Sample records for storage ring light

  1. An Inside Look: NSLS-II Storage Ring

    ScienceCinema

    Fries, Gregory

    2018-06-12

    Look inside the storage ring of the National Synchrotron Light Source II, under construction at Brookhaven Lab. Exactly 843 magnets now encircle the ring. Their job will be to steer, stabilize, and store electrons racing around at near light speed.

  2. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  3. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  4. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  5. A new storage-ring light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  6. Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments

    NASA Astrophysics Data System (ADS)

    Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.

    2018-06-01

    At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.

  7. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  8. Towards a 4{sup th} generation storage ring at the Canadian Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallin, Les; Wurtz, Ward

    2016-07-27

    Demands from beamline scientists for more brilliant sources of synchrotron radiation have resulted in the emergence of 4{sup th} generation (diffraction-limited) storage rings. The practical development of the multi-bend achromat (MBA) concept by MAX IV lab has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options. For a new low emittance source in the existing CLS tunnel a decrease in electron energy would be required. A machine similar to the ALS upgrade couldmore » be contemplated. To achieve low emittance at our present energy of 2.9 GeV a new storage ring is desirable. Several options have been investigated. These designs use extremely strong focusing magnets to achieve extremely low emittances in compact lattice achromats.« less

  9. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we have made significant progress with the design of PEP-X, a USR that would inhabit the decommissioned PEP-II tunnel at SLAC. The enlargement of the dynamic aperture is largely a result of the cancellations of the 4th-order resonances in the 3rd-order achromats and the effective use of lattice optimization programs. In this paper, we will show those cancellations of the 4th-order resonances using an analytical approach based on the exponential Lie operators and the Poisson brackets. Wherever possible, our analytical results will be compared with their numerical counterparts. Using the derived formulae, we will construct 4th-order geometric achromats and use them as modules for the lattice of the PEP-X USR, noting that only geometric terms are canceled to the 4th order.« less

  10. NSLS-II storage ring insertion device and front-end commissioning and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less

  11. Low emittance electron storage rings

    NASA Astrophysics Data System (ADS)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  12. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft[sup 2] support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  13. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft{sup 2} support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  14. High resolution monochromator for the VUV radiation from the DORIS storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saile, V.; Gurtler, P.; Koch, E.E.

    1976-10-01

    The unique properties of the DORIS storage ring at DESY as a synchroton radiation source are exploited for high resolution spectroscopy in the vacuum ultraviolet. We describe a new experimental set up with a 3-m normal incidence monochromator for wavelengths between 3000 A and 300 A (4 < or = h..omega.. < or = 40 eV) using a vertical dispersion plane. The storage ring provides a light flux intense and stable enough for rapid photoelectrical scanning of the spectra with a resolution of 0.03 A in first order. (AIP)

  15. Design Study of an MBA Lattice for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Glenn

    2014-11-02

    Recent interest in ultra-low-emittance designs for storage-ring-based synchrotron light sources has spurred a focused design effort on a multi-bend achromat (MBA) storage ring replacement for the Advanced Photon Source (APS). The APS is relatively large (1104 m circumference) and, as such, an upgrade to a fourth-generation storage ring holds the potential for a two to three order of magnitude enhancement of X-ray brightness due to the approximate inverse cubic scaling of emittance with the number of dipole bend magnets.

  16. Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.; Andersson, Å.; Eriksson, M.; Lindgren, L.-J.; Wallén, E.; Bengtsson, J.; Streun, A.

    2009-12-01

    MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.

  17. 3 GeV Booster Synchrotron Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  18. Beam measurements using visible synchrotron light at NSLS2 storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing, E-mail: chengwx@bnl.gov; Bacha, Bel; Singh, Om

    2016-07-27

    Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper.more » A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.« less

  19. Beam position monitoring system at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.

    2017-09-01

    The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.

  20. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less

  1. National Synchrotron Light Source annual report 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses ormore » pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.« less

  3. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  4. Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.

    1995-09-01

    We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.

  5. The Status of the Taiwan Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. C.; Wang, J. P.; Chen, J. R.

    2010-06-23

    NSRRC has been operating a 1.5 GeV synchrotron light source, the Taiwan Light Source (TLS), for over 15 years and has established a large user community. For the future development of synchrotron radiation research in Taiwan, a feasibility study report to construct a 3.0 GeV low-emittance storage ring, the Taiwan Photon Source (TPS), was issued in July 2005. The government approval of the TPS project was obtained in December 2007 and the machine will be built at current site of NSRRC. The project has progressed steadily since and reached several major milestones now: the architect firm has finished the sitemore » plan and civil design, the accelerator design has been fixed, and purchase of long-lead items begins its course. The TPS storage ring has a circumference of 518.4 meters with a concentric booster of 496.8 meters. The storage ring adopted a 24-cell double-bend structure with a 1.6 nm-rad natural emittance. There are six 12-m and eighteen 7-m ID straights. For user research, five new beamlines have been selected for the Phase I operations: the micro protein crystallography, the materials sub-micron diffraction, the inelastic soft x-ray scattering, the coherent x-ray scattering, and the nano probe beamlines. The civil construction is getting ready to start. The commissioning of the TPS storage ring is targeted for 2013.« less

  6. Emittance and lifetime measurement with damping wigglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less

  7. Instrumentation for the study of low emittance tuning and beam dynamics at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.

    2017-11-01

    The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode for CESR as a Test Accelerator (CesrTA) included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1-3]. In addition to instrumentation for the storage ring, which was created for CesrTA, existing instrumentation was modified to facilitate the entire range of investigations to support these studies. Procedures were developed, often requiring coordinated measurements among different instruments [4]. This paper describes the instruments utilized for the study of beam dynamics during the operation of CesrTA. The treatment of these instruments will remain fairly general in this paper as it focusses on an overview of the instruments themselves. Their interaction and inter-relationships during sequences of observations is found in a companion paper describing the associated measurement techniques. More detailed descriptions and detailed operational performance for some of the instrumentation may be found elsewhere and these will be referenced in the related sections of this paper.

  8. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2017-12-09

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  9. Status of NSLS-II Storage Ring Vacuum Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom,L.; Hseuh,H.; Ferreira, M.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  10. Measurement techniques for low emittance tuning and beam dynamics at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.

    2018-03-01

    After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.

  11. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Walter; Chin, Mike; Robin, David

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is describedmore » in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.« less

  12. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Rose, J.; Cupolo, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  13. Upgrade of BPM Electronics for the SPring-8 Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Shigeki; Fujita, Takahiro; Shoji, Masazumi

    2006-11-20

    SPring-8, a 3rd generation synchrotron light source, has operated since 1997. Improvement of BPM performance is required as a part of upgrading activities of the storage ring as a light source. We have developed new electronics circuits for signal processing of the storage ring BPM, with target performance of sub-{mu}m range resolution with sufficiently fast measurement speed and good long-term stability. A set of the new circuits consists of multiplexers, an RF amplifier, a mixer, an IF amplifier, and a local oscillator for analog signal processing. The IF amplifier outputs are sampled with 16-bit 2-MSPS ADC on ADC boards andmore » the data are sent to a DSP board. The sampled data are processed and converted to position information in the DSP. A multiplexing method was employed to have a better stability of the performance by cancellation of variation common to each channel. Evaluation of the performance by using a prototype shows that position resolution well into the sub-{mu}m range has been achieved with a bandwidth of 1 kHz, and long-term stability of within 1 {mu}m has also been achieved.« less

  14. Colliding or co-rotating ion beams in storage rings for EDM search

    NASA Astrophysics Data System (ADS)

    Koop, I. A.

    2015-11-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10-20. We show that the bending radius of such an EDM storage ring could be about 2-3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed.

  15. Coupling control and optimization at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Wurtz, W. A.

    2018-06-01

    We present a detailed study using the skew quadrupoles in the Canadian Light Source storage ring lattice to control the parameters of a coupled lattice. We calculate the six-dimensional beam envelop matrix and use it to produce a variety of objective functions for optimization using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. MOPSO produces a number of skew quadrupole configurations that we apply to the storage ring. We use the X-ray synchrotron radiation diagnostic beamline to image the beam and we make measurements of the vertical dispersion and beam lifetime. We observe satisfactory agreement between the measurements and simulations. These methods can be used to adjust phase space coupling in a rational way and have applications to fine-tuning the vertical emittance and Touschek lifetime and measuring the gas scattering lifetime.

  16. Preparing the MAX IV storage rings for timing-based experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stråhlman, C., E-mail: Christian.Strahlman@maxlab.lu.se; Olsson, T., E-mail: Teresia.Olsson@maxlab.lu.se; Leemann, S. C.

    2016-07-27

    Time-resolved experimental techniques are increasingly abundant at storage ring facilities. Recent developments in accelerator technology and beamline instrumentation allow for simultaneous operation of high-intensity and timing-based experiments. The MAX IV facility is a state-of-the-art synchrotron light source in Lund, Sweden, that will come into operation in 2016. As many storage ring facilities are pursuing upgrade programs employing strong-focusing multibend achromats and passive harmonic cavities (HCs) in high-current operation, it is of broad interest to study the accelerator and instrumentation developments required to enable timing-based experiments at such machines. In particular, the use of hybrid filling modes combined with pulse pickingmore » by resonant excitation or pseudo single bunch has shown promising results. These methods can be combined with novel beamline instrumentation, such as choppers and instrument gating. In this paper we discuss how these techniques can be implemented and employed at MAX IV.« less

  17. A compact radiation source for digital subtractive angiography

    NASA Astrophysics Data System (ADS)

    Wiedemann, H.; Baltay, M.; Carr, R.; Hernandez, M.; Lavender, W.

    1994-08-01

    Beam requirements for 33 keV radiation used in digital subtraction angiography have been established through extended experimentation first at Stanford and later at the National Synchrotron Light Source in Brookhaven. So far research and development of this medical procedure to image coronary blood vessels have been undertaken on large high energy electron storage rings. With progress in this diagnostic procedure, it is interesting to look for an optimum concept for providing a 33 keV radiation source which would fit into the environment of a hospital. A variety of competing effects and technologies to produce 33 keV radiation are available, but none of these processes provides the combination of sufficient photon flux and monochromaticity except for synchrotron radiation from an electron storage ring. The conceptual design of a compact storage ring optimized to fit into a hospital environment and producing sufficient 33 keV radiation for digital subtraction radiography will be discussed.

  18. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.M.; Shaftan; T.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used tomore » measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.« less

  19. Experience with Round Beam Operation at The Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Emery, L.; Sajaev, V.

    2015-01-01

    Very short Touschek lifetime becomes a common issue for next-generation ultra-low emittance storage ring light sources. In order to reach a longer beamlifetime, such amachine often requires operating with a vertical-to-horizontal emittance ratio close to an unity, i.e. a “round beam”. In tests at the APS storage ring, we determined how a round beam can be reached experimentally. Some general issues, such as beam injection, optics measurement and corrections, and orbit correction have been tested also. To demonstrate that a round beam was achieved, the beam size ratio is calibrated using beam lifetime measurement.

  20. Installation of a second superconducting wiggler at SAGA-LS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of themore » vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.« less

  1. Broadband impedance calculations and single bunch instabilities estimations of of the HLS-II storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Kun; Wang, Lin; Li, Wei-Min; Gao, Wei-Wei

    2015-12-01

    The upgrade project of the Hefei Light Source storage ring is under way. In this paper, the broadband impedances of resistive wall and coated ceramic vacuum chamber are calculated using the analytic formula, and the wake fields and impedances of other designed vacuum chambers are simulated by CST code, and then a broadband impedance model is obtained. Using the theoretical formula, longitudinal and transverse single bunch instabilities are discussed. With the carefully-designed vacuum chamber, we find that the thresholds of the beam instabilities are higher than the beam current goal. Supported by Natural Science Foundation of China (11175182, 11175180)

  2. Patterns of Storage, Synthesis and Changing Light Levels Revealed by Carbon Isotope Microsampling within Eocene Metasequoia Tree Rings

    NASA Astrophysics Data System (ADS)

    Jahren, H.; Sternberg, L.

    2005-12-01

    Fossil tree rings from Axel Heiberg Island were microanalyzed for δ13C value in order to assess patterns of tree growth and carbon storage within the Middle Eocene (~45 Ma) Arctic paleoenvironment. Wood from four Metasequoia-type individuals was subsampled for analysis: each individual fossil consisted of between 4 and 10 large (~1 cm thick) consecutive tree rings. One of the fossils displayed an obvious concentric pattern, allowing for the determination of the direction of growth with isotopic pattern. Each ring was divided into ~1 mm thick subsamples, resulting in 5-10 δ13C value determinations per period of ring growth (i.e., growing season). All rings revealed a distinct pattern that was characteristic across growing seasons and across individual fossils. Early in the season, δ13C was at its highest value but descended systematically and sharply to its lowest value at the end of the growing season. Total decrease ranged between 3 and 5 ‰ over the course of each growing season. Identical patterns were observed in the δ13C value of alpha-cellulose isolated from each subsample, indicating that the trends observed did not represent changing levels of secondary metabolites, but rather a seasonal adjustment in the bulk source of carbon used during biosynthesis. Our results are consistent with the following annual pattern of wood synthesis 1.) complete dependence on the mobilization of stored carbon compounds early in the growing season; 2.) systematically increasing use of actively-acquired photosynthate during the growing season; 3.) complete reliance on active photosynthate by the end of the growing season. An additional and significant source of 13C discrimination is declining light levels late in the growing season, and likely contributes to the extreme pattern of δ13C decrease seen across each ring. Our results mimic those seen from modern broadleaf deciduous trees (Helle & Schlesser 2004), but differ from those seen in modern conifers (Barbour et al 2002), underlining the important influence of dormancy, storage and changing light levels on carbon cycling within the Paleogene polar forests. Helle & Schleser 2004: Plant, Cell and Environment 27:367-380. Barbour, Walcroft & Farquhar 2002: Plant, Cell and Environment 25: 1483-1499.

  3. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    NASA Astrophysics Data System (ADS)

    Billing, M. G.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.

  4. Nsls-II Boster

    NASA Astrophysics Data System (ADS)

    Gurov, S. M.; Akimov, A. V.; Akimov, V. E.; Anashin, V. V.; Anchugov, O. V.; Baranov, G. N.; Batrakov, A. M.; Belikov, O. V.; Bekhtenev, E. A.; Blum, E.; Bulatov, A. V.; Burenkov, D. B.; Cheblakov, P. B.; Chernyakin, A. D.; Cheskidov, V. G.; Churkin, I. N.; Davidsavier, M.; Derbenev, A. A.; Erokhin, A. I.; Fliller, R. P.; Fulkerson, M.; Gorchakov, K. M.; Ganetis, G.; Gao, F.; Gurov, D. S.; Hseuh, H.; Hu, Y.; Johanson, M.; Kadyrov, R. A.; Karnaev, S. E.; Karpov, G. V.; Kiselev, V. A.; Kobets, V. V.; Konstantinov, V. M.; Kolmogorov, V. V.; Korepanov, A. A.; Kramer, S.; Krasnov, A. A.; Kremnev, A. A.; Kuper, E. A.; Kuzminykh, V. S.; Levichev, E. B.; Li, Y.; Long, J. De; Makeev, A. V.; Mamkin, V. R.; Medvedko, A. S.; Meshkov, O. I.; Nefedov, N. B.; Neyfeld, V. V.; Okunev, I. N.; Ozaki, S.; Padrazo, D.; Petrov, V. V.; Petrichenkov, M. V.; Philipchenko, A. V.; Polyansky, A. V.; Pureskin, D. N.; Rakhimov, A. R.; Rose, J.; Ruvinskiy, S. I.; Rybitskaya, T. V.; Sazonov, N. V.; Schegolev, L. M.; Semenov, A. M.; Semenov, E. P.; Senkov, D. V.; Serdakov, L. E.; Serednyakov, S. S.; Shaftan, T. V.; Sharma, S.; Shichkov, D. S.; Shiyankov, S. V.; Shvedov, D. A.; Simonov, E. A.; Singh, O.; Sinyatkin, S. V.; Smaluk, V. V.; Sukhanov, A. V.; Tian, Y.; Tsukanova, L. A.; Vakhrushev, R. V.; Vobly, P. D.; Utkin, A. V.; Wang, G.; Wahl, W.; Willeke, F.; Yaminov, K. R.; Yong, H.; Zhuravlev, A.; Zuhoski, P.

    The National Synchrotron Light Source II is a third generation light source, which was constructed at Brookhaven National Laboratory. This project includes a highly-optimized 3 GeV electron storage ring, linac preinjector, and full-energy synchrotron injector. Budker Institute of Nuclear Physics built and delivered the booster for NSLS-II. The commissioning of the booster was successfully completed. This paper reviews fulfilled work by participants.

  5. Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Yang, B.

    2017-06-25

    Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The resultsmore » show very good agreement.« less

  6. Monte Carlo calculation of skyshine'' neutron dose from ALS (Advanced Light Source)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations.

  7. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.

    PubMed

    Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2017-10-06

    Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.

  8. VERTICAL BEAM SIZE CONTROL IN TLS AND TPS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KUO, C.C.; CHEN, J.R.; CHOU, P.J.

    2006-06-26

    Vertical beam size control is an important issue in the light source operations. The horizontal-vertical betatron coupling and vertical dispersion were measured and corrected to small values in the TLS 1.5 GeV storage ring. Estimated beam sizes are compared with the measured values. By employing an effective transverse damping system, the vertical beam blow-up due to transverse coherent instabilities, such as the fast-ion beam instability, was suppressed. As a result, the light source is very stable. In NSRRC we are designing an ultra low emittance 3-GeV storage ring and its designed vertical beam size could be as small as amore » few microns. The ground and mechanic vibration effects, and coherent instabilities could spoil the expected photon brightness due to blow-up of the vertical beam size if not well taken care of. The contributions of these effects to vertical beam size increase will be evaluated and the counter measures to minimize them will be proposed and reported in this paper.« less

  9. Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source

    NASA Astrophysics Data System (ADS)

    Casalbuoni, S.; Cecilia, A.; Gerstl, S.; Glamann, N.; Grau, A. W.; Holubek, T.; Meuter, C.; de Jauregui, D. Saez; Voutta, R.; Boffo, C.; Gerhard, Th.; Turenne, M.; Walter, W.

    2016-11-01

    A new cryogen-free full scale (1.5 m long) superconducting undulator with a period length of 15 mm (SCU15) has been successfully tested in the ANKA storage ring. This represents a very important milestone in the development of superconducting undulators for third and fourth generation light sources carried on by the collaboration between the Karlsruhe Institute of Technology and the industrial partner Babcock Noell GmbH. SCU15 is the first full length device worldwide that with beam reaches a higher peak field than what expected with the same geometry (vacuum gap and period length) with an ideal cryogenic permanent magnet undulator built with the best material available PrFeB. After a summary on the design and main parameters of the device, we present here the characterization in terms of spectral properties and the long term operation of the SCU15 in the ANKA storage ring.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less

  11. Kinoform optics applied to X-ray photon correlation spectroscopy.

    PubMed

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, Mikael

    Not very long ago, the 3{sup rd} generation storage ring technology was judged as mature. Most of the 3{sup rd} generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA)more » concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.« less

  13. Ultrashort high-brightness pulses from storage rings

    NASA Astrophysics Data System (ADS)

    Khan, Shaukat

    2017-09-01

    The brightness of short-wavelength radiation from accelerator-based sources can be increased by coherent emission in which the radiation intensity scales with the number of contributing electrons squared. This requires a microbunched longitudinal electron distribution, which is the case in free-electron lasers. The brightness of light sources based on electron storage rings was steadily improved, but could profit further from coherent emission. The modulation of the electron energy by a continuous-wave laser field may provide steady-state microbunching in the infrared regime. For shorter wavelengths, the energy modulation can be converted into a temporary density modulation by a dispersive chicane. One particular goal is coherent emission from a very short "slice" within an electron bunch in order to produce ultrashort radiation pulses with high brightness.

  14. ALS superbend magnet performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Steve; Zbasnik, John; Byrne, Warren

    2001-12-10

    The Lawrence Berkeley National Laboratory has been engaged in the design, construction and testing of four superconducting dipoles (Superbends) that are installed in three arcs of the Advanced Light Source (ALS), with the fourth magnet as a spare. This represents a major upgrade to the ALS providing an enhanced flux and brightness at photon energies above 10 keV. In preparation for installation, an extensive set of tests and measurements have been conducted to characterize the magnetic and cryogenic performance of the Superbends and to fiducialize them for accurate placement in the ALS storage ring. The magnets are currently installed, andmore » the storage ring is undergoing final commissioning. This paper will present the results of magnetic and cryogenic testing.« less

  15. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  16. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  17. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  18. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  19. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE PAGES

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; ...

    2016-04-28

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  20. Study of ultra-low emittance design for SPEAR3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  1. Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Ha, Kiman; Rainer, Robert

    2017-11-01

    Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate diagnostic bunch train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT, from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. This approach allows us to localize the distributed quadrupolar wakefields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta beat and phase beat, and unobtrusively optimize performance of the National Synchrotron Light Source-II accelerator during routine operations.

  2. Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Ha, Kiman; ...

    2017-11-21

    Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate Diagnostic Bunch-Train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on-demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT,more » from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. Therefore, this approach allows us to localize the distributed quadrupolar wake fields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta-beat and phase-beat, and unobtrusively optimize performance of National Synchrotron Light Source-II accelerator during routine operations.« less

  3. PHILOSOPHY FOR NSLS-II DESIGN WITH SUB-NANOMETER HORIZONTAL EMITTANCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OZAKI,S.; BENGTSSON, J.; KRAMER, S.L.

    2007-06-25

    NSLS-II at Brookhaven National Laboratory is a new third-generation storage ring light source, whose construction is on the verge of being approved by DOE. When completed, NSLS-II with its ability to provide users with a wide range of spectrum, ranging from IR to ultra-high brightness hard x-ray beams will replace the existing two (20+ years old) NSLS light sources. While presenting an overview of the NSLS-II accelerator system, this paper focuses on the strategy and development of a novel <1 nm emittance light source.

  4. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, J.M.; Hao, Z.; Martin, M.C.

    2004-07-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less

  5. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    PubMed

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  6. Study of ultra-low emittance design for Spear3 using longitudinal gradient dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M. -H.; Huang, X.; Safranek, J.

    2015-09-24

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  7. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeyratne, S; Ahmed, S; Barber, D

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectivelymore » utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top-off refilling. The CEBAF fixed-target nuclear physics program can be simultaneously operated since the filling time of the electron ring is very short. The ion complex for MEIC consists of sources for polarized light ions and unpolarized light to heavy ions, an SRF ion linac with proton energy up to 280 MeV, a 3 GeV prebooster synchrotron, a large booster synchrotron for proton energy up to 20 GeV, and a medium-energy collider ring with energy up to 100 GeV. The ion complex can accelerate other species of ions with corresponding energies at each accelerating stage. There are three collision points planned for MEIC. Two of them are for collisions with medium-energy ions; the third is for low energy ion beams stored in a dedicated low-energy compact storage ring, as a possible follow-on project.« less

  8. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  9. Comparison of RF BPM Receivers for NSLS-II Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinayev,I.; Singh, O.

    2009-05-04

    The NSLS-II Light Source being built at Brookhaven National Laboratory requires submicron stability of the electron orbit in the storage ring in order to utilize fully very small emittances and electron beam sizes. This sets high stability requirements for beam position monitors and a program has been initiated for the purpose of characterizing RF beam position monitor (BPM) receivers in use at other light sources. Present state-of-the-art performance will be contrasted with more recently available technologies.

  10. A Simulation Model for Procedure Inference from a Mental Model for a Simple Device.

    DTIC Science & Technology

    1984-05-25

    can flow to, and the indicator lights show where the power is present. According to these results, the critical information is the system topology...show the flow of power into the energon storage system. Maintenance of a collapsed energon ring requires a supply of vector bosons which is...model; in some tasks there is clearly no effect. The device model in that study was developed intuitivIy. But upon examining the model in light of the

  11. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    PubMed Central

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-01-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices. PMID:27941895

  12. Longitudinal space charge compensation at PSR

    NASA Astrophysics Data System (ADS)

    Neri, Filippo

    1998-11-01

    The longitudinal space-charge force in neutron spallation source compressor ring or other high intensity proton storage rings can be compensated by introducing an insert in the ring. The effect of the inductor is to cancel all or part of the space charge potential, because it is capacitive. The Proton Storage Ring at Los Alamos National Laboratory is a compressor ring used to produce short pulses of spallation neutrons. Inductive inserts design for space charge compensation at the Los Alamos Proton Storage Ring is described.

  13. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno

    2015-10-01

    For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.

  14. Estimation of neutron dose equivalent at the mezzanine of the Advanced Light Source and the laboratory boundary using the ORNL program MORSE.

    PubMed

    Sun, R K

    1990-12-01

    To investigate the radiation effect of neutrons near the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory (LBL) with respect to the neutron dose equivalents in nearby occupied areas and at the site boundary, the neutron transport code MORSE, from Oak Ridge National Laboratory (ORNL), was used. These dose equivalents result from both skyshine neutrons transported by air scattering and direct neutrons penetrating the shielding. The ALS neutron sources are a 50-MeV linear accelerator and its transfer line, a 1.5-GeV booster, a beam extraction line, and a 1.9-GeV storage ring. The most conservative total occupational-dose-equivalent rate in the center of the ALS mezzanine, 39 m from the ALS center, was found to be 1.14 X 10(-3) Sv y-1 per 2000-h "occupational" year, and the total environmental-dose-equivalent rate at the ALS boundary, 125 m from the ALS center, was found to be 3.02 X 10(-4) Sv y-1 per 8760-h calendar year. More realistic dose-equivalent rates, using the nominal (expected) storage-ring current, were calculated to be 1.0 X 10(-4) Sv y-1 and 2.65 X 10(-5) Sv y-1 occupational year and calendar year, respectively, which are much lower than the DOE reporting levels.

