Science.gov

Sample records for storage ring devices

  1. Dynamical aspects on FEL interaction in single passage and storage ring devices

    SciTech Connect

    Dattoli, G.; Renieri, A.

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  2. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  3. Storage Ring EDM Experiments

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis K.

    2016-04-01

    Dedicated storage ring electric dipole moment (EDM) methods show great promise advancing the sensitivity level by a couple orders of magnitude over currently planned hadronic EDM experiments. We describe the present status and recent updates of the field.

  4. APS storage ring vacuum system

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  5. Reversible Seeding in Storage Rings

    SciTech Connect

    Ratner, Daniel; Chao, Alex; /SLAC

    2011-12-14

    We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

  6. Split ring containment attachment device

    DOEpatents

    Sammel, Alfred G.

    1996-01-01

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  7. MUON STORAGE RINGS - NEUTRINO FACTORIES

    SciTech Connect

    PARSA,Z.

    2000-05-30

    The concept of a muon storage ring based Neutrino Source (Neutrino Factory) has sparked considerable interest in the High Energy Physics community. Besides providing a first phase of a muon collider facility, it would generate more intense and well collimated neutrino beams than currently available. The BNL-AGS or some other proton driver would provide an intense proton beam that hits a target, produces pions that decay into muons. The muons must be cooled, accelerated and injected into a storage ring with a long straight section where they decay. The decays occurring in the straight sections of the ring would generate neutrino beams that could be directed to detectors located thousands of kilometers away, allowing studies of neutrino oscillations with precisions not currently accessible. For example, with the neutrino source at BNL, detectors at Soudan, Minnesota (1,715 km), and Gran Sasso, Italy (6,527 km) become very interesting possibilities. The feasibility of constructing and operating such a muon-storage-ring based Neutrino-Factory, including geotechnical questions related to building non-planar storage rings (e.g. at 8{degree} angle for BNL-Soudan, and 3{degree} angle for BNL-Gran Sasso) along with the design of the muon capture, cooling, acceleration, and storage ring for such a facility is being explored by the growing Neutrino Factory and Muon Collider Collaboration (NFMCC). The authors present overview of Neutrino Factory concept based on a muon storage ring, its components, physics opportunities, possible upgrade to a full muon collider, latest simulations of front-end, and a new bowtie-muon storage ring design.

  8. A new storage-ring light source

    SciTech Connect

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  9. Split ring containment attachment device

    SciTech Connect

    Sammel, A.G.

    1995-12-31

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar portion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. Hazardous material such as radioactive waste may be sealed in plastic bags for small items or wrapped in plastic sheeting for large items. Occasionally the need arises to access the hazardous material in a controlled manner, that is, while maintaining total containment. Small items could be placed entirely inside a containment glovebag. However, it may not be possible or practical to place large items inside a containment; instead, one or more glovebags could be attached to the plastic sheeting covering the hazardous material. It is this latter application for which the split ring containment attachment device is intended.

  10. Lattice design of a quasi-isochronous ring for a storage-ring FEL

    SciTech Connect

    Ohgaki, H.; Robin, D.; Yamazaki, T.

    1995-12-31

    Design work for a Quasi-Isochronous Ring (QI-Ring) dedicated to Storage Ring FELs in Electrotechnical Laboratory has been completed. The motivation for this work is to shorten the electron bunch length in order to get a high peak current in a compact Storage-Ring (SR). By placing an inverted dipole field in a location where the energy dispersion function is relatively large, one can reduce the momentum compaction factor ({alpha}) and shorten a bunch length in a SR. The main requirements for the QI-Ring are: 1.5GeV maximum beam energy; 80m circumference; two 10m-long dispersion free straight sections for insertion devices. A few meters dispersion free straight sections for RF cavities and injection bumpers; and a wide tune ability in betatron functions and momentum compaction factor ({alpha}). As shown in figure 1, the lattice includes two 49 degree, 3 T superconducting bending magnets to reduce the circumference of the ring, a -8 degree normal inverted dipole magnet (ID), 4 families quadrupole magnets (QF, QD, QFA, QDA), and 3 families sextupole magnets. Each quadrupole family has a specific function: QF & QD control the betatron tunes, and QFA & QDA control the {alpha} and suppress the energy dispersion in a straight section. In this type of ring it is important to compensate the second order momentum compaction factor ({alpha}{sub 2}), so at least three families of sextupoles are required.

  11. Longitudinal dynamics in storage rings

    SciTech Connect

    Colton, E.P.

    1986-01-01

    The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected.

  12. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  13. The cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  14. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams. PMID:27370434

  15. FLSR - The Frankfurt low energy storage ring

    NASA Astrophysics Data System (ADS)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  16. Beam Measurements in Storage Rings

    NASA Astrophysics Data System (ADS)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  17. Spectral characteristics and power distribution from insertion devices on a 6 to 7 GeV storage ring

    SciTech Connect

    Shenoy, G.K.; Viccaro, P.J.

    1986-06-01

    Two different types of insertion devices - undulators and wigglers - are described and compared. Each provides a periodic magnetic field that alters polarity, but whereas the spectral distribution from a wiggler is continuous and wide, the radiation of an undulator has spectrally narrow and discrete peaks. The distinction is determined by the deflection parameter. The energy spread in undulator peaks is calculated. Insertion device magnets and gap are discussed. Undulator tunability from gap variation is considered on a 6-GeV lattice and on a 7-GeV lattice. Also discussed is the angular distribution of power and the polarization from various sources. (LEW)

  18. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  19. Cathodochromic storage device

    NASA Technical Reports Server (NTRS)

    Bosomworth, D. R.; Moles, W. H.

    1969-01-01

    A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours.

  20. Optical storage device

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1991-01-01

    A new holographic image storage device which uses four-wave mixing in two photorefractive crystals is described. Photorefractive crystals promise information storage densities on the order of 10(exp 9) to 10(exp 12) bits per cubic centimeter at real-time rates. Several studies in recent years have investigated the use of photorefractive crystals for storing holographic image information. However, all of the previous studies have focused on techniques for storing information in a single crystal. The disadvantage of using a single crystal is that the read process is destructive. Researchers have developed techniques for fixing the information in a crystal so that it may be read many times. However, when fixed, the information cannot be readily erased and overwritten with new information. It two photorefractive crystals are used, holographic image information may be stored dynamically. That is, the stored image information may be read out more than once, and it may be easily erased and overwritten with new image information.

  1. The Brookhaven muon storage ring magnet

    NASA Astrophysics Data System (ADS)

    Danby, G. T.; Addessi, L.; Armoza, Z.; Benante, J.; Brown, H. N.; Bunce, G.; Cottingham, J. C.; Cullen, J.; Geller, J.; Hseuh, H.; Jackson, J. W.; Jia, L.; Kochis, S.; Koniczny, D.; Larsen, R.; Lee, Y. Y.; Mapes, M.; Meier, R. E.; Meng, W.; Morse, W. M.; O'Toole, M.; Pai, C.; Polk, I.; Prigl, R.; Semertzidis, Y. K.; Shutt, R.; Snydstrup, L.; Soukas, A.; Tallerico, T.; Toldo, F.; Von Lintig, D.; Woodle, K.; Carey, R. M.; Earle, W.; Hazen, E. S.; Krienen, F.; Miller, J. P.; Ouyang, J.; Roberts, B. L.; Sulak, L. R.; Worstell, W. A.; Orlov, Y.; Winn, D.; Grossmann, A.; Jungmann, K.; zu Putlitz, G.; von Walter, P.; Debevec, P. T.; Deninger, W. J.; Hertzog, D. W.; Sedykh, S.; Urner, D.; Green, M. A.; Haeberlen, U.; Cushman, P.; Giron, S.; Kindem, J.; Miller, D.; Timmermans, C.; Zimmerman, D.; Druzhinin, V. P.; Fedotovich, G. V.; Grigorev, D. N.; Khazin, B. I.; Ryskulov, N. M.; Serednyakov, S.; Shatunov, Yu. M.; Solodov, E.; Endo, K.; Hirabayashi, H.; Mizumachi, Y.; Yamamoto, A.; Dhawan, S. K.; Disco, A.; Farley, F. J. M.; Fei, X.; Grosse-Perdekamp, M.; Hughes, V. W.; Kawall, D.; Redin, S. I.

    2001-01-01

    The muon g-2 experiment at Brookhaven National Laboratory has the goal of determining the muon anomalous g-value a μ (=(g-2)/2) to the very high precision of 0.35 parts per million and thus requires a storage ring magnet with great stability and homogeniety. A superferric storage ring with a radius of 7.11 m and a magnetic field of 1.45 T has been constructed in which the field quality is largely determined by the iron, and the excitation is provided by superconducting coils operating at a current of 5200 A. The storage ring has been constructed with maximum attention to azimuthal symmetry and to tight mechanical tolerances and with many features to allow obtaining a homogenous magnetic field. The fabrication of the storage ring, its cryogenics and quench protection systems, and its initial testing and operation are described.

  2. INSTABILITY ISSUES AT THE SNS STORAGE RING

    SciTech Connect

    ZHANG,S.Y.

    1999-06-28

    The impedance and beam instability issues of the SNS storage ring is reviewed, and the effort toward solutions at the BNL is reported. Some unsettled issues are raised, indicating the direction of planned works.

  3. APS storage ring vacuum system performance

    SciTech Connect

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-06-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented.

  4. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  5. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  6. Workshop on compact storage ring technology: applications to lithography

    SciTech Connect

    Not Available

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  7. The MAX IV storage ring project.

    PubMed

    Tavares, Pedro F; Leemann, Simon C; Sjöström, Magnus; Andersson, Ake

    2014-09-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  8. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  9. Stable CSR in storage rings: A model

    SciTech Connect

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Venturini, Marco; Abo-Bakr, Michael; Feikes, Jorge; Holldack, Karsten; Kuske, Peter; Wustefeld, Godehart; Hubers, Heinz-Willerm; Warnock, Robert

    2005-01-03

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user s shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  10. Dedicated storage rings for nuclear physics

    SciTech Connect

    Jackson, H.E.

    1984-01-01

    The use of internal targets in circulating beams of electron storage and stretcher rings has been widely discussed recently as a method of achieving high luminosity under conditions of low background, and good energy resolution, with minimal demands for beam from an injecting accelerator. In the two critical areas of the technology, ring design and target development, research is very active, and the prospects for major advances are very bright. Reasonable extrapolations of the current state of the art suggest for many problems in nuclear physics, particularly polarization physics of the nucleon and few body nuclei, internal target measurement may be the optimum experimental technique. This paper, discusses the comparative merit of internal target rings and external beam experiments, reviews briefly current research efforts in the critical areas of the technology, and establishes one goal for the discussions at the workshop. It appears that storage rings dedicated to internal target physics may offer a powerful option for future advances in nuclear physics.

  11. COSY - a cooler synchrotron and storage ring

    SciTech Connect

    Martin, S.A.; Berg, G.P.A.; Hacker, U.; Hardt, A.; Kohler, M.; Osterfeld, F.; Prasuhn, D.; Riepe, G.; Rogge, M.; Schult, O.W.B.

    1985-10-01

    The storage ring COSY with phase space cooling and RF acceleration is designed to accept protons and light ions injected from the existing cyclotron JULIC or protons from the LINAC of the proposed neutron spallation source (SNQ). The lay-out of COSY was developed in cooperation with the Universities in Nordrhein-Westfalen and meets the experimental requirements of variable and high quality beams which are necessary for future nuclear research under discussion. The three essential properties of the storage ring will be: high luminosities and very efficient use of the beam in the storage ring by thin internal targets; energy variability in the range of 20 MeV to 1.5 GeV by RF acceleration; and very high beam quality through phase space cooling.

  12. Nonlinear dynamics aspects of modern storage rings

    SciTech Connect

    Helleman, R.H.G.; Kheifets, S.A.

    1986-01-01

    It is argued that the nonlinearity of storage rings becomes an essential problem as the design parameters of each new machine are pushed further and further. Yet the familiar methods of classical mechanics do not allow determination of single particle orbits over reasonable lengths of time. It is also argued that the single particle dynamics of a storage ring is possibly one of the cleanest and simplest nonlinear dynamical systems available with very few degrees of freedom. Hence, reasons are found for accelerator physicists to be interested in nonlinear dynamics and for researchers in nonlinear dynamics to be interested in modern storage rings. The more familiar methods of treating nonlinear systems routinely used in acclerator theory are discussed, pointing out some of their limitations and pitfalls. 39 refs., 1 fig. (LEW)

  13. Latest on polarization in electron storage rings

    SciTech Connect

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references.

  14. Polarization calculations for electron storage rings

    SciTech Connect

    Mane, S.R.

    1988-05-01

    A computer program called SMILE has been developed to calculate the equilibrium polarization in a high-energy electron storage ring. It can calculate spin resonances to arbitrary orders, in principle. Results of polarization calculations are shown for a variety of storage ring models, to elucidate various aspects of the behaviour of the polarization, such as the effects of machine symmetry, beam energy spread, and transverse momentum recoils, etc. Reasonable agreement is obtained with some experimental data from measurements at SPEAR. 12 refs., 12 figs.

  15. Lih thermal energy storage device

    DOEpatents

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  16. Electron Storage Ring Development for ICS Sources

    SciTech Connect

    Loewen, Roderick

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  17. News from the CSR storage ring

    NASA Astrophysics Data System (ADS)

    Ma, X.; Xu, H. S.; Xia, J. W.; Yang, X. D.; Meng, L. J.; Wang, M.; Tu, X. L.; Liu, H. P.; Hu, Z. G.; Zhu, X. L.; Mao, R. S.; Zhang, D. C.; Mao, L. J.; Li, J.; Li, G. H.; Liu, Y.; Yang, J. C.; Yuan, Y. J.; Cai, X. H.; Zheng, J. H.; Yang, X. T.; Xiao, G. Q.; Zhan, W. L.

    2009-11-01

    Testing runs of experiments were performed at the Cooler Storage Ring in Lanzhou. The recombination of bare argon ions and electron was observed at the electron. The masses of radioactive nuclei produced by projectile fragmentation were measured in isochronous mode. An overview of the most recent experiments will be presented.

  18. The control system of the photon factory storage ring

    NASA Astrophysics Data System (ADS)

    Pak, Cheol On

    1989-05-01

    The Photon Factory 2.5 GeV electron storage ring at KEK, a dedicated machine for synchrotron radiation, stored its first beam on March, 1982. The first control system of the storage ring comprised seven distributed minicomputers connected through a star-type network. However, from 1985 they have been gradually replaced in order to meet increasing system requirements. At present, the control system uses four "supermini" computers as device controllers and a general-purpose computer as a library computer. These computers are connected to each other through a token ring-type network. Each control computer independently performs several processes. However, console functions as man-machine interfaces of all processes can be treated in a unified way using the network. A prototype database for operation logging has been completed and tested.

  19. Induced radioactivity in the ESRF storage ring.

    PubMed

    Berkvens, P

    2005-01-01

    The new French radiation protection legislation requires the definition of the zoning of accelerator facilities with respect to radioactive waste. This activation inside the ESRF 6 GeV storage ring is essentially due to photonuclear reactions. This paper describes the first results of Monte Carlo calculations that were started to prepare this zoning. The electron beam losses inside the storage ring, required to calculate saturation activities, are described. Results for the activation of the air inside the ring tunnel and of the cooling water are presented. The activation of accelerator components is illustrated with the results of the activation of the stainless steel vessels in a standard cell and in a cell with higher losses due to the presence of a vertical scraper. The amount of activation is compared with clearance levels given in the European directive 96/29/Euratom. PMID:16381770

  20. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  1. Nonaqueous Electrical Storage Device

    DOEpatents

    McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  2. Nomenclature and name assignment rules for the APS storage ring

    SciTech Connect

    Decker, G.

    1992-03-16

    Because the APS accelerators are moving into the fabrication/assembly/installation stage, it is important for consistent naming conventions to be used throughout the project. The intent of this note is to dictate the rules to be adhered to when naming devices in the storage ring. These rules are generic in nature, and shall be applied in principle to the other machines as well. It is essential that every component have a unique and, hopefully, easily recognizable name. Every ASD and XFD group, except for magnets, must interface with the control system. For this reason all device names were developed keeping in mind their actual function, such as controlling or monitoring some device in the ring. Even though magnets are not directly interfaced to the control system, their power supplies are; therefore, a magnet will have the same name as its associated power supply.

  3. Feasibility of a ring FEL at low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Agapov, I.

    2015-09-01

    A scheme for generating coherent radiation at latest generation low emittance storage rings such as PETRA III at DESY (Balewski et al., 2004 [1]) is proposed. The scheme is based on focusing and subsequent defocusing of the electron beam in the longitudinal phase space at the undulator location. The expected performance characteristics are estimated for radiation in the wavelength range of 500-1500 eV. It is shown that the average brightness is increased by several orders of magnitude compared to spontaneous undulator radiation, which can open new perspectives for photon-hungry soft X-ray spectroscopy techniques.

  4. Mass and Lifetime Measurements in Storage Rings

    SciTech Connect

    Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M.; Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C.

    2007-05-22

    Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

  5. DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING

    SciTech Connect

    Cheng, W.; Fernandes, H.; Hseuh, H.; Kosciuk, B.; Krinsky, S.; Singh, O.

    2011-03-28

    A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beam circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.

  6. USB Mass Storage Device Manager

    SciTech Connect

    Rymer, Bernard; Cowart, Casey

    2004-06-17

    The USB probram is designed to give some level of control over the use of USB mass storage devices (MSDs). This program allows you to disable all USB MSDs from working on a machine or to configure specific devices for the machine as an administrator. For complete control over USB MSDs the user of the machine must belong to the 'User' group. If a MSD has already been configured on the machine it will continue to function after using the 'Activate Administrator Control' function. The only way to disable previously configured devices is to use the 'Block' feature to block all MSDs from being used on the machine.

  7. A prototype storage ring for neutral molecules.

    PubMed

    Crompvoets, F M; Bethlem, H L; Jongma, R T; Meijer, G

    2001-05-10

    The ability to cool and manipulate atoms with light has yielded atom interferometry, precision spectroscopy, Bose-Einstein condensates and atom lasers. The extension of controlled manipulation to molecules is expected to be similarly rewarding, but molecules are not as amenable to manipulation by light owing to a far more complex energy-level spectrum. However, time-varying electric and magnetic fields have been successfully used to control the position and velocity of ions, suggesting that these schemes can also be used to manipulate neutral particles having an electric or magnetic dipole moment. Although the forces exerted on neutral species are many orders of magnitude smaller than those exerted on ions, beams of neutral dipolar molecules have been successfully slowed down in a series of pulsed electric fields and subsequently loaded into an electrostatic trap. Here we extend the scheme to include a prototype electrostatic storage ring made of a hexapole torus with a circumference of 80 cm. After injection, decelerated bunches of deuterated ammonia molecules, each containing about 106 molecules in a single quantum state and with a translational temperature of 10 mK, travel up to six times around the ring. Stochastic cooling might provide a means to increase the phase-space density of the stored molecules in the storage ring, and we expect this to open up new opportunities for molecular spectroscopy and studies of cold molecular collisions.

  8. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  9. Orbit stability of the ALS storage ring

    SciTech Connect

    Keller, R.; Nishimura, H.; Biocca, A.

    1997-05-01

    The Advanced Light Source (ALS) storage ring, a synchrotron light source of the third generation, is specified to maintain its electron orbit stable within one tenth of the rms beam size. In the absence of a dedicated orbit feed-back system, several orbit-distorting effects were investigated, aided by a new interactive simulation tool, the code TRACY V. The effort has led to a better understanding of the behavior of a variety of accelerator subsystems and in consequence produced a substantial improvement in day-to-day orbit stability.

  10. Inductive storage pulse circuit device

    DOEpatents

    Parsons, William M.; Honig, Emanuel M.

    1984-01-01

    Inductive storage pulse circuit device which is capable of delivering a series of electrical pulses to a load in a sequential manner. Silicon controlled rectifiers as well as spark gap switches can be utilized in accordance with the present invention. A commutation switching array is utilized to produce a reverse current to turn-off the main opening switch. A commutation capacitor produces the reverse current and is initially charged to a predetermined voltage and subsequently charged in alternating directions by the inductive storage current.

  11. An Inside Look: NSLS-II Storage Ring

    SciTech Connect

    Fries, Gregory

    2013-10-21

    Look inside the storage ring of the National Synchrotron Light Source II, under construction at Brookhaven Lab. Exactly 843 magnets now encircle the ring. Their job will be to steer, stabilize, and store electrons racing around at near light speed.

  12. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  13. Design and manufacturing of the antechamber for BEPCII storage rings

    NASA Astrophysics Data System (ADS)

    Kang, Ling; Li, ChunHua; Huang, KaiXi; Qu, HuaMin; Zou, YiQing; Zhang, Yan; Han, LuXiang; Men, LingLing

    2011-12-01

    Antechamber which composes the arc vacuum chamber of storage rings is one of the key devices of BEPCII. It has the characteristic of various specifications, large size, complex structure, and high dimension accuracy. This paper gives a review on the structure features and the procedure of production, including the mechanical machining process, cleaning and welding process of high vacuum aluminum alloy, ultrahigh vacuum test and so on. In view of the occurrence of the concave deformation, the reasons are analyzed and the correction method developed is introduced too.

  14. USB Mass Storage Device Manager

    2004-06-17

    The USB probram is designed to give some level of control over the use of USB mass storage devices (MSDs). This program allows you to disable all USB MSDs from working on a machine or to configure specific devices for the machine as an administrator. For complete control over USB MSDs the user of the machine must belong to the 'User' group. If a MSD has already been configured on the machine it will continuemore » to function after using the 'Activate Administrator Control' function. The only way to disable previously configured devices is to use the 'Block' feature to block all MSDs from being used on the machine.« less

  15. Characterization of a new electrostatic storage ring for photofragmentation experiments

    SciTech Connect

    Pedersen, H. B. Svendsen, A.; Harbo, L. S.; Kiefer, H. V.; Kjeldsen, H.; Lammich, L.; Andersen, L. H.; Toker, Y.

    2015-06-15

    We describe the design of and the first commissioning experiments with a newly constructed electrostatic storage ring named SAPHIRA (Storage Ring in Aarhus for PHoton-Ion Reaction Analysis). With an intense beam of Cu{sup −} at 4 keV, the storage ring is characterized in terms of the stored ion beam decay rate, the longitudinal spreading of an injected ion bunch, as well as the direct measurements of the transverse spatial distributions under different conditions of storage. The ion storage stability in SAPHIRA was investigated systematically in a selected region of its electrical configuration space.

  16. Introductory statistical mechanics for electron storage rings

    SciTech Connect

    Jowett, J.M.

    1986-07-01

    These lectures introduce the beam dynamics of electron-positron storage rings with particular emphasis on the effects due to synchrotron radiation. They differ from most other introductions in their systematic use of the physical principles and mathematical techniques of the non-equilibrium statistical mechanics of fluctuating dynamical systems. A self-contained exposition of the necessary topics from this field is included. Throughout the development, a Hamiltonian description of the effects of the externally applied fields is maintained in order to preserve the links with other lectures on beam dynamics and to show clearly the extent to which electron dynamics in non-Hamiltonian. The statistical mechanical framework is extended to a discussion of the conceptual foundations of the treatment of collective effects through the Vlasov equation.

  17. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  18. Unicell structure for superconducting storage rings

    SciTech Connect

    Danby, G.; DeVito, B.; Jackson, J.; Keohane, G.; Lee, Y.Y.; Phillips, R.; Plate, S.; Repeta, L.; Skaritka, J.; Smith, L.

    1985-01-01

    Mechanically integrated, magnetically decoupled storage rings were designed for a heavy ion collider for 100 GeV/amu Au, at B = 2.7T. New concepts were developed, including detailed engineering design and cost estimates. A ''unicell'' contains a half-cell of both rings within a single He vessel. The unicell design is optimized for economical mass production. Survey pads welded to the laminations provide external fiducials to locate the magnet cores. Roller bearing self aligning supports accommodate cool-down shrinkage. The design tolerates relative motion of components resulting from longitudinal shrinkage in the approx.15 m long unicell without affecting performance. Magnetic and physical lengths are the same, eliminating waste space. ''Achromatic'' quadrupoles with sextupoles at both ends are located on a common precision beam tube which aligns and supports a pick-up electrode. The unicell accommodates longer dipoles compared to conventional designs, reducing B/sub max/, stored energy, and the volume of iron and superconductor. Applications to future machines will be discussed.

  19. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  20. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  1. A design of a quasi-isochronous storage ring

    SciTech Connect

    Lee, S.Y.; Ng, K.Y.; Trbojevic, D.

    1993-07-01

    Isochronous electron storage rings may offer advantages for future high luminosity meson factories. A Quasi-isochronous lattice based on the design principle of flexible {gamma}{tau} lattice is studied. The emittance and chromatic properties of such a lattice are studied. Applications of this design techniques for electron storage rings will be discussed.

  2. Measurement of storage ring motion at the advanced light source

    SciTech Connect

    Krebs, G.F.

    1997-05-01

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions.

  3. Energy storage device with large charge separation

    DOEpatents

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  4. A fast and sensitive resonant Schottky pick-up for heavy ion storage rings

    NASA Astrophysics Data System (ADS)

    Nolden, F.; Hülsmann, P.; Litvinov, Yu. A.; Moritz, P.; Peschke, C.; Petri, P.; Sanjari, M. S.; Steck, M.; Weick, H.; Wu, J. X.; Zang, Y. D.; Zhang, S. H.; Zhao, T. C.

    2011-12-01

    A resonant pick-up for the detection of heavy ion Schottky noise was built into the ESR storage ring at GSI. A similar device will be installed at the cooler storage ring CSRe at IMP. Its purpose is a significant enhancement of the signal to noise ratio of Schottky spectra. A particular application of the new system is the measurement of circulating single ions. The resonator is based on a pillbox design. It is operated at air pressure, and is electromagnetically coupled to the vacuum tube of the storage ring via a cylinder-shaped ceramic gap. The resonant frequency can be changed by inserting plunger pistons. The resonator can easily be decoupled from the storage ring, if high beam impedances become a problem. The article describes the construction, electromagnetic properties of the pick-up as well as first experiments with heavy ion beams.

  5. VUV optical ring resonator for Duke storage ring free electron laser

    SciTech Connect

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  6. MAGNETS FOR A MUON STORAGE RING.

    SciTech Connect

    PARKER, B.; ANERELLA, M.; GHOSH, A.; GUPTA, R.; HARRISON, M.; SCHMALZLE, J.; SONDERICKER, J.; WILLEN, E.

    2002-06-18

    We present a new racetrack coil magnet design, with an open midplane gap, that keeps decay particles in a neutrino factory muon storage ring from directly hitting superconducting coils. The structure is very compact because coil ends overlap middle sections top and bottom for skew focusing optics. A large racetrack coil bend radius allows ''react and wind'' magnet technology to be used for brittle Nb{sub 3}Sn superconductors. We describe two versions: Design-A, a magnet presently under construction and Design-B, a further iterated concept that achieves the higher magnetic field quality specified in the neutrino factory feasibility Study-II report. For Design-B reverse polarity and identical end design of consecutive long and short coils offers theoretically perfect magnet end field error cancellation. These designs avoid the dead space penalty from coil ends and interconnect regions (a large fraction in machines with short length but large aperture magnets) and provide continuous bending or focusing without interruption. The coil support structure and cryostat are carefully optimized.

  7. The proton storage ring: Problems and solutions

    SciTech Connect

    Macek, R.J.

    1988-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35..mu..A at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 17 figs., 2 tabs.

  8. Status of PSR (Proton Storage Ring)

    SciTech Connect

    Macek, R.J.

    1989-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35/mu/A at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 16 figs.

  9. Analysis of ionic photofragments stored in an electrostatic storage ring.

    PubMed

    Svendsen, Annette; Teiwes, Ricky; Kiefer, Hjalte V; Andersen, Lars H; Pedersen, Henrik B

    2016-01-01

    A new method to analyze the properties of fragment ions created in storage ring experiments is presented. The technique relies on an acceleration of ionic fragments immediately after production whereby the fragments are stored in the storage ring. To obtain a fragment mass spectrum, the storage ring is exploited as an electrostatic analyzer (ESA) in which case the number of stored fragment ions is recorded as a function of the applied acceleration potential. However, the storage ring can additionally be employed as a time-of-flight (TOF) instrument by registering the temporal distribution of fragment ions. It is demonstrated that the combined ESA-TOF operation of the ring allows not only to determine fragment masses with much better resolution compared to the ESA mode alone but also enables the extraction of detailed information on the fragmentation dynamics. The method is described analytically and verified with photodissociation experiments on stored Cl2 (-) at an excitation wavelength of 530 nm. PMID:26827313

  10. Analysis of ionic photofragments stored in an electrostatic storage ring

    NASA Astrophysics Data System (ADS)

    Svendsen, Annette; Teiwes, Ricky; Kiefer, Hjalte V.; Andersen, Lars H.; Pedersen, Henrik B.

    2016-01-01

    A new method to analyze the properties of fragment ions created in storage ring experiments is presented. The technique relies on an acceleration of ionic fragments immediately after production whereby the fragments are stored in the storage ring. To obtain a fragment mass spectrum, the storage ring is exploited as an electrostatic analyzer (ESA) in which case the number of stored fragment ions is recorded as a function of the applied acceleration potential. However, the storage ring can additionally be employed as a time-of-flight (TOF) instrument by registering the temporal distribution of fragment ions. It is demonstrated that the combined ESA-TOF operation of the ring allows not only to determine fragment masses with much better resolution compared to the ESA mode alone but also enables the extraction of detailed information on the fragmentation dynamics. The method is described analytically and verified with photodissociation experiments on stored Cl 2- at an excitation wavelength of 530 nm.

  11. Prospects for Next-Generation Storage Ring Light Sources

    NASA Astrophysics Data System (ADS)

    Borland, Michael

    2015-04-01

    Storage ring light sources are among the most productive large-scale scientific user facilities in existence, owing to a combination of broad tunability, mature technology, high capacity, remarkable reliability, and high performance. The most commonly-used performance measure is the photon beam brightness, which is proportional to the flux per unit volume in six-dimensional phase space. The brightness is generally maximized by minimizing the transverse phase space area, or emittance, of the electron beam that generates the photons. Since the 1990's, most storage ring light sources have used a variant of the Chasman-Green, or double-bend-achromat (DBA), lattice, which produces transverse emittances of several nanometers. Presently, several light sources are under construction based on more challenging multi-bend-achromat (MBA) concepts, which promise an order of magnitude reduction in the emittance. Somewhat larger reductions are contemplated for upgrades of the largest facilities. This talk briefly surveys the relevant concepts in light source design, then explains both the mechanism and challenge of achieving next-generation emittances. Other factors, such as improved radiation-emitting devices, are also described. Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

  12. Storage ring mass spectrometry for nuclear structure and astrophysics research

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Litvinov, Yu A.; Uesaka, T.; Xu, H. S.

    2016-07-01

    In the last two and a half decades ion storage rings have proven to be powerful tools for precision experiments with unstable nuclides in the realm of nuclear structure and astrophysics. There are presently three storage ring facilities in the world at which experiments with stored radioactive ions are possible. These are the ESR in GSI, Darmstadt/Germany, the CSRe in IMP, Lanzhou/China, and the R3 storage ring in RIKEN, Saitama/Japan. In this work, an introduction to the facilities is given. Selected characteristic experimental results and their impact in nuclear physics and astrophysics are presented. Planned technical developments and the envisioned future experiments are outlined.

  13. Commissioning results of the APS storage ring diagnostics systems

    SciTech Connect

    Lumpkin, A.H.

    1996-12-31

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size ({sigma}{sub x} {approx} 150 {mu}m, {sigma}{sub y} {approx} 50 {mu}m), current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at {approximately} 6.5 Hz frequency; observation of bunch lengthening ({sigma} {approx} 30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations.

  14. Vacuum Chamber Design of NSLS-II Storage Ring

    SciTech Connect

    Doom,L.; Ferreira, M.; Hseuh, H. C.; Lincoln, F.; Longo, C.; Ravindranath, V.; Sharma, S.

    2008-06-11

    National Synchrotron Light Source II (NSLS II) will be a 3-GeV, 792-meter circumference, 3rd generation synchrotron radiation facility, with ultra low emittance and extremely high brightness. the storage ring has 30 Double-Bend-Achromatic (DBA) cells. in each cell, there are five magnets and chamber girders, and one straight section for insertion devices or Radio Frequency (RF) cavities or injection. Most vacuum chambers are made from extruded aluminum with two different cross sections: one fitted in the dipole magnets, and the other surrounded by multipole magnets. They discuss the layout of the DBA cells, the detailed design of the cell's vacuum chambers, the mounting of the Beam-Position-Monitor (BPM) buttons, discrete absorbers, lumped pumps and the distributed Non-Evaporable Getter (NEG) strips, and describe the fabrication and testing of these prototype cell chambers. The account also details the development of the chamber bakeout process, the NEG stri's supports, and the RF shielded bellows.

  15. Commissioning results of the APS storage ring diagnostics systems

    NASA Astrophysics Data System (ADS)

    Lumpkin, Alex H.

    1997-01-01

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size (σx≈150 μm, σy≈50 μm,) current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at ˜6.5 Hz frequency; observation of bunch lengthening (σ≈30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations.

  16. Progress Report on the g-2 Storage Ring Magnet System

    SciTech Connect

    Bunce, G.A.; Cullen, J.; Danby, G.; Green, M.A.; Jackson, J.; Jia, L.; Krienen, F.; Meier, R.; Meng, W.; Morse, W.; Pai, C.; Polk, I.; Prodell, A.; Shutt, R.; Snydstrup, L.; Yamamoto, A.

    1995-06-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory has three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bend radius of 7.1 meters. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the inflector gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported.

  17. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  18. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  19. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  20. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  1. Reaction Studies with Exotic Nuclei in Storage Rings

    SciTech Connect

    Muenzenberg, Gottfried; Schrieder, Gerhard

    2000-12-31

    The first experiments to explore nuclear ground-state properties of exotic nuclei with heavy-ion storage rings have already proved the research potential of precision experiments with the new experimental technique. In this contribution the perspectives for reaction studies in storage rings with energetic exotic nuclei at internal targets and in a small electron -- heavy ion collider are addressed. The feasibility of such experiments is discussed.

  2. The performance of the Duke FEL storage ring

    SciTech Connect

    Wu, Y.; Burnham, B.; Litvinenko, V.N.

    1995-12-31

    The commissioning of the Duke FEL storage ring has been completed. During commissioning, we have conducted a series of performance measurements on the storage ring lattice and the electron beam parameters. In this paper, we will discuss the techniques used in the measurements, present measurement results, and compare the measured parameters with the design specifications. In addition, we will present the expected OK-4 FEL performance based on the measured beam parameters.

  3. Beam dynamics of CANDLE storage ring low alpha operation

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Amatuni, G.; Sahakyan, V.; Tsakanov, V.; Zanyan, G.

    2015-10-01

    The generation of the coherent THz radiation and short pulse synchrotron radiation in dedicated electron storage rings requires the study of non-standard magnetic lattices which provide low momentum compaction factor (alpha) of the ring. In the present paper two low alpha operation lattices based on modification of the original beam optics and implementation of inverse bend magnets are studied for CANDLE storage ring. For considered cases an analysis of transverse and longitudinal beam dynamics is given and the feasibility of lattices is discussed.

  4. Stimulated Emissions in the Exact Circular Electron Storage Ring

    SciTech Connect

    Yamada, H.

    1996-04-01

    An exact circular electron storage ring has many advanced features. Electrons are injected successively without disturbing the accumulated beam. This is a promising scheme for constructing a very small ring, which features an electron bunch length of less than a millimeter. This short bunch generates coherent synchrotron radiations in the sub-millimeter wavelength range. If we introduce a concentric mirror around the electron orbit, stimulated emissions will be generated. In this mirror, synchrotron radiations are reflected back and accumulated to interact with electron bunches. This new coherent generation scheme is called a {open_quote}{open_quote}photon storage ring{close_quote}{close_quote}. {copyright} {ital 1996 American Institute of Physics.}

  5. Design for ANL 7 GeV storage ring vacuum system

    SciTech Connect

    Wehrle, R.B.; Nielsen, R.W.

