnosis of LAL Deficiency who were managed at a LAL Deficiency tertiary referral treatment centre. Patients' pathways, treatment patterns, health outcomes and resource use were quantified over differing lengths of time for each patient enabling the NHS cost of patient management in tertiary care to be estimated. The study population comprised 19 patients of whom 58% were male. Mean age at the time of initial presentation was 15.5 years and the mean age at diagnosis was 18.0 years. 63%, 53% and 42% of patients had hepatomegaly, abnormal lipid storage and splenomegaly at a mean age of presentation of 17.8, 17.1 and 20.9 years, respectively. Over a period of 50 years there were a mean of 48.5 clinician visits and 3.4 hospital admissions per patient. The mean NHS cost of patient management at a LAL Deficiency tertiary referral treatment centre, spanning a period of over 50 years was £61,454 per patient. This study provides important insights into a number of aspects of the disease that are difficult to ascertain from published case reports. Additionally, it provides the best estimate available of NHS resource use and costs with which to inform policy and budgetary decisions pertaining to managing this ultra-orphan disease.
Pest management in traditional maize stores in West Africa: a farmer's perspective.
Meikle, W G; Markham, R H; Nansen, C; Holst, N; Degbey, P; Azoma, K; Korie, S
2002-10-01
Farmers in the Republic of Benin have few resources to invest in protection of stored maize, and prophylactic pesticide application is often recommended by extension and development agencies. Neither the efficacy nor profitability of such an application in traditional maize storage facilities has been addressed quantitatively. In this study, existing management options for stored maize were evaluated monthly over 6 mo in central and southern Benin with respect to their effects on grain injury and on densities of Prostephanus truncatus (Horn) and Sitophilus zeamais Motschulsky. P. truncatus infested 54% of the experimental stores in the study even though Teretrius nigrescens (Lewis), a natural enemy introduced against P. truncatus, was well established in the region. S. zeamais was the most common pest, found in 85% of the experimental storage facilities. Prophylactically treated maize was, on average, worth more than untreated maize for month 1 through 5 in southern Benin, after taking into account market price, pesticide costs, percentage grain damage and weight loss, but maize storage was not profitable overall. No difference was observed between treatments in central Benin. After 6 mo treated storage facilities were not significantly different from untreated storage facilities in terms of either percentage damage or profit in either region. A rapid scouting plan intended to provide farmers with a means for identifying storage facilities at greatest risk of severe P. truncatus infestation was field validated. Given that unsafe pesticide use is prevalent in Benin, research and extension services should clearly state the limitations to prophylactic treatment and increase the effort to educate farmers on appropriate pesticide use, store monitoring and marketing.
Innovative IT system for material management in warehouses
NASA Astrophysics Data System (ADS)
Papoutsidakis, Michael; Sigala, Maria; Simeonaki, Eleni; Tseles, Dimitrios
2017-09-01
Nowadays through the rapid development of technology in all areas there is a constant effort to introduce technological solutions in everyday life with emphasis on materials management information systems (Enterprise Resource Planning). During the last few years the variety of these systems has been increased for small business or for SMEs as well as for larger companies and industries. In the field of material management and main management operations with automated processes, ERP applications have only recently begun to make their appearance. In this paper will be presented the development of a system for automated material storage process in a system built through specific roles that will manage materials using an integrated barcode scanner. In addition we will analyse and describe the operation and modules of other systems that have been created for the same usage. The aim of this project is to create a prototype application that will be innovative with a flexible nature that will give solutions, with low cost and it will be user friendly. This application will allow quick and proper materials management for storage. The expected result is that the application can be used by smart devices in android environment and computers without an external barcode scanner, making the application accessible to the buyer at low cost.
Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom
2016-01-01
There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.
National assessment of geologic carbon dioxide storage resources: data
,
2013-01-01
In 2012, the U.S. Geological Survey (USGS) completed the national assessment of geologic carbon dioxide storage resources. Its data and results are reported in three publications: the assessment data publication (this report), the assessment results publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, USGS Circular 1386), and the assessment summary publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, USGS Fact Sheet 2013–3020). This data publication supports the results publication and contains (1) individual storage assessment unit (SAU) input data forms with all input parameters and details on the allocation of the SAU surface land area by State and general land-ownership category; (2) figures representing the distribution of all storage classes for each SAU; (3) a table containing most input data and assessment result values for each SAU; and (4) a pairwise correlation matrix specifying geological and methodological dependencies between SAUs that are needed for aggregation of results.
Mashup of Geo and Space Science Data Provided via Relational Databases in the Semantic Web
NASA Astrophysics Data System (ADS)
Ritschel, B.; Seelus, C.; Neher, G.; Iyemori, T.; Koyama, Y.; Yatagai, A. I.; Murayama, Y.; King, T. A.; Hughes, J. S.; Fung, S. F.; Galkin, I. A.; Hapgood, M. A.; Belehaki, A.
2014-12-01
The use of RDBMS for the storage and management of geo and space science data and/or metadata is very common. Although the information stored in tables is based on a data model and therefore well organized and structured, a direct mashup with RDF based data stored in triple stores is not possible. One solution of the problem consists in the transformation of the whole content into RDF structures and storage in triple stores. Another interesting way is the use of a specific system/service, such as e.g. D2RQ, for the access to relational database content as virtual, read only RDF graphs. The Semantic Web based -proof of concept- GFZ ISDC uses the triple store Virtuoso for the storage of general context information/metadata to geo and space science satellite and ground station data. There is information about projects, platforms, instruments, persons, product types, etc. available but no detailed metadata about the data granuals itself. Such important information, as e.g. start or end time or the detailed spatial coverage of a single measurement is stored in RDBMS tables of the ISDC catalog system only. In order to provide a seamless access to all available information about the granuals/data products a mashup of the different data resources (triple store and RDBMS) is necessary. This paper describes the use of D2RQ for a Semantic Web/SPARQL based mashup of relational databases used for ISDC data server but also for the access to IUGONET and/or ESPAS and further geo and space science data resources. RDBMS Relational Database Management System RDF Resource Description Framework SPARQL SPARQL Protocol And RDF Query Language D2RQ Accessing Relational Databases as Virtual RDF Graphs GFZ ISDC German Research Centre for Geosciences Information System and Data Center IUGONET Inter-university Upper Atmosphere Global Observation Network (Japanese project) ESPAS Near earth space data infrastructure for e-science (European Union funded project)
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas
2015-04-01
Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity, quality and use of water resources could be evaluated and managed. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Kaushik; Clarity, Justin B; Cumberland, Riley M
This will be licensed via RSICC. A new, integrated data and analysis system has been designed to simplify and automate the performance of accurate and efficient evaluations for characterizing the input to the overall nuclear waste management system -UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database within UNF-ST&DARDS provides a standard means by which UNF-ST&DARDS can succinctly store and retrieve modeling and simulation (M&S) parameters for specific spent nuclear fuel analysis. A library of various analysis model templates provides the ability to communicate the various set of M&S parameters to the most appropriate M&S application.more » Interactive visualization capabilities facilitate data analysis and results interpretation. UNF-ST&DARDS current analysis capabilities include (1) assembly-specific depletion and decay, (2) and spent nuclear fuel cask-specific criticality and shielding. Currently, UNF-ST&DARDS uses SCALE nuclear analysis code system for performing nuclear analysis.« less
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
30 CFR 57.4431 - Surface storage restrictions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface storage restrictions. 57.4431 Section 57.4431 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4431 Surface storage restrictions. (a...
30 CFR 57.4431 - Surface storage restrictions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface storage restrictions. 57.4431 Section 57.4431 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4431 Surface storage restrictions. (a...
Roberts-Ashby, Tina; Brandon N. Ashby,
2016-01-01
This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, David; Ellett, Kevin; Leetaru, Hannes
The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of thismore » report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a single estimate of porosity throughout the entire potential reservoir domains. The second approach resulted in storage resource estimates of 3.0 to 31.6 Gt in the Michigan Basin, and 0.6 to 6.1 Gt in the Illinois Basin. The third approach attempted to account for the local-scale variability in reservoir quality as a function of both porosity and permeability by using core and log analyses to calculate explicitly the net effective porosity at multiple well locations, and interpolate those results throughout the two basins. This approach resulted in storage resource estimates of 10.7 to 34.7 Gt in the Michigan Basin, and 11.2 to 36.4 Gt in the Illinois Basin. A final approach used advanced reservoir characterization as the most sophisticated means to estimating storage resource by defining reservoir properties for multiple facies within the St Peter formation. This approach was limited to the Michigan Basin since the Illinois Basin data set did not have the requisite level of data quality and sampling density to support such an analysis. Results from this approach led to storage resource estimates of 15.4 Gt to 50.1 Gt for the Michigan Basin. The observed variability in results from the four different approaches is evaluated in the context of data and methodological constraints, leading to the conclusion that the storage resource estimates from the first two approaches may be conservative, whereas the net porosity based approaches may over-estimate the resource.« less
NASA Astrophysics Data System (ADS)
Yao, Chaolong; Luo, Zhicai
2015-12-01
The water resources crisis is intensifying in Southwest China (SWC), which includes the world's largest continuous coverage of karst landforms, due to recent severe drought events. However, because of the special properties of karstic water system, such as strong heterogeneity, monitoring the variation of karstic water resources at large scales remains still difficult. Satellite gravimetry has emerged as an effective tool for investigating the global and regional water cycles. In this study, we used GRACE (Gravity Recovery and Climate Experiment) data from January 2003 to January 2013 to investigate karstic water storage variability over the karst region of SWC. We assessed the impacts of the recent severe droughts on karst water resources, including two heavy droughts in September 2010 to May 2010 and August 2011 to January 2012. Results show a slightly water increase tend during the studied period, but these two severe droughts have resulted in significant water depletion in the studied karst region. The latter drought during 2011 and 2012 caused more water deficits than that of the drought in 2010. Strong correlation between the variations of GRACE-based total water storage and precipitation suggests that climate change is the main driving force for the significant water absent over the studied karst region. As the world's largest continuous coverage karst aquifer, the karst region of SWC offers an example of GRACE applications to a karst system incisively and will benefit for water management from a long-term perspective in karst systems throughout the world.
NASA Cloud-Based Climate Data Services
NASA Astrophysics Data System (ADS)
McInerney, M. A.; Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, W. D., III; Thompson, J. H.; Gill, R.; Jasen, J. E.; Samowich, B.; Pobre, Z.; Salmon, E. M.; Rumney, G.; Schardt, T. D.
2012-12-01
Cloud-based scientific data services are becoming an important part of NASA's mission. Our technological response is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service (VaaS). A virtual climate data server (vCDS) is an Open Archive Information System (OAIS) compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have deployed vCDS Version 1.0 in the Amazon EC2 cloud using S3 object storage and are using the system to deliver a subset of NASA's Intergovernmental Panel on Climate Change (IPCC) data products to the latest CentOS federated version of Earth System Grid Federation (ESGF), which is also running in the Amazon cloud. vCDS-managed objects are exposed to ESGF through FUSE (Filesystem in User Space), which presents a POSIX-compliant filesystem abstraction to applications such as the ESGF server that require such an interface. A vCDS manages data as a distinguished collection for a person, project, lab, or other logical unit. A vCDS can manage a collection across multiple storage resources using rules and microservices to enforce collection policies. And a vCDS can federate with other vCDSs to manage multiple collections over multiple resources, thereby creating what can be thought of as an ecosystem of managed collections. With the vCDS approach, we are trying to enable the full information lifecycle management of scientific data collections and make tractable the task of providing diverse climate data services. In this presentation, we describe our approach, experiences, lessons learned, and plans for the future.; (A) vCDS/ESG system stack. (B) Conceptual architecture for NASA cloud-based data services.
A Workflow-based Intelligent Network Data Movement Advisor with End-to-end Performance Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Michelle M.; Wu, Chase Q.
2013-11-07
Next-generation eScience applications often generate large amounts of simulation, experimental, or observational data that must be shared and managed by collaborative organizations. Advanced networking technologies and services have been rapidly developed and deployed to facilitate such massive data transfer. However, these technologies and services have not been fully utilized mainly because their use typically requires significant domain knowledge and in many cases application users are even not aware of their existence. By leveraging the functionalities of an existing Network-Aware Data Movement Advisor (NADMA) utility, we propose a new Workflow-based Intelligent Network Data Movement Advisor (WINDMA) with end-to-end performance optimization formore » this DOE funded project. This WINDMA system integrates three major components: resource discovery, data movement, and status monitoring, and supports the sharing of common data movement workflows through account and database management. This system provides a web interface and interacts with existing data/space management and discovery services such as Storage Resource Management, transport methods such as GridFTP and GlobusOnline, and network resource provisioning brokers such as ION and OSCARS. We demonstrate the efficacy of the proposed transport-support workflow system in several use cases based on its implementation and deployment in DOE wide-area networks.« less
30 CFR 77.208 - Storage of materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of materials. 77.208 Section 77.208 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Installations § 77.208 Storage of materials. (a) Materials shall be stored and stacked in a manner which...
30 CFR 77.208 - Storage of materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of materials. 77.208 Section 77.208 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Installations § 77.208 Storage of materials. (a) Materials shall be stored and stacked in a manner which...
Martin, Jeffrey D.; Cohen, David A.
1993-01-01
This report describes the policy and procedures used by the Indiana District of the U.S. Geological Survey, Water Resources Division, to manage and store data collected during hydrologic investigations. It is the policy of the Indiana District that data collected to meet the objectives of projects for hydrologic investigations be documented, organized, and archieved in a manner that (1) facilitates retrieval, evaluation, and use by other District personnel, and (2) enables verifi- cation of data contained in all reports and computer data bases.
Ball, Lianne C.
2016-07-14
Mangrove ecosystems protect vulnerable coastlines from storm effects, recycle nutrients, stabilize shorelines, improve water quality, and provide habitat for commercial and recreational fish species as well as for threatened and endangered wildlife. U.S. Geological Survey scientists conduct research on mangrove ecosystems to provide reliable scientific information about their ecology, productivity, hydrological processes, carbon storage stress response, and restoration success. The Mangrove Science Network is a collaboration of USGS scientists focused on working with natural resource managers to develop and conduct research to inform decisions on mangrove management and restoration. Information about the Mangrove Science Network can be found at: http://www.usgs.gov/ecosystems/environments/mangroves.html.
Summary appraisals of the Nation's ground-water resources; Missouri Basin region
Taylor, O. James
1978-01-01
Comprehensive water-management planning in the Missouri Basin Region will require periodic or continuing inventory of precipitation, streamflow, surface-water storage, and ground water. Water demands for irrigation, industrial, public supply, and rural use are increasing rapidly. Reliance on ground-water supplies is increasing even though in many areas the ground water is still mostly undeveloped. Optimal use of water supplies will require the establishment of realistic goals and carefully conceived water-management plans, each of which will necessarily be based on an adequate baseline of hydrologic data and knowledge of the highly variable hydrologic systems in the region.
Data Service: Distributed Data Capture and Replication
NASA Astrophysics Data System (ADS)
Warner, P. B.; Pietrowicz, S. R.
2007-10-01
Data Service is a critical component of the NOAO Data Management and Science Support (DMaSS) Solutions Platform, which is based on a service-oriented architecture, and is to replace the current NOAO Data Transport System. Its responsibilities include capturing data from NOAO and partner telescopes and instruments and replicating the data across multiple (currently six) storage sites. Java 5 was chosen as the implementation language, and Java EE as the underlying enterprise framework. Application metadata persistence is performed using EJB and Hibernate on the JBoss Application Server, with PostgreSQL as the persistence back-end. Although potentially any underlying mass storage system may be used as the Data Service file persistence technology, DTS deployments and Data Service test deployments currently use the Storage Resource Broker from SDSC. This paper presents an overview and high-level design of the Data Service, including aspects of deployment, e.g., for the LSST Data Challenge at the NCSA computing facilities.
Aquifer storage and recovery: recent hydrogeological advances and system performance.
Maliva, Robert G; Guo, Weixing; Missimer, Thomas M
2006-12-01
Aquifer storage and recovery (ASR) is part of the solution to the global problem of managing water resources to meet existing and future freshwater demands. However, the metaphoric "ASR bubble" has been burst with the realization that ASR systems are more physically and chemically complex than the general conceptualization. Aquifer heterogeneity and fluid-rock interactions can greatly affect ASR system performance. The results of modeling studies and field experiences indicate that more sophisticated data collection and solute-transport modeling are required to predict how stored water will migrate in heterogeneous aquifers and how fluid-rock interactions will affect the quality of stored water. It has been well-demonstrated, by historic experience, that ASR systems can provide very large volumes of storage at a lesser cost than other options. The challenges moving forward are to improve the success rate of ASR systems, optimize system performance, and set expectations appropriately.
Coordinated Collaboration between Heterogeneous Distributed Energy Resources
Abdollahy, Shahin; Lavrova, Olga; Mammoli, Andrea
2014-01-01
A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building.more » Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.« less
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2015-12-01
Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.
Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; Maxwell, R. M.
2010-12-01
Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.
Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China
Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin
2013-01-01
Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223
Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan
2015-02-01
Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.
Storing and sharing water in sand rivers: a water balance modelling approach
NASA Astrophysics Data System (ADS)
Love, D.; van der Zaag, P.; Uhlenbrook, S.