  15. Fluorescence dynamics of biological systems using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratton, E.; Mantulin, W.W.; Weber, G.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes thatmore » can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}« less

  16. Impedance computations and beam-based measurements: A problem of discrepancy

    NASA Astrophysics Data System (ADS)

    Smaluk, Victor

    2018-04-01

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.

  17. Optimization of Dynamic Aperture of PEP-X Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Min-Huey; /SLAC; Cai, Yunhai

    2010-08-23

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less

  18. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  19. The Dewar Isomer of 1,2-Dihydro-1,2-azaborinines: Isolation, Fragmentation, and Energy Storage.

    PubMed

    Edel, Klara; Yang, Xinyu; Ishibashi, Jacob S A; Lamm, Ashley N; Maichle-Mössmer, Cäcilia; Giustra, Zachary X; Liu, Shih-Yuan; Bettinger, Holger F

    2018-05-04

    The photochemistry of 1,2-dihydro-1,2-azaborinine derivatives was studied under matrix isolation conditions and in solution. Photoisomerization occurs exclusively to the Dewar valence isomers upon irradiation with UV light (>280 nm) with high quantum yield (46 %). Further photolysis with UV light (254 nm) results in the formation of cyclobutadiene and an iminoborane derivative. The thermal electrocyclic ring-opening reaction of the Dewar valence isomer back to the 1,2-dihydro-1-tert-butyldimethylsilyl-2-mesityl-1,2-azaborinine has an activation barrier of (27.0±1.2) kcal mol -1 . In the presence of the Wilkinson catalyst, the ring opening occurs rapidly and exothermically (ΔH=(-48±1) kcal mol -1 ) at room temperature. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.

    2012-04-01

    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily controlled by total water storage in the subsurface. But high uncertainties intervals of the correlation coefficient urges for the extension of the measurement period. This multi-disciplinary study, combining hydrology, dendrochronology and geodesy shows that temporal gravimeter measurements may give us the unique opportunity to retrieve the information of total water storage contained in tree-ring records to reconstruct total water storage dynamics. Knowing the relationship of water storage and tree-ring growth can also support the reconstruction of other climate records based on tree-ring series, help with hydrological model testing and can improve our knowledge of long-term variations of water storage in the past.

  1. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such anmore » electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)« less

  2. Study of the one-way speed of light anisotropy with particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan B.

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  3. Study of the one-way speed of light anisotropy with particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan

    2017-04-01

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Kimichika, E-mail: kimichika.tsuchiya@kek.jp; Adachi, Masahiro; Shioya, Tatsuro

    At the 2.5-GeV Photon Factory (PF) storage ring, we recently constructed four new undulators known as U#02-2, U#13, SGU#15, and U#28 for BL02, BL13, BL15, and BL28, respectively. SGU#15 is an in-vacuum undulator with a period length of 17.6 mm. The other three undulators are elliptically polarizing undulators (EPUs) for the vacuum ultraviolet and soft X-ray (VUV-SX) light sources to obtain various polarization states. We constructed these new undulators by fiscal 2013 and step by step installed them in the PF ring. We describe the details of the construction of these new undulators in this report.

  5. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  6. CLEARING MAGNET DESIGN FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abliz, M.; Grimmer, J.; Jaski, Y.

    2017-06-25

    The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring. The upgrade will be converting the current double bend achromat (DBA) lattice to a multi-bend achromat (MBA) lattice. In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant [1]. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring ismore » proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the features and design of the clearing magnet scheme for APS-U.« less

  7. The phase slip factor of the electrostatic cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  8. Online optimization of storage ring nonlinear beam dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  9. Large diameter metal ring seal prevents gas leakage at 5000 psi

    NASA Technical Reports Server (NTRS)

    Middelkoop, J. H.

    1966-01-01

    Large metal ring seal prevents gas leakage in hydrogen, helium, or nitrogen storage bottles at pressures up to 5,000 psi. The grooved ring seal which contains elastomer O-rings is installed between the mating faces of the access cover and the storage bottle.

  10. Notes on the design of experiments and beam diagnostics with synchrotron light detected by a gated photomultiplier for the Fermilab superconducting electron linac and for the Integrable Optics Test Accelerator (IOTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Romanov, Aleksandr; Ruan, Jinhao

    We outline the design of beam experiments for the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility and for the Integrable Optics Test Accelerator (IOTA), based on synchrotron light emitted by the electrons in bend dipoles, detected with gated microchannel-plate photomultipliers (MCP-PMTs). The system can be used both for beam diagnostics (e.g., beam intensity with full dynamic range, turn-by-turn beam vibrations, etc.) and for scientific experiments, such as the direct observation of the time structure of the radiation emitted by single electrons in a storage ring. The similarity between photon pulses and spectrum at the downstream endmore » of the electron linac and in the IOTA ring allows one to test the apparatus during commissioning of the linac.« less

  11. Duke storage rink UV/VUV FEL: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL andmore » the Duke storage ring are discussed.« less

  12. Polarization Studies for the eRHIC Electron Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, Eliana; Tepikian, S.

    A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV.more » Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.« less

  13. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  14. Design of the transfer line from booster to storage ring at 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less

  15. Structural and Chemical Properties of the Nitrogen-Rich Energetic Material Triaminoguanidinium 1-methyl-5-nitriminotetrazolate under Pressure

    DTIC Science & Technology

    2012-08-01

    Source (NSLS) of Brookhaven National Laboratory ( BNL ). The syn- chrotron light is extracted from the VUV storage ring in a 40 × 40 mrad solid angle and...Contract No. DE-AC02-06CH11357. Infrared mea- surements were performed at the U2A beamline at the NSLS of BNL (DOE Contract No. DE-AC02-98CH10886). The

  16. Beam by design: Laser manipulation of electrons in modern accelerators

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

    2014-07-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

  17. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE PAGES

    Smaluk, Victor

    2018-04-21

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  18. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaluk, Victor

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  19. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    NASA Astrophysics Data System (ADS)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  20. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jonah M.; Chin, Michael

    2002-04-30

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which themore » IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.« less

  1. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  2. The GKSS beamlines at PETRA III and DORIS III

    NASA Astrophysics Data System (ADS)

    Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.

    2008-08-01

    Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.

  3. APS Storage Ring Monopulse RF BPM Upgrade

    NASA Astrophysics Data System (ADS)

    Lill, R.; Pietryla, A.; Norum, E.; Lenkszus, F.

    2004-11-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source in its ninth year of operation. The storage ring monopulse radio frequency (rf) beam position monitor (BPM) was designed to measure single-turn and multi-turn beam positions for operations and machine physics studies. Many of the components used in the original design are obsolete and costly to replace. In this paper we present a proposal to upgrade the monopulse rf BPMs in which the existing system hardware is repartitioned and the aging data acquisition system is replaced. By replacing only the data acquisition system, we will demonstrate a cost-effective approach to improved beam stability, reliability, and enhanced postmortem capabilities. An eight-channel ADC/digitizer VXI board with sampling rate of up to 105 MHz (per channel) and 14-bit resolution coupled with a field-programmable gate array and embedded central processing will provide the flexibility to revitalize this system for another decade of operation. We will discuss the upgrade system specifications, design, and prototype test results.

  4. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  5. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  6. ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng

    In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the onemore » from LOCO (Linear Optics from Closed Orbits) response matrix correction.« less

  7. Development of a bunch-by-bunch longitudinal feedback system with a wide dynamic range for the HIGS facility

    NASA Astrophysics Data System (ADS)

    Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.

    2011-03-01

    Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.

  8. SESAME -- A light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-02-01

    Developed under UNESCO and modelled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. The Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey), provides the annual budget. Concrete shielding is complete, and a staff of 21 is installing the refurbished 0.8 GeV BESS Y I injector system, a gift from Germany. The facility can serve 25 simultaneous experiments. Beamline equipment has been provided by Daresbury (UK), the Helmholtz Assoc. (Germany), the Swiss Light Source, LURE (France), the Univ. of Liverpool, Elettra (Italy) and US labs. Jordan has contributed 3.3M, in addition to a building and land. The EU has contributed 4.8M. Commitments confirmed by Members look set to provide most of 35M needed to complete construction of the ring and 3 beamlines. A training program has been underway since 2000. See www.sesame.org.jo

  9. Pushing the MAX IV 3 GeV storage ring brightness and coherence towards the limit of its magnetic lattice

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.; Wurtz, W. A.

    2018-03-01

    The MAX IV 3 GeV storage ring is presently being commissioned and crucial parameters such as machine functions, emittance, and stored current have either already been reached or are approaching their design specifications. Once the baseline performance has been achieved, a campaign will be launched to further improve the brightness and coherence of this storage ring for typical X-ray users. During recent years, several such improvements have been designed. Common to these approaches is that they attempt to improve the storage ring performance using existing hardware provided for the baseline design. Such improvements therefore present more short-term upgrades. In this paper, however, we investigate medium-term improvements assuming power supplies can be exchanged in an attempt to push the brightness and coherence of the storage ring to the limit of what can be achieved without exchanging the magnetic lattice itself. We outline optics requirements, the optics optimization process, and summarize achievable parameters and expected performance.

  10. Cabling design of booster and storage ring construction progress of TPS

    NASA Astrophysics Data System (ADS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, b.-S.

    2017-06-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  11. A Study of Single Pass Ion Effects at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, J.M.; Thomson, J.; /LBL, Berkeley

    2011-09-13

    We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased alongmore » the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.« less

  12. Coupled beam motion in a storage ring with crab cavities

    DOE PAGES

    Huang, Xiaobiao

    2016-02-16

    We studied the coupled beam motion in a storage ring between the transverse and longitudinal directions introduced by crab cavities. Analytic form of the linear decoupling transformation is derived. Also, the equilibrium bunch distribution in an electron storage ring with a crab cavity is given, including contribution to the eigen-emittance induced by the crab cavity. Furthermore, application to the short pulse generation scheme using crab cavities [1] is considered.

  13. A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring

    NASA Astrophysics Data System (ADS)

    Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.

    2012-11-01

    The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.

  14. Sperm storage, sperm translocation and genitalia formation in females of the terrestrial isopod Armadillidium vulgare (Crustacea, Peracarida, Isopoda).

    PubMed

    Ziegler, Andreas; Suzuki, Sachiko

    2011-01-01

    We investigated sperm storage, sperm transfer from the oviduct to the seminal receptacle, and formation of the cuticular genitalia in female Armadillidium vulgare using light and electron microscopy. Apolysis of the genitalia within the oviduct forms a circum-genital lumen. During insemination this space is filled with immobile spermatozoa. Sperm transfer into the seminal receptacle takes place before oviposition. Within a peculiar proximal neck region of the oviduct spermatozoa are bundled and enveloped by a folded epicuticular layer. The envelope tightly surrounds the spermatozoa probably forming a seal against the main part of the circum-genital lumen. We propose that hydrostatic pressure produced by the muscle cells surrounding the oviduct leads to sperm transfer into the seminal receptacle. Within the seminal receptacle the sperm bundle forms a ring just around the orifice to the oviduct. At one side sheath-like extensions of epithelial cells surround the ring of spermatozoa holding it in place. At the other side oocytes would have access to the sperm during oviposition, probably allowing for fertilisation when they pass right through the ring of spermatozoa. After oviposition the new genitalia are formed from epicuticular folds, and cuticle secreted by the epithelial cells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, C.; Qiang, J.; Venturini, M.

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailingmore » magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.« less

  16. Ring profiler: a new method for estimating tree-ring density for improved estimates of carbon storage

    Treesearch

    David W. Vahey; C. Tim Scott; J.Y. Zhu; Kenneth E. Skog

    2012-01-01

    Methods for estimating present and future carbon storage in trees and forests rely on measurements or estimates of tree volume or volume growth multiplied by specific gravity. Wood density can vary by tree ring and height in a tree. If data on density by tree ring could be obtained and linked to tree size and stand characteristics, it would be possible to more...

  17. Storage rings, internal targets and PEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.E.

    Storage rings with internal targets are described, using PEP as an example. The difference between electrons and heavier particles such as protons, antiprotons, and heavy ions is also discussed because it raises possibilities of bypass insertions for more exotic experiments. PEP is compared to other rings in various contexts to verify the assertion that it is an ideal ring for many fundamental and practical applications that can be carried on simultaneously. (LEW)

  18. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  19. Beam diagnostics at high-intensity storage rings

    NASA Astrophysics Data System (ADS)

    Plum, Mike

    1994-10-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  20. Model-independent and fast determination of optical functions in storage rings via multiturn and closed-orbit data

    NASA Astrophysics Data System (ADS)

    Riemann, Bernard; Grete, Patrick; Weis, Thomas

    2011-06-01

    Multiturn (or turn-by-turn) data acquisition has proven to be a new source of direct measurements for Twiss parameters in storage rings. On the other hand, closed-orbit measurements are a long-known tool for analyzing closed-orbit perturbations with conventional beam position monitor (BPM) systems and are necessarily available at every storage ring. This paper aims at combining the advantages of multiturn measurements and closed-orbit data. We show that only two multiturn BPMs and four correctors in one localized drift space in the storage ring (diagnostic drift) are sufficient for model-independent and absolute measuring of β and φ functions at all BPMs, including the conventional ones, instead of requiring all BPMs being equipped with multiturn electronics.

  1. Study of Storage Ring Free-Electron Laser Using Experimental and Simulation Approaches

    NASA Astrophysics Data System (ADS)

    Jia, Botao

    2011-12-01

    The Duke electron storage ring, first commissioned in November of 1994, has been developed as a dedicated driver for storage ring free-electron lasers (SRFELs) operating in a wide wavelength range from infrared, to visible, to ultraviolet (UV) and vacuum ultraviolet (VUV). The storage ring has a long straight section for various insertion devices and can be operated in a wide energy range (0.25 GeV to 1.15 GeV). Commissioned in 1995, the first free-electron laser (FEL) on the Duke storage ring was the OK-4 FEL, an optical klystron with two planar undulators sandwiching a buncher magnet. In 2005, the OK-5 FEL with two helical undulators was commissioned. Operating four undulators---two OK-4 and two OK-5 undulators, the world's first distributed optical klystron FEL was brought to operation in 2005. Via Compton scattering of FEL photons and electrons in the storage ring, the Duke FEL drives the world's most powerful, nearly monochromatic, and polarized Compton gamma-ray source, the High Intensity Gamma-ray Source (HIgammaS). Today, a variety of configurations of the storage ring FELs at Duke have been used in a wide range of research areas from nuclear physics to biophysics, from chemical and medical research to industrial applications. The capability of accurately measuring the storage ring electron beam energy spread is crucial for understanding the longitudinal beam dynamics and the dynamics of the storage ring FEL. In this dissertation, we have successfully developed a noninvasive, versatile, and accurate method to measure the energy spread using optical klystron radiation. Novel numerical methods based upon the Gauss-Hermite expansion have been developed to treat both spectral broadening and modulation on an equal footing. Through properly configuring the optical klystron, this energy spread measurement method has a large dynamic range. In addition, a model-based scheme has been developed for correcting the electron beam emittance related inhomogeneous spectral broadening effect, to further enhance the accuracy of measuring the electron beam energy spread. Taking advantage of the direct measurement method of the electron beam energy spread, we have developed another novel technique to simultaneously measure the FEL power, electron beam energy spread, and other beam parameters. This allowed us to study the FEL power in a systematic manner for the first time. Based on the experimental findings and results of the theoretical predictions, we have proposed a compact formula to predict the FEL power using only the knowledge of electron beam current, beam energy, and bunch length. As part of the dissertation work, we have developed a self-consistent numerical model to study the storage ring FEL. The simulation program models the electron beam propagation along the storage ring, multi-turn FEL interaction in the undulators, gradual intra-cavity optical power buildup, etc. This simulation code captures the main features of a storage ring FEL at different time and space scales. The simulated FEL gain has been benchmarked against measured gain and calculated gain with good agreement. The simulation package can provide comprehensive information about the FEL gain, optical pulse growth, electron beam properties, etc. In the near future, we plan to further improve the simulation model, by including additional physics effects such as microwave instability, to make it a more useful tool for FEL research.

  2. Advanced light source master oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, C.C.; Taylor, B.; Baptiste, K.

    1989-03-01

    The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of {plus minus} 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs.,more » 7 figs.« less

  3. SLS-2 – the upgrade of the Swiss Light Source

    PubMed Central

    Streun, Andreas; Garvey, Terence; Rivkin, Lenny; Schlott, Volker; Schmidt, Thomas; Willmott, Philip; Wrulich, Albin

    2018-01-01

    An upgrade of the Swiss Light Source (SLS) is planned for 2021–2024 and includes the exchange of the existing storage ring by a new one providing about 40–50 times lower emittance in user operation mode. This will extend the performance of SLS in particular in the fields of coherent imaging, full-field tomography, soft X-ray angle-resolved photoelectron spectroscopy and resonant inelastic X-ray scattering. A science case and a conceptual design for the machine have been established. As a summary of these reports, the novel lattice design, undulator developments and scientific highlights are presented. PMID:29714174

  4. The Low-Temperature Vibrational Behavior of Pentaerythritol Tetranitrate

    DTIC Science & Technology

    2008-06-01

    light is extracted from the vacuum ultraviolet storage ring in a 40- × 40-mrad solid angle. The collimated beam is delivered through a vacuum pipe ...a role in the stabilization of the D2 conformer. It is suspect that the presence of the shear planes stabilizes the D2 conformer at such extreme...findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

  5. Free Electron Lasers

    DTIC Science & Technology

    1991-01-09

    Linacs Duke a NIST/NRL UCSB Accelerator Storage ring race - track Electrostatic microtron Van de Graaf Status 1993 19 9 2 h 1990 Electron Energy 0.5-1... phase velocity slightly less than the electrons. This wave is called the "ponderomotive potential wave", which is generated by the beating of the...c is the speed of light. The beat wave has the same frequency as the radiation, but its wavenumber is k + k,. The phase velocity of the beat wave Vph

  6. First observation of undulator radiation from APPLE-1

    NASA Astrophysics Data System (ADS)

    Sasaki, Shigemi; Shimada, Taihei; Yanagida, Ken-ichi; Kobayashi, Hideki; Miyahara, Yoshikazu

    1994-08-01

    Various polarized radiation was observed in the visible region generated by the new type undulator APPLE-1 (Advanced Planar Polarized Light Emitted - 1). The undulator was installed in the low energy electron storage ring JSR and we have succeeded in observing linearly polarized radiation in both planes and circularly polarized radiation with the aid of a Wollaston prism. During the process of shifting the arrays and changing the undulator gap, no noticeable change of radiation axis was observed.

  7. Single-pass BPM system of the Photon Factory storage ring.

    PubMed

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  8. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOERSTER,C.

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.« less

  9. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    NASA Astrophysics Data System (ADS)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  10. Study of Uneven Fills to Cure the Coupled-Bunch Instability in SRRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex W.

    2002-08-12

    The performance of the 1.5-GeV storage ring light source TLS in SRRC has been limited by a longitudinal coupled-bunch beam instability. To improve the performance of the TLS, the beam instability has to be suppressed. One possible way considered for the TLS to suppress its coupled-bunch instability uses uneven filling patterns according to the theory of Prabhakar[1]. By knowing the harmful high-order-modes (HOMs), a special filling pattern can be designed to utilize either mode coupling or Landau damping to cure beam instability. In TLS the HOMs are contributed from the Doris RF cavity installed in the storage ring. The HOMsmore » of a 3-D Doris cavity was numerically analyzed. Filling patterns with equal bunch current according to theory had been calculated to cure the most harmful HOM. A longitudinal particle tracking program was used to simulate the coupled-bunch beam instability with both the uniform filling and the special designed filling. Filling pattern with unequal bunch current was also studied. The results of the simulation were discussed and compared to the theory.« less

  11. SESAME -- A third generation synchrotron light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-03-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. Members of the Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority,Turkey) provide the operations budget. Voluntary contributions by several Council Members that could amount to over 20 million over 5 years are now being finalized. This, plus funds from other sources, will enable acquisition of the technical components of the new ring and the upgrading of beamline equipment donated by several European and US labs. All concrete shielding is complete. The 0.8 GeV BESSY I injector system, a gift from Germany, is now being installed. A training program has been underway since 2000. SESAME is on track to start operation with four day-one beam lines in 2015.

  12. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline

    NASA Astrophysics Data System (ADS)

    Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.

    2016-10-01

    Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.

  13. Magnetic field of longitudinal gradient bend

    NASA Astrophysics Data System (ADS)

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  14. Commissioning of BL 7.2, the new diagnostic beam line at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baum, Dennis; Biocca, Alan

    2004-06-29

    BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.

  15. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdóttir, Á.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wüstefeld, G.; Hübers, H.-W.; Warnock, R.

    2004-08-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSYII storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  16. ACCELERATORS: Preliminary application of turn-by-turn data analysis to the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Zhao, Zhen-Tang

    2009-07-01

    There is growing interest in utilizing the beam position monitor turn-by-turn (TBT) data to debug accelerators. TBT data can be used to determine the linear optics, coupled optics and nonlinear behaviors of the storage ring lattice. This is not only a useful complement to other methods of determining the linear optics such as LOCO, but also provides a possibility to uncover more hidden phenomena. In this paper, a preliminary application of a β function measurement to the SSRF storage ring is presented.

  17. How to Reach a Thousand-Second in-Plane Polarization Lifetime with 0.97 - GeV / c Deuterons in a Storage Ring

    DOE PAGES

    Guidoboni, G.; Stephenson, E.; Andrianov, S.; ...

    2016-07-28

    Here, we observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10 -29 $e$ cm.

  18. Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF

    NASA Astrophysics Data System (ADS)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.

    2017-10-01

    Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.

  19. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    NASA Astrophysics Data System (ADS)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek's life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek's life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  20. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    NASA Astrophysics Data System (ADS)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  1. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  2. Injection envelope matching in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the {beta}-tron frequency indicate the presence of a {beta}-mismatch, while envelope oscillations at the {beta}-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  3. Injection envelope matching in storage rings

    NASA Astrophysics Data System (ADS)

    Minty, M. G.; Spence, W. L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the beta-tron frequency indicate the presence of a beta-mismatch, while envelope oscillations at the beta-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  4. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Single-beam, dark toroidal optical traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew

    2007-02-01

    We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.

  6. Calibration of space instruments at the Metrology Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.

    2016-07-27

    PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, andmore » detectors is continued.« less

  7. Status and outlook of the CRYRING@ESR project

    NASA Astrophysics Data System (ADS)

    Geithner, W.; Andelkovic, Z.; Beck, D.; Bräuning, H.; Bräuning-Demian, A.; Danared, H.; Dimopoulou, C.; Engström, M.; Fedotova, S.; Gorda, O.; Herfurth, F.; Hess, R.; Källberg, A.; Kleffner, C.; Kotovskiy, N.; Kraus, I.; Lestinsky, M.; Litvinov, S.; Nolden, F.; Reiter, A.; Sieber, T.; Steck, M.; Vorobyev, G.

    2017-11-01

    Once operational, CRYRING@ESR will store and decelerate ions delivered by the experimental storage ring ESR at energies well below those of ESR. In addition to that, CRYRING@ESR has an electron cooler operating with an ultracold electron beam, allowing to provide cooled ion beams for precision experiments. These ions will be delivered to a broad range of experiments presently in preparation; either in-ring or extracted to a dedicated beamline for experiments. An overview and status report of the installation and commissioning of the CRYRING-@ESR storage ring for highly charged ions at the GSI Helmholtzzentrum für Schwerionenforschung is presented. The installation of this storage ring started in 2014 and was completing end of 2016, when this publication was written.

  8. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    NASA Astrophysics Data System (ADS)

    King, F.; Kruppi, T.; Müller, J.; Dörner, R.; Schmidt, L. Ph H.; Schmidt-Böcking, H.; Stiebing, K. E.

    2015-11-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections.

  9. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  10. Multi-century long density chronology of living and sub-fossil trees from Lake Schwarzensee, Austria.

    PubMed

    Kłusek, Marzena; Melvin, Thomas M; Grabner, Michael

    This paper presents a multi-century, maximum latewood density (MXD) chronology developed from living and sub-fossil spruce trees from the Eastern Alps. The chronology is continuous from 88AD to 2008AD. This time series has been analysed with respect to its possible use for climate reconstruction. Correlations with climatic data showed strong dependence between MXD of growth rings and temperature of April, May, June, July, August and September and a weaker, negative dependence with precipitation of May and September. For solar radiation a positive relationship was noted for April, July, August and September. Light rings were frequently observed within the analysed samples and the climate of years with light rings was examined. Mean monthly temperatures in January, June, August, September and October, averaged during light ring years, were cooler than during years without light rings. Precipitation was also significantly reduced in March during light ring years. In turn, solar radiation during light ring years has significantly lowered values in February and August. The occurrence of light rings was often positively related to strong volcanic events.