    1988-01-01

    The 7-GeV Advanced Photon Source (APS) design includes a storage ring having a 1060-m circumference with the capability of accommodating 34 insertion devices (ID) and their associated photon beam lines. An additional 35 photon lines can be provided from bending magnets. The vacuum system for the storage ring is designed to maintain a beam-on operating pressure of 1n Torr or less to achieve a positron beam lifetime of approximately 20 hours. The vacuum system and it's current developmental status are described.

  6. Status of the Mini-Ring project: a compact electrostatic storage ring

    SciTech Connect

    Bernard, J.; Montagne, G.; Ales, J.; Bredy, R.; Chen, L.; Martin, S.; Cederquist, H.; Schmidt, H.

    2008-12-08

    The idea of building a small, cheap and transportable electrostatic storage ring emerged in the Lyon and Stockholm groups as a collaborative work in the framework of the ITS-LEIF European network. Such a ring could be devoted to experiments where the ring needs to be transported to different facilities that can deliver exotic particles or means of excitation (e.-g. highly charged ions, X--ray synchrotron...). The design of the so-called Mini-Ring and ion trajectory simulations will be presented. First preliminary results have demonstrated the storage of stable Ar{sup +} ion beams in the millisecond time range. The storage time is presently limited by the poor vacuum conditions (P = 2x10{sup -7} mbar) in the chamber, a feature that is going to be improved in the future.

  7. Simulation of Spin-orbit Dynamics in Storage Rings

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Andrianov, S.; Senichev, Yu.

    2016-09-01

    In the article a mapping approach based on nonlinear matrix integration for longterm spin-orbit dynamics simulation is briefly described. Using this technique the nonlinear effects of spin dynamics in an electrostatics storage ring are investigated. Namely, the fringe fields, the energy conservation law and the random field errors are considered. The necessity of examination of such effects arises, for example, in the storage ring design for search the Electrical Dipole Moment of proton and deuteron. The EDM ring is proposed to measure EDM using the spin transformation of polarized particle in the magneto-electrostatic elements of the ring. The article consists of short description of the spin-orbit simulation results based on the nonlinear model.

  8. Optimal placement of magnets in Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Riyasat, Husain; A, D. Ghodke; Singh, Gurnam

    2015-03-01

    In Indus-2, by optimizing the position of the magnetic elements, using the simulated annealing algorithm, at different locations in the ring with their field errors, the effects on beam parameters have been minimized. Closed orbit distortion and beta beat are considerably reduced by optimizing the dipole and quadrupole magnets positions in the ring. For the Indus-2 storage ring, sextupole optimization gives insignificant improvement in dynamic aperture with chromaticity-correcting sextupoles. The magnets have been placed in the ring with the optimized sequence and storage of the beam has been achieved at injection energy without energizing any corrector magnets. Magnet sorting has led to the easy beam current accumulation and the measurement of parameters such as closed orbit distortion, beta function, dispersion, dynamic aperture etc.

  9. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    NASA Astrophysics Data System (ADS)

    King, F.; Kruppi, T.; Müller, J.; Dörner, R.; Schmidt, L. Ph H.; Schmidt-Böcking, H.; Stiebing, K. E.

    2015-11-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections.

  10. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M. )

    1994-10-10

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  11. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M.

    1993-11-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  12. Pixel detectors for diffraction-limited storage rings.

    PubMed

    Denes, Peter; Schmitt, Bernd

    2014-09-01

    Dramatic advances in synchrotron radiation sources produce ever-brighter beams of X-rays, but those advances can only be used if there is a corresponding improvement in X-ray detectors. With the advent of storage ring sources capable of being diffraction-limited (down to a certain wavelength), advances in detector speed, dynamic range and functionality is required. While many of these improvements in detector capabilities are being pursued now, the orders-of-magnitude increases in brightness of diffraction-limited storage ring sources will require challenging non-incremental advances in detectors. This article summarizes the current state of the art, developments underway worldwide, and challenges that diffraction-limited storage ring sources present for detectors.

  13. Laser Assisted Emittance Transfer for Storage Ring Lasing

    SciTech Connect

    Xiang, Dao; /SLAC

    2011-06-01

    In modern storage rings the transverse emittance of electron beams can be comparable to that from state-of-art photoinjectors, but the intrinsic low peak current and large energy spread pre-cludes the possibility of realizing short-wavelength high-gain free electron lasers (FELs) in storage rings. In this note I propose a technique to significantly increase beam peak current without greatly increasing beam energy spread, which is achieved by transferring part of the longitudinal emittance to transverse plane. It is shown that by properly repartitioning the emittance in 6-D phase space, the beam from a large storage ring may be used to drive a single-pass high-gain FEL in soft x-ray wavelength range.

  14. Impedance Calculation and Verification in Storage Rings

    SciTech Connect

    Bane, K.

    2005-01-31

    For both the SLC damping rings and the DAPHNE collider a systematic approach to understanding single bunch, longitudinal, current dependent behavior was taken: First, using a bunch significantly shorter than nominal, a careful calculation of the wakefield of the entire vacuum chamber was obtained. This ''pseudo-Green'' function was then used in bunch lengthening and instability calculations. We review, for both projects, the history of these calculations and comparisons with measurement.

  15. High intensity muon storage rings for neutrino production: Lattice design

    SciTech Connect

    Johnstone, C>

    1998-05-01

    Five energies, 250, 100, 50, 20, and 10 GeV, have been explored in the design of a muon storage ring for neutrino-beam production. The ring design incorporates exceptionally long straight sections with large beta functions in order to produce an intense, parallel neutrino beam via muon decay. To emphasize compactness and reduce the number of muon decays in the arcs, high-field superconducting dipoles are used in the arc design.

  16. [Immobilization of the fractured patella by an embracing ring device].

    PubMed

    Zhou, Z; Zang, H; Li, H

    1990-06-01

    48 cases of fractured patella treated by embracing ring device from 1976-1988 were reported. Among the group, there were 31 males and 17 females, aged 20-80 years. The types of fractures were transverse 28 cases, comminuted 8 cases, fissure or stellate 12 cases; closed 43 cases, opened 5 cases. The methods were adopted, namely: (1) Simple immobilization with embracing ring device. (2) Cylinder plaster cast combined with embracing ring device. (3) Open-reduction with internal fixation combined with embracing ring device. According to the holistic concept the authors adopted both external and topical application of paste to relieve local swelling and oral administration of traditional Chinese medicine. After bone-union the embracing ring device was removed in conjunction with external lotion and active exercises. The 48 cases were followed up ranging from 5 months to 6 years. Satisfactory results were obtained in 41 cases (85.42%). Finally the authors emphasized that the preservation of patella plays an important role in maintaining the extensor mechanism of the knee from physiological and biomechanic views, if the articular surface can be perfectly restored. The nature of embracing ring device and related problems were also discussed.

  17. Mechanical energy storage device for hip disarticulation

    NASA Technical Reports Server (NTRS)

    Vallotton, W. C. (Inventor)

    1977-01-01

    An artificial leg including a trunk socket, a thigh section hingedly coupled to the trunk socket, a leg section hingedly coupled to the thigh section and a foot section hingedly coupled to the leg section is outlined. A mechanical energy storage device is operatively associated with the artificial leg for storage and release of energy during the normal walking stride of the user. Energy is stored in the mechanical energy storage device during a weight-bearing phase of the walking stride when the user's weight is on the artificial leg. Energy is released during a phase of the normal walking stride, when the user's weight is removed from the artificial leg. The stored energy is released from the energy storage device to pivot the thigh section forwardly about the hinged coupling to the trunk socket.

  18. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    NASA Astrophysics Data System (ADS)

    Ehrlichman, M. P.

    2016-04-01

    A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  19. Pion Production and Entropy Experiments at Storage Rings

    SciTech Connect

    Jakobsson, B.; CHIC Collaboration

    2000-12-31

    The perspective for future experiments with large detector systems at storage rings, operating in slow ramping mode, is discussed. Data from slow ramping proton-nucleus and heavy ion collision experiments with more modest detector systems, on entropy estimation and charged pion emission from the absolute threshold to the energy region dominated by delta production, are presented and discussed.

  20. Multiple Coulomb ordered strings of ions in a storage ring.

    PubMed

    Hasse, R W

    2001-04-01

    We explain that the anomalous frequency shifts of very close masses obtained in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other are captured into a single string if their thermal clouds overlap and give up their identity.

  1. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  2. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  3. Anomalous Hollow Electron Beams in a Storage Ring

    SciTech Connect

    Wu, Y.K.

    2005-04-12

    This paper reports the first observations of an anomalous hollow electron beam in the Duke storage ring. Created by exciting the single bunch beam in a lattice with a negative chromaticity, the hollow beam consists of a solid core inside and a large ring outside. We report the detailed measurements of the hollow beam phenomenon, including its distinct image pattern, spectrum signature, and its evolution with time. By capturing the post-instability bursting beam, the hollow beam is a unique model system for studying the transverse instabilities, in particular, the interplay of the wake field and the lattice nonlinearity. In addition, the hollow beam can be used as a powerful tool to study the linear and nonlinear particle dynamics in the storage ring.

  4. LiH thermal energy storage device

    DOEpatents

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  5. A biometric access personal optical storage device

    NASA Astrophysics Data System (ADS)

    Davies, David H.; Ray, Steve; Gurkowski, Mark; Lee, Lane

    2007-01-01

    A portable USB2.0 personal storage device that uses built-in encryption and allows data access through biometric scanning of a finger print is described. Biometric image derived templates are stored on the removable 32 mm write once (WO) media. The encrypted templates travel with the disc and allow access to the data providing the biometric feature (e.g. the finger itself) is present. The device also allows for export and import of the templates under secure key exchange protocols. The storage system is built around the small form factor optical engine that uses a tilt arm rotary actuator and front surface media.

  6. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  7. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  8. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A medical image storage device is a device that provides electronic storage and retrieval..., and digital memory. (b) Classification. Class I (general controls). The device is exempt from...

  9. Overall design concepts for the APS storage ring machine protection system

    SciTech Connect

    Lumpkin, A.; Fuja, R.; Votaw, A.; Wang, X.; Shu, D.; Stepp, J.; Arnold, N.; Nawrocki, G.; Decker, G.; Chung, Y.

    1995-07-01

    The basic design and status of the machine protection system for the Advanced Photon Source (APS) storage ring are discussed. The machine is passively safe to the bending magnet sources, but the high power of the insertion devices requires missteering conditions to be identified and the beam aborted in less than one millisecond. The basic aspects of waterflow, temperature, beam position, etc. monitoring are addressed. Initial commissioning of subsystems and sensors is statused.

  10. Engineered nanomembranes for smart energy storage devices.

    PubMed

    Wang, Xianfu; Chen, Yu; Schmidt, Oliver G; Yan, Chenglin

    2016-03-01

    Engineered nanomembranes are of great interest not only for large-scale energy storage devices, but also for on-chip energy storage integrated microdevices (such as microbatteries, microsupercapacitors, on-chip capacitors, etc.) because of their large active surfaces for electrochemical reactions, shortened paths for fast ion diffusion, and easy engineering for microdevice applications. In addition, engineered nanomembranes provide a lab-on-chip electrochemical device platform for probing the correlations of electrode structure, electrical/ionic conductivity, and electrochemical kinetics with device performance. This review focuses on the recent progress in engineered nanomembranes including tubular nanomembranes and planar nanomembranes, with the aim to provide a systematic summary of their fabrication, modification, and energy storage applications in lithium-ion batteries, lithium-oxygen batteries, on-chip electrostatic capacitors and micro-supercapacitors. A comprehensive understanding of the relationship between engineered nanomembranes and electrochemical properties of lithium ion storage with engineered single-tube microbatteries is given, and the flexibility and transparency of micro-supercapacitors is also discussed. Remarks on challenges and perspectives related to engineered nanomembranes for the further development of energy storage applications conclude this review.

  11. High heat-load absorbers for the APS storage ring

    SciTech Connect

    Sharma, S.; Rotela, E.; Barcikowski, A.

    2000-07-21

    The power density of the dipole x-rays in the 7-GeV APS storage ring is 261 watts/mrad at 300 mA of beam current. An array of absorbers is used in the ring to shield its vacuum chambers and diagnostics components in the path of these intense x-rays. This paper describes some of the unique absorber designs that were developed to handle the requirements of high power density and UHV compatibility with no water-to-vacuum joints.

  12. The KACST Heavy-Ion Electrostatic Storage Ring

    SciTech Connect

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-27

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  13. Progress of the commissioning of the DELTA storage ring FEL facility

    SciTech Connect

    Noelle, D.; Geisler, A.; Ridder, M.

    1995-12-31

    This paper will present the status of the ongoing commissioning of the DELTA storage-ring FEL facility. The commissioning of the LINAC started in autumn `94. The operation of the booster started in spring `95, the first stored beam was achieved end of march `95. During the summer of `95 the commissioning of the main storage ring will be started. Simultaneously, the first FEL FELICTA I was built. All FEL hardware is in house, the undulator is already mounted in the storage-ring. Thus first operation of the undulator with electron beam, will take place immediately after the first stored beam in DELTA. Therefore, first spontanous photons are to be expected in late summer `95. As soon as DELTA provides stable and rather reliable operation the experiments on FELICITA I will start. 16 mA total average current in DELTA at 500 MeV should be sufficient to reach the laser threshold in the FEL mode of FELICITA I. Operating the device as an optical klystron should result in lasing at substantial less currents.

  14. Injection issues of electron-positron storage rings

    SciTech Connect

    Seeman, J.T.

    1992-09-01

    The general issues of injection into e{sup +}e{sup {minus}} colliders are discussed using results from several storage rings. observations from these colliders indicate that the starting conditions and duration of each fill are often different Consequently, it is shown that the optimum storage time is expected to be about twice as long as that expected from simple-uniform filling cycles. Injection parameters for several proposed B-Factories are listed. Finally, the concept of continuous filling (injection transparent collisions) is explored which suggests that a factor of 4.5 to 6 increase in integrated luminosity may be achievable.

  15. Ground vibration model studies for APS storage ring

    SciTech Connect

    Koul, R.K.

    1994-07-01

    An analytical ground vibration model is developed for study of the vibration effects on the beam motion in the Advanced Photon Source (APS) storage ring. The different physical parameters associated with the wave characteristics and the vibration modes needed for the study are taken from the vibration studies carried out at the APS site. The implementation has been carried out using Mathematica{trademark}. The study is carried out for the frequency range 1--35 Hz, with a number of sources changing from one through ten. The program written in Mathematica{trademark}, calculates orbit distortion, beta wave change, tune change, dispersion change, and chromaticity change. However, the main parameter studied for the APS storage ring has been the orbit distortion. The merit factor associated with different modes excited by the vibrations has been calculated.

  16. The Storage Ring Magnets of the Australian Synchrotron

    SciTech Connect

    Barg, B.; Jackson, A.; LeBlanc, G.; Huttel, E.; Tanabe, J.; /SLAC

    2005-05-11

    A 3 GeV Synchrotron Radiation Source is being built in Melbourne, Australia. Commissioning is foreseen in 2006. The Storage ring has a circumference of 216 m and has a 14 fold DBA structure. For the storage ring the following magnets will be installed: 28 dipoles with a field of 1.3 T, and a gradient of 3.35 T/m; 56 quadrupoles with a gradient of 18 T/m and 28 with a gradient of 10 T/m; 56 sextupoles with a strength of B'' = 350 T/m and 42 with 150 T/m. The sextupoles are equipped with additional coils for horizontal and vertical steering and for a skew quadrupole. The pole profile was determined by scaling the pole profile of the SPEAR magnets [1] to the aperture of the ASP magnets. The magnets are to be supplied by Buckley Systems Ltd in Auckland, New Zealand.

  17. Stabilization of betatron tune in Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Saroj, Jena; Yadav, S.; K. Agrawal, R.; D. Ghodke, A.; Pravin, Fatnani; A. Puntambekar, T.

    2014-06-01

    Indus-2 is a synchrotron radiation source that is operational at RRCAT, Indore, India. It is essentially pertinent in any synchrotron radiation facility to store the electron beam without beam loss. During the day to day operation of Indus-2 storage ring, difficulty was being faced in accumulating higher beam current. After examination, it was found that the working point was shifting from its desired value during accumulation. For smooth beam accumulation, a fixed desired tune in both horizontal and vertical plane plays a significant role in avoiding beam loss via the resonance process. This required a betatron tune feedback system to be put in the storage ring. After putting ON this feedback, the beam accumulation was smooth. The details of this feedback and its working principle are described in this paper.

  18. 40-{angstrom} FEL designs for the PEP storage ring

    SciTech Connect

    Fisher, A.S.; Gallardo, J.C.; Nuhn, H.D.; Tatchyn, R.; Winick, H.; Pellegrini, C.

    1991-12-31

    We explore the use of the 2.2-km PEP storage ring at SLAC to drive a 40-{Angstrom} free-electron laser in the self-amplified spontaneous emission configuration. Various combinations for electron-beam and undulator parameters, as well as special undulator designs, are discussed. Saturation and high peak, in-band, coherent power (460 MW) are possible with a 67-m, hybrid permanent-magnet undulator in a ring bypass. A 100-m, cusp-field undulator can achieve high average, in-band, coherent power (0.25 W) in the main ring. The existing, 25.6-m, Paladin undulator at LLNL, with the addition of optical-klystron dispersive sections, is considered for both peak and average power. 35 refs., 4 figs., 1 tab.

  19. 40- angstrom FEL designs for the PEP storage ring

    SciTech Connect

    Fisher, A.S.; Gallardo, J.C. ); Nuhn, H.D.; Tatchyn, R.; Winick, H. . Stanford Synchrotron Radiation Lab.); Pellegrini, C. . Dept. of Physics)

    1991-01-01

    We explore the use of the 2.2-km PEP storage ring at SLAC to drive a 40-{Angstrom} free-electron laser in the self-amplified spontaneous emission configuration. Various combinations for electron-beam and undulator parameters, as well as special undulator designs, are discussed. Saturation and high peak, in-band, coherent power (460 MW) are possible with a 67-m, hybrid permanent-magnet undulator in a ring bypass. A 100-m, cusp-field undulator can achieve high average, in-band, coherent power (0.25 W) in the main ring. The existing, 25.6-m, Paladin undulator at LLNL, with the addition of optical-klystron dispersive sections, is considered for both peak and average power. 35 refs., 4 figs., 1 tab.

  20. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  1. The status of the Storage Ring EDM experiment

    SciTech Connect

    Semertzidis, Yannis K.

    2009-12-17

    The status of the storage ring experiment capable of probing the proton and deuteron EDM at the 10{sup -29} e.cm level is presented here. At this level it will be sensitive to a new physics mass scale of {approx}300 TeV. If there is new physics at the LHC, it will be sensitive to 10{mu}rad CP-violating phase level making it the most sensitive experiment for CP-violation beyond the SM.

  2. Electrostatic storage rings for atomic and molecular physics

    NASA Astrophysics Data System (ADS)

    Schmidt, H. T.

    2015-11-01

    A significant number of electrostatic ion-storage rings have been built since the late 1990s or are currently in their construction or commisioning phases. In this short contribution, we attempt to supply an overview of these different facilities, while we also mention a selection of the electrostatic ion-beam traps that has been developed through the same time period and by some of the same research groups.

  3. Storage Ring Based EDM Search — Achievements and Goals

    NASA Astrophysics Data System (ADS)

    Lehrach, Andreas

    2016-02-01

    This paper summarizes the experimental achievements of the JEDI (Jülich Electric Dipole moment Investigations) Collaboration to exploit and demonstrate the feasibility of charged particle Electric Dipole Moment searches with storage rings at the Cooler Synchrotron COSY of the Forschungszentrum Jülich. Recent experimental results, design and optimization of critical accelerator elements, progress in beam and spin tracking, and future goals of the R & D program at COSY are presented.

  4. A new method for beam stacking in storage rings

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2008-06-01

    Recently, I developed a new beam stacking scheme for synchrotron storage rings called 'longitudinal phase-space coating' (LPSC). This scheme has been convincingly validated by multi-particle beam dynamics simulations and has been demonstrated with beam experiments at the Fermilab Recycler. Here, I present the results from both simulations and experiments. The beam stacking scheme presented here is the first of its kind.

  5. PRELIMINARY IMPEDANCE BUDGET FOR NSLS-II STORAGE RING.

    SciTech Connect

    BLEDNYKH,A.; KRINSKY, S.

    2007-06-25

    The wakefield and impedance produced by the components of the NSLS-II storage ring have been computed for an electron bunch length of 3mm rms. The results are summarized in a table giving for each component, the loss factor ({kappa}{sub {parallel}}), the imaginary part of the longitudinal impedance at low frequency divided by the revolution harmonic (ImZ{sub {parallel}}/n), and the transverse kick factors ({kappa}{sub x}, {kappa}{sub y}).

  6. Sub-nm emittance lattice design for CANDLE storage ring

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Zanyan, G.; Sahakyan, V.; Tsakanov, V.

    2016-10-01

    The most effective way to increase the brilliance of synchrotron light sources is the reduction of beam emittance. Following the recent developments in low emittance lattice design, a new sub-nm emittance lattice based on implementation of multi-band achromat concept and application of longitudinal gradient bending magnets was developed for CANDLE storage ring. The paper presents the main design considerations, linear and non-linear beam dynamics aspects of the new lattice proposed.

  7. RF stations of the SPring-8 storage ring

    NASA Astrophysics Data System (ADS)

    Hara, M.; Ego, H.; Kawashima, Y.; Ohashi, Y.; Ohshima, T.; Takashima, T.

    1997-05-01

    Construction of three RF stations in the storage ring of SPring-8 has been completed. Twenty four single-cell cavities of which inside dimensions are trimmed completely systematically were installed in the storage ring. A group of eight single-cell cavities as a component of the storage ring is occupied in an RF station. A series of processes such as installation of couplers, evacuation, baking and connection of waveguides were carried out. Three klystrons and their power equipments were also installed. Low power control system which includes tuner control, feedback such as phase lock loop and keeping voltage in a cavity constant was constructed and tuned. From August to December in 1996, high power test up to 800 kW were carried out in each RF station without serious trouble and particularly it was verified that water cooling system for cavity could keep the water temperature in the range of 29.89 to 30.15 degrees. But some bugs on klystron power equipments were found. We report on the construction processes and the results of high power test.

  8. A transverse electron target for heavy ion storage rings

    SciTech Connect

    Geyer, Sabrina Meusel, Oliver; Kester, Oliver

    2015-01-09

    Electron-ion interaction processes are of fundamental interest for several research fields like atomic and astrophysics as well as plasma applications. To address this topic, a transverse electron target based on the crossed beam technique was designed and constructed for the application in storage rings. Using a sheet beam of free electrons in crossed beam geometry promises a good energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width in the transverse plane of 5 mm. Therewith, electron densities of up to 10{sup 9} electrons/cm{sup 3} are reachable in the interaction region. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV to a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions and its influence on spectroscopic measurements. Also, the effect on ion-beam optics due to the space charge of the electron beam was investigated. Presently the electron target is integrated into a test bench to evaluate its performance for its dedicated installation at the storage rings of the FAIR facility. Therefore, optical diagnostics of the interaction region and charge state analysis with a magnetic spectrometer is used. Subsequently, the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements.

  9. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image storage device. 892.2010 Section 892.2010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device....

  10. Blood storage device and method for oxygen removal

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    2000-01-01

    The present invention relates to a storage device and method for the long-term storage of blood and, more particularly, to a blood storage device and method capable of removing oxygen from the stored blood and thereby prolonging the storage life of the deoxygenated blood.

  11. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  12. Measurements of the electron cloud in the APS storage ring.

    SciTech Connect

    Harkey, K. C.

    1999-04-16

    Synchrotron radiation interacting with the vacuum chamber walls in a storage ring produce photoelectrons that can be accelerated by the beam, acquiring sufficient energy to produce secondary electrons in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, as is the case with the aluminum chambers in the Advanced Photon Source (APS) storage ring, a runaway condition can develop. As the electron cloud builds up along a train of stored positron or electron bunches, the possibility exists that a transverse perturbation of the head bunch will be communicated to trailing bunches due to interaction with the cloud. In order to characterize the electron cloud, a special vacuum chamber was built and inserted into the ring. The chamber contains 10 rudimentary electron-energy analyzers, as well as three targets coated with different materials. Measurements show that the intensity and electron energy distribution are highly dependent on the temporal spacing between adjacent bunches and the amount of current contained in each bunch. Furthermore, measurements using the different targets are consistent with what would be expected based on the SEY of the coatings. Data for both positron and electron beams are presented.

  13. Grazing-incidence monochromator for the 15--800 A wavelength range at the storage ring VEPP-2M

    SciTech Connect

    Gluskin, E. S.; Kuzminykh, V. S.; Trakhtenberg, E. M.; Koscheev, S. V.; Devyatov, V. G.; Cherkashin, A. E.; Blau, W.; Meisel, A.; Ehrhardt, H.

    1989-07-01

    A new Rowland monochromator with a fixed output slit, which operates according to the grazing-incidence scheme, is described. The device is notable for the capability to change the Rowland radius within 1--3 m. The monochromator was tested using synchrotron radiation from the storage ring VEPP-2M.

  14. Beam Loss Monitors for NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  15. Development of nanocomposites for energy storage devices

    NASA Astrophysics Data System (ADS)

    Khan, Md. Ashiqur Rahaman

    With the ever-increasing need in improving the performance and operation life of future mobile devices, developing higher power density energy storage devices has been receiving more attention. Lithium ion battery (LIB) and capacitor are two of the most widely used energy storage devices and have attracted increasing interest from both industrial and academic fields. Batteries have higher power density than capacitor but significantly longer charge/discharge rates. In order to further improve the performance of these energy storage devices, one of the approaches is to use high specific surface area nano-materials. Among all the nano-materials developed so far, one-dimensional nanowires are of special interests because of their high surface-to-volume ratio and aligned pathway for electron diffusion and conduction. Therefore, in this thesis work, zinc oxide nanowires are implemented as an anode along with carbon fiber/graphene to increase the performance of LIB while lead titanate nanowires are used to improve the energy density of capacitors. For batteries, zinc oxide nanowires are grown on carbon cloth by low temperature hydrothermal method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to analyze morphology and crystal structures of samples. The performances of LIB using zinc oxide nanowire coated carbon cloth and bare carbon cloth are compared to show the improvement induced by zinc oxide nanowires. For capacitors, lead titanate (PTO) nanowires are used with Polyvinylidene fluoride (PVDF) to make nanocomposites of high dielectric constants. Lead titanate nanowires are synthesized by low temperature hydrothermal method. XRD and SEM are used to analyze as synthesized nanowires. Different volume fraction of PTO nanowires is used with PVDF to make dielectric for capacitor. Dielectric constant and breakdown voltage at variable frequency are determined to calculate energy density and specific energy density. The influence of temperature on

  16. The double electrostatic ion ring experiment: a unique cryogenic electrostatic storage ring for merged ion-beams studies.

    PubMed

    Thomas, R D; Schmidt, H T; Andler, G; Björkhage, M; Blom, M; Brännholm, L; Bäckström, E; Danared, H; Das, S; Haag, N; Halldén, P; Hellberg, F; Holm, A I S; Johansson, H A B; Källberg, A; Källersjö, G; Larsson, M; Leontein, S; Liljeby, L; Löfgren, P; Malm, B; Mannervik, S; Masuda, M; Misra, D; Orbán, A; Paál, A; Reinhed, P; Rensfelt, K-G; Rosén, S; Schmidt, K; Seitz, F; Simonsson, A; Weimer, J; Zettergren, H; Cederquist, H

    2011-06-01

    We describe the design of a novel type of storage device currently under construction at Stockholm University, Sweden, using purely electrostatic focussing and deflection elements, in which ion beams of opposite charges are confined under extreme high vacuum cryogenic conditions in separate "rings" and merged over a common straight section. The construction of this double electrostatic ion ring experiment uniquely allows for studies of interactions between cations and anions at low and well-defined internal temperatures and centre-of-mass collision energies down to about 10 K and 10 meV, respectively. Position sensitive multi-hit detector systems have been extensively tested and proven to work in cryogenic environments and these will be used to measure correlations between reaction products in, for example, electron-transfer processes. The technical advantages of using purely electrostatic ion storage devices over magnetic ones are many, but the most relevant are: electrostatic elements which are more compact and easier to construct; remanent fields, hysteresis, and eddy-currents, which are of concern in magnetic devices, are no longer relevant; and electrical fields required to control the orbit of the ions are not only much easier to create and control than the corresponding magnetic fields, they also set no upper mass limit on the ions that can be stored. These technical differences are a boon to new areas of fundamental experimental research, not only in atomic and molecular physics but also in the boundaries of these fields with chemistry and biology. For examples, studies of interactions with internally cold molecular ions will be particular useful for applications in astrophysics, while studies of solvated ionic clusters will be of relevance to aeronomy and biology.

  17. Ultra Cold Photoelectron Beams for Ion Storage Rings

    SciTech Connect

    Orlov, D. A.; Krantz, C.; Shornikov, A.; Lestinsky, M.; Hoffmann, J.; Wolf, A.; Jaroshevich, A. S.; Kosolobov, S. N.; Terekhov, A. S.

    2009-08-04

    An ultra cold electron target with a cryogenic GaAs photocathode source, developed for the Heidelberg TSR, delivers electron currents up to a few mA with typical kinetic energies of few keV and provides unprecedented energy resolution below 1 meV for electron-ion recombination merged-beam experiments. For the new generation of low-energy electrostatic storage rings, cold electron beams from a photocathode source can bring additional benefits, improving the cooling efficiency of stored ions and making it possible to cool even heavy, slow molecules by electron beams of energies of only a few eV or even below.

  18. 60 HZ beam motion reduction at NSLS UV storage ring

    SciTech Connect

    Singh, O.V.

    1997-01-01

    A significant reduction in 60 hz beam motion has been achieved in the UV storage ring. From the wide band harmonic beam motion signal, 60 hz signal is extracted by tuned bandpass filter. This signal is processed by the phase and amplitude adjustment circuits and then, it is fed into the harmonic orbit generation circuits. Several harmonics, near the tune, were canceled by employing one circuit for each harmonic. The design and description of this experiment is given in this paper. The results showing reduction in beam motion at 60 hz are also provided.

  19. Analysis ob beam losses at PSR (Proton Storage Ring)

    SciTech Connect

    Macek, R.J.; Fitzgerald, D.H.; Hutson, R.L.; Plum, M.A.; Thiessen, H.A.

    1988-01-01

    Beam losses and the resulting component activation at the Los Alamos Proton Storage Ring (PSR) have limited operating currents to about 30..mu..A average at a repetition rate of 15 Hz. Loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. Calculations and simulations of the losses are in reasonable agreement with measurements.

  20. Optical distortions in electron/positron storage rings

    SciTech Connect

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine.

  1. Measurement of electric dipole moments at storage rings

    NASA Astrophysics Data System (ADS)

    Jörg Pretz JEDI Collaboration

    2015-11-01

    The electric dipole moment (EDM) is a fundamental property of a particle, like mass, charge and magnetic moment. What makes this property in particular interesting is the fact that a fundamental particle can only acquire an EDM via {P} and {T} violating processes. EDM measurements contribute to the understanding of the matter over anti-matter dominance in the universe, a question closely related to the violation of fundamental symmetries. Up to now measurements of EDMs have concentrated on neutral particles. Charged particle EDMs can be measured at storage ring. Plans at Forschungszentrum Jülich and results of first test measurements at the COoler SYnchrotron COSY will be presented.

  2. Status of NSLS-II Storage Ring Vacuum Systems

    SciTech Connect

    Doom,L.; Hseuh,H.; Ferreira, M.; Longo, C.; Ravindranath, V.; Settepani, P.; Sharma, S.; Wilson, K.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  3. Geometric phase of atoms in a magnetic storage ring

    SciTech Connect

    Zhang, P.; You, L.

    2006-12-15

    A magnetically trapped atom experiences an adiabatic geometric (Berry's) phase due to changing field direction. We investigate theoretically such an Aharonov-Bohm-like geometric phase for atoms adiabatically moving inside a storage ring as demonstrated in several recent experiments. Our result shows that this phase shift is easily observable in a closed-loop interference experiment, and thus the shift has to be accounted for in the proposed inertial sensing applications. The spread in phase shift due to the atom transverse distribution is quantified through numerical simulations.

  4. Storage-ring experiments on dielectronic recombination at the interface of atomic and nuclear physics

    NASA Astrophysics Data System (ADS)

    Brandau, Carsten; Kozhuharov, Christophor; Lestinsky, Michael; Müller, Alfred; Schippers, Stefan; Stöhlker, Thomas

    2015-11-01

    A brief review about topical developments in the exploitation of the resonant electron-ion collision process of dielectronic recombination (DR) as a sensitive spectroscopic tool is given. The focus will be on DR storage-ring experiments of few-electron highly charged ions. Among others, the questions addressed in these studies cover diverse topics from the areas of strong-field quantum electrodynamics, of lifetime studies using DR resonances, and of nuclear physics. Examples from the storage rings CRYRING in Stockholm, TSR in Heidelberg, and ESR in Darmstadt are given. In addition, an overview is provided about the ongoing developments and future perspectives of DR collision spectroscopy at the upcoming Facility for Antiproton and Ion Research in Darmstadt, Germany.

  5. Cooling of superconducting devices by liquid storage and refrigeration unit

    SciTech Connect

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  6. Recent results from the internal polarized deuterium target experiment at the electron storage ring VEPP-3

    SciTech Connect

    Rachek, I.A.; Arenhoevel, H.; Barkov, L.M.; Dmitriev, V.F.; Dyug, M.V.; Belostotsky, S.L.; Gilman, R.; Holt, R.J.; Isaeva, L.G.; de Jager, C.W.; Kinney, E.R.; Kowalczyk, R.S.; Lazarenko, B.A.; Loginov, A.Yu.; Mishnev, S.I.; Nelyubin, V.V.; Nikolenko, D.M.; Osipov, A.V.; Potterveld, D.H.; Shestakov, Yu.V.; Sidorov, A.A.; Stibunov, V.N.; Toporkov, D.K.; Vesnovsky, D.K.; Vikhrov, V.V.; de Vries, H.; Zevakov, S.A.

    2000-12-31

    The simplest nucleus, the deuteron, is being studied at the 2-GeV electron storage ring VEPP-3. The storage ring itself, the polarized atomic beam source, the storage cell, and the particle detectors (segmented CsI + NaI electron calorimeters and hadron scintillator hodoscopes) are briefly described. Preliminary results on T{sub 20} in elastic ed scattering are given.

  7. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING... devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  8. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING... devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  9. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING... devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  10. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING... devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  11. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING... devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  12. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  13. STRIPLINE KICKER DESIGN FOR NSLS2 STORAGE RING

    SciTech Connect

    Cheng, W.; Blednykh, A.; Krinsky, S.; Singh, O.

    2011-03-28

    In the NSLS2 storage ring, there are four stripline kickers/pickups. Two long striplines with electrode length of 30cm will be used as bunch-by-bunch transverse feedback actuators. Two short stripline kickers/pickups with 15cm length will mainly used for tune measurement excitation or signal pickup for the beam stability monitor. High shunt impedance of the long stripline kickers is demanded to produce 200 {micro}s damping time. Meanwhile the beam impedance should be minimized. The design work for these two types of stripline is discussed in this paper. NSLS2 is a third-generation light source under construction at Brookhaven National Laboratory. The machine will have < 1nm.rad horizontal emittance by using weak dipoles together with damping wigglers. For the storage ring of 792m circumference, geometric impedance, resistive wall impedance and ion effects are expected to be significant. A transverse bunch-by-bunch feedback system has been designed to suppress the coupled bunch instabilities. More information can be found in previous paper.

  14. Upgrade of BPM Electronics for the SPring-8 Storage Ring

    SciTech Connect

    Sasaki, Shigeki; Fujita, Takahiro; Shoji, Masazumi; Takashima, Takeo

    2006-11-20

    SPring-8, a 3rd generation synchrotron light source, has operated since 1997. Improvement of BPM performance is required as a part of upgrading activities of the storage ring as a light source. We have developed new electronics circuits for signal processing of the storage ring BPM, with target performance of sub-{mu}m range resolution with sufficiently fast measurement speed and good long-term stability. A set of the new circuits consists of multiplexers, an RF amplifier, a mixer, an IF amplifier, and a local oscillator for analog signal processing. The IF amplifier outputs are sampled with 16-bit 2-MSPS ADC on ADC boards and the data are sent to a DSP board. The sampled data are processed and converted to position information in the DSP. A multiplexing method was employed to have a better stability of the performance by cancellation of variation common to each channel. Evaluation of the performance by using a prototype shows that position resolution well into the sub-{mu}m range has been achieved with a bandwidth of 1 kHz, and long-term stability of within 1 {mu}m has also been achieved.