2009-04-01
Sand rivers and sand dams offer an alternative to conventional surface water reservoirs for storage. The alluvial aquifers that make up the beds of sand rivers can store water with minimal evaporation (extinction depth is 0.9 m) and natural filtration. The alluvial aquifers of the Mzingwane Catchment are the most extensive of any tributaries in the Limpopo Basin. The lower Mzingwane aquifer, which is currently underutilised, is recharged by managed releases from Zhovhe Dam (capacity 133 Mm3). The volume of water released annually is only twice the size of evaporation losses from the dam; the latter representing nearly one third of the dam's storage capacity. The Lower Mzingwane valley currently support commercial agro-businesses (1,750 ha irrigation) and four smallholder irrigation schemes (400 ha with provision for a further 1,200 ha). In order to support planning for optimising water use and storage over evaporation and to provide for more equitable water allocation, the spreadsheet-based balance model WAFLEX was used. It is a simple and userfriendly model, ideal for use by institutions such as the water management authorities in Zimbabwe which are challenged by capacity shortfalls and inadequate data. In this study, WAFLEX, which is normally used for accounting the surface water balance, is adapted to incorporate alluvial aquifers into the water balance, including recharge, baseflow and groundwater flows. Results of the WAFLEX modelling suggest that there is surplus water in the lower Mzingwane system, and thus there should not be any water conflicts. Through more frequent timing of releases from the dam and maintaining the alluvial aquifers permanently saturated, less evaporation losses will occur in the system and the water resources can be better shared to provide more irrigation water for smallholder farmers in the highly resource-poor communal lands along the river. Sand dams are needed to augment the aquifer storage system and improve access to water. An alternative to the current scenario was modelled in WAFLEX: making fuller use of the alluvial aquifers upstream and downstream of Zhovhe Dam. These alluvial aquifers have an estimated average water storage capacity of 0.37 Mm3 km
ATLAS Distributed Computing Experience and Performance During the LHC Run-2
NASA Astrophysics Data System (ADS)
Filipčič, A.;
2017-10-01
ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of the new model was demonstrated through the delivery of analysis datasets to users just one week after data taking, by completing the calibration loop, Tier-0 processing and train production steps promptly. The great flexibility of the new system also makes it possible to execute part of the Tier-0 processing on the grid when Tier-0 resources experience a backlog during high data-taking periods. The introduction of the data lifetime model, where each dataset is assigned a finite lifetime (with extensions possible for frequently accessed data), was made possible by Rucio. Thanks to this the storage crises experienced in Run-1 have not reappeared during Run-2. In addition, the distinction between Tier-1 and Tier-2 disk storage, now largely artificial given the quality of Tier-2 resources and their networking, has been removed through the introduction of dynamic ATLAS clouds that group the storage endpoint nucleus and its close-by execution satellite sites. All stable ATLAS sites are now able to store unique or primary copies of the datasets. ATLAS Distributed Computing is further evolving to speed up request processing by introducing network awareness, using machine learning and optimisation of the latencies during the execution of the full chain of tasks. The Event Service, a new workflow and job execution engine, is designed around check-pointing at the level of event processing to use opportunistic resources more efficiently. ATLAS has been extensively exploring possibilities of using computing resources extending beyond conventional grid sites in the WLCG fabric to deliver as many computing cycles as possible and thereby enhance the significance of the Monte-Carlo samples to deliver better physics results. The exploitation of opportunistic resources was at an early stage throughout 2015, at the level of 10% of the total ATLAS computing power, but in the next few years it is expected to deliver much more. In addition, demonstrating the ability to use an opportunistic resource can lead to securing ATLAS allocations on the facility, hence the importance of this work goes beyond merely the initial CPU cycles gained. In this paper, we give an overview and compare the performance, development effort, flexibility and robustness of the various approaches.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.
Integration of end-user Cloud storage for CMS analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez
End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less
Integration of end-user Cloud storage for CMS analysis
Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez; ...
2017-05-19
End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less
Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L
2011-01-01
Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion.
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
18 CFR 3a.61 - Storage and custody of classified information.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...
18 CFR 3a.61 - Storage and custody of classified information.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...
18 CFR 3a.61 - Storage and custody of classified information.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...
18 CFR 3a.61 - Storage and custody of classified information.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...
Observation-well network for collection of ground-water level data in Massachusetts
Socolow, Roy S.
1994-01-01
Aquifers--water-bearing deposits of sand and gravel, glacial till, and fractured bedrock--provide an extensive and readily accessible ground-water supply in Massachusetts. Ground water affects our everyday lives, not just in terms of how much water is available, but also in terms of the position of ground-water levels in relation to land surface. Knowledge of ground-water levels is needed by Federal, State, and local agencies to help plan, manage, and protect ground-water supplies, and by private construction companies for site planning and evaluation. A primary part of the mission of the U.S. Geological Survey (USGS), Water Resources Division, is the systematic collection of ground-water, surface-water, and water-quality data. These data are needed to manage and protect the nation's water resources. The Massachusetts-Rhode Island District of the USGS, in cooperation with the Massachusetts Department of Environmental Management (DEM), Office of Water Resources, and county and town environmental agencies, has maintained a network of observation wells throughout the Commonwealth since the mid 1930's. The purpose of this network is to monitor seasonal and long-term changes in groundwater storage in different lithologic, topographic, and geographic settings. These data are analyzed to provide a monthly index of ground-water conditions to aid in water-resources management and planning, and to define long-term changes in water levels resulting from manmade stresses (such as pumping and construction-site drainage) and natural stresses (such as floods and droughts).
Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center
Garn, H.S.
2007-01-01
This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.
Integration of XRootD into the cloud infrastructure for ALICE data analysis
NASA Astrophysics Data System (ADS)
Kompaniets, Mikhail; Shadura, Oksana; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey
2015-12-01
Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments. We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is based on the Puppet configuration management system. Ceph installation and configuration operations are structured and converted to Puppet manifests describing node configurations and integrated into Packstack. This solution can be easily deployed, maintained and used even in small groups with limited computing resources and small organizations, which usually have lack of IT support. The proposed infrastructure has been tested on two different clouds (SPbSU & BITP) and integrates successfully with the ALICE data analysis model.
NASA Astrophysics Data System (ADS)
Hamdi, Mohamed; Zagrarni, Mohamed Faouzi; Djamai, Najib; Jerbi, Hamza; Goita, Kalifa; Tarhouni, Jamila
2018-07-01
With water table drop, managers got extremely concerned about the future of the groundwater resources sustainability of the Sisseb El Alem Nadhour Saouaf aquifer (SANS). In order to understand the groundwater flow dynamic and to assess the functioning of the aquifer system, a three-dimensional (3D) regional geological model of the SANS basin was carried on. The 3D geological model was developed by the combination of 2D seismic reflection profiles, calibrated by wireline logging data of oil wells, hydraulic wells and geological field sections. The 3D geological model shows that the Oligo-Neogene and Eocene aquifers in the study area represent important geometric variations and cumulated thickness affected by intensive fractures. The modeled stratigraphic units were combined with the hydraulic properties to estimate the groundwater storage. The estimated storage in 2016 was around 11 × 109 m3 and in 1971, it was 16 × 109 m3, so, 30% of the groundwater stored previously was consumed in 45 years. Yet, a variable spatial distribution of storativity was demonstrated, ranging from 1 to 3.4 × 106 m3/km2. These results prove the importance of hydro-geophysical investigation and numerical modeling to depicting hydrostratigraphic trends and suggest, that the fate of groundwater resources in the SANS aquifer seems though to be more a matter of the disparity of the groundwater storage than a matter of quantity.
Effects of land use change on soil carbon storage and water consumption in an oasis-desert ecotone.
Lü, Yihe; Ma, Zhimin; Zhao, Zhijiang; Sun, Feixiang; Fu, Bojie
2014-06-01
Land use and ecosystem services need to be assessed simultaneously to better understand the relevant factors in sustainable land management. This paper analyzed land use changes in the middle reach of the arid Heihe River Basin in northwest China over the last two decades and their impacts on water resources and soil organic carbon (SOC) storage. The results indicated that from 1986 to 2007: (1) cropland and human settlements expanded by 45.0 and 17.6%, respectively, at the expense of 70.1, 35.7, and 4.1% shrinkage on woodland, grassland, and semi-shrubby desert; (2) irrigation water use was dominant and increased (with fluctuations) at an average rate of 8.2%, while basic human water consumption increased monotonically over a longer period from 1981 to 2011 at a rate of 58%; and (3) cropland expansion or continuous cultivation led to a significant reduction of SOC, while the land use transition from grassland to semi-shrubby desert and the progressive succession of natural ecosystems such as semi-shrubby desert and grassland, in contrast, can bring about significant carbon sequestration benefits. The increased water consumption and decreased SOC pool associated with some observed land use changes may induce and aggravate potential ecological risks for both local and downstream ecosystems, including water resource shortages, soil quality declines, and degeneration of natural vegetation. Therefore, it is necessary to balance socioeconomic wellbeing and ecosystem services in land use planning and management for the sustainability of socio-ecological systems across spatiotemporal scales, especially in resource-poor arid environments.
Son, Young-Jun; Lewis, Myles; Spalholz, Hans; Tronstad, Russell
2017-01-01
This transdisciplinary study has a three-fold systems approach in evaluating a horticultural technology: 1) horticultural evaluations, 2) economic and resource analyses, and 3) systems engineering analyses, using low temperature storage as an example technology. Vegetable grafting is a technique to produce value-added seedlings but requires labor intensive nursery operations. Low temperature storage of seedlings for a short period of time can reduce peak production, but has not been evaluated at the extent demonstrated in this paper. Seedlings of 22 genotypes of Cucurbitaceae (cucurbit family) and Solanaceae (nightshade family) were evaluated for storability under selected temperatures and photosynthetic photon flux. Storability of Cucurbitaceous seedlings varied between 2 to 4 weeks at 12°C and 13 μmol m-2 s-1. Solanaceous seedlings were generally storable for 4 weeks at 12°C and 13 μmol m-2 s-1, but tomato seedlings could be stored for 4 weeks at 10°C and 5 μmol m-2 s-1. Capital and weekly operational costs of a low temperature storage system with a design that meets environmental requirements were estimated as $671 to $708 per m2 footprint and $0.79 to $2.21 per m2 footprint per week, respectively. Electricity costs per plant was less than 0.1 cents for 2 to 4 weeks of storage. Using a schedule-optimization heuristic and a logistics simulator previously developed for grafting nursery operations, six production scenarios consisting of two crops (tomato or watermelon) and three production peak patterns were examined to evaluate the impact of including low temperature storage. While the overall average costs of grafting labor were not significantly different, maximum labor demand and grafting labor cost during the peak production week were reduced by 31% to 50% and 14% to 30% by using storage, respectively. Therefore, low temperature storage can be an effective means to address the issue of labor management in grafting nurseries. PMID:28182757
41 CFR 101-28.203-1 - Government storage activity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Government storage... Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.2-Interagency Cross-Servicing in Storage Activities § 101-28.203-1 Government storage activity...
Eurogrid: a new glideinWMS based portal for CDF data analysis
NASA Astrophysics Data System (ADS)
Amerio, S.; Benjamin, D.; Dost, J.; Compostella, G.; Lucchesi, D.; Sfiligoi, I.
2012-12-01
The CDF experiment at Fermilab ended its Run-II phase on September 2011 after 11 years of operations and 10 fb-1 of collected data. CDF computing model is based on a Central Analysis Farm (CAF) consisting of local computing and storage resources, supported by OSG and LCG resources accessed through dedicated portals. At the beginning of 2011 a new portal, Eurogrid, has been developed to effectively exploit computing and disk resources in Europe: a dedicated farm and storage area at the TIER-1 CNAF computing center in Italy, and additional LCG computing resources at different TIER-2 sites in Italy, Spain, Germany and France, are accessed through a common interface. The goal of this project is to develop a portal easy to integrate in the existing CDF computing model, completely transparent to the user and requiring a minimum amount of maintenance support by the CDF collaboration. In this paper we will review the implementation of this new portal, and its performance in the first months of usage. Eurogrid is based on the glideinWMS software, a glidein based Workload Management System (WMS) that works on top of Condor. As CDF CAF is based on Condor, the choice of the glideinWMS software was natural and the implementation seamless. Thanks to the pilot jobs, user-specific requirements and site resources are matched in a very efficient way, completely transparent to the users. Official since June 2011, Eurogrid effectively complements and supports CDF computing resources offering an optimal solution for the future in terms of required manpower for administration, support and development.
Methods to assess geological CO2 storage capacity: Status and best practice
Heidug, Wolf; Brennan, Sean T.; Holloway, Sam; Warwick, Peter D.; McCoy, Sean; Yoshimura, Tsukasa
2013-01-01
To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.
Optimizing Resource Utilization in Grid Batch Systems
NASA Astrophysics Data System (ADS)
Gellrich, Andreas
2012-12-01
On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.
A Resource Service Model in the Industrial IoT System Based on Transparent Computing.
Li, Weimin; Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang
2018-03-26
The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system.
NASA Astrophysics Data System (ADS)
Farroha, Bassam S.; Farroha, Deborah L.
2011-06-01
The new corporate approach to efficient processing and storage is migrating from in-house service-center services to the newly coined approach of Cloud Computing. This approach advocates thin clients and providing services by the service provider over time-shared resources. The concept is not new, however the implementation approach presents a strategic shift in the way organizations provision and manage their IT resources. The requirements on some of the data sets targeted to be run on the cloud vary depending on the data type, originator, user, and confidentiality level. Additionally, the systems that fuse such data would have to deal with the classifying the product and clearing the computing resources prior to allowing new application to be executed. This indicates that we could end up with a multi-level security system that needs to follow specific rules and can send the output to a protected network and systems in order not to have data spill or contaminated resources. The paper discusses these requirements and potential impact on the cloud architecture. Additionally, the paper discusses the unexpected advantages of the cloud framework providing a sophisticated environment for information sharing and data mining.
A Resource Service Model in the Industrial IoT System Based on Transparent Computing
Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang
2018-01-01
The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system. PMID:29587450
Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals
NASA Astrophysics Data System (ADS)
Tyurin, Alexey
2017-11-01
Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month) on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.
Science to Help Understand and Manage Important Ground-Water Resources
Nickles, James
2008-01-01
Throughout California, as pressure on water resources continues to grow, water-supply agencies are looking to the state?s biggest ?reservoir? ? its ground-water basins ? for supply and storage. To better utilize that resource, the Sweetwater Authority and other local partners, including the city of San Diego and Otay Water Districts, are working with the U.S. Geological Survey (USGS) to develop the first comprehensive study of the coastal ground-water resources of southern San Diego County. USGS research is providing the integrated geologic and hydrologic knowledge necessary to help effectively utilize this resource on a coordinated, regional basis. USGS scientists are building a real-time well-monitoring network and gathering information about how the aquifers respond to different pumping and recharge-management strategies. Real-time ground-water levels are recorded every hour and are viewable on a project web site (http://ca.water.usgs.gov/sandiego/index.html). Data from the wells are helping to define the geology and hydrogeology of the area, define ground-water quality, and assess ground-water levels. The wells also are strategi-cally placed and designed to be usable by the local agencies for decades to come to help manage surface-water and ground-water operations. Additionally, the knowledge gained from the USGS study will help local, state, and federal agencies; water purveyors; and USGS scientists to understand the effects of urbanization on the local surface-water, ground-water, and biological resources, and to better critique ideas and opportuni-ties for additional ground-water development in the San Diego area.
Hazardous waste: Siting of storage facility at Kelly Air Force Base, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This report provides information on whether the hazardous waste storage facility at Kelly Air Force Base meets Resource Conservation and Recovery Act, state, and Air Force siting requirements; on whether the Air Force or the Defense Reutilization and Marketing Office selected the best site available to protect the public and to preserve good public relations with the community; on whether the Air Force, Kelly Air Force Base, or the Defense Logistics Agency adjusted siting standards as a result of the adverse publicity the hazardous waste facility has generated; and on whether Kelly Air Force Base is revising its hazardous wastemore » management organization so that it is similar to the organizations at Tinker and McClellan Air Force Bases.« less
NASA Astrophysics Data System (ADS)
Sasidhar, Jaladanki; Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.
2017-07-01
The success of any construction project will depend on efficient management of resources in a perfect manner to complete the project with a reasonable budget and time and the quality cannot be compromised. The efficient and timely procurement of material, deployment of adequate labor at correct time and mobilization of machinery lacking in time, all of them causes delay, lack of quality and finally affect the project cost. It is known factor that Project cost can be controlled by taking corrective actions on mobilization of resources at a right time. This research focuses on integration of management systems with the computer to generate the model which uses OOM data structure which decides to include automatic commodity code generation, automatic takeoff execution, intelligent purchase order generation, and components of design and schedule integration to overcome the problems of stock out. To overcome the problem in equipment management system inventory management module is suggested and the data set of equipment registration number, equipment number, description, date of purchase, manufacturer, equipment price, market value, life of equipment, production data of the equipment which includes equipment number, date, name of the job, hourly rate, insurance, depreciation cost of the equipment, taxes, storage cost, interest, oil, grease, and fuel consumption, etc. is analyzed and the decision support systems to overcome the problem arising out improper management is generated. The problem on labor is managed using scheduling, Strategic management of human resources. From the generated support systems tool, the resources are mobilized at a right time and help the project manager to finish project in time and thereby save the abnormal project cost and also provides the percentage that can be improved and also research focuses on determining the percentage of delays that are caused by lack of management of materials, manpower and machinery in different types of projects and how the percentage various from project to project.
NASA Astrophysics Data System (ADS)
Castellazzi, Pascal; Martel, Richard; Rivera, Alfonso; Huang, Jianliang; Pavlic, Goran; Calderhead, Angus I.; Chaussard, Estelle; Garfias, Jaime; Salas, Javier
2016-08-01
Groundwater deficits occur in several areas of Central Mexico, where water resource assessment is limited by the availability and reliability of field data. In this context, GRACE and InSAR are used to remotely assess groundwater storage loss in one of Mexico's most important watersheds in terms of size and economic activity: the Lerma-Santiago-Pacifico (LSP). In situ data and Land Surface Models are used to subtract soil moisture and surface water storage changes from the total water storage change measured by GRACE satellites. As a result, groundwater mass change time-series are obtained for a 12 years period. ALOS-PALSAR images acquired from 2007 to 2011 were processed using the SBAS-InSAR algorithm to reveal areas subject to ground motion related to groundwater over-exploitation. In the perspective of providing guidance for groundwater management, GRACE and InSAR observations are compared with official water budgets and field observations. InSAR-derived subsidence mapping generally agrees well with official water budgets, and shows that deficits occur mainly in cities and irrigated agricultural areas. GRACE does not entirely detect the significant groundwater losses largely reported by official water budgets, literature and InSAR observations. The difference is interpreted as returns of wastewater to the groundwater flow systems, which limits the watershed scale groundwater depletion but suggests major impacts on groundwater quality. This phenomenon is enhanced by ground fracturing as noticed in the field. Studying the fate of the extracted groundwater is essential when comparing GRACE data with higher resolution observations, and particularly in the perspective of further InSAR/GRACE combination in hydrogeology.