  11. Multi-century long density chronology of living and sub-fossil trees from Lake Schwarzensee, Austria

    PubMed Central

    Kłusek, Marzena; Melvin, Thomas M.; Grabner, Michael

    2015-01-01

    This paper presents a multi-century, maximum latewood density (MXD) chronology developed from living and sub-fossil spruce trees from the Eastern Alps. The chronology is continuous from 88AD to 2008AD. This time series has been analysed with respect to its possible use for climate reconstruction. Correlations with climatic data showed strong dependence between MXD of growth rings and temperature of April, May, June, July, August and September and a weaker, negative dependence with precipitation of May and September. For solar radiation a positive relationship was noted for April, July, August and September. Light rings were frequently observed within the analysed samples and the climate of years with light rings was examined. Mean monthly temperatures in January, June, August, September and October, averaged during light ring years, were cooler than during years without light rings. Precipitation was also significantly reduced in March during light ring years. In turn, solar radiation during light ring years has significantly lowered values in February and August. The occurrence of light rings was often positively related to strong volcanic events. PMID:26109836

  12. Arctic tree rings as recorders of variations in light availability

    PubMed Central

    Stine, A. R.; Huybers, P.

    2014-01-01

    Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity. PMID:24805143

  13. Fourth Generation Light Sources

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    1997-05-01

    Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops (M. Cornacchia and H. Winick (eds), Workshop on Fourth Generation Light Sources, Feb. 24-27, 1992, SSRL Report 92/02) (J.-L. Laclare (ed), ICFA Workshop on Fourth Generation Light Sources, Jan. 22-25, 1996, ESRF Report) have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the three kilometer SLAC linac (the first two kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 Angstroms by SASE in a 100 m long undulator is in preparation.

  14. Artificial light harvesting by dimerized Möbius ring

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Gong, Z. R.; Tao, Ming-Jie; Ai, Qing

    2018-04-01

    We theoretically study artificial light harvesting by a Möbius ring. When the donors in the ring are dimerized, the energies of the donor ring are split into two subbands. Because of the nontrivial Möbius boundary condition, both the photon and acceptor are coupled to all collective-excitation modes in the donor ring. Therefore, the quantum dynamics in the light harvesting is subtly influenced by dimerization in the Möbius ring. It is discovered that energy transfer is more efficient in a dimerized ring than that in an equally spaced ring. This discovery is also confirmed by a calculation with the perturbation theory, which is equivalent to the Wigner-Weisskopf approximation. Our findings may be beneficial to the optimal design of artificial light harvesting.

  15. The Storage Ring Proton EDM Experiment

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis; Storage Ring Proton EDM Collaboration

    2014-09-01

    The storage ring pEDM experiment utilizes an all-electric storage ring to store ~1011 longitudinally polarized protons simultaneously in clock-wise and counter-clock-wise directions for 103 seconds. The radial E-field acts on the proton EDM for the duration of the storage time to precess its spin in the vertical plane. The ring lattice is optimized to reduce intra-beam scattering, increase the statistical sensitivity and reduce the systematic errors of the method. The main systematic error is a net radial B-field integrated around the ring causing an EDM-like vertical spin precession. The counter-rotating beams sense this integrated field and are vertically shifted by an amount, which depends on the strength of the vertical focusing in the ring, thus creating a radial B-field. Modulating the vertical focusing at 10 kHz makes possible the detection of this radial B-field by a SQUID-magnetometer (SQUID-based BPM). For a total number of n SQUID-based BPMs distributed around the ring the effectiveness of the method is limited to the N = n /2 harmonic of the background radial B-field due to the Nyquist sampling theorem limit. This limitation establishes the requirement to reduce the maximum radial B-field to 0.1-1 nT everywhere around the ring by layers of mu-metal and aluminum vacuum tube. The metho's sensitivity is 10-29 e .cm , more than three orders of magnitude better than the present neutron EDM experimental limit, making it sensitive to SUSY-like new physics mass scale up to 300 TeV.

  16. Dose estimates for the 1104 m APS storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, H.J.

    1989-06-01

    The estimated dose equivalent rates outside the shielded storage ring, and the estimated annual dose equivalent to members of the public due to direct radiation and skyshine from the ring, have been recalculated. The previous estimates found in LS-84 (MOE 87) and cited in the 1987 Conceptual Design Report of the APS (ANL 87) required revision because of changes in the ring circumference and in the proposed location of the ring with respect to the nearest site boundary. The values assumed for the neutron quality factors were also overestimated (by a factor of 2) in the previous computation, and themore » correct values have been used for this estimate. The methodology used to compute dose and dose rate from the storage ring is the same as that used in LS-90 (MOE 87a). The calculations assumed 80 cm thick walls of ordinary concrete (or the shielding equivalent of this) and a roof thickness of 1 meter of ordinary concrete. The circumference of the ring was increased to 1,104 m, and the closest distance to the boundary was taken as 140 m. The recalculation of the skyshine component used the same methodology as that used in LS-84.« less

  17. Perspectives on micropole undulators in synchrotron radiation technology

    NASA Astrophysics Data System (ADS)

    Tatchyn, Roman; Csonka, Paul; Toor, Arthur

    1989-07-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.

  18. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  19. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  20. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...

    2018-05-29

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  1. Data Access Based on a Guide Map of the Underwater Wireless Sensor Network

    PubMed Central

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Cheng, Albert M. K.

    2017-01-01

    Underwater wireless sensor networks (UWSNs) represent an area of increasing research interest, as data storage, discovery, and query of UWSNs are always challenging issues. In this paper, a data access based on a guide map (DAGM) method is proposed for UWSNs. In DAGM, the metadata describes the abstracts of data content and the storage location. The center ring is composed of nodes according to the shortest average data query path in the network in order to store the metadata, and the data guide map organizes, diffuses and synchronizes the metadata in the center ring, providing the most time-saving and energy-efficient data query service for the user. For this method, firstly the data is stored in the UWSN. The storage node is determined, the data is transmitted from the sensor node (data generation source) to the storage node, and the metadata is generated for it. Then, the metadata is sent to the center ring node that is the nearest to the storage node and the data guide map organizes the metadata, diffusing and synchronizing it to the other center ring nodes. Finally, when there is query data in any user node, the data guide map will select a center ring node nearest to the user to process the query sentence, and based on the shortest transmission delay and lowest energy consumption, data transmission routing is generated according to the storage location abstract in the metadata. Hence, specific application data transmission from the storage node to the user is completed. The simulation results demonstrate that DAGM has advantages with respect to data access time and network energy consumption. PMID:29039757

  2. Data Access Based on a Guide Map of the Underwater Wireless Sensor Network.

    PubMed

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Song, Houbing; Wang, Hongbin; Ma, Xuefei; Cheng, Albert M K

    2017-10-17

    Underwater wireless sensor networks (UWSNs) represent an area of increasing research interest, as data storage, discovery, and query of UWSNs are always challenging issues. In this paper, a data access based on a guide map (DAGM) method is proposed for UWSNs. In DAGM, the metadata describes the abstracts of data content and the storage location. The center ring is composed of nodes according to the shortest average data query path in the network in order to store the metadata, and the data guide map organizes, diffuses and synchronizes the metadata in the center ring, providing the most time-saving and energy-efficient data query service for the user. For this method, firstly the data is stored in the UWSN. The storage node is determined, the data is transmitted from the sensor node (data generation source) to the storage node, and the metadata is generated for it. Then, the metadata is sent to the center ring node that is the nearest to the storage node and the data guide map organizes the metadata, diffusing and synchronizing it to the other center ring nodes. Finally, when there is query data in any user node, the data guide map will select a center ring node nearest to the user to process the query sentence, and based on the shortest transmission delay and lowest energy consumption, data transmission routing is generated according to the storage location abstract in the metadata. Hence, specific application data transmission from the storage node to the user is completed. The simulation results demonstrate that DAGM has advantages with respect to data access time and network energy consumption.

  3. Measurement and Compensation of BPM Chamber Motion in HLS

    NASA Astrophysics Data System (ADS)

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-06-01

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.

  4. Compact Storage Ring for an X-Ray Source

    NASA Astrophysics Data System (ADS)

    Ovchinnikova, L.; Shvedunov, V.; Ivanov, K.

    2017-12-01

    We propose a new design of a compact storage ring for a source of X-ray radiation on the basis of reverse Thomson scattering of laser radiation by electrons with the energy of 35-50 MeV, which has small number of optical elements and a significant clear space for the placement of a beam injection-extraction system and a RF cavity. The original laser cavity layout has been considered. The ring dynamic aperture after correction of chromaticity and a second-order dispersion function is sufficient for the injection and stable circulation of an electron bunch in the ring.

  5. On the number of light rings in curved spacetimes of ultra-compact objects

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-01-01

    In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.

  6. Design study of the storage ring EUTERPE

    NASA Astrophysics Data System (ADS)

    Xi, Boling; Botman, J. I. M.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    At present the 400 MeV electron storage ring EUTERPE is being constructed at the Eindhoven University of Technology. It is a university project set up for studies of charged particle beam dynamics and applications of synchroton radiation, and for the education of students in these fields. The design of the ring is described in this paper. Considering the requirements of users in different fields, a lattice based on a so-called triple bend achromat structure with a high flexibility has been chosen. With this lattice, different optical options, including the HBSB (high brightness, small beam), the SBL (short bunch length) and the HLF (high light flux) modes can be realized. A small emittance of 7 nm rad and a short bunch length of the order of several mm can be achieved. In the first phase the synchrotron radiation in the UV and XUV region (the critical wavelength is 8.3 nm) will be provided from the regular dipole magnets. Later on, a 10 T wiggler magnet and other special inserters will be added, and other applications and beam dynamics studies will be feasible. Bending magnets are of the parallel faced C configuration. The effective aperture of the vacuum chamber is 2.3 cm (vertical) in the bending magnets and 4.7 cm elsewhere with a working vacuum condition of 10-9 Torr. Collective effects have been studied initially. First calculations indicate that a lifetime of several hours, influenced by the Touschek effect and residual gas scattering will be achievable for a 200 mA beam in the HLF mode for the standard rf parameters. A 70 MeV racetrack microtron will serve as injector for the ring.

  7. Burton Richter, Storage Rings, and the J/psi Particle

    Science.gov Websites

    [SLAC's] Technical Director, [Richter] became Director ... from 1984 through 1999. During his tenure, SLAC Limits of Quantum Electro-dynamics, DOE Technical Report, June 1959 Design Considerations for High Energy Electron -- Positron Storage Rings, DOE Technical Report, November 1966 Inclusive Yields of pi+, pi-, K

  8. Perfect Lighting for Facial Photography in Aesthetic Surgery: Ring Light.

    PubMed

    Dölen, Utku Can; Çınar, Selçuk

    2016-04-01

    Photography is indispensable for plastic surgery. On-camera flashes can result in bleached out detail and colour. This is why most of the plastic surgery clinics prefer studio lighting similar to professional photographers'. In this article, we want to share a simple alternative to studio lighting that does not need extra space: Ring light. We took five different photographs of the same person with five different camera and lighting settings: Smartphone and ring light; point and shoot camera and on-camera flash; point and shoot camera and studio lighting; digital single-lens reflex (DLSR) camera and studio lighting; DSLR and ring light. Then, those photographs were assessed objectively with an online survey of five questions answered by three distinct populations: plastic surgeons (n: 28), professional portrait photographers (n: 24) and patients (n: 22) who had facial aesthetic procedures. Compared to the on-camera flash, studio lighting better showed the wrinkles of the subject. The ring light facilitated the perception of the wrinkles by providing homogenous soft light in a circular shape rather than bursting flashes. The combination of a DSLR camera and ring light gave the oldest looking subject according to 64 % of responders. The DSLR camera and the studio lighting demonstrated the youngest looking subject according to 70 % of the responders. The majority of the responders (78 %) chose the combination of DSLR camera and ring light that exhibited the wrinkles the most. We suggest using a ring light to obtain well-lit photographs without loss of detail, with any type of cameras. However, smartphones must be avoided if standard pictures are desired. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  9. Mechanical capacitor

    NASA Technical Reports Server (NTRS)

    Kirk, J. A.; Studer, P. A.; Evans, H. E.

    1976-01-01

    A new energy storage system (the mechanical capacitor), using a spokeless magnetically levitated composite ring rotor, is described and design formulas for sizing the components are presented. This new system is configured around a permanent magnet (flux biased) suspension which has active servo control in the radial direction and passive control in the axial direction. The storage ring is used as a moving rotor and electronic commutation of the stationary armature coils is proposed. There is no mechanical contact with the rotating spokeless ring; therefore, long life and near zero rundown losses are projected. A 7-kW h system is sized to demonstrate feasibility. A literature review of flywheel energy storage systems is also presented and general formulas are developed for comparing rotor geometries.

  10. MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng

    In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-upmore » injection efficiency is also improved.« less

  11. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-05-13

    Here, we propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. Finally, the method has been successfully demonstrated on the NSLS-II storage ring.

  12. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  13. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  14. Fluorescence decay of naphthalene studied in an electrostatic storage ring, the Mini-Ring

    NASA Astrophysics Data System (ADS)

    Martin, S.; Matsumoto, J.; Kono, N.; Ji, M.-C.; Brédy, R.; Bernard, J.; Cassimi, A.; Chen, L.

    2017-10-01

    The cooling of naphthalene cations (C10H8)+ has been studied in a compact electrostatic ion storage ring, the Mini-Ring. A nano second laser pulse of 532 nm (2.33 eV) was used to probe the internal energy distribution every millisecond during the storage time up to 5 ms. The evolution of the internal energy distribution of the stored ions was simulated with a model taking into account the dissociation and the radiative decay processes. Calculated decay curves were fitted to the corresponding laser induced neutral decays. For a laser power of 200 μJ/pulse, a good agreement between experiment and modeling was found using an initial Gaussian energy distribution centered to 5.9 eV and a fluorescence decay rate varying from 200 to 300 s-1 in the energy range from 6 to 7 eV. This fast decay was attributed to the delayed Poincaré fluorescence process.

  15. Tree- Rings Link Climate and Carbon Storage in a Northern Mixed Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Chiriboga, A.

    2007-12-01

    The terrestrial biosphere is a variable sink for atmospheric carbon dioxide. It is important to understand how carbon storage in trees is affected by natural climate variability to better characterize the sink. Quantifying the sensitivity of forest carbon storage to climate will improve carbon budgets and have implications for forest management practices. Here we explore how climate variability affects the ability of a northern mixed hardwood forest in Michigan to sequester atmospheric carbon dioxide in woody tissues. This site is ideal for studies of carbon sequestration; The University of Michigan Biological Station is an Ameriflux site, and has detailed meteorological and biometric records, as well as CO2 flux data. We have produced an 82- year aspen (Populus grandidentata) tree-ring chronology for this site, and measured ring widths at several heights up the bole. These measurements were used to estimate annual wood volume, which represents carbon allocated to aboveground carbon stores. Standard dendroclimatological techniques are used to identify environmental factors (e.g. temperature or precipitation) that drive tree-ring increment variability in the past century, and therefore annual carbon storage in this forest. Preliminary results show that marker years within the tree- ring chronology correspond with years that have cold spring temperatures. This suggests that trees at this site are temperature sensitive.

  16. Beam Loss Measurements at the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Spickermann, Thomas

    2005-06-01

    During normal operation the Los Alamos Proton Storage Ring (PSR) accumulates up to 4ṡ1013 protons over 625μs with a repetition rate of 20 Hz, corresponding to a current of 125μA to the Lujan Neutron Science Center. Beam losses in the ring as well as in the extraction beam line and the subsequent activation of material are a limiting factor at these currents. Careful tuning of injection, ring and extraction line is paramount to limiting losses to acceptable levels. Losses are typically not uniform around the ring, but occur in significantly higher levels in certain "hot spots". Here I will report on losses related to the stripper foil which are the dominant source of losses in the ring. First results of a comparison with simulations will also be presented.

  17. Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, Craig

    2016-07-01

    A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevatedmore » ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.« less

  18. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  19. Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring

    NASA Astrophysics Data System (ADS)

    Gendler, Naomi; Billing, Mike; Shanks, Jim

    The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.

  20. Properties of the insertion devices for PETRA III and its extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöps, A., E-mail: andreas.schoeps@desy.de; Vagin, P.; Tischer, M., E-mail: markus.tischer@desy.de

    DESY presently operates 14 independent insertion device (ID) beamlines at its 6 GeV storage ring PETRA III. Besides the 2 m long standard undulators U29 and U32, several special IDs of up to 5 m length have been installed to meet the experimental requests for high energy X-rays, elliptically polarized light, and a higher degree of coherence. Two additional half octants of the ring have recently been reconstructed, in order to extend the experimental capabilities at PETRA III. The straight sections also allow for installation of IDs of 2 m or 5 m length. This article gives an overview ofmore » the ID key parameters, the spectral properties and the brilliance of the current undulators installed at PETRA III. It also presents the characteristics of some of the upcoming special IDs, like in-vacuum and short undulators.« less

  1. Beam vacuum system of Brookhaven`s muon storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-11-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10{sup -7} Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system willmore » be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 {ell}/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented.« less

  2. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  3. Recent Beam Measurements and New Instrumentation at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, F.; Baptiste, K.; Barry, W.

    2012-04-11

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  4. RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter

    2008-05-05

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less

  5. Improvement of the thermo-mechanical position stability of the beam position monitor in the PLS-II

    NASA Astrophysics Data System (ADS)

    Ha, Taekyun; Hong, Mansu; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo

    2016-09-01

    In the storage ring of the Pohang Light Source-II (PLS-II), we reduced the mechanical displacement of the electron-beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The BPM pickup itself must be kept stable to sub-micrometer precision in order for a stable photon beam to be provided to beamlines because the orbit feedback system is programmed to make the electron beam pass through the center of the BPM. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by an unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report a thermo-mechanical analysis and displacement measurements for the BPM pickups after improvements.

  6. Corrections for a constant radial magnetic field in the muon \\varvec{g}-2 and electric-dipole-moment experiments in storage rings

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2017-10-01

    We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.

  7. Loss-free method of charging accumulator rings

    DOEpatents

    Maschke, Alfred W.

    1979-01-01

    A method for the production of high current pulses of heavy ions having an atomic weight greater than 100. Also a linear accelerator based apparatus for carrying out said method. Pulses formed by the method of the subject invention are suitable for storage in a storage ring. The accumulated pulses may be used in inertial fusion apparatus.

  8. Measurement and Compensation of BPM Chamber Motion in HLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. W.; Sun, B. G.; Cao, Y.

    2010-06-23

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS.more » The horizontal drifts of beam orbit have been really suppressed within 20{mu}m without the compensation of BPM chamber motion in the runtime.« less

  9. Design of a magnetic circuit for a cryogenic undulator in Taiwan photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jui-Che, E-mail: huang.juiche@nsrrc.org.tw; Kuo, Cheng-Ying; Yang, Chin-Kang

    2016-07-27

    The plan for beamlines in Phase II at Taiwan Photon Source is to construct two new BioSAXS and nano-ARPES beamlines. A highly brilliant light source can be produced with a cryogenic undulator, and many synchrotron facilities have been developed and operated with these in their storage rings. The development of a cryogenic undulator became a target for a light source in TPS phase II. A cryogenic undulator with period of length 15 mm will be made in a hybrid magnetic structure, and use PrFeB permanent-magnet materials. A maximum magnetic field 1.31 T is estimated at gap 4 mm and temperaturemore » about 100 K. The spectral performance of a TPS cryogenic undulator is presented in this paper.« less

  10. Saturnian Hexagon Collage

    NASA Image and Video Library

    2016-12-06

    This collage of images from NASA's Cassini spacecraft shows Saturn's northern hemisphere and rings as viewed with four different spectral filters. Each filter is sensitive to different wavelengths of light and reveals clouds and hazes at different altitudes. Clockwise from top left, the filters used are sensitive to violet (420 nanometers), red (648 nanometers), near-infrared (728 nanometers) and infrared (939 nanometers) light. The image was taken with the Cassini spacecraft wide-angle camera on Dec. 2, 2016, at a distance of about 400,000 miles (640,000 kilometers) from Saturn. Image scale is 95 miles (153 kilometers) per pixel. The images have been enlarged by a factor of two. The original versions of these images, as sent by the spacecraft, have a size of 256 pixels by 256 pixels. Cassini's images are sometimes planned to be compressed to smaller sizes due to data storage limitations on the spacecraft, or to allow a larger number of images to be taken than would otherwise be possible. These images were obtained about two days before its first close pass by the outer edges of Saturn's main rings during its penultimate mission phase. http://photojournal.jpl.nasa.gov/catalog/PIA21053

  11. 33 CFR 149.320 - What are the requirements for ring life buoys?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... length. The light must be mounted on a bracket near the ring life buoy so that, when the ring life buoy is cast loose, the light will be pulled free of the bracket. (c) To each ring life buoy, there must...

  12. PEGASYS---A proposed internal target facility for the PEP storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Biber, K.

    A proposal for an integral gas-jet target and forward spectrometer for the PEP storage ring is described. The beam structure, allowable, luminosity (L = 10/sup 33/ cm/sup /minus/2/s/sup /minus/1/ for H/sub 2/, D/sub 2/) and energy (E/sub e/ less than or equal to 15 GeV) make the ring ideal for multiparticle coincidence studies in the scaling regime, and where perturbative QCD may be an apt description of some exclusive and semi-inclusive reactions. 14 refs., 7 figs.

  13. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  14. The KACST Heavy-Ion Electrostatic Storage Ring

    NASA Astrophysics Data System (ADS)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  15. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  16. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  17. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.

    PubMed

    Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H

    2013-05-01

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  18. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...

  19. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...

  20. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...

  1. 1994 SSRL Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-11-18

    SSRL, a division of the Stanford Linear Accelerator Center, is a national user facility which provides synchrotron radiation, a name given to x-rays or light produced by electrons circulating in a storage ring at nearly the speed of light. The synchrotron radiation is produced by the 3.3 GeV storage ring, SPEAR. SPEAR is a fully dedicated synchrotron radiation facility which has been operating for user experiments 6 to 7 months per year. 1994, the third year of operation of SSRL as a fully dedicated, low-emittance, independent user facility was superb. The facility ran extremely well, delivering 89% of the scheduledmore » user beam to 25 experimental stations during 6.5 months of user running. Over 600 users came from 167 institutions to participate in 343 experiments. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. the standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994.« less

  2. Preliminary study of injection transients in the TPS storage ring

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Liu, Y. C.; Y Chen, J.; Chiu, M. S.; Tseng, F. H.; Fann, S.; Liang, C. C.; Huang, C. S.; Y Lee, T.; Y Chen, B.; Tsai, H. J.; Luo, G. H.; Kuo, C. C.

    2017-07-01

    An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.

  3. Vacuum system for room temperature X-ray lithography source (XLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuchman, J.C.

    1988-09-30

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  4. Vacuum system for room temperature X-ray lithography source (XLS)

    NASA Astrophysics Data System (ADS)

    Schuchman, J. C.

    1988-09-01

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  5. Generalized Stability Conditions for an Ultra-Low Energy Electrostatic Charged Particle Storage Ring

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael

    A low energy (~50 eV) electrostatic storage ring has been constructed that can store a recirculating bunch of either electrons or ions. The charged particle bunch 'orbits' within an apparatus consisting of four lenses and two hemispherical deflector analysers, arranged in a 'race-track' configuration of length 64.1 cm. A theoretical study, using transfer matrices from charged particle optics for a 'symmetric' configuration of lens potentials, has been previously completed by Hammond et al. [New J. Phys. 11 (2009) 043033]. That approach was capable of predicting modes of storage which appeared as a resonant-like pattern. An 'asymmetric' configuration, new in this work and extending the previous study to apply to a more general case, has been completed and will be presented alongside experimental results. The level of agreement between the theoretical and experimental results is found to be excellent, and the robustness of the matrix formalism has eliminated the need to rely on computer simulation to achieve storage. This asymmetric arrangement of the lenses allows for greater flexibility in the operation of the ring, creating the potential for a more diverse range of applications and potentially aid in the design of future rings. Several spectra for both electrons and positive ions are presented to provide an indication as to how the charged particle bunch evolves as more orbits are completed. The number of counts inevitably decreases as a function of orbit number due to loss mechanisms. Enhanced measurement techniques, as well as the matrix theory, have made storage of the bunch for over a hundred orbits routine, corresponding to over 65 m travelled, and this is observed directly from the spectra. The application of the storage ring as a multi-pass time-of-flight mass spectrometer has been studied. The isotopes of krypton and xenon have been made to completely separate from one another out of a single pulse of ions. This is observed to occur after ~15 orbits of the ring, roughly 10 m of distance. Initial results have indicated that the mass resolution is approximately 5000. Limitations and potential improvements to the mass resolution are presented.

  6. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  7. Feasibility of a ring FEL at low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Agapov, I.

    2015-09-01

    A scheme for generating coherent radiation at latest generation low emittance storage rings such as PETRA III at DESY (Balewski et al., 2004 [1]) is proposed. The scheme is based on focusing and subsequent defocusing of the electron beam in the longitudinal phase space at the undulator location. The expected performance characteristics are estimated for radiation in the wavelength range of 500-1500 eV. It is shown that the average brightness is increased by several orders of magnitude compared to spontaneous undulator radiation, which can open new perspectives for photon-hungry soft X-ray spectroscopy techniques.

  8. PEGASYS: A proposed internal target-spectrometer facility for the PEP storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bibber, K.