  15. Beam Loss Control for the NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Choi, J.

    2011-03-28

    The shielding design for the NSLS-II storage ring is designed for the full injected beam losses in two periods of the ring around the injection point, but for the remainder of the ring its shielded for {le} 10% top-off injection beam. This will require a system to insure that beam losses do not exceed these levels for time sufficient to cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring (LCM) system will control the beam losses to the more heavily shielded injection region while monitoring the losses outside this region. To achieve this scrapers are installed in the injection region to intercept beam particles that might be lost outside this region. The scrapers will be thin (< 1Xrad) that will allow low energy electrons to penetrate and the subsequent dipole will separate them from the stored beam. These thin scrapers will reduce the radiation from the scraper compared to thicker scrapers. The dipole will provide significant local shielding for particles that hit inside the gap and a source for the loss monitor system that will measure the amount of beam lost in the injection region.

  16. Safe operating conditions for NSLS-II Storage Ring Frontends commissioning

    SciTech Connect

    Seletskiy, S.; Amundsen, C.; Ha, K.; Hussein, A.

    2015-04-02

    The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.

  17. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  18. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  19. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S.; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2016-04-26

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  20. Elastomeric member for energy storage device

    DOEpatents

    Hoppie, Lyle O.; Chute, Richard

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

  1. Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case

    NASA Astrophysics Data System (ADS)

    Anderson, B. P.; Dholakia, K.; Wright, E. M.

    2003-03-01

    We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-phase interference device (APHID). The two-ring APHID is shown to be sensitive to rotation.

  2. Klystron 'efficiency loop' for the ALS storage ring RF system

    SciTech Connect

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-05-20

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron.

  3. Radiative polarization in high-energy storage rings

    SciTech Connect

    Mane, S.R.

    1989-03-01

    Electron and positron beams circulating in high-energy storage rings become spontaneously polarized by the emission of synchrotron radiation. The asymptotic degree of polarization that can be attained is strongly affected by so-called depolarizing resonances. Detailed experimental measurements of the polarization were made SPEAR about ten years ago, but due to lack of a suitable theory only a limited theoretical fit to the data has so far been achieved. I present a general formalism for calculating depolarizing resonances, which as been coded into a computer program called SMILE, and use it to fit the SPEAR data. By the use of suitable approximations, I am able to fit both higher order and nonlinear resonances, and thereby to interpret many hitherto unexplained features in the data, and to resolve a puzzle concerning the asymmetry of certain resonance widths seen in the data. 18 refs., 2 figs.

  4. Impedance Calculations for the NSLS-II Storage Rings

    SciTech Connect

    Blednykh,A.; Ferreira, M.; Krinsky, S.

    2009-05-04

    Impedance of two vacuum chamber components, Bellows and BPM, is considered in some detail. In order to avoid generation of Higher-Order Modes (HOM's) in the NSLS-II bellows, we designed a new low-impedance RF shielding consisting of 6 wide and 2 narrow metal plates without opening slots between them. The short-range wakepotential has been optimized taking into account vertical offset of RF fingers from their nominal position. The results were compared with data of bellows designed at other laboratories. Narrow-band impedance of the BPM Button has been studied. TE-modes in the BPM button were suppressed by a factor of 8 by modification of existing housings. Two new types of housings are shown. The total impedance of the NSLS-II storage ring is discussed in terms of the loss factor and the vertical kick factor for a 3mm-Gaussian bunch.

  5. Incoherent effects of electron clouds in proton storage rings.

    PubMed

    Benedetto, E; Franchetti, G; Zimmermann, F

    2006-07-21

    Electron clouds in the beam pipe of high-energy proton or positron storage rings can give rise to significant incoherent emittance growth, at densities far below the coherent-instability threshold. We identify two responsible mechanisms: namely, (1) a beam particle periodically crosses a resonance and (2) a beam particle periodically crosses a region of the bunch where its motion is linearly unstable. Formation of halo or beam-core blow up, respectively, are the result. Key ingredients for both processes are synchrotron motion and electron-induced tune shift. The mechanisms considered provide a possible explanation for reduced beam lifetime and emittance growth observed at several operating accelerators. Similar phenomena are likely to occur in other two-stream systems.

  6. High gradient quadrupoles for low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Le Bec, G.; Chavanne, J.; Benabderrahmane, C.; Farvacque, L.; Goirand, L.; Liuzzo, S.; Raimondi, P.; Villar, F.

    2016-05-01

    High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100 T /m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  7. Storage ring two-color free-electron laser

    NASA Astrophysics Data System (ADS)

    Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.; Günster, S.; Wu, Y. K.

    2016-07-01

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradation of FEL mirrors on the two-color FEL operation is reported. Furthermore, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.

  8. A Linear Theory of Microwave Instability in Electron Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2011-07-06

    The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in electron storage rings below a threshold current. Yet, how to accurately determine this threshold, above which the Haissinski distribution becomes unstable, is not firmly established in theory. In this paper, we will show how to apply the Laguerre polynomials in an analysis of this stability that are associated with the potential-well distortion. Our approach provides an alternative to the discretization method proposed by Oide and Yokoya. Moreover, it reestablishes an essential connection to the theory of mode coupling originated by Sacherer. Our new and self-consistent method is applied to study the microwave instability driven by commonly known impedances, including coherent synchrotron radiation in free space.

  9. Spin Motion and Resonances in Accelerators and Storage Rings

    SciTech Connect

    Courant,E.

    2008-01-01

    Some of the basic aspects of the spin dynamics of accelerators and storage rings are reviewed. Since the components of spin parallel and perpendicular to the particle velocity behave differently it is desirable to reformulate the equations of spin motion in a frame of reference that exhibits this difference explicitly. The conventional treatment employs a coordinate system derived from a reference orbit. An alternate coordinate system, based on the actual trajectory of the particle, leads to simplified equations of spin motion but, contrary to a conjecture presented in a previous note, resonance strengths calculated by the conventional and the revised formalisms are identical, as pointed out by Kondratenko. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  10. Electron clearing in the Los Alamos Proton Storage Ring

    SciTech Connect

    Plum, M.A.; Allen, J.; Borden, M.J.; Fitzgerald, D.H.; Macek, R.J.; Wang, T.S.

    1995-05-01

    The instability observed in the Los Alamos Proton Storage Ring (PSR) has been tentatively identified as an electron-proton instability. A source of electrons must exist for this instability to occur. The PSR injection section contains the stripper foil, and therefore provides several strong sources of electrons. An electron clearing system was installed in the injection section to clear out these electrons. The system comprised: (1) a foil biasing system to clear the SEM and thermionic electrons, (2) a pair of low-field bending magnets with a Faraday cup to clear the convoy electrons, and (3) two pairs of clearing electrodes, one upstream and one downstream of the stripper foil, to clear the remaining electrons. This paper discusses the design and performance of the Electron Clearing System, and its effect on the instability. Also presented are some results from other charge-collection experiments that suggest there is also substantial electron production in parts of the ring other than the injection section.

  11. Proceedings of the workshop on polarized targets in storage rings

    SciTech Connect

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  12. Multidimensional materials and device architectures for future hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  13. Multidimensional materials and device architectures for future hybrid energy storage

    DOE PAGES

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-07

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  14. Efficient micromagnetics for magnetic storage devices

    NASA Astrophysics Data System (ADS)

    Escobar Acevedo, Marco Antonio

    Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.

  15. Scientific potential and design considerations for an undulator beam line on Aladdin storage ring

    SciTech Connect

    Arko, A. J.; Bader, S. D.; Dehmer, Joseph L.; Kim, S. H.; Knapp, G. S.; Shenoy, G. K.; Veal, B. W.; Young, C. E.; Brown, F. C.; Weaver, J. W.

    1985-04-08

    The unique features of undulator radiation, i.e., high photon flux and brightness, partial coherence, small beam divergence, spectral tunability, etc., mandate that undulators be included in the future plans for Aladdin. This will make it possible to perform the next generation of experiments in photon-stimulated spectroscopies. A team of scientists (see Appendix) has now been assembled to build an insertion device (ID) and the associated beam line at Aladdin. In considering the specifications for the ID, it was assumed that the ID beamline will be an SRC user facility. Consequently, design parameters were chosen with the intent of maximizing experimental flexibility consistent with a conservative design approach. A tunable ''clamshell'' undulator device was Chosen with a first harmonic tunable from 35 to 110 eV to operate on a 1 GeV storage ring. Higher harmonics will be utilized for experiments needing higher photon energies.

  16. Recent developments in measurement and tracking of the APS storage ring beam emittance

    NASA Astrophysics Data System (ADS)

    Yang, Bingxin; Lumpkin, Alex H.; Emery, Louis; Borland, Michael

    2000-11-01

    The x-ray pinhole camera is used at the APS storage ring to measure the beam emittance. The measured data are archived during user operation. At 1 Hz bandwidth, we have achieved better than 1 μm stability in the measured horizontal beam size, typically of 143 μm, corresponding to 8 nmṡrad. During user runs, beam size variations up to 2.5 μm were observed (corresponding to emittance variations of 0.4 nmṡrad), which were strongly correlated and attributed to the variation of electron energy loss in the insertion devices. In other words, the user-initiated insertion device gap changes are the major factor in observed beam emittance variations during user runs.

  17. Compton backscattering of intracavity storage ring free-electron laser radiation

    SciTech Connect

    Dattoli, G.; Giannessi, L.; Torre, A.

    1995-12-31

    We discuss the{gamma}-ray production by Compton backscattering of intracavity storage ring Free-Electron Laser radiation. We use a semi-analytical model which provides the build up of the signal combined with the storage ring damping mechanism and derive simple relations yielding the connection between backscattered. Photons brightness and the intercavity laser equilibrium intensity.

  18. Influence of technology on magnetic tape storage device characteristics

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.; Vogel, Stephen M.

    1994-01-01

    There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.

  19. Device For Testing Compatibility Of An O-Ring

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.

    1995-01-01

    Fixture designed for use in exposing compressed elastomeric O-ring or other ring seal to test fluid. Made of metal or plastic, with threaded recess into which O-ring placed. Opposite threaded end is opening through which test fluid introduced and placed in contact with O-ring. After exposure, compression set and swell or shrinkage of ring measured. Fixture set to compress ring by selected amount, providing for reproducible compression.

  20. Collective Effects in a Diffraction Limited Storage Ring

    SciTech Connect

    Nagaoka, Ryutaro; Bane, Karl L.F.

    2015-10-20

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a series of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.

  1. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    SciTech Connect

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  2. Long-term stability of the APS storage ring

    SciTech Connect

    Friedsam, H.; Penicka, M.; Error, J.

    1999-10-26

    The Advanced Photon Source (APS), a third-generation synchrotrons light source, was commissioned in 1995 at Argonne ''National Laboratory and has been fully-operational for beamline users since 1997. The APS storage ring can accommodate up to 68 user beamlines; about 70% of the available beamlines are currently in use by various collaborative access teams (CATS). The 7-GeV synchrotrons light source produces light in the soft to hard x-ray range that is used for research in such areas as x-ray instrumentation; material, chemical and atomic sciences; biology; and geo/soil/ environmental sciences. For the successful operation of an x-ray light source such as the Advanced Photon Source, the long-term stability of the concrete floor supporting the beam components and user beamlines is crucial. Settlements impact the orbit and location of the x-ray source points as well as the position of the x-ray beamlines. This paper compares the results of two successive resurveys of the APS accelerator components performed in 1995 and 1998.

  3. Collective Effects in a Diffraction Limited Storage Ring

    DOE PAGES

    Nagaoka, Ryutaro; Bane, Karl L.F.

    2015-10-20

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a seriesmore » of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.« less

  4. A pinger system for the Los Alamos Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Thiessen, H.A.

    1991-01-01

    Developers at the Proton Storage Ring have long desired a modulator and electrode combination capable of kicking the 800-MeV proton beam enough to conduct tune measurements with full intensity beams. At present this has been accomplished by reducing the voltage on one extraction kicker modulator and turning the other off. This method requires that all of the accumulated beam be lost on the walls of the vacuum chamber. In addition to tune measurements a more recent desire is to sweep out beam that may have leaked into the area between bunches. A four-meter electrode has been designed and constructed for the purpose. The design is flexible in that the electrode may be split in the center and rotated in order to provide vertical and horizontal electrodes each 2 meters long. In addition two solid-state pulse modulators that can provide 10kV in burst mode at up to 700 KHz have been purchased. This hardware and its intended use are described. 3 refs., 2 figs., 1 tab.

  5. Dissociative recombination of ammonia clusters studied by storage ring experiments

    SciTech Connect

    Oejekull, J.; Andersson, P. U.; Naagaard, M. B.; Pettersson, J. B. C.; Neau, A.; Rosen, S.; Thomas, R. D.; Larsson, M.; Semaniak, J.; Oesterdahl, F.; Danared, H.; Kaellberg, A.; Ugglas, M. af.

    2006-11-21

    Dissociative recombination of ammonia cluster ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for dissociative recombination of H{sup +}(NH{sub 3}){sub 2}, H{sup +}(NH{sub 3}){sub 3}, D{sup +}(ND{sub 3}){sub 2}, and D{sup +}(ND{sub 3}){sub 3} in the collision energy range of 0.001-27 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 1000 K are calculated from the experimental data and compared with earlier results. The fragmentation patterns for the two ions H{sup +}(NH{sub 3}){sub 2} and D{sup +}(ND{sub 3}){sub 2} show no clear isotope effect. Dissociative recombination of X{sup +}(NX{sub 3}){sub 2} (X=H or D) is dominated by the product channels 2NX{sub 3}+X [0.95{+-}0.02 for H{sup +}(NH{sub 3}){sub 2} and 1.00{+-}0.02 for D{sup +}(ND{sub 3}){sub 2}]. Dissociative recombination of D{sup +}(ND{sub 3}){sub 3} is dominated by the channels yielding three N-containing fragments (0.95{+-}0.05)

  6. Absolute beam energy measurements in e+e- storage rings

    NASA Astrophysics Data System (ADS)

    Placidi, M.

    1997-01-01

    The CERN Large Electron Positron collider (LEP) was dedicated to the measurement of the mass Mz and the width Γz of the Z0 resonance during the LEP1 phase which terminated in September 1995. The Storage Ring operated in Energy Scan mode during the 1993 and 1995 physics runs by choosing the beam energy Ebeam to correspond to a center-of-mass (CM) energy at the interaction points (IPs) ECMpeak±1762 MeV. After a short review of the techniques usually adopted to set and control the beam energy, this paper describes in more detail two methods adopted at LEP for precise beam energy determination that are essential to reduce the contribution to the systematic error on Mz and Γz. The positron beam momentum was initially determined at the 20-GeV injection energy by measuring the speed of a less relativistic proton beam circulating on the same orbit, taking advantage of the unique opportunity to inject two beams into the LEP at short time intervals. The positron energy at the Z0 peak was in this case derived by extrapolation. Once transverse polarization became reproducible, the Resonant Depolarization (RD) technique was implemented at the Z0 operating energies, providing a ⩽2×10-5 instantaneous accuracy. RD Beam Energy Calibration has been adopted during the LEP Energy Scan campaigns as well as in Accelerator Physics runs for accurate measurement of machine parameters.

  7. The electrostatic Cryogenic Storage Ring CSR - Mechanical concept and realization

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Berg, F.; Blaum, K.; Crespo Lopez-Urrutia, J. R.; Fellenberger, F.; Froese, M.; Grieser, M.; Krantz, C.; Kühnel, K.-U.; Lange, M.; Menk, S.; Laux, F.; Orlov, D. A.; Repnow, R.; Schröter, C. D.; Shornikov, A.; Sieber, T.; Ullrich, J.; Wolf, A.; Rappaport, M.; Zajfman, D.

    2011-12-01

    A new and technologically challenging project, the electrostatic Cryogenic Storage Ring CSR, is presently under construction at the Max-Planck-Institute for Nuclear Physics in Heidelberg. Applying liquid helium cooling, the CSR, with 35 m circumference, will provide a low temperature environment of only a few Kelvin and an extremely high vacuum of better than 10 -13 mbar. To realize these conditions the mechanical design has been completed and now the first quarter section is in the construction phase. For the onion skin structure of the cryogenic system we have at the outer shell the cryostat chambers, realized by welded rectangular stainless steel frames with aluminum plates. The next two shells are fabricated as aluminum shields kept at 80 and 40 K. The inner vacuum chambers for the experimental vacuum consist of stainless steel chambers cladded with external copper sheets connected to the LHe lines for optimized thermal equilibration and cryopumping. Additional large surface 2 K units are installed for cryogenic pumping of H 2. The mechanical concepts and the realization will be presented in detail.

  8. A storage ring based inverse Compton scattering angiography source?

    SciTech Connect

    Blum, E.B.

    1993-09-01

    Producing the 33.17 keV photons required for coronary angiography with synchrotron radiation requires a combination of a high energy storage ring with an extremely high field wiggler. Such a source may be too big and expensive to be installed in even the largest medical center. Something other than synchrotron radiation may be needed for a practical source. Inverse Compton scattering has been used in the LEGS experiment at NSLS and elsewhere to produce high energy photons. In this process, a head on collision between a low energy photon and a high energy electron transfers energy to the photon which is then emitted in approximately the direction of the incoming electron. For a given electron energy, more higher energy photons can be produced by this method than by synchrotron radiation. This suggests that inverse Compton scattering can possibly be used for a low cost angiography source. The prospects for such a source will be examined in this paper. Unfortunately, the results will show that although it is easy to obtain the required photon energy, an extremely complicated source will be needed to produce the required number of photons.

  9. Investigation of Microwave Instability on Electron Storage Ring TLS

    SciTech Connect

    Wang, M.-H.; Chao, A.; /SLAC

    2005-05-17

    With the planned installation of a superconducting rf system, the new operation mode of TLS, the electron storage ring at NSRRC, is expected to double the beam intensity. Several accelerator physics topics need to be examined. Beam instability of single-bunch longitudinal microwave instability is one of these topics. We consider two approaches to measure the effective broad band impedance. We compare these measurement results with each other and to old data [Ref.1]. We calculate the threshold current of microwave instability with a mode-mixing analysis code written by Dr. K. Oide of KEK [Ref.2]. We also develop a multi-particle tracking code to simulate the instability. The results of simulation and measurement are compared and discussed. We conclude that doubling of beam current from 200 mA (1.5 mA/bunch) to 400 mA (3 mA/bunch) will not trigger the microwave instability even without a Landau cavity to lengthen the bunch. The benefit of Landau cavity is mainly for beam life time.

  10. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    SciTech Connect

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  11. The Helios 1 compact superconducting storage ring x-ray source

    SciTech Connect

    Wilson, M.N; Smith, A.I.C.; Kempson, V.C.; Townsend, M.C.; Schouten, J.C.; Anderson, R.J.; Jorden, A.R.; Suller, V.P.; Poole, M.W.

    1993-05-01

    The basic properties of synchrotron radiation are described, the design of storage rings to produce synchrotron radiation is outlined, and the criteria for matching storage ring design to the needs of X-ray lithography are discussed. Simple scaling laws are presented showing the benefits for a storage ring of using the higher fields which superconducting magnets are able to provide. Helios 1 is a compact superconducting storage ring built by Oxford Instruments for installation at the IBM Advanced Lithography Facility (ALF). Design choices for superconducting rings are discussed, and the design and construction of Helios are described. Test results from the initial commissioning of Helios at Oxford are presented, but the main data on its performance when installed at ALF are given in another paper in this issue.

  12. The Potential of an Ultimate Storage Ring for Future Light Sources

    SciTech Connect

    Bei, M; Cai, Y; Elleaume, P; Gerig, R; Harkay, K; Emery, L; Hutton, A; Hettel, R; Nagaoka, R; Robin, D; Steier, C

    2010-10-01

    This paper is the report of the working group on Ultimate Storage Rings at the Department of Energy's Basic Energy Sciences Workshop on Physics of Future Light Sources, which took place in Gaithersburg, Maryland on September 15–17, 2009. In this report we address the accelerator design issues related to the next generation of storage ring light sources, deemed “ultimate” storage rings. In our estimation, storage rings have the potential to provide an increase in photon brightness and coherent flux that is two orders of magnitude above that projected for rings currently under construction. In addition to photon brightness and coherent flux, we discuss other directions, such as shorter pulses, tailored bunches, and partial lasing, in which rings could evolve. For the most part we envision ultimate storage rings as an evolutionary advance from existing rings that faces no fundamental technological obstacles. Nevertheless we identify several important areas of R&D that should be pursued to enable the realization of the full potential of ultimate ring light sources.

  13. Comparison of beam transport simulations to measurements at the Los Alamos Proton Storage Ring

    SciTech Connect

    Wilkinson, C.; Neri, F.; Fitzgerald, D.H.; Blind, B.; Macek, R.; Plum, M.; Sander, O.; Thiessen, H.A.

    1997-10-01

    The ability to model and simulate beam behavior in the Proton Storage Ring (PSR) of the Los Alamos Neutron Science Center (LANSCE) is an important diagnostic and predictive tool. This paper gives the results of an effort to model the ring apertures and lattice and use beam simulation programs to track the beam. The results are then compared to measured activation levels from beam loss in the ring. The success of the method determines its usefulness in evaluating the effects of planned upgrades to the Proton Storage Ring.

  14. Analytical Approach to Eigen-Emittance Evolution in Storage Rings

    SciTech Connect

    Nash, Boaz; /SLAC

    2006-05-16

    This dissertation develops the subject of beam evolution in storage rings with nearly uncoupled symplectic linear dynamics. Linear coupling and dissipative/diffusive processes are treated perturbatively. The beam distribution is assumed Gaussian and a function of the invariants. The development requires two pieces: the global invariants and the local stochastic processes which change the emittances, or averages of the invariants. A map based perturbation theory is described, providing explicit expressions for the invariants near each linear resonance, where small perturbations can have a large effect. Emittance evolution is determined by the damping and diffusion coefficients. The discussion is divided into the cases of uniform and non-uniform stochasticity, synchrotron radiation an example of the former and intrabeam scattering the latter. For the uniform case, the beam dynamics is captured by a global diffusion coefficient and damping decrement for each eigen-invariant. Explicit expressions for these quantities near coupling resonances are given. In many cases, they are simply related to the uncoupled values. Near a sum resonance, it is found that one of the damping decrements becomes negative, indicating an anti-damping instability. The formalism is applied to a number of examples, including synchrobetatron coupling caused by a crab cavity, a case of current interest where there is concern about operation near half integer {nu}{sub x}. In the non-uniform case, the moment evolution is computed directly, which is illustrated through the example of intrabeam scattering. Our approach to intrabeam scattering damping and diffusion has the advantage of not requiring a loosely-defined Coulomb Logarithm. It is found that in some situations there is a small difference between our results and the standard approaches such as Bjorken-Mtingwa, which is illustrated by comparison of the two approaches and with a measurement of Au evolution in RHIC. Finally, in combining IBS

  15. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  16. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  17. Photodissociation of dinucleotide ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Worm, Esben S.; Andersen, Inge Hald; Andersen, Jens Ulrik; Holm, Anne I. S.; Hvelplund, Preben; Kadhane, Umesh; Nielsen, Steen Brøndsted; Poully, Jean-Christophe; Støchkel, Kristian

    2007-04-01

    The decay of protonated DNA dinucleotides, dA2+ , dG2+ , dT2+ , dC2+ and deprotonated ones, dA2- and dT2- , after 260nm photon absorption was measured in an electrostatic ion storage ring (A denotes adenine, G guanine, T thymine, and C cytosine). Fragmentation on the microsecond time scale was observed and assigned to statistical dissociation. Good fits to the decay spectra were obtained with a model based on microcanonical rate constants of the Arrhenius type with activation energies and preexponential factors for the dissociation that agree well with literature values. In accordance with results from other groups, dT2+ was found to have the longest lifetime among the cations. The importance of decay processes faster than the microsecond time scale is elucidated by a comparison between the total ion beam depletion and that due to the observed statistical decay. We find that such processes play a major role for all of the dinucleotides, being more than 25 times more probable than the microsecond statistical dissociation for dA2+ , dG2+ , and dC2+ , about 10 times for dT2+ , and between 2 and 6 times for dA2- and dT2- . For the cations, we ascribe these processes to nonstatistical dissociation prior to randomization of the excitation energy among all degrees of freedom whereas direct photoelectron detachment may play a role for the anions. Thus, our data indicate that the propensity for nonstatistical dissociation increases upon nucleobase protonation. Consistent with this trend, the propensity is less for dT2+ than for the other dinucleotide cations because the phosphoric acid group competes with thymine for the proton.

  18. Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Menasce, Daniel A.; Pentakalos, Odysseas I.

    1995-01-01

    Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.

  19. Crosstalk compensation in analysis of energy storage devices

    DOEpatents

    Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M

    2014-06-24

    Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.

  20. Performance of quadrupole and sextupole magnets for the Advanced Photon Source storage ring

    SciTech Connect

    Kim, S.H.; Doose, C.L.; Kim, K.; Thompson, K.M.; Turner, L.R.

    1993-10-01

    From the magnetic measurement data of several production quadrupole and sextupole magnets for the storage ring of the Advanced Photon Source, the excitation efficiencies and systematic and random multipole coefficients of the magnets are summarized. The designs of the magnets, which are constrained due to the geometry of the vacuum chamber have rotation symmetries of 180{degrees} and 120{degrees}. The production data meet the allowed tolerances of a few parts in 10{sup {minus}4} for the storage ring.

  1. Theories of statistical equilibrium in electron-positron colliding-beam storage rings

    SciTech Connect

    Schonfeld, J.F.

    1985-01-01

    In this lecture I introduce you to some recent theoretical work that represents a significant and long overdue departure from the mainstream of ideas on the physics of colliding- beam storage rings. The goal of the work in question is to understand analytically - without recourse to computer simulation - the role that dissipation and noise play in the observed colliding-beam behavior of electron-positron storage rings.

  2. How to Use Removable Mass Storage Memory Devices

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2004-01-01

    Mass storage refers to the variety of ways to keep large amounts of information that are used on a computer. Over the years, the removable storage devices have grown smaller, increased in capacity, and transferred the information to the computer faster. The 8" floppy disk of the 1960s stored 100 kilobytes, or about 60 typewritten, double-spaced…

  3. The strain capacitor: A novel energy storage device

    SciTech Connect

    Deb Shuvra, Pranoy; McNamara, Shamus

    2014-12-15

    A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential for long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.

  4. A practical method to generate brilliant hard x-rays with a tabletop electron storage ring

    SciTech Connect

    Yamada, H.; Amano, D.; Miyade, H.

    1995-12-31

    With electron storage rings not only synchrotron radiation(SR) but also bremsstrahlung(BS) from a thin target placed in the electron orbit are mechanisms to generate brilliant x-ray beams. The calculated brilliance of BS with a 50 MeV storage ring, which is nearly 10{sup 13} photons/s, mrad{sup 2}, mm{sup 2}, 0.1% band width for 100 keV x-rays, exceeds that of SR from a 1 GeV storage ring. This photon energy spectrum is almost constant and extend up to the electron energy. The reasons for this high brilliance with this new radiation scheme is that the electron beams penetrating the thin target are utilized repeatedly, the narrow angular divergence of BS is determined by the kinematics of relativistic electron as same as SR, and the x-ray source size of the order of 1 {mu}m is determined by the size of thin target instead of electron beam sizes. Continuous injection of electron beam to the storage ring at full energy is the way to keep high and constant beam current. Peak current and repetition rate determine x-ray out put power. Note that the power of x-ray beam is also provided from a RF cavity of the storage ring. In this paper we will report some experimental results and discuss further application on a coherent bremsstrahlung generated from a set of stacked foils placed in the electron orbit of the ring. Resulting from these investigations the photon storage ring which is based on a 50 MeV exact circular electron storage ring could provide wide range of coherent and incoherent radiations from far infrared to hard x-ray in a practical amount of radiation power.

  5. Ultracapacitors as sole energy storage device in hybrid electric cars?

    SciTech Connect

    Farkas, A.; Bonert, R.

    1994-12-31

    New types of electric capacitors may provide, within several years, power capacitors which could be used as energy storage devices in serial hybrid electric car drives instead of a battery. This paper discusses how to determine the required size of such a capacitor used as the sole energy storage device. The performance requirements and parameters influencing the size of the capacitor are defined and a model of a hybrid car system is proposed to determine the size of the capacitor. Simulation results are presented to demonstrate the choices in selecting the capacitor size and to provide an estimate of the performance of a hybrid vehicle with capacitive energy storage. 4 refs.

  6. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno

    2015-10-01

    For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.

  7. High bit rate mass data storage device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.

  8. Gross properties of exotic nuclei investigated at storage rings and ion traps

    SciTech Connect

    Scheidenberger, C.; Bollen, G.; Bosch, F.; Casares, A.; Geissel, H.; Kholomeev, A.; Muenzenberg, G.; Weick, H.; Wollnik, H.

    2000-12-31

    Properties of exotic nuclei like atomic masses, decay modes, and half-lives can be ideally investigated in storage rings and ion traps. Some experiments can be carried out under conditions which prevail in hot stellar plasmas. The experimental potential of storage and cooling of exotic nuclei is illustrated with recent experimental results, and an outlook to future experiments is presented.

  9. Flexible energy-storage devices: design consideration and recent progress.

    PubMed

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. PMID:24913891

  10. Flexible energy-storage devices: design consideration and recent progress.

    PubMed

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.

  11. High-precision storage ring for g-2 of the muon and possible applications in particle and heavy ion physics

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    1998-11-01

    A new superferric magnetic storage ring with highly homogeneous field at 1.45 T and weak electrostatic focussing is described which has been set up at the Brookhaven National Laboratory (BNL), USA, for a precision measurement of the magnetic anomaly of the muon. The toroidal storage volume has a radius of 7 m and a diameter of 9 cm. Precision magnetic field determination based on pulsed NMR on protons in H2O yields the field to better than 0.1 ppm everywhere within the storage region. Follow on experiments using the setup have been already suggested to search for a finite mass of the muon neutrino and to search for an electric dipole moment of the muon with significantly increased accuracy. The high homogeneity of the field suggests the usage of such devices as a mass spectrometer for heavier particles as well.

  12. Laser-actuated holographic storage device

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Nagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Device permits automatic selection of one out of thousands of pages in holographic memory system by using laser beam. In typical operation for 2 to 3 C temperature interval, using dc power supply with no power regulation, holograms were successfully written and erased over 2- by 2-cm area, using 80-mW argon laser beam.

  13. A visual-display and storage device

    NASA Technical Reports Server (NTRS)

    Bosomworth, D. R.; Moles, W. H.

    1972-01-01

    Memory and display device uses cathodochromic material to store visual information and fast phosphor to recall information for display and electronic processing. Cathodochromic material changes color when bombarded with electrons, and is restored to its original color when exposed to light of appropiate wavelength.

  14. TSR: A storage and cooling ring for HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  15. Injection with a single dipole kicker into the MAX IV storage rings

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.

    2012-11-01

    Injection into the two MAX IV storage rings will not make use of a 4-kicker local injection bump. Instead, pulsed multipole injection will be used for initial filling as well as top-up injection. Since commissioning a pulsed multipole magnet for injection into a storage ring is non-trivial, it has been decided to install a single dipole kicker magnet into the storage rings to provide a simple method for injection during early commissioning. Design studies have revealed that injection with a single dipole kicker into the MAX IV storage rings is not only efficient, but also allows for accumulation of beam. Although this accumulation cannot be made transparent to users (i.e. it is not compatible with user top-up operation), it does provide a simple and robust injection method during commissioning. In addition, the dipole kicker can be used as a pinger magnet during machine studies with a single-bunch filling. This paper reports on the design studies performed for dipole kicker injection into the MAX IV storage rings and presents a summary of the expected performance of such an injection scheme.

  16. Low Energy Storage Rings: Opening Routes for Beyond State-of-the-art Research

    SciTech Connect

    Welsch, Carsten P.

    2011-10-27

    Electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics at the ultra-low energy range from 1 to 100 keV/A. Due to the mass independence of the electrostatic rigidity these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. Their beam dynamics is, however, fundamentally different to magnetic storage rings and therefore needs to be investigated in detail to optimize storage ring performance and experimental output. This paper first gives an overview of existing electrostatic storage rings and their experimental programs. Second, future machines in Heidelberg, Stockholm and the Facility for Antiproton and Ion Research (FAIR) are described and the main challenges are summarized. Finally, the focus is set on a flexible storage ring facility presently being built up at the King Abdulaziz Center for Science and Technology (KACST) in Riyadh, Saudi Arabia, that addresses a broad user community and will allow for a next-generation experimental program in the low energy regime.

  17. Beam storage studies in the Fermilab main ring

    SciTech Connect

    MacLachlan, J.A.

    1982-05-06

    Bunched beams of 100 and 150 GeV have been stored in the Fermilab Main Ring for periods of up to one hour. The observations of beam current and beam profiles are analyzed for the effects of gas scattering, chromaticity and non-linear magnetic field.

  18. Beam-storage studies in the Fermilab main ring

    SciTech Connect

    MacLachlan, J.A.

    1982-05-06

    Bunched beams of 100 and 150 GeV have been stored in the Fermilab Main Ring for periods of up to one hour. The observations of beam current and beam profiles are analyzed for the effects of gas scattering, chromaticity and non-linear magnetic field.

  19. Resonant condition for storage ring short wavelength FEL with power exceeding Renieri limit

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Wu, Y.

    1995-12-31

    In this paper we discuss the possibility of operating a storage ring FEL with resonant conditions providing for preservation of electron beam structure on an optical wave scale. We suggest tuning the storage ring betatron and synchrotron tunes on one of the high (N-th) order resonances to compensate dynamic diffusion of optical phase. This mode of operation does not require isochronicity of the ring lattice. In these conditions optical phase will be restored after N turns around the ring and stochastic conditions used in the derivation of Renieri limit are no longer applicable. We discuss the influence of high order terms in electron motion, RF frequency stability, and synchrotron radiation effects on preservation of optical phase.

  20. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  1. Storage ring cross section measurements for electron impact ionization of Fe8+

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Pindzola, M. S.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2016-04-01

    We have measured electron impact ionization (EII) for Fe8+ forming Fe9+ from below the ionization threshold to 1200 eV. These measurements were carried out at the TSR heavy ion storage ring. The objective of using a storage ring is to store the ion beam initially so that metastable levels decay, thereby allowing for measurements on a well-defined ground-level ion beam. In this case, however, some metastable levels were too long lived to be removed. We discuss several methods for quantifying the metastable fraction, which we estimate to be ∼30%–40%. Although metastables remain problematic, the present storage ring work improves upon other experimental geometries by limiting the metastable contamination to only a few long-lived excited levels. We discuss some future prospects for obtaining improved measurements of Fe8+ and other ions with long-lived metastable levels.

  2. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    SciTech Connect

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  3. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage

    SciTech Connect

    Durgun, E; Grossman, JC

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  4. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    PubMed

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  5. RESONANCE METHOD OF ELECTRIC-DIPOLE-MOMENT MEASUREMENTS IN STORAGE RINGS.

    SciTech Connect

    ORLOV, Y.F.; MORSE, W.M.; SEMERTZIDIS, Y.K.

    2006-05-10

    A ''resonance method'' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  6. Resonance Method of Electric-Dipole-Moment Measurements in Storage Rings

    SciTech Connect

    Orlov, Yuri F.; Morse, William M.; Semertzidis, Yannis K.

    2006-06-02

    A 'resonance method' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles' velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  7. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  8. Electron-ion merged-beam experiments at heavy-ion storage rings

    NASA Astrophysics Data System (ADS)

    Schippers, Stefan

    2015-05-01

    In the past two decades, the electron-ion merged-beams technique has extensively been exploited at heavy-ion storage rings equipped with electron coolers for spectroscopic studies of highly charged ions as well as for measuring absolute cross sections and rate coefficients for electron-ion recombination and electron-impact ionization of multiply charged atoms ions. Some recent results are highlighted and future perspectives are pointed out, in particular, in view of novel experimental possibilities at the FAIR facility in Darmstadt and at the Cryogenic Storage Ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg.