Merrill, Matthew D.; Slucher, Ernie R.; Roberts-Ashby, Tina L.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2015-01-01
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for the Permian and Palo Duro Basins, the combined Bend arch-Fort Worth Basin area, and subbasins therein of Texas, New Mexico, and Oklahoma. In addition to a summarization of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Though appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of inputs selected by the assessment geologists. Spatial files of boundaries for the SAUs herein, as well as maps of the density of known well bores that penetrate the SAU seal, are available for download with the release of this report.
CMS distributed data analysis with CRAB3
NASA Astrophysics Data System (ADS)
Mascheroni, M.; Balcas, J.; Belforte, S.; Bockelman, B. P.; Hernandez, J. M.; Ciangottini, D.; Konstantinov, P. B.; Silva, J. M. D.; Ali, M. A. B. M.; Melo, A. M.; Riahi, H.; Tanasijczuk, A. J.; Yusli, M. N. B.; Wolf, M.; Woodard, A. E.; Vaandering, E.
2015-12-01
The CMS Remote Analysis Builder (CRAB) is a distributed workflow management tool which facilitates analysis tasks by isolating users from the technical details of the Grid infrastructure. Throughout LHC Run 1, CRAB has been successfully employed by an average of 350 distinct users each week executing about 200,000 jobs per day. CRAB has been significantly upgraded in order to face the new challenges posed by LHC Run 2. Components of the new system include 1) a lightweight client, 2) a central primary server which communicates with the clients through a REST interface, 3) secondary servers which manage user analysis tasks and submit jobs to the CMS resource provisioning system, and 4) a central service to asynchronously move user data from temporary storage in the execution site to the desired storage location. The new system improves the robustness, scalability and sustainability of the service. Here we provide an overview of the new system, operation, and user support, report on its current status, and identify lessons learned from the commissioning phase and production roll-out.
NASA Astrophysics Data System (ADS)
Béjar-Pizarro, Marta; Ezquerro, Pablo; Herrera, Gerardo; Tomás, Roberto; Guardiola-Albert, Carolina; Ruiz Hernández, José M.; Fernández Merodo, José A.; Marchamalo, Miguel; Martínez, Rubén
2017-04-01
Groundwater resources are under stress in many regions of the world and the future water supply for many populations, particularly in the driest places on Earth, is threatened. Future climatic conditions and population growth are expected to intensify the problem. Understanding the factors that control groundwater storage variation is crucial to mitigate its adverse consequences. In this work, we apply satellite-based measurements of ground deformation over the Tertiary detritic aquifer of Madrid (TDAM), Central Spain, to infer the spatio-temporal evolution of water levels and estimate groundwater storage variations. Specifically, we use Persistent Scatterer Interferometry (PSI) data during the period 1992-2010 and piezometric time series on 19 well sites covering the period 1997-2010 to build groundwater level maps and quantify groundwater storage variations. Our results reveal that groundwater storage loss occurred in two different periods, 1992-1999 and 2005-2010 and was mainly concentrated in a region of ∼200 km2. The presence of more compressible materials in that region combined with a long continuous water extraction can explain this volumetric deficit. This study illustrates how the combination of PSI and piezometric data can be used to detect small aquifers affected by groundwater storage loss helping to improve their sustainable management.
How well are the climate indices related to the GRACE-observed total water storage changes in China?
NASA Astrophysics Data System (ADS)
Devaraju, B.; Vishwakarma, B.; Sneeuw, N. J.
2017-12-01
The fresh water availability over land masses is changing rapidly under the influence of climate change and human intervention. In order to manage our water resources and plan for a better future, we need to demarcate the role of climate change. The total water storage change in a region can be obtained from the GRACE satellite mission. On the other hand, many climate change indicators, for example ENSO, are derived from sea surface temperature. In this contribution we investigate the relationship between the total water storage change over China with the climate indices using statistical time-series decomposition techniques, such as Seasonal and Trend decomposition using Loess (STL), Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). The anomalies in climate variables, such as sea surface temperature, are responsible for anomalous precipitation and thus an anomalous total water storage change over land. Therefore, it is imperative that we use a GRACE product that can capture anomalous water storage changes with unprecedented accuracy. Since filtering decreases the sensitivity of GRACE products substantially, we use the data-driven method of deviation for recovering the signal lost due to filtering. To this end, we are able to obtain the spatial fingerprint of individual climate index on total water storage change observed over China.
Financial Assurance Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities
The Resource Conservation and Recovery Act (RCRA) requires all treatment, storage and disposal facilities (TSDFs) to demonstrate that they will have the financial resources to properly close the facility
Entropy, pricing and macroeconomics of pumped-storage systems
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas
2014-05-01
We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, Jr., Neil; McLellan, Jason G; Crossley, Brian
The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managersmore » to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project began to address some of the identified data gaps, throughout the blocked area, with a variety of newly developed sampling projects, as well as, continuing with ongoing data collection of established projects.« less
Data model and relational database design for the New Jersey Water-Transfer Data System (NJWaTr)
Tessler, Steven
2003-01-01
The New Jersey Water-Transfer Data System (NJWaTr) is a database design for the storage and retrieval of water-use data. NJWaTr can manage data encompassing many facets of water use, including (1) the tracking of various types of water-use activities (withdrawals, returns, transfers, distributions, consumptive-use, wastewater collection, and treatment); (2) the storage of descriptions, classifications and locations of places and organizations involved in water-use activities; (3) the storage of details about measured or estimated volumes of water associated with water-use activities; and (4) the storage of information about data sources and water resources associated with water use. In NJWaTr, each water transfer occurs unidirectionally between two site objects, and the sites and conveyances form a water network. The core entities in the NJWaTr model are site, conveyance, transfer/volume, location, and owner. Other important entities include water resource (used for withdrawals and returns), data source, permit, and alias. Multiple water-exchange estimates based on different methods or data sources can be stored for individual transfers. Storage of user-defined details is accommodated for several of the main entities. Many tables contain classification terms to facilitate the detailed description of data items and can be used for routine or custom data summarization. NJWaTr accommodates single-user and aggregate-user water-use data, can be used for large or small water-network projects, and is available as a stand-alone Microsoft? Access database. Data stored in the NJWaTr structure can be retrieved in user-defined combinations to serve visualization and analytical applications. Users can customize and extend the database, link it to other databases, or implement the design in other relational database applications.
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
Managing United States public lands in response to climate change: a view from the ground up.
Ellenwood, Mikaela S; Dilling, Lisa; Milford, Jana B
2012-05-01
Federal land managers are faced with the task of balancing multiple uses and goals when making decisions about land use and the activities that occur on public lands. Though climate change is now well recognized by federal agencies and their local land and resource managers, it is not yet clear how issues related to climate change will be incorporated into on-the-ground decision making within the framework of multiple use objectives. We conducted a case study of a federal land management agency field office, the San Juan Public Lands Center in Durango, CO, U.S.A., to understand from their perspective how decisions are currently made, and how climate change and carbon management are being factored into decision making. We evaluated three major management sectors in which climate change or carbon management may intersect other use goals: forests, biofuels, and grazing. While land managers are aware of climate change and eager to understand more about how it might affect land resources, the incorporation of climate change considerations into everyday decision making is currently quite limited. Climate change is therefore on the radar screen, but remains a lower priority than other issues. To assist the office in making decisions that are based on sound scientific information, further research is needed into how management activities influence carbon storage and resilience of the landscape under climate change.
NASA Technical Reports Server (NTRS)
Auty, David
1988-01-01
The risk to the development of program reliability is derived from the use of a new language and from the potential use of new storage management techniques. With Ada and associated support software, there is a lack of established guidelines and procedures, drawn from experience and common usage, which assume reliable behavior. The risk is identified and clarified. In order to provide a framework for future consideration of dynamic storage management on Ada, a description of the relevant aspects of the language is presented in two sections: Program data sources, and declaration and allocation in Ada. Storage-management characteristics of the Ada language and storage-management characteristics of Ada implementations are differentiated. Terms that are used are defined in a narrow and precise sense. The storage-management implications of the Ada language are described. The storage-management options available to the Ada implementor and the implications of the implementor's choice for the Ada programmer are also described.
A quantitative assessment of groundwater resources in the Middle East and North Africa region
NASA Astrophysics Data System (ADS)
Lezzaik, Khalil; Milewski, Adam
2018-02-01
The Middle East and North Africa (MENA) region is the world's most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region's total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region's large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region's groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development.
MetaboLights: towards a new COSMOS of metabolomics data management.
Steinbeck, Christoph; Conesa, Pablo; Haug, Kenneth; Mahendraker, Tejasvi; Williams, Mark; Maguire, Eamonn; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Salek, Reza M; Griffin, Julian L
2012-10-01
Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6-8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.
1991-02-01
to adequately assess the health and environmental risks associated with the closure and transfer of the Annex forI other use; and 3) identification of...1990); Draft Final Technical Plan, Draft Final Sampling Design Plan and Draft Final Health and Safety Plan, USATHAMA, June 1990. 2.1.2 Draft Final...Final Technical Plan, Sampling Design Plan and Health and Safety Plan) supplied by USATHAMA. The estimate may be revised, with USATHAMA approval, as
Incorporating Brokers within Collaboration Environments
NASA Astrophysics Data System (ADS)
Rajasekar, A.; Moore, R.; de Torcy, A.
2013-12-01
A collaboration environment, such as the integrated Rule Oriented Data System (iRODS - http://irods.diceresearch.org), provides interoperability mechanisms for accessing storage systems, authentication systems, messaging systems, information catalogs, networks, and policy engines from a wide variety of clients. The interoperability mechanisms function as brokers, translating actions requested by clients to the protocol required by a specific technology. The iRODS data grid is used to enable collaborative research within hydrology, seismology, earth science, climate, oceanography, plant biology, astronomy, physics, and genomics disciplines. Although each domain has unique resources, data formats, semantics, and protocols, the iRODS system provides a generic framework that is capable of managing collaborative research initiatives that span multiple disciplines. Each interoperability mechanism (broker) is linked to a name space that enables unified access across the heterogeneous systems. The collaboration environment provides not only support for brokers, but also support for virtualization of name spaces for users, files, collections, storage systems, metadata, and policies. The broker enables access to data or information in a remote system using the appropriate protocol, while the collaboration environment provides a uniform naming convention for accessing and manipulating each object. Within the NSF DataNet Federation Consortium project (http://www.datafed.org), three basic types of interoperability mechanisms have been identified and applied: 1) drivers for managing manipulation at the remote resource (such as data subsetting), 2) micro-services that execute the protocol required by the remote resource, and 3) policies for controlling the execution. For example, drivers have been written for manipulating NetCDF and HDF formatted files within THREDDS servers. Micro-services have been written that manage interactions with the CUAHSI data repository, the DataONE information catalog, and the GeoBrain broker. Policies have been written that manage transfer of messages between an iRODS message queue and the Advanced Message Queuing Protocol. Examples of these brokering mechanisms will be presented. The DFC collaboration environment serves as the intermediary between community resources and compute grids, enabling reproducible data-driven research. It is possible to create an analysis workflow that retrieves data subsets from a remote server, assemble the required input files, automate the execution of the workflow, automatically track the provenance of the workflow, and share the input files, workflow, and output files. A collaborator can re-execute a shared workflow, compare results, change input files, and re-execute an analysis.
Reference manual for data base on Nevada water-rights permits
Cartier, K.D.; Bauer, E.M.; Farnham, J.L.
1995-01-01
The U.S. Geological Survey and Nevada Division of Water Resources have cooperatively developed and implemented a data-base system for managing water-rights permit information for the State of Nevada. The Water-Rights Permit data base is part of an integrated system of computer data bases using the Ingres Relational Data-Base Manage-ment System, which allows efficient storage and access to water information from the State Engineer's office. The data base contains a main table, three ancillary tables, and five lookup tables, as well as a menu-driven system for entering, updating, and reporting on the data. This reference guide outlines the general functions of the system and provides a brief description of data tables and data-entry screens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Nathan; Johnson, Brian; Lundstrom, Blake
Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions. We develop a proof-of-concept behavioral HEMS controller and show by simulation on an example home energy system that it capable of making context-dependent tradeoffsmore » between goals under challenging conditions.« less
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-02-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-01-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654
EBI metagenomics--a new resource for the analysis and archiving of metagenomic data.
Hunter, Sarah; Corbett, Matthew; Denise, Hubert; Fraser, Matthew; Gonzalez-Beltran, Alejandra; Hunter, Christopher; Jones, Philip; Leinonen, Rasko; McAnulla, Craig; Maguire, Eamonn; Maslen, John; Mitchell, Alex; Nuka, Gift; Oisel, Arnaud; Pesseat, Sebastien; Radhakrishnan, Rajesh; Rocca-Serra, Philippe; Scheremetjew, Maxim; Sterk, Peter; Vaughan, Daniel; Cochrane, Guy; Field, Dawn; Sansone, Susanna-Assunta
2014-01-01
Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.
EBI metagenomics—a new resource for the analysis and archiving of metagenomic data
Hunter, Sarah; Corbett, Matthew; Denise, Hubert; Fraser, Matthew; Gonzalez-Beltran, Alejandra; Hunter, Christopher; Jones, Philip; Leinonen, Rasko; McAnulla, Craig; Maguire, Eamonn; Maslen, John; Mitchell, Alex; Nuka, Gift; Oisel, Arnaud; Pesseat, Sebastien; Radhakrishnan, Rajesh; Rocca-Serra, Philippe; Scheremetjew, Maxim; Sterk, Peter; Vaughan, Daniel; Cochrane, Guy; Field, Dawn; Sansone, Susanna-Assunta
2014-01-01
Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive. PMID:24165880
NASA Astrophysics Data System (ADS)
Malik, A. A.; Puissant, J.; Buckeridge, K. M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gleixner, G.; Griffiths, R.
2017-12-01
Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of organic matter in soil. Increasing evidence now exists to suggest that microbial biomass contributes significantly to soil organic carbon formation. However, we do not fully understand the microbial mechanisms of organic matter processing and this hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically link key microbial ecophysiological traits to soil carbon storage in temperate grassland habitats ranging in land use from pristine species-rich grasslands to intensive croplands in 56 different soils across Britain. Physiological mechanisms of soil microorganisms were assessed using stable carbon isotope tracing and soil proteomics. Through spatial patterns and path analysis of structural equation modeling we discern two distinct pH-related mechanisms of soil carbon storage and highlight that the response of these mechanistic indicators is shaped by the environmental context. Land use intensification in low pH soils that increases soil pH above a threshold value ( 6.2) leads to loss of carbon due to increased microbial degradation as a result of lower acid retardation of organic matter decomposition. On the contrary, the loss of carbon through intensification in high pH (> 6.2) soils was linked to decreased microbial biomass and reduced carbon use efficiency that was linked to tradeoffs with stress alleviation and resource acquisition. We conclude that land use intensification-induced changes in soil pH can be used as a proxy to determine the effect of land management strategies on microbial soil carbon cycling processes and emphasize that more extensive land management practices at higher soil pH have greater potential for soil carbon storage through increased microbial metabolic efficiency, whereas in acidic soils abiotic factors exert a greater influence on the fate of soil carbon.
Improving large-scale groundwater models by considering fossil gradients
NASA Astrophysics Data System (ADS)
Schulz, Stephan; Walther, Marc; Michelsen, Nils; Rausch, Randolf; Dirks, Heiko; Al-Saud, Mohammed; Merz, Ralf; Kolditz, Olaf; Schüth, Christoph
2017-05-01
Due to limited availability of surface water, many arid to semi-arid countries rely on their groundwater resources. Despite the quasi-absence of present day replenishment, some of these groundwater bodies contain large amounts of water, which was recharged during pluvial periods of the Late Pleistocene to Early Holocene. These mostly fossil, non-renewable resources require different management schemes compared to those which are usually applied in renewable systems. Fossil groundwater is a finite resource and its withdrawal implies mining of aquifer storage reserves. Although they receive almost no recharge, some of them show notable hydraulic gradients and a flow towards their discharge areas, even without pumping. As a result, these systems have more discharge than recharge and hence are not in steady state, which makes their modelling, in particular the calibration, very challenging. In this study, we introduce a new calibration approach, composed of four steps: (i) estimating the fossil discharge component, (ii) determining the origin of fossil discharge, (iii) fitting the hydraulic conductivity with a pseudo steady-state model, and (iv) fitting the storage capacity with a transient model by reconstructing head drawdown induced by pumping activities. Finally, we test the relevance of our approach and evaluated the effect of considering or ignoring fossil gradients on aquifer parameterization for the Upper Mega Aquifer (UMA) on the Arabian Peninsula.
NASA Astrophysics Data System (ADS)
Guo, H.; Li, W.; Wang, L.; Cheng, G.; Zhu, J.; Wang, Y.; Chen, Y.