    A proposal for an internal gas-jet target and forward spectrometer for the PEP storage ring is described. The beam structure, allowable luminosity (L=10/sup 33/ cm/sup /minus/2/s/sup /minus/1/ for H/sub 2/, D/sub 2/ decreasing as Z/sup /minus/1.75/ for nuclear targets) and energy (E/sub e/less than or equal to 15 GeV) make the ring ideal for multiparticle coincidence studies in the scaling regime, and where perturbative QCD may be an apt description of some exclusive and semi-inclusive reactions. 17 refs., 5 figs.

  9. The development of W-PBPM at diagnostic beamline

    NASA Astrophysics Data System (ADS)

    Kim, Seungnam; Kim, Myeongjin; Kim, Seonghan; Shin, Hocheol; Kim, Jiwha; Lee, Chaesun

    2017-12-01

    The photon beam position monitor (PBPM) plays a critically important role in the accurate monitoring of the beam position. W (Wire)-PBPMs are installed at the front end and photon transfer line (PTL) of the diagnostic beamline and detect the change of position and angle of the beam orbit applied to the beamline. It provides beam stability and position data in real time, which can be used in feedback system with BPM in storage-ring. Also it provides beam profile, which makes it possible to figure out the specifications of beam. With two W-PBPMs, the angle information of beam could be acquired and the results coupled with beam profile are used with orbit correction. The W-PBPM has been designed and installed in the diagnostic beamline at Pohang Light Source. Herein the details of the design, analysis and performance for the W-PBPM will be reported.

  10. Light-Ring Stability for Ultracompact Objects.

    PubMed

    Cunha, Pedro V P; Berti, Emanuele; Herdeiro, Carlos A R

    2017-12-22

    We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

  11. Light-Ring Stability for Ultracompact Objects

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro V. P.; Berti, Emanuele; Herdeiro, Carlos A. R.

    2017-12-01

    We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

  12. Collective Beam Instabilities in the Taiwan Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex W.

    2002-08-12

    The storage ring at Taiwan Light Source has experienced a strong collective instability since 1994. Various cures have been attempted to suppress this instability, including the use of damping antenna, tunable rf plungers, different filling patterns, and rf gap voltage modulation. So far these cures have improved the beam intensity, but the operation remains to be limited by the instability. The dominant phenomenon is the longitudinal coupled bunch instability. The major source of longitudinal impedance is from rf cavities of Doris type. The high-order modes of the cavity were numerically analyzed using a 3-D code GdfidL. The correlation of themore » observed phenomenon in user operation with high-order modes of rf cavities will be presented. Results of various attempts to suppress beam instabilities will be summarized. Proposed cures for beam instabilities will be discussed.« less

  13. Survey and Alighment for the ALS Project at LBL Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, R.; Lauritzen, T.; /LBL, Berkeley

    2005-08-12

    The Advanced Light Source (ALS), now under construction at Lawrence Berkeley Laboratory, is a synchrotron radiation source of the third generation designed to produce extremely bright photon beams in the UV and soft X-ray regions. Its main accelerator components are a 1-1.9 GeV electron storage ring with 196.8 m circumference and 12 super-periods, a 1.5 GeV booster synchrotron with 75.0 m circumference and 4 super-periods, and a 50 MeV linac, as shown in Fig. 1. The storage ring has particularly tight positioning tolerances for lattice magnets and other components to assure the required operational characteristics. The general survey and alignmentmore » concept for the ALS is based on a network of fixed monuments installed in the building floor, to which all component positions are referred. Measurements include electronic distance measurements and separate sightings for horizontal and vertical directions, partially with automated electronic data capture. Most of the data processing is accomplished by running a customized version of PC-GEONET. It provides raw data storage, data reduction, and the calculation of adjusted coordinates, as well as an option for error analysis. PC-GEONET has also been used to establish an observation plan for the monuments and calculate their expected position accuracies, based on approximate coordinates. Additionally, for local survey tasks, the commercial software package ECDS is used. In this paper, the ALS survey and alignment strategy and techniques are presented and critically discussed. First experiences with the alignment of the linac and booster components are described.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwilliams, A. J.; Daugherty, W. L.; Skidmore, T. E.

    The 9975 Type B shipping package is used within the DOE complex for shipping special nuclear materials. This package is re-certified annually in accordance with Safety Analysis Report for Packaging (SARP) requirements. The package is also used at the Savannah River Site as part of the long-term storage configuration of special nuclear materials. As such, the packages do not undergo annual recertification during storage, with uncertainty as to how long some of the package components will meet their functional requirements in the storage environment. The packages are currently approved for up to 15 years storage, and work continues to providemore » a technical basis to extend that period. This report describes efforts by the Savannah River National Laboratory (SRNL) to extend the service life estimate of Viton® GLT and GLT-S fluoroelastomer O-rings used in the 9975 shipping package. O-rings of both GLT and GLT-S compositions are undergoing accelerated aging at elevated temperature, and are periodically tested for compression stress relaxation (CSR) behavior. The CSR behavior of O-rings was evaluated at temperatures from 175 to 400 °F. These collective data were used to develop predictive models for extrapolation of CSR behavior to relevant service temperatures (< 156 °F). The predictive model developed from the CSR data conservatively indicates a service life of approximately 37 years for Viton GLT O-rings at the maximum effective service temperature of 156 °F. The estimated service life for Viton GLT-S O-rings is significantly longer.« less

  15. A Guess about light quantum model

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-03-01

    Photon is a ring, the diameter of the ring is the quantum fluctuated wave length. The linear movement of the ring, namely, the transmission of light, is reflected in the particle of light. A plurality of light quantum interactions or through a very narrow gap, the shape of quantum would temporarily be changed. The motion of photons to interference and diffraction phenomena occurs is determined by the structure of light quantum, the quantum ring radius and light quantum mass squared product is a constant. The smaller the light quantum ring radius is, the bigger the quality is, just consistent as the modern scientific experimental results, the energy of the purple is bigger than the red. This conclusion can be extrapolated to all of the electromagnetic wave. The shorter the photon wavelength is, the bigger the quality and density is , when the wavelength is less than 10-15 meters, it will convergence to atomic or subatomic composition material entity due to the gravity. In fact, the divergence and convergence of quantum is reversible, that is, the phenomenon of radiate ``light'' quantum occurs due to the energy exchange or other external energy. Author: hanyongquan TEL: 15611860790.

  16. The KACST Heavy-Ion Electrostatic Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.

    2011-10-27

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The developmentmore » of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.« less

  17. The protein crystallography beamline at LNLS, the Brazilian National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Polikarpov, I.; Oliva, G.; Castellano, E. E.; Garratt, R. C.; Arruda, P.; Leite, A.; Craievich, A.

    1998-02-01

    The Brazilian National Synchrotron Light Laboratory - LNLS, will have a dedicated protein crystallography beamline. The beamline under construction includes cylindrical mirror and bent crystal monochromator focusing the high flux of synchrotron radiation in the horizontal plane at the position of the sample. The monochromatic radiation will be tuneable between 2.0 and 1.0 Å with the optimum wavelength at 1.3-1.6 Å, chosen with the aim of maximizing the photon flux from the bending magnets of the storage ring (1.37 GeV). Diffraction images will be recorded on a commercial image plate detector system with on-line readout. The beamline set-up will include cooler/chiller for the samples and biochemical lab for crystallization, heavy-metal soaks, crystal storage and mounting at 22°C and 4°C, will also be available. The facility, intended to serve the national and international community, is planned to be brought into operation in the second half of 1997. It is foreseen that the commissioning of the first protein crystallography beamline in Latin America will boost the number of protein structures determined locally and will increase the general interest of the molecular biology and biochemical research community of Brazil in this area.

  18. Ringing in the new physics: The politics and technology of electron colliders in the United States, 1956--1972

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    The ``November Revolution'' of 1974 and the experiments that followed consolidated the place of the Standard Model in modern particle physics. Much of the evidence on which these conclusions depended was generated by a new type of tool: colliding beam storage rings, which had been considered physically unfeasible twenty years earlier. In 1956 a young experimentalist named Gerry O'Neill dedicated himself to demonstrating that such an apparatus could do useful physics. The storage ring movement encountered numerous obstacles before generating one of the standard machines for high energy research. In fact, it wasn't until 1970 that the U.S. finally broke ground on its first electron-positron collider. Drawing extensively on archival sources and supplementing them with the personal accounts of many of the individuals who took part, Ringing in the New Physics examines this instance of post-World War II techno-science and the new social, political and scientific tensions that characterize it. The motivations are twofold: first, that the chronicle of storage rings may take its place beside mathematical group theory, computer simulations, magnetic spark chambers, and the like as an important contributor to a view of matter and energy which has been the dominant model for the last twenty-five years. In addition, the account provides a case study for the integration of the personal, professional, institutional, and material worlds when examining an episode in the history or sociology of twentieth century science. The story behind the technological development of storage rings holds fascinating insights into the relationship between theory and experiment, collaboration and competition in the physics community, the way scientists obtain funding and their responsibilities to it, and the very nature of what constitutes ``successful'' science in the post- World War II era.

  19. Experimental Evidence for the Los Alamos Proton Storage Ring Beam Instability

    NASA Astrophysics Data System (ADS)

    Plum, M.; Fitzgerald, D. H.; Macek, R.; Sander, O.; Thiessen, H. A.; Wang, T. S.; Wilkinson, C.

    1997-05-01

    Although the exact instability mechanism at the Proton Storage Ring (PSR) has not yet been conclusively identified, the evidence gathered to date is consistent with an e-p instability. We have recently acquired new data which shows that clearing electrodes significantly affect the instability threshold. A set of comprehensive measurements is also planned for the first months of 1997. In this paper we will present our latest data.

  20. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdottir, A.; Martin, M. C.; Venturini, M.

    2004-05-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.

  1. Something old, something new: Why models need a multi-pool representation of storage reserves

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Carbone, Mariah

    2015-04-01

    We know surprisingly little about processes regulating the allocation of photosynthetic assimilates to growth, storage, and other metabolic functions. Storage of nonstructural carbon (NSC, principally sugars and starch) is critically important for woody plants, because these reserves enable sessile, long-lived organisms to tolerate biotic and abiotic stress, including pests, disturbance, and drought. But, critical questions about the size and turnover of these reserves remain unanswered. Labeling studies have generally shown rapid use of new (labeled) NSC and inferred fast mixing between old and new NSC, both of which suggest quick turnover of storage reserves. However, recent studies have shown that some of the reserves stored in stem and root tissue are not only a decade old, but also still available to support new tissue growth following catastrophic disturbance. We characterized the distribution of NSC in the stemwood, branches, and roots of two temperate trees, and we used the continuous label offered by the radiocarbon (14C) bomb spike to estimate the mean age of NSC in different tissues of two temperate trees. NSC in branches and outermost stemwood growth rings had the 14C signature of the current growing season. However, NSC in older above- and below-ground tissues was enriched in 14C, indicating that it was produced from older assimilates. Radial patterns of 14C in stemwood NSC showed strong mixing of NSC across the youngest growth rings, with limited "mixing in" of younger NSC to older rings. Sugars in the outermost 5 growth rings, accounting for two-thirds of the stemwood pool, had a mean age < 1 y, whereas sugars in older growth rings had a mean age > 5 y. Thus, there is not a single, well-mixed "storage pool," and indeed "young" and "old" storage compounds appear to be physically isolated from each other. We will discuss the implications of these results for improving model representation of NSC storage and consumption by forest trees. We will suggest that there are conceptual similarities between modeling NSC pools and modeling soil C pools. We will propose future directions for modeling NSCs and also identify key questions that still need to be answered with new experimental work.

  2. NSLS II Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.; Doom, L.; Hseuh, H.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less

  3. The optical properties of platinum and gold in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Linton, R. C.

    1972-01-01

    The optical constants of platinum and gold thin films have been determined in the spectral region of 40 to 200 nm by reflection measurements. The highly polarized continuum of synchrotron radiation emitted by the 240-MeV electron storage ring at the Physical Sciences Laboratory of the University of Wisconsin was used as a light source for the spectrum below 120 nm, while a windowless discharge lamp coupled to a normal incidence monochromator provided a source for the longer wavelengths. Optical constants were determined by a computer program based on iterative solutions to the Fresnel equations for reflection as a function of the angle of incidence.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doose, Charles; Jain, Animesh

    The APS-U is planned to be a 4th generation hard X-ray light source utilizing a multi-bend achromat (MBA) magnet lattice. The MBA lattice will be installed in the existing APS storage ring enclosure. The stored electron beam will circulate clockwise when viewed from above. The X-ray beamlines will for the most part exit at the same source points as the present APS. This document defines the signs and conventions related to the APS-U MBA magnets. Included in this document are: the local magnet coordinate system, definitions of mechanical and magnetic centers, definitions of multipole field errors, magnetic roll angle, andmore » magnet polarities.« less

  5. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  6. The Potential-Well Distortion Effect and Coherent Instabilities of Electron Bunches in Storage Rings

    NASA Astrophysics Data System (ADS)

    Korchuganov, V. N.; Smygacheva, A. S.; Fomin, E. A.

    2018-05-01

    The effect of electromagnetic interaction between electron bunches and the vacuum chamber of a storage ring on the longitudinal motion of bunches is studied. Specifically, the potential-well distortion effect and the so-called coherent instabilities of coupled bunches are considered. An approximate analytical solution for the frequencies of incoherent oscillations of bunches distributed arbitrarily within the ring is obtained for a distorted potential well. A new approach to determining frequencies of coherent oscillations and an approximate analytical relation for estimating the stability of a system of bunches as a function of their distribution in the accelerator orbit are presented.

  7. Using SRμCT to define water transport capacity in Picea abies

    NASA Astrophysics Data System (ADS)

    Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix

    2017-10-01

    Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.

  8. Review of third and next generation synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Bilderback, Donald H.; Elleaume, Pascal; Weckert, Edgar

    2005-05-01

    Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century.

  9. Theoretical study of hydrogen storage in a truncated triangular pyramid molecule consisting of pyridine and benzene rings bridged by vinylene groups

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shigeru; Nemoto, Tetsushi; Yamabe, Tokio

    2018-06-01

    Hydrogen storage in a truncated triangular pyramid molecule C33H21N3, which consists of three pyridine rings and one benzene ring bridged by six vinylene groups, is studied by quantum chemical methods. The molecule is derived by substituting three benzene rings in a truncated tetrahedron hydrocarbon C36H24 with pyridine rings. The optimized molecular structure under C 3v symmetry shows no imaginary vibrational modes at the B3LYP/cc-pVTZ level of theory. The hydrogen storage process is investigated based on the MP2/cc-pVTZ method. Like the structure before substitution, the C33H21N3 molecule has a cavity that stores a hydrogen molecule with a binding energy of - 140 meV. The Langmuir isotherm shows that this cavity can store hydrogen at higher temperatures and lower pressures than usual physisorption materials. The C33H21N3 molecule has a kinetic advantage over the C36H24 molecule because the former molecule has a lower barrier (+ 560 meV) for the hydrogen molecule entering the cavity compared with the latter molecule (+ 730 meV) owing to the lack of hydrogen atoms narrowing the opening.

  10. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    NASA Astrophysics Data System (ADS)

    Pivi, M.; Furman, M. A.

    2002-05-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.

  11. BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.

  12. Multi-objective dynamic aperture optimization for storage rings

    DOE PAGES

    Li, Yongjun; Yang, Lingyun

    2016-11-30

    We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.

  13. Upgrading the Digital Electronics of the PEP-II Bunch Current Monitors at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Josh; /SLAC

    2006-08-28

    The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less

  14. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  15. Collective electron driven linac for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1983-08-01

    A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can bemore » accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.« less

  16. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  17. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... chapter and be international orange in color. (2) Each water light must be approved under subpart 161.010... 46 Shipping 7 2014-10-01 2014-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549... lights. (a)(1) The minimum number of life buoys and the minimum number to which water lights must be...

  18. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... chapter and be international orange in color. (2) Each water light must be approved under subpart 161.010... 46 Shipping 7 2012-10-01 2012-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549... lights. (a)(1) The minimum number of life buoys and the minimum number to which water lights must be...

  19. Symplectic orbit and spin tracking code for all-electric storage rings

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to "resurrect," or reverse engineer, the "AGS-analog" all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM's. The companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.

  20. [Effect of artificial media opacities on Frisén ring perimetry and conventional light sense perimetry. A comparative study].

    PubMed

    Meyer, J H; Funk, J

    1994-04-01

    In this study we compare the influence of blurring by diffusor foils (Bangerter) on visual acuity and on the thresholds of ring and light sense perimetry. Light sense perimetry was performed using the G1 program of the Octopus 1-2-3 perimeter [1], and ring perimetry with the "ring" test, version 2.20 (High-Tech-Vision) designed by Frisén [4]. Ten eyes of ten healthy persons with a visual acuity of 1.25 or better were examined at six different levels corresponding to visual acuities between 1.6 and hand movements. With both perimeters sensitivity decreased with decreasing visual acuity. At good visual acuities (1.2-1.6) no changes were found in either ring perimetry or light sense perimetry. At acuity levels of 0.8 and below a more pronounced decrease in sensitivity was found with the ring perimeter than with the light sense perimeter. At the level of hand movements there were only absolute scotomas in the ring perimeter, while the Octopus 1-2-3 still detected a baseline sensitivity. Sensitivity was correlated with the logarithm of the visual acuity with both perimeters (Octopus 1-2-3: r = 0.99, P < 0.001; ring perimeter: r = 0.98, P < 0.001). The decrease in sensitivity per log-unit of visual acuity was 9.43 dB (Octopus 1-2-3) or 5.19 dB (ring perimeter). The ring perimeter, at least in its currently available version giving an absolute scotoma at mean scores > 14 dB, is obviously more sensitive to media opacities than the Octopus 1-2-3. This may be of importance in the clinical evaluation of the test results.

  1. Top-up operation at Pohang Light Source-II

    NASA Astrophysics Data System (ADS)

    Hwang, I.; Huang, J. Y.; Kim, M.; Lee, B.-J.; Kim, C.; Choi, J.-Y.; Kim, M.-H.; Lee, H. S.; Moon, D.; Lee, E. H.; Kim, D.-E.; Nam, S. H.; Shin, S.; Cho, Moohyun

    2014-05-01

    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac were the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.

  2. On the dual-cone nature of the conical refraction phenomenon.

    PubMed

    Turpin, A; Loiko, Yu; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2015-04-15

    In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones.

  3. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  4. Unidirectional ring lasers

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1994-01-01

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.

  5. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape

    PubMed Central

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D.; Tardif, Jacques C.; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems. PMID:26528316

  6. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape.

    PubMed

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D; Tardif, Jacques C; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.

  7. Resonant structure of low-energy H3+ dissociative recombination

    NASA Astrophysics Data System (ADS)

    Petrignani, Annemieke; Altevogt, Simon; Berg, Max H.; Bing, Dennis; Grieser, Manfred; Hoffmann, Jens; Jordon-Thaden, Brandon; Krantz, Claude; Mendes, Mario B.; Novotný, Oldřich; Novotny, Steffen; Orlov, Dmitry A.; Repnow, Roland; Sorg, Tobias; Stützel, Julia; Wolf, Andreas; Buhr, Henrik; Kreckel, Holger; Kokoouline, Viatcheslav; Greene, Chris H.

    2011-03-01

    High-resolution dissociative recombination rate coefficients of rotationally cool and hot H3+ in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage-ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The kinetic energy release was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. A systematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380-130+50 K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H3+. This partially supports the theoretical suggestion that temperatures higher than assumed in earlier experiments are the main cause for the large gap between the experimental and the theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250 K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and the experimental rate coefficients.

  8. Storage Rings in the Sky: Gamma Ray Bursts and Galactic Gravitational Collapse Stored Energy

    NASA Astrophysics Data System (ADS)

    Greyber, H. D.

    2004-05-01

    The recent discovery of almost 100% polarization of the prompt gamma ray emission from GRB021206, (1), confirms my 44 year old ``Strong" Magnetic Field" model (SMF) for galactic dynamics. In SMF, Storage Ring particles were accelerated long ago during the original gravitational collapse of the pregalactic/prequasar plasma cloud that is permeated by an almost uniform primordial magnetic field (2,3) The enormous, intense, slender, relativistic, stable, completely coherent Storage Ring stores a very small fraction of the huge galactic gravitational collapse energy in an almost radiationless state, unless disturbed. The concept of an Astrophysical Storage Ring was introduced by me in l961. At first it was to explain galactic structure, but soon it proved useful to explain active galactic nuclei (AGN) and the dynamics of quasar/AGN jets. AGN and galactic morphology, energetics and dynamics vary as the ratio of magnetic energy to rotational energy in the particular object. Gamma ray bursts (GRB) are due simply to a ``rock". i.e. a white dwarf, ordinary star, neutron sstar, asteroid, planet, etc. falling rapidly through the Storage Ring and being almost instantly vaporized into a hot plasma fireball, causing an electromagnetic shower (2) Then the fireball speeds into the huge organized magnetic field surrounding the current ring, thus generating very highly polarized prompt gamma ray emission (as seen in GRB021206) from the synchrotron radiation process. The timing fits the GRB observations nicely. For instance, a ``rock" racing at 1000 kilometers per second across a 20,000 km. path in the beam would produce a twenty second burst. Other times, a target might track across a short chord for a short burst. Space missions have shown that often typical currents in space plasmas are made up of slender filaments. Thus the puzzling less than one millisecond spikes observed in some GRB are simply describing the structure of that particular ring current at that particular time. 1. W. Coburn and S.E. Boggs, Nature, 423, 415, (2003) 2. H. D. Greyber in a book, After the Dark Ages: When Galaxies Were Young, eds. S.S. Holt and E. P. Smith, AIP Conference Proceedings 470, 388-396. (1998) 3. H. D. Greyber in a Space Telescope Science Institute Report: Poster Papers from their 2001 Spring Symposium, ``The Dark Universe: Matter, Energy and Gravity," ed. Mario Livio, published March 2003, (34-39)

  9. Design and performance of SiPM-based readout of PbF 2 crystals for high-rate, precision timing applications

    DOE PAGES

    Kaspar, J.; Fienberg, A. T.; Hertzog, D. W.; ...

    2017-01-11

    Here, we have developed a custom amplifier board coupled to a large-format 16-channel Hamamatsu silicon photomultiplier device for use as the light sensor for the electromagnetic calorimeters in the Muon g-2 experiment at Fermilab. The calorimeter absorber is an array of lead-fluoride crystals, which produces short-duration Cherenkov light. The detector sits in the high magnetic field of the muon storage ring. The SiPMs selected, and their accompanying custom electronics, must preserve the short pulse shape, have high quantum efficiency, be non-magnetic, exhibit gain stability under varying rate conditions, and cover a fairly large fraction of the crystal exit surface area.more » We describe an optimized design that employs the new-generation of thru-silicon via devices. As a result, the performance is documented in a series of bench and beam tests.« less

  10. Status of the SAGA Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installedmore » in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.« less

  11. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  12. Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki,S.

    2009-05-04

    The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e{sup +}e{sup -} Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both ofmore » them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).« less

  13. Aladdin: Transforming science at SRC

    NASA Astrophysics Data System (ADS)

    Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.

    2011-09-01

    The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.

  14. Beamline front end for in-vacuum short period undulator at the photon factory storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyauchi, Hiroshi, E-mail: hiroshi.miyauchi@kek.jp; Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI; Tahara, Toshihiro, E-mail: ttahara@post.kek.jp

    The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum short period undulators. The first to fourth short period undulators SGU#17, SGU#03, SGU#01 and SGU#15 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006, 2009 and 2013, respectively. The beamline front end for SGU#15 is described in this paper.

  15. A storage ring experiment to detect a proton electric dipole moment

    DOE PAGES

    Anastassopoulos, V.; Andrianov, S.; Baartman, R.; ...

    2016-11-29

    We describe a new experiment to detect a permanent electric dipole moment of the proton with a sensitivity of 10 $-$29e cm by using polarized “magic” momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000 TeV.

  16. A storage ring experiment to detect a proton electric dipole moment.

    PubMed

    Anastassopoulos, V; Andrianov, S; Baartman, R; Baessler, S; Bai, M; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J D; D'Imperio, N; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Hacıömeroğlu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Kim, Y I; King, B; Koop, I A; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Levi Sandri, P; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Petrakou, E; Pile, P; Podobedov, B; Polychronakos, V; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Kamal Sayed, H; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Ströher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 -29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.

  17. A storage ring experiment to detect a proton electric dipole moment

    NASA Astrophysics Data System (ADS)

    Anastassopoulos, V.; Andrianov, S.; Baartman, R.; Baessler, S.; Bai, M.; Benante, J.; Berz, M.; Blaskiewicz, M.; Bowcock, T.; Brown, K.; Casey, B.; Conte, M.; Crnkovic, J. D.; D'Imperio, N.; Fanourakis, G.; Fedotov, A.; Fierlinger, P.; Fischer, W.; Gaisser, M. O.; Giomataris, Y.; Grosse-Perdekamp, M.; Guidoboni, G.; Hacıömeroǧlu, S.; Hoffstaetter, G.; Huang, H.; Incagli, M.; Ivanov, A.; Kawall, D.; Kim, Y. I.; King, B.; Koop, I. A.; Lazarus, D. M.; Lebedev, V.; Lee, M. J.; Lee, S.; Lee, Y. H.; Lehrach, A.; Lenisa, P.; Levi Sandri, P.; Luccio, A. U.; Lyapin, A.; MacKay, W.; Maier, R.; Makino, K.; Malitsky, N.; Marciano, W. J.; Meng, W.; Meot, F.; Metodiev, E. M.; Miceli, L.; Moricciani, D.; Morse, W. M.; Nagaitsev, S.; Nayak, S. K.; Orlov, Y. F.; Ozben, C. S.; Park, S. T.; Pesce, A.; Petrakou, E.; Pile, P.; Podobedov, B.; Polychronakos, V.; Pretz, J.; Ptitsyn, V.; Ramberg, E.; Raparia, D.; Rathmann, F.; Rescia, S.; Roser, T.; Kamal Sayed, H.; Semertzidis, Y. K.; Senichev, Y.; Sidorin, A.; Silenko, A.; Simos, N.; Stahl, A.; Stephenson, E. J.; Ströher, H.; Syphers, M. J.; Talman, J.; Talman, R. M.; Tishchenko, V.; Touramanis, C.; Tsoupas, N.; Venanzoni, G.; Vetter, K.; Vlassis, S.; Won, E.; Zavattini, G.; Zelenski, A.; Zioutas, K.