  9. HISTRAP (Heavy Ion Storage Ring for Atomic Physics) prototype hardware studies

    SciTech Connect

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs.

  10. Longitudinally Polarized Electrons in a Storage Ring below 1 GeV

    SciTech Connect

    Passchier, I.; Boersma, D.J.; Harvey, M.; Higinbotham, D.W.; Poolman, H.R.; Six, E.; Alarcon, R.; van Amersfoort, P.W.; Bauer, Th.S.; Rookhuizen, H. Boer; van den Brand, J.F.J.; van Buuren, L.D.; Bulten, H.J.; Ent, R.; Ferro-Luzzi, M.; Geurts, D.; Heimberg, P.; de Jager, C.W.; Klimin, P.; Koop, I.; Kroes, F.; van der Laan, J.; Luijckx, G.; Lysenko, A.; Militsyn, B.; Nesterenko, I.; Noomen, J.; Norum, B.E.; van den Putte, M.J.J.; Shatunov, Yu.; Steijger, J.J.M.; Szczerba, D.; de Vries, H.

    2000-12-31

    The results of studies of the longitudinal electron polarization in the AmPS storage ring at NIKHEF are reported. The ring was operated using a partial Siberian snake at the first magic energy, and a full Siberian snake between 440 MeV and 720 MeV. The effect of high beam currents in the ring was investigated, and it was found that some of the electron polarization is lost if the beam current becomes larger than {approx}120 mA.

  11. DEVELOPMENT OF A HYDROGEN AND DEUTERIUM POLARIZED GAS TARGET FOR APPLICATION IN STORAGE RINGS

    SciTech Connect

    Willy Haeberli

    2009-06-18

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  12. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou

    NASA Astrophysics Data System (ADS)

    Xia, J. W.; Zhan, W. L.; Wei, B. W.; Yuan, Y. J.; Song, M. T.; Zhang, W. Z.; Yang, X. D.; Yuan, P.; Gao, D. Q.; Zhao, H. W.; Yang, X. T.; Xiao, G. Q.; Man, K. T.; Dang, J. R.; Cai, X. H.; Wang, Y. F.; Tang, J. Y.; Qiao, W. M.; Rao, Y. N.; He, Y.; Mao, L. Z.; Zhou, Z. Z.

    2002-08-01

    HIRFL-CSR, a new ion Cooler-Storage-Ring (CSR) project, is the post-acceleration system of the Heavy Ion Research Facility in Lanzhou (HIRFL). It consists of a main ring (CSRm) and an experimental ring (CSRe). From the HIRFL cyclotron system the heavy ions will be accumulated, cooled and accelerated in the CSRm, then extracted fast to produce radioactive ion beams (RIB) or highly charged heavy ions. Those secondary beams will be accepted and stored by the CSRe for many internal-target experiments with electron cooling.

  13. Bypass apparatus and method for series connected energy storage devices

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik

    2000-01-01

    A bypass apparatus and method for series connected energy storage devices. Each of the energy storage devices coupled to a common series connection has an associated bypass unit connected thereto in parallel. A current bypass unit includes a sensor which is coupled in parallel with an associated energy storage device or cell and senses an energy parameter indicative of an energy state of the cell, such as cell voltage. A bypass switch is coupled in parallel with the energy storage cell and operable between a non-activated state and an activated state. The bypass switch, when in the non-activated state, is substantially non-conductive with respect to current passing through the energy storage cell and, when in the activated state, provides a bypass current path for passing current to the series connection so as to bypass the associated cell. A controller controls activation of the bypass switch in response to the voltage of the cell deviating from a pre-established voltage setpoint. The controller may be included within the bypass unit or be disposed on a control platform external to the bypass unit. The bypass switch may, when activated, establish a permanent or a temporary bypass current path.

  14. A novel, high energy-density electrical storage device for electric weapons

    NASA Astrophysics Data System (ADS)

    Schroeder, Jon M.

    1992-08-01

    Three different energy storage variants were developed and tested during Phase 1. Each was based on the close-coupled, thermopile storage principle. First, direct current was stored in a thermopile ring, which was open-switched into a dummy load to measure the energy release. In the second variant, alternating magnetic energy was stored in a split ring. Energy storage was caused by pumping alternating current in the thermopile circuit, connected as an LC oscillator. Both methods were found to store energy and each delivered pulse power, resulting in a twenty-to-one pulse-power advantage between energy released from the store and energy available from the power supply at the input. Power was drawn from these systems in a millisecond, making use of a specially developed, sequentially opening switch that takes full advantage of the MOSFET's nanosecond hyper-operating speed, the intermediate switching speed of a silicon controlled rectifier (SCR), and a slower speed electro-mechanical switch. Further work with modifications of these two storage methods led then to the development of an inductor-to-inductor (L(sup 2)) electromagnetic storage system. This new type storage device seems to out perform the first two methods by roughly two orders of magnitude in storage capacity. During flux pump experiments, we also found that the L(sup 2) prototype system could be tuned to operate efficiently at certain particular frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly operating efficiently in the GHz range.

  15. Large magnetic storage ring for Bose-Einstein condensates

    SciTech Connect

    Arnold, A. S.; Garvie, C. S.; Riis, E.

    2006-04-15

    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10 cm diameter vertically oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2 m, with a heating rate of less than 50 nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.

  16. 49 CFR 179.200-13 - Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom washout...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Manway ring or flange, pressure relief device....200-13 Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom... in the manway ring must be at least 16 inches in diameter except that acid resistant lined...

  17. 49 CFR 179.200-13 - Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom washout...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Manway ring or flange, pressure relief device....200-13 Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom... in the manway ring must be at least 16 inches in diameter except that acid resistant lined...

  18. 49 CFR 179.200-13 - Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom washout...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Manway ring or flange, pressure relief device....200-13 Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom... in the manway ring must be at least 16 inches in diameter except that acid resistant lined...

  19. 49 CFR 179.200-13 - Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom washout...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Manway ring or flange, pressure relief device....200-13 Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom... in the manway ring must be at least 16 inches in diameter except that acid resistant lined...

  20. 49 CFR 179.200-13 - Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom washout...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Manway ring or flange, pressure relief device....200-13 Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom... in the manway ring must be at least 16 inches in diameter except that acid resistant lined...

  1. Experience with a high-brightness storage ring: the NSLS 750 MeV vuv ring

    SciTech Connect

    Galayda, J.

    1984-01-01

    The NSLS vuv ring is the first implementation of the proposals of R. Chasman and G.K. Green for a synchrotron radiation source with enhanced brightness: its lattice is a series of achromatic bends with two zero-gradient dipoles each, giving small damped emittance; and these bends are connected by straight sections with zero dispersion to accommodate wigglers and undulators without degrading the radiation damping properties of the ring. The virtues of the Chasman-Green lattice, its small betatron and synchrotron emittances, may be understood with some generality; e.g. the electron ..gamma..m/sub 0/c/sup 2/ energy and the number of achromatic bends M sets a lower limit on the betatron emittance of e/sub x/ > 7.7 x 10/sup -13/ ..gamma../sup 2//M meter-radians. There is strong interest in extrapolation of this type of lattice to 6 GeV and to 32 achromatic bends. The subject of this report is the progress toward achieving performance in the vuv ring limited by the radiation damping parameters optimized in its design. 14 refs., 4 figs., 1 tab.

  2. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    SciTech Connect

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-04-19

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  3. Evaluation of Pinhole Camera Resolution for NSLS-II Storage Ring

    SciTech Connect

    Pinayev,I.

    2008-05-04

    The NSLS-II Storage Ring provides ultrabright radiation sources with extra-small sizes of the circulating electron beam. The beam dimensions will be monitored with a pinhole camera. In this paper they discuss the possible design and ultimate achievable resolution of the system. Modeling is based on the SRW code as well as numerical calculations using MATLAB.

  4. Multi-pulse extraction from Los Alamos Proton Storage Ring for radiographic applications

    SciTech Connect

    Thiessen, H.A.; Neri, F.; Rust, K.; Redd, D.B.

    1997-08-01

    In Proton Radiography, one of the goals is a motion picture of a rapidly moving object. The Los Alamos Proton Storage Ring (PSR) in its normal operating mode, delivers a single pulse approximately 120 ns wide (fwhm). In development runs at the PSR, the authors successfully demonstrated operation of a technique to deliver two pulses, each 40 nsec wide, with adjustable spacing.

  5. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    SciTech Connect

    Mitchell, C.; Qiang, J.; Venturini, M.

    2013-08-28

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailing magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.

  6. Exciton Storage in a Nanoscale Aharonov-Bohm Ring with Electric Field Tuning

    SciTech Connect

    Fischer, Andrea M.; Roemer, Rudolf A.; Campo, Vivaldo L. Jr.; Portnoi, Mikhail E.

    2009-03-06

    We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.

  7. The commissioning progress of the cooler storage ring HIRFL-CSR in Lanzhou

    NASA Astrophysics Data System (ADS)

    Cai, Xiaohong; Xia, Jiawen; Zhan, Wenlong; Xu, Hushan; Csr Commissioning Group

    2009-04-01

    HIRFL-CSR is a multi-purpose cooler-storage-ring system constructed at the Institute of Modern Physics, Chinese Academy of Sciences in Lanzhou, China. Construction of the HIRFL-CSR storage ring complex has been finished, and passed the government check and acceptance, recently. The first stored beam in the CSRm was obtained in January 2006 using stripping injection. The commissioning got great progress in 2007. In early January 2007 electron cooling in CSRm was successfully done, and the multiple multi-turn injection was successively realized for 12C6+, 36Ar18+ and 129Xe27+ beams, respectively. The 129Xe27+ beams was extracted from the main ring by fast extraction. The 660MeV/u 12C6+ was injected into the experimental ring and reached an intensity of 15mA there. The first two physics experiments were done in December 2007 including the mass measurement in isochronous mode in the experimental ring. The 300MeV/u 12C4+ ions were successfully slow-extracted from the main ring in early 2008. This paper presents the main commissioning results.

  8. Observations And Measurements of Anomalous Hollow Electron Beams in a Storage Ring

    SciTech Connect

    Wu, Y.K.; Li, J.; Wu, J.; /SLAC

    2006-02-06

    Anomalous hollow electron beams have been recently observed in the Duke storage ring. With a single bunch beam in a lattice with a negative chromaticity, a hollow beam can be created. This beam consists of a solid core beam inside and a large ring beam outside. In this paper, we report the measurements of the hollow beam phenomenon, including its distinct image pattern and spectrum signature, and its evolution with time. By capturing the post-instability bursting beam, the hollow beam is a unique model system for studying transverse instabilities, in particular, the interplay of the wakefield and lattice nonlinearity. The hollow beam can also be used as a tool to study linear and nonlinear particle dynamics in the storage ring.

  9. Fiberoptics-Based Instrumentation for Storage Ring BeamDiagnostics

    SciTech Connect

    Byrd, John M.; De Santis, Stefano; Yin, Yan

    2007-04-18

    In several cases, coupling synchrotron light into opticalfibers can substantially facilitate the use of beam diagnosticinstrumentation, that measures longitudinal beam properties by detectingsynchrotron radiation. It has been discussed in [1]with some detail, howfiberoptics can bring the light at relatively large distances from theaccelerator, where a variety of devices can be used to measure beamproperties and parameters. Light carried on a fiber can be easilyswitched between instruments so that each one of them has 100 percent ofthe photons available, rather than just a fraction , when simultaneousmeasurements are not indispensable. From a more general point of view,once synchrotron light is coupled into the fiber, the vast array oftechniques and optoelectronic devices, developed by the telecommunicationindustry becomes available.In this paper we present the results of ourexperiments at the Advanced Light Source, where we tried to assess thechallenges and limitations of the coupling process and determine whatlevel of efficiency one can typically expect to achieve.

  10. Nonlinear and long-term beam dynamics in low energy storage rings

    NASA Astrophysics Data System (ADS)

    Papash, A. I.; Smirnov, A. V.; Welsch, C. P.

    2013-06-01

    Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF+ ions at 93keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3-30 keV ions with a gas jet target are summarized.

  11. Radiation Belts Storage Ring : What the Cluster-CIS data can tell us

    NASA Astrophysics Data System (ADS)

    Dandouras, I. S.; Ganushkina, N.; Amariutei, O. A.; Reme, H.

    2013-12-01

    Following the launch by NASA of the Radiation Belt Storm Probes (RBSP) twin spacecraft, now named the Van Allen Probes, the discovery of a storage ring was announced: Baker et al., Science, 2013. This transient feature was observed during September 2012, following the arrival of an interplanetary shock, was located between L=3.0 and L=3.5 and consisted of about 4 to 6 MeV electrons. During that period the Cluster spacecraft had a high-inclination orbit, with a perigee just above 2 Re. The CIS experiment onboard Cluster is sensitive to penetrating energetic electrons (E > 2 MeV), which produce background counts and thus allow to localize the boundaries of the outer and inner radiation belts (Ganushkina et al., JGR, 2011). A search was undertaken in the September 2012 CIS data for eventual signatures of the storage ring, and indeed a small increase of the instrument background was observed between L=3.0 and L=3.5. This is clearly separated from the main outer radiation belt, which presents a much stronger background due to higher fluxes of relativistic electrons. A mono-energetic ion drift band was also observed by CIS inside the storage ring, at about 5 keV for He+ and O+ ions. This result provides an independent confirmation for the storage ring. In addition, it allows also to examine Cluster and Double Star data from earlier years, covering a full solar cycle, for other such signatures of a transient storage ring. It results that this 3-belt structure is seen several times.

  12. ACCELERATED-AGING OF SHIPPING PACKAGE O-RINGS FOR PU STORAGE

    SciTech Connect

    Hoffman, E

    2008-01-10

    The Savannah River Site (SRS) is storing surplus plutonium (Pu) materials in the K-Area Materials Storage (KAMS) facility. The Pu materials are packaged per the DOE 3013 Standard. The nested, welded 300 series stainless steel 3013 containers are transported to KAMS in Type B shipping packages and subsequently stored in the same packages. These type B shipping packages consist of double containment vessels sealed with dual O-rings. The O-ring compound is Parker Seals V0835-75, based on Viton{reg_sign} GLT fluoroelastomer. This work evaluates the performance of the V0835-75 O-rings at accelerated-aging conditions. The results will be used to develop a lifetime prediction model for O-rings in KAMS.

  13. Stability of spintronic devices based on quantum ring networks

    NASA Astrophysics Data System (ADS)

    Földi, Péter; Kálmán, Orsolya; Peeters, F. M.

    2009-09-01

    Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.

  14. The Application of a Cylindrical-spherical Floating Ring Bearing as a Device to Control Stability of Turbogenerators

    NASA Technical Reports Server (NTRS)

    Leung, P. S.; Craighead, I. A.; Wilkinson, T. S.

    1991-01-01

    The development of a new device to control stability of turbogenerators is described. The device comprises a floating ring installed between the journal and bearing housing of a fluid film bearing. The journal and the inner surface of the ring are cylindrical while the outer surface of the ring and bearing surface are spherical providing axial location of the ring and self-alignment of the bearing. The employment of this device would lead to a consistent machine performance. System stability may be controlled by changing a number of bearing and floating ring parameters. This device also offers an additional advantage of having a very low frictional characteristic. A feasibility study was carried out to investigate the suitability of the new device to turbogenerator applications. Both theoretical analysis and experimental observations were carried out. Initial results suggest that the new floating ring device is a competitive alternative to other conventional arrangements.

  15. Symplectic orbit and spin tracking code for all-electric storage rings

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the

  16. Theory of Microwave Instability and Coherent Synchrotron Radiation in Electron Storage Rings

    SciTech Connect

    Cai, Y.; /SLAC

    2011-12-09

    Bursting of coherent synchrotron radiation has been observed and in fact used to generate THz radiation in many electron storage rings. In order to understand and control the bursting, we return to the study of the microwave instability. In this paper, we will report on the theoretical understanding, including recent developments, of the microwave instability in electron storage rings. The historical progress of the theories will be surveyed, starting from the dispersion relation of coasting beams, to the work of Sacherer on a bunched beam, and ending with the Oide and Yokoya method of discretization. This theoretical survey will be supplemented with key experimental results over the years. Finally, we will describe the recent theoretical development of utilizing the Laguerre polynomials in the presence of potential-well distortion. This self-consistent method will be applied to study the microwave instability driven the impedances due to the coherent synchrotron radiation. Over the past quarter century, there has been steady progress toward smaller transverse emittances in electron storage rings used for synchrotron light sources, from tens of nm decades ago to the nm range recently. In contrast, there is not much progress made in the longitudinal plane. For an electron bunch in a typical ring, its relative energy spread {sigma}{sub {delta}} remains about 10{sup -3} and its length {sigma}{sub z} is still in between 5 mm to 10 mm. Now the longitudinal emittance ({sigma}{sub {delta}}{sigma}{sub z}) becomes a factor of thousand larger than those in the transverse dimensions. In this paper, we will address questions of: How short a bunch can be? What is the fundamental limit? If there is a limit, is there any mitigation method? Since the synchrotron radiation is so fundamental in electron storage rings, let us start with the coherent synchrotron radiation (CSR).

  17. Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring

    NASA Astrophysics Data System (ADS)

    Gendler, Naomi; Billing, Mike; Shanks, Jim

    The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.

  18. PCM/ graphite foam composite for thermal energy storage device

    NASA Astrophysics Data System (ADS)

    Guo, C. X.; Ma, X. L.; Yang, L.

    2015-07-01

    Numerical studies are proposed to predict and investigate the thermal characteristics of a thermal storage device consists of graphite foam matrix saturated with phase change material, PCM. The composite (graphite foam matrix saturated with PCM) is prepared by impregnation method under vacuum condition, and then is introduced into a cylindrical shell and tube device while it experiences its heat from an inner tube fluid. The two-dimensional numerical simulation is performed using the volume averaging technique; while the phases change process is modelled using the enthalpy porosity method. A series of numerical calculations have been done in order to analyze the influence of fluid operating conditions on the melting process of the paraffin/graphite foam. The results are given in terms of temperature or liquid fraction time history in paraffin/graphite foam composite, which show that the heat transfer rate of the device is effectively improved due to the high thermal conductivity of graphite foams. Therefore, paraffin/graphite foam composite can be considered as suitable candidates for latent heat thermal energy storage device.

  19. Hybrid nano-structure for enhanced energy storage devices

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque

    The goal of this research is to develop electrode materials using various nano-structure hybrids for improved energy storage devices. Enhancing the performance of energy storage device has been gaining tremendous attention since it holds the key solution to advance renewable energy usage thus reduce the consumption of fossil fuels. The application of energy storage devices such as super-capacitor and Li-ion-battery has seen significant growth; however, it is still limited mainly by charge/discharge rate and energy density. One of the solutions is to use nano-structure materials, which offer higher power at high energy density and improved stability during the charge discharge cycling of ions in and out of the storage electrode material. In this research, carbon-based materials (e.g. porous carbon, graphene) in conjunction with metal oxides such as CeO2 nanoparticles/TiO2 nanowires are synthesized utilizing low temperature hydrothermal method for the fabrication of advanced electrode materials. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transformation Infrared Spectroscopy (FTIR) were used for materials characterization. Poentio-galvanostat, battery analyzer, and Electrochemical Impedance Spectroscopy (EIS) were used for evaluating the electrochemical performance. The testing results have shown that a maximum 500% higher specific capacitance could be obtained using porous carbon/CeO2 instead of porous carbon for super-capacitor application and microwave exfoliated graphene oxide/TiO2 nanowire hybrid provides up to 80% increment of specific capacity compared to porous carbon anode for Li-ion-battery application.

  20. STUDY OF THE STABILITY OF PARTICLE MOTION IN STORAGE RINGS. Final Report

    SciTech Connect

    Jack J. Shi

    2012-09-07

    During this period, our research was concentrated on the study of beam-beam effects in large storage-ring colliders and coherent synchrotron radiation (CSR) effect in light sources. Our group was involved in and made significant contribution to several international accelerator projects such as the US-LHC project for the design of the LHC interaction regions, the luminosity upgrade of Tevatron and HERA, the design of eRHIC, and the U.S. LHC Accelerator Research Program (LARP) for the future LHC luminosity upgrade.

  1. Electron scattering from tensor-polarized deuterons in the VEPP-3 electron storage ring

    SciTech Connect

    Potterveld, D.H.

    1991-01-01

    In this report we undertake a series of measurements at the VEPP-3 accelerator in Novosibirsk to measure the tensor analyzing power T(sub 20) out to Q(sup 2) equal to 1 GeV(sup 2). This experiment has been divided into three phases, which provide results at increasingly higher momentum transfers. In addition to the physics goals, this work is notable in that it represents the first use of polarized atoms in a storage tube as an internal target in an electron storage ring. 15 refs., 8 figs., 2 tabs. (LSP)

  2. Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing

    NASA Astrophysics Data System (ADS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-11-01

    We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid-state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of un trapped particles, and their diffusion into nominally empty RF buckets ("ghost bunches").

  3. Steady-State Microbunching in a Storage Ring for Generating Coherent Radiation

    SciTech Connect

    Ratner, Daniel F.; Chao, Alexander W.; /SLAC

    2011-05-19

    Synchrotrons and storage rings deliver radiation across the electromagnetic spectrum at high repetition rates, and free electron lasers (FELs) produce radiation pulses with high peak brightness. However, at present few light sources can generate both high repetition rate and high brightness outside the optical range. We propose to create steady-state microbunching (SSMB) in a storage ring to produce coherent radiation at a high repetition rate or in continuous wave (CW) mode. In this paper we describe a general mechanism for producing SSMB and give sample parameters for EUV lithography and sub-millimeter sources. We also describe a similar arrangement to produce two pulses with variable spacing for pump-probe experiments. With technological advances, SSMB could reach the soft X-ray range (< 10 nm).

  4. Measurement of the beam longitudinal profile in a storage ring bynon-linear laser mixing

    SciTech Connect

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-05-03

    We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of untrapped particles and their diffusion into nominally empty RF buckets (''ghostbunches'').

  5. Intense inverse compton {gamma}-ray source from Duke storage ring FEL

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    We suggest using FEL intracavity power in the Duke storage ring fortrays production via Inverse Compton Backscattering (ICB). The OK-4 FEL driven by the Duke storage ring will tens of watts of average lasing power in the UV/VUV range. Average intracavity power will be in kilowatt range and can be used to pump ICB source. The {gamma}-rays with maximum energy from 40 MeV to 200 MeV with intensity of 0.1-5 10{sup 10}{gamma} per second can be generated. In this paper we present expected parameters of {gamma}-ray beam parameters including its intensity and distribution. We discuss influence of e-beam parameters on collimated {gamma}-rays spectrum and optimization of photon-electron interaction point.

  6. An ion-beam injection line for the ELASR storage ring at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Almalki, M. H.; Alshammari, S. M.; Alrashdi, A. O.; Alamer, H. S.; Jabr, A. S.; Lanazi, A. Z.

    2016-01-01

    A versatile ion injector beam-line has been developed for the specific use in the multi-purpose low-energy, storage ring facility at the King Abdulaziz City for Sciences and Technology (KACST) in Riyadh, Saudi Arabia. It incorporates a purpose-developed, high-resolution mass analyzing magnet and it is thereby dedicated to provide the ELASR storage ring with beams of ions of specific mass. It is also intended to operate independently as a single-pass experiment. This versatile ion-injection line was constructed in a staged approach, in which an axial injection version was built first, commissioned and is currently operating. The injection line in its final design is now being assembled and commissioned at KACST.

  7. Storage ring free electron laser dynamics in presence of an auxiliary harmonic radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Thomas, C. A.; Botman, J. I. M.; Bruni, C.; Orlandi, G.; de Ninno, G.; Garzella, D.; Couprie, M. E.

    2005-01-01

    In a Storage Ring Free Electron Laser (SRFEL) there is a strong interdependence between the laser beam and the electron beam from which the laser is generated. The Super ACO storage ring has a second Radio Frequency (RF) cavity at the 5th harmonic of the main RF cavity. It is used to shorten the bunch length, thereby enhancing the laser gain. Employing this RF harmonic cavity instabilities are observed with a strong effect on both the laser radiation properties and the electron beam behaviour. In this paper, we first present beam characteristics of Super-ACO as influenced by the harmonic cavity, and the instabilities of the beam due to this RF cavity. Then we discuss the FEL properties in presence of the harmonic RF cavity. In general the harmonic cavity functions as intended, and it is observed that the laser suppresses the instabilities caused by the harmonic cavity in the absence of the FEL.

  8. Beam dynamics simulations in laser electron storage rings and optical stochastic cooling

    NASA Astrophysics Data System (ADS)

    Duru, Alper

    Laser-electron storage rings are potential compact X-ray sources. Longitudinal dynamics in laser-electron storage rings is studied including the effects of both laser interaction and synchrotron radiation. It is shown that the steady state energy spread can reach as high as a few percent. The main reason is the wide spread in the energy loss by electrons to laser photons. Optical stochastic cooling has been studied numerically. The effects of the finite bandwidth of the amplifier are mixing and signal distortion. Both are included in the simulations and the results are compared to theoretical results. It is shown that the beam can be cooled both in transverse and longitudinal phase phase spaces simultaneously.

  9. Beam performance and luminosity limitations in the high-energy storage ring (HESR)

    NASA Astrophysics Data System (ADS)

    Lehrach, A.; Boine-Frankenheim, O.; Hinterberger, F.; Maier, R.; Prasuhn, D.

    2006-06-01

    The high-energy storage ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton synchrotron storage ring in the momentum range 1.5-15 GeV/ c. An important feature of this new facility is the combination of phase space cooled beams and dense internal targets (e.g. pellet targets), which results in demanding beam parameter requirements for two operation modes: high luminosity mode with peak luminosities to 2×10 32 cm -2 s -1, and high-resolution mode with a momentum spread down to 10 -5. To reach these beam parameters one needs a very powerful phase space cooling, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. The effects of beam-target scattering and intra-beam interaction are investigated in order to study beam equilibria and beam losses for the two different operation modes.

  10. The effects of the pedestal/floor interface on the dynamic characteristics of the storage ring girder support assemblies

    SciTech Connect

    Jendrzejczyk, J.A.; Chen, S.S.; Zhu, S.; Mangra, D.; Smith, R.K.

    1993-05-01

    To avoid unacceptable vibration of the storage ring quadrupoles, and to ensure that the established vibration criteria are satisfied, the philosophy from inception of the APS has been (1) to locate and design the machine to minimize motion of the storage ring basemat and, (2) following construction, to monitor machine operation and user experiments to ensure that vibration sources are not introduced. This report addresses the design of the storage ring girder support assemblies, and, specifically, the effect of the pedestal/floor interface on the dynamic characteristics (i.e., resonant frequencies, damping, and mode shape).

  11. Intensity-sensitive and position-resolving cavity for heavy-ion storage rings

    NASA Astrophysics Data System (ADS)

    Chen, X.; Sanjari, M. S.; Hülsmann, P.; Litvinov, Yu. A.; Nolden, F.; Piotrowski, J.; Steck, M.; Stöhlker, Th.; Walker, P. M.

    2016-08-01

    A heavy-ion storage ring can be adapted for use as an isochronous mass spectrometer if the ion velocity matches the transition energy of the ring. Due to the variety of stored ion species, the isochronous condition cannot be fulfilled for all the ions. In order to eliminate the measurement uncertainty stemming from the velocity spread, an intensity-sensitive and position-resolving cavity is proposed. In this paper we first briefly discuss the correction method for the anisochronism effect in the measurement with the cavity. Then we introduce a novel design, which is operated in the monopole mode and offset from the central beam orbit to one side. The geometrical parameters were optimized by analytic and numerical means in accordance with the beam dynamics of the future collector ring at FAIR. Afterwards, the electromagnetic properties of scaled prototypes were measured on a test bench. The results were in good agreement with the predictions.

  12. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    SciTech Connect

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-03-16

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented.

  13. Performance and upgrades of the NSLS storage rings and photon sources

    SciTech Connect

    Not Available

    1991-01-01

    The usefulness of synchrotron radiation sources is not only determined by current, energy and magnetic field but also orbit stability and lifetime. The status and developments at NSLS in storage ring performance are discussed. Efforts at NSLS to look toward the future in source development are presented. In particular, small gap undulator development and studies toward development of UV Free Electron Laser at the Accelerator Test Facility are described. 5 refs., 2 figs., 1 tab.

  14. Performance and upgrades of the NSLS storage rings and photon sources

    SciTech Connect

    Not Available

    1991-12-31

    The usefulness of synchrotron radiation sources is not only determined by current, energy and magnetic field but also orbit stability and lifetime. The status and developments at NSLS in storage ring performance are discussed. Efforts at NSLS to look toward the future in source development are presented. In particular, small gap undulator development and studies toward development of UV Free Electron Laser at the Accelerator Test Facility are described. 5 refs., 2 figs., 1 tab.

  15. Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings

    SciTech Connect

    Balandin, Vladimir; Golubeva, Nina

    1997-02-01

    The equations of classical spin-orbit motion can be extended to a Hamiltonian system in 9-dimensional phase space by introducing a coupled spin-orbit Poisson bracket and Hamiltonian function. After this extension it becomes possible to apply the methods of the theory of Hamiltonian systems to the study of polarized particles beam dynamics in circular accelerators and storage rings. Some of those methods have been implemented in the computer code FORGET-ME-NOT.

  16. Observation of Magnetic Resonances in Electron Clouds in a Positron Storage Ring

    SciTech Connect

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, Cherrill M.; Raubenheimer, T.O.; Wang, L.F.; /SLAC

    2011-08-24

    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  17. BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider

    SciTech Connect

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.

  18. Compensation for the eddy current effect in the APS storage ring vacuum chamber

    SciTech Connect

    Chung, Y.

    1990-05-30

    The amplitude attenuation and the phase shift of the correction magnet field inside the APS storage ring vacuum chamber due to the eddy current effect were measured. A circuit to compensate for this effect was then inserted between the signal source and the magnet power supply. The amplitude was restored with an error of less than 20% of the source signal amplitude and the phase shift was reduced from 80{degrees} to 12{degrees} at 10 Hz.

  19. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    SciTech Connect

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  20. A MODEL FOR PRODUCING STABLE, BROADBAND TERAHERTZ COHERENT SYNCHROTRONRADIATION IN STORAGE RINGS

    SciTech Connect

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Martin, MichaelC.; Venturini, Marco

    2003-06-13

    We present a model for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use this model to optimize the performance of a source for CSR emission.

  1. Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings

    SciTech Connect

    Bane, Karl; /SLAC

    2012-03-28

    We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e. one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.

  2. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    SciTech Connect

    Wang, G.M.; Shaftan; T.; Cheng; W.X.; Fliller; R.; Heese; R.; Singh; O.; Willeke; F.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used to measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.

  3. The SIBERIA dedicated synchrotron radiation source: status report on the storage rings complex at the Kurchatov Institute for Atomic Energy

    NASA Astrophysics Data System (ADS)

    Artemiev, A. N.; Akhmedzhanov, S. M.; Vasilyev, A. A.; Gritsuk, G. M.; Dozorov, A. V.; Doronkin, Yu. V.; Zabelin, A. V.; Klimenko, M. N.; Kotov, S. A.; Krylov, Yu. V.; Lebedev, V. A.; Lipilin, A. V.; Nagornyh, I. M.; Nikulin, O. N.; Odintsov, D. G.; Pashkov, S. D.; Pesterev, S. G.; Prosvetov, V. K.; Rybakov, V. N.; Samorukov, M. M.; Treshchin, V. A.; Ushkov, V. L.; Tsup, A. R.; Chaikin, E. M.; Yupinov, Yu. L.

    1991-10-01

    This paper reviews the status of the SIBERIA storage rings complex. The parameters of the linac, booster synchrotron and main ring are given. The transfer of the SIBERIA-1 storage ring to its new site is described. The main parameters of the engineering systems for the SIBERIA complex are presented. The assembly of the SIBERIA-2 storage ring is planned to be finished in 1991. The SIBERIA storage rings complex has been constructed at the Kurchatov Institute for Atomic Energy (IAE) and is the first dedicated synchrotron radiation source in the USSR. The facility includes the SIBERIA-1 450 MeV electron storage ring, the SIBERIA-2 2.5 GeV electron storage ring, two electron transport lines EOC-1 and EOC-2, and an 80-100 MeV electron linac which serves as the injector. The general layout of SIBERIA is shown in fig. 1. All accelerators of the SIBERIA facility are designed and manufactured at the Institute of Nuclear Physics (INP) at Novosibirsk.

  4. Low Mass Printable Devices for Energy Capture, Storage, and Use

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.

    2010-01-01

    The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function

  5. Advanced materials and concepts for energy storage devices

    NASA Astrophysics Data System (ADS)

    Teng, Shiang Jen

    Over the last decade, technological progress and advances in the miniaturization of electronic devices have increased demands for light-weight, high-efficiency, and carbon-free energy storage devices. These energy storage devices are expected to play important roles in automobiles, the military, power plants, and consumer electronics. Two main types of electrical energy storage systems studied in this research are Li ion batteries and supercapacitors. Several promising solid state electrolytes and supercapacitor electrode materials are investigated in this research. The first section of this dissertation is focused on the novel results on pulsed laser annealing of Li7La3Zr2O12 (LLZO). LLZO powders with a tetragonal structure were prepared by a sol-gel technique, then a pulsed laser annealing process was employed to convert the tetragonal powders to cubic LLZO without any loss of lithium. The second section of the dissertation reports on how Li5La 3Nb2O12 (LLNO) was successfully synthesized via a novel molten salt synthesis (MSS) method at the relatively low temperature of 900°C. The low sintering temperature prevented the loss of lithium that commonly occurs during synthesis using conventional solid state or wet chemical reactions. The second type of energy storage device studied is supercapacitors. Currently, research on supercapacitors is focused on increasing their energy densities and lowering their overall production costs by finding suitable electrode materials. The third section of this dissertation details how carbonized woods electrodes were used as supercapacitor electrode materials. A high energy density of 45.6 Wh/kg and a high power density of 2000 W/kg were obtained from the supercapacitor made from carbonized wood electrodes. The high performance of the supercapacitor was discovered to originate from the hierarchical porous structures of the carbonized wood. Finally, the fourth section of this dissertation is on the electrochemical effects of

  6. Beam uniformization and low frequency RF cavities in compact electron storage rings

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.

    An electron storage ring is currently under construction at Indiana University for extreme environment radiation effects experiments, x-ray production, and particle beam dynamics experiments. For an electron bunch to be successfully stored for long durations, a radio-frequency (RF) resonant structure will be used to provide an adequate RF bucket for longitudinal focusing and replenishment of energy electrons loses via synchrotron radiation. Due to beam line space limitation that are inherent to compact circular particle accelerators, a unique ferrite-loaded quarter-wave RF resonant cavity has been designed and constructed for use in the electron storage ring. The physics of particle accelerators and beams, ferrite-loaded RF resonant cavity theory, and results of the Poisson-SUPERFISH electromagnetic field simulations that were used to guide the specification and design of the RF cavity will be presented. Low-power resonant cavity characterization measurements were used to benchmark the performance of the RF cavity. High-power characterization and measurements with electron beams will be used to validate the performance of the cavity in the electron storage ring. To fulfill the requirements for radiation effect experiments, the storage ring manipulation of beams that utilizes a phase space beam dilution method have been developed for the broadening of the radiation damped electron bunch with longitudinal particle distribution uniformity. The method relies on phase modulation applied to a double RF system to generate large regions of bounded chaotic particle motion in phase space. These region are formed by a multitude of overlapping parametric resonances. Parameters of the double RF system and applied phase modulation can be adjusted to vary the degree of beam dilution. The optimal RF parameters have been found for maximal bunch broadening, uniform longitudinal particle distribution, and bounded particle diffusion. Implementation of the phase space dilution method

  7. Small size probe for inner profile measurement of pipes using optical fiber ring beam device

    NASA Astrophysics Data System (ADS)

    Wakayama, Toshitaka; Machi, Kizuku; Yoshizawa, Toru

    2012-11-01

    The requirements of inner profile measurement of pipes and holes become recently larger and larger, and applications of inner profile measurement have rapidly expanded to medical field as well as industrial fields such as mechanical, automobile and heavy industries. We have proposed measurement method by incorporating a ring beam device that produces a disk beam and have developed various probes for different inner profile measurement. To meet request for applying to smaller diameter pipes, we tried to improve the ring beam light source using a conical mirror, optical fiber collimator and a laser diode. At this moment a probe with the size of 5 mm in diameter has been realized.