2016-12-01
Groundwater supply accounts for two-thirds of the water supply of the Beijing municipality, and groundwater resources play a fundamental role in assuring the security and sustainability of the regional economy in Beijing. In this report, ten groundwater abstraction scenarios were designed based on the water demand and the capacity of water supply in the Beijing plain, and the impacts of these scenarios on the groundwater storage and level were illustrated with a transient 3D groundwater model constructed with MODFLOW. In addition, a set of evaluation criteria was developed taking into account of a number of factors such as the amount of groundwater exploitation, the evaporation of unconfined groundwater, river outflow, regional average groundwater depth, drawdowns in depression cones and the ratio of storage to the total recharge. Based on this set of criteria, the ten proposed groundwater abstraction scenarios were compared using a multi-criteria fuzzy pattern recognition model, which is suitable for solving large-scale, transient groundwater management problems and also proven to be a useful scientific analysis tool to identify the optimal groundwater resource utilization scenario. The evaluation results show that the groundwater resources can be rationally and optimally used when multiple measures such as control of groundwater abstraction and increase of recharge are jointly implemented.
NASA Astrophysics Data System (ADS)
Metz, Dennis
Generation from renewable energy sources has been rising worldwide and is set to grow further, as many countries are implementing and enforcing initiatives to reduce greenhouse gas emission to curb climate change. However, this change in the generation mix is increasingly challenging to handle for the grid operators, as the residual load becomes more volatile and difficult to predict. In order to ensure the continuous balance between supply and demand and minimize the amount of curtailed energy from renewable resources, a range of flexibility options exists. At the consumer end, the flexibility of the load can be increased by demand-side management. Alternatively, by increasing the interconnection capacity, surplus generation can be exchanged with neighboring grid zones. Furthermore, existing generation resources like cogeneration units can be refitted and operated in a more flexible way. Storage, as another flexibility option, has the advantage of being able to act on both demand and supply sides as well as providing a wide range of system services. Hence, during periods with surplus generation from renewable resources, excess supply can be absorbed by storage systems. Contrary, during times with low contribution from renewable generation, the deficit can be compensated by discharging the storage device. However, while storage is well suited from a technological point of view to fill the gap, it remains unclear how the application of a storage device can be monetized. Furthermore, investors are struggling to evaluate potential projects due to their complexity. As a result, current implementations of new storage installations remain behind expectations. In addition, high uncertainty about future developments causes many investors to delay investment decisions. In this context, this work identifies and defines several business cases regarding the integration of storage in power systems. Depending on the intended usage of the storage device, benefits might accrue which cannot be internalized by a private agent. Therefore, only commercial applications for energy storage will be considered. In the following, storage dispatch algorithms and an evaluation framework are developed. This allows defining the benefits that a storage device can provide, including barriers and drivers to its deployment. In order to consider uncertainty in the evaluation process, several assessment methodologies are introduced and adapted to the respective context. Furthermore, the impact of storage systems on the electric grid as well as on electricity markets is analyzed. The results of this research do not only provide a better understanding about potential business cases and related income streams of storage devices to investors, but also provide deep insights into the associated risks of such an investment. Furthermore, the results allow policy makers to identify the relevant parameters for promoting storage in order to facilitate the integration of additional renewable generation capacity. Last, this document gives traditional power producers as well as grid operators a better understanding about the impact of storage installations on generation and demand patterns as well as on the possible impacts on electricity markets. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A.; Christensen, Dane T.
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A; Isley, Steven C
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
Privacy protection in HealthGrid: distributing encryption management over the VO.
Torres, Erik; de Alfonso, Carlos; Blanquer, Ignacio; Hernández, Vicente
2006-01-01
Grid technologies have proven to be very successful in tackling challenging problems in which data access and processing is a bottleneck. Notwithstanding the benefits that Grid technologies could have in Health applications, privacy leakages of current DataGrid technologies due to the sharing of data in VOs and the use of remote resources, compromise its widespreading. Privacy control for Grid technology has become a key requirement for the adoption of Grids in the Healthcare sector. Encrypted storage of confidential data effectively reduces the risk of disclosure. A self-enforcing scheme for encrypted data storage can be achieved by combining Grid security systems with distributed key management and classical cryptography techniques. Virtual Organizations, as the main unit of user management in Grid, can provide a way to organize key sharing, access control lists and secure encryption management. This paper provides programming models and discusses the value, costs and behavior of such a system implemented on top of one of the latest Grid middlewares. This work is partially funded by the Spanish Ministry of Science and Technology in the frame of the project Investigación y Desarrollo de Servicios GRID: Aplicación a Modelos Cliente-Servidor, Colaborativos y de Alta Productividad, with reference TIC2003-01318.
The Evolution of Groundwater Management Paradigms in Kansas, USA
NASA Astrophysics Data System (ADS)
Sophocleous, M. A.
2011-12-01
The purpose of this presentation is to trace the evolution of key water-related laws and management practices in Kansas, from the enactment of the Kansas Water Resources Appropriation Act of 1945 to the present, in order to highlight the state's efforts to create a more sustainable water future and in hopes that others will benefit from Kansas' experience. The 1945 Act provides the basic framework of water law (prior appropriation) in Kansas. Progression of groundwater management in the state encompasses local ground-water management districts (GMDs) and their water-management programs, minimum-streamflow and TMDL standards, water-use reporting and water metering programs, use of modified safe-yield policies in some GMDs, the subbasin water-resources-management program, the integrated resource planning/Aquifer Storage and Recovery project of the City of Wichita, the Central Kansas Water Bank, enhanced aquifer subunits management, and various water conservation programs. While these have all contributed to the slowing down of declines in groundwater levels in the High Plains aquifer and in associated ecosystems, they have not yet succeeded in halting those declines. Based on the assumption that the different management approaches have to operate easily within the prevailing water rights and law framework to succeed, a number of steps are suggested here that may help further halt the declines of the High Plains aquifer. These include eliminating the "use it or lose it" maxim in the prior-appropriation framework, broadening the definition of "beneficial use," regulating domestic and other "exempt" wells, encouraging voluntary "sharing the shortage" agreements, and determining to what extent water rights may be regulated in the public interest without a compensable "taking." Further necessary measures include determining to what extent water-rights holders might be subjected to reasonable dictates without having the security of their rights altered.
1998 report on Hanford Site land disposal restrictions for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, D.G.
1998-04-10
This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of bothmore » the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.« less
NASA Astrophysics Data System (ADS)
Taneja, Jayant Kumar
Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load for supply-following and study the behaviors of populations of these loads, assessing their potential at various levels of deployment throughout the California electricity grid. Using combinations of supply-following strategies, we can reduce peak natural gas generation by 19% on a model of the California grid with 60% renewables. We then assess remaining variability on this deeply renewable grid incorporating supply-following loads, characterizing additional capabilities needed to ensure supply-demand matching in future sustainable electricity grids.
Using Linked Open Data and Semantic Integration to Search Across Geoscience Repositories
NASA Astrophysics Data System (ADS)
Mickle, A.; Raymond, L. M.; Shepherd, A.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Jones, M.; Krisnadhi, A.; Lehnert, K. A.; Narock, T.; Schildhauer, M.; Wiebe, P. H.
2014-12-01
The MBLWHOI Library is a partner in the OceanLink project, an NSF EarthCube Building Block, applying semantic technologies to enable knowledge discovery, sharing and integration. OceanLink is testing ontology design patterns that link together: two data repositories, Rolling Deck to Repository (R2R), Biological and Chemical Oceanography Data Management Office (BCO-DMO); the MBLWHOI Library Institutional Repository (IR) Woods Hole Open Access Server (WHOAS); National Science Foundation (NSF) funded awards; and American Geophysical Union (AGU) conference presentations. The Library is collaborating with scientific users, data managers, DSpace engineers, experts in ontology design patterns, and user interface developers to make WHOAS, a DSpace repository, linked open data enabled. The goal is to allow searching across repositories without any of the information providers having to change how they manage their collections. The tools developed for DSpace will be made available to the community of users. There are 257 registered DSpace repositories in the United Stated and over 1700 worldwide. Outcomes include: Integration of DSpace with OpenRDF Sesame triple store to provide SPARQL endpoint for the storage and query of RDF representation of DSpace resources, Mapping of DSpace resources to OceanLink ontology, and DSpace "data" add on to provide resolvable linked open data representation of DSpace resources.
Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets
Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L
2014-01-01
Background As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Methods Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Results Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Conclusions Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. PMID:24464852
A high performance hierarchical storage management system for the Canadian tier-1 centre at TRIUMF
NASA Astrophysics Data System (ADS)
Deatrich, D. C.; Liu, S. X.; Tafirout, R.
2010-04-01
We describe in this paper the design and implementation of Tapeguy, a high performance non-proprietary Hierarchical Storage Management (HSM) system which is interfaced to dCache for efficient tertiary storage operations. The system has been successfully implemented at the Canadian Tier-1 Centre at TRIUMF. The ATLAS experiment will collect a large amount of data (approximately 3.5 Petabytes each year). An efficient HSM system will play a crucial role in the success of the ATLAS Computing Model which is driven by intensive large-scale data analysis activities that will be performed on the Worldwide LHC Computing Grid infrastructure continuously. Tapeguy is Perl-based. It controls and manages data and tape libraries. Its architecture is scalable and includes Dataset Writing control, a Read-back Queuing mechanism and I/O tape drive load balancing as well as on-demand allocation of resources. A central MySQL database records metadata information for every file and transaction (for audit and performance evaluation), as well as an inventory of library elements. Tapeguy Dataset Writing was implemented to group files which are close in time and of similar type. Optional dataset path control dynamically allocates tape families and assign tapes to it. Tape flushing is based on various strategies: time, threshold or external callbacks mechanisms. Tapeguy Read-back Queuing reorders all read requests by using an elevator algorithm, avoiding unnecessary tape loading and unloading. Implementation of priorities will guarantee file delivery to all clients in a timely manner.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility.
Zaballos, Agustín; Navarro, Joan; Martín De Pozuelo, Ramon
2018-02-28
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid's data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility
2018-01-01
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid’s data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29495599
Statistical Analysis of Terrestrial Water Storage Change Over Southwestern United States
NASA Astrophysics Data System (ADS)
Eibedingil, I. G.; Mubako, S. T.; Hargrove, W. L.; Espino, A. C.
2017-12-01
A warming trend over recent decades has aggravated water resource challenges in the arid southwestern region of the United States (U.S.). An increase in temperature, coupled with decreasing snowpack and rainfall have impacted the region's cities, ecosystems, and agriculture. The region is the largest contributor of agricultural products to the U.S. market resulting from irrigation. Water use through irrigation is stressing already limited terrestrial water resources. Population growth in recent decades has also led to increased water demand. This study utilizes products of the Gravity Recovery and Climate Experiment (GRACE) twin satellites experiment in MATLAB and ArcGIS to examine terrestrial water storage changes in the southwestern region of the U.S., comprised of the eight states of Texas, California, Nevada, Utah, Arizona, Colorado, New Mexico, and Oklahoma. Linear trend analysis was applied to the equivalent water-height data of terrestrial water storage changes (TWSC), precipitation, and air temperature. Correlation analysis was performed on couplings of TWSC - precipitation and TWSC - air temperature to examine the impact of temperature and precipitation on the region's water resources. Our preliminary results show a decreasing trend of TWSC from April 2002 to July 2016 in almost all parts of the region. Precipitation shows a decreasing trend from March 2000 to March 2017 for most of the region, except for sparse areas of increased precipitation near the northwestern coast of California, and a belt running from Oklahoma through the middle of Texas to the El Paso/New Mexico border. From April 2002 to December 2014, air temperature exhibited a negative trend for most of the region, except a larger part of California and a small location in central Texas. Correlation between TWSC and precipitation was mostly positive, but a negative trend was observed when TWSC and air temperature were correlated. The study contributes to the understanding of terrestrial water storage trends and their relationship with climatic variables, crucial for implementing appropriate adaptation and mitigation policies and strategies, and managing water demand.
National assessment of geologic carbon dioxide storage resources: summary
,
2013-01-01
The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national assessment was a geology-based examination of all sedimentary basins in the onshore and State waters area of the United States that contain storage assessment units (SAUs) that could be defined according to geologic and hydrologic characteristics. Although geologic storage of CO2 may be possible in some areas not assessed by the USGS, the SAUs identified in this assessment represent those areas within sedimentary basins that met the assessment criteria. A geologic description of each SAU was prepared; descriptions for SAUs in several basins are in Warwick and Corum (2012, USGS OFR 2012–1024).
A cyber infrastructure for the SKA Telescope Manager
NASA Astrophysics Data System (ADS)
Barbosa, Domingos; Barraca, João. P.; Carvalho, Bruno; Maia, Dalmiro; Gupta, Yashwant; Natarajan, Swaminathan; Le Roux, Gerhard; Swart, Paul
2016-07-01
The Square Kilometre Array Telescope Manager (SKA TM) will be responsible for assisting the SKA Operations and Observation Management, carrying out System diagnosis and collecting Monitoring and Control data from the SKA subsystems and components. To provide adequate compute resources, scalability, operation continuity and high availability, as well as strict Quality of Service, the TM cyber-infrastructure (embodied in the Local Infrastructure - LINFRA) consists of COTS hardware and infrastructural software (for example: server monitoring software, host operating system, virtualization software, device firmware), providing a specially tailored Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solution. The TM infrastructure provides services in the form of computational power, software defined networking, power, storage abstractions, and high level, state of the art IaaS and PaaS management interfaces. This cyber platform will be tailored to each of the two SKA Phase 1 telescopes (SKA_MID in South Africa and SKA_LOW in Australia) instances, each presenting different computational and storage infrastructures and conditioned by location. This cyber platform will provide a compute model enabling TM to manage the deployment and execution of its multiple components (observation scheduler, proposal submission tools, MandC components, Forensic tools and several Databases, etc). In this sense, the TM LINFRA is primarily focused towards the provision of isolated instances, mostly resorting to virtualization technologies, while defaulting to bare hardware if specifically required due to performance, security, availability, or other requirement.
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, H.
2017-12-01
The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.
Ecohydrology and Its Relation to Integrated Groundwater Management
Hunt, Randall J.; Hayashi, Masaki; Batelaan, Okke
2016-01-01
In the twentieth century, groundwater characterization focused primarily on easily measured hydraulic metrics of water storage and flows. Twenty-first century concepts of groundwater availability, however, encompass other factors having societal value, such as ecological well-being. Effective ecohydrological science is a nexus of fundamental understanding derived from two scientific disciplines: (1) ecology, where scale, thresholds, feedbacks and tipping points for societal questions form the basis for the ecologic characterization, and (2) hydrology, where the characteristics, magnitude, and timing of water flows are characterized for a defined system of interest. In addition to ecohydrology itself, integrated groundwater management requires input from resource managers to understand which areas of the vast world of ecohydrology are important for decision making. Expectations of acceptable uncertainty, or even what ecohydrological outputs have utility, are often not well articulated within societal decision making frameworks, or within the science community itself. Similarly, “acceptable levels of impact” are difficult to define. Three examples are given to demonstrate the use of ecohydrological considerations for long-term sustainability of groundwater resources and their related ecosystem function. Such examples illustrate the importance of accommodating ecohydrogeological aspects into integrated groundwater management of the twenty-first century, regardless of society, climate, or setting.
7 CFR 250.52 - Storage and inventory management of donated foods.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 4 2010-01-01 2010-01-01 false Storage and inventory management of donated foods. 250... Donated Foods in Contracts With Food Service Management Companies § 250.52 Storage and inventory management of donated foods. (a) General requirements. The food service management company must meet the...
NASA Astrophysics Data System (ADS)
Cifelli, R.; Johnson, L. E.; White, A. B.
2014-12-01
Advancements in monitoring and prediction of precipitation and severe storms can provide significant benefits for water resource managers, allowing them to mitigate flood damage risks, capture additional water supplies and offset drought impacts, and enhance ecosystem services. A case study for the San Francisco Bay area provides the context for quantification of the benefits of an Advanced Quantitative Precipitation Information (AQPI) system. The AQPI builds off more than a decade of NOAA research and applications of advanced precipitation sensors, data assimilation, numerical models of storms and storm runoff, and systems integration for real-time operations. An AQPI would dovetail with the current National Weather Service forecast operations to provide higher resolution monitoring of rainfall events and longer lead time forecasts. A regional resource accounting approach has been developed to quantify the incremental benefits assignable to the AQPI system; these benefits total to $35 M/yr in the 9 county Bay region. Depending on the jurisdiction large benefits for flood damage avoidance may accrue for locations having dense development in flood plains. In other locations forecst=based reservoir operations can increase reservoir storage for water supplies. Ecosystem services benefits for fisheries may be obtained from increased reservoir storage and downstream releases. Benefits in the transporation sectors are associated with increased safety and avoided delays. Compared to AQPI system implementation and O&M costs over a 10 year operations period, a benefit - cost (B/C) ratio is computed which ranges between 2.8 to 4. It is important to acknowledge that many of the benefits are dependent on appropriate and adequate response by the hazards and water resources management agencies and citizens.
The ATLAS Event Service: A new approach to event processing
NASA Astrophysics Data System (ADS)
Calafiura, P.; De, K.; Guan, W.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Tsulaia, V.; Van Gemmeren, P.; Wenaus, T.