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10-29 e ṡ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.

  18. FLSR - The Frankfurt low energy storage ring

    NASA Astrophysics Data System (ADS)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  19. Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.

    2014-10-01

    The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.; Mcwilliams, A.; Skidmore, E.

    The 9975 Type B shipping package is used within the DOE complex for shipping special nuclear materials. This package is re-certified annually in accordance with Safety Analysis Report requirements. The package is also used at the Savannah River Site as part of the long-term storage configuration of special nuclear materials. As such, the packages do not undergo annual recertification during storage, with uncertainty as to how long some of the package components will meet their functional requirements in the storage environment. The packages are currently approved for up to 15 years storage, and work continues to provide a technical basismore » to extend that period. This paper describes efforts by the Savannah River National Laboratory (SRNL) to extend the service life estimate of Viton® GLT and GLT-S fluoroelastomer O-rings used in the 9975 shipping package. O-rings of both compositions are undergoing accelerated aging at elevated temperature, and are periodically tested for compression stress relaxation (CSR) behavior and leak performance. The CSR behavior of O-rings was evaluated at temperatures from 79 °C to 177 °C. These collective data were used to develop predictive models for extrapolation of CSR behavior to relevant service temperatures (< 75 °C). O-rings were also aged in Primary Containment Vessel (PCV) fixtures at temperatures ranging from 79 °C to 232 °C. The fixtures are helium leak tested periodically to determine if they remain leak-tight. The PCV fixture tests demonstrate that the 9975 O-rings will remain leak-tight at temperatures up to 149 °C for 3 years or more, and no leak failures have been observed with up to 8 years aging at 93 °C. Significantly longer periods of leak-tight service are expected at the lower temperatures actually experienced in the storage environment. The predictive model developed from the CSR data conservatively indicates a service life of more than 20 years at the bounding temperature of 75 °C. Although the relationship between CSR behavior and leak-tight performance has not been established for this design, the CSR predictions for this O-ring are conservative relative to leak-tight performance to date.« less

  1. Design of 3 GeV booster ring lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etisken, O., E-mail: ozgur.etisken@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    2016-03-25

    The aim of this study is to design of a 3 GeV booster ring for the 3 GeV storage ring. Electrons are needed to be accelerated to 3.0 GeV from 0.15 GeV energy. In this frame, we studied on two options for booster ring; a compact booster and the booster that shares the same tunnel with the storage ring. The lattice type has been chosen FODO for both options, lattice parameters are calculated, sextupole magnets are used to decrease dynamic aperture problem and dynamic aperture calculations are also made with considering of the necessary conditions. After designing and calculating ofmore » the parameters, these designs have been compared with each other. In addition to this comparison, these booster design parameters have been compared with some world centers design parameters and the reliability of the booster design is seen. Beam optics, OPA and Elegant simulation programs have been used in the study calculations.« less

  2. Micro spectrometer for parallel light and method of use

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.

  3. Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; /SLAC

    We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e.more » one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.« less

  4. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  5. Scattering rings in optically anisotropic porous silicon

    NASA Astrophysics Data System (ADS)

    Oton, C. J.; Gaburro, Z.; Ghulinyan, M.; Pancheri, L.; Bettotti, P.; Negro, L. Dal; Pavesi, L.

    2002-12-01

    We report the observation of strongly anisotropic scattering of laser light at oblique incidence on a (100)-oriented porous silicon layer. The scattered light forms cones tangent to the incident and reflected beams. The conical pattern is caused by scattering on the vertical walls of pores, which are straight along the layer thickness. The light cone defines structured light rings onto a screen normal to the cone axis. We explain the various structures by optical anisotropy of porous silicon. For the sample under analysis, we directly measure from the ring patterns a value of Δn/nord=8% of positive birefringence.

  6. Unidirectional ring lasers

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  7. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.

    PubMed

    Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6  s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  8. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  9. Saw-tooth instability in storage rings: simulations and dynamical model

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Palumbo, L.; Dattoli, G.; Mezi, L.

    1999-11-01

    The saw-tooth instability in storage rings is studied by means of a time-domain simulation code which takes into account the self-induced wake fields. The results are compared with those from a dynamical heuristic model exploiting two coupled non-linear differential equations, accounting for the time behavior of the instability growth rate and for the anomalous growth of the energy spread. This model is shown to reproduce the characteristic features of the instability in a fairly satisfactory way.

  10. A storage ring experiment to detect a proton electric dipole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastassopoulos, V.; Andrianov, S.; Baartman, R.

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity ofmore » $$10^{-29}e\\cdot$$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.« less

  11. Storage rings for spin-polarized hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D.; Lovelace, R.V.E.; Lee, D.

    1989-11-01

    A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.

  12. Nitrile/Buna N Material Failure Assessment for an O-Ring used on the Gaseous Hydrogen Flow Control Valve (FCV) of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2006-01-01

    After the rollout of Space Shuttle Discovery in April 2005 in preparation for return-to-flight, there was a failure of the Orbiter (OV-103) helium signature leak test in the gaseous hydrogen (GH2) system. Leakage was attributed to the Flow Control Valve (FCV) in Main Engine 3. The FCV determined to be the source of the leak for OV-103 is designated as LV-58. The nitrile/Buna N rubber O-ring seal was removed from LV-58, and failure analysis indicated radial cracks providing leak paths in one quadrant. Cracks were eventually found in 6 of 9 FCV O-rings among the three Shuttle Orbiters, though none were as severe as those for LV-58, OV-103. Testing by EM10 at MSFC on all 9 FCV O- rings included: laser dimensional, Shore A hardness and properties from a dynamic mechanical analyzer (DMA) and an Instron tensile machine. The following test data was obtained on the cracked quadrant of the LV-58, OV-103 O-ring: (1) the estimated compression set was only 9.5%, compared to none for the rest of the O-ring; (2) Shore A hardness for the O.D. was higher by almost 4 durometer points than for the rest of the O-ring; and (3) DMA data showed that the storage/elastic modulus E was almost 25% lower than for the rest of the O-ring. Of the 8 FCV O-rings tested on an Instron, 4 yielded tensile strengths that were below the MIL spec requirement of 1350 psi-a likely influence of rubber cracking. Comparisons were made between values of modulus determined by DNA (elastic) and Instron (Young s). Each nitrile/Buna N O-ring used in the FCV conforms to the MIL-P-25732C specification. A number of such O-rings taken from shelf storage at MSFC and Kennedy Space Center (KSC) were used to generate a reference curve of DMA glass transition temperature (Tg) vs. shelf storage time ranging from 8 to 26 years. A similar reference curve of TGA onset temperature (of rubber weight loss) vs. shelf storage time was also generated. The DMA and TGA data for the used FCV O-rings were compared to the reference curves. Correlations were also made between the DMA modulus (at 22 C) and Shore A hardness for all 9 of the FCV O-rings used among the three Shuttle Orbiters. The radial cracking in the FCV O-rings was determined to be due to ozone attack, as nitrile/Buna N rubber is susceptible to such attack. Nitrile/Buna N material under MIL-P25732C should be used in a hydraulic fluid environment to help protect it from cracking. However, the FCV O-rings were used in an air only environment. The FCV design has as much as a 9-mil gap that allows the O.D. of the O-ring to be directly exposed to ozone, pressurized air and some elevated temperatures, accelerating the weathering process that leads to O-ring cracking. Space Shuttle flights will likely not continue past 2010. Therefore, Shuttle management decided to continue using the nitrile/Buna N material for the FCVs, but have each O-ring replaced after 3 years to minimize any chances for crack initiation.

  13. Flexible matrix composite laminated disk/ring flywheel

    NASA Technical Reports Server (NTRS)

    Gupta, B. P.; Hannibal, A. J.

    1984-01-01

    An energy storage flywheel consisting of a quasi-isotropic composite disk overwrapped by a circumferentially wound ring made of carbon fiber and a elastometric matrix is proposed. Through analysis it was demonstrated that with an elastomeric matrix to relieve the radial stresses, a laminated disk/ring flywheel can be designed to store a least 80.3 Wh/kg or about 68% more than previous disk/ring designs. at the same time the simple construction is preserved.

  14. Space Science

    NASA Image and Video Library

    2004-01-01

    Released to commemorate the 14th anniversary of NASA’s Hubble Space Telescope (HST) is the image of a galaxy cataloged as AM 0644-741. Resembling a diamond encrusted bracelet, the ring of brilliant blue star clusters wraps around a yellowish nucleus of what was once a normal spiral galaxy. Located 300 million light years away in the direction of the southern constellation Dorado, the sparkling blue ring is 150,000 light years in diameter, making it larger than our entire home galaxy, the Milky Way. Ring galaxies are a striking example of how collisions between galaxies can dramatically change their structure, while triggering the formation of new stars. Typically one galaxy plunges directly into the disk of another one. The ring that pierced through this galaxy’s ring is out of the image but is visible in larger-field images. The soft galaxy visible to the left of the ring galaxy is a coincidental background galaxy which is not interacting with the ring. Rampant star formation explains why the ring is so blue. It is continuously forming massive, young, hot stars. Another sign of robust star formation is the pink regions along the ring. These are rare clouds of glowing hydrogen gas, fluorescing because of the strong ultraviolet light from the newly formed stars. The Hubble Heritage Team used the Hubble Advanced Camera for Surveys to take this image using a combination of four separate filters that isolate blue, green, red, and near-infrared light to create the color image.

  15. Ring-Interferometric Sol-Gel Bio-Sensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  16. Monte Carlo and analytical calculations for characterization of gas bremsstrahlung in ILSF insertion devices

    NASA Astrophysics Data System (ADS)

    Salimi, E.; Rahighi, J.; Sardari, D.; Mahdavi, S. R.; Lamehi Rachti, M.

    2014-12-01

    Gas bremsstrahlung is generated in high energy electron storage rings through interaction of the electron beam with the residual gas molecules in vacuum chamber. In this paper, Monte Carlo calculation has been performed to evaluate radiation hazard due to gas bremsstrahlung in the Iranian Light Source Facility (ILSF) insertion devices. Shutter/stopper dimensions is determined and dose rate from the photoneutrons via the giant resonance photonuclear reaction which takes place inside the shutter/stopper is also obtained. Some other characteristics of gas bremsstrahlung such as photon fluence, energy spectrum, angular distribution and equivalent dose in tissue equivalent phantom have also been investigated by FLUKA Monte Carlo code.

  17. Superbend era begins swiftly at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Art; Tamura, Lori

    2001-11-29

    The successful installation and commissioning of high-field superconducting bend magnets (superbends) in three curved sectors of ALS storage ring was the first time the magnet lattice of an operating synchrotron light source has been retrofitted in this fundamental way. As a result, the ALS now offers an expanded spectral range well into the hard x-ray region without compromising either the number of undulators or their high brightness in the soft x-ray region for which the ALS design was originally optimized. In sum, when the superbend-enhanced ALS started up for user operations in October 2001, it marked the beginning of amore » new era in its history.« less

  18. Expected first-order effects of a notional equatorial ring on Earth's night sky: a geometric consideration

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.

    2013-12-01

    G. Jones (1856) was first to suggest that the Earth might have its own ring, noting that an Earth ring in the ecliptic plane would account for the latitude dependence of the zodiacal light. Jones's proposal was not accepted: it is difficult to see why the ecliptic would accumulate mass within the Earth-Moon system. Very recently, however, this objection has been mitigated by the discovery of Saturn's Phoebe ring: evidently, the plane of a planetary moon's orbit has now been observed as the site of mass accumulation. An adjustment of just a few degrees from ecliptic to the plane of the lunar orbit gives Jones's proposal the boost of an existing Solar System analogue, mysterious though the analogue is. J. O'Keefe (1980) was first to suggest that an Earth ring system could drive climate: a ring in the equatorial plane, waxing and waning in optical depth, could drive the alternation of Ice Age and interglacial climates. This driver would account for the observation that the Ice Age climate was mainly a difference in winter only. Could Earth have a ring system with one or both elements? Even if light and unstable, it would be important to assess, as it could drive climate change. Dust assessments have not discovered a ring system, but they do not cover low orbits well, nor rule out very small particles stringently. Yet tiny particles can be optically important. There are many difficulties with this hypothesis: Why have ground-based observers never identified an equatorial ring, which after all should be the brightest element of a ring system? Why should a ring system be made of very small particles only? The material must be constantly falling to Earth - where is it? Finally, can we believe in the level of lunar geological activity needed to sustain an Earth ring system? This presentation addresses only one issue: Could ground-based observers have seen but misidentified an equatorial ring? To support consideration of that question, herewith a simple geometric exercise: a schema of ring effects on the southern sky: (i) extinction of extra-terrestrial light between celestial equator and horizon; (ii) brightening of extra-terrestrial light via light-through-dust effects near the southern horizon; and (iii) reflection of sunlight from celestial equator to horizon. These effects would be modulated by season (due to ring self-shadowing) and hour of the night (because of Earth's shadow). We suggest that the expected effects are not "missing" at all - similar effects are well known to observers but are taken to be fully accounted for by skyglow, airglow and light pollution, qualitatively similar phenomena that certainly exist. We conclude that ground-based observers' non-identification of an equatorial ring is not a counter-indicator of a ring's existence. As far as this consideration goes, the question of an Earth ring system is open.

  19. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    NASA Astrophysics Data System (ADS)

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  20. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber.

    PubMed

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-12

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  1. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well as unpublished notes of Courant describing machine studies performed in 1954-1955. This paper describes the practical application of the eteapot code and provides sample results, with emphasis on emulating lattice optics in the AGS analog ring for comparison with the historical machine studies and to predict the electron spin evolution they would have measured if they had polarized electrons and electron polarimetry. Of greater present day interest is the performance to be expected for a proton storage ring experiment. To exhibit the eteapot code performance and confirm its symplecticity, results are also given for 30 million turn proton spin tracking in an all-electric lattice that would be appropriate for a present day measurement of the proton EDM. The accompanying paper "Symplectic orbit and spin tracking code for all-electric storage rings" documents in detail the theoretical formulation implemented in eteapot, which is a new module in the Unified Accelerator Libraries (ual) environment.

  2. Phase measurement for driven spin oscillations in a storage ring

    NASA Astrophysics Data System (ADS)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  3. EUTERPE, a small electron storage ring for XRF

    NASA Astrophysics Data System (ADS)

    Botman, J. I. M.; Mutsaers, P. H. A.; Hagedoorn, H. L.; De Voigt, M. J. A.

    1990-04-01

    A small-sized electron storage ring is under construction at the Eindhoven University of Technology which will cover the energy range of 15 to 400 MeV. At top energy the characteristic wavelength of the synchrotron radiation spectrum is 8.3 nm for the regular dipole magnets and 1.2 nm corresponding to 1.06 keV for a 10 T wiggler magnet. This will provide useful radiation for X-ray fluorescence (XRF) up to 3.2 keV. Alternatively, photon conversion with a high power CO 2 laser beam of 0.124 eV photons will generate X-rays for XRF with energies ranging from 0.5 to 300 keV, depending on the operating energy of the storage ring. This facility will provide an important extension to the activities of the Eindhoven group on PIXE, RBS and microbeam analysis. A short description of the macnine will be given together with applications and specific examples of the XRF method.

  4. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doose, C.; Dejus, R.; Jaski, M.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces tomore » gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.« less

  5. Constrained multi-objective optimization of storage ring lattices

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  6. ACCELERATORS: Beam based alignment of the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming

    2009-04-01

    There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.

  7. DFT STUDY OF HYDROGEN STORAGE ON Li- AND Na-DOPED C59B HETEROFULLERENE

    NASA Astrophysics Data System (ADS)

    Zahedi, Ehsan; Mozaffari, Majid

    2014-05-01

    Effect of light alkali metal (Li and Na) decorated on the C59B heterofullerene for hydrogen storage is considered using DFT-MPW1PW91 method. Results show that Li and Na atoms strongly prefer to adsorb on top of five-member and six-member ring where a carbon atom is replaced by a boron atom. Significant charge transfer from the alkali metal to the C59B compensates for the electron deficiency of C59B and makes the latter aromatic in nature. Corrected binding energies of hydrogen molecule on the alkali-doped C59B using counterpoise method, structural properties and NBO analysis indicate that first hydrogen molecule is adsorbed physically and does not support minimal conditions of DOE requirement. Finally, positive values of binding energies for the adsorption of a second hydrogen molecule show that alkali doped C59B are capable of storing a maximum of one hydrogen molecule.

  8. Symplectic orbit and spin tracking code for all-electric storage rings

    DOE PAGES

    Talman, Richard M.; Talman, John D.

    2015-07-22

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10 –29e–cm or greater will produce a statisticallymore » significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to “resurrect,” or reverse engineer, the “AGS-analog” all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM’s. As a result, the companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.« less

  9. Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

    NASA Astrophysics Data System (ADS)

    Mawass, Mohamad-Assaad; Richter, Kornel; Bisig, Andre; Reeve, Robert M.; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Krone, Andrea; Kronast, Florian; Schütz, Gisela; Kläui, Mathias

    2017-04-01

    Spintronic applications based on magnetic domain-wall (DW) motion, such as magnetic data storage, sensors, and logic devices, require approaches to reliably manipulate the magnetization in nanowires. In this paper, we report the direct dynamic experimental visualization of reliable switching from the onion to the vortex state by DW automotion at zero field in asymmetric ferromagnetic rings using a uniaxial field pulse. Employing time-resolved x-ray microscopy, we demonstrate that depending on the detailed spin structure of the DWs and the size and geometry of the rings, the automotive propagation can be tailored during the DW relaxation from the higher-energy onion state to the energetically favored vortex state, where both DWs annihilate. Our measurements show DW automotion with an average velocity of about 60 m /s , which is a significant speed for spintronic devices. Such motion is mostly governed by local forces resulting from the geometry variations in the device. A closer study of the annihilation process via micromagnetic simulations reveals that a new vortex is nucleated in between the two initial walls. We demonstrate that the annihilation of DWs through automotion in our scheme always occurs with the detailed topological nature of the walls influencing only the DW dynamics on a local scale. The simulations show good quantitative agreement with our experimental results. These findings shed light on a robust and reliable switching process of the onion state in ferromagnetic rings, which paves the way for further optimization of these devices.

  10. Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.

    PubMed

    Peet, Viktor

    2011-08-01

    For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America

  11. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamare, Jeffrey E

    2003-06-20

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 {micro}S (the beam transit time aroundmore » the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS.« less

  12. Visible-Light Photocatalytic Intramolecular Cyclopropane Ring Expansion.

    PubMed

    Luis-Barrera, Javier; Laina-Martín, Víctor; Rigotti, Thomas; Peccati, Francesca; Solans-Monfort, Xavier; Sodupe, Mariona; Mas-Ballesté, Rubén; Liras, Marta; Alemán, José

    2017-06-26

    Described herein is a new visible-light photocatalytic strategy for the synthesis of enantioenriched dihydrofurans and cyclopentenes by an intramolecular nitro cyclopropane ring expansion reaction. Mechanistic studies and DFT calculations are used to elucidate the key factors in this new ring expansion reaction, and the need for the nitro group on the cyclopropane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Faint F Ring and Prometheus

    NASA Image and Video Library

    2016-11-21

    Surface features are visible on Saturn's moon Prometheus in this view from NASA's Cassini spacecraft. Most of Cassini's images of Prometheus are too distant to resolve individual craters, making views like this a rare treat. Saturn's narrow F ring, which makes a diagonal line beginning at top center, appears bright and bold in some Cassini views, but not here. Since the sun is nearly behind Cassini in this image, most of the light hitting the F ring is being scattered away from the camera, making it appear dim. Light-scattering behavior like this is typical of rings comprised of small particles, such as the F ring. This view looks toward the unilluminated side of the rings from about 14 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Sept. 24, 2016. The view was acquired at a distance of approximately 226,000 miles (364,000 kilometers) from Prometheus and at a sun-Prometheus-spacecraft, or phase, angle of 51 degrees. Image scale is 1.2 miles (2 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20508

  14. Optical trapping using cascade conical refraction of light.

    PubMed

    O'Dwyer, D P; Ballantine, K E; Phelan, C F; Lunney, J G; Donegan, J F

    2012-09-10

    Cascade conical refraction occurs when a beam of light travels through two or more biaxial crystals arranged in series. The output beam can be altered by varying the relative azimuthal orientation of the two biaxial crystals. For two identical crystals, in general the output beam comprises a ring beam with a spot at its centre. The relative intensities of the spot and ring can be controlled by varying the azimuthal angle between the refracted cones formed in each crystal. We have used this beam arrangement to trap one microsphere within the central spot and a second microsphere on the ring. Using linearly polarized light, we can rotate the microsphere on the ring with respect to the central sphere. Finally, using a half wave-plate between the two crystals, we can create a unique beam profile that has two intensity peaks on the ring, and thereby trap two microspheres on diametrically opposite points on the ring and rotate them around the central sphere. Such a versatile optical trap should find application in optical trapping setups.

  15. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity

    PubMed Central

    Zhang, Fan; Niu, Hanben

    2016-01-01

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699

  16. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    PubMed

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directlymore » led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.« less

  18. Development of a Bunched Beam Electron Cooler based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Derbenev, Yaroslav S.; Douglas, David R.

    Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second usesmore » a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.« less

  19. NICMOS FINDS A GOLDEN RING AT THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has pierced the dusty disk of the 'edge-on' galaxy NGC 4013 and peered all the way to the galactic core. To the surprise of astronomers, NICMOS found a brilliant band-like structure, that may be a ring of newly formed stars [yellow band in middle photo] seen edge-on. In the visible-light view of the galaxy [top photo], the star-forming ring cannot be seen because it is embedded in dust. The most prominent feature in the visible-light image -- taken by the Wide Field and Planetary Camera 2 (WFPC2) -- is the thin, dark band of gas and dust, which is about 500 light-years thick. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the inner hub of the galaxy. The ring-like structure spied by NICMOS encircles the core and is about 720 light-years wide, which is the typical size of most star-forming rings found in disk galaxies. The small ring is churning out stars at a torrid pace. The Milky Way Galaxy, for example, is more than 10,000 times larger than the ring. If the Milky Way produced stars at the same rate, it would be making 1,000 times more stars a year. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The ring-like structure is seen more clearly in the photo at bottom. This picture, taken with a filter sensitive to hydrogen, shows the glow of stars and gas. Astronomers used this information to calculate the rate of star formation in the ring-like structure. The extremely bright star near the center of each picture is a nearby foreground star belonging to our own Milky Way. Rings of developing stars are common in barred spiral galaxies, which have 'bars' of stars and gas slicing across their disks. The bars funnel gas to the galactic cores. But gravitational disturbances near the cores cause gas to accumulate into a lane or a ring. The gas then condenses to form stars. Because NGC 4013 is seen edge-on, astronomers don't know whether a bar of gas or some other mechanism formed the ring-like structure. NGC 4013, which looks similar to our Milky Way Galaxy, resides in the constellation Ursa Major, 55 million light-years from Earth. The middle picture is a color composite image that was made by combining photographs taken with the J-band, H-band, and Paschen-alpha filters. The bottom picture was taken with the Paschen-alpha filter. The images were taken on May 12. Credits for NICMOS images: NASA, the NICMOS Group (STScI, ESA), and the NICMOS Science Team (University of Arizona) Credits for WFPC2 image: NASA, the Hubble Heritage Team (STScI/AURA) and ESA

  20. Top-up operation at Pohang Light Source-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, I.; Huang, J. Y.; Kim, M.

    2014-05-15

    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac weremore » the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si ) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.« less

  1. Resonant neutral-particle emission in collisions of electrons with peptide ions in a storage ring.

    PubMed

    Tanabe, T; Noda, K; Saito, M; Lee, S; Ito, Y; Takagi, H

    2003-05-16

    Electron-biomolecular ion collisions were studied using an electrostatic storage ring with a merging beam technique for singly protonated peptides (angiotensin I, II, and III). A strong neutral-particle emission at around 6.5 eV was found in addition to neutrals from recombination at low energies. The rates of the high-energy peak greatly decreased with a slight decrease in the number of amino-acid residues from angiotensin I to III. These results suggest that some peptide bonds were selectively cleaved.

  2. Mass Measurements of Proton-rich Nuclides at the Cooler Storage Ring at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. H.; Xu, H. S.; Wang, M.

    2011-11-30

    Recent results and progress of mass measurements of proton-rich nuclei using isochronous mass spectrometry (IMS) are reported. The nuclei under investigation were produced via fragmentation of relativistic energy heavy ions of {sup 78}Kr and {sup 58}Ni. After in-flight separation by the fragment separator RIBLL-2, the nuclei were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of the revolution times. The impact of these measurements on the stellar nucleosynthesis in the rp-process is discussed.