  8. Thermal energy storage device and method for making the same

    SciTech Connect

    Campbell, S.

    1981-11-10

    A thermal energy storage device and method for making the same are described. The thermal energy storage device is in the form of a sealed tube-like container such as a tube-like cylinder or other geometrical configuration partially filled with a phase change material such as calcium chloride hexahydrate. The cylinder is made of tubular high density polyethylene and more particularly an ultra high molecular weight high density polyethylene having a molecular weight of about 500,000 to 700,000 which is tough, chemically resistant, withstands low and high temperatures, acts as a moisture vapor barrier and can be fused and sealed. The calcium hexahydrate is filled in an open top cylinder, closed at the bottom by dissolving two parts of calcium chloride dihydrate with one part of water to provide calcium chloride hexahydrate in liquid form. The cylinder is filled to about 90% by volume and a cap of the same material is then preheated to about fusion temperature. The open top of the cylinder is then brought up to fusion temperature and the cap is fused to it under pressure.

  9. Characterization and Evaluation of a Mass Efficient Heat Storage Device.

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2007-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a reentry or hypersonic vehicle to reduce thermal protection system requirements. The heat sponge consists of a liquid-vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat storage capacity of the liquid-vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over the temperature range of 660oR to 1160oR. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0 inch diameter hollow stainless steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat storage capacity calculated from measured temperature histories is compared to numerical predictions.

  10. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    PubMed

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate.

  11. Present status of the NIJI-IV storage-ring free-electron lasers

    SciTech Connect

    Yamazaki, T.; Yamada, K.; Sei, N.

    1995-12-31

    The tunable region of the free-electron-laser (FEL) wavelength with the NIJI-IV system is now 348{approximately}595 nm. After the lasing at 352 nm in 1994, the quality of the electron beam stored in the ring has been improved further, and the highest peak intensity of the laser obtained so far is more than 300 times as high as that of the resonated spontaneous emission. The macro-temporal structure of the lasing has been greatly improved. Recently, a single-bunch injection system was completed, and the system has been installed in the injector linac, which is expected to increase the peak stored-beam current. The commissioning and the test of the new system is under way. The beam transporting system from the linac to the ring is also being modified by increasing the number of quadrupole magnets. The experiments related to the FEL in the ultraviolet wavelength region will be begun in this coming May. The results and the status of the FEL experiments will be presented at the Conference.

  12. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  13. Construction, Shimming and Initial Operation of the Brookhaven Ultraprecise g - 2 Storage Ring.

    NASA Astrophysics Data System (ADS)

    Danby, G.

    1997-05-01

    A 1.45 Tesla superferric storage ring with 15 meter diameter superconducting (SC) coils is operating at Brookhaven. This storage ring will be used to measure the anomalous magnetic moment of the muon to an accuracy of 0.35 ppm. This measurement requires a magnetic field of very great uniformity. The field integrated over the muon orbits must be known to 0.1 ppm. A series of adjustable iron shims was provided in the design of the magnet. These iron shims, as well as a matrix of wires for current shimming for very precise field uniformity, will be described and experimental results will be presented. The very large diameter SC ring coils require a very unconventional and delicately balanced support in their cryostats, because of severe spatial constraints. A symmetric force balance is required between very large magnetic forces and suspension hangers. When first operated very large de-stabilizing magnetic forces and mechanical distortions occurred. After modification to the supports completely successful operation resulted to full field without ever quenching. A brief description of a preliminary g - 2 physics commissioning run will be given.

  14. Properties of the electron cloud in a high-energy positron and electron storage ring

    SciTech Connect

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  15. Single-Particle Dynamics in Electron Storage Rings with Extremely Low Emittance

    SciTech Connect

    Cai, Yunhai; /SLAC

    2011-05-31

    Electron storage rings are widely used for high luminosity colliders, damping rings in high-energy linear colliders, and synchrotron light sources. They have become essential facilities to study high-energy physics and material and medical sciences. To further increase the luminosity of colliders or the brightness of synchrotron light sources, the beam emittance is being continually pushed downward, recently to the nanometer region. In the next decade, another order of reduction is expected. This requirement of ultra-low emittance presents many design challenges in beam dynamics, including better analysis of maps and improvement of dynamic apertures. To meet these challenges, we have refined transfer maps of common elements in storage rings and developed a new method to compute the resonance driving terms as they are built up along a beamline. The method is successfully applied to a design of PEP-X as a future light source with 100-pm emittance. As a result, we discovered many unexpected cancelations of the fourth-order resonance terms driven by sextupoles within an achromat.

  16. Highly conductive paper for energy-storage devices

    PubMed Central

    Hu, Liangbing; Choi, Jang Wook; Yang, Yuan; Jeong, Sangmoo; La Mantia, Fabio; Cui, Li-Feng; Cui, Yi

    2009-01-01

    Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Ω/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30–47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices. PMID:19995965

  17. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    NASA Astrophysics Data System (ADS)

    Harada, Kentaro; Kobayashi, Yukinori; Miyajima, Tsukasa; Nagahashi, Shinya

    2007-12-01

    We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM) with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR) in High Energy Accelerator Research Organization (KEK). The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3T/m and a shorter pulse width of 2.4μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  18. Electron cloud simulations of a proton storage ring using cold proton bunches

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Holmes, J.; Lee, S. Y.; Macek, R.

    2008-02-01

    Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring.

  19. Magic Ring: A Finger-Worn Device for Multiple Appliances Control Using Static Finger Gestures

    PubMed Central

    Jing, Lei; Zhou, Yinghui; Cheng, Zixue; Huang, Tongjun

    2012-01-01

    An ultimate goal for Ubiquitous Computing is to enable people to interact with the surrounding electrical devices using their habitual body gestures as they communicate with each other. The feasibility of such an idea is demonstrated through a wearable gestural device named Magic Ring (MR), which is an original compact wireless sensing mote in a ring shape that can recognize various finger gestures. A scenario of wireless multiple appliances control is selected as a case study to evaluate the usability of such a gestural interface. Experiments comparing the MR and a Remote Controller (RC) were performed to evaluate the usability. From the results, only with 10 minutes practice, the proposed paradigm of gestural-based control can achieve a performance of completing about six tasks per minute, which is in the same level of the RC-based method. PMID:22778612

  20. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  1. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings. PMID:26953596

  2. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  3. Recent Results and Progress on Leptonic and Storage Ring EDM Searches

    NASA Astrophysics Data System (ADS)

    Kawall, David

    2016-02-01

    The Standard Model is incomplete and unable to explain the matter-antimatter asymmetry in the universe. Many extensions of the Standard Model predict new particles and interactions with additional CP-violating phases that can explain this imbalance. Electric dipole moments (EDMs) of fundamental particles, which are generated by CP-violating interactions, can be enhanced by many orders of magnitude by contributions from this new physics to a magnitude within reach of current and planned experiments. New approaches to EDM searches using storage rings, and their sensitivity to new physics are presented.

  4. Polarimeter Development for an Electric Dipole Moment Search in a Storage Ring

    SciTech Connect

    Imig, Astrid

    2011-09-23

    The search for a charged particle EDM in a storage ring with the goal of a statistical sensitivity of 10-29 ecenterdotcm/year requires a very sensitive polarimeter. Studies described here have shown that systematic error effects can be handled and corrected to a sensitivity better than the required 10-6 level. The required statistical precision was shown to be attainable using a thick scattering target onto which the stored beam is slowly extracted. Models for geometric and rate systematic error effects describe the results well.

  5. Conceptual design of the vaccum system for the 6 GeV storage ring

    SciTech Connect

    Be, S.H.; Morimoto, Y.; Sakamoto, H.; Yokouchi, S.

    1988-09-30

    Preliminary design results for the vacuum system of the 6 GeV storage ring which is being planned at RIKEN, are presented. The vacuum system is designed to maintain a beam-on operating pressure of 1 x 10/sup 10/ Torr. This report places special emphasis on the new vacuum chamber whose antechamber is with two isolated-pump chambers, and pumping system. The distribution of the synchrotron radiation depositions at the absorber or within the vacuum chambers is discussed. Finally the new type of a crotch absorber is briefly described.

  6. Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings

    SciTech Connect

    Balandin, V. |; Golubeva, N.

    1997-02-01

    The equations of classical spin-orbit motion can be extended to a {bold Hamiltonian system} in 9-dimensional phase space by introducing a coupled spin-orbit {bold Poisson bracket} (3) and {bold Hamiltonian function} (5). After this extension it becomes possible to apply the {bold methods of the theory of Hamiltonian systems} to the study of polarized particles beam dynamics in circular accelerators and storage rings. Some of those methods have been implemented in the computer code {bold FORGET-ME-NOT} [1], [2]. {copyright} {ital 1997 American Institute of Physics.}

  7. Minimum emittance in electron storage rings with uniform or nonuniform dipoles.

    SciTech Connect

    Wang, C.-x.; Accelerator Systems Division

    2009-06-01

    A simple treatment of minimum emittance theory in storage rings is presented, favoring vector and matrix forms for a more concise picture. Both conventional uniform dipoles and nonuniform dipoles with bending radius variation are treated. Simple formulas are given for computing the minimum emittance, optimal lattice parameters, as well as effects of nonoptimal parameters. For nonuniform dipoles, analytical results are obtained for a three-piece sandwich dipole model. Minimization of the effective emittance for light sources is given in detail. Usefulness of gradient and/or nonuniform dipoles for reducing the effective emittance is addressed.

  8. Plans for the generation of short radiation pulses at the Diamond Storage Ring.

    SciTech Connect

    Bartolini, R.; Borland, M.; Harkay, K.; Accelerator Systems Division; Diamond Light Source

    2006-01-01

    Diamond is a third generation light source under commissioning in Oxfordshire UK. In view of the increasing interest in the production of short radiation pulses, we have investigated the possibility to operate with a low-alpha optics, the use of a third harmonic cavity for bunch shortening and the implementation of a crab cavity scheme in the Diamond storage ring. The results of the initial accelerator studies will be described, including the modification of the beam optics, non-linear beam dynamics optimization and choice of RF parameters for the crab cavity operation. The expected performance of these schemes will be summarized.

  9. Head-tail instability caused by electron clouds in positron storage rings

    PubMed

    Ohmi; Zimmermann

    2000-10-30

    In positron or proton storage rings with many closely spaced bunches, an electron cloud can build up in the vacuum chamber due to photoemission or secondary emission. We discuss the possibility of a single-bunch two-stream instability driven by this electron cloud. Depending on the strength of the beam-electron interaction, the chromaticity and the synchrotron oscillation frequency, this instability either resembles a linac beam breakup or a head-tail instability. We present computer simulations of the instabilities, and compare the simulation results with analytical estimates.

  10. Vibration study of the APS storage ring vacuum-chamber/girder assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-02-01

    The overall objective of this study is to obtain insights into the dynamic coupling between the storage ring vacuum chamber and girder, and an assessment of the potential for unacceptable vibration amplitudes that would require redesign of the vacuum chamber supports. Specific objectives include determination of the vibrational characteristics (natural frequencies and modes) of the coupled vacuum-chamber/girder system, measurement of response amplitudes to forced excitation and ambient floor motion, and calculation of magnification factors associated with the various coupled vibration modes. 1 ref.

  11. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    SciTech Connect

    Gao, F.; Rose, J.; Cupolo, J.; Dilgen, T.; Rose, B.; Gash, W.; Ravindranath, V.; Yeddulla, M.; Papu, J.; Davila, P.; Holub, B.; Tagger, J.; Sikora, R.; Ramirez, G.; Kulpin, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  12. On the Absorber Thickness of Microcalorimetric Detectors in Experiments at Nuclear Storage Rings

    NASA Astrophysics Data System (ADS)

    Andrianov, V. A.; Kraft-Bermuth, S.; Scholz, P.

    2016-07-01

    Low-temperature calorimetric detectors are now successfully used in experiments on Lamb-Shift measurements at experimental storage rings. Strong Doppler broadening of the detected X-ray lines is a prominent feature of these experiments. Accordingly, an optimization procedure for the absorber thickness is proposed that considers the self-width of the X-ray detector line, the Doppler broadening, and the absorption efficiency, taking into account the possibility of the escape of secondary radiation. The optimum thickness for Sn-absorbers in this type of experiments is determined as 0.17 mm.

  13. Femtosecond x-ray pulse generation with a compact electron storage ring

    SciTech Connect

    Yamada, H. |

    1996-04-01

    A novel method for generating brilliant x-ray beams is proposed, in which inelastic collisions of circulating relativistic electrons and a thin wire target are used. The high brilliance of this new photon source is based on narrow angular divergence due to the kinematics of relativistic electrons, and repeated use of electron beams. The estimated brilliance of this source in a 50-MeV electron storage ring is comparable to that of a compact synchrotron light source. {copyright} {ital 1996 American Institute of Physics.}

  14. Mass Measurements of Proton-rich Nuclides at the Cooler Storage Ring at IMP

    SciTech Connect

    Zhang, Y. H.; Xu, H. S.; Wang, M.; Zhou, X. H.; Yuan, Y. J.; Xia, J. W.; Hu, Z. G.; Huang, W. X.; Liu, Y.; Ma, X.; Mao, R. S.; Mei, B.; Sun, Z. Y.; Wang, J. S.; Xiao, G. Q.; Yan, X. L.; Yang, J. C.; Zhao, H. W.; Zhao, T. C.; Zhang, X. Y.; and others

    2011-11-30

    Recent results and progress of mass measurements of proton-rich nuclei using isochronous mass spectrometry (IMS) are reported. The nuclei under investigation were produced via fragmentation of relativistic energy heavy ions of {sup 78}Kr and {sup 58}Ni. After in-flight separation by the fragment separator RIBLL-2, the nuclei were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of the revolution times. The impact of these measurements on the stellar nucleosynthesis in the rp-process is discussed.

  15. Explicit symplectic orbit and spin tracking method for electric storage ring

    NASA Astrophysics Data System (ADS)

    Hwang, Kilean; Lee, S. Y.

    2016-08-01

    We develop a symplectic charged particle tracking method for phase space coordinates and polarization in all electric storage rings. Near the magic energy, the spin precession tune is proportional to the fractional momentum deviation δm from the magic energy, and the amplitude of the radial and longitudinal spin precession is proportional to η /δm , where η is the electric dipole moment for an initially vertically polarized beam. The method can be used to extract the electron electric dipole moment of a charged particle by employing narrow band frequency analysis of polarization around the magic energy.

  16. Resonant neutral-particle emission in collisions of electrons with peptide ions in a storage ring.

    PubMed

    Tanabe, T; Noda, K; Saito, M; Lee, S; Ito, Y; Takagi, H

    2003-05-16

    Electron-biomolecular ion collisions were studied using an electrostatic storage ring with a merging beam technique for singly protonated peptides (angiotensin I, II, and III). A strong neutral-particle emission at around 6.5 eV was found in addition to neutrals from recombination at low energies. The rates of the high-energy peak greatly decreased with a slight decrease in the number of amino-acid residues from angiotensin I to III. These results suggest that some peptide bonds were selectively cleaved.

  17. Recent Results of Nuclear Mass Measurements at Storage Ring in IMP

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Zhang, Y. H.

    2014-09-01

    Recent commissioning of the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) has allowed us for direct mass measurements at the Institute of Modern Physics in Lanzhou (IMP), Chinese Academy of Sciences. A series of isochronous mass measurements have been carried out in the past few years using 78Kr, 86Kr, 58Ni, and 112Sn beams. The main results and the present status are presented in this talk, and the implications of these results with respect to nuclear structures and nucleosynthesis in the rp-process of x-ray bursts are discussed.

  18. Rf stability, control and bunch lengthening in electron synchrotron storage rings

    SciTech Connect

    Wachtel, J.M.

    1989-09-01

    A self-consistent theory for nonlinear longitudinal particle motion and rf cavity excitation in a high energy electron storage ring is developed. Coupled first order equations for the motion of an arbitrary number of particles and for the field in several rf cavities are given in the form used in control system theory. Stochastic quantum excitation of synchrotron motion is included, as are the effects of rf control system corrections. Results of computations for double cavity bunch lengthening are given. 11 refs., 4 figs., 1 tab.

  19. Head-tail instability caused by electron clouds in positron storage rings

    PubMed

    Ohmi; Zimmermann

    2000-10-30

    In positron or proton storage rings with many closely spaced bunches, an electron cloud can build up in the vacuum chamber due to photoemission or secondary emission. We discuss the possibility of a single-bunch two-stream instability driven by this electron cloud. Depending on the strength of the beam-electron interaction, the chromaticity and the synchrotron oscillation frequency, this instability either resembles a linac beam breakup or a head-tail instability. We present computer simulations of the instabilities, and compare the simulation results with analytical estimates. PMID:11041936

  20. Broadband impedance calculations and single bunch instabilities estimations of of the HLS-II storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Kun; Wang, Lin; Li, Wei-Min; Gao, Wei-Wei

    2015-12-01

    The upgrade project of the Hefei Light Source storage ring is under way. In this paper, the broadband impedances of resistive wall and coated ceramic vacuum chamber are calculated using the analytic formula, and the wake fields and impedances of other designed vacuum chambers are simulated by CST code, and then a broadband impedance model is obtained. Using the theoretical formula, longitudinal and transverse single bunch instabilities are discussed. With the carefully-designed vacuum chamber, we find that the thresholds of the beam instabilities are higher than the beam current goal. Supported by Natural Science Foundation of China (11175182, 11175180)

  1. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    SciTech Connect

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-03-12

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  2. Regenerative braking device with rotationally mounted energy storage means

    DOEpatents

    Hoppie, Lyle O.

    1982-03-16

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  3. Rim for rotary inertial energy storage device and method

    DOEpatents

    Knight, Jr., Charles E.; Pollard, Roy E.

    1980-01-01

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  4. Thermal energy storage device and method for making the same

    SciTech Connect

    Campbell, S.

    1983-06-21

    The thermal energy storage device is in the form of a sealed tube -like container such as a tube-like cylinder or other geometrical configuration partially filled with a phase change material such as calcium chloride hexahydrate. The cylinder is made of tubular high density polyethylene and more particularly an ultra high molecular weight high density polyethylene having a molecular weight of about 500,000 to 700,000 which is tough, chemically resistant, withstands low and high temperatures, acts as a moisture vapor barrier and can be fused and sealed. The calcium hexahydrate is filled in an open top cylinder, closed at the bottom by dissolving two parts of calcium chloride dihydrate with one part of water to provide calcium chloride hexahydrate in liquid form. The cylinder is filled to about 90% by volume and a cap of the same material is then preheated to about fusion temperature. The open top of the cylinder is then brought up to fusion temperature and the cap is fused to it under pressure. The thermal energy storage device with the encapsulated calcium chloride hexahydrate can then be subjected to repeated freezethaw cycles. The latent heat of fusion is utilized with sensible heat in various types of usages such as solar heating, heat pump applications and the like. In another embodiment the cylinder may be pinch sealed at the bottom and top by fusion to provide a flat pinch. Modifications of pinch sealing to reduce distortion near the seal include x-shaped, y-shaped and wave-shaped pinch seal configurations. The tube-like container instead of being cylindrical may for ease in stacking and to present greater surface area take other geometrical configurations such as a generally oblong configuration with rounded sides.

  5. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    SciTech Connect

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  6. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Progress report

    SciTech Connect

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  7. Boron-double-ring sheet, fullerene, and nanotubes: potential hydrogen storage materials.

    PubMed

    Wang, Jing; Zhao, Hui-Yan; Liu, Ying

    2014-11-10

    Similar to carbon-based graphene, fullerenes and carbon nanotubes, boron atoms can form sheets, fullerenes, and nanotubes. Here we investigate several of these novel boron structures all based on the boron double ring within the framework of density functional theory. The boron sheet is found to be metallic and flat in its ground state. The spherical boron cage containing 180 atoms is also stable and has I symmetry. Stable nanotubes are obtained by rolling up the boron sheet, and all are metallic. The hydrogen storage capacity of boron nanostructures is also explored, and it is found that Li-decorated boron sheets and nanotubes are potential candidates for hydrogen storage. For Li-decorated boron sheets, each Li atom can adsorb a maximum of 4 H2 molecules with g(d) =7.892 wt %. The hydrogen gravimetric density increases to g(d) =12.309 wt % for the Li-decorated (0,6) boron nanotube.

  8. A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.

    SciTech Connect

    MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

    2003-03-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  9. A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker

    SciTech Connect

    Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

    1999-03-29

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

  10. Customized electric power storage device for inclusion in a collective microgrid

    DOEpatents

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    2016-02-16

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specified load parameters in the at least two connected microgrids.

  11. A study on the development of loading device of photoelastic stress freezing method for O-ring stress analysis

    NASA Astrophysics Data System (ADS)

    Hawong, Jai-Sug; Nam, Jeong-Hwan; Han, Song-Ling; Kwon, O.-Sung; Park, Sung-Han

    2008-11-01

    There are O-rings for movement and for airtight in O-rings. O-ring for movement is used to protect to penetrate the dust or the alien substance into cylinder. O-ring for airtight is used to maintain airtight. Airtight of O-ring is controlled by squeeze rate and the gap between external diameter of groove and internal diameter of cylinder. Squeeze rate of O-ring is controlled by internal diameter of groove. Gap between external diameter of groove and internal diameter of cylinder is controlled by the external diameter of groove. Stresses of O-ring are depended on the squeeze rate, gap and internal pressure. O-ring for airtight is under uniform squeeze rate and internal pressure with constant gap. And then stress distributions are very complicated. Therefore stresses of O-ring are almost analyzed by experiment. To study the stress distributions of O-ring by experiment, 3-dimensional photoelastic experiment had better be used. To study stress distributions of O-ring by 3-dimensional photoelastic experiment, loading device is very important. Loading device should are functions, which uniform squeeze rate and internal pressure etc, can be applied, and the uniform squeeze rate can be controlled. Therefore, in this research, the loading device with functions explained above was developed. The validity of the loading device was confirmed by the stress distributions of O-ring, the configuration change of O-ring and the contact length of O-ring etc.. When squeeze rate is constant, the contact length of upper of the deformed O-ring is almost equal to that of lower of the deformed O-ring. When the internal pressure is applied to O-ring under uniform squeeze rate, the contact length of upper of O-ring is increased with the increment of the internal pressure by little. The contact length of lower of O-ring is constant irrespective of the increment of the internal pressure.

  12. The Conversion and operation of the Cornell electron storage ring as a test accelerator (cesrta) for damping rings research and development

    SciTech Connect

    Palmer, M.A.; Alexander, J.; Byrd, J.; Celata, C.M.; Corlett, J.; De Santis, S.; Furman, M.; Jackson, A.; Kraft, R.; Munson, D.; Penn, G.; Plate, D.; Rawlins, A.; Venturini, M.; Zisman, M.; Billing, M.; Calvey, J.; Chapman, S.; Codner, G.; Conolly, C.; Crittenden, J.; Dobbins, J.; Dugan, G.; Fontes, E.; Forster, M.; Gallagher, R.; Gray, S.; Greenwald, S.; Hartill, D.; Hopkins, W.; Kandaswamy, J.; Kreinick, D.; Li, Y.; Liu, X.; Livezey, J.; Lyndaker, A.; Medjidzade, V.; Meller, R.; Peck, S.; Peterson, D.; Rendina, M.; Revesz, P.; Rice, D.; Rider, N.; Rubin, D.; Sagan, D.; Savino, J.; Seeley, R.; Sexton, J.; Shanks, J.; Sikora, J.; Smolenski, K.; Strohman, C.; Temnykh, A.; tigner, M.; Whitney, W.; Williams, H.; Vishniakou, S.; Wilkens, T.; Harkay, K.; Holtzapple, R.; Smith, E.; Jones, J.; Wolski, A.; He, Y.; Ross, M.; Tan, C.Y.; Zwaska, R.; Flanagan, J.; Jain, P.; Kanazawa, K.; Ohmi, K.; Sakai, H.; Shibata, K.; Suetsugu, Y.; Kharakh, D.; Pivi, M.; Wang, L.

    2009-05-01

    In March of 2008, the Cornell Electron Storage Ring (CESR) concluded twenty eight years of colliding beam operations for the CLEO high energy physics experiment. We have reconfigured CESR as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. The primary goals of the CesrTA program are to achieve a beam emittance approaching that of the ILC Damping Rings with a positron beam, to investigate the interaction of the electron cloud with both low emittance positron and electron beams, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies (in particular a fast x-ray beam size monitor capable of single pass measurements of individual bunches). We report on progress with the CESR conversion activities, the status and schedule for the experimental program, and the first experimental results that have been obtained.

  13. Improvement of current limitation in the storage ring NIJI-IV

    SciTech Connect

    Yokoyama, M.; Kawai, M.; Hamada, S.

    1995-12-31

    The storage ring NIJI-IV dedicated to free-electron lasers was completed in December 1990. Lasing at 595-352 nm by using the NIJI-IV was accomplished by April 1994. The NIJI-IV has 16 rf-buckets. The electron bunch contributed to FEL gain of the NIJI-IV is only one of 16. In order to get the redundant bunch, make beam quality better, and make the FEL operation easier, a single bunch injection (SBI) system by using a short pulse beam from an electron gun was prepared. The quality of the beam accelerated and bunched by a buncher section has already been investigated. It was convinced that the accelerated short pulse beam satisfies the performance required on the SBI of the NIJI-IV. At present, the operation of the SBI system is being tested. Storage efficiency (the ratio of storage current to injection current) and limitation of storage current by using the SBI system will be reported in this conference. We expect lasing at below 352nm by the SBI.

  14. Design of coupler for the NSLS-II storage ring superconducting RF cavity

    SciTech Connect

    Yeddulla, M.; Rose, J.

    2011-03-28

    NSLS-II is a 3GeV, 500mA, high brightness, 1 MW beam power synchrotron facility that is designed with four superconducting cavities working at 499.68 MHz. To operate the cavities in over-damped coupling condition, an External Quality Factor (Qext) of {approx}65000 is required. We have modified the existing coupler for the CESR-B cavity which has a Qext of {approx}200,000 to meet the requirements of NSLS-II. CESR-B cavity has an aperture coupler with a coupler 'tongue' connecting the cavity to the waveguide. We have optimized the length, width and thickness of the 'tongue' as well as the width of the aperture to increase the coupling using the three dimensional electromagnetic field solver, HFSS. Several possible designs will be presented. We have modified the coupler of the CESR-B cavity to be used in the storage ring at the NSLS-II project using HFSS and verified using CST Microwave Studio. Using a combination of increasing the length and width of the coupler tongue and increasing the width of the aperture, the external Q of the cavity coupler was decreased to {approx}65000 as required for the design of the NSLS-II storage ring design.

  15. Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole

    SciTech Connect

    Marks, S.

    1995-02-01

    The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.

  16. Improved temperature regulation of process water systems for the APS storage ring.

    SciTech Connect

    Putnam, C.; Dortwegt, R.

    2002-10-10

    Beam stability and operational reliability of critical mechanical systems are key performance issues for synchrotron accelerators such as the Advanced Photon Source (APS). Stability is influenced by temperature fluctuations of the process water (PW) used for cooling and/or temperature conditioning storage ring (SR) components such as vacuum chambers, magnets, absorbers, etc. Operational reliability is crucial in maintaining facility beam operations and remaining within downtime ''budgets.'' Water systems for the APS storage ring were originally provided with a distributive control system (DCS) capable of regulation to {+-}1.0 F, as specified by facility design requirements. After several years of operation, a particular mode of component mortality indicated a need for upgrade of the temperature control system. The upgrade that was implemented was chosen for both improved component reliability and temperature stability (now on the order of {+-}0.2 F for copper components and {+-}0.05 F for aluminum components). The design employs a network of programmable logic controllers (PLCs) for temperature control that functions under supervision of the existing DCS. The human-machine interface (HMI) of the PLC system employs RSView32 software. The PLC system also interfaces with the EPICS accelerator control system to provide monitoring of temperature control parameters. Eventual supervision of the PLC system by EPICS is possible with this design.

  17. Open loop compensation for the eddy current effect in the APS storage ring vacuum chamber

    SciTech Connect

    Chung, Y.; Bridges, J.; Emery, L.; Decker, G.

    1991-01-01

    In the third generation synchrotron light sources, closed orbit stabilization against external vibrations is critical to ensure low emittance and high brightness. The Advanced Photon Source (APS) will use a large number (678) of correction magnets to create local bumps and to achieve global orbit stabilization. In this paper, we will present the result of the effort to counter the effect due to the finite inductance of the magnet and the eddy current in the 1/2 in.-thick aluminum storage ring vacuum chamber. The amplitude attenuation and the phase shift of the correction magnet field inside the APS storage ring vacuum chamber were measured. A circuit to compensate for this effect was then inserted between the signal source and the magnet power supply. The amplitude was restored with an error of less than 20% of the source signal amplitude and the phase shift was reduced from 80{degrees} to 12{degrees} at 10 Hz. Incorporation of this circuit in the closed loop feedback scheme and the resulting beneficial effect in the closed orbit stabilization will be discussed. 4 refs., 4 figs.

  18. X-ray microprobe characterization of materials: the case for undulators on advanced storage rings

    SciTech Connect

    Sparks, C.J. Jr.

    1984-03-17

    The unique properties of X rays offer many advantages over electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signals to backgrounds than obtained with electrons. Detectable limits for X rays are a few parts per billion and are 10/sup -3/ to 10/sup -5/ less than for electrons. Energy deposition in the sample by X rays is 10/sup -3/ to 10/sup -4/ less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 6 GeV class with undulators, will be approximately 10/sup 3/ brighter in the X-ray energy range from 5 keV to 35 keV than existing storage rings and provide for X-ray microprobes that are as bright as the most advanced electron probes. Such X-ray microprobes will produce unprecedented low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for both chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine.

  19. The large superconducting solenoids for the g-2 muon storage ring

    SciTech Connect

    Bunce, G.; Cullen, J.; Danby, G.

    1994-12-01

    The g-2 muon storage ring at Brookhaven National Laboratory consists of four large superconducting solenoids. The two outer solenoids, which are 15.1 meters in diameter, share a common cryostat. The two inner solenoids, which are 13.4 meters in diameter, are in separate cryostats. The two 24 turn inner solenoids are operated at an opposite polarity from the two 24 turn outer solenoids. This generates a dipole field between the inner and outer solenoids. The flux between the solenoids is returned through a C shaped iron return yoke that also shapes the dipole field. The integrated field around the 14 meter diameter storage ring must be good to about 1 part in one million over the 90 mm dia. circular cross section where the muons are stored, averaged over the azimuth. When the four solenoids carry their 5300 A design current, the field in the 18 centimeter gap between the poles is 1.45 T. When the solenoid operates at its design current 5.5 MJ is stored between the poles. The solenoids were wound on site at Brookhaven National Laboratory. The cryostats were built around the solenoid windings which are indirectly cooled using two-phase helium.

  20. Deposition of robust multilayer mirror coatings for storage ring FEL lasing at 176nm

    NASA Astrophysics Data System (ADS)

    Günster, St.; Ristau, D.; Trovó, M.; Danailov, M.; Gatto, A.; Kaiser, N.; Sarto, F.; Piegari, A.

    2005-09-01

    Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.

  1. Electron-ion recombination of Si IV forming Si III: Storage-ring measurement and multiconfiguration Dirac-Fock calculations

    SciTech Connect

    Schmidt, E. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Fritzsche, S.; Hoffmann, J.; Jaroshevich, A. S.; Krantz, C.; Lestinsky, M.; Orlov, D. A.; Wolf, A.; Lukic, D.; Savin, D. W.

    2007-09-15

    The electron-ion recombination rate coefficient for Si IV forming Si III was measured at the heavy-ion storage-ring TSR. The experimental electron-ion collision energy range of 0-186 eV encompassed the 2p{sup 6}nln{sup '}l{sup '} dielectronic recombination (DR) resonances associated with 3s{yields}nl core excitations, 2s2p{sup 6}3snln{sup '}l{sup '} resonances associated with 2s{yields}nl (n=3,4) core excitations, and 2p{sup 5}3snln{sup '}l{sup '} resonances associated with 2p{yields}nl (n=3,...,{infinity}) core excitations. The experimental DR results are compared with theoretical calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via the 3s{yields}3pn{sup '}l{sup '} and 3s{yields}3dn{sup '}l{sup '}(both n{sup '}=3,...,6) and 2p{sup 5}3s3ln{sup '}l{sup '} (n{sup '}=3,4) capture channels. Finally, the experimental and theoretical plasma DR rate coefficients for Si IV forming Si III are derived and compared with previously available results.

  2. New characteristics of a single-bunch instability in the APS storage ring.

    SciTech Connect

    Wang, C.-X.; Harkay, K.; Accelerator Systems Division

    2004-01-01

    In the Advanced Photon Source storage ring, a transverse single-bunch instability has long been observed that appears unique to this ring. Many of its features have been previously reported. New results have recently been obtained using beam centroid history measurements and analysis. These preliminary results provide more detailed information regarding the characteristics of this instability and could provide insight into the physics mechanism. A new transverse single-bunch instability has been observed for several years in the Advanced Photon Source storage ring. It exhibits two distinctive modes: steady-state, with stable centroid oscillations, and bursting, with periodic burst-like oscillations. At a certain threshold current, the beam starts a steady-state oscillation whose amplitude grows gradually with increasing current. When the current reaches a second threshold, the beam quickly transits into the bursting mode whose period and amplitude changes with increasing current. At even higher current, the beam can return to a steady-state oscillation. For a given machine condition, the entire sequence may not be observed before losing the beam. The physical mechanism of this instability is not clear yet. Many measurements have been taken to characterize this instability and the results were documented. Recently, more observations were made using Model-Independent Analysis of simultaneously recorded beam histories at hundreds of turn-by-turn beam position monitors (BPMs). Some of the findings are reported here. These results are far from systematic and complete, unfortunately, because of the difficulties in data acquisition and analysis caused by our faulty beam history system. Nonetheless, these new observations provide further information on the characteristics of this unsolved instability. Since it is unsolved, we will describe the phenomena only and keep speculation to a minimum.

  3. Measurement of inner and/or outer profiles of pipes using ring beam devices

    NASA Astrophysics Data System (ADS)

    Wakayama, T.; Yoshizawa, T.

    2009-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and industry. Here we propose a measurement method for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without any contact probe. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In the hitherto-tried experimental works, the availability of this instrument has been highly evaluated and usability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disklike light beam sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument. Both the ring beam device and a miniaturized CCD camera are fabricated in a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose an improved method for measuring the external profile in addition to the internal profile. In our arrangement, one pair of concaved conical mirrors is used for the external profile measurement. In combination with the inner profile measurement technique, simultaneous measurement of the inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of newly proposed principle. Now we are aiming to realize simultaneous measurement of the internal

  4. Quantum-ring spin interference device tuned by quantum point contacts

    SciTech Connect

    Diago-Cisneros, Leo; Mireles, Francisco

    2013-11-21

    We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a function of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.

  5. Mechanical testing of a device for subcutaneous internal anterior pelvic ring fixation versus external pelvic ring fixation

    PubMed Central

    2014-01-01

    Background Although useful in the emergency treatment of pelvic ring injuries, external fixation is associated with pin tract infections, the patient’s limited mobility and a restricted surgical accessibility to the lower abdomen. In this study, the mechanical stability of a subcutaneous internal anterior fixation (SIAF) system is investigated. Methods A standard external fixation and a SIAF system were tested on pairs of Polyoxymethylene testing cylinders using a universal testing machine. Each specimen was subjected to a total of 2000 consecutive cyclic loadings at 1 Hz with sinusoidal lateral compression/distraction (+/−50 N) and torque (+/− 0.5 Nm) loading alternating every 200 cycles. Translational and rotational stiffness were determined at 100, 300, 500, 700 and 900 cycles. Results There was no significant difference in translational stiffness between the SIAF and the standard external fixation when compared at 500 (p = .089), 700 (p = .081), and 900 (p = .266) cycles. Rotational stiffness observed for the SIAF was about 50 percent higher than the standard external fixation at 300 (p = .005), 500 (p = .020), and 900 (p = .005) cycles. No loosening or failure of the rod-pin/rod-screw interfaces was seen. Conclusions In comparison with the standard external fixation system, the tested device for subcutaneous internal anterior fixation (SIAF) in vitro has similar translational and superior rotational stiffness. PMID:24684828

  6. 10 CFR 34.23 - Locking of radiographic exposure devices, storage containers and source changers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Locking of radiographic exposure devices, storage containers and source changers. 34.23 Section 34.23 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR... § 34.23 Locking of radiographic exposure devices, storage containers and source changers. (a)...