2015-12-01
The ATLAS Event Service (ES) implements a new fine grained approach to HEP event processing, designed to be agile and efficient in exploiting transient, short-lived resources such as HPC hole-filling, spot market commercial clouds, and volunteer computing. Input and output control and data flows, bookkeeping, monitoring, and data storage are all managed at the event level in an implementation capable of supporting ATLAS-scale distributed processing throughputs (about 4M CPU-hours/day). Input data flows utilize remote data repositories with no data locality or pre-staging requirements, minimizing the use of costly storage in favor of strongly leveraging powerful networks. Object stores provide a highly scalable means of remotely storing the quasi-continuous, fine grained outputs that give ES based applications a very light data footprint on a processing resource, and ensure negligible losses should the resource suddenly vanish. We will describe the motivations for the ES system, its unique features and capabilities, its architecture and the highly scalable tools and technologies employed in its implementation, and its applications in ATLAS processing on HPCs, commercial cloud resources, volunteer computing, and grid resources. Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob
Electricity generated by Hydropower Plants (HPPs) contributes a considerable portion of bulk electricity generation and delivers it with a low carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which includes solar and wind energy. The increasing penetration of wind and solar penetration leads to a lowered inertia in the grid and hence poses stability challenges. In recent years, breakthrough in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments in power grids. Multiple ROR HPPs if integrated with scalable, multi time-step energy storage so that the total output canmore » be controlled. Although, the size of a single energy storage is far smaller than that of a typical reservoir, cohesively managing multiple sets of energy storage distributed in different locations is proposed. The ratings of storages and multiple ROR HPPs approximately equals the rating of a large, conventional HPP. The challenges associated with the system architecture and operation are described. Energy storage technologies such as supercapacitors, flywheels, batteries etc. can function as a dispatchable synthetic reservoir with a scalable size of energy storage will be integrated. Supercapacitors, flywheels, and battery are chosen to provide fast, medium, and slow responses to support grid requirements. Various dynamic and transient power grid conditions are simulated and performances of integrated ROR HPPs with energy storage is provided. The end goal of this research is to investigate the inertial equivalence of a large, conventional HPP with a unique set of multiple ROR HPPs and optimally rated energy storage systems.« less
Novel optimization technique of isolated microgrid with hydrogen energy storage.
Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.
Novel optimization technique of isolated microgrid with hydrogen energy storage
Abdelghany, Hazem; Eteiba, Mahmoud
2018-01-01
This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433
Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, Shahabaddine; Webb, Erin; Turhollow Jr, Anthony F
2008-06-01
The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating themore » moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.« less
Dynamic provisioning of local and remote compute resources with OpenStack
NASA Astrophysics Data System (ADS)
Giffels, M.; Hauth, T.; Polgart, F.; Quast, G.
2015-12-01
Modern high-energy physics experiments rely on the extensive usage of computing resources, both for the reconstruction of measured events as well as for Monte-Carlo simulation. The Institut fur Experimentelle Kernphysik (EKP) at KIT is participating in both the CMS and Belle experiments with computing and storage resources. In the upcoming years, these requirements are expected to increase due to growing amount of recorded data and the rise in complexity of the simulated events. It is therefore essential to increase the available computing capabilities by tapping into all resource pools. At the EKP institute, powerful desktop machines are available to users. Due to the multi-core nature of modern CPUs, vast amounts of CPU time are not utilized by common desktop usage patterns. Other important providers of compute capabilities are classical HPC data centers at universities or national research centers. Due to the shared nature of these installations, the standardized software stack required by HEP applications cannot be installed. A viable way to overcome this constraint and offer a standardized software environment in a transparent manner is the usage of virtualization technologies. The OpenStack project has become a widely adopted solution to virtualize hardware and offer additional services like storage and virtual machine management. This contribution will report on the incorporation of the institute's desktop machines into a private OpenStack Cloud. The additional compute resources provisioned via the virtual machines have been used for Monte-Carlo simulation and data analysis. Furthermore, a concept to integrate shared, remote HPC centers into regular HEP job workflows will be presented. In this approach, local and remote resources are merged to form a uniform, virtual compute cluster with a single point-of-entry for the user. Evaluations of the performance and stability of this setup and operational experiences will be discussed.
Towards more stable operation of the Tokyo Tier2 center
NASA Astrophysics Data System (ADS)
Nakamura, T.; Mashimo, T.; Matsui, N.; Sakamoto, H.; Ueda, I.
2014-06-01
The Tokyo Tier2 center, which is located at the International Center for Elementary Particle Physics (ICEPP) in the University of Tokyo, was established as a regional analysis center in Japan for the ATLAS experiment. The official operation with WLCG was started in 2007 after the several years development since 2002. In December 2012, we have replaced almost all hardware as the third system upgrade to deal with analysis for further growing data of the ATLAS experiment. The number of CPU cores are increased by factor of two (9984 cores in total), and the performance of individual CPU core is improved by 20% according to the HEPSPEC06 benchmark test at 32bit compile mode. The score is estimated as 18.03 (SL6) per core by using Intel Xeon E5-2680 2.70 GHz. Since all worker nodes are made by 16 CPU cores configuration, we deployed 624 blade servers in total. They are connected to 6.7 PB of disk storage system with non-blocking 10 Gbps internal network backbone by using two center network switches (NetIron MLXe-32). The disk storage is made by 102 of RAID6 disk arrays (Infortrend DS S24F-G2840-4C16DO0) and served by equivalent number of 1U file servers with 8G-FC connection to maximize the file transfer throughput per storage capacity. As of February 2013, 2560 CPU cores and 2.00 PB of disk storage have already been deployed for WLCG. Currently, the remaining non-grid resources for both CPUs and disk storage are used as dedicated resources for the data analysis by the ATLAS Japan collaborators. Since all hardware in the non-grid resources are made by same architecture with Tier2 resource, they will be able to be migrated as the Tier2 extra resource on demand of the ATLAS experiment in the future. In addition to the upgrade of computing resources, we expect the improvement of connectivity on the wide area network. Thanks to the Japanese NREN (NII), another 10 Gbps trans-Pacific line from Japan to Washington will be available additionally with existing two 10 Gbps lines (Tokyo to New York and Tokyo to Los Angeles). The new line will be connected to LHCONE for the more improvement of the connectivity. In this circumstance, we are working for the further stable operation. For instance, we have newly introduced GPFS (IBM) for the non-grid disk storage, while Disk Pool Manager (DPM) are continued to be used as Tier2 disk storage from the previous system. Since the number of files stored in a DPM pool will be increased with increasing the total amount of data, the development of stable database configuration is one of the crucial issues as well as scalability. We have started some studies on the performance of asynchronous database replication so that we can take daily full backup. In this report, we would like to introduce several improvements in terms of the performances and stability of our new system and possibility of the further improvement of local I/O performance in the multi-core worker node. We also present the status of the wide area network connectivity from Japan to US and/or EU with LHCONE.
sbtools: A package connecting R to cloud-based data for collaborative online research
Winslow, Luke; Chamberlain, Scott; Appling, Alison P.; Read, Jordan S.
2016-01-01
The adoption of high-quality tools for collaboration and reproducible research such as R and Github is becoming more common in many research fields. While Github and other version management systems are excellent resources, they were originally designed to handle code and scale poorly to large text-based or binary datasets. A number of scientific data repositories are coming online and are often focused on dataset archival and publication. To handle collaborative workflows using large scientific datasets, there is increasing need to connect cloud-based online data storage to R. In this article, we describe how the new R package sbtools enables direct access to the advanced online data functionality provided by ScienceBase, the U.S. Geological Survey’s online scientific data storage platform.
Systems aspects of COBE science data compression
NASA Technical Reports Server (NTRS)
Freedman, I.; Boggess, E.; Seiler, E.
1993-01-01
A general approach to compression of diverse data from large scientific projects has been developed and this paper addresses the appropriate system and scientific constraints together with the algorithm development and test strategy. This framework has been implemented for the COsmic Background Explorer spacecraft (COBE) by retrofitting the existing VAS-based data management system with high-performance compression software permitting random access to the data. Algorithms which incorporate scientific knowledge and consume relatively few system resources are preferred over ad hoc methods. COBE exceeded its planned storage by a large and growing factor and the retrieval of data significantly affects the processing, delaying the availability of data for scientific usage and software test. Embedded compression software is planned to make the project tractable by reducing the data storage volume to an acceptable level during normal processing.
Merrill, Matthew D.; Drake, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2016-06-02
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.
The worth of land use: a GIS-emergy evaluation of natural and human-made capital.
Mellino, Salvatore; Buonocore, Elvira; Ulgiati, Sergio
2015-02-15
Natural systems make their natural capital and ecosystem services available to human economy. A careful analysis of the interplay between natural and human-made capital is needed to prevent natural capital being overexploited for present economic benefits, affecting lifestyles and wellbeing of future generations. In this study, the emergy synthesis is used to evaluate the natural and the human-made capital of Campania region (southern Italy) by accounting for the environmental support directly and indirectly provided by nature to resource generation. Furthermore, geographic information system (GIS) models are integrated with the emergy accounting procedure to generate maps of the spatial patterns of both natural and human-made capital distribution. Regional storages of natural and human-made capital are identified and evaluated in emergy units (seJ). The human-made capital of the Campania region (6.29E+24seJ) results to be about 11 times higher than the natural capital (5.69E+23seJ) due to the past and present exploitation of the natural resources needed to generate it over time. Moreover, by overlaying the total natural capital map and the total human-made capital map with a map of the protected areas within the region, only the 19% of the regional natural capital appears to be concentrated within protected areas, while most of it (81%) is concentrated outside. These findings suggest that the conservation of natural resources is also necessary outside protected areas by means of suitable policies, directives and investments. The human-made capital is mainly concentrated (88%) inside non-protected areas and interacts with the local natural capital. A management of the interactions between the two categories of wealth is crucial to prevent that the growth of human-made storages degrades the natural ecosystems and the environment. The proposed emergy-GIS framework reveals to be a useful tool for environmental planning and resource management aimed to conserve and protect the regional environmental heritage. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Ahlström, A.; Loisel, J.; Harden, J. W.
2017-12-01
Soils provide numerous and indispensable services to ecological systems and human societies. As human populations and human land use changes, the capacity of soils to maintain these services may also change. To investigate this we provide the first global scale study based on the soil service index (SSI; see presentations by Harden et al. and Loisel et al. in this session for more details). In this index multiple soil services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability. Soil services assessed under the SSI include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The SSI may be applied at any scale. Here we present a first global application of the SSI and provide broad-scale analyses of soil service spatial distributions. We assess how the SSI will change under projected changes in human societies populations and human land use (following representative concentration pathway scenarios). Present and future potential utilization and vulnerability of soil resources are analyzed in the context of human population distributions and its projected changes. The SSI is designed to be broadly useful across scientific, governance and resource management organizations. To exemplify this, the parameterization of this is global soil service estimate is based on only open source input data.
1986-07-01
Gambel’s quail (Callipepla gconbelii), and California quail (C. californica). Muskrats (Ondatra zibethicus) and cottontails (Sylvi- 7agus spp.) eat the...sodbound grass stands that need renovation can benefit from sweetclover seedings. In these areas sweetclover can be used as green manure; a cover crop...prevent inter- ference with carbohydrate storage and rootcrown bud development. Second-year production of sweetclover is closely correlated with the
The Oklahoma Geographic Information Retrieval System
NASA Technical Reports Server (NTRS)
Blanchard, W. A.
1982-01-01
The Oklahoma Geographic Information Retrieval System (OGIRS) is a highly interactive data entry, storage, manipulation, and display software system for use with geographically referenced data. Although originally developed for a project concerned with coal strip mine reclamation, OGIRS is capable of handling any geographically referenced data for a variety of natural resource management applications. A special effort has been made to integrate remotely sensed data into the information system. The timeliness and synoptic coverage of satellite data are particularly useful attributes for inclusion into the geographic information system.
Management of natural resources through automatic cartographic inventory
NASA Technical Reports Server (NTRS)
Rey, P.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Significant results of the ARNICA program from August 1972 - January 1973 have been: (1) establishment of image to object correspondence codes for all types of soil use and forestry in northern Spain; (2) establishment of a transfer procedure between qualitative (remote identification and remote interpretation) and quantitative (numerization, storage, automatic statistical cartography) use of images; (3) organization of microdensitometric data processing and automatic cartography software; and (4) development of a system for measuring reflectance simultaneous with imagery.
Image selection system. [computerized data storage and retrieval system
NASA Technical Reports Server (NTRS)
Knutson, M. A.; Hurd, D.; Hubble, L.; Kroeck, R. M.
1974-01-01
An image selection (ISS) was developed for the NASA-Ames Research Center Earth Resources Aircraft Project. The ISS is an interactive, graphics oriented, computer retrieval system for aerial imagery. An analysis of user coverage requests and retrieval strategies is presented, followed by a complete system description. Data base structure, retrieval processors, command language, interactive display options, file structures, and the system's capability to manage sets of selected imagery are described. A detailed example of an area coverage request is graphically presented.
2005-06-01
virtualisation of distributed computing and data resources such as processing, network bandwidth, and storage capacity, to create a single system...and Simulation (M&S) will be integrated into this heterogeneous SOA. M&S functionality will be available in the form of operational M&S services. One...documents defining net centric warfare, the use of M&S functionality is a common theme. Alberts and Hayes give a good overview on net centric operations
NASA Astrophysics Data System (ADS)
Vilela, Alejandra; Cariaga, Rodrigo; González-Paleo, Luciana; Ravetta, Damián
2008-01-01
A trade-off between reproduction and survival arises because current reproduction diminishes levels of a limiting resource such that less can be placed in storage organs for the survival of an organism during the unfavorable season. Oenothera is a particularly suited genus for studying those kind of trade-offs because it contains species with different life-history strategies (annual, biennial and perennial). Since allocation to leaves is a major factor associated with changes in life-history, here we tested the hypothesis that Oenothera leaf attributes would affect plant reproductive effort and therefore, root reserves. We selected two groups of taxa differing in their leaf area ratio (low- and high-LAR) and we compared their pattern of resource allocation to growth, reproduction and storage. Path analysis confirmed our hypothesis that LAR is the most important variable in explaining variation in allocation to reproduction or storage. The group with high allocation to leaves assigned resources preferentially to storage while the other group allocated more resources to reproduction, as predicted. A trade-off between reproduction and storage was only confirmed for the high-LAR group. The low-LAR group showed the life-history tactic of annual plants, while the high-LAR group exhibited a strategy generally associated with perenniality.
Optimizing and Quantifying CO 2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosshart, Nicholas W.; Ayash, Scott C.; Azzolina, Nicholas A.
In an effort to reduce carbon dioxide (CO 2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO 2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO 2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO 2 storage efficiency. CO 2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scalemore » CO 2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO 2 storage in these types of systems. CO 2 EOR occupies an important place in the realm of geologic storage of CO 2, as it is likely to be the primary means of geologic CO 2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO 2 storage efficiency factors using a unique industry database of CO 2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66,- and 209-foot) pay zones. The results of this work provide practical information that can be used to quantify CO 2 storage resource estimates in oil reservoirs during CO 2 EOR operations (as opposed to storage following depletion) and the uncertainty associated with those estimates.« less
NASA Astrophysics Data System (ADS)
Lee, S.; Hamlet, A. F.; Burges, S. J.
2008-12-01
Climate change in the Western U.S. will bring systematic hydrologic changes affecting many water resources systems. Successful adaptation to these changes, which will be ongoing through the 21st century, will require the 'rebalancing' of competing system objectives such as water supply, flood control, hydropower production, and environmental services in response to hydrologic (and other) changes. Although fixed operating policies for the operation of reservoirs has been a traditional approach to water management in the 20th century, the rapid pace of projected climate shifts (~0.5 F per decade), and the prohibitive costs of recursive policy intervention to mitigate impacts, suggest that more sophisticated approaches will be needed to cope with climate change on a long term basis. The use of 'dynamic rule curves' is an approach that maintains some of the key characteristics of current water management practice (reservoir rule curves) while avoiding many of the fundamental drawbacks of traditional water resources management strategies in a non-stationary climate. In this approach, water resources systems are optimized for each operational period using ensemble streamflow and/or water demand forecasts. The ensemble of optimized reservoir storage traces are then analyzed to produce a set of unique reservoir rule curves for each operational period reflecting the current state of the system. The potential advantage of this approach is that hydrologic changes associated with climate change (such as systematically warmer temperatures) can be captured explicitly in operational hydrologic forecasts, which would in turn inform the optimized reservoir management solutions, creating water resources systems that are largely 'self tending' as the climate system evolves. Furthermore, as hydrologic forecasting systems improve (e.g. in response to improved ENSO forecasting or other scientific advances), so does the performance of reservoir operations. An example of the approach is given for flood control in the Columbia River basin.
Ecologising Societal Metabolism and Recycling of Phosphorus At Household and Neighbourhood Level
NASA Astrophysics Data System (ADS)
Gumbo, B.; Savenije, H. H. G.
The pressures of humanity on a fragile water resource base, and the corresponding need for environmental and freshwater protection requires that human excreta and other societal wastes (solid and liquid) be recycled and used as a resource. The Bel- lagio principles underpin the basis for this new approach to environmental sanitation. There are two main concepts emanating from the Bellagio principles, which make the basis of this paper. Firstly, the Household Centred Environmental Sanitation (HCES) puts the household at the focal point of environmental sanitation planning and; sec- ondly, the Circular System of Resource Management (CSRM) that emphasises conser- vation, local recycling and reuse of resources. Recycling of Phosphorus (P) in urban or peri-urban ecological agriculture (without synthetic fertilisers) is used in this paper to assess the feasibility of these concepts. An inventory of annual P-fluxes based on characterisation of input goods, processes, transformation, output fluxes and storage was conducted for a high-density suburb in Harare, Zimbabwe where agriculture is already a major activity. Using systems thinking approach and material flow account- ing two compartments or subsystems are defined to enable accounting and analysis of P-bearing materials. The "household" (consumption/use and excretion/waste) and "agriculture" (soil-plant interaction). With a population of about 100 000 inhabitants, P inflows amount to about 26 600 kg/a and 1 900 kg/a as food/beverages and deter- gents respectively within the "household" subsystem. Storage is taken as negligible, whilst 85
NASA Astrophysics Data System (ADS)
Raff, D. A.; Morgan, A.; Brekke, L. D.