  3. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    NASA Astrophysics Data System (ADS)

    Chan, C. K.; Chang, C. C.; Shueh, C.; Yang, I. C.; Wu, L. H.; Chen, B. Y.; Cheng, C. M.; Huang, Y. T.; Chuang, J. Y.; Cheng, Y. T.; Hsiao, Y. M.; Sheng, Albert

    2017-04-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  4. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root.

    PubMed

    Carvalho, Luiz Jcb; Agustini, Marco Av; Anderson, James V; Vieira, Eduardo A; de Souza, Claudia Rb; Chen, Songbi; Schaal, Barbara A; Silva, Joseane P

    2016-06-10

    Cassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality. Among the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total β-carotene, containing all-E-, 9-Z-, and 13-Z-β-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no α-carotene was observed, variable amounts of a α-ring derived xanthophyll, lutein, was detected; with greater accumulation of α-ring xanthophylls than of β-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total β-carotene accumulation. Among the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low LYCb transcript abundance, whereas landrace Cas64 (intense yellow storage root) had decreased HYb transcript abundance. These results may explain the increased amounts of lycopene and total β-carotene observed in landraces Cas51 and Cas64, respectively. Overall, total carotenoid content in cassava storage root of color class representatives were associated with spatial patterns of secondary growth, color, and abundance of transcripts linked to plastid division. Finally, a partial carotenoid biosynthesis pathway is proposed.

  5. Seeing the Difference

    NASA Image and Video Library

    2006-08-23

    With Saturn terminator as a backdrop, this view of the unlit face of the rings makes it easy to distinguish between areas that are actual gaps, where light passes through essentially unimpeded, and areas where the rings block or scatter light

  6. A 1kW EUV source for lithography based on FEL emission in a compact storage ring

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Ruth, Ron; Loewen, Rod

    2017-10-01

    EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.

  7. Optical ferris wheel for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.

    2007-07-01

    We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.

  8. Saturn's E Ring in Ultraviolet Light

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Visible from Earth only at times of ring plane crossing, Saturn's tenuous E Ring was discovered during the 1966 crossings and imaged again in 1980. From these observations, its color is known to be distinctively blue. The E Ring was captured in ultraviolet light for the first time in this image taken with HST's Wide Field and Planetary Camera on 9 August 1995. Five individual images taken with a broadband 3000 A filter were combined, amounting to a total exposure time of 2200 sec. Shorter exposure images were also obtained with blue, red and infrared filters in order to characterize the ring's color. The peak brightness of the E Ring occurs at 3.9 Saturn radii (235,000 km), coinciding with the orbit of Enceladus. In the HST images it can be traced out to a maximum distance of approximately 8 Rs (480,000 km). The vertical thickness of the ring, on the other hand, is smallest at Enceladus' orbit, with the ring puffing up noticeably at larger distances to 15,000 km or more thick. Also visible in this image, between the E Ring and the overexposed outermost part of the main rings near the lower edge of the frame, is the tenuous, thin, 6000 km-wide G Ring at 2.8 Rs (170,000 km). This is among the first earth-based observations of the G Ring, which was discovered by the Pioneer 11 spacecraft in 1979. Noticeably thinner than the E Ring and more neutral in color, the G Ring is thought to be composed of larger, macroscopic particles, and to pose a significant hazard to spacecraft. The faint diagonal band in the lower right part of the image is due to diffracted light from the heavily-overexposed planet. Credit: Phil Nicholson (Cornell University), Mark Showalter (NASA-Ames/Stanford) and NASA

  9. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    PubMed Central

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467

  10. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records.

    PubMed

    Wynn, P M; Loader, N J; Fairchild, I J

    2014-04-01

    Palaeorecords which depict changes in sulphur dynamics form an invaluable resource for recording atmospheric pollution. Tree rings constitute an archive that are ubiquitously available and can be absolutely dated, providing the potential to explore local- to regional-scale trends in sulphur availability. Rapid isotopic analysis by a novel "on-line" method using elemental analyser isotope ratio mass spectrometry (EA-IRMS) is developed, achieving sample precision of <0.4‰ using sample sizes of 40 mg wood powder. Tree cores from NE Italy show trends in pollution, evidenced through increasing concentrations of sulphur towards the youngest growth, and inverse trends in sulphur isotopes differentiating modern growth with light sulphur isotopes (+0.7‰) from pre-industrial growth (+7.5‰) influenced by bedrock composition. Comparison with speleothem records from the same location demonstrate replication, albeit offset in isotopic value due to groundwater storage. Using EA-IRMS, tree ring archives form a valuable resource for understanding local- to regional-scale sulphur pollution dynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-04-01

    We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.

  12. Toward Detection of Exoplanetary Rings via Transit Photometry: Methodology and a Possible Candidate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizawa, Masataka; Masuda, Kento; Suto, Yasushi

    The detection of a planetary ring of exoplanets remains one of the most attractive, but challenging, goals in the field of exoplanetary science. We present a methodology that implements a systematic search for exoplanetary rings via transit photometry of long-period planets. This methodology relies on a precise integration scheme that we develop to compute a transit light curve of a ringed planet. We apply the methodology to 89 long-period planet candidates from the Kepler data so as to estimate, and/or set upper limits on, the parameters of possible rings. While the majority of our samples do not have sufficient signal-to-noise ratios (S/Ns) to place meaningfulmore » constraints on ring parameters, we find that six systems with higher S/Ns are inconsistent with the presence of a ring larger than 1.5 times the planetary radius, assuming a grazing orbit and a tilted ring. Furthermore, we identify five preliminary candidate systems whose light curves exhibit ring-like features. After removing four false positives due to the contamination from nearby stars, we identify KIC 10403228 as a reasonable candidate for a ringed planet. A systematic parameter fit of its light curve with a ringed planet model indicates two possible solutions corresponding to a Saturn-like planet with a tilted ring. There also remain two other possible scenarios accounting for the data; a circumstellar disk and a hierarchical triple. Due to large uncertain factors, we cannot choose one specific model among the three.« less

  13. Ring Beholds a Delicate Flower

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers.

    The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star.

    Download the QuickTime movie for the animated version of this Ring Nebula image.

  14. Characterization of an in-vacuum PILATUS 1M detector.

    PubMed

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  15. Advanced Photon Source accelerator ultrahigh vacuum guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  16. Higher-Order Systematic Effects in the Muon Beam-Spin Dynamics for Muon g-2

    NASA Astrophysics Data System (ADS)

    Crnkovic, Jason; Brown, Hugh; Krouppa, Brandon; Metodiev, Eric; Morse, William; Semertzidis, Yannis; Tishchenko, Vladimir

    2016-03-01

    The BNL Muon g-2 Experiment (E821) produced a precision measurement of the muon anomalous magnetic moment, where as the Fermilab Muon g-2 Experiment (E989) is an upgraded version of E821 that has a goal of producing a measurement with approximately 4 times more precision. Improving the precision requires a more detailed understanding of the experimental systematic effects, and so three higher-order systematic effects in the muon beam-spin dynamics have recently been found and estimated for E821. The beamline systematic effect originates from muon production in beamline spectrometers, as well as from muons traversing beamline bending magnets. The kicker systematic effect comes from a combination of the variation in time spent inside the muon storage ring across a muon bunch and the temporal structure of the storage ring kicker waveform. Finally, the detector systematic effect arises from a combination of the energy dependent muon equilibrium orbit in the storage ring, muon decay electron drift time, and decay electron detector acceptance effects. Brookhaven Natl Lab.

  17. A Dark Bend

    NASA Image and Video Library

    2016-09-05

    Saturn's rings appear to bend as they pass behind the planet's darkened limb due to refraction by Saturn's upper atmosphere. The effect is the same as that seen in an earlier Cassini view (see PIA20491), except this view looks toward the unlit face of the rings, while the earlier image viewed the rings' sunlit side. The difference in illumination brings out some noticeable differences. The A ring is much darker here, on the rings' unlit face, since its larger particles primarily reflect light back toward the sun (and away from Cassini's cameras in this view). The narrow F ring (at bottom), which was faint in the earlier image, appears brighter than all of the other rings here, thanks to the microscopic dust that is prevalent within that ring. Small dust tends to scatter light forward (meaning close to its original direction of travel), making it appear bright when backlit. (A similar effect has plagued many a driver with a dusty windshield when driving toward the sun.) This view looks toward the unilluminated side of the rings from about 19 degrees below the ring plane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on July 24, 2016. The view was acquired at a distance of approximately 527,000 miles (848,000 kilometers) from Saturn and at a sun-Saturn-spacecraft, or phase, angle of 169 degrees. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20497

  18. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel [Albuquerque, NM; Ramsey, Marc [Albuquerque, NM; Schwarz, Jens [Albuquerque, NM

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  19. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  20. A closed-loop photon beam control study for the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less

  1. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  2. Flickering Aldebaran #3

    NASA Image and Video Library

    2006-10-13

    As Cassini watches the rings pass in front of bright red giant star Aldebaran, the star light fluctuates, providing information about the concentrations of ring particles within the various radial features in the rings

  3. Flickering Aldebaran #2

    NASA Image and Video Library

    2006-10-11

    As Cassini watches the rings pass in front of bright red giant star Aldebaran, the star light fluctuates, providing information about the concentrations of ring particles within the various radial features in the rings

  4. Electric currents induced by twisted light in Quantum Rings.

    PubMed

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  5. The magnetic toroidal sector: a broad-band electron-positron pair spectrometer

    NASA Astrophysics Data System (ADS)

    Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe

    2016-05-01

    At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.

  6. Safe operating conditions for NSLS-II Storage Ring Frontends commissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Amundsen, C.; Ha, K.

    2015-04-02

    The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.

  7. DESY II, a new injector for the DESY storage rings PETRA and DORIS II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmie, G.

    1983-08-01

    There is a proposal to build a new 9 GeV electron synchrotron as a dedicated injector for the storage rings DORIS and PETRA. This machine will be housed in the old DESY-tunnel side-by-side with the original DESY-synchrotron. It is characterized by a separated function lattice, a 12.5 Hz repetition frequency, an all-metal vacuum chamber and a high shunt impedance rf-system. After commissioning of this new machine in 1984, the old DESY-synchrotron could be converted into a dedicated proton-accelerator as part of the injection chain for HERA.

  8. Explicit symplectic orbit and spin tracking method for electric storage ring

    DOE PAGES

    Hwang, Kilean; Lee, S. Y.

    2016-08-18

    We develop a symplectic charged particle tracking method for phase space coordinates and polarization in all electric storage rings. Near the magic energy, the spin precession tune is proportional to the fractional momentum deviation δ m from the magic energy, and the amplitude of the radial and longitudinal spin precession is proportional to η/δ m, where η is the electric dipole moment for an initially vertically polarized beam. As a result, the method can be used to extract the electron electric dipole moment of a charged particle by employing narrow band frequency analysis of polarization around the magic energy.

  9. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  10. Theory of the polarization of highly charged ions in storage rings: Production, preservation, observation and application to the search for a violation of the fundamental symmetries

    NASA Astrophysics Data System (ADS)

    Bondarevskaya, A.; Prozorov, A.; Labzowsky, L.; Plunien, G.; Liesen, D.; Bosch, F.

    2011-10-01

    Theoretical concepts for the production, preservation and control of polarized highly charged ion beams in storage rings are investigated. It is argued that hydrogen-like ions can be polarized efficiently by optical pumping of the Zeeman sublevels of ground state hyperfine levels and that the maximum achievable nuclear polarization exceeds 90%. In order to study the preservation of the polarization during the ion motion through the magnetic system of the ring, the concept of the instantaneous quantization axis is introduced. It is suggested that the employment of “Siberian snakes” may help to preserve the ion beam polarization in the ring. The control of the beam polarization can be achieved by different methods: by measuring the Stokes parameters for the emitted photons or by observing the angular dependence of the transition rates for polarized ions. The important motivation for the production of polarized ion beams is the possibility to observe parity nonconservation effects in the hyperfine-quenched transitions in helium-like highly charged ions, where these effects can reach an unprecedented high value for atomic physics. The possible observation of parity nonconservation effects connected with the nuclear anapole moment is also discussed. A method for the observation of the electric dipole moment of an electron in a storage ring with a polarized highly charged ion beam is proposed. This method allows, in principle, to improve the existing boundaries for the electric dipole moment of an electron. However, the requirements of the corresponding experiment are very stringent.

  11. Flickering Aldebaran #1

    NASA Image and Video Library

    2006-10-09

    As Cassini watches the rings pass in front of the bright red giant star Aldebaran, the star light fluctuates, providing information about the concentrations of ring particles within the various radial features in the rings

  12. Coupling tree rings and eddy covariance to estimate long-term above and belowground carbon storage at the stand level

    NASA Astrophysics Data System (ADS)

    Dye, A.; Alexander, M. R.; Bishop, D.; Pederson, N.; Hessl, A. E.

    2016-12-01

    Storage of carbon in terrestrial plants and soils directly reduces atmospheric carbon concentration, and it is thereby imperative to improve our understanding of where carbon is being stored and released in an ecosystem and how storages and releases are changing over time. At data-rich sites, coupling alternative measurements of carbon flux can improve this understanding. Here, we present a methodology to inversely model stand-level net storage and release of above- and belowground carbon over a period of 1-2 decades using co-located tree-ring plots and eddy covariance towers at three eastern U.S. forests. We reconstructed annual aboveground wood production (aNPP) from tree rings collected near eddy covariance towers. We compared our aNPP reconstructions with annual tower NEE to address whether interannual variations are correlated. Despite modest correlation, we observed magnitude differences between both records that vary annually. We interpret these differences as indicative of changes in belowground carbon storage, i.e. an aNPP:NEE ratio > 1 indicates a net release of belowground carbon and a ratio < 1 a net storage of belowground carbon. For this interpretation, we assume the following: a) carbon not directed to above or belowground pools is insignificant, b) carbon not stored above ground is stored below ground, and c) mature trees do not add to a storage pool at a higher level every year. While the offset between biometric aNPP and tower NEE could partially be attributed to the diversion of assimilated carbon to nonstructural carbohydrates instead of growth, we argue that this becomes a less important factor over longer time scales in a mature tree. Our approach does not quantify belowground NPP or allocation, but we present a method for estimating belowground carbon storage and release at the stand level, an otherwise difficult task at this scale due to heterogeneity across the stand.

  13. Maury Goodman

    Science.gov Websites

    the 29th International Cosmic Ray Conference, Pune India, August 10, 2005 Reactor Searches for Theta Rings, Bombay India, August 2, 2005 NOvA Presentation at the Workshop on Physics of Atmospheric Neutrinos and Neutrinos from Muon Storage Rings, Bombay India, August 2, 2005 The Double Chooz Double Fast

  14. Systematic Search for Rings around Kepler Planet Candidates: Constraints on Ring Size and Occurrence Rate

    NASA Astrophysics Data System (ADS)

    Aizawa, Masataka; Masuda, Kento; Kawahara, Hajime; Suto, Yasushi

    2018-05-01

    We perform a systematic search for rings around 168 Kepler planet candidates with sufficient signal-to-noise ratios that are selected from all of the short-cadence data. We fit ringed and ringless models to their light curves and compare the fitting results to search for the signatures of planetary rings. First, we identify 29 tentative systems, for which the ringed models exhibit statistically significant improvement over the ringless models. The light curves of those systems are individually examined, but we are not able to identify any candidate that indicates evidence for rings. In turn, we find several mechanisms of false positives that would produce ringlike signals, and the null detection enables us to place upper limits on the size of the rings. Furthermore, assuming the tidal alignment between axes of the planetary rings and orbits, we conclude that the occurrence rate of rings larger than twice the planetary radius is less than 15%. Even though the majority of our targets are short-period planets, our null detection provides statistical and quantitative constraints on largely uncertain theoretical models of the origin, formation, and evolution of planetary rings.

  15. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.

    PubMed

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling; Zhang, Cairong

    2017-08-02

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H₂ molecules is four with the average adsorption energy of -0.429 eV/H₂. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of -0.296 eV/H₂. The adsorption of H₂ molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H₂ molecules and positively charged Sc atoms.

  16. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    PubMed Central

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling

    2017-01-01

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms. PMID:28767084

  17. Lignin staining ...a limited success in identifying koa growth rings

    Treesearch

    Herbert L. Wick

    1970-01-01

    Among the lignin stains tested in trying to identify growth rings in koa (Acacia koa Gray), phloroglucinol was the most effective. The light colored sapwood of mature trees stained readily, with growth rings apparent. But staining failed to emphasize rings in the dark colored heartwood. Growth rings were not apparent on samples from young fast...

  18. Basic tree-ring sample preparation techniques for aging aspen

    Treesearch

    Lance A. Asherin; Stephen A. Mata

    2001-01-01

    Aspen is notoriously difficult to age because of its light-colored wood and faint annual growth rings. Careful preparation and processing of aspen ring samples can overcome these problems, yield accurate age and growth estimates, and concisely date disturbance events present in the tree-ring record. Proper collection of aspen wood is essential in obtaining usable ring...

  19. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.

    PubMed

    Köcher, Paul; Horna, Viviana; Leuschner, Christoph

    2013-08-01

    The functional role of internal water storage is increasingly well understood in tropical trees and conifers, while temperate broad-leaved trees have only rarely been studied. We examined the magnitude and dynamics of the use of stem water reserves for transpiration in five coexisting temperate broad-leaved trees with largely different morphology and physiology (genera Fagus, Fraxinus, Tilia, Carpinus and Acer). We expected that differences in water storage patterns would mostly reflect species differences in wood anatomy (ring vs. diffuse-porous) and wood density. Sap flux density was recorded synchronously at five positions along the root-to-branch flow path of mature trees (roots, three stem positions and branches) with high temporal resolution (2 min) and related to stem radius changes recorded with electronic point dendrometers. The daily amount of stored stem water withdrawn for transpiration was estimated by comparing the integrated flow at stem base and stem top. The temporal coincidence of flows at different positions and apparent time lags were examined by cross-correlation analysis. Our results confirm that internal water stores play an important role in the four diffuse-porous species with estimated 5-12 kg day(-1) being withdrawn on average in 25-28 m tall trees representing 10-22% of daily transpiration; in contrast, only 0.5-2.0 kg day(-1) was withdrawn in ring-porous Fraxinus. Wood density had a large influence on storage; sapwood area (diffuse- vs. ring-porous) may be another influential factor but its effect was not significant. Across the five species, the length of the time lag in flow at stem top and stem base was positively related to the size of stem storage. The stem stores were mostly exhausted when the soil matrix potential dropped below -0.1 MPa and daily mean vapor pressure deficit exceeded 3-5 hPa. We conclude that stem storage is an important factor improving the water balance of diffuse-porous temperate broad-leaved trees in moist periods, while it may be of low relevance in dry periods and in ring-porous species.

  20. Development of large volume double ring penning plasma discharge source for efficient light emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic fieldmore » of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.« less

  1. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  2. Field Modeling, Symplectic Tracking, and Spin Decoherence for EDM and Muon $$g\\textrm{-}2$$ Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valetov, Eremey Vladimirovich

    2017-01-01

    While the first particle accelerators were electrostatic machines, and several electrostatic storage rings were subsequently commissioned and operated, electrostatic storage rings pose a number of challenges. Unlike motion in the magnetic field, where particle energy remains constant, particle energy generally changes in electrostatic elements. Conservation of energy in an electrostatic element is, in practice, only approximate, and it requires careful and accurate design, manufacturing, installation, and operational use. Electrostatic deflectors require relatively high electrostatic fields, tend to introduce nonlinear aberrations of all orders, and are more challenging to manufacture than homogeneous magnetic dipoles. Accordingly, magnetic storage rings are overwhelmingly prevalent.more » The search for electric dipole moments (EDMs) of fundamental particles is of key importance in the study of C and CP violations and their sources. C and CP violations are part of the Sakharov conditions that explain the matter–antimatter asymmetry in the universe. Determining the source of CP violations would provide valuable empirical insight for beyond-Standard-Model physics. EDMs of fundamental particles have not to this date been experimentally observed. The search for fundamental particle EDMs has narrowed the target search region; however, an EDM signal is yet to be discovered. In 2008, Brookhaven National Laboratory (BNL) had proposed the frozen spin (FS) concept for the search of a deuteron EDM. The FS concept envisions launching deuterons through a storage ring with combined electrostatic and magnetic fields. The electrostatic and magnetic fields are in a proportion that would, without an EDM, freeze the deuteron’s spin along its momentum as the deuteron moves around the lattice. The radial electrostatic field would result in a torque on the spin vector, proportional to a deuteron EDM, rotating the spin vector out of the midplane.« less

  3. Higher-order formulas of amplitude-dependent tune shift caused by a sextupole magnetic field distribution

    NASA Astrophysics Data System (ADS)

    Soutome, Kouichi; Tanaka, Hitoshi

    2017-06-01

    Nowadays, designs for ring-based light sources use multibend lattices for achieving a very small emittance of around 100 pmrad. In this type of storage ring, the chromaticity correcting sextupoles generally have greater strengths than those used in typical third-generation light sources. Therefore, controlling lattice nonlinearity such as amplitude-dependent tune shift (ADTS) is important for enabling stable operations and smooth beam commissioning. As the strength of the sextupoles increases, their higher-order terms contribute significantly to ADTS, rendering well-known lowest-order formulas inadequate for describing tune variations at large horizontal amplitudes. In response, we have derived explicit expressions of ADTS up to the fourth order in sextupole strength based on the canonical perturbation theory, assuming that the amplitude of a vertical betatron oscillation is smaller compared with the horizontal one. The new formulas express the horizontal and vertical betatron tune variations as functions of the action variables: Jx and Jy up to O (Jx2) and O (Jy) . The derived formulas were applied to a five-bend achromat lattice designed for the SPring-8 upgrade. By comparing the calculated results with the tracking simulations, we found that (1) the formulas accurately express ADTS around a horizontal amplitude of ˜10 mm and (2) the nonlinear terms of the fourth order in sextupole strength govern the behaviors of circulating electrons at large horizontal amplitudes. In this paper, we present explicit expressions of fourth-order formulas of ADTS and provide some examples to illustrate their effectiveness.

  4. Heating device for semiconductor wafers

    DOEpatents

    Vosen, Steven R.

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  5. Heating device for semiconductor wafers

    DOEpatents

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  6. Surging Across the Rings

    NASA Image and Video Library

    2007-07-26

    A surge in brightness appears on the rings directly opposite the Sun from the Cassini spacecraft. This "opposition surge" travels across the rings as the spacecraft watches. This view looks toward the sunlit side of the rings from about 9 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 12, 2007 using a spectral filter sensitive to wavelengths of infrared light centered at 853 nanometers. The view was acquired at a distance of approximately 524,374 kilometers (325,830 miles) from Saturn. Image scale is 31 kilometers (19 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA08992

  7. Storing keV negative ions for an hour: the lifetime of the metastable ^(2)P((1/2)^(o)) level in ^(32)S^(-).

    PubMed

    Bäckström, E; Hanstorp, D; Hole, O M; Kaminska, M; Nascimento, R F; Blom, M; Björkhage, M; Källberg, A; Löfgren, P; Reinhed, P; Rosén, S; Simonsson, A; Thomas, R D; Mannervik, S; Schmidt, H T; Cederquist, H

    2015-04-10

    We use a novel electrostatic ion storage ring to measure the radiative lifetime of the upper level in the 3p^{5} ^{2}P_{1/2}^{o}→3p^{5} ^{2}P_{3/2}^{o} spontaneous radiative decay in ^{32}S^{-} to be 503±54  sec. This is by orders of magnitude the longest lifetime ever measured in a negatively charged ion. Cryogenic cooling of the storage ring gives a residual-gas pressure of a few times 10^{-14} mbar at 13 K and storage of 10 keV sulfur anions for more than an hour. Our experimental results differ by 1.3σ from the only available theoretical prediction [P. Andersson et al., Phys. Rev. A 73, 032705 (2006)].

  8. An Intense Excitation Source for High Power (Blue-Green) Laser.

    DTIC Science & Technology

    1983-11-22

    mild and forms plasma rings near the edges of the center holes as indicated by the circular line in Figure 1. For dye laser pumping, the high pressure... ring formation, and the heavy gas plasmas produce more high-intensity light pulses than light gas. It is also possible to adjust the diameter of plasma ...sheets into the center hole; 5. the formation of plasma rings ; 6. the expansion and radiative cooling of the plasma which results in 7. the intense

  9. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  10. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  11. Micro - ring resonator with variety of gap width for acid rain sensing application: preliminary study

    NASA Astrophysics Data System (ADS)

    Mulyanti, B.; Ramza, H.; Pawinanto, R. E.; Rahman, J. A.; Ab-Rahman, M. S.; Putro, W. S.; Hasanah, L.; Pantjawati, A. B.

    2017-05-01

    The acid rain is an environmental disaster that it will be intimidates human life. The development micro-ring resonator sensor created from SOI (Silicon on insulator) and it used to detect acid rain index. In this study, the LUMERICAL software was used to simulate SOI material micro-ring resonator. The result shows the optimum values of fixed parameters from ring resonator have dependent variable in gap width. The layers under ring resonator with silicone (Si) and wafer layer of silicone material (Si) were added to seen three conditions of capability model. Model - 3 is an additional of bottom layer that gives the significant effect on the factor of quality. The optimum value is a peak value that given by the FSR calculation. FSR = 0, it means that is not shows the light propagation in the ring resonator and none of the light coming out on the bus - line.