  7. 10 CFR 34.23 - Locking of radiographic exposure devices, storage containers and source changers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Locking of radiographic exposure devices, storage containers and source changers. 34.23 Section 34.23 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR... § 34.23 Locking of radiographic exposure devices, storage containers and source changers. (a)...

  8. Lattice Design for PEP-X Ultimate Storage Ring Light Source

    SciTech Connect

    Bane, K.L.F.; Cai, Y.; Nosochkov, Y.; Wang, M.-H.; Hettel, R.O.; /SLAC

    2011-12-13

    SLAC expertise in designing and operating high current storage rings and the availability of the 2.2-km PEP-II tunnel present an opportunity for building a next generation light source - PEP-X - that would replace the SPEAR3 storage ring in the future. The PEP-X 'baseline' design, with 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. As a next step, a so-called 'ultimate' PEP-X lattice, reducing the emittance to 11 pm-rad at zero current, has been designed. This emittance approaches the diffraction limited photon emittance for multi-keV photons, providing near maximum photon brightness and high coherence. It is achieved by using 7-bend achromat cells in the ring arcs and a 90-m damping wiggler in one of the 6 long straight sections. Details of the lattice design, dynamic aperture, and calculations of the intra-beam scattering effect and Touschek lifetime at a nominal 0.2 A current are presented. Accelerator-based light sources are in high demand for many experimental applications. The availability of the 2.2-km PEP-II tunnel at SLAC presents an opportunity for building a next generation light source - PEP-X - that would replace the existing SPEAR3 light source in the future. The PEP-X study started in 2008, and the 'baseline' design, yielding 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. This relatively conservative design can be built using existing technology. However, for a long term future, it is natural to investigate a more aggressive, so-called 'ultimate' ring design. The goal is to reduce the electron emittance in both x and y planes to near the diffraction limited photon emittance of 8 pm-rad at hard X-ray photon wavelength of 0.1 nm. This would provide a near maximum photon brightness and significant increase in photon coherence. This study was motivated by the advances in low emittance design at MAX-IV. The latter was used as a starting point for the PEP-X arc lattice

  9. High-flux x-ray undulator radiation from proposed B factory storage rings at Cornell University

    SciTech Connect

    Bilderback, D.H.; Batterman, B.W.; Bedzyk, M.J.; Brock, J.; Finkelstein, K.; Headrick, R.; Shen, Q. )

    1992-01-01

    Two intersecting storage rings (8 GeV, 1 A and 3.5 GeV, 2 A) have been proposed to be built at Cornell University to enhance both the production of {ital B} mesons and synchrotron radiation. Exceedingly high x-ray flux from 3-m long undulators will be the new feature of a {ital B} factory for the CHESS laboratory. The flux produced integrated over the central cone of radiation can be as much as an order of magnitude higher than from the third-generation storage rings (now under construction) operating at 0.1 A.

  10. Beam dynamics in an ultra-low energy storage rings (review of existing facilities and feasibility studies for future experiments)

    NASA Astrophysics Data System (ADS)

    Papash, A. I.; Smirnov, A. V.; Welsch, C. P.

    2014-03-01

    Storage rings operating at ultra-low energies and in particular electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics. Due to the mass independence of the electrostatic rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. However, earlier measurements showed strong limitations on beam intensity, fast decay of ion current, reduced life time etc. The nature of these effects was not fully understood. Also a large variety of experiments in future generation ultra-low energy storage and decelerator facilities including in-ring collision studies with a reaction microscope require a comprehensive investigation of the physical processes involved into the operation of such rings. In this paper, we present review of non-linear and long term beam dynamics studies on example of the ELISA, AD Recycler, TSR and USR rings using the computer codes BETACOOL, OPERA-3D and MAD-X. The results from simulations were benchmarked against experimental data of beam losses in the ELISA storage ring. We showed that decay of beam intensity in ultra-low energy rings is mainly caused by ion losses on ring aperture due to multiple scattering on residual gas. Beam is lost on ring aperture due to small ring acceptance. Rate of beam losses increases at high intensities because of the intra-beam scattering effect adds to vacuum losses. Detailed investigations into the ion kinetics under consideration of the effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target have been carried out as well. The life time, equilibrium momentum spread and equilibrium lateral spread during collisions with this internal gas jet target were estimated. In addition, the results from experiments at the TSR ring, where low intensity beam of CF+ ions at 93 keV/u has been shrunk to extremely small dimensions have been reproduced. Based on these simulations

  11. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  12. Storage Ring Cross Section Measurements for Electron Impact Ionization of Fe7+

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2015-11-01

    We have measured electron impact ionization for Fe7+ from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud & Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.

  13. Efficient cascaded parameter scan approach for studying top-off safety in storage rings

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Yang, Lingyun; Krinsky, Samuel

    2011-03-01

    We introduce a new algorithm, which we call the cascaded parameter scan method, to efficiently carry out the scan over magnet parameters in the safety analysis for top-off injection in synchrotron radiation storage rings. In top-off safety analysis, one must track particles populating phase space through a beam line containing magnets and apertures and clearly demonstrate that, for all possible magnet settings and errors, all particles are lost on scrapers within the properly shielded region. In the usual approach, if one considers m magnets and scans each magnet through n setpoints, then one must carry out nm tracking runs. In the cascaded parameter scan method, the number of tracking runs is reduced to n×m. This reduction of exponential to linear dependence on the number of setpoints n greatly reduces the required computation time and allows one to more densely populate phase space and to increase the number n of setpoints scanned for each magnet.

  14. Nuclear Physics at Storage Rings: Fourth International Conference: STORI99. AIP Conference Proceedings, No. 512 [APCPCS

    SciTech Connect

    Meyer, H.-O; Schwandt, P.

    2000-12-31

    The aim of this conference was to bring together physicists from a diverse international research community connected by the common technology of storage rings and review the topics of current interest in nuclear physics research with stored, cooled ion beams and electron beams. Specifically, the scientific program focused on recent results from a wide variety of experimental programs at existing stored-beam facilities, on progress in associated theoretical issues, and on discussion of new facilities and experimental techniques. In addition to the traditional physics topics covered by the STORI conferences (nucleon physics and meson production, physics with stored heavy-ion beams, polarized beams and targets), new physics topics introduced at STORI99 included strangeness production with high-energy stored proton beams and physics with stored electron beams.

  15. Active damping of the e-p instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R. J.; Assadi, S.; Byrd, J. M.; Deibele, C. E.; Henderson, S. D.; Lee, S. Y.; McCrady, R. C.; Pivi, M. F. T.; Plum, M. A.; Walbridge, S. B.; Zaugg, T. J.

    2007-12-15

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  16. Recent experience with inductive insert at the proton storage ring (PSR)

    SciTech Connect

    Ng, K.-Y; Griffin, J. E.; Wildman, D.; Popovic, M.; Browman, A. A.; Fitzgerald, D. H.; Macek, R. J.; Plum, M. A.; Spickermann, T. J.

    2001-01-01

    In a Fermilab-Los Alamos collaboration, inductances constructed of ferrite cores sufficient to cancel a large fraction of the space charge potential-well distortion were installed in the Los Alamos Proton Storage Ring (PSR) as one means of raising the threshold for the two-stream e-p instability. When operating at higher intensities and with sufficient inductance added for full space-charge compensation, an unacceptable longitudinal self-bunching, microwavelike, instability was encountered. Heating the cores to N 130 C proved to be an effective cure, and was found to be a means for tuning the inductance over a limited but useful range. The heated inductors were an essential ingredient in achieving a record accumulation of 9.7 pC/pulse. An engineered version of the inductors is now installed for routine operation of the PSR. A summary of the inductor characteristics, theory of operation, experimental results, and interpretation will be presented.

  17. NEW DEVELOPMENTS ON THE E-P INSTABILITY AT THE PROTON STORAGE RING (PSR)

    SciTech Connect

    R. MACEK

    2001-01-01

    New results are reported from an R and D program aimed at greater understanding and control of the e-p instability observed at the Los Alamos Proton Storage Ring (PSR). Numerous characteristics of the electron cloud for both stable and unstable beams in PSR were measured with ANL electron analyzers and various collection plates. Strong suppression of the electron flux density by TiN coating of the vacuum chamber in a straight section was also observed, thereby confirming an essential role for secondary emission at the walls. Landau Damping by a variety of techniques including higher rf voltage, transverse coupling, multipole fields in the lattice, and the use of inductive inserts has been effective in controlling the e-p instability. By these methods, the instability threshold has been raised significantly to 9.7 micro Coulombs per stored pulse.

  18. Observation of space-charge effects in the Los Alamos Proton Storage Ring

    SciTech Connect

    Neuffer, D.; Fitzgerald, D.; Hardek, T.; Hutson, R.; Macek, R.; Plum, M.; Thiessen, H.; Wang, T.S.

    1991-01-01

    In recent operation of the Los Alamos Proton Storage Ring (PSR), the vertical and horizontal tunes have been moved closer to the integers (v{sub y} = 2.12, v{sub x} = 3.17) due to enlarge the low-los working region. In this region, the beam can be significantly affected by space charge. The first observed effects are a nondestructive distortion of the beam profile and vertical growth of beam size sufficient to keep the shifted tunes from crossing the integer, but without large beam loss. At higher intensities, or with tunes closer to the integer, beam blow-up, accompanied by beam losses, can occur. In this paper, we report recent observations of this intensity-dependent effect and discuss implications for future PSR operation. 4 refs., 2 figs., 1 tab.

  19. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-01-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results.

  20. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-06-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results.

  1. Active Damping of the E-P Instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R.J.; Assadi, S.; Byrd, J.M.; Deibele, C.E.; Henderson, S.D.; Lee, S.Y.; McCrady, R.C.; Pivi, M.F.T.; Plum, M.A.; Walbridge, S.B.; Zaugg, T.J.; /Los Alamos

    2008-03-17

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  2. Dissociative recombination measurements of NH{sup +} using an ion storage ring

    SciTech Connect

    Novotný, O.; Savin, D. W.; Berg, M.; Bing, D.; Buhr, H.; Grieser, M.; Grussie, F.; Krantz, C.; Mendes, M. B.; Nordhorn, C.; Repnow, R.; Schwalm, D.; Yang, B.; Wolf, A.; Geppert, W.

    2014-09-10

    We have investigated dissociative recombination (DR) of NH{sup +} with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present our measured absolute merged-beams recombination rate coefficient for collision energies from 0 to 12 eV. From these data, we have extracted a cross section, which we have transformed to a plasma rate coefficient for the collisional plasma temperature range from T {sub pl} = 10 to 18,000 K. We show that the NH{sup +} DR rate coefficient data in current astrochemical models are underestimated by up to a factor of approximately nine. Our new data will result in predicted NH{sup +} abundances lower than those calculated by present models. This is in agreement with the sensitivity limits of all observations attempting to detect NH{sup +} in interstellar clouds.

  3. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe{sup 7+}

    SciTech Connect

    Hahn, M.; Novotný, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Bernhardt, D.; Müller, A.; Schippers, S.; Spruck, K.; Lestinsky, M.

    2015-11-01

    We have measured electron impact ionization for Fe{sup 7+} from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud and Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.

  4. Damping spurious harmonic resonances in the APS storage ring beam chamber.

    SciTech Connect

    Kang, Y.

    1999-04-20

    The APS storage ring beam chamber has been storing the beam up to 100 mA successfully. However, in some beam chambers, spurious signals corrupted the BPM outputs. The cause of the unwanted signals was investigated, and it was found that transverse electric (TE) longitudinal harmonic resonances of the beam chamber were responsible. The beam chambers have small height in the area between the ovid beam chamber and the antechamber. The structure behaves like a ridge waveguide so that the cut-off frequency of the waveguide mode becomes lower. The pass-band then includes the frequency around 350 MHz that is important to the beam position monitors (BPMs). The spurious harmonic resonances are damped with two types of dampers to restore the useful signals of the BPMs; coaxial loop dampers and lossy ceramic slab loading are used.

  5. Neural network technique for orbit correction in accelerators/storage rings

    SciTech Connect

    Bozoki, E.; Friedman, A.

    1995-02-01

    The authors are exploring the use of Neural Networks, using the SNNS simulator, for orbit control in accelerators (primarily circular accelerators) and storage rings. The orbit of the beam in those machines are measured by orbit monitors (input nodes) and controlled by orbit corrector magnets (output nodes). The physical behavior of an accelerator is changing slowly in time. Thus, an adoptive algorithm is necessary. The goal is to have a trained net which will predict the exact corrector strengths which will minimize a measured orbit. The relationship between {open_quotes}kick{close_quotes} from the correctors and {open_quotes}response{close_quotes} from the monitors is in general non-linear and may slowly change during long-term operation of the machine. In the study, several network architectures are examined as well as various training methods for each architecture.

  6. Optimal dipole-field profiles for emittance reduction in storage rings.

    SciTech Connect

    Wang, C.-X.; Wang, Y.; Peng, Y. )

    2011-03-21

    In recent years nonuniform dipoles with bending-radius variation have been studied for reducing storage ring emittance. According to a new minimum-emittance theory, the effects of an arbitrary dipole can be characterized with two parameters determined by the dipole. To have a better idea of the potentials of nonuniform dipoles, here we numerically explore the possible values of these two parameters and associated bending profiles for optimal emittance reduction. Such optimization results provide a useful reference for lattice designs involving nonuniform bending. Simple bending-radius profiles (a short segment of constant radius with linear ramps on the sides) were found to be close to the optimal. Basic beam and lattice properties such as emittance, energy spread, and phase advances are presented based on the optimal dipole solutions.

  7. Software package for modeling spin–orbit motion in storage rings

    SciTech Connect

    Zyuzin, D. V.

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{sup 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.

  8. The trigger system for the external target experiment in the HIRFL cooling storage ring

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhao, Lei; Liu, Jin-Xin; Lu, Yi-Ming; Liu, Shu-Bin; An, Qi

    2016-08-01

    A trigger system was designed for the external target experiment in the Cooling Storage Ring (CSR) of the Heavy Ion Research Facility in Lanzhou (HIRFL). Considering that different detectors are scattered over a large area, the trigger system is designed based on a master-slave structure and fiber-based serial data transmission technique. The trigger logic is organized in hierarchies, and flexible reconfiguration of the trigger function is achieved based on command register access or overall field-programmable gate array (FPGA) logic on-line reconfiguration controlled by remote computers. We also conducted tests to confirm the function of the trigger electronics, and the results indicate that this trigger system works well. Supported by the National Natural Science Foundation of China (11079003), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the CAS Center for Excellence in Particle Physics (CCEPP).

  9. An ultimate storage ring lattice with vertical emittance generated by damping wigglers

    SciTech Connect

    Huang, Xiaobiao

    2015-01-06

    We discuss the approach of generating round beams for ultimate storage rings using vertical damping wigglers (with horizontal magnetic field). The vertical damping wigglers provide damping and excite vertical emittance. This eliminates the need to generate large linear coupling that is impractical with traditional off-axis injection. We use a PEP-X compatible lattice to demonstrate the approach. This lattice uses separate quadrupole and sextupole magnets with realistic gradient strengths. Intrabeam scattering effects are calculated. As a result, the horizontal and vertical emittances are 22.3 pm and 10.3 pm, respectively, for a 200 mA, 4.5 GeV beam, with a vertical damping wiggler of a total length of 90 m, a peak field of 1.5 T and a wiggler period of 100 mm.

  10. Photodissociation of an Internally Cold Beam of CH^{+} Ions in a Cryogenic Storage Ring.

    PubMed

    O'Connor, A P; Becker, A; Blaum, K; Breitenfeldt, C; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; von Hahn, R; Hechtfischer, U; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lohmann, S; Meyer, C; Mishra, P M; Novotný, O; Repnow, R; Saurabh, S; Schwalm, D; Spruck, K; Sunil Kumar, S; Vogel, S; Wolf, A

    2016-03-18

    We have studied the photodissociation of CH^{+} in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH^{+} beams with a kinetic energy of ∼60  keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J=0-2 of CH^{+}, exclusively. In comparison to updated, state-of-the-art calculations, we find excellent agreement in the relative intensities of the resonances for a given J, and we can extract time-dependent level populations. Thus, we can monitor the spontaneous relaxation of CH^{+} to its lowest rotational states and demonstrate the preparation of an internally cold beam of molecular ions. PMID:27035300

  11. Widely Tunable Two-Color Free-Electron Laser on a Storage Ring.

    PubMed

    Wu, Y K; Yan, J; Hao, H; Li, J Y; Mikhailov, S F; Popov, V G; Vinokurov, N A; Huang, S; Wu, J

    2015-10-30

    With a wide wavelength tuning range, free-electron lasers (FELs) are well suited for producing simultaneous lasing at multiple wavelengths. We present the first experimental results of a novel two-color storage ring FEL. With three undulators and a pair of dual-band mirrors, the two-color FEL can lase simultaneously in infrared (IR) around 720 nm and in ultraviolet (UV) around 360 nm. We have demonstrated independent wavelength tuning in a wide range (60 nm in IR and 24 nm in UV). We have also realized two-color harmonic operation with the UV lasing tuned to the second harmonic of the IR lasing. Furthermore, we have demonstrated good power stability with two-color lasing, and good control of the power sharing between the two colors. PMID:26565470

  12. Widely Tunable Two-Color Free-Electron Laser on a Storage Ring

    NASA Astrophysics Data System (ADS)

    Wu, Y. K.; Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.

    2015-10-01

    With a wide wavelength tuning range, free-electron lasers (FELs) are well suited for producing simultaneous lasing at multiple wavelengths. We present the first experimental results of a novel two-color storage ring FEL. With three undulators and a pair of dual-band mirrors, the two-color FEL can lase simultaneously in infrared (IR) around 720 nm and in ultraviolet (UV) around 360 nm. We have demonstrated independent wavelength tuning in a wide range (60 nm in IR and 24 nm in UV). We have also realized two-color harmonic operation with the UV lasing tuned to the second harmonic of the IR lasing. Furthermore, we have demonstrated good power stability with two-color lasing, and good control of the power sharing between the two colors.

  13. Distributed Non-evaporable Getter pumps for the storage ring of the APS

    SciTech Connect

    Dortwegt, R.; Benaroya, R.

    1993-07-01

    A pair of distributed Non-evaporable Getter (NeG) strip assemblies is installed in each of 236 aluminum vacuum chambers of the 1104-m storage ring of the Advanced Photon Source. Distributed pumping is provided to remove most of the gas resulting from photon-stimulated desorption occurring along the outer walls of the chambers. This is an efficient way of pumping because conductance is limited along the beam axis. The St-707 NeG strips are conditioned at 450{degree}C for 45 min. with 42 A. Base pressures obtained are also as low as 4 {times} 10{sup 11} Torr. The NeG strip assemblies are supported by a series of electrically isolated, 125-mm-long, interlocking stainless steel carriers. These unique interlocking carrier elements provide flexibility along the vacuum chamber curvature (r=38.96 m) and permit removal and installation of assemblies with as little as 150 mm external clearance between adjacent chambers.

  14. Photodissociation of an Internally Cold Beam of CH+ Ions in a Cryogenic Storage Ring

    NASA Astrophysics Data System (ADS)

    O'Connor, A. P.; Becker, A.; Blaum, K.; Breitenfeldt, C.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; von Hahn, R.; Hechtfischer, U.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lohmann, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; Repnow, R.; Saurabh, S.; Schwalm, D.; Spruck, K.; Sunil Kumar, S.; Vogel, S.; Wolf, A.

    2016-03-01

    We have studied the photodissociation of CH+ in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH+ beams with a kinetic energy of ˜60 keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J =0 - 2 of CH+, exclusively. In comparison to updated, state-of-the-art calculations, we find excellent agreement in the relative intensities of the resonances for a given J , and we can extract time-dependent level populations. Thus, we can monitor the spontaneous relaxation of CH+ to its lowest rotational states and demonstrate the preparation of an internally cold beam of molecular ions.

  15. Schottky Mass Measurements of Cooled Proton-Rich Nuclei at the GSI Experimental Storage Ring

    SciTech Connect

    Radon, T.; Schlitt, B.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Geissel, H.; Hausmann, M.; Irnich, H.; Klepper, O.; Kluge, H.; Kozhuharov, C.; Kraus, G.; Muenzenberg, G.; Nickel, F.; Nolden, F.; Patyk, Z.; Reich, H.; Scheidenberger, C.; Schwab, W.; Steck, M.; Suemmerer, K.; Kerscher, T.; Beha, T.; Loebner, K.E.; Fujita, Y.; Jung, H.C.; Wollnik, H.; Novikov, Y.

    1997-06-01

    High-precision mass measurements of proton-rich isotopes in the range of 60{le}Z{le}84 were performed using the novel technique of Schottky spectrometry. Projectile fragments produced by {sup 209}Bi ions at 930{ital A} MeV were separated with the magnetic spectrometer FRS and stored and cooled in the experimental storage ring (ESR). A typical mass resolving power of 350000 and a precision of 100keV were achieved in the region A{approx}200 . Masses of members of {alpha} chains linked by precise Q{sub {alpha}} values but not yet connected to the known masses were determined. In this way it is concluded that {sup 201}Fr and {sup 197}At are proton unbound. {copyright} {ital 1997} {ital The American Physical Society}

  16. HOM damping with coaxial dampers in the storage ring cavities of the Advanced Photon Source

    SciTech Connect

    Kang, Y.W.; Kustom, R.L.

    1994-08-01

    Coaxial dampers with E-probe and H-loop couplers are used to damp higher-order modes (HOM) in a 352-MHz single cell cavity for the storage ring of the Advanced Photon Source (APS). Measurements have been made with three different types of dampers such as E-probe dampers, small H-loop dampers, and H-loop dampers with {lambda}/4 short stub. Two dampers are used in each type. The dampers without fundamental frequency rejection filters are positioned to have a minimum deQing at the fundamental frequency: the E-probe dampers are used at the equatorial plane of the cavity, and the small H-loop dampers are used in the end wall of the cavity. The fundamental mode decoupling can be done by positioning the loop plane in the direction of the H-field of the mode.

  17. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  18. Lattice design and optimization for the PEP-X ultra low emittance storage ring at SLAC

    SciTech Connect

    Wang, Min-Huey; Nosochkov, Yuri; Bane, Karl; Cai, Yunhai; Hettel, Robert; Huang, Xiaobiao; /SLAC

    2011-08-12

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. One of the possibilities is a new PEP-X 4.5 GeV storage ring that would be housed in the 2.2 km PEP-II tunnel. The PEP-X is designed to produce photon beams having brightness near 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV with 3.5 m undulator at beam current of 1.5 A. This report presents an overview of the PEP-X baseline lattice design and describes the lattice optimization procedures in order to maximize the beam dynamic aperture. The complete report of PEP-X baseline design is published in SLAC report.

  19. Physics with colder molecular ions: The Heidelberg Cryogenic Storage Ring CSR

    NASA Astrophysics Data System (ADS)

    Zajfman, D.; Wolf, A.; Schwalm, D.; Orlov, D. A.; Grieser, M.; von Hahn, R.; Welsch, C. P.; Crespo Lopez-Urrutia, J. R.; Schröter, C. D.; Urbain, X.; Ullrich, J.

    2005-01-01

    A novel cryogenic electrostatic storage ring is planned to be built at the Max-Planck Institute for Nuclear Physics in Heidelberg. The machine is expected to operate at low temperatures (~2K) and to store beams with kinetic energies between 20 to 300 keV. An electron target based on cooled photocathode technology will serve as a major tool for the study of reactions between molecular ions and electrons. Moreover, atomic beams can be merged and crossed with the stored ion beams allowing for atom molecular-ion collision studies at very low up to high relative energies. The proposed experimental program, centered around the physics of cold molecular ions, is shortly outlined.

  20. Mechanical design upgrade of the APS storage ring rf cavity tuner

    SciTech Connect

    Jones, J.; Bromberek, D.; Kang, Y.

    1997-08-01

    The Advanced Photon Source (APS) storage ring (SR) rf system employs four banks of four spherical, single-cell resonant cavities. Each cavity is tuned by varying the cavity volume through insertion/retraction of a copper piston located at the circumference of the cavity and oriented perpendicular to the accelerator beam. During the commissioning of the APS SR, the tuners and cavity tuner ports were prone to extensive arcing and overheating. The existing tuners were modified to eliminate the problems, and two new, redesigned tuners were installed. In both cases marked improvements were obtained in the tuner mechanical performance. As measured by tuner piston and flange surface temperatures, tuner heating has been reduced by a factor of five in the new version. Redesign considerations discussed include tuner piston-to-housing alignment, tuner piston and housing materials and cooling configurations, and tuner piston sliding electrical contacts. The tuner redesign is also distinguished by a modular, more maintainable assembly.

  1. Preliminary vibration analysis of magnet/support system for 7-GeV APS storage ring

    SciTech Connect

    Wambsganss, M.W.

    1989-05-08

    The storage ring quadrupoles, sextupoles, and correction magnets will be mounted on a common girder approximately 4.0 m long. The rigid girder, in turn, is mounted on three five-ton jacks, each of which is mounted on a pedestal that is grouted and bolted to the floor. For this preliminary analysis, we will assume that the girder has a weight per unit length of 100 lb/ft and a bending stiffness that is significantly greater than the vertical stiffness provided by the pedestal (jack-screw) supports. This allows us to approximate the magnet/support system as a rigid beam (girder) on spring supports (jack-screws) carrying distributed masses (magnets). These approximations permit us to study the rigid body translational and rotational (rocking) modes of the system. It should be noted that the preliminary design has two jack-screw supports at the left end and one at the right end. It should be noted that the magnet/support system studied is only a conceptual design. In actuality, there are five different magnet/support configurations comprising each of the 40 sectors of the storage ring. Also, it is expected that the details of the final design, in particular with respect to the positioning of the pedestal supports, will somewhat different. It should further be noted that a major assumption in the analysis is that the stiffness of the support beam with respect to the stiffness of the jack-screw supports is such that the support girder can be assumed rigid. To evaluate this assumption it is planned to perform a finite element analysis of the magnet/support system in which the flexibility of the support girder is included in the dynamic analysis.

  2. Precision analog signal processor for beam position measurements in electron storage rings

    SciTech Connect

    Hinkson, J.A.; Unser, K.B.

    1995-05-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y posit ion entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM.

  3. Status of experimental studies of electron cloud effects at the Los Alamos proton storage ring

    SciTech Connect

    Macek, R. J.; Browman, A. A.; Borden, M. J.; Fitzgerald, D. H.; McCrady, R. C.; Spickermann, T. J.; Zaugg, T. J.

    2004-01-01

    Various electron cloud effects (ECE) including the two-stream (e-p) instability at the Los Alamos Proton Storage Ring (PSR) have been studied extensively for the past five years with the goal of understanding the phenomena, mitigating the instability and ultimately increasing beam intensity. The specialized diagnostics used in the studies are two types of electron detectors, the retarding field analyzer and the electron sweepmg detector - which have been employed to measure characteristics of the electron cloud as functions of time, location in the ring and various influential beam parameters - plus a short stripline beam position monitor used to measure high frequency motion of the beam centroid. Highlights of this research program are summarized along with more detail on recent results obtained since the ECLOUD'02 workshop. Recent work mcludes a number of parametric studies of the various factors that affect the electron cloud signals, studies of the sources of initial or 'seed' electrons, additional observations of electron cloud dissipation after the beam pulse is extracted, studies of the 'first pulse instability' issue, more data on electron suppression as a cure for the instability, and observations of the effect of a one-turn weak kick on intense beams in the presence of a significant electron cloud.

  4. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  5. Simultaneous measurement of internal and external profiles using a ring beam device

    NASA Astrophysics Data System (ADS)

    Wakayama, Toshitaka; Yoshizawa, Toru

    2008-08-01

    A ring beam device consisting of a conical mirror and a LD is available to form a disk-like beam sheet. We have shown measurement result of an inner diameter of pipes and holes and have developed a compact inner profile measuring instrument up to now. The ring beam device and a miniature CCD camera are incorporated in a glass tube. Validity of this instrument was shown by checking the inner profile of the references. In response to this trial, there appeared a strong request that not only an internal but also external inspection should be measured. Surely the pattern projection method conventionally used in 3D profile measurement may be useful for high speed and high precision measurement of various objects, but it is not always appropriate to measure an object with steeply inclined surface profile such as a bevel gear. In this paper, we propose a method for measurement of the external profile in addition to the internal profile. In our arrangement, one pair of concaved conical mirrors is used for the external profile measurement. When combined with our inner profile measurement method, simultaneous measurement of the inner and outer profiles becomes possible. A measurement result on a bevel gear showed availability of our proposal. We are aiming to realize simultaneous measurement of the internal and external profiles.

  6. Investigation of the heavy-ion mode in the FAIR High Energy Storage Ring

    NASA Astrophysics Data System (ADS)

    Kovalenko, O.; Dolinskii, O.; Litvinov, Yu A.; Maier, R.; Prasuhn, D.; Stöhlker, T.

    2015-11-01

    High energy storage ring (HESR) as a part of the future accelerator facility FAIR (Facility for Antiproton and Ion Research) will serve for a variety of internal target experiments with high-energy stored heavy ions (SPARC collaboration). Bare uranium is planned to be used as a primary beam. Since a storage time in some cases may be significant—up to half an hour—it is important to examine the high-order effects in the long-term beam dynamics. A new ion optics specifically for the heavy ion mode of the HESR is developed and is discussed in this paper. The subjects of an optics design, tune working point and a dynamic aperture are addressed. For that purpose nonlinear beam dynamics simulations are carried out. Also a flexibility of the HESR ion optical lattice is verified with regard to various experimental setups. Specifically, due to charge exchange reactions in the internal target, secondary beams, such as hydrogen-like and helium-like uranium ions, will be produced. Thus the possibility of separation of these secondary ions and the primary {{{U}}}92+ beam is presented with different internal target locations.

  7. Development of an inner profile measurement instrument using a ring beam device

    NASA Astrophysics Data System (ADS)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  8. 10 CFR 34.73 - Records of inspection and maintenance of radiographic exposure devices, transport and storage...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... exposure devices, transport and storage containers, associated equipment, source changers, and survey..., associated equipment, source changers, and survey instruments. (a) Each licensee shall maintain records... exposure devices, transport and storage containers, associated equipment, source changers, and...

  9. 10 CFR 34.73 - Records of inspection and maintenance of radiographic exposure devices, transport and storage...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... exposure devices, transport and storage containers, associated equipment, source changers, and survey..., associated equipment, source changers, and survey instruments. (a) Each licensee shall maintain records... exposure devices, transport and storage containers, associated equipment, source changers, and...

  10. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NASA Astrophysics Data System (ADS)

    van Buuren, L. D.; Szczerba, D.; van den Brand, J. F. J.; Bulten, H. J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F. A.; Poolman, H. R.; Simani, M. C.

    2001-12-01

    The performance of a high-density polarized hydrogen/deuterium gas target internal to a medium-energy electron storage ring is presented. Compared to our previous electron scattering experiments with tensor-polarized deuterium at NIKHEF (Zhou et al., Nucl. Instr. and Meth. A 378 (1996) 40; Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; Van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 687; Zhou et al., Phys. Rev. Lett. 82 (1999) 687) the target figure of merit, ( polarization) 2× luminosity, was improved by more than an order of magnitude. The target density was increased by upgrading the flux of nuclear-polarized atoms injected into the storage cell and by using a longer (60 cm) and colder (˜70 K) storage cell. A maximal target thickness of 1.2 (1.1)±0.1×10 14 nuclei/ cm2 was achieved with deuterium (hydrogen). With typical beam currents of 110 mA, this corresponds to a luminosity of about 8.4 (7.8)±0.8×10 31e- nuclei cm -2 s-1. By reducing the molecular background and using a stronger target guide field, a higher polarization was achieved. The target was used in combination with a 720 MeV polarized electron beam stored in the AmPS ring (NIKHEF) to measure spin observables in electron-proton and electron-deuteron scattering. Scattered electrons were detected in a large acceptance magnetic spectrometer. Ejected hadrons were detected in a single time-of-flight scintillator array. The product of beam and target vector polarization, PePt, was determined from the known spin-correlation parameters of e' p quasi-elastic (or elastic) scattering. With the deuterium (hydrogen) target, values up to PePt=0.49±0.03 (0.32±0.03) were obtained with an electron beam polarization of Pe=0.62±0.04 (0.56±0.03) as measured with a Compton backscattering polarimeter (Passchier et al., Nucl. Instr. and Meth. A 414 (1998) 4988). From this, we deduce a cell-averaged target polarization of Pt=0.78±0.07 (0.58±0.07), including

  11. Recent experimental results on the beam-beam effects in storage rings and an attempt of their interpretation

    SciTech Connect

    Kheifets, S.

    1980-06-01

    The latest available experimental results on the luminosity, the space charge parameters, and the beam blowup as functions of particle energy and beam current are reviewed. The comparison with the phenomenological diffusion theory is done and useful scaling laws are derived. Some implications for anti p p storage rings are discussed.

  12. Potential for measurement of the tensor polarizabilities of nuclei in storage rings by the frozen spin method

    SciTech Connect

    Silenko, Alexander J.

    2009-10-15

    The frozen spin method can be effectively used for a high-precision measurement of the tensor electric and magnetic polarizabilities of the deuteron and other nuclei in storage rings. For the deuteron, this method would provide the determination of the deuteron's polarizabilities with absolute precision of the order of 10{sup -43} cm{sup 3}.

  13. Cryogenic Concept for the Low-energy Electrostatic Cryogenic Storage Ring (CSR) at MPI-K in Heidelberg

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Andrianarijaona, V.; Crespo López-Urrutia, J. R.; Fadil, H.; Grieser, M.; Haberstroh, Ch.; Mallinger, V.; Orlov, D. A.; Quack, H.; Rappaport, M.; Schröter, C. D.; Schwalm, D.; Ullrich, J.; Weber, T.; Wolf, A.; Zajfman, D.

    2006-04-01

    At the Max-Planck-Institut für Kernphysik in Heidelberg a next generation electrostatic storage ring for cryogenic temperatures is under development. The main focus of this unique machine is the research on ions, molecules and clusters up to bio molecules in the energy range of 20-300 keV at low temperatures down to 2 Kelvin. The achievement of this low temperature for all material walls seen by the ions in the storage ring will allow novel experiments to be performed, such as rotational and vibrational state control of molecular ions and their interaction with ultra-low energy electrons and laser radiation. The low temperature of the storage ring not only causes a strong reduction of black body radiation incident onto the stored particles, but also acts as a large cryopump, expected to lead to a vacuum in the 10-15 mbar range. In this paper the cryogenic concept of the storage ring and the related vacuum design will be presented.

  14. 1000-TeV in the Center-Of-Mass: Introduction to High-Energy Storage Rings

    SciTech Connect

    Bjorken, J D

    1982-09-01

    The lecture discusses, in a pedagogic way, a hypothetical 500 TeV proton storage ring accelerator. It gives machine parameters, discusses linear optics and betatron motions, surveys questions of errors, tolerances and nonlinear resonances, and discusses some of the demands on the detection apparatus, especially the apparent inevitability of multiple interactions per bunch crossing. (GHT)

  15. Cryogenic Concept for the Low-energy Electrostatic Cryogenic Storage Ring (CSR) at MPI-K in Heidelberg

    SciTech Connect

    Hahn, R. von; Andrianarijaona, V.; Crespo Lopez-Urrutia, J. R.; Fadil, H.; Grieser, M.; Mallinger, V.; Orlov, D. A.; Schroeter, C. D.; Schwalm, D.; Ullrich, J.; Weber, T.; Wolf, A.; Haberstroh, Ch.; Quack, H.; Rappaport, M.; Zajfman, D.