2014-12-01
The Bureau of Reclamation is the nation's largest wholesale water supplier and the second largest producer of hydropower. Reclamation operates 337 reservoirs with a total storage capacity of 245 million acre-feet and operates 53 hydroelectric powerplants that annually produce, on average for the past 10 years, 40 billion kilowatt-hours. Reclamation is adapting to the impacts and future challenges posed by the changing climate through the development of new climate services as well as through cooperation with Federal, state, local, tribal, academic, and non-governmental partners in the use of climate and water resource information that may be available. Reclamation is utilizing this information within a strategy that has four goals: 1) Increase Water Management Flexibility, 2) Enhance Climate Adaptation Planning, 3) Improve Infrastructure Resiliency, and 4) Expand Information Sharing. Within this presentation we will focus on the utilization of climate services within each of these key goals of Reclamation's strategy. This includes the utilization of climate information to track and potentially improve reservoir management to increase water management flexibility, the development of climate informed hydrology that supports climate adaptation planning, use of climate information to inform decisions of infrastructure resilience, and climate services use for jointly informed water management decisions through education and web based services.
Offshore Storage Resource Assessment - Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Bill; Ozgen, Chet
The DOE developed volumetric equation for estimating Prospective Resources (CO 2 storage) in oil and gas reservoirs was utilized on each depleted field in the Federal GOM. This required assessment of the in-situ hydrocarbon fluid volumes for the fields under evaluation in order to apply the DOE equation. This project utilized public data from the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Reserves database and from a well reputed, large database (250,000+ wells) of GOM well and production data marketed by IHS, Inc. IHS interpreted structure map files were also accessed for a limited number ofmore » fields. The databases were used along with geological and petrophysical software to identify depleted oil and gas fields in the Federal GOM region. BOEM arranged for access by the project team to proprietary reservoir level maps under an NDA. Review of the BOEM’s Reserves database as of December 31, 2013 indicated that 675 fields in the region were depleted. NITEC identified and rank these 675 fields containing 3,514 individual reservoirs based on BOEM’s estimated OOIP or OGIP values available in the Reserves database. The estimated BOEM OOIP or OGIP values for five fields were validated by an independent evaluation using available petrophysical, geologic and engineering data in the databases. Once this validation was successfully completed, the BOEM ranked list was used to calculate the estimated CO 2 storage volume for each field/reservoir using the DOE CO 2 Resource Estimate Equation. This calculation assumed a range for the CO 2 efficiency factor in the equation, as it was not known at that point in time. NITEC then utilize reservoir simulation to further enhance and refine the DOE equation estimated range of CO 2 storage volumes. NITEC used a purpose built, publically available, 4-component, compositional reservoir simulator developed under funding from DOE (DE-FE0006015) to assess CO 2-EOR and CO 2 storage in 73 fields/461 reservoirs. This simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO 2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO 2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO 2 injection period. This modeling of the CO 2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO 2 storage capacity of 4,748 MM tons. The CO 2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO 2 storage volume with the addition of CO 2-EOR (Enhanced Oil Recovery) production. Application of CO 2-EOR to oil reservoirs resulted in higher volumes of CO 2 storage.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...
Federated data storage and management infrastructure
NASA Astrophysics Data System (ADS)
Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.
2016-10-01
The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.
Biobanking sustainability--experiences of the Australian Breast Cancer Tissue Bank (ABCTB).
Carpenter, Jane E; Clarke, Christine L
2014-12-01
Sustainability of biorepositories is a key issue globally. This article is a description of the different strategies and mechanisms used by the Australian Breast Cancer Tissue Bank (ABCTB) in developing and operating the resource since its inception in 2005. ABCTB operates according to a hub and spoke model, with a central management hub that is responsible for overall management of the resource including financial, ethical, and legal processes, researcher applications for material, clinical follow-up, information/database activities, and security. A centralized processing laboratory also operates from the hub site where DNA and RNA extractions are performed, digital imaging of stained tumor sections occurs, and specimens are assembled for dispatch for research projects. ABCTB collection sites where donors are identified, consent obtained, and specimens collected and processed for initial storage are located across Australia. Each of the activities of the resource requires financial support and different sources of revenue, some of which are allocated to a specific function of the ABCTB. Different models are in use at different collection centers where local variations may exist and local financial support may sometimes be obtained. There is also significant in-kind support by clinics and diagnostic and research facilities that house the various activities of the resource. However, long-term financial commitment to ensure the survival of the resource is not in place, and forward planning of operations remains challenging under these circumstances.
NASA Astrophysics Data System (ADS)
Luce, C.
2014-12-01
Climate and hydrology models are regularly applied to assess potential changes in water resources and to inform adaptation decisions. An increasingly common question is, "What if we are wrong?" While climate models show substantial agreement on metrics such as pressure, temperature, and wind, they are notoriously uncertain in projecting precipitation change. The response to that uncertainty varies depending on the water management context and the nature of the uncertainty. In the southwestern U.S., large storage reservoirs (relative to annual supply) and general expectations of decreasing precipitation have guided extensive discussion on water management towards uncertainties in annual-scale water balances, precipitation, and evapotranspiration. In contrast, smaller reservoirs and little expectation for change in annual precipitation have focused discussions of Pacific Northwest water management toward shifts in runoff seasonality. The relative certainty of temperature impacts on snowpacks compared to the substantial uncertainty in precipitation has yielded a consistent narrative on earlier snowmelt. This narrative has been reinforced by a perception of essentially the same behavior in the historical record. This perception has led to calls in the political arena for more reservoir storage to replace snowpack storage for water supplies. Recent findings on differences in trends in precipitation at high versus low elevations, however, has recalled the uncertainty in precipitation futures and generated questions about alternative water management strategies. An important question with respect to snowpacks is whether the precipitation changes matter in the context of such substantial projections for temperature change. Here we apply an empirical snowpack model to analyze spatial differences in the uncertainty of snowpack responses to temperature and precipitation forcing across the Pacific Northwest U.S. The analysis reveals a strong geographic gradient in uncertainty of snowpack response to future climate, from the coastal regions, where precipitation uncertainty is relatively inconsequential for snowpack changes, to interior mountains where minor uncertainties in precipitation are on par with expected changes relative to temperature.
Controlling changes - lessons learned from waste management facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.; Koplow, A.S.; Stoll, F.E.
This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less
A forecast of space technology, 1980 - 2000
NASA Technical Reports Server (NTRS)
1976-01-01
The future of space technology in the United States during the period 1980-2000 was presented, in relation to its overall role within the space program. Conclusions were drawn and certain critical areas were identified. Three different methods to support this work were discussed: (1) by industry, largely without NASA or other government support, (2) partially by industry, but requiring a fraction of NASA or similar government support, (3) currently unique to space requirements and therefore relying almost totally on NASA support. The proposed work was divided into the following areas: (1) management of information (acquisition, transfer, processing, storing) (2) management of energy (earth-to-orbit operations, space power and propulsion), (3) management of matter (animate, inanimate, transfer, storage), (4) basic scientific resources for technological advancement (cryogenics, superconductivity, microstructures, coherent radiation and integrated optics technology).
Effect of aquifer storage and recovery (ASR) on recovered stormwater quality variability.
Page, D W; Peeters, L; Vanderzalm, J; Barry, K; Gonzalez, D
2017-06-15
Aquifer Storage and Recovery (ASR) is increasingly being considered as a means of reusing urban stormwater to supplement available urban water resources. Storage of stormwater in an aquifer has been shown to affect water quality but it has also been claimed that storage will also decrease the stormwater quality variability making for improved predictability and management. This study is the first to document the changes in stormwater quality variability as a result of subsurface storage at four full scale ASR sites using advanced statistical techniques. New methods to examine water quality are required as data is often highly left censored and so traditional measures of variability such as the coefficient of variation are inappropriate. It was observed that for some water quality parameters (most notably E. coli) there was a marked improvement of water quality and a significant decrease in variability at all sites. This means that aquifer storage prior to engineered treatment systems may be advantageous in terms of system design to avoid over engineering. For other parameters such as metal(loids)s and nutrients the trend was less clear due to the numerous processes occurring during storage leading to an increase in variability, especially for geogenic metals and metalloids such as iron and arsenic. Depending upon the specific water quality parameters and end use, use of ASR may not have a dampening effect on stormwater quality variability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Economic performance of water storage capacity expansion for food security
NASA Astrophysics Data System (ADS)
Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.
2013-03-01
SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.
Submittal for 2003 Project of the Year K Basins Fuel Transfer System Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
GERBER, M.S.
2003-01-29
Fluor Hanford, Inc. is pleased to submit the K Basins Fuel Transfer System (FTS) for consideration by the Project Management Institute as Project of the Year for 2003. The FTS involved installing a unique, unproven system in an inhospitable and deteriorating radiological and hazardous environment, under very stringent requirements and within an extremely condensed schedule, just 19 months, from authorization to full operations. The FTS, therefore, is an excellent example of effective project management, and the dynamic involvement of an integrated team representing a broad spectrum of personnel, disciplines, and services. The FTS is an integral and critical part ofmore » a larger project at Hanford -the Spent Nuclear Fuel Project (SNF). The mission of the SNF Project is to relocate used, or spent, nuclear fuel to safe interim storage, permanently dispose of radioactive debris in the K-Basins, and deactivate all related facilities and prepare them for demolition. Today, the FTS is being used to remove highly radioactive nuclear fuel from an aging, and potentially unstable storage in underground pools of water--the K-Basins--and safely transport it to a processing area to be cleaned, dried and sent to safe storage. The role the FTS plays in successfully completing the mission of the SNF Project is concrete evidence of the intrinsic value of project management and a testimonial to the innovation, ingenuity, and teamwork of many--from workers to management and subcontractors, and regulators to stakeholders. It's a true success story and one that will have a happy ending, safely eliminating the risk of potentially contaminating one of Washington state's most valuable natural resources, the Columbia River. This nomination is dedicated to that Project Team.« less
Reservoir operations under climate change: Storage capacity options to mitigate risk
NASA Astrophysics Data System (ADS)
Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.
2017-12-01
Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.
Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.
2014-01-01
This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.
30 CFR 57.4431 - Surface storage restrictions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface storage restrictions. 57.4431 Section 57.4431 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...
18 CFR 284.501 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Applicability. 284.501 Section 284.501 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... Applications for Market-Based Rates for Storage § 284.501 Applicability. Any pipeline or storage service...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, Thoman
The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), batterymore » storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.« less
AdiosStMan: Parallelizing Casacore Table Data System using Adaptive IO System
NASA Astrophysics Data System (ADS)
Wang, R.; Harris, C.; Wicenec, A.
2016-07-01
In this paper, we investigate the Casacore Table Data System (CTDS) used in the casacore and CASA libraries, and methods to parallelize it. CTDS provides a storage manager plugin mechanism for third-party developers to design and implement their own CTDS storage managers. Having this in mind, we looked into various storage backend techniques that can possibly enable parallel I/O for CTDS by implementing new storage managers. After carrying on benchmarks showing the excellent parallel I/O throughput of the Adaptive IO System (ADIOS), we implemented an ADIOS based parallel CTDS storage manager. We then applied the CASA MSTransform frequency split task to verify the ADIOS Storage Manager. We also ran a series of performance tests to examine the I/O throughput in a massively parallel scenario.
A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage
Brennan, Sean T.; Burruss, Robert A.; Merrill, Matthew D.; Freeman, P.A.; Ruppert, Leslie F.
2010-01-01
In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology to estimate storage potential that could be applied uniformly to geologic formations across the United States. After its release, the methodology was to receive public comment and external expert review. An initial methodology was developed and published in March 2009 (Burruss and others, 2009), and public comments were received. The report was then sent to a panel of experts for external review. The external review report was received by the USGS in December 2009. This report is in response to those external comments and reviews and describes how the previous assessment methodology (Burruss and others, 2009) was revised. The resource that is assessed is the technically accessible storage resource, which is defined as the mass of CO2 that can be stored in the pore volume of a storage formation. The methodology that is presented in this report is intended to be used for assessments at scales ranging from regional to subbasinal in which storage assessment units are defined on the basis of common geologic and hydrologic characteristics. The methodology does not apply to site-specific evaluation of storage resources or capacity.
30 CFR 56.4430 - Storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...
30 CFR 56.4430 - Storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...
30 CFR 56.4430 - Storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...
30 CFR 56.4430 - Storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...
A Game Changer: Electrifying Remote Communities by Using Isolated Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaonan; Wang, Jianhui
Microgrids, as self-contained entities, are of increasing interest in modern electric grids. Microgrids provide a sustainable solution to aggregate distributed energy resources (DERs) [e.g., photovoltaics (PVs), wind turbines], energy storage, and loads in a localized manner, especially in distribution systems. As a controllable unit, a microgrid can manage and balance the source and load power inside it to ensure stable and reliable operation. Moreover, through coordination with upper-level control systems, it can be dispatched and respond to the control commands issued by the central controller in the distribution system-in other words, a system that is effectively a distribution management systemmore » (DMS).« less
NASA Technical Reports Server (NTRS)
Estes, J. E.; Eisgruber, L.
1981-01-01
In the second half of the 1980's NASA can expect to face difficult choices among alternative fundamental and applied research, and development projects that could potentially lead to improvements in the information systems used to manage renewable resources. The working group on information utilization and evaluation believes that effective choices cannot be made without a better understanding of the current and prospective problems and opportunities involved in the application of remote sensing to improve renewable research information systems. A renewable resources information system is defined in a broad context to include a flow of data/information from: acquisition through processing, storage, integration with other data, analysis, graphic presentation, decision making, and assessment of the affects of those decisions.
NASA Astrophysics Data System (ADS)
Wiltshire, N. G.
2013-07-01
SAHRA has developed versions 1 and 2 of the South African Heritage Resources Information System (SAHRIS - http://www.sahra.org.za) in 2012 and 2013. The system has been rolled out since May 2012 to the national and provincial heritage authorities in South Africa in line with the National Heritage Resources Act (Act 25 of 1999). SAHRIS was developed using Drupal and Geoserver, both of which are free open source software packages. The three core functions of SAHRIS include: an online application system for developments that is integrated with a commenting module for public participation; a national sites archive of heritage sites; and a comprehensive collections management system for objects. With Geoserver, Openlayers and GMAP, users are provided with an online GIS platform that is integrated with most of the content types on SAHRIS. More than 21000 sites have already been migrated into SAHRIS along with over 4300 objects. The media and reports archive has already grown to 500 gigabytes, data storage is offered free of charge and so far 96 Terabytes of replicated storage have been installed. The distribution and dissemination of this content is facilitated by the adoption of The Creative Commons South Africa license. Lessons learnt from previous attempts to develop SAHRIS are covered briefly in light of the opportunities that have been opened up by the relatively recent maturation of FOSS content management systems. The current uptake of SAHRIS and the solutions to the challenges faced thus far are discussed before concluding with the implications for E-governance in South Africa.
NASA Astrophysics Data System (ADS)
Tangdamrongsub, Natthachet; Steele-Dunne, Susan C.; Gunter, Brian C.; Ditmar, Pavel G.; Sutanudjaja, Edwin H.; Sun, Yu; Xia, Ting; Wang, Zhongjing
2017-04-01
An accurate estimation of water resources dynamics is crucial for proper management of both agriculture and the local ecology, particularly in semi-arid regions. Imperfections in model physics, uncertainties in model land parameters and meteorological data, as well as the human impact on land changes often limit the accuracy of hydrological models in estimating water storages. To mitigate this problem, this study investigated the assimilation of terrestrial water storage variation (TWSV) estimates derived from the Gravity Recovery And Climate Experiment (GRACE) data using an ensemble Kalman filter (EnKF) approach. The region considered was the Hexi Corridor in northern China. The hydrological model used for the analysis was PCR-GLOBWB, driven by satellite-based forcing data from April 2002 to December 2010. The impact of the GRACE data assimilation (DA) scheme was evaluated in terms of the TWSV, as well as the variation of individual hydrological storage estimates. The capability of GRACE DA to adjust the storage level was apparent not only for the entire TWSV but also for the groundwater component. In this study, spatially correlated errors in GRACE data were taken into account, utilizing the full error variance-covariance matrices provided as a part of the GRACE data product. The benefits of this approach were demonstrated by comparing the EnKF results obtained with and without taking into account error correlations. The results were validated against in situ groundwater data from five well sites. On average, the experiments showed that GRACE DA improved the accuracy of groundwater storage estimates by as much as 25 %. The inclusion of error correlations provided an equal or greater improvement in the estimates. In contrast, a validation against in situ streamflow data from two river gauges showed no significant benefits of GRACE DA. This is likely due to the limited spatial and temporal resolution of GRACE observations. Finally, results of the GRACE DA study were used to assess the status of water resources over the Hexi Corridor over the considered 9-year time interval. Areally averaged values revealed that TWS, soil moisture, and groundwater storages over the region decreased with an average rate of approximately 0.2, 0.1, and 0.1 cm yr-1 in terms of equivalent water heights, respectively. A particularly rapid decline in TWS (approximately -0.4 cm yr-1) was seen over the Shiyang River basin located in the southeastern part of Hexi Corridor. The reduction mostly occurred in the groundwater layer. An investigation of the relationship between water resources and agricultural activities suggested that groundwater consumption required to maintain crop yield in the growing season for this specific basin was likely the cause of the groundwater depletion.
Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud.
Zia Ullah, Qazi; Hassan, Shahzad; Khan, Gul Muhammad
2017-01-01
Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.
Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud
Hassan, Shahzad; Khan, Gul Muhammad
2017-01-01
Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers. PMID:28811819
NASA Astrophysics Data System (ADS)
Eriyagama, Nishadi; Smakhtin, Vladimir; Udamulla, Lakshika
2018-06-01
Storage of surface water is widely regarded as a form of insurance against rainfall variability. However, creation of surface storage often endanger the functions of natural ecosystems, and, in turn, ecosystem services that benefit humans. The issues of optimal size, placement and the number of reservoirs in a river basin - which maximizes sustainable benefits from storage - remain subjects for debate. This study examines the above issues through the analysis of a range of reservoir configurations in the Malwatu Oya river basin in the dry zone of Sri Lanka. The study produced multiple surface storage development pathways for the basin under different scenarios of environmental flow (EF) releases and reservoir network configurations. The EF scenarios ranged from zero
to very healthy
releases. It is shown that if the middle ground
between the two extreme EF scenarios is considered, the theoretical maximum safe
yield from surface storage is about 65-70 % of the mean annual runoff (MAR) of the basin. It is also identified that although distribution of reservoirs in the river network reduces the cumulative yield from the basin, this cumulative yield is maximized if the ratio among the storage capacities placed in each sub drainage basin is equivalent to the ratio among their MAR. The study suggests a framework to identify drainage regions having higher surface storage potential, to plan for the right distribution of storage capacity within a river basin, as well as to plan for EF allocations.