  12. Plateaus Up Close

    NASA Image and Video Library

    2017-04-10

    Saturn's C ring isn't uniformly bright. Instead, about a dozen regions of the ring stand out as noticeably brighter than the rest of the ring, while about half a dozen regions are devoid of ring material. Scientists call the bright regions "plateaus" and the devoid regions "gaps." Scientists have determined that the plateaus are relatively bright because they have higher particle density and reflect more light, but researchers haven't solved the trickier puzzle of how the plateaus are created and maintained. This view looks toward the sunlit side of the rings from about 62 degrees above the ring plane. The image was taken Jan. 9, 2017 in green light with the Cassini spacecraft's narrow-angle camera. Cassini obtained the image while approximately 194,000 miles (312,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 67 degrees. Image scale is 1.2 miles (2 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA20529

  13. A nonlinear plasmonic waveguide based all-optical bidirectional switching

    NASA Astrophysics Data System (ADS)

    Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong

    2018-01-01

    In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.

  14. Saturation of the laser-induced narrowband coherent synchrotron radiation process: Experimental observation at a storage ring

    NASA Astrophysics Data System (ADS)

    Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.

    2013-02-01

    We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.

  15. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillwell, B.; Billett, B.; Brajuskovic, B.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  16. Development and operating experience of a short-period superconducting undulator at the Advanced Photon Source

    DOE PAGES

    Ivanyushenkov, Y.; Harkay, K.; Abliz, M.; ...

    2015-04-01

    In this study, a decade-long effort at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) on development of superconducting undulators culminated in December 2012 with the installation of the first superconducting undulator “SCU0” into Sector 6 of the APS storage ring. The device was commissioned in January 2013 and has been in user operation since. This paper presents the magnetic and cryogenic design of the SCU0 together with the results of stand-alone cold tests. The initial commissioning and characterization of SCU0 as well as its operating experience in the APS storage ring are described.

  17. Measurement of Tensor Analyzing Powers for Elastic Electron Scattering from a Polarized 2H Target Internal to a Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Ferro-Luzzi; M. Bouwhuis; E. Passchier

    1996-09-23

    We report an absolute measurement of the tensor analyzing powers T20 and T22 in elastic electron-deuteron scattering at a momentum transfer of 1.6 fm{sup -1}. The novel approach of this measurement is the use of a tensor polarized 2H target internal to an electron storage ring, with in situ measurement of the polarization of the target gas. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors. The techniques demonstrated have broad applicability to further measurements of spin-dependent electron scattering.

  18. Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction.

    PubMed

    Turpin, A; Polo, J; Loiko, Yu V; Küber, J; Schmaltz, F; Kalkandjiev, T K; Ahufinger, V; Birkl, G; Mompart, J

    2015-01-26

    We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal plane exhibits two concentric bright rings enclosing a ring of null intensity called the Poggendorff ring. We demonstrate both theoretically and experimentally that the Poggendorff dark ring of conical refraction is confined in three dimensions by regions of higher intensity. We derive the positions of the confining intensity maxima and minima and discuss the application of the Poggendorff ring for trapping ultra-cold atoms using the repulsive dipole force of blue-detuned light. We give analytical expressions for the trapping frequencies and potential depths along both the radial and the axial directions. Finally, we present realistic numerical simulations of the dynamics of a 87Rb Bose-Einstein condensate trapped inside the Poggendorff ring which are in good agreement with corresponding experimental results.

  19. Wish Upon a Star

    NASA Image and Video Library

    2015-01-05

    What's that bright point of light in the outer A ring? It's a star, bright enough to be visible through the ring! Quick, make a wish! This star -- seen in the lower right quadrant of the image -- was not captured by coincidence, it was part of a stellar occultation. By monitoring the brightness of stars as they pass behind the rings, scientists using this powerful observation technique can inspect detailed structures within the rings and how they vary with location. This view looks toward the sunlit side of the rings from about 44 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Oct. 8, 2013. The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from the rings and at a Sun-Rings-Spacecraft, or phase, angle of 96 degrees. Image scale is 6.8 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18297

  20. Synchrotron oscillation effects on an rf-solenoid spin resonance

    NASA Astrophysics Data System (ADS)

    Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.

    2012-12-01

    New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.

  1. Next-generation materials for future synchrotron and free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Graafsma, Heinz

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  2. The Present Status of Siam Photon Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pairsuwan, Weerapong; Ishii, Takehiko; Isoyama, Goro

    We report the technical problems encountered in commissioning and improving the performance of the accelerator complex which consists of a 1 GeV light source storage ring, a 1 GeV booster synchrotron, and a 40 MeV injector linac. Regulation work for an attached beam line with an experimental station for photoemission studies is also described. Beam instability and low injection efficiency are the major issues for the accelerator complex. In the beam line, the accurate optical alignment of the monochromator system and the modification of the measurement control software supplied by a marker are the work having been performed. The resultsmore » of the work on the accelerator complex will be helpful to the commissioning of the machine obtained secondhand and reformed to some extent.« less

  3. Next-generation materials for future synchrotron and free-electron laser sources

    DOE PAGES

    Assoufid, Lahsen; Graafsma, Heinz

    2017-06-09

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  4. Beam position monitor gate functionality implementation and applications

    DOE PAGES

    Cheng, Weixing; Ha, Kiman; Li, Yongjun; ...

    2018-06-14

    We introduce a novel technique to implement gate functionality for the beam position monitors (BPM) at the National Synchrotron Light Source II (NSLS-II). The functionality, now implemented in FPGA, allows us to acquire two separated bunch-trains’ synchronized turn-by-turn (TBT) data simultaneously with the NSLS-II in-house developed BPM system. The gated position resolution is improved about 3 times by narrowing the sampling width. Experimentally we demonstrated that the machine lattice could be transparently characterized with the gated TBT data of a short diagnostic bunch-train Cheng et al., 2017; Li et al., 2017. Other applications, for example, precisely characterizing storage ring impedance/wake-fieldmore » through recording the beam positions of two separated bunch trains has been experimentally demonstrated.« less

  5. Beam position monitor gate functionality implementation and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing; Ha, Kiman; Li, Yongjun

    We introduce a novel technique to implement gate functionality for the beam position monitors (BPM) at the National Synchrotron Light Source II (NSLS-II). The functionality, now implemented in FPGA, allows us to acquire two separated bunch-trains’ synchronized turn-by-turn (TBT) data simultaneously with the NSLS-II in-house developed BPM system. The gated position resolution is improved about 3 times by narrowing the sampling width. Experimentally we demonstrated that the machine lattice could be transparently characterized with the gated TBT data of a short diagnostic bunch-train Cheng et al., 2017; Li et al., 2017. Other applications, for example, precisely characterizing storage ring impedance/wake-fieldmore » through recording the beam positions of two separated bunch trains has been experimentally demonstrated.« less

  6. Photoswitchable carbohydrate-based fluorosurfactants as tuneable ice recrystallization inhibitors.

    PubMed

    Adam, Madeleine K; Hu, Yingxue; Poisson, Jessica S; Pottage, Matthew J; Ben, Robert N; Wilkinson, Brendan L

    2017-02-01

    Cryopreservation is an important technique employed for the storage and preservation of biological tissues and cells. The limited effectiveness and significant toxicity of conventionally-used cryoprotectants, such as DMSO, have prompted efforts toward the rational design of less toxic alternatives, including carbohydrate-based surfactants. In this paper, we report the modular synthesis and ice recrystallization inhibition (IRI) activity of a library of variably substituted, carbohydrate-based fluorosurfactants. Carbohydrate-based fluorosurfactants possessed a variable mono- or disaccharide head group appended to a hydrophobic fluoroalkyl-substituted azobenzene tail group. Light-addressable fluorosurfactants displayed weak-to-moderate IRI activity that could be tuned through selection of carbohydrate head group, position of the trifluoroalkyl group on the azobenzene ring, and isomeric state of the azobenzene tail fragment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. On a suspected ring external to the visible rings of Saturn

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Beebe, R. F.; Smith, B. A.; Cook, A. F., II

    1974-01-01

    The reexamination of a photograph of Saturn taken on 15 November 1966 when the earth was nearly in the ring plane is investigated which indicates that ring material does exist outside the visible rings, extending to more than 6 Saturnian radii. The observed brightness in blue light was estimated per linear arc second, implying a normal optical thickness, for ice-covered particles.

  8. In-space inertial energy storage design

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Evans, H. E.

    1981-01-01

    Flywheel energy storage is a means of significantly improving the performance of space power systems. Two study contracts have been completed to investigate the merits of a magnetically suspended, ironless armature, ring rotor 'Mechanical Capacitor' design. The design of a suitable energy storage system is evaluated, taking into account baseline requirements, the motor generator, details regarding the suspension design, power conditioning, the rotor, and an example design. It appears on the basis of this evaluation that the inertial (flywheel) energy storage design is feasible.

  9. Distributed trace using central performance counter memory

    DOEpatents

    Satterfield, David L; Sexton, James C

    2013-10-22

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  10. Distributed trace using central performance counter memory

    DOEpatents

    Satterfield, David L.; Sexton, James C.

    2013-01-22

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  11. 15. DETAILED VIEW OF ENRICHED URANIUM STORAGE TANK. THE ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAILED VIEW OF ENRICHED URANIUM STORAGE TANK. THE ADDITION OF THE GLASS RINGS SHOWN AT THE TOP OF THE TANK HELPS PREVENT THE URANIUM FROM REACHING CRITICALITY LIMITS. (4/12/62) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  12. A permanent-magnet rotor for a high-temperature superconducting bearing

    NASA Astrophysics Data System (ADS)

    Mulcahy, T. M.; Hull, J. R.; Uherka, K. L.; Abboud, R. G.; Wise, J. H.; Carnegie, D. W.

    1995-06-01

    Design, fabrication, and performance, of a 1/3-m dia., 10-kg flywheel rotor with only one bearing is discussed. To achieve low-loss energy storage, the rotor's segmented-ring permanent-magnet (PM) is optimized for levitation and circumferential homogeneity. The magnet's carbon composite bands enable practical energy storage.

  13. Energy storage apparatus

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Evans, H. E. (Inventor)

    1978-01-01

    A high efficiency, flywheel type energy storage device which comprises an electronically commutated d.c. motor/generator unit having a massive flywheel rotor magnetically suspended around a ring shaped stator is presented. During periods of low energy demand, the storage devices were operated as a motor, and the flywheel motor was brought up to operating speed. Energy was drawn from the device functioning as a generator as the flywheel rotor rotated during high energy demand periods.

  14. Overview of a flywheel stack energy storage system

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  15. Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Danilov, V.; Holmes, J.; Macek, R.

    2004-09-01

    We present experimental data from the Los Alamos Proton Storage Ring (PSR) showing long-lived linac microbunch structure during beam storage with no rf bunching. Analysis of the experimental data and particle-in-cell simulations of the experiments indicate that space charge, coupled with energy spread effects, is responsible for the sustained microbunch structure. The simulated longitudinal phase space of the beam reveals a well-defined separatrix in the phase space between linac microbunches, with particles executing unbounded motion outside of the separatrix. We show that the longitudinal phase space of the beam was near steady state during the PSR experiments, such that the separatrix persisted for long periods of time. Our simulations indicate that the steady state is very sensitive to the experimental conditions. Finally, we solve the steady-state problem in an analytic, self-consistent fashion for a set of periodic longitudinal space-charge potentials.

  16. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    NASA Astrophysics Data System (ADS)

    Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.

    2012-09-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  17. Carbon allocation to growth and storage in two evergreen species of contrasting successional status.

    PubMed

    Piper, Frida I; Sepúlveda, Paulina; Bustos-Salazar, Angela; Zúñiga-Feest, Alejandra

    2017-05-01

    A prevailing hypothesis in forest succession is that shade-tolerant species grow more slowly than shade-intolerant species, across light conditions, because they prioritize carbon (C) allocation to storage. We examined this hypothesis in a confamilial pair of species, including one of the fastest-growing tree species in the world ( Eucalyptus globulus ) and a shade-tolerant, slow-growing species ( Luma apiculata ). Seedlings were subjected to one out of four combinations of light (high vs. low) and initial defoliation (90% defoliated vs. nondefoliated) for four months. Growth, C storage concentration in different organs, leaf shedding, and lateral shoot formation were measured at the end of the experiment. Eucalyptus globulus grew faster than L. apiculata in high light, but not in low light. Both species had lower C storage concentration in low than in high light, but similar C storage concentrations in each light condition. Defoliation had no effect on C storage, except in the case of the old leaves of both species, which showed lower C storage levels in response to defoliation. Across treatments, leaf shedding was 96% higher in E. globulus than in L. apiculata while, in contrast, lateral shoot formation was 87% higher in L. apiculata . In low light, E. globulus prioritized C storage instead of growth, whereas L. apiculata prioritized growth and lateral branching. Our results suggest that shade tolerance depends on efficient light capture rather than C conservation traits. © 2017 Botanical Society of America.

  18. Effect of storage temperature on quality of light and full-fat ice cream.

    PubMed

    Buyck, J R; Baer, R J; Choi, J

    2011-05-01

    Ice cream quality is dependent on many factors including storage temperature. Currently, the industry standard for ice cream storage is -28.9 °C. Ice cream production costs may be decreased by increasing the temperature of the storage freezer, thus lowering energy costs. The first objective of this research was to evaluate the effect of 4 storage temperatures on the quality of commercial vanilla-flavored light and full-fat ice cream. Storage temperatures used were -45.6, -26.1, and -23.3 °C for the 3 treatments and -28.9 °C as the control or industry standard. Ice crystal sizes were analyzed by a cold-stage microscope and image analysis at 1, 19.5, and 39 wk of storage. Ice crystal size did not differ among the storage temperatures of light and full-fat ice creams at 19.5 or 39 wk. An increase in ice crystal size was observed between 19.5 and 39 wk for all storage temperatures except -45.6 °C. Coldness intensity, iciness, creaminess, and storage/stale off-flavor of the light and full-fat ice creams were evaluated at 39 wk of storage. Sensory evaluation indicated no difference among the different storage temperatures for light and full-fat ice creams. In a second study, light and full-fat ice creams were heat shocked by storing at -28.9 °C for 35 wk and then alternating between -23.3 and -12.2 °C every 24h for 4 wk. Heat-shocked ice creams were analyzed at 2 and 4 wk of storage for ice crystal size and were evaluated by the sensory panel. A difference in ice crystal size was observed for light and full-fat ice creams during heat-shock storage; however, sensory results indicated no differences. In summary, storage of light or full-fat vanilla-flavored ice creams at the temperatures used within this research did not affect quality of the ice creams. Therefore, ice cream manufacturers could conserve energy by increasing the temperature of freezers from -28.9 to -26.1 °C. Because freezers will typically fluctuate from the set temperature, usage of -26.1 °C allows for a safety factor, even though storage at -23.3 °C did not affect ice cream quality. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Uranus and the shape of elliptical rings

    NASA Technical Reports Server (NTRS)

    Lucke, R. L.

    1978-01-01

    It is reported that when the star SAO158687 passed behind the Uranus system, its light was occulted twice by the epsilon (fifth) ring of the planet. The first part of the ring to occult was about 100 km wide and the second part was about 40 km wide. The variable width of the ring is accounted for by differences in the orbital eccentricities of the individual particles composing the ring.

  20. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  1. A dendrimer chiroptical switch based on the reversible intramolecular photoreaction of anthracene and benzene rings.

    PubMed

    Liu, Wenjie; Cao, Derong; Peng, Jinan; Zhang, Hong; Meier, Herbert

    2010-08-02

    A series of Fréchet-type dendrimers with 9-benzyloxymethylanthracene cores were synthesized and characterized. The chiral source for the dendrimers was an (S)-2-methyl-1-butoxy group in the 3-position of the benzene ring. Irradiation at 366 nm of a dilute benzene solution led to the formation of two diastereomers (1:1) through a quantitative intramolecular [4pi+4pi] cycloaddition between the central anthracene ring and the neighboring benzene ring. The process can be reversed with 254 nm UV light or heat. The benzene rings in the dendrons work as a light-harvesting system. The optical rotation values measured for the reversible process showed fatigue resistance. Thus, a promising new type of chiroptical switch has been created that has optical rotation values as output signals.

  2. K2 and Herschel/PACS light curve of the Centaur 2060 Chiron

    NASA Astrophysics Data System (ADS)

    Marton, G.; Kiss, C.; Müller, T. G.; Lellouch, E.; Pál, A.; Molnár, L.

    2017-09-01

    Recently 2060 Chiron was identified to harbor a ring system (Ortiz et al. 2015) similar to the other Centaur 10199 Chariklo (Braga-Ribas et al. 2014). We observed 2060 Chiron in the visible range in Campaign 12 of the Kepler/K2 mission, that lasted from Dec 15 2016 to March 4 2017. We obtained the thermal light curve with the PACS photometer camera of the Herschel Space Observatory as a "Must Do Observation", taken at 70 and 160 μm on 25 December, 2012. The presence of the ring affects the rotational light curve both in the visible range and in the thermal infrared. With our new observations we can disentangle the contribution of the main body and the ring material.

  3. Inverse compton light source: a compact design proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitrick, Kirsten Elizabeth

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less

  4. The SIAM Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pairsuwan, Weerapong

    A short history of the SIAM Photon Source in Thailand is described. The facility is based on the 1 GeV storage ring obtained from the SORTEC consortium in Japan. After a redesign to include insertion straight sections it produced the first light in December 2001 and the first beam line became operational in early 2002. Special difficulties appear when a synchrotron light facility is obtained by donation, which have mostly to do with the absence of human resource development that elsewhere is commonly accomplished during design and construction. Additional problems arise by the distance of a developing country like Thailandmore » from the origin of technical parts of the donation. A donation does not provide time to generate local capabilities or include in the technical design locally obtainable parts. This makes future developments, repairs and maintenance more time consuming, difficult and expensive than it should be. In other cases, parts of components are proprietary or obsolete or both which requires redesign and engineering at a time when the replacement part should be available to prevent stoppage of operation.The build-up of a user community is very difficult, especially when the radiation spectrum is confined to the VUV regime. Most of scientific interest these days is focused on the x-ray regime. Due to its low beam energy, the SIAM storage ring did not produce useful x-ray intensities and we are therefore in the midst of an upgrade to produce harder radiation. The first step has been achieved with a 20% increase of energy to 1.2 GeV. This step shifts the critical photon energy of bending magnet radiation from 800 eV to 1.4 keV providing useful radiation up to 7 keV. A XAS-beam line has been completed in 2005 and experimentation is very active by now. The next step is to install a 6.4 T wavelength shifter by the end of 2006 resulting in a critical photon energy of 6.15 keV. Further upgrades are planed for the comming years.« less

  5. SIMULATIONS OF TRANSVERSE STACKING IN THE NSLS-II BOOSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliller III, R.; Shaftan, T.

    2011-03-28

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme.more » We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.« less

  6. Astrochemistry in TSR and CSR Ion Storage Rings

    NASA Astrophysics Data System (ADS)

    Novotny, Oldrich

    2017-04-01

    Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.

  7. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  8. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  9. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  10. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  11. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  12. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Plum, M.

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.

  13. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    NASA Astrophysics Data System (ADS)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  14. Emittance measurements in low energy ion storage rings

    NASA Astrophysics Data System (ADS)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  15. Development and operating experience of a 1.1-m-long superconducting undulator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ivanyushenkov, Y.; Harkay, K.; Borland, M.; Dejus, R.; Dooling, J.; Doose, C.; Emery, L.; Fuerst, J.; Gagliano, J.; Hasse, Q.; Kasa, M.; Kenesei, P.; Sajaev, V.; Schroeder, K.; Sereno, N.; Shastri, S.; Shiroyanagi, Y.; Skiadopoulos, D.; Smith, M.; Sun, X.; Trakhtenberg, E.; Xiao, A.; Zholents, A.; Gluskin, E.

    2017-10-01

    Development of superconducting undulators continues at the Advanced Photon Source (APS). Two years after successful installation and commissioning of the first relatively short superconducting undulator "SCU0" in Sector 6 of the APS storage ring, the second 1.1-m-long superconducting undulator "SCU1" was installed in Sector 1 of the APS. The device has been in user operation since its commissioning in May 2015. This paper describes the magnetic and cryogenic design of the SCU1 together with the results of stand-alone cold tests. The SCU1's magnetic and cryogenic performance as well as its operating experience in the APS storage ring are also presented.

  16. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Pimpec, F.; /PSI, Villigen; Kirby, R.E.

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas.

  17. Search for the 1P 1 charmonium state in overlinepp annihilations at the CERN intersecting storage rings

    NASA Astrophysics Data System (ADS)

    Baglin, C.; Baird, S.; Bassompierre, G.; Borreani, G.; Brient, J.-C.; Broll, C.; Brom, J.-M.; Bugge, L.; Buran, T.; Burq, J.-P.; Bussière, A.; Buzzo, A.; Cester, R.; Chemarin, M.; Chevallier, M.; Escoubes, B.; Fay, J.; Ferroni, S.; Gracco, V.; Guillaud, J.-P.; Khan-Aronsen, E.; Kirsebom, K.; Kylling, A.; Ille, B.; Lambert, M.; Leistam, L.; Lundby, A.; Macri, M.; Marchetto, F.; Menichetti, E.; Mörch, Ch.; Mouellic, B.; Olsen, D.; Pastrone, N.; Petrillo, L.; Pia, M. G.; Poole, J.; Poulet, M.; Rinaudo, G.; Santroni, A.; Severi, M.; Skjevling, G.; Stapnes, S.; Stugu, B.; R704 Collaboration

    1986-04-01

    This experiment has been performed at the CERN Intersecting Storage Rings to study the direct formation of charmonium states in antiproton-proton annihilations. The experimental program has partly been devoted to an inclusive scan for overlinepp → J/ψ + X in the range 3520-3530 MeV/ c2. A cluster of five events has been observed in a narrow energy band, centred on the centre of gravity of the 3P J states where the 1P 1 is expected to be. When interpreted as a new resonace, these data yield a mass m = 3525.4±0.8 MeV/ c2.

  18. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    PubMed

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  19. Physical basics of endovenous laser treatment and potential of innovative developments

    NASA Astrophysics Data System (ADS)

    Sroka, R.; Esipova, A.; Schmedt, C. G.

    2017-04-01

    During the last decade, endoluminal laser treatment (ELT) has been rapidly developing. Protocols using radially emitting ELT fibres in combination with infrared laser light show clinical advantages over the bare-fibre technique and near infrared irradiation. Although the clinical response rate is high several side effects occurred. Innovative light application systems and feedback systems are therefore being under development to potentially improve the clinical situation. The irradiation patterns of bare fibres and radially emitting 1-ring and 2-ring fibres were measured using the goniometer technique. The device robustness, device handling and tissue effects were investigated using the established ox-foot-model. Furthermore, temperature measurements were performed either intraluminal within the irradiation field using a tiny temperature sensor and on the outer surface of the vessel wall by means of a thermocamera. All fibres showed sufficient mechanical and thermal robustness. The destruction threshold is far beyond the light powers employed during clinical application. The 1-ring fibre showed very high peak temperatures for a short time, while the 2-ring-fibre hold its somewhat lower maximum temperature for a longer time. Both forms of energy application resulted in the desired shrinkage and destruction effect. In this regard, the handling of the 2-ring fibre appears subjectively more convenient with reduced sticking-related problems. Acute tissue effects could be investigated to improve the understanding especially of the interaction between handling, maneuvers and tissue effects. The 2-ring radially emitting fibre in combination with IR laser light and specific application parameters showed improved handling and safety features.

  20. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave

    PubMed Central

    Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang

    2016-01-01

    The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885

  1. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    PubMed

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  2. The reliability of determining age of red alder by ring counts

    Treesearch

    Dean S. DeBell; Boyd C. Wilson; Bernard T. Bormann

    1978-01-01

    Examination of cross-sections of 54 red alder trees from 14 stands of varying age and site conditions indicated that abnormal rings (false, partial, or missing) occur infrequently. Rings may be indistinct and ring counting must be done with great care, preferably on prepared surfaces (cross-sections or cores) and under magnification and good lighting. With such...

  3. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L., E-mail: jinliang@nankai.edu.cn

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less

  4. Condenser-free contrast methods for transmitted-light microscopy

    PubMed Central

    WEBB, K F

    2015-01-01

    Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser-free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared. PMID:25226859

  5. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  6. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    PubMed

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  7. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    PubMed Central

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-01-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkel, L.; Dejus, R.; Maines, J.

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huamg, C. W., E-mail: huang.zw@nsrrc.org.tw; Hwang, C. S., E-mail: cshwang@nsrrc.org.tw; Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan

    The Taiwan Photon Source (TPS) has been successfully commissioned. However, the minimum emittance in the TPS lattice is 1.6 nm rad. In the existing TPS storage ring lattice, it is imperative to reduce the emittance to below 1 nm rad. Therefore, a feasibility study for reducing the effective emittance of the TPS storage ring by using a Robinson wiggler was launched; the reduction is necessary to enhance the photon brilliance. In this study, a permanent-magnet multiperiod Robinson wiggler (MRW) was developed for use instead of the single-period Robinson wiggler. In general, the quadruple field of a combined function magnet inmore » the storage ring is approximately few tesla per meter. According to beam dynamic analysis, we found that it is necessary to adopt a high gradient (40 T/m) combined-function MRW magnet to reduce the emittance effectively. Therefore, a high gradient field strength is required in the combined function MRW magnet. In this study, the quadrupole field strength of the MRW magnet was allowed to be approximately 40 T/m at a magnet gap of 20 mm. The period length of the MRW magnet was 300 mm and the period number was 16. The of MRWs is discussed in regard to the possibility of increasing the photon brilliance from IU22.« less

  10. Electron cooling of a bunched ion beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  11. Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon.