    2006-04-27

    At the Max-Planck-Institut fuer Kernphysik in Heidelberg a next generation electrostatic storage ring for cryogenic temperatures is under development. The main focus of this unique machine is the research on ions, molecules and clusters up to bio molecules in the energy range of 20-300 keV at low temperatures down to 2 Kelvin. The achievement of this low temperature for all material walls seen by the ions in the storage ring will allow novel experiments to be performed, such as rotational and vibrational state control of molecular ions and their interaction with ultra-low energy electrons and laser radiation. The low temperature of the storage ring not only causes a strong reduction of black body radiation incident onto the stored particles, but also acts as a large cryopump, expected to lead to a vacuum in the 10-15 mbar range. In this paper the cryogenic concept of the storage ring and the related vacuum design will be presented.

  16. Oscillation regimes of a solid-state ring laser with active beat-note stabilization: From a chaotic device to a ring-laser gyroscope

    SciTech Connect

    Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Lariontsev, Evguenii

    2007-08-15

    We report an experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active beat-note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We analytically derive a stability condition and some frequency response characteristics for the solid-state ring-laser gyroscope, illustrating the important role of mode coupling effects on the dynamics of such a device. Experimental data are presented and compared with the theory on the basis of realistic laser parameters, showing very good agreement. Our results illustrate the duality between the very rich nonlinear dynamics of the diode-pumped solid-state ring laser (including chaotic behavior) and the possibility to obtain a very stable beat note, resulting in a potentially new kind of rotation sensor.

  17. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    SciTech Connect

    Hama, H. |; Yamazaki, J.; Kinoshita, T.

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  18. The next generation mass storage devices - Physical principles and current status

    NASA Astrophysics Data System (ADS)

    Wang, L.; Gai, S.

    2014-04-01

    The amount of digital data today has been increasing at a phenomenal rate due to the widespread digitalisation service in almost every industry. The need to store such ever-increasing data aggressively triggers the requirement to augment the storage capacity of the conventional storage technologies. Unfortunately, the physical limitations that conventional forms face have severely handicapped their potential to meet the storage need from both consumer and industry point of view. The focus has therefore been switched into the development of the innovative data storage technologies such as scanning probe memory, nanocrystal memory, carbon nanotube memory, DNA memory, and organic memory. In this paper, we review the physical principles of these emerging storage technologies and their superiorities as the next generation data storage device, as well as their respective technical challenges on further enhancing the storage capacity. We also compare these novel technologies with the mainstream data storage means according to the technology roadmap on areal density.

  19. Flexible Graphene-based Energy Storage Devices for Space Application Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  20. 10 CFR 34.31 - Inspection and maintenance of radiographic exposure devices, transport and storage containers...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... devices, transport and storage containers, associated equipment, source changers, and survey instruments... changers, and survey instruments. (a) The licensee shall perform visual and operability checks on survey... condition, that the sources are adequately shielded, and that required labeling is present....

  1. Controlling levonorgestrel binding and release in a multi-purpose prevention technology vaginal ring device.

    PubMed

    Murphy, Diarmaid J; Boyd, Peter; McCoy, Clare F; Kumar, Sandeep; Holt, Jonathon D S; Blanda, Wendy; Brimer, Andrew N; Malcolm, R Karl

    2016-03-28

    Despite a long history of incorporating steroids into silicone elastomers for drug delivery applications, little is presently known about the propensity for irreversible drug binding in these systems. In this study, the ability of the contraceptive progestin levonorgestrel to bind chemically with hydrosilane groups in addition-cure silicone elastomers has been thoroughly investigated. Cure time, cure temperature, levonorgestrel particle size, initial levonorgestrel loading and silicone elastomer type were demonstrated to be key parameters impacting the extent of levonorgestrel binding, each through their influence on the solubility of levonorgestrel in the silicone elastomer. Understanding and overcoming this levonorgestrel binding phenomenon is critical for the ongoing development of a number of drug delivery products, including a multi-purpose technology vaginal ring device offering simultaneous release of levonorgestrel and dapivirine - a lead candidate antiretroviral microbicide - for combination HIV prevention and hormonal contraception.

  2. Photo excitation and laser detachment of C60- anions in a storage ring

    NASA Astrophysics Data System (ADS)

    Støchkel, K.; Andersen, J. U.

    2013-10-01

    We have studied the photo physics of C60- anions in the electrostatic storage ring ELISA with ions produced in a plasma source and cooled and bunched in a He filled ion trap. A previous study using delayed electron detachment as a signal of resonance-enhanced multiphoton electron detachment (REMPED) has been repeated both at room temperature and with the trap cooled to liquid nitrogen temperature. However, wavelength dependence of the overlap of the strongly focused laser beam with the ion beam introduces distortions of the absorption spectrum. We have therefore applied a new method, combining the IR light with a slightly delayed, powerful UV pulse (266 nm). After absorption of three UV photons, the ions decay by delayed (thermal) electron emission, and time spectra are recorded for varying wavelength. The fraction of ions heated by absorption of a single IR photon is then extracted from a principal component analysis of these spectra. In good agreement with the earlier REMPED experiment, an origin band for transitions between the two lowest electronic levels of the anion, with t1u and t1g symmetry, is observed at 9380 cm-1, with strong sidebands from excitation of the two Ag and eight Hg vibrations. As before, a hot band is observed at about 9150 cm-1 and assigned to a transition from an excited vibronic Jahn-Teller state. However, an earlier observed band at higher energy, interpreted as a transition from this excited state to an excited vibronic state in the t1g electronic level, is much weaker in the new measurements and could be an Hg vibrational sideband. Also earlier studies of direct laser detachment from C60- in the storage ring ASTRID have been revisited, with ions cooled by liquid nitrogen in the ion trap. We confirm the previous measurement with a determination of the threshold for s-wave detachment at 2.664 ± 0.005 eV, slightly lower than a recent value of the electron binding, 2.683 ± 0.008 eV, obtained from the energy spectrum of photo electrons

  3. Cleaning and vacuum conditioning of RF cavities, proton storage rings and synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Mathewson, A. G.; Andritschky, M.; Grillot, A.; Gröbner, O.; Strubin, P.; Souchet, R.

    1990-02-01

    The optimization of a chemical cleaning method for Al alloy vacuum chambers using as criteria: surface analysis, thermal outgassing, electron, X-ray and synchrotron radiation induced neutral gas desorption, is described. The results of the vaccuum conditioning of the 128 radio-frequency (RF) accelerating cavities for the CERN LEP e+e- storage ring are presented. The gases desorbed with RF were H2, CH4, CO and CO2 and their decrease with running time recorded. Argon glow discharge cleaning of stainless-steel UHV chambers revealed that up to 77 monolayers of gas—mainly CO—could be desorbed from the surface. Measurements of the so-called roughness factor—the real surface area seen by the adsorbed gas—gave numbers as high as 15 for stainless-steel, thus only about 5 monolayers of gas are desorbed. In a dedicated beam line at the DCI storage ring at the LURE Laboratory, Orsay, France, synchrotron radiation induced neutral gas desorption from baked Al alloy and stainless-steel chambers was measured under controlled conditions. The gases desorbed were H2, CH4, CO and CO2 and with time the H2 and CO desorption descreased as D-1/2 where D is the radiation beam dose in mA hours. A model of gas diffusion from near surface layers and from the bulk to the surface which determined the desorption characteristics was proposed. This model well described the behavior of the desorption for H2. Measurements of the photoelectron currents produced at 11 mrad glancing angle of incidence and also at normal incidence, when compared with calculation, showed differences which could be explained if the photons with energies below about 1.5 keV were reflected at 11 mrad with a reflectivity approaching 1. In a special test chamber equipped with sets of photoelectron probes, it was established that, at glancing angles of incidence of 11, 20 and 40 mrad, up to 20% of the synchrotron radiation is scattered around the vacuum chamber from the point of impact.

  4. Photo excitation and laser detachment of C60(-) anions in a storage ring.

    PubMed

    Støchkel, K; Andersen, J U

    2013-10-28

    We have studied the photo physics of C60(-) anions in the electrostatic storage ring ELISA with ions produced in a plasma source and cooled and bunched in a He filled ion trap. A previous study using delayed electron detachment as a signal of resonance-enhanced multiphoton electron detachment (REMPED) has been repeated both at room temperature and with the trap cooled to liquid nitrogen temperature. However, wavelength dependence of the overlap of the strongly focused laser beam with the ion beam introduces distortions of the absorption spectrum. We have therefore applied a new method, combining the IR light with a slightly delayed, powerful UV pulse (266 nm). After absorption of three UV photons, the ions decay by delayed (thermal) electron emission, and time spectra are recorded for varying wavelength. The fraction of ions heated by absorption of a single IR photon is then extracted from a principal component analysis of these spectra. In good agreement with the earlier REMPED experiment, an origin band for transitions between the two lowest electronic levels of the anion, with t1u and t1g symmetry, is observed at 9380 cm(-1), with strong sidebands from excitation of the two A(g) and eight H(g) vibrations. As before, a hot band is observed at about 9150 cm(-1) and assigned to a transition from an excited vibronic Jahn-Teller state. However, an earlier observed band at higher energy, interpreted as a transition from this excited state to an excited vibronic state in the t1g electronic level, is much weaker in the new measurements and could be an H(g) vibrational sideband. Also earlier studies of direct laser detachment from C60(-) in the storage ring ASTRID have been revisited, with ions cooled by liquid nitrogen in the ion trap. We confirm the previous measurement with a determination of the threshold for s-wave detachment at 2.664 ± 0.005 eV, slightly lower than a recent value of the electron binding, 2.683 ± 0.008 eV, obtained from the energy spectrum of

  5. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  6. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  7. Giant relaxation oscillations in a very strongly hysteretic superconductive quantum interference device ring-tank circuit system

    NASA Astrophysics Data System (ADS)

    Clark, T. D.; Prance, R. J.; Whiteman, R.; Prance, H.; Everitt, M. J.; Bulsara, A. R.; Ralph, J. F.

    2001-09-01

    In this article, we show that the radio frequency (rf) dynamical characteristics of a very strongly hysteretic superconducting quantum interference device (SQUID) ring, coupled to a rf tank circuit resonator, display relaxation oscillations. We demonstrate that the overall form of these characteristics, together with the relaxation oscillations, can be modeled accurately by solving the quasiclassical nonlinear equations of motion for the system. We suggest that in these very strongly hysteretic regimes, SQUID ring-resonator systems may find application in logic and memory devices.

  8. HemaSpot, a Novel Blood Storage Device for HIV-1 Drug Resistance Testing.

    PubMed

    Brooks, K; DeLong, A; Balamane, M; Schreier, L; Orido, M; Chepkenja, M; Kemboi, E; D'Antuono, M; Chan, P A; Emonyi, W; Diero, L; Coetzer, M; Kantor, R

    2016-01-01

    HemaSpot, a novel dried-blood storage filter device, was used for HIV-1 pol resistance testing in 30 fresh United States blood samples and 54 previously frozen Kenyan blood samples. Genotyping succeeded in 79% and 58% of samples, respectively, improved with shorter storage and higher viral load, and had good (86%) resistance mutation concordance to plasma.

  9. Experimental study of passive compensation of space charge at the Los Alamos National Laboratory Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Plum, M. A.; Fitzgerald, D. H.; Langenbrunner, J.; Macek, R. J.; Merrill, F. E.; Neri, F.; Thiessen, H. A.; Walstrom, P. L.; Griffin, J. E.; Ng, K. Y.; Qian, Z. B.; Wildman, D.; Prichard, B. A.

    1999-06-01

    The inductance of the vacuum chamber of the Proton Storage Ring at Los Alamos National Laboratory was intentionally increased by the introduction of ferrite rings to counteract the longitudinal space-charge effect of the intense beam. The magnetic permeability of the ferrite could be adjusted by introducing current into solenoids wound around the ferrite. Results show that the minimum rf voltage necessary to stabilize the beam against e-p instability may be reduced over that previously measured. The injected bunch length was observed to be longer when the ferrite was heavily biased so that its effect was reduced.

  10. Initial test results of the Los Alamos proton-storage-ring bump-magnet system

    SciTech Connect

    Rose, C.R.; Barlow, D.B.; Redd, D.B.

    1997-09-01

    An upgrade program for increasing the stored beam current in the LANSCE Proton Storage is presently under way. Part of the upgrade effort has been to design, specify, and add four bump-magnet/modulator systems to the ring. This paper describes the initial test results of the first bump-magnet/modulator system. The paper begins with an overview of the pulsed-power system including important specifications of the modulator, magnet, cabling, and control system. In the main portion of the paper, waveforms and test data are included showing the accuracy, repeatability, and stability of the magnet-current pulses. These magnet pulses are programmable both in rise and fall time as well as in amplitude. The amplitude can be set between 50 and 300 A, the rise-time is fixed at 1 ms, and the linear fall-time can be varied between 500 {mu}s and 1500 {mu}s. Other issues such as loading effects and power dissipation in the magnet-bore beamtube are examined and reported.

  11. Comparison of carbon stripper foils under operational conditions at the Los Alamos proton storage ring

    SciTech Connect

    Spickerman, Thomas; Borden, Michael J; Macek, Robert J; Sugai, Isao

    2008-01-01

    At the 39{sup th} ICFA Advanced Beam Dynamics Workshop HB 2006 and the 23{sup rd} INTDS World Conference we reported on first results of a test of nanocrystalline diamond foils developed at ORNL under operational conditions at the Los Alamos Proton Storage Ring (PSR). We have continued these tests during the 2006 and 2007 run cycles and have been able to compare the diamond foils with the foils that are normally in use in PSR, which were originally developed by Sugai at KEK. We have gathered valuable information regarding foil lifetime, foil related beam losses and electron emission at the foil. Additional insight was gained under unusual beam conditions where the foiIs are subjected to higher temperatures. In the 2007 run cycle we also tested a Diamond-like-Carbon foil developed at TRIUMF. A Hybrid-Boron-Carbon foil, also developed by Sugai, is presently in use with the PSR production beam. We will summarize our experience with these different foil types.

  12. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    SciTech Connect

    Not Available

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  13. IMPLEMENTATION OF A DC BUMP AT THE STORAGE RING INJECTION STRAIGHT SECTION

    SciTech Connect

    Wang, G.M.; Shaftan, T.; Kramer, S.K.; Fliller, R.; Guo, W.; Heese, R.; Yu, L.H.; Parker, B.; Willeke, F.J.

    2011-03-28

    The NSLS II beam injection works with a DC septum, a pulsed septum and four fast kicker magnets. The kicker power supplies each produce a two revolution period pulsed field, 5.2 {micro}s half sine waveform, using {approx}5kA drive voltage. The corresponding close orbit bump amplitude is {approx}15mm. It is desired that the bump is transparent to the users for top-off injection. However, high voltage and short pulse power supplies have challenges to maintain pulse-to-pulse stability and magnet-to-magnet reproducibility. To minimize these issues, we propose implementing a DC local bump on top of the fast bump to reduce the fast kicker strength by a factor of 2/3. This bump uses two storage ring corrector magnets plus one additional magnet at the septum to create a local bump. Additionally, these magnets could provide a DC bump to simulate the septum position effects on the store beam lifetime. This paper presents the detail design of this DC injection bump and related beam dynamics.

  14. Dynamic Aperture and Tolerances for PEP-X Ultimate Storage Ring Design

    SciTech Connect

    Borland, M.; Cai, Y.; Nosochkov, Y.; Wang, M.-H.; Hettel, R.O.; /SLAC

    2011-12-13

    A lattice for the PEP-X ultimate storage ring light source, having 11 pm-rad natural emittance at a beam energy of 4.5 GeV at zero current, using 90 m of damping wiggler and fitting into the existing 2.2-km PEP-II tunnel, has been recently designed. Such a low emittance lattice requires very strong sextupoles for chromaticity correction, which in turn introduce strong non-linear field effects that limit the beam dynamic aperture. In order to maximize the dynamic aperture we choose the cell phases to cancel the third and fourth order geometric resonances in each 8-cell arc. Four families of chromatic sextupoles and six families of geometric (or harmonic) sextupoles are added to correct the chromatic and amplitude-dependent tunes. To find the best settings of the ten sextupole families, we use a Multi-Objective Genetic Optimizer employing elegant to optimize the beam lifetime and dynamic aperture simultaneously. Then we evaluate dynamic aperture reduction caused by magnetic field multipole errors, magnet fabrication errors and misalignments. A sufficient dynamic aperture is obtained for injection, as well as workable beam lifetime.

  15. DISSOCIATIVE RECOMBINATION MEASUREMENTS OF HCl{sup +} USING AN ION STORAGE RING

    SciTech Connect

    Novotný, O.; Stützel, J.; Savin, D. W.; Becker, A.; Buhr, H.; Domesle, C.; Grieser, M.; Krantz, C.; Kreckel, H.; Repnow, R.; Schwalm, D.; Yang, B.; Wolf, A.; Geppert, W.; Spruck, K.

    2013-11-01

    We have measured dissociative recombination (DR) of HCl{sup +} with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T = 10 to 5000 K. We show that the previously used HCl{sup +} DR data underestimate the plasma rate coefficient by a factor of 1.5 at T = 10 K and overestimate it by a factor of three at T = 300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.

  16. APPLYING CASCADED PARAMETER SCAN TO STUDY TOP-OFF SAFETY IN NSLS-II STORAGE RING

    SciTech Connect

    Li, Y.

    2011-03-28

    In this paper we introduce a new algorithm, the cascaded parameter scan method, to efficiently carry out the scan over magnet parameters in the safety analysis for storage ring top-off injection. In top-off safety analysis, one must track particles populating phase space through a beamline containing magnets and apertures and clearly demonstrate that for all possible magnet settings and errors, all particles are lost on scrapers within the properly shielded region. In the usual approach, the number of tracking runs increases exponentially with the number of magnet settings. In the cascaded parameter scan method, the number of tracking runs only increases linearly. This reduction of exponential to linear dependence on the number of set-points, greatly reduces the required computation time and allows one to more densely populate phase space and to increase the number of set-points scanned for each magnet. An example of applying this approach to analyze an NSLS-II beamline, the damping wiggler beamline, is also given.

  17. New beam-position monitor system for upgraded Photon Factory storage ring.

    PubMed

    Haga, K; Honda, T; Tadano, M; Obina, T; Kasuga, T

    1998-05-01

    Accompanying the brilliance-upgrading project at the Photon Factory storage ring, the beam-position monitor (BPM) system has been renovated. The new system was designed to enable precise and fast measurements to correct the closed-orbit distortion (COD), as well as to feed back the orbit position during user runs. There are 42 BPMs newly installed, amounting to a total of 65 BPMs. All of the BPMs are calibrated on the test bench using a coaxially strung metallic wire. The measured electrical offsets are typically 200 micro m in both directions, which is 1/2-1/3 of those of the old-type BPMs. In the signal-processing system, PIN diode switches are employed in order to improve reliability. In the fastest mode, this system is capable of measuring COD within about 10 ms; this fast acquisition will allow fast suppression of the beam movement for frequencies up to 50 Hz using a global feedback system. PMID:15263599

  18. Collisions of round beams at the Cornell Electron Storage Ring in preparation for Moebius operation

    NASA Astrophysics Data System (ADS)

    Young, Elizabeth Marie

    1998-05-01

    Colliding round, rather than flat, beams promises to more than double the luminosity of electron-positron colliders. In simulations, round beams have been capable of producing large tune shifts, much greater than produced by flat beams, with acceptable beam blowup. The purpose of this work was to demonstrate experimentally the promise of round beams (made round by the coupling resonance) and to prepare for the installation of a Mobius insert (a group of skew quadrupoles that exchange horizontal and vertical motion on every turn) at the Cornell Electron Storage Ring. During the collision experiments, three interrelated measures of colliding beam performance, the emittance blowup, the beam-beam tune shift parameter, and the coherent π mode tune shift, were measured as functions of beam current and tune, and the luminosity was also measured at the highest beam currents. The results of these measurements confirm that round beams are capable of producing very large tune shifts and justify continued development of the Mobius scheme.

  19. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices.

    PubMed

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F; Bettinger, Christopher J

    2013-12-24

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na(+)-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg(-1). Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg(-1). Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices.

  20. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  1. Energy storage apparatus

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Evans, H. E. (Inventor)

    1978-01-01

    A high efficiency, flywheel type energy storage device which comprises an electronically commutated d.c. motor/generator unit having a massive flywheel rotor magnetically suspended around a ring shaped stator is presented. During periods of low energy demand, the storage devices were operated as a motor, and the flywheel motor was brought up to operating speed. Energy was drawn from the device functioning as a generator as the flywheel rotor rotated during high energy demand periods.

  2. Source challenges resulting of the first applications of a UV storage ring FEL on Super-ACO

    SciTech Connect

    Couprie, M.E.; Bakker, R.; Nahon, L. |

    1995-12-31

    Since 1992, significant progresses were achieved on the Super-ACO (S-ACO) storage ring Free Electron Laser (FEL) in the UV. The operation at the nominal energy 800 MeV has several consequences: higher average power in the UV (25 mW at 60 mA and more recently 100 mW at 100 mA available for the users), 10 hours of lasing for the same injection of positrons, providing enough time for performing an user experiment, compatibility with the users of synchrotron radiation (SR) in the temporal structure mode for 120 mA with the possibility of closing the four insertion devices of S-ACO. The main difficulties to extend the FEL optical performances come from the small gain (2%), limiting a rapid extention of the spectral range (either in the laser mode or by coherent harmonic generation from the FEL itself in the undulator) or linewidth narrowing. The installation of a 500 MHz harmonic cavity for bunch length reduction and gain increase is under consideration{hor_ellipsis} The stability of the FEL temporal and spectral was systematically followed versus time, for various scales (from ns to half an hour) with different detectors. The stability of the laser source has been significantly improved with a longitudinal feedback system allowing the jitter of the 25 ps RMS laser micropulse to be reduced from 150-200 ps down to 10-20 ps. the intensity fluctuations to be damped down 1% and the spectral drift to be smaller than the resolution of the scanning Fabry-Perot (0.01{angstrom}) at perfect synchronism. The laser can work during more than 3 consecutive hours without readjustments. In addition, according to the ring current, the positron beam is submitted to coherent modes of synchrotron oscillations. Right now, a Pedersen type longitudinal feedback damps the dipolar modes of such oscillation. The quadrupolar modes in the 120-60 mA range leading to a rather unstable FEL are on the way to be damped with an additional feedback.

  3. Cavity Ring-Down Spectroscopy Measurements of Electric Propulsion Device Life Time

    NASA Astrophysics Data System (ADS)

    Yalin, Azer

    2004-11-01

    For many electric propulsion devices, wear due to sputter erosion is the primary determinant of device lifetime. As progressively longer electric propulsion missions are being considered, the need for accelerated lifetime assessments is becoming increasingly acute. Cavity Ring-Down Spectroscopy (CRDS) is an ultra-sensitive laser based absorption technique capable of measuring very low particle number densities, and is thus potentially well suited to this need. In CRDS, the absorbing sample (in this case sputtered material) is housed within a high finesse optical cavity, and the decay rate of light within the cavity is recorded, from which the sample number density can be inferred. We have recently developed CRDS as a diagnostic to quantify sputter erosion. Initial demonstrations of the technique have involved measuring the number density of sputtered molybdenum and titanium. In terms of assessing erosion, a very germane quantity is the flux of sputtered particles, which requires knowledge of both particle number density and velocity. The latter may be found from sputter modeling or other measurement techniques such as laser induced fluorescence, but we are also exploring the use of CRDS to infer particle velocity. Our CRDS velocity measurement approach is based on Doppler effects (shifts and broadenings) in the measured spectral lineshape. In this submission we detail the status of our recent CRDS research to study wear erosion by sputtering. We present results of number density measurements of sputtered particles, including comparisons with a simple sputter model. We discuss progress on velocity measurements. In order to address implementation strategies for using CRDS to study actual EP devices, we also present proposed testing schemes for thrusters including numerical modeling of expected signals for various materials of interest.

  4. Generating Ultrashort Coherent Soft X-ray Radiation in Storage Rings Using Angular-modulated Electron Beams

    SciTech Connect

    Xiang, D.; Wan, W.; /LBL, Berkeley

    2010-08-23

    A technique is proposed to generate ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. In the scheme a laser operating in the TEM01 mode is first used to modulate the angular distribution of the electron beam in an undulator. After passing through a special beam line with non-zero transfer matrix element R{sub 54}, the angular modulation is converted to density modulation which contains considerable higher harmonic contents of the laser. It is found that the harmonic number can be one or two orders of magnitude higher than the standard coherent harmonic generation method which relies on beam energy modulation. The technique has the potential of generating femtosecond coherent soft x-ray radiation directly from an infrared seed laser and may open new research opportunities for ultrafast sciences in storage rings.

  5. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  6. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOEpatents

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  7. Measurements of the APS Storage Ring Beam Stability at 225 mA

    SciTech Connect

    Lumpkin, A.H.; Yang, B.X.; Borland, M.

    2004-11-10

    The Advanced Photon Source (APS) is a third-generation hard x-ray user facility that operates nominally at 100-mA stored beam current. As part of our probing of future operation regimes we have run at 130 mA for a user run, and we are on the path to test operations at up to 300 mA. Our most recent experiments have been at 225 mA in December 2003. One sector in the ring is dedicated to diagnosing the electron beam transverse and longitudinal parameters. We use a combination of imaging tools, including an x-ray pinhole camera and optical streak camera for the bending magnet source and x-ray monochromator measurements of divergence on the insertion device source. The onset of longitudinal instabilities due to rf cavity higher-order modes (HOMs) is one of the limitations in going to higher currents. These effects are seen in the horizontal plane of the pinhole camera images since the dipole source is at a dispersive point in the lattice. We observed about a factor of two increase in horizontal beam size and integrated bunch length in the unstable condition. By correlating the size changes with the temperature readouts of the 16 rf cavity cells, we identified the source of the instability. The cavity temperature set points were adjusted to avoid an HOM.

  8. Mini-proceedings of the workshop on heavy ion physics and instrumentation for a 15-Tm booster and storage ring

    SciTech Connect

    Not Available

    1986-11-01

    The goal of this workshop was to probe in depth a few of the areas of possible physics made possible by the availability of an intermediate energy heavy-ion physics facility. There was a special emphasis on physics that would be possible only with a storage/cooler ring. Topics discussed were nuclei far from stability, quantum electrodynamics, giant resonances and photonuclear reactions, and high energy gamma-ray production. Individual papers in this meeting were abstracted separately.

  9. Using a double-frequency RF system to facilitate on-axis beam accumulation in a storage ring

    NASA Astrophysics Data System (ADS)

    Jiang, B. C.; Zhao, Z. T.; Tian, S. Q.; Zhang, M. Z.; Zhang, Q. L.

    2016-04-01

    An on-axis injection scheme using a double-frequency RF system in a storage ring with small dynamic aperture is proposed. By altering RF voltages, empty RF buckets can be created which will be used for on-axis injection. After bunches are injected, a reverse RF voltage altering process is performed and the injected bunches can be longitudinally dumped to the main RF buckets. The scheme allows reaping the advantages of the on-axis injection while still performing accumulation.

  10. Heavy Ion Storage Ring for Atomic Physics (HISTRAP) vacuum test stand for pressures of 10/sup -12/ Torr

    SciTech Connect

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.

    1989-05-01

    HISTRAP (Heavy Ion Storage Ring for Atomic Physics) is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of /similar to/15 cm, and requires a vacuum of 10/sup -12/ Torr to decelerate highly charged, very heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling 1/16 of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diam components, with 316LN stainless-steel flanges. Prior to assembly, these components were vacuum fired at 950 /sup 0/C at a pressure of 10/sup -4/ Torr. The test stand is bakable in situ at 300 /sup 0/C. Pumping is achieved with two 750 l/s titanium sublimator pumps and one 60 l/s ion pump. Pressure is measured with two extractor ion gauges and a 10/sup -4/ partial pressure residual gas analyser. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10/sup -12/ Torr has been achieved.

  11. HISTRAP (Heavy Ion Storage Ring for Atomic Physics) vacuum test stand for pressures of 10/sup -12/ Torr

    SciTech Connect

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.

    1988-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of about 15 cm, and requires a vacuum of 10/sup -12/ Torr in order to decelerate highly-charged very-heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling one-sixteenth of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diameter components, with 316LN stainless steel flanges. Prior to assembly, these components were vacuum fired at 950/degree/C at a pressure of 10/sup -4/ Torr. The test stand is bakeable in situ at 300/degree/C. Pumping is achieved with two 750-L/s titanium sublimator pumps and one 60-L/s ion pump. Pressure is measured with two extractor ion gauges and a 10/sup -14/ PP RGA. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10/sup -12/ Torr has been achieved. 7 refs., 5 figs.

  12. Integrated Solar-Energy-Harvesting and -Storage Device

    NASA Technical Reports Server (NTRS)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  13. Mesoporous materials for energy conversion and storage devices

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Jun; Zhao, Dongyuan

    2016-06-01

    To meet the growing energy demands in a low-carbon economy, the development of new materials that improve the efficiency of energy conversion and storage systems is essential. Mesoporous materials offer opportunities in energy conversion and storage applications owing to their extraordinarily high surface areas and large pore volumes. These properties may improve the performance of materials in terms of energy and power density, lifetime and stability. In this Review, we summarize the primary methods for preparing mesoporous materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells. Finally, we outline the research and development challenges of mesoporous materials that need to be overcome to increase their contribution in renewable energy applications.

  14. ACCU Core Sampling/Storage Device for VOC Analysis

    SciTech Connect

    Susan S. Sorini; John F. Schabron; Mark M. Sanderson

    2007-04-30

    The Accu Core sampler system consists of alternating cylindrical clear acrylic sections and one-inch cylindrical stainless steel sections arranged in clear shrink wrap. The set of alternating acrylic and stainless steel sections in the shrink wrap are designed to fit in a Geoprobe dual-tube penetrometer for collection of continuous soil cores. The clear acrylic sections can have 1/2-inch access holes for easy soil headspace screening without violating the integrity of the adjacent stainless steel sections. The Accu Core sampler system can be used to store a soil sample collected in the stainless steel section by capping the ends of the section so it becomes a sample storage container. The sampler system can also be used to collect a subsurface soil sample in one of the sections that can be directly extruded from the section into a container for storage during shipment to the laboratory. In addition, the soil in a sampler section can be quickly sub-sampled using a coring tool and extruded into a storage container so the integrity of the soil is not disrupted and the potential for VOC loss during sub-sampling is greatly reduced. A field validation study was conducted to evaluate the performance of the Accu Core sampler to store VOC soil samples during transportation to the laboratory for analysis and to compare the performance of the Accu Core with current sampling and storage techniques, all of which require sub-sampling when the soil sample is brought to the surface. During some of the validation testing, the acrylic sections having access holes for headspace screening were included in the Accu Core sampler configuration and soil in these sections was screened to show the usefulness of the sample screening capability provided by the Accu Core system. This report presents the results of the field validation study as well as recommendations for the Accu Core sampler system.

  15. Survey and alignment analysis for the ALS storage ring using computer spreadsheets

    SciTech Connect

    Keller, R.

    1993-07-01

    The general survey and alignment concept for the ALS is based on a network of fixed, three-dimensional monuments installed in the building floor, to which all accelerator component positions are referred. The survey of these monuments is performed separately for horizontal and vertical coordinates, following the scheme imposed by the code PC-GEONET that is used for monument data analysis. For most of the accelerator objects the tasks of data acquisition, bundling, and transformations from observation-station into object coordinate-systems are being handled by the commercial software package ECDS rather than by PC-GEONET. This choice had to be made because no instrument stands are presently available at LBL that can be placed exactly over monuments and are high enough to permit observing the fiducials of installed magnets from above. Theodolites only are used with ECDS as observation instruments, and absolute scaling has to be provided by observing some object of precisely known length. To create ideal data and compute alignment values for all accelerator components, spreadsheets were developed by the author using the application EXCEL for Macintosh computers. Choice of a spreadsheet method rather than conventional programming techniques proved very convenient when in the course of this work the sheets had to be created and progressively modified under severe time pressure to include new effects and help redefine the observation procedures. With spreadsheets, varying input data formats coming from the survey crew could be easily accommodated, and adding numerous consistency checks as well as generating additional ideal data for special alignment tasks was possible with comparatively little effort. Dedicated spreadsheets were created for each of the 12 curved sectors of the storage ring. In this paper, the main features of the spreadsheets are presented, and the alignment results for lattice and corrector magnets are listed and discussed.

  16. Simulation of crystalline beams in storage rings using molecular dynamics technique

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Katayama, T.; Sidorin, A.; Smirnov, A.; Syresin, E.; Trubnikov, G.; Tsutsui, H.

    2006-03-01

    Achieving very low temperatures in the beam rest frame can present new possibilities in accelerator physics. Increasing luminosity in the collider and in experiments with targets is a very important asset for investigating rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M [Budker, et al., in: Proceedings of the 4th All-Union Conference on Charged-Particle Accelerators [in Russian], vol. 2, Nauka, Moscow, 1975, p. 309; Budker et al., Part. Accel. 7 (1976) 197; Budker et al., At. Energ. 40 (1976) 49. E. Dementev, N. Dykansky, A. Medvedko et al., Prep. CERN/PS/AA 79-41, Geneva, 1979] (Novosibirsk), ESR [M. Steck et al., Phys. Rev. Lett. 77 (1996) 3803] and SIS [Hasse and Steck, Ordered ion beams, in: Proceeding of EPAC '2000] (Darmstadt), CRYRING [Danared et al., Observation of ordered ion beams in CRYRING, in: Proceeding of PAC '2001] (Stockholm) and PALLAS [Schramm et al., in: J.L. Duggan (Eds.), Proceedings of the Conference on Appl. of Acc. in Research and Industry AIP Conference Proceedings, p. 576 (to be published)] (Munich). In this report, the simulation of 1D crystalline beams with BETACOOL code is presented. The sudden reduction of momentum spread in the ESR experiment is described with this code. Simulation shows good agreement with experimental results and also with the intrabeam scattering (IBS) theory [Martini, Intrabeam scattering in the ACOOL-AA machines, CERN PS/84-9 AA, Geneva, 1984]. The code was used to calculate characteristics of the ordered state of ion beams for the TARN-II [Katayama, TARN II project, in: Proceedings of the IUCF workshop on nuclear physics with stored cooled beams, Spencer, IN, USA, 1984].

  17. Small Form Factor Information Storage Devices for Mobile Applications in Korea

    NASA Astrophysics Data System (ADS)

    Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin

    Recently, the ubiquitous environment in which anybody can reach a lot of information data without any limitations on the place and time has become an important social issue. There are two basic requirements in the field of information storage devices which have to be satisfied; the first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for new development of information storage devices small enough to be applied to mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop information storage devices which have simultaneously a large capacity and a small size. Korea possesses the necessary infrastructure for developing such small sized information storage devices. It has a good digital market, major digital companies, and various research institutes. Nowadays, many companies and research institutes including university cooperate together in the research on small sized information storage devices. Thus, it is expected that small form factor optical disk drives will be commercialized in the very near future in Korea.

  18. Passive safety device and internal short tested method for energy storage cells and systems

    DOEpatents

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  19. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  20. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  1. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  2. How to Reach a Thousand-Second in-Plane Polarization Lifetime with 0.97-GeV/c Deuterons in a Storage Ring.

    PubMed

    Guidoboni, G; Stephenson, E; Andrianov, S; Augustyniak, W; Bagdasarian, Z; Bai, M; Baylac, M; Bernreuther, W; Bertelli, S; Berz, M; Böker, J; Böhme, C; Bsaisou, J; Chekmenev, S; Chiladze, D; Ciullo, G; Contalbrigo, M; de Conto, J-M; Dymov, S; Engels, R; Esser, F M; Eversmann, D; Felden, O; Gaisser, M; Gebel, R; Glückler, H; Goldenbaum, F; Grigoryev, K; Grzonka, D; Hahnraths, T; Heberling, D; Hejny, V; Hempelmann, N; Hetzel, J; Hinder, F; Hipple, R; Hölscher, D; Ivanov, A; Kacharava, A; Kamerdzhiev, V; Kamys, B; Keshelashvili, I; Khoukaz, A; Koop, I; Krause, H-J; Krewald, S; Kulikov, A; Lehrach, A; Lenisa, P; Lomidze, N; Lorentz, B; Maanen, P; Macharashvili, G; Magiera, A; Maier, R; Makino, K; Mariański, B; Mchedlishvili, D; Meißner, Ulf-G; Mey, S; Morse, W; Müller, F; Nass, A; Natour, G; Nikolaev, N; Nioradze, M; Nowakowski, K; Orlov, Y; Pesce, A; Prasuhn, D; Pretz, J; Rathmann, F; Ritman, J; Rosenthal, M; Rudy, Z; Saleev, A; Sefzick, T; Semertzidis, Y; Senichev, Y; Shmakova, V; Silenko, A; Simon, M; Slim, J; Soltner, H; Stahl, A; Stassen, R; Statera, M; Stockhorst, H; Straatmann, H; Ströher, H; Tabidze, M; Talman, R; Thörngren Engblom, P; Trinkel, F; Trzciński, A; Uzikov, Yu; Valdau, Yu; Valetov, E; Vassiliev, A; Weidemann, C; Wilkin, C; Wrońska, A; Wüstner, P; Zakrzewska, M; Zuprański, P; Zyuzin, D

    2016-07-29

    We observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10^{-29}  e cm.