Biewick, Laura; Urbanowski, Shayne R.; Cain, Sheila; Neasloney, Larry
1998-01-01
As the Nation's energy resources continue to be examined for development, it is critical that a digital database exist that contains location data for all Federal land and mineral resources. The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), is collecting these ownership files and compiling them in Environmental Systems Research Institute, Inc. (ESRI) ARC/INFO coverages, to form a standardized data library. A coverage is a digital version of a map in the form of vector data storage. These coverages are combined with models of coal deposits from the USGS National Coal Resource Assessment project, a five-year effort to identify and characterize the coal beds and coal zones that will provide fuel for the Nation’s energy needs during the first quarter of the twenty-first century. Geographic and geologic data layers are integrated in a Geographic Information System (GIS) to answer complex geo-spatial questions concerning coal resource occurrence.
Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations
Jones, Kevin B.; Blondes, Madalyn S.
2015-01-01
The storage capacity for all unconventional reservoirs may be modeled using a volumetric equation starting with the extent of the rock unit and adjusted using these key factors and reaction terms. The ideas that were developed during this workshop can be used by USGS scientists to develop a methodology to assess the CO2 storage resource in unconventional reservoirs. This methodology could then be released for public comment and peer review. After completing this development process, the USGS could then use the methodology to assess the CO2 storage resource in unconventional reservoirs.
NASA Astrophysics Data System (ADS)
Benjamin, Fores; Cédric, Champollion; Nicolas, Lemoigne; Jean, Chéry
2014-05-01
Quantitative knowledge of the groundwater storage and transfer in karstic area is crucial for water resources management and protection. As the karst hydro-geological properties are highly heterogeneous and scale dependent, geophysical observations such as time dependant gravity could be helpful to fill the gap between local (based on boreholes, moisture sensors, …) and global (based on chemistry, river flow, …) studies. Since more than 2 years, the iGrav #002 supraconducting gravimeter is continuously operating in the French GEK observatory(Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) in the Larzac karstic plateau (south of France). The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. First, the evaluation of the iGrav data (calibration, steps and drift) will be presented. Then a careful analysis of the global, topographic and building effects will be done to evaluate the local water storage only. The gravity data will be integrated with the water level data in nearby boreholes and petrophysical data from core samples. Finally, simple hydrological models will be presented to help the interpretation on the karst groundwater storage and transfer and to merge the whole dataset.
Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-01-01
Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313
Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-06-01
Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.
30 CFR 57.4401 - Storage tank foundations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 57.4401 Section 57.4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...
30 CFR 56.4401 - Storage tank foundations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 56.4401 Section 56.4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...
Land Use, Climate, and Water Resources-Global Stages of Interaction.
Kaushal, Sujay S; Gold, Arthur J; Mayer, Paul M
2017-10-24
Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization). During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs). During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability). During the final stage, management and restoration strategies attempt to regain lost ecosystem structure, function, and services but need to adapt to climate change. By anticipating the increasing interaction between land use and climate change, intervention points can be identified, and management strategies can be adjusted to improve outcomes for realistic expectations. Overall, global water security cannot be adequately restored without considering an increasing interaction between land use and climate change across progressive stages and our ever-increasing human domination of the water cycle from degradation to ecosystem restoration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
CMS distributed data analysis with CRAB3
Mascheroni, M.; Balcas, J.; Belforte, S.; ...
2015-12-23
The CMS Remote Analysis Builder (CRAB) is a distributed workflow management tool which facilitates analysis tasks by isolating users from the technical details of the Grid infrastructure. Throughout LHC Run 1, CRAB has been successfully employed by an average of 350 distinct users each week executing about 200,000 jobs per day.CRAB has been significantly upgraded in order to face the new challenges posed by LHC Run 2. Components of the new system include 1) a lightweight client, 2) a central primary server which communicates with the clients through a REST interface, 3) secondary servers which manage user analysis tasks andmore » submit jobs to the CMS resource provisioning system, and 4) a central service to asynchronously move user data from temporary storage in the execution site to the desired storage location. Furthermore, the new system improves the robustness, scalability and sustainability of the service.Here we provide an overview of the new system, operation, and user support, report on its current status, and identify lessons learned from the commissioning phase and production roll-out.« less
Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun
2016-01-01
In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550
Petelet-Giraud, Emmanuelle; Cary, Lise; Cary, Paul; Bertrand, Guillaume; Giglio-Jacquemot, Armelle; Hirata, Ricardo; Aquilina, Luc; Alves, Lincoln Muniz; Martins, Veridiana; Melo, Ana Maria; Montenegro, Suzana; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel
2018-03-15
Coastal water resources are a worldwide key socio-environmental issue considering the increasing concentration of population in these areas. Here, we propose an integrative transdisciplinary approach of water resource, water management and water access in Recife (NE Brazil). The present-day water situation is conceptualized as an imbricated multi-layered system: a multi-layered water resource, managed by a multi-layered governance system and used by a multi-layered social population. This allows identifying processes of quantitative, qualitative, and sanitary conflicts between governance and population strategies regarding water supply, as well as the institutional and individual denials of these conflicts. Based on this model, we anticipate future water-related problematic fates. Concerning the water resource system, the rapid groundwater level decrease due to unsustainable water predatory strategies, and the very low recharge rate have drastically modified the aquifer system functioning, inducing hydraulic connection between shallow groundwater (contaminated and locally salty) and deep ones (mostly fresh, with local inherited salinity), threatening the deep strategic water resource. Concerning the water governance system, the investments to increase the capacity storage of surface water, the water regulation agencies and the public/private partnership should shortly improve the water supply and wastewater issue. Nevertheless, the water situation will remain highly fragile due to the expected water demand increase, the precipitation decrease and the sea-level increase. Concerning the water access system, the population variably perceives these current and further effects and the possible mitigation policies, and develops alternative individual strategies. Authorities, policymakers and water managers will have to implement a well-balanced water governance, taking into account the specificities of the PPP, public and private groundwater users, and with a strong political willingness for a sustainable water management to ensure water supply for all the population. In other words, an anticipatory and integrated vision is necessary to reduce the discrepancies in this complex system. Copyright © 2017 Elsevier B.V. All rights reserved.
WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K; Kagadis, G; Xing, L
As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set againstmore » new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.« less
Effects of telework and the virtual enterprise on the organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.A.
1996-12-31
This paper provides information on the growing trend towards telework and using {open_quotes}virtual employees{close_quotes} as a fundamental component of the human resource requirements for the conduct of business. As the organization moves from a traditional approach of fixed plant and permanent employees toward a more dynamic model of motile office arrangements and virtual workers, new challenges arise for workers, supervisors, and managers. These challenges pertain to both the individual and the organization and are rooted in both technology and human behavior. Notwithstanding the challenges, the opportunities created for increased productivity and cost-effective operations are propelling organizations globally to adopt themore » virtual enterprise model, to a greater or lesser extent. Management hierarchy is giving way to autonomous teams. Middle management is being replaced by better organizational communication systems, better information storage and retrieval systems, and a newly developing classification of software called groupware. In the midst of these changes, the business process of identifying and acquiring the services of the virtual team member seems to lie at an intersection where Human Resources, Information Systems, Contracts/Subcontracts, and the functional department requiring the services intersect. Human Resources departments are slowly coming to grips with the virtual worker model but are largely uncomfortable in the role. Information Systems departments can implement networks; but, dynamic links outside the traditional organization bring up a myriad of questions about compatibility and system security. The champion of the virtual worker is the Functional Department. This might be engineering, software development, the design department, the financial analysis group, or whichever department in the organization is faced with the responsibility of creating knowledge work product and has resource constraints and upper management support.« less
Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets.
Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L
2014-01-01
As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Waste Processing Research and Technology Development at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Fisher, John; Kliss, Mark
2004-01-01
The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...
Shared Storage Usage Policy | High-Performance Computing | NREL
Shared Storage Usage Policy Shared Storage Usage Policy To use NREL's high-performance computing (HPC) systems, you must abide by the Shared Storage Usage Policy. /projects NREL HPC allocations include storage space in the /projects filesystem. However, /projects is a shared resource and project
Lie construction affects information storage under high memory load condition.
Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan
2017-01-01
Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.
Lie construction affects information storage under high memory load condition
Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan
2017-01-01
Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction. PMID:28727794
NASA Astrophysics Data System (ADS)
Depernet, Daniel; Ba, Oumar; Berthon, Alain
2012-12-01
This paper presents a contribution to implementation of hybrid power plants in rural areas without electricity in Senegal. Wind and photovoltaic generators coupling is used to benefit from renewable energy resources in this country. Lead acid storage batteries are coupled with the generators to ensure smoothness of the electricity generation. This work is focused in particular on the development of a low cost online impedance spectroscopy method to address the problem of limited lifetime of batteries and the difficulties of their maintenance in isolated areas. Control of static converter associated with the battery is adapted to integrate the functionality of characterization of batteries by impedance spectroscopy. An experimental platform developed in the laboratory has validated the method for online measurement of battery impedance spectrum and to initiate a phase of data monitoring.
Impact of surface water withdrawals on water storage variations under a changing climate
NASA Astrophysics Data System (ADS)
Ashraf, B.; AghaKouchak, A.; Mousavi Baygi, M.; Alizadeh, A.; Moftakhari, H.; Miao, C.; Arab, D. R.; Anjileli, H.
2016-12-01
Quantitative evaluation of water storage variations in large river basins is an important element of water management, especially in a climate change. In addition, human water use has developed into another strong driver of water storage changes especially in densely populated semiarid and arid areas. In this study, we estimate the normalized human outflow of the thirty main basins in Iran during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century in four major basins (Urmia, Karkheh, Karun and Jarrahi) located in semi-arid areas of Iran. These basins are selected because they experienced medium to high human-induced water demand in last decades. We use bias-corrected historical simulations and future projections from 26 General Circulation Models (GCMs) and three climate change scenarios RCP2.6, RCP4.5, RCP8.5). The results show that humans have strongly impacted the water balances of most basins in Iran, dominating potential climate change impacts in the historical period. In fact, the main reason for water scarcity in these regions appears to be due to the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades. Furthermore, by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the need to improve our understanding of the hydrologic responses to anthropogenic perturbations, and local water resource management decisions.
Efficacy and efficiency of Agri-environmental payments in impacts of crops' management
NASA Astrophysics Data System (ADS)
Blasi, Emanuele; Martella, Angelo; Passeri, Nicolo; Ghini, Paolo
2015-04-01
Since the 90s, in Europe the Common Agricultural Policy (CAP) started to activate measures for improving the sustainability of European agriculture, these measures were systematized in 2000 with the tools of rural development, pursuing a synergistic environmental action trough the agri-environmental payments. Since their definition, those payments were designed to ensure the protection, maintenance and enhancement of natural resources (water, soil, forests), biodiversity (species and habitat), and landscape. In particular initiatives as set aside, afforestation, organic agriculture, integrated pest management, low input and precision agriculture have enriched the agricultural management practices. The aim of this work is to check the trend between agro-environmental subsidies and environmental performance (based on Ecological Indicators and CO2 evaluation) at country level in EU, in order to study the regulatory framework impact in addressing the European cropping system towards sustainability. In particular soils and their land use can storage CO2 as pool and so provide environmental services and, on the other hand the agricultural practices can stimulate the emission and the environmental footprint. Impacts (so called emissions/footprints and storage/environmental services) will be compared with the Agri-environmental Payments for calculating performances due to environmental management practices, supported by political initiatives. Such analysis sustains the European policy makers towards more suitable agricultural policies and in particular it can address national sustainability through agricultural practices.
A web platform for integrated surface water - groundwater modeling and data management
NASA Astrophysics Data System (ADS)
Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf
2016-04-01
Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Soil gas was assessed for contaminants in the building 310 underground storage tank area adjacent to the Dwight D. Eisenhower Army Medical Center at Ft. Gordon, Georgia, from October 2010 to September 2011. The assessment, which also included the detection of organic compounds in soil gas, provides environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon. Soil-gas samplers were deployed below land surface at 37 locations in the building 310 underground storage tank area. Soil-gas samplers were deployed in a grid pattern near the storage tank area as well as downslope of the tank area in the direction of groundwater flow toward an unnamed tributary to Butler Creek. Total petroleum hydrocarbons were detected in 35 of the 37 soil-gas samplers at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylenes were detected above their detection levels in 8 of the 37 samplers. In addition, the combined masses of undecane, tridecane, and pentadecane were detected at or above their method detection levels in 9 of the 37 samplers. Other volatile organic compounds detected above their respective method detection levels were chloroform, 1,2,4-trimethylbenzene, and perchloroethylene. In addition, naphthalene, 2-methyl naphthalene, and 1,2,4-trimethylbenzene were detected below the method detection levels, but above the nondetection level.
Demand Response and Energy Storage Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.
2016-03-01
Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less
Demand Response and Energy Storage Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ookie; Cheung, Kerry
Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less
Climate Change Predominantly Caused U.S. Soil Water Storage Decline from 2003 to 2014
NASA Astrophysics Data System (ADS)
Zhang, X.; Ma, C.; Song, X.; Gao, L.; Liu, M.; Xu, X.
2016-12-01
The water storage in soils is a fundamental resource for natural ecosystems and human society, while it is highly variable due to its complicated controlling factors in a changing climate; therefore, understanding water storage variation and its controlling factors is essential for sustaining human society, which relies on water resources. Although we are confident for water availability at global scale, the regional-scale water storage and its controlling factors are not fully understood. A number of researchers have reported that water resources are expected to diminish as climate continues warming in the 21stcentury, which will further influence human and ecological systems. However, few studies to date have fully quantitatively examined the water balances and its individual controlling mechanisms in the conterminous US. In this study, we integrated the time-series data of water storage and evapotranspiration derived from satellite imageries, regional meteorological data, and social-economic water consumption, to quantify water storage dynamics and its controlling factors across the conterminous US from 2003 to 2014. The water storage decline was found in majority of conterminous US, with the largest decline in southwestern US. Net atmospheric water input, which is difference between precipitation and evapotranspiration, could explain more than 50% of the inter-annual variation of water storage variation in majority of US with minor contributions from human water consumption. Climate change, expressed as precipitation decreases and warming, made dominant contribution to the water storage decline in the conterminous U.S. from 2003 to 2014.
Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges
NASA Astrophysics Data System (ADS)
Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.
It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in selected distributary commands combined with longitudinal studies based on available long- term data from the full command. The reliability and duration of flows and/or storages represent a constraint to effective integration of aquaculture within the case-study sys- tems. Although fish production is non-consumptive and can be seen as a complemen- tary use of irrigation water, the challenge is to devise operating procedures that will 1 guarantee reliability and duration of flows and/or storages for fish production without increasing total water-use within the system. This is a particular problem during the rainy season when irrigation demand fluctuates widely and rapidly. The problem is ex- acerbated by deficient information systems, which constrain the scope for responsive management in these extensive canal systems. 2
Monitoring subsidence with InSAR and inference of groundwater change
NASA Astrophysics Data System (ADS)
Farr, T. G.
2014-12-01
Groundwater use is increasing in many parts of the world due to population pressure and reduced availability of surface water and rainfall. California's Central Valley and southern Arizona in particular have experienced subsidence in many groundwater basins in recent years due to groundwater overdraft. In order to make informed decisions for adaptation, water resource managers need to know the extent of groundwater depletion, both spatially and volumetrically, and to be able to monitor it over long periods. Water wells provide one solution, but owing to remoteness, funding limitations, a lack of wells, and the difficulty of mandating government monitoring of private wells, less direct methods are necessary. Mapping and monitoring subsidence and rebound from orbit with interferometric synthetic aperture radar (InSAR) may provide important indicators of groundwater state and dynamics for water resource managers as well as warnings of potential damage to infrastructure. We are working with water resource managers at the California Department of Water Resources to produce and update maps of subsidence 'hot-spots' where subsidence threatens to cause irreversible aquifer compaction and loss of groundwater storage capacity. In the future, Germany's TerraSAR-X, Italy's Cosmo SkyMed, Japan's PALSAR-2, Europe's Sentinels, and NASA's NISAR offer the promise of extending the time series of observations and expanding this capability to regions of the world with no effective means to monitor the state of their groundwater. This would provide societal benefits to large segments of the global population dependent on groundwater to bridge gaps in surface and rain water supply. As Earth's climate changes, monitoring of this critical resource will help reduce conflicts over water. * Work performed under contract to NASA
Dispatch Strategy Development for Grid-tied Household Energy Systems
NASA Astrophysics Data System (ADS)
Cardwell, Joseph
The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent "uncontrolled" nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves--namely, distributed controls. Building energy management systems are being employed to control localized energy generation, storage, and use to reduce disruption on the net utility load. One such example is VOLTTRONTM, an agent-based platform for building energy control in real time. In this thesis, algorithms developed in VOLTTRON simulate a home energy management system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch strategies are implemented to reduce energy charges from overall consumption (/kWh) and demand charges (/kW). Dispatch strategies for implementing storage devices are tuned on a month-to-month basis to provide a meaningful economic advantage under simulated scenarios to explore algorithm sensitivity to changing external factors. VOLTTRON agents provide automated real-time optimization of dispatch strategies to efficiently manage energy supply and demand, lower consumer costs associated with energy usage, and reduce load on the utility grid.
Groundwater rejuvenation in parts of India influenced by water-policy change implementation.