    PubMed

    Tsuboi, Yasuyuki; Shimizu, Ryosuke; Shoji, Tatsuya; Kitamura, Noboru

    2009-09-09

    We demonstrate that a photochromic reaction can be driven by irradiation from a weak, near-infrared continuous-wave (NIR-CW) laser light. A two-photon ring-opening photochromic reaction of a diarylethene (DE) derivative can be induced by irradiation with a NIR-CW laser light (lambda = 808 nm). An ultrathin polymer film doped with DE in its closed form was coated onto a gold-nanoparticle-integrated glass substrate. Upon irradiation of the sample with a CW laser at low fluence (0.1-4.0 W/cm(2)), we could clearly observe bleaching of the DE (ring-opening reaction). Following the IR irradiation, the bleached absorption could be reversibly recovered by applying UV irradiation (ring-closing reaction). We verified that the yield of the photochromic ring-opening reaction of the DE was proportional to the square of the irradiation fluence. The origin of this NIR-CW-induced two-photon photochromic reaction is an "enhancing effect" that acts on the electromagnetic field (localized surface plasmon) of the gold nanoparticles. The DE interacts with the surface plasmon and receives energy from two photons, which excites it to a state from which the ring-opening reaction can be initiated.

  12. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Lauer, Tod R.; Throop, Henry B.; Showalter, Mark R.; Weaver, Harold A.; Stern, S. Alan; Spencer, John R.; Buie, Marc W.; Hamilton, Douglas P.; Porter, Simon B.; Verbiscer, Anne J.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; New Horizons Science Team

    2018-02-01

    We conducted an extensive search for dust or debris rings in the Pluto-Charon system before, during, and after the New Horizons encounter in July 2015. Methodologies included attempting to detect features by back-scattered light during the approach to Pluto (phase angle α ∼ 15°), in situ detection of impacting particles, a search for stellar occultations near the time of closest approach, and by forward-scattered light imaging during departure (α ∼ 165°). An extensive search using the Hubble Space Telescope (HST) prior to the encounter also contributed to the final ring limits. No rings, debris, or dust features were observed, but our new detection limits provide a substantially improved picture of the environment throughout the Pluto-Charon system. Searches for rings in back-scattered light covered the range 35,000-250,000 km from the system barycenter, a zone that starts interior to the orbit of Styx, the innermost minor satellite, and extends out to four times the orbital radius of Hydra, the outermost known satellite. We obtained our firmest limits using data from the New Horizons LORRI camera in the inner half of this region. Our limits on the normal I/F of an unseen ring depends on the radial scale of the rings: 2 ×10-8 (3σ) for 1500 km wide rings, 1 ×10-8 for 6000 km rings, and 7 ×10-9 for 12,000 km rings. Beyond ∼ 100, 000 km from Pluto, HST observations limit normal I/F to ∼ 8 ×10-8 . Searches for dust features from forward-scattered light extended from the surface of Pluto to the Pluto-Charon Hill sphere (rHill = 6.4 ×106 km). No evidence for rings or dust clouds was detected to normal I/F limits of ∼ 8.9 ×10-7 on ∼ 104 km scales. Four stellar occulation observations also probed the space interior to Hydra, but again no dust or debris was detected. The Student Dust Counter detected one particle impact 3.6 × 106 km from Pluto, but this is consistent with the interplanetary space environment established during the cruise of New Horizons. Elsewhere in the solar system, small moons commonly share their orbits with faint dust rings. Our results support recent dynamical studies suggesting that small grains are quickly lost from the Pluto-Charon system due to solar radiation pressure, whereas larger particles are orbitally unstable due to ongoing perturbations by the known moons.

  13. Automatic Mechetronic Wheel Light Device

    DOEpatents

    Khan, Mohammed John Fitzgerald

    2004-09-14

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  14. Fermilab Tevatron and Pbar source status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently undermore » evaluation to accomplish these goals: luminosity increase to 5 x 10/sup 31/ cm/sup -2/sec/sup -1/, production rates up to 4 x 10/sup 11/ antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade. (LEW)« less

  15. Kicker field simulation and measurement for the muon g-2 experiment at FNAL

    NASA Astrophysics Data System (ADS)

    Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration

    2017-01-01

    In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.

  16. Nuclear-matter radius studies from 58Ni(α ,α ) experiments at the GSI Experimental Storage Ring with the EXL facility

    NASA Astrophysics Data System (ADS)

    Zamora, J. C.; Aumann, T.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, Th.; Kuilman, M.; Litvinov, S.; Litvinov, Yu. A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.

    2017-09-01

    A novel method for measuring nuclear reactions in inverse kinematics with stored ion beams was successfully used to extract the nuclear-matter radius of 58Ni. The experiment was performed at the experimental heavy-ion storage ring at the GSI facility using a stored 58Ni beam at energies of 100 and 150 MeV/u and an internal helium gas-jet target. Elastically scattered α -recoils at low momentum transfers were measured with an in-ring detector system compatible with ultrahigh vacuum. Experimental angular distributions were fitted using density-dependent optical model potentials within the eikonal approximation. This permitted the extraction of the point-matter root-mean-square radius of 58Ni with an average value of 3.70(7) fm. Results from this work are in good agreement with several experiments performed in the past in normal kinematics. This pioneering experiment demonstrates a major breakthrough towards future investigations with far-from-stability stored beams using the present technique.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talman, Richard M.; Talman, John D.

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10 –29e–cm or greater will produce a statisticallymore » significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to “resurrect,” or reverse engineer, the “AGS-analog” all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM’s. As a result, the companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.« less

  18. Generation of Olympic logo with freeform lens array

    NASA Astrophysics Data System (ADS)

    Liu, Chengkun; Huang, Qilu; Qiu, Yishen; Chen, Weijuan; Liao, Tingdi

    2017-10-01

    In this paper, the Olympic rings pattern is generated by using freeform lens array and illumination light source array. Based on nonimaging optics, the freeform lens array is designed for point light source, which can generate the focused pattern of annular light spot. In order to obtain the Olympic logo pattern of five rings, the array with five freeform lenses is used. By adjusting the emission angle of each light source, the annular spot is obtained at different positions of the target plane and the Olympic rings logo is formed. We used the shading plate on the surface of the freeform lens to reduce the local light intensity so that the light spot overall irradiance distribution is more uniform. We designed a freeform lens with aperture of 26.2mm, focal length of 2000mm and the diameter of a single annual spot is 400mm. We modeled freeform lens and simulated by optical software TracePro. The ray tracing results show that the Olympic rings with uniform illumination can be obtained on the target plane with the optical efficiency up to 85.7%. At the same time, this paper also studies the effects of the target plane defocusing on the spot pattern. Simulations show that when the distance of the receiving surface to the focal plane varies within 300mm, a reasonable uniform and small distorted light spot pattern can be obtained. Compared with the traditional projection method, our method of design has the advantages of high optical efficiency, low cost and the pattern is clear and uniform.

  19. Light Affects the Chloroplast Ultrastructure and Post-Storage Photosynthetic Performance of Watermelon (Citrullus lanatus) Plug Seedlings

    PubMed Central

    Duan, Qingqing; Jiang, Wu; Ding, Ming; Lin, Ye; Huang, Danfeng

    2014-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m−2·s−1 or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality of the seedlings after removal from storage. PMID:25340859

  20. Results from the RF BPM Upgrade Prototype at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietryla, Anthony; Lill, Robert; Norum, Eric

    2006-11-20

    The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for 10 years. The monopulse radio frequency (RF) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field programmable gate array (FPGA) that performs the signal processing. A prototype systemmore » was constructed and is currently being evaluated. This paper presents the results obtained from laboratory and field tests of the prototype system.« less

  1. Results from the RF BPM upgrade prototype at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietryla, A.; Lill, R.; Norum, E.

    2006-01-01

    The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for 10 years. The monopulse radio frequency (RF) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field programmable gate array (FPGA) that performs the signal processing. A prototype systemmore » was constructed and is currently being evaluated. This paper presents the results obtained from laboratory and field tests of the prototype system.« less

  2. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    PubMed

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  3. An undulator based soft x-ray source for microscopy on the Duke electron storage ring

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis Elgin

    1998-09-01

    This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the storage ring. A diagnostic beamline consisting of a transmission grating spectrometer and scanning wire beam profile monitor was constructed to measure the spatial and spectral characteristics of the undulator radiation. Test of the system with a circulating electron beam has confirmed the magnetic and focusing properties of the undulator, and verified that it can be used without perturbing the orbit of the beam.

  4. The temporal distribution and carbon storage of large oak wood in streams and floodplain deposits

    Treesearch

    Richard P. Guyette; Daniel C. Dey; Michael C. Stambaugh

    2008-01-01

    We used tree-ring dating and 14C dating to document the temporal distribution and carbon storage of oak (Quercus spp.) wood in trees recruited and buried by streams and floodplains in northern Missouri, USA. Frequency distributions indicated that oak wood has been accumulating in Midwest streams continually since at least the...

  5. Ring-shaped dysphotopsia associated with posterior chamber phakic implantable collamer lenses with a central hole.

    PubMed

    Eom, Youngsub; Kim, Dae Wook; Ryu, Dongok; Kim, Jun-Heon; Yang, Seul Ki; Song, Jong Suk; Kim, Sug-Whan; Kim, Hyo Myung

    2017-05-01

    To evaluate the incidence of central hole-induced ring-shaped dysphotopsia after posterior chamber phakic implantable collamer lens (ICL) with central hole (hole ICL) implantation and to investigate the causes of central hole-induced dysphotopsia. The clinical study enrolled 29 eyes of 15 consecutive myopic patients implanted with hole ICL. The incidence of ring-shaped dysphotopsia after hole ICL implantation was evaluated. In the experimental simulation study, non-sequential ray tracing was used to construct myopic human eye models with hole ICL and ICL without a central hole (conventional ICL). Simulated retinal images measured in log-scale irradiance were compared between the two ICLs for an extended Lambertian light-emitting disc object 20 cm in diameter placed 2 m from the corneal vertex. To investigate the causes of hole-induced dysphotopsia, a series of retinal images were simulated using point sources at infinity with well-defined field angles (0 to -20°) and multiple ICL models. Of 29 eyes, 15 experienced ring-shaped dysphotopsia after hole ICL implantation. The simulation study using an extended Lambertian source showed that hole ICL-evoked ring-shaped dysphotopsia was formed at a retinal field angle of ±40°. Component-level analysis using a well-defined off-axis point source from infinity revealed that ring-shaped dysphotopsia was generated by stray light refraction from the inner wall of the hole and the posterior ICL surface. Hole ICL-evoked ring-shaped dysphotopsia was related to light refraction at the central hole structure. Surgeons are advised to explain to patients the possibility of ring-shaped dysphotopsia after hole ICL implantation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. A FODO racetrack ring for nuSTORM: design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-01

    The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arcmore » length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less

  7. Sensory acceptability of squid rings gamma irradiated for shelf-life extension

    NASA Astrophysics Data System (ADS)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2017-01-01

    The feasibility of extending the shelf-life of a squid product by gamma irradiation was analyzed. Illex argentinus rings were irradiated at 4 and 8 kGy; and stored at 4±1 °C during 77 days. No mesophilic bacteria, enterobacteriaceae and coliforms were detected in irradiated rings during storage. Psychrotrophic bacteria were significantly reduced by irradiation; their counts were fitted to a growth model which was further used for shelf-life estimations: 3 and 27 days for 0 and 4 kGy, respectively. Initially, non-irradiated as well as irradiated rings had very good sensory scores. The overall acceptability of 4 and 8 kGy rings did not decrease during 27 and 64 days, respectively, while control samples spoiled after 3 days. A radiation dose range for squid rings preservation was defined, which attained the technological shelf-life extension objective, without impairing sensory quality.

  8. Near Infrared Photometry of the Jovian Ring and Adrastea

    NASA Astrophysics Data System (ADS)

    Meier, Roland; Smith, Bradford A.; Owen, Tobias C.; Becklin, E. E.; Terrile, Richard J.

    1999-10-01

    The near IR spectral reflectance of the Jupiter dust ring is poorly known because of problems with scattered light from the planet. Here we report colors for the jovian ring and one of the two ring satellites, Adrastea, using observations from the near-IR camera NICMOS on the Hubble Space Telescope. Near the time when the Earth crossed the jovian ring plane in the fall of 1997, we recorded broad-band images at ˜1.1 (F110W), ˜1.6 (F160W), and ˜2.05 μm (F205W) and derived a single-pass, in radial direction measured ring brightness of 19.19±0.07, 18.76±0.06, and 18.49±0.04 mag linear arcsec -1, respectively. These single-pass radial ring brightnesses were derived from the observable part of the ring at a projected distance of >1.2 RJ using a model to remove projection effects. The corresponding apparent magnitudes for Adrastea are 18.30±0.10 (F110W), 17.73±0.09 (F160W), and 17.57±0.07 mag (F205W), obtained at a phase angle of φ=11.3°. The relative spectral reflectance of the ring and that of Adrastea turn out to be nearly identical, slightly reddish with a slope of about 15-20% between 1 and 2 μm. No evidence for transient ice crystals to be present in the main ring is seen. Our data are also in reasonable agreement with earlier ground-based measurements by Neugebauer et al. (1981), if we take their relatively large errors into account. The similarities of the colors of all inner satellites, including Io, are striking. The measured ring color provides evidence that the backscattered light from the ring is due to grains with mean particle sizes in excess of several micrometers. We were also able to infer a spatial particle distribution for the main ring. Its radial surface-density profile peaks sharply near the outer edge of the ring at the orbit of Adrastea, suggesting a strong dynamical relationship between the satellite and the ring particles. Our radial profile of the main ring is in excellent agreement with the results from Voyager images in backscattered light at visible wavelengths, except that we could not resolve any fine structures. The halo above and below the ring plane with a peak brightness near the inner edge of the ring appears to have a blue color compared to the main ring, but due to the low surface brightness of the halo the statistical significance of this color trend is only marginal. Such a color trend would be consistent with a dust population dominated by particles smaller than those in the main ring.

  9. Correction to AD/RHIC-47, Beam Transfer From AGS to RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, J.; Foelsche, H.

    1988-12-12

    RHIC an acronym for Relativistic Heavy Ion Collider, is a facility for colliding heavy ions with each other, proposed for construction at Brookhaven National Laboratory. This facility and the motivation for building it, have been described. It consists of two intersecting storage rings and the purpose of this note is to describe how these two rings are to be filled with beam.

  10. Simulation of emittance dilution in electron storage ring from Compton backscattering

    NASA Astrophysics Data System (ADS)

    Blumberg, L. N.; Blum, E.

    A Monte-Carlo simulation of Compton backscattered kappa(sub L) = 3.2-micron photons from an IR-FEL on 75-MeV electrons in a storage ring yields an RMS electron energy spread of delta(sub E) = 11.9-keV for a sample of 10(exp 7) single scattering events. Electrons are sampled from a beam of natural energy spread sigma(sub E) = 5.6-keV and damped transverse angle spreads sigma(sub x)(prime) = .041-mrad and sigma(sub y)(prime) = .052-mrad (100%) coupling, scaled from the 200-MeV BNL XLS compact storage ring. The Compton-scattered x-rays are generated from an integral of the CM Klein-Nishina cross-section transformed to the lab. A tracking calculation has also been performed in 6-dimensional phase space. Initial electron coordinates are selected randomly from a Gaussian distribution of RMS spreads sigma(sub xo) = .102-mm, sigma(sub x(prime)o) = .041-mrad, sigma(sub yo) = .018-mm, sigma(sub y(prime)o) = .052-mrad, sigma(sub (phi)o) = 22-mrad and sigma(sub Eo) = 6-keV. A sample of 10000 electrons were each following for 40000 turns around the ring through an RF cavity of f(sub RF) = 211.54-MHz and peak voltage V(sub m)=300-keV. Preliminary results indicate that the resulting energy distribution is quite broad with an RMS width of delta(sub E) = 124-keV. The transverse widths are only slightly increased from their original values, i.e. delta(sub x) = .106-mm and delta(sub x)(prime) = .043 mrad. The scaled energy spread of delta(sub E) approximately = 360-keV for approximately 350,000 turns desired in a 10-msec x-ray angiography exposure is well within the RF bucket used here; even V(sub m) less than 50-kV is adequate. Further, the electron energy spread adds a negligible RMS x-ray energy spread of delta(sub Ex) = .32-keV. The electron energy damping time of tau(sub E) = 379-msec at 75-MeV in an XLS-type ring allows for damping this induced spread and top-off of the ring between heart cycles.

  11. Argonne - Ring Resonators

    Science.gov Websites

    -- Link6 -- Integrated Photonic Spectrographs for Astronomy Optical Multi-Mode Interference Devices Dual Guiding, Modulating, and Emitting Light on Silicon Scope1 -- Scope 2 -- Lamp1 -- optical Ring Resonators

  12. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM).

    PubMed

    Fu, Guo; Huang, Tao; Buss, Jackson; Coltharp, Carla; Hensel, Zach; Xiao, Jie

    2010-09-13

    The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200-300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.

  13. Fiber optic sensor system for detecting movement or position of a rotating wheel bearing

    DOEpatents

    Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.

    1997-01-01

    An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

  14. The design improvement of horizontal stripline kicker in TPS storage ring

    NASA Astrophysics Data System (ADS)

    Chou, P. J.; Chan, C. K.; Chang, C. C.; Hsu, K. T.; Hu, K. H.; Kuan, C. K.; Sheng, I. C.

    2017-07-01

    We plan to replace the existing horizontal stripline kicker of the transverse feedback system with an improved design. Large reflected power was observed at the downstream port of stripline kicker driven by the feedback amplifier. A rapid surge of vacuum pressure was observed when we tested the high current operation in TPS storage ring in April 2016. A burned feedthrough of the horizontal stripline kicker was discovered during a maintenance shutdown. The improved design is targeted to reduce the reflection of driving power from feedback system and to reduce beam induced RF heating. This major modification of the design is described. The results of RF simulation performed with the electromagnetic code GdfidL are reported as well.

  15. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  16. Astrochemistry at the Cryogenic Storage Ring

    NASA Astrophysics Data System (ADS)

    Kreckel, Holger; Becker, Arno; Blaum, Klaus; Breitenfeldt, Christian; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth; Heber, Oded; Karthein, Jonas; Krantz, Claude; Meyer, Christian; Mishra, Preeti; Novotny, Oldrich; O'Connor, Aodh; Saurabh, Sunny; Schippers, Stefan; Spruck, Kaija; Kumar, S. Sunil; Urbain, Xavier; Vogel, Stephen; von Hahn, Robert; Wilhelm, Patrick; Wolf, Andreas; Zajfman, Daniel

    2017-01-01

    Almost 200 different molecular species have been identified in space, and this number continues to grow steadily. This surprising molecular diversity bears witness to an active reaction network, in which molecular ions are the main drivers of chemistry in the gas phase. To study these reactions under controlled conditions in the laboratory is a major experimental challenge. The new Cryogenic Storage Ring (CSR) that has recently been commissioned at the Max Planck Institute for Nuclear Physics in Heidelberg will serve as an ideal testbed to study cold molecular ions in the gas phase. With residual gas densities of <140 cm-3 and temperatures below 10K, the CSR will allow for merged beams collision studies involving molecular ions, neutral atoms, free electrons and photons under true interstellar conditions.

  17. Measurement of the Two-Photon Exchange Contribution to the Elastic e ± p Scattering Cross Sections at the VEPP-3 Storage Ring

    DOE PAGES

    Rachek, I. A.; Arrington, J.; Dmitriev, V. F.; ...

    2015-02-12

    The ratio of the elastic e +p to e –p scattering cross sections has been measured precisely, allowing the determination of the two-photon exchange contribution to these processes. This neglected contribution is believed to be the cause of the discrepancy between the Rosenbluth and polarization transfer methods of measuring the proton electromagnetic form factors. The experiment was performed at the VEPP-3 storage ring at beam energies of 1.6 and 1.0 GeV and at lepton scattering angles between 15° and 105°. The data obtained show evidence of a significant two-photon exchange effect. Furthermore, the results are compared with several theoretical predictions.

  18. Measurement of Tensor Analyzing Powers for Elastic Electron Scattering from a Polarized {sup 2}H Target Internal to a Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, M.; Bouwhuis, M.; Passchier, E.

    1996-09-01

    We report an absolute measurement of the tensor analyzing powers {ital T}{sub 20} and {ital T}{sub 22} in elastic electron-deuteron scattering at a momentum transfer of 1.6 fm{sup {minus}1}. The novel approach of this measurement is the use of a tensor polarized {sup 2}H target internal to an electron storage ring, with {ital in} {ital situ} measurement of the polarization of the target gas. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors. The techniques demonstrated have broad applicability to further measurements of spin-dependent electron scattering. {copyright} {ital 1996 The American Physical Society.}

  19. Research and Development on the Storage Ring Vacuum System for the APS Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillwell, B.; Brajuskovic, B.; Carter, J.

    A number of research and development activities are underway at Argonne National Laboratory to build confidence in the designs for the storage ring vacuum system required for the Advanced Photon Source Up-grade project (APS-U) [1]. The predominant technical risks are: excessive residual gas pressures during operation; insufficient beam position monitor stability; excessive beam impedance; excessive heating by induced electrical surface currents; and insufficient operational reliability. Present efforts to mitigate these risks include: building and evaluating mockup assemblies; performing mechanical testing of chamber weld joints; developing computational tools; investigating design alternatives; and performing electrical bench measurements. Status of these activities andmore » some of what has been learned to date will be shared.« less

  20. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings.

    PubMed

    Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik

    2014-09-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.

  1. 46 CFR 112.55-5 - Emergency lighting loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND POWER SYSTEMS Storage Battery Installation § 112.55-5 Emergency lighting loads. When supplying emergency lighting loads, the storage battery initial voltage must not exceed the standard system voltage by...

  2. 46 CFR 112.55-5 - Emergency lighting loads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND POWER SYSTEMS Storage Battery Installation § 112.55-5 Emergency lighting loads. When supplying emergency lighting loads, the storage battery initial voltage must not exceed the standard system voltage by...

  3. 46 CFR 112.55-5 - Emergency lighting loads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND POWER SYSTEMS Storage Battery Installation § 112.55-5 Emergency lighting loads. When supplying emergency lighting loads, the storage battery initial voltage must not exceed the standard system voltage by...

  4. 46 CFR 112.55-5 - Emergency lighting loads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND POWER SYSTEMS Storage Battery Installation § 112.55-5 Emergency lighting loads. When supplying emergency lighting loads, the storage battery initial voltage must not exceed the standard system voltage by...

  5. 46 CFR 112.55-5 - Emergency lighting loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND POWER SYSTEMS Storage Battery Installation § 112.55-5 Emergency lighting loads. When supplying emergency lighting loads, the storage battery initial voltage must not exceed the standard system voltage by...

  6. Effect of ascorbic acid on the stability of beta-carotene and capsanthin in paprika (Capsicum annuum) powder.

    PubMed

    Morais, H; Rodrigues, P; Ramos, C; Forgács, E; Cserháti, T; Oliveira, J

    2002-10-01

    The effect of ascorbic acid, light, and storage on the stability of the pigments beta-carotene and capsanthin in red pepper (Capsicum annuum) powder has been elucidated by determining the amount of pigment in samples treated by various concentrations of ascorbic acid. Determination of pigment concentration has been performed after different storage times using high-performance liquid chromatography. The dependence of the concentration of pigments on the concentration of ascorbic acid, presence of light and the storage time has been assessed by stepwise regression analysis. The concentration of pigments decreased at longer storage time and increased at higher concentration of ascorbic acid, beta-carotene being more sensitive towards storage time and concentration of ascorbic acid than capsanthin. Interaction between the effects of light and storage time, and light and concentration of ascorbic acid has been established.

  7. FY2017 status report: Model 9975 O-ring fixture long-term leak performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    A series of experiments to monitor the aging performance of Viton® GLT and GLT-S O-rings used in the Model 9975 shipping package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups with GLT O-rings were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially andmore » have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, a smaller test matrix with fourteen additional tests was initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. Leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The 300 °F GLT O-ring fixtures failed after 2.8 to 5.7 years at temperature. The remaining GLT O-ring fixtures aging at 300 ºF were retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 9 to 10.5 years, or in GLT O-ring fixtures aging at 270 ºF for 5.7 years. These aging temperatures bound O-ring temperatures anticipated during normal storage in K-Area Complex (KAC). Leak test failures have been experienced in all of the GLT-S O-ring fixtures aging at 300 ºF and above. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 and 250 ºF for 6.9 to 7.5 years. Data from the O-ring fixtures are generally consistent with results from compression stress relaxation testing, and provide confidence in the predictive models based on those results. However, uncertainty still exists in extrapolating these elevated temperature results to the lower temperatures of interest for normal storage in KAC. Measurement of compression set in O-rings removed from failed fixtures, compared to that from KAC surveillance O-rings, indicates margin remains for O-rings still in service. Aging and periodic leak testing will continue for the remaining PCV fixtures.« less

  8. The Propeller Belts in Saturn A Ring

    NASA Image and Video Library

    2017-01-30

    This image from NASA's Cassini mission shows a region in Saturn