  3. How to Reach a Thousand-Second in-Plane Polarization Lifetime with 0.97 -GeV /c Deuterons in a Storage Ring

    NASA Astrophysics Data System (ADS)

    Guidoboni, G.; Stephenson, E.; Andrianov, S.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Baylac, M.; Bernreuther, W.; Bertelli, S.; Berz, M.; Böker, J.; Böhme, C.; Bsaisou, J.; Chekmenev, S.; Chiladze, D.; Ciullo, G.; Contalbrigo, M.; de Conto, J.-M.; Dymov, S.; Engels, R.; Esser, F. M.; Eversmann, D.; Felden, O.; Gaisser, M.; Gebel, R.; Glückler, H.; Goldenbaum, F.; Grigoryev, K.; Grzonka, D.; Hahnraths, T.; Heberling, D.; Hejny, V.; Hempelmann, N.; Hetzel, J.; Hinder, F.; Hipple, R.; Hölscher, D.; Ivanov, A.; Kacharava, A.; Kamerdzhiev, V.; Kamys, B.; Keshelashvili, I.; Khoukaz, A.; Koop, I.; Krause, H.-J.; Krewald, S.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Maier, R.; Makino, K.; Mariański, B.; Mchedlishvili, D.; Meißner, Ulf-G.; Mey, S.; Morse, W.; Müller, F.; Nass, A.; Natour, G.; Nikolaev, N.; Nioradze, M.; Nowakowski, K.; Orlov, Y.; Pesce, A.; Prasuhn, D.; Pretz, J.; Rathmann, F.; Ritman, J.; Rosenthal, M.; Rudy, Z.; Saleev, A.; Sefzick, T.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Simon, M.; Slim, J.; Soltner, H.; Stahl, A.; Stassen, R.; Statera, M.; Stockhorst, H.; Straatmann, H.; Ströher, H.; Tabidze, M.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Trzciński, A.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wilkin, C.; Wrońska, A.; Wüstner, P.; Zakrzewska, M.; Zuprański, P.; Zyuzin, D.; JEDI Collaboration

    2016-07-01

    We observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10-29 e cm .

  4. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  5. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  6. Assessment of neutron skyshine near unmodified Accumulator Debuncher storage rings under Mu2e operational conditions

    SciTech Connect

    Cossairt, J.Donald; /Fermilab

    2010-12-01

    Preliminary plans for providing the proton beam needed by the proposed Mu2e experiment at Fermilab will require the transport of 8 GeV protons to the Accumulator/Debuncher where they be processed into an intensity and time structure useful for the experiment. The intensities involved are far greater that those encountered with antiprotons of the same kinetic energy in the same beam enclosures under Tevatron Collider operational conditions, the operating parameters for which the physical facilities of the Antiproton Source were designed. This note explores some important ramifications of the proposed operation for radiation safety and demonstrates the need for extensive modifications of significant portions of the shielding of the Accumulator Debuncher storage rings; notably that underneath the AP Service Buildings AP10, AP30, and AP50. While existing shielding is adequate for the current operating mode of the Accumulator/Debuncher as part of the Antiproton Source used in the Tevatron Collider program, without significant modifications of the shielding configuration in the Accumulator/Debuncher region and/or beam loss control systems far more effective than seen in most applications at Fermilab, the proposed operational mode for Mu2e is not viable for the following reasons: 1. Due to skyshine alone, under normal operational conditions large areas of the Fermilab site would be exposed to unacceptable levels of radiation where most of the Laboratory workforce and some members of the general public who regularly visit Fermilab would receive measurable doses annually, contrary to workforce, public, and DOE expectations concerning the As Low as Reasonably Achievable (ALARA) principle. 2. Under normal operational conditions, a sizeable region of the Fermilab site would also require fencing due to skyshine. The size of the areas involved would likely invite public inquiry about the significant and visible enlargement of Fermilab's posted radiological areas. 3. There would

  7. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  8. Body-Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices.

    PubMed

    Kim, Daeil; Kim, Doyeon; Lee, Hyunkyu; Jeong, Yu Ra; Lee, Seung-Jung; Yang, Gwangseok; Kim, Hyoungjun; Lee, Geumbee; Jeon, Sanggeun; Zi, Goangseup; Kim, Jihyun; Ha, Jeong Sook

    2016-01-27

    A stretchable multisensor system is successfully demonstrated with an integrated energy-storage device, an array of microsupercapacitors that can be repeatedly charged via a wireless radio-frequency power receiver on the same stretchable polymer substrate. The integrated devices are interconnected by a liquid-metal interconnection and operate stably without noticeable performance degradation under strain due to the skin attachment, and a uniaxial strain up to 50%. PMID:26641239

  9. Electron-beam-induced information storage in hydrogenated amorphous silicon device

    DOEpatents

    Yacobi, Ben G.

    1986-01-01

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge-collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge-collection efficiency; and thus in the charge-collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage, in the device, which darkened areas can be restored to their original charge-collection efficiency by heating the hydrogenated amorphous silicon to a temperature of about 100.degree. C. to 250.degree. C. for a sufficient period of time to provide for such restoration.

  10. A design study for photon diagnostics for the APS storage ring short-pulse x-ray source.

    SciTech Connect

    Yang, B. X.; Lumpkin, A. H.; Landahl, E. C.; Dufresne, E. M.

    2008-01-01

    A short x-ray pulse source based on the crab cavity scheme proposed by Zholents is being developed at the Advanced Photon Source (APS). Photon diagnostics that visualize the electron bunches with transverse momentum chirp and verify the performance of the short x-ray pulse are required. We present a design study for the imaging diagnostics inside and outside of the crab cavity zone, utilizing both x-ray and visible synchrotron radiation. The diagnostics outside of the crab cavity zone will be used to map out stable operation parameters of the storage ring with crab cavities and to perform single-bunch, single- pass imaging of the chirped bunch, which facilitates optimizing the performance of the short-pulse source without disturbing other users around the ring.

  11. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  12. Analysis of the wake field effects in the PEP-II storage rings with extremely high currents

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Seeman, J.; Sullivan, M.

    2014-01-01

    We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.

  13. Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser

    SciTech Connect

    Roy, R.; Schulz, P.A.; Walther, A.

    1987-09-01

    An acousto-optic modulator causes undirectional operation of dye and Ti:sapphire ring lasers. The modulator has a low insertion loss in the cavity and can be used to switch the direction of the beam electronically. The ring laser performance is characterized, and experiments to probe the origin of the unidirectional operation are described.

  14. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    SciTech Connect

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  15. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    SciTech Connect

    Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei; Morozov, Vasiliy; Rimmer, Robert A.; Wang, Haipeng; Zhang, Yuhong

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energy ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.

  16. Test devices for investigation of piston-ring/cylinder-liner wear on coal-fueled diesel engines: Review and evaluation

    SciTech Connect

    Stodolsky, F.; Sekar, R.; Aronov, V.

    1987-05-01

    Literature on existing devices has been searched to determine their appropriateness for coal/water-slurry (CWS) diesel wear investigations. Parameters involved in the piston-ring/cylinder-liner tribological system are identified, as are materials that could potentially mitigate the wear problem. Many devices exist for materials screening, but none specifically addresses the dynamic interaction at high cyclical pressures and temperatures of the piston ring/cylinder liner with an abrasive containment in the interface. Simulation of these dynamic processes is a necessary step in solving the wear problem, although the first step must be to screen candidate materials using a device that would simply reciprocate flat specimens. Elimination of wear (other than by fuel modification) is found to depend on achieving adequate film thickness to prevent particulate contaminants from contacting the surfaces, as well as on developing surfaces substantially harder than the contaminants. A candidate wear-test device (based on a commercially available single-cylinder research engine) that would allow investigation of materials and lubrication schemes under representative engine conditions is recommended for further consideration. The device can be motored and pressurized to combustion conditions with nitrogen or ash introduced with the lubricant, or it can be motored with coal contaminants introduced into the cylinder by employing an external, low-pressure coal combustor. A similarity condition on lubricant film thickness is used to extrapolate the results to engines of different bore sizes.

  17. Integrated information storage and transfer with a coherent magnetic device.

    PubMed

    Jia, Ning; Banchi, Leonardo; Bayat, Abolfazl; Dong, Guangjiong; Bose, Sougato

    2015-01-01

    Quantum systems are inherently dissipation-less, making them excellent candidates even for classical information processing. We propose to use an array of large-spin quantum magnets for realizing a device which has two modes of operation: memory and data-bus. While the weakly interacting low-energy levels are used as memory to store classical information (bits), the high-energy levels strongly interact with neighboring magnets and mediate the spatial movement of information through quantum dynamics. Despite the fact that memory and data-bus require different features, which are usually prerogative of different physical systems--well isolation for the memory cells, and strong interactions for the transmission--our proposal avoids the notorious complexity of hybrid structures. The proposed mechanism can be realized with different setups. We specifically show that molecular magnets, as the most promising technology, can implement hundreds of operations within their coherence time, while adatoms on surfaces probed by a scanning tunneling microscope is a future possibility. PMID:26347152

  18. Integrated information storage and transfer with a coherent magnetic device

    PubMed Central

    Jia, Ning; Banchi, Leonardo; Bayat, Abolfazl; Dong, Guangjiong; Bose, Sougato

    2015-01-01

    Quantum systems are inherently dissipation-less, making them excellent candidates even for classical information processing. We propose to use an array of large-spin quantum magnets for realizing a device which has two modes of operation: memory and data-bus. While the weakly interacting low-energy levels are used as memory to store classical information (bits), the high-energy levels strongly interact with neighboring magnets and mediate the spatial movement of information through quantum dynamics. Despite the fact that memory and data-bus require different features, which are usually prerogative of different physical systems – well isolation for the memory cells, and strong interactions for the transmission – our proposal avoids the notorious complexity of hybrid structures. The proposed mechanism can be realized with different setups. We specifically show that molecular magnets, as the most promising technology, can implement hundreds of operations within their coherence time, while adatoms on surfaces probed by a scanning tunneling microscope is a future possibility. PMID:26347152

  19. Predicted performance of a multi-section VUV FEL with the Amsterdam pulse stretcher and storage ring AmPS

    SciTech Connect

    Bazylev, V.A.; Pitatelev, M.I.; Tulupov, A.V.

    1995-12-31

    A design is proposed to realize a VUV FEL with the Amsterdam Pulse Stretcher and Storage Ring (AmPS). The FEL is based on 4 identical undulator sections and 3 dispersive sections. The total magnetic system has a length of 12 m. 3 D simulations with the actual electron beam parameters of AmPS have been done with a version of TDA code modified for multi-sectional FELs. The spectral range between 50 and 100 nm has been considered. The simulations show that an amplification as large as 1*E5 - 1*E7 can be achieved. The amplification can be enhanced by a further optimisation procedure.

  20. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    SciTech Connect

    Plum, M.

    1995-05-01

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.

  1. STORAGE RING MEASUREMENT OF ELECTRON IMPACT IONIZATION FOR Mg{sup 7+} FORMING Mg{sup 8+}

    SciTech Connect

    Hahn, M.; Lestinsky, M.; Novotny, O.; Savin, D. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Wolf, A.

    2010-04-01

    We report electron impact ionization cross section measurements for Mg{sup 7+} forming Mg{sup 8+} at center of mass energies from approximately 200 eV to 2000 eV. The experimental work was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut fuer Kernphysik in Heidelberg, Germany. We find good agreement with distorted wave calculations using both the GIPPER code of the Los Alamos Atomic Physics Code suite and using the Flexible Atomic Code.

  2. Electron beam stability and beam peak to peak motion data for NSLS X-Ray storage ring

    SciTech Connect

    Singh, O.

    1993-07-01

    In the past two years, a significant reduction in electron beam motion has been achieved at the NSLS X-Ray storage ring. The implementation of global analog orbit feedbacks, based on a harmonics correction scheme, has reduced the beam motion globally. Implementation of six local analog feedback systems has reduced the beam motion even further at the corresponding beam line straight sections. This paper presents beam motion measurements, showing the improvement due to the feedback systems. Beam motion is measured using a spectrum analyzer and data is presented at various frequencies, where peaks were observed. Finally, some of the beam motion sources are discussed.

  3. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    SciTech Connect

    Yuri, Yosuke

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  4. Development of Proposed Standards for Testing Solar Collectors and Thermal Storage Devices. NBS Technical Note 899.

    ERIC Educational Resources Information Center

    Hill, James E.; And Others

    A study has been made at the National Bureau of Standards of the different techniques that are or could be used for testing solar collectors and thermal storage devices that are used in solar heating and cooling systems. This report reviews the various testing methods and outlines a recommended test procedure, including apparatus and…

  5. 10 CFR 34.23 - Locking of radiographic exposure devices, storage containers and source changers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment... radiographic exposure device must have a lock or outer locked container designed to prevent unauthorized or... storage container and source changer must have a lock or outer locked container designed to...

  6. 10 CFR 34.23 - Locking of radiographic exposure devices, storage containers and source changers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Locking of radiographic exposure devices, storage containers and source changers. 34.23 Section 34.23 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS...

  7. 10 CFR 34.31 - Inspection and maintenance of radiographic exposure devices, transport and storage containers...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Inspection and maintenance of radiographic exposure devices, transport and storage containers, associated equipment, source changers, and survey instruments. 34.31 Section 34.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR...

  8. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives.

    PubMed

    Kalinin, Sergei V; Balke, Nina

    2010-09-15

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer-micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed.

  9. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: Status and perspectives

    SciTech Connect

    Kalinin, S. V.; Balke, N.

    2010-01-01

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer–micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed.

  10. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives

    SciTech Connect

    Kalinin, Sergei V; Balke, Nina

    2010-01-01

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer-micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed.

  11. Feasibility study of shape memory alloy ring spring systems for self-centring seismic resisting devices

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Yam, Michael C. H.; Lam, Angus C. C.; Zhang, Yanyang

    2015-07-01

    Shape memory alloys (SMAs) have recently emerged as promising material candidates for structural seismic resisting purposes. Most of the existing SMA-based strategies, however, are based on the wire or rod form of SMAs, where issues such as gripping complexity and fracture may exist. This paper presents a proof-of-concept study on an innovative type of SMA-based self-centring system, namely, a superelastic SMA ring spring system. The proposed system includes a series of inner high-strength steel (HSS) rings and outer superelastic SMA rings stacked in alternation with mating taper faces, where the resisting load is provided by the wedging action which tends to expand the outer rings and concurrently to squeeze the inner rings. The superelastic effect of the SMA offers energy dissipation and a driving force for recentring, and the frictional effect over the taper face further contributes to the overall resisting load and energy dissipation. The feasibility of the new system is carefully examined via numerical studies considering the parameters of ring thickness, taper angle, and coefficient of friction. The key hysteretic responses, including resisting load, stiffness, stress distributions, source of residual deformation, energy dissipation, and equivalent viscous damping, are discussed in detail. The behaviour of the SMA ring springs is also studied via analytical models, and the analytical predictions are found to agree well with the numerical results. Finally, two practical applications of the new system, namely self-centring HS-SMA ring spring connections, and self-centring SMA ring spring dampers, are discussed via comprehensive numerical studies.

  12. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOEpatents

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  13. Construction and characterization of an inductive superconducting current limiting device based on ceramic Y 1Ba 2Cu 3O 7 - δ O-rings

    NASA Astrophysics Data System (ADS)

    Currás, S. R.; Santos, R.; Domarco, G.; Díaz, A.; Veira, J. A.; Maza, J.; François, M. X.; Vidal, F.

    Experimental results about the response of a small-scale superconducting inductive device as current limiter are reported. The device is based on ring-shaped samples of bulk Y 1Ba 2Cu 3O 7 - δ coupled to a primary coil through a magnetic core. The samples were obtained by pressing into an O-ring shape Y 1Ba 2Cu 3O 7 - δ powders, which reacted following the standard ceramic process. The size of the O-rings was 1 cm internal diameter, 1.6 cm external diameter, and 0.3 cm height. The response of the device was measured at liquid nitrogen temperature as a function of the type of magnetic core, the critical current of each individual superconducting O-ring, the number of O-rings used simultaneously, the frequency of the a.c. current and the number of turns of the primary coil.

  14. Controls on tree water uptake and information storage in tree rings

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; Simard, Sonia; Heidbüchel, Ingo; Güntner, Andreas; Heinrich, Ingo

    2016-04-01

    Controls on tree water uptake are investigated in various forest stands in the northeastern German lowlands by a multi-method approach. This approach combines sapflow and dendrometer measurements as well as tree-ring analyses with soil moisture derived root water uptake rates. The latter method has the advantage that it provides depth distributions of root water uptake and thus additional information allowing for a more detailed analysis of the relationship between water availability and water uptake. High resolution climatic data makes it possible to investigate the site specific interplay between atmospheric demand and water availability on the one hand and tree response and adaptation on the other hand. The comparison of spatio-temporal patterns of these responses with concurrent tree growth as well as tree-ring analyses enables a first matching of actual and "archived" patterns and thus an estimate of how much of this information is stored in tree rings.

  15. Safe storage of pesticides in Sri Lanka – Identifying important design features influencing community acceptance and use of safe storage devices

    PubMed Central

    Weerasinghe, Manjula; Pieris, Ravi; Eddleston, Michael; Hoek, Wim van der; Dawson, Andrew; Konradsen, Flemming

    2008-01-01

    Background Self-poisoning with pesticides is the cause of an estimated 300,000 deaths annually in rural Asia. The great majority of these deaths are from impulsive acts of self-harm using pesticides that are readily available in the home. The secure storage of pesticides under lock has been emphasized as a possible answer to the problem. This aspect, however, has been poorly researched. In this paper, we report on the design and use, in rural Sri Lanka, of a variety of different lockable storage devices. Methods Following a baseline survey of pesticide storage practices, randomly selected households received a pesticide safe storage device. The study was conducted in two phases. In the first phase a total of 200 households in two villages were provided with in-house safe storage devices and two follow-up surveys were conducted seven and 24 months after distribution. The results of the seven month post-distribution survey have already been published. In the second phase, a further 168 households were selected in two additional villages and given a choice between an in-house and an in-field storage device and a follow-up survey conducted seven months after distribution. Both follow-up surveys aimed to assess the use of the device, obtain detailed user feedback on the different storage designs, and to identify problems faced with safeguarding the key. Twelve focus group discussions were held with representatives of households that received a storage device to derive from the community qualitative feedback on the design requirements for such devices. Results One hundred and sixty one of the 200 households selected during the first phase were using pesticides at the time of the follow-up survey, 24 months after distribution. Of these 161 households 89 (55%) had the pesticides stored and locked in the provided device. Among the 168 households that were given a choice between an in-house and an in-field storage device 156 used pesticides at the time of survey and of these

  16. Present and future developments of SPM systems as mass storage devices

    NASA Astrophysics Data System (ADS)

    Born, A.; Wiesendanger, R.

    SPM technology offers a great potential to increase storage data density. The use of magnetic force microscopy (MFM) and scanning capacitance microscopy (SCM) as possible methods for a future ultrahigh-density-storage (UHDS) device has been explored. Two methods to create parallel large areas of nanometer-scale magnetic dots have been developed. The first technique is based on nanometer latex balls that serve as a mask. For the second method the mask is produced by means of interferometric lithography. The MFM allows the imaging and manipulation of these magnetic dots with full width at half maximum (FWHM) of 150 nm and smaller. Furthermore we have explored the possibility of using a scanning capacitance microscope (SCM) for charge storage. A metallic cantilever was positioned over a nitride-oxide-silicon (NOS) heterostructure. The SCM measures the capacitance as a function of the bias voltage and can detect the stored charge by the displacement of the CV curve. This technique allows a data density of more than 180 bit/μm2. Besides a high data density, a high data rate is an important requirement for a mass storage device. To overcome the problem of the low relative velocity between tip and sample for all commercial scanning probe microscopy (SPM) devices, we have developed a high speed SCM prototype which has the potential to reach data rates of Mbit/s.

  17. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    NASA Astrophysics Data System (ADS)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  18. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  19. Comparison of FecalSwab and ESwab Devices for Storage and Transportation of Diarrheagenic Bacteria

    PubMed Central

    Kaukoranta, Suvi-Sirkku

    2014-01-01

    Using a collection (n = 12) of ATCC and known stock isolates, as well as 328 clinical stool specimens, we evaluated the ESwab and the new FecalSwab liquid-based microbiology (LBM) devices for storing and transporting diarrheagenic bacteria. The stock isolates were stored in these swab devices up to 48 h at refrigeration (4°C) or room (∼25°C) temperature and up to 3 months at −20°C or −70°C. With the clinical stool specimens, the performances of the ESwab and FecalSwab were compared to those of routinely used transport systems (Amies gel swabs and dry containers). At a refrigeration temperature, all isolates survived in FecalSwab up to 48 h, while in ESwab, only 10 isolates (83.3%) out of 12 survived. At −70°C, all isolates in FecalSwab were recovered after 3 months of storage, whereas in ESwab, none of the isolates were recovered. At −20°C, neither of the swab devices preserved the viability of stock isolates after 2 weeks of storage, and at room temperature, 7 (58.3%) of the stock isolates were recovered in both transport devices after 48 h. Of the 328 fecal specimens, 44 (13.4%) were positive for one of the common diarrheagenic bacterial species with all transport systems used. Thus, the suitability of the ESwab and FecalSwab devices for culturing fresh stools was at least equal to those of the Amies gel swabs and dry containers. Although the ESwab was shown to be an option for collecting and transporting fecal specimens, the FecalSwab device had clearly better preserving properties under different storage conditions. PMID:24740083

  20. A New Blood Collection Device Minimizes Cellular DNA Release During Sample Storage and Shipping When Compared to a Standard Device

    PubMed Central

    Norton, Sheila E; Luna, Kristin K; Lechner, Joel M; Qin, Jianbing; Fernando, M Rohan

    2013-01-01

    Background Cell-free DNA (cfDNA) circulating in blood is currently used for noninvasive diagnostic and prognostic tests. Minimizing background DNA is vital for detection of low abundance cfDNA. We investigated whether a new blood collection device could reduce background levels of genomic DNA (gDNA) in plasma compared to K3EDTA tubes, when subjected to conditions that may occur during sample storage and shipping. Methods Blood samples were drawn from healthy donors into K3EDTA and Cell-Free DNA™ BCT (BCT). To simulate shipping, samples were shaken or left unshaken. In a shipping study, samples were shipped or not shipped. To assess temperature variations, samples were incubated at 6°C, 22°C, and 37°C. In all cases, plasma was harvested by centrifugation and total plasma DNA (pDNA) assayed by quantitative real-time polymerase chain reaction (qPCR). Results Shaking and shipping blood in K3EDTA tubes showed significant increases in pDNA, whereas no change was seen in BCTs. Blood in K3EDTA tubes incubated at 6°C, 22°C, and 37°C showed increases in pDNA while pDNA from BCTs remained stable. Conclusions BCTs prevent increases in gDNA levels that can occur during sample storage and shipping. This new device permits low abundance DNA target detection and allows accurate cfDNA concentrations. PMID:23852790

  1. Studies of Systematic Limitations in the EDM Searches at Storage Rings

    NASA Astrophysics Data System (ADS)

    Saleev, Artem; Nikolaev, Nikolai; Rathmann, Frank

    2016-02-01

    Searches of the electric dipole moment (EDM) at a pure magnetic ring, like COSY, encounter strong background coming from magnetic dipole moment (MDM). The most troubling issue is the MDM spin rotation in the so-called imperfection, radial and longitudinal, B-fields. To study the systematic effects of the imperfection fields at COSY we proposed the original method which makes use of the two static solenoids acting as artificial imperfections. Perturbation of the spin tune caused by the spin kicks in the solenoids probes the systematic effect of cumulative spin rotation in the imperfection fields all over the ring. The spin tune is one of the most precise quantities measured presently at COSY at 10-10 level. The method has been successfully tested in September 2014 run at COSY, unravelling strength of spin kicks in the ring’s imperfection fields at the level of 10-3rad.

  2. Porous graphene materials for advanced electrochemical energy storage and conversion devices.

    PubMed

    Han, Sheng; Wu, Dongqing; Li, Shuang; Zhang, Fan; Feng, Xinliang

    2014-02-12

    Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed.

  3. Self-compliance multilevel storage characteristic in HfO2-based device

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Ping; Fu, Li-Ping; Chen, Chuan-Bing; Yuan, Peng; Li, Ying-Tao

    2016-10-01

    In this paper, the self-compliance bipolar resistive switching characteristic of an HfO2-based memory device with Ag/HfO2/Au structure for multilevel storage is investigated. By applying a positive voltage, the dual-step set processes corresponding to three stable resistance states are observed in the device. The multilevel switching characteristics can still be observed after 48 hours. In addition, the resistance values of all the three states show negligible degradation over 104 s, which may be useful for the applications in nonvolatile multilevel storage. Project supported by the National Natural Science Foundation of China (Grant Nos. 61664001, 61574070, and 61306148) and the Application Research and Development Plan of Gansu Academy of Sciences, China (Grant Nos. 2015JK-11 and 2015JK-01).

  4. Bio-nanotextured high aspect ratio micropillar arrays for high surface area energy storage devices

    NASA Astrophysics Data System (ADS)

    Chu, S.; Gerasopoulos, K.; Ghodssi, R.

    2015-12-01

    This paper presents fabrication and characterization of bio-nanotextured hierarchical nickel oxide (NiO) supercapacitor electrodes. The hierarchical electrode structure is created through self-assembly of Tobacco mosaic viruses (TMVs) on high aspect-ratio micropillar arrays. Enhanced assembly of the bio-nanoparticles was achieved by increasing TMV solution accessibility into the deep microcavities of the pillar arrays. Electrochemical characterization of the hierarchical NiO supercapacitor electrodes revealed a 25-fold increase in charge capacity compared to a planar NiO, and demonstrated excellent cycle stability over 1500 charge/discharge cycles at 2 mA/cm2. This study leverages the unique bio-nanoscaffolds for small scale energy storage devices through further optimization of the hierarchical structures and wetting techniques for significant improvements in micro/nano scale energy storage devices.

  5. 40 CFR 65.145 - Nonflare control devices used to control emissions from storage vessels or low-throughput...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulated material are routed to the control device and halogen reduction device, except during periods of... enters the control device, including flow and regulated material content; and additionally for storage... temperature of 760 °C is used to meet the emission reduction requirement specified in § 65.42(b)(5)...

  6. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    NASA Astrophysics Data System (ADS)

    Steinparzer, T.; Haider, M.; Fleischanderl, A.; Hampel, A.; Enickl, G.; Zauner, F.

    2012-11-01

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  7. The rare-RI ring

    NASA Astrophysics Data System (ADS)

    Ozawa, A.; Uesaka, T.; Wakasugi, M.; Rare-RI Ring Collaboration

    2012-12-01

    We describe the rare-RI (radioactive isotope) ring at the RI Beam Factory (RIBF). The main purpose of the rare-RI ring is to measure the mass of very neutron-rich nuclei, the production rates of which are very small (hence ‘rare RI’) and the lifetimes of which are predicted to be very short. In the rare-RI ring, there are two innovative pieces of apparatus: individual injection, which can realize the injection of 200 A MeV rare RIs one by one, and a cyclotron-like storage ring, which allows high isochronous magnetic fields with large angular and momentum acceptances. With these devices, we will achieve a 10-6 mass resolution, and will be able to access rare RIs, the production rate of which is down to 1 event/day/pnA. Construction of the rare-RI ring started in fiscal year 2012.

  8. A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage.

    PubMed

    Sun, Hao; You, Xiao; Deng, Jue; Chen, Xuli; Yang, Zhibin; Chen, Peining; Fang, Xin; Peng, Huisheng

    2014-06-23

    A wire-shaped energy device that can perform photoelectric conversion and electrochemical storage was developed through a simple but effective twisting process. The energy wire exhibited a high energy conversion efficiency of 6.58 % and specific capacitance of 85.03 μF cm(-1) or 2.13 mF cm(-2), and the two functions were alternately realized without sacrificing either performance.

  9. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  10. How to Reach a Thousand-Second in-Plane Polarization Lifetime with 0.97-GeV/c Deuterons in a Storage Ring.

    PubMed

    Guidoboni, G; Stephenson, E; Andrianov, S; Augustyniak, W; Bagdasarian, Z; Bai, M; Baylac, M; Bernreuther, W; Bertelli, S; Berz, M; Böker, J; Böhme, C; Bsaisou, J; Chekmenev, S; Chiladze, D; Ciullo, G; Contalbrigo, M; de Conto, J-M; Dymov, S; Engels, R; Esser, F M; Eversmann, D; Felden, O; Gaisser, M; Gebel, R; Glückler, H; Goldenbaum, F; Grigoryev, K; Grzonka, D; Hahnraths, T; Heberling, D; Hejny, V; Hempelmann, N; Hetzel, J; Hinder, F; Hipple, R; Hölscher, D; Ivanov, A; Kacharava, A; Kamerdzhiev, V; Kamys, B; Keshelashvili, I; Khoukaz, A; Koop, I; Krause, H-J; Krewald, S; Kulikov, A; Lehrach, A; Lenisa, P; Lomidze, N; Lorentz, B; Maanen, P; Macharashvili, G; Magiera, A; Maier, R; Makino, K; Mariański, B; Mchedlishvili, D; Meißner, Ulf-G; Mey, S; Morse, W; Müller, F; Nass, A; Natour, G; Nikolaev, N; Nioradze, M; Nowakowski, K; Orlov, Y; Pesce, A; Prasuhn, D; Pretz, J; Rathmann, F; Ritman, J; Rosenthal, M; Rudy, Z; Saleev, A; Sefzick, T; Semertzidis, Y; Senichev, Y; Shmakova, V; Silenko, A; Simon, M; Slim, J; Soltner, H; Stahl, A; Stassen, R; Statera, M; Stockhorst, H; Straatmann, H; Ströher, H; Tabidze, M; Talman, R; Thörngren Engblom, P; Trinkel, F; Trzciński, A; Uzikov, Yu; Valdau, Yu; Valetov, E; Vassiliev, A; Weidemann, C; Wilkin, C; Wrońska, A; Wüstner, P; Zakrzewska, M; Zuprański, P; Zyuzin, D

    2016-07-29

    We observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10^{-29}  e cm. PMID:27517774

  11. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  12. Estimation of effective dose caused by stray radiations of photons, electrons and positrons around a small storage ring for a synchrotron radiation facility

    NASA Astrophysics Data System (ADS)

    Takashima, Y.; Oki, S.; Sugiyama, H.; Kobayakawa, H.

    2005-10-01

    The spatial distribution of the effective dose of photons, electrons and positrons caused by beam loss around a small electron storage ring in a synchrotron radiation source is calculated. We propose a simple formula applicable to calculate the effective dose for storage rings for beam energies ranging from 200 MeV to 5 GeV. The formula is derived from Monte Carlo calculations of radiation flux using the simulation code EGS4. We apply the formula to estimate the effective dose distribution in a small synchrotron radiation facility planned by the Nagoya University.

  13. Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators.

    PubMed

    Fegadolli, William S; Almeida, Vilson R; Oliveira, José Edimar Barbosa

    2011-06-20

    A novel tunable and reconfigurable thermo-optical device is theoretically proposed and analyzed in this paper. The device is designed to be entirely compatible with CMOS process and to work as a thermo-optical filter or modulator. Numerical results, made by means of analytical and Finite-Difference Time-Domain (FDTD) methods, show that a compact device enables a broad bandwidth operation, of up to 830 GHz, which allows the device to work under a large temperature variation, of up to 96 K.

  14. Experiments with longitudinally polarized electrons in a storage ring using a siberian snake

    PubMed

    Poolman; Boersma; Harvey; Higinbotham; Passchier; Six; Alarcon; van Amersfoort PW; Bauer; Boer Rookhuizen H; van Den Brand JF; van Buuren LD; Bulten; Ent; Ferro-Luzzi; Geurts; Heimberg; de Jager CW; Klimin; Koop; Kroes; van Der Laan J; Luijckx; Lysenko; Militsyn; Nesterenko

    2000-04-24

    We report on first measurements with polarized electrons stored in a medium-energy ring and with a polarized internal target. Polarized electrons were injected at 442 MeV (653 MeV), and a partial (full) Siberian snake was employed to preserve the polarization. Longitudinal polarization at the interaction point and polarization lifetime of the stored electrons were determined with laser backscattering. Spin observables were measured for electrodisintegration of polarized 3He, with simultaneous detection of scattered electrons, protons, neutrons, deuterons, and 3He nuclei, over a large phase space. PMID:11019223

  15. Stripper-foil scan studies of the first-turn beam loss mechanism in the LAMPF proton storage ring (PSR)

    SciTech Connect

    Hutson, R.: Fitzgerald, D.; Frankle, S.; Macek, R.; Plum, M.; Wilkinson, C.

    1993-06-01

    First-turn beam losses in the LAMPF Proton Storage Ring were measured as a function of the left-right position of the carbon foil used to strip neutral hydrogen atoms to H{sup +} for proton injection into the PSR. Two foil thicknesses, 200 and 300 {mu}g/cm{sup 2}, were tested. Results indicated that first-turn loss is caused predominately by magnetic field stripping of a small fraction of the H{sub 0} atoms that pass through the stripper foil without being stripped to protons, and the results were not consistent with a mechanism involving protons originating from atoms in the halo of the neutral beam incident on the stripper foil.

  16. Stripper-foil scan studies of the first-turn beam loss mechanism in the LAMPF proton storage ring (PSR)

    SciTech Connect

    Hutson, R.: Fitzgerald, D.; Frankle, S.; Macek, R.; Plum, M.; Wilkinson, C.

    1993-01-01

    First-turn beam losses in the LAMPF Proton Storage Ring were measured as a function of the left-right position of the carbon foil used to strip neutral hydrogen atoms to H[sup +] for proton injection into the PSR. Two foil thicknesses, 200 and 300 [mu]g/cm[sup 2], were tested. Results indicated that first-turn loss is caused predominately by magnetic field stripping of a small fraction of the H[sub 0] atoms that pass through the stripper foil without being stripped to protons, and the results were not consistent with a mechanism involving protons originating from atoms in the halo of the neutral beam incident on the stripper foil.

  17. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    SciTech Connect

    Weber, Jonah M.; Chin, Michael

    2002-04-30

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which the IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.

  18. Beam size measurement of the stored electron beam at the APS storage ring using zone plate optics and undulator radiation

    SciTech Connect

    Cai, Z.; Lai, B.; Yun, W.

    1997-10-01

    Beam sizes of the stored electron beam at the Advanced Photon Source storage ring were measured using zone-plate optics and undulator radiation. A gold Fresnel zone plate (3.5 {micro}m thick) located 33.9 meters from the x-ray source focused radiation of 18 keV, selected by a cryogenically cooled Si(111) crystal in horizontal deflection, and formed a source image in a transverse plane 2.41 m downstream. The sizes of the source image were determined from measured intensity profiles of x-ray fluorescence from a smooth nickel edge (1.5 {micro}m thick), fabricated using a lithographic technique, while the nickel edge was scanned across over the beam in the transverse plane. The measured vertical and horizontal sizes of the electron beam were 60 {+-} 4.3 {micro}m and 300 {+-} 13 {micro}m, respectively, in reasonable agreement with the expected values.

  19. On the macroscopic quantization in mesoscopic rings and single-electron devices

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  20. Compact near-IR and mid-IR cavity ring down spectroscopy device

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.