Bhanja, Soumendra N; Mukherjee, Abhijit; Rodell, Matthew; Wada, Yoshihide; Chattopadhyay, Siddhartha; Velicogna, Isabella; Pangaluru, Kishore; Famiglietti, James S
2017-08-07
The dwindling groundwater resource of India, supporting almost one fifth of the global population and also the largest groundwater user, has been of great concern in recent years. However, in contrary to the well documented Indian groundwater depletion due to rapid and unmanaged groundwater withdrawal, here for the first time, we report regional-scale groundwater storage (GWS) replenishment through long-term (1996-2014, using more than 19000 observation locations) in situ and decadal (2003-2014) satellite-based groundwater storage measurements in western and southern parts of India. In parts of western and southern India, in situ GWS (GWS obs ) has been decreasing at the rate of -5.81 ± 0.38 km 3 /year (in 1996-2001) and -0.92 ± 0.12 km 3 /year (in 1996-2002), and reversed to replenish at the rate of 2.04 ± 0.20 km 3 /year (in 2002-2014) and 0.76 ± 0.08 km 3 /year (in 2003-2014), respectively. Here, using statistical analyses and simulation results of groundwater management policy change effect on groundwater storage in western and southern India, we show that paradigm shift in Indian groundwater withdrawal and management policies for sustainable water utilization appear to have started replenishing the aquifers in western and southern parts of India.
Monitoring of large-scale federated data storage: XRootD and beyond
NASA Astrophysics Data System (ADS)
Andreeva, J.; Beche, A.; Belov, S.; Diguez Arias, D.; Giordano, D.; Oleynik, D.; Petrosyan, A.; Saiz, P.; Tadel, M.; Tuckett, D.; Vukotic, I.
2014-06-01
The computing models of the LHC experiments are gradually moving from hierarchical data models with centrally managed data pre-placement towards federated storage which provides seamless access to data files independently of their location and dramatically improve recovery due to fail-over mechanisms. Construction of the data federations and understanding the impact of the new approach to data management on user analysis requires complete and detailed monitoring. Monitoring functionality should cover the status of all components of the federated storage, measuring data traffic and data access performance, as well as being able to detect any kind of inefficiencies and to provide hints for resource optimization and effective data distribution policy. Data mining of the collected monitoring data provides a deep insight into new usage patterns. In the WLCG context, there are several federations currently based on the XRootD technology. This paper will focus on monitoring for the ATLAS and CMS XRootD federations implemented in the Experiment Dashboard monitoring framework. Both federations consist of many dozens of sites accessed by many hundreds of clients and they continue to grow in size. Handling of the monitoring flow generated by these systems has to be well optimized in order to achieve the required performance. Furthermore, this paper demonstrates the XRootD monitoring architecture is sufficiently generic to be easily adapted for other technologies, such as HTTP/WebDAV dynamic federations.
DREAM: Distributed Resources for the Earth System Grid Federation (ESGF) Advanced Management
NASA Astrophysics Data System (ADS)
Williams, D. N.
2015-12-01
The data associated with climate research is often generated, accessed, stored, and analyzed on a mix of unique platforms. The volume, variety, velocity, and veracity of this data creates unique challenges as climate research attempts to move beyond stand-alone platforms to a system that truly integrates dispersed resources. Today, sharing data across multiple facilities is often a challenge due to the large variance in supporting infrastructures. This results in data being accessed and downloaded many times, which requires significant amounts of resources, places a heavy analytic development burden on the end users, and mismanaged resources. Working across U.S. federal agencies, international agencies, and multiple worldwide data centers, and spanning seven international network organizations, the Earth System Grid Federation (ESGF) has begun to solve this problem. Its architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces. However, significant challenges remain, including workflow provenance, modular and flexible deployment, scalability of a diverse set of computational resources, and more. Expanding on the existing ESGF, the Distributed Resources for the Earth System Grid Federation Advanced Management (DREAM) will ensure that the access, storage, movement, and analysis of the large quantities of data that are processed and produced by diverse science projects can be dynamically distributed with proper resource management. This system will enable data from an infinite number of diverse sources to be organized and accessed from anywhere on any device (including mobile platforms). The approach offers a powerful roadmap for the creation and integration of a unified knowledge base of an entire ecosystem, including its many geophysical, geographical, social, political, agricultural, energy, transportation, and cyber aspects. The resulting aggregation of data combined with analytics services has the potential to generate an informational universe and knowledge system of unprecedented size and value to the scientific community, downstream applications, decision makers, and the public.
NASA Astrophysics Data System (ADS)
Sophocleous, M. A.
2009-12-01
The U.S. High Plains aquifer, one of the largest freshwater aquifer systems in the world covering parts of eight US states, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The theory of the commons has meaningful messages for High-Plains jurisdictions as no private incentive exists to save for tomorrow, and agricultural prosperity depends on mining water from large portions of the aquifer. The eight High Plains states take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative approaches to the management of groundwater supplies, and those are highlighted in this presentation as good examples for emulation in managing groundwater resources. The highlighted innovations include (1) the Texas Groundwater Availability Modeling program, (2) Colorado’s water-augmentation program, (3) Kansas’ Intensive Groundwater Use Control Area policy, (4) the Kansas Groundwater Management Districts’ “safe yield” policies, (5) the water-use reporting program in Kansas, (6) the Aquifer Storage and Recovery program of the City of Wichita, Kansas, and (7) Nebraska’s Natural Resources Districts. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are unlikely to be sufficient to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins Commissions in the US. Finally, some lessons on groundwater management that other countries can learn from the US experience are outlined.
National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations
NASA Astrophysics Data System (ADS)
Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.
2013-12-01
In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity. As part of this follow up study, additional maps were generated to show the geographic distribution of the input estimates and the output results across the U.S. For example, the distribution of the SAUs with fresh, saline or mixed formation water quality is shown. Also mapped is the variation in CO2 density as related to basin location and to related properties such as subsurface temperature and pressure. Furthermore, variation in the estimated SAU depth and resulting TASR are shown across the assessment study areas, and these depend on the geologic basin size and filling history. Ultimately, multiple map displays are possible with the complete data set of input estimates and range of reported results. The findings from this study show the effectiveness of the USGS methodology and the robustness of the assessment.
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1973-01-01
An investigation has begun into the potential impact of using modern remote sensing techniques as an aid in managing, even on a day-to-day basis, the storage, flow, and delivery of water made available through the California Water Project. It is obvious that the amount of this impact depends upon the extent to which remote sensing is proven to be useful in improving predictions of both the amount of water that will be available and the amount that will be needed. It is also proposed to investigate the potential impact of remote sensing techniques as an aid in monitoring, and perhaps even in directing, changes in land use and life style being brought about through the increased availability of water in central and southern California as a result of the California Water Project. The impact of remote sensing can be of appreciable significance only if: (1) the induced changes are very substantial ones; (2) remote sensing is found, in this context, to be very useful and potentially very cost effective; and (3) resource managers adopt this new technology. Analyses will be conducted of the changing economic bases and the new land use demands resulting from increased water availability in central and southern California.
An efficient sparse matrix multiplication scheme for the CYBER 205 computer
NASA Technical Reports Server (NTRS)
Lambiotte, Jules J., Jr.
1988-01-01
This paper describes the development of an efficient algorithm for computing the product of a matrix and vector on a CYBER 205 vector computer. The desire to provide software which allows the user to choose between the often conflicting goals of minimizing central processing unit (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of four types of storage is selected for each diagonal. The candidate storage types employed were chosen to be efficient on the CYBER 205 for diagonals which have nonzero structure which is dense, moderately sparse, very sparse and short, or very sparse and long; however, for many densities, no diagonal type is most efficient with respect to both resource requirements, and a trade-off must be made. For each diagonal, an initialization subroutine estimates the CPU time and storage required for each storage type based on results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the two resources. The adjusted resource requirements are then compared to select the most efficient storage and computational scheme.
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage practices. 57.6102... Storage-Surface and Underground § 57.6102 Explosive material storage practices. (a) Explosive material... instructions and the date-plant-shift code are maintained with the product. Storage—Surface Only ...
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...
30 CFR 77.1103 - Flammable liquids; storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...
30 CFR 57.4401 - Storage tank foundations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage practices. 57.6102... Storage-Surface and Underground § 57.6102 Explosive material storage practices. (a) Explosive material... instructions and the date-plant-shift code are maintained with the product. Storage—Surface Only ...
18 CFR 157.213 - Underground storage field facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...
18 CFR 157.213 - Underground storage field facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...
30 CFR 57.4401 - Storage tank foundations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations...
Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A
2017-11-01
Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
18 CFR 157.215 - Underground storage testing and development.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Underground storage testing and development. 157.215 Section 157.215 Conservation of Power and Water Resources FEDERAL ENERGY... not exceed the amount specified in Table II as adjusted pursuant to § 157.208(d). These costs shall...
18 CFR 157.215 - Underground storage testing and development.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Underground storage testing and development. 157.215 Section 157.215 Conservation of Power and Water Resources FEDERAL ENERGY... not exceed the amount specified in Table II as adjusted pursuant to § 157.208(d). These costs shall...
18 CFR 157.215 - Underground storage testing and development.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Underground storage testing and development. 157.215 Section 157.215 Conservation of Power and Water Resources FEDERAL ENERGY... not exceed the amount specified in Table II as adjusted pursuant to § 157.208(d). These costs shall...
18 CFR 157.215 - Underground storage testing and development.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Underground storage testing and development. 157.215 Section 157.215 Conservation of Power and Water Resources FEDERAL ENERGY... not exceed the amount specified in Table II as adjusted pursuant to § 157.208(d). These costs shall...
Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.
1996-01-01
In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.
1987-01-01
after the MYCIN expert system. Host Computer PC+ is available on both symbolic and numeric computers. It operates on: the IBM PC AT, TI Bus- Pro (IBM PC...suppose that the data baseTool picks up pace contains 100 motors, and in only one case does a lightweight motor pro . duce more power than heavier units...every sor, ART 2.0. In the bargain it con - the figure). decision point takes time. More sub- sumes 10 times less storage. ART 3.0 reduces the comparison
Operating systems and network protocols for wireless sensor networks.
Dutta, Prabal; Dunkels, Adam
2012-01-13
Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.
Energy Systems Integration: NREL + HECO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawaiian Electric Companies' (HECO) customers are among the nation's fastest-adopters of solar PV systems. For HECO, the increased daytime PV generation raises feeder voltage profiles. Emerging technologies such as advanced PV inverters, battery storage, electric vehicles, and controllable loads also have an impact on voltage profiles. From the utility's perspective, it is yet unclear how to effectively manage these customer-sited resources. NREL is helping HECO understand its options by validating several voltage regulation strategies, making specific use of advanced inverters with voltage support functions, and their integration with other controllable sources.
NASA Astrophysics Data System (ADS)
Smakhtin, V.
2017-12-01
Humans stored water - in various forms - for ages, coping with water resources variability, and its extremes - floods and droughts. Storage per capita, and other storage-related indicators, have essentially become one way of reflecting the progress of economic development. Massive investments went into large surface water reservoirs that have become the characteristic feature of the earth's landscapes, bringing both benefits and controversy. As water variability progressively increases with changing climate, globally, on one hand, and the idea of sustainable development receives strong traction, on another - it may be worth the while to comprehensively examine current trends and future prospects for water storage development. The task is surely big, to say the least. The presentation will aim to initiate a structured discussion on this multi-facet issue and identify which aspects and trends of water storage development may be most important in the context of Sustainable Development Goals, Sendai Framework for Disaster Risk Reduction, Paris Agreement on Climate Change, and examine how, where and to what extent water storage planning can be improved. It will cover questions like i) aging of large water storage infrastructure, the current extent of this trend in various geographical regions, and possible impacts on water security and security of nations; ii) improved water storage development planning overall in the context of various water development alternatives and storage options themselves and well as their combinations iii) prospects for another "storage revolution" - speed increase in dam numbers, and where, if at all this is most likely iv) recent events in storage development, e.g. is dam decommissioning a trend that picks pace, or whether some developing economies in Asia can do without going through the period of water storage construction, with alternatives, or suggestions for alleviation of negative impacts v) the role of subsurface storage as an alternative to large surface dams, and vi) the role of nature based solutions in large storage development and overall storage functioning and management - to mention some. The presentation will call for coordinated effort that will help with environmentally and economically sound strategies of future storage development in national water planning.
Entropy, pumped-storage and energy system finance
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios
2015-04-01
Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, S.; Kawase, K.; Iijima, K.
2013-07-01
After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup andmore » waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)« less
Melis, Theodore S.; Pine, William E.; Korman, Josh; Yard, Michael D.; Jain, Shaleen; Pulwarty, Roger S.; Miller, Kathleen; Hamlet, Alan F.; Kenney, Douglas S.; Redmond, Kelly T.
2016-01-01
Adaptive management of Glen Canyon Dam is improving downstream resources of the Colorado River in Glen Canyon National Recreation Area and Grand Canyon National Park. The Glen Canyon Dam Adaptive Management Program (AMP), a federal advisory committee of 25 members with diverse special interests tasked to advise the U.S. Department of the Interior), was established in 1997 in response to the 1992 Grand Canyon Protection Act. Adaptive management assumes that ecosystem responses to management policies are inherently complex and unpredictable, but that understanding and management can be improved through monitoring. Best known for its high-flow experiments intended to benefit physical and biological resources by simulating one aspect of pre-dam conditions—floods, the AMP promotes collaboration among tribal, recreation, hydropower, environmental, water and other natural resource management interests. Monitoring has shown that high flow experiments move limited new tributary sand inputs below the dam from the bottom of the Colorado River to shorelines; rebuilding eroded sandbars that support camping areas and other natural and cultural resources. Spring-timed high flows have also been shown to stimulate aquatic productivity by disturbing the river bed below the dam in Glen Canyon. Understanding about how nonnative tailwater rainbow trout (Oncorhynchus mykiss), and downstream endangered humpback chub (Gila cypha) respond to dam operations has also increased, but this learning has mostly posed “surprise” adaptation opportunities to managers. Since reoperation of the dam to Modified Low Fluctuating Flows in 1996, rainbow trout now benefit from more stable daily flows and high spring releases, but possibly at a risk to humpback chub and other native fishes downstream. In contrast, humpback chub have so far proven robust to all flows, and native fish have increased under the combination of warmer river temperatures associated with reduced storage in Lake Powell, and a system-wide reduction in trout from 2000-06, possibly due to several years of natural reproduction under limited food supply. Uncertainties about dam operations and ecosystem responses remain, including how native and nonnative fish will interact and respond to possible increased river temperatures under drier basin conditions. Ongoing assessment of operating policies by the AMP’s diverse stakeholders represents a major commitment to the river’s valued resources, while surprise learning opportunities can also help identify a resilient climate-change strategy for co-managing nonnative and endangered native fish, sandbar habitats and other river resources in a region with already complex and ever-increasing water demands.
NASA Astrophysics Data System (ADS)
Cuttler, R. T. H.; Tonner, T. W. W.; Al-Naimi, F. A.; Dingwall, L. M.; Al-Hemaidi, N.
2013-07-01
The development of the Qatar National Historic Environment Record (QNHER) by the Qatar Museums Authority and the University of Birmingham in 2008 was based on a customised, bilingual Access database and ArcGIS. While both platforms are stable and well supported, neither was designed for the documentation and retrieval of cultural heritage data. As a result it was decided to develop a custom application using Open Source code. The core module of this application is now completed and is orientated towards the storage and retrieval of geospatial heritage data for the curation of heritage assets. Based on MIDAS Heritage data standards and regionally relevant thesauri, it is a truly bilingual system. Significant attention has been paid to the user interface, which is userfriendly and intuitive. Based on a suite of web services and accessed through a web browser, the system makes full use of internet resources such as Google Maps and Bing Maps. The application avoids long term vendor ''tie-ins'' and as a fully integrated data management system, is now an important tool for both cultural resource managers and heritage researchers in Qatar.
Richter, Holly E.; Gungle, Bruce; Lacher, Laurel J.; Turner, Dale S.; Bushman, Brooke M.
2014-01-01
Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.
Infrastructure of electronic information management
Twitchell, G.D.
2004-01-01
The information technology infrastructure of an organization, whether it is a private, non-profit, federal, or academic institution, is key to delivering timely and high-quality products and services to its customers and stakeholders. With the evolution of the Internet and the World Wide Web, resources that were once "centralized" in nature are now distributed across the organization in various locations and often remote regions of the country. This presents tremendous challenges to the information technology managers, users, and CEOs of large world-wide corporations who wish to exchange information or get access to resources in today's global marketplace. Several tools and technologies have been developed over recent years that play critical roles in ensuring that the proper information infrastructure exists within the organization to facilitate this global information marketplace Such tools and technologies as JAVA, Proxy Servers, Virtual Private Networks (VPN), multi-platform database management solutions, high-speed telecommunication technologies (ATM, ISDN, etc.), mass storage devices, and firewall technologies most often determine the organization's success through effective and efficient information infrastructure practices. This session will address several of these technologies and provide options related to those that may exist and can be readily applied within Eastern Europe. ?? 2004 - IOS Press and the authors. All rights reserved.
303-K Storage Facility closure plan. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-15
Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Codemore » (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less
30 CFR 56.4130 - Electric substations and liquid storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric substations and liquid storage...
30 CFR 56.4130 - Electric substations and liquid storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric substations and liquid storage...
30 CFR 56.4130 - Electric substations and liquid storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric substations and liquid storage...
30 CFR 56.4130 - Electric substations and liquid storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Unburied, flammable or combustible liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable or combustible liquids. (b) The area within the 25-foot perimeter... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric substations and liquid storage...
30 CFR 57.4430 - Surface storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...
30 CFR 57.6800 - Storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...
30 CFR 56.4401 - Storage tank foundations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall be...
30 CFR 57.6800 - Storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...
30 CFR 57.4430 - Surface storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...
30 CFR 57.6800 - Storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...
30 CFR 57.6800 - Storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...
30 CFR 57.6800 - Storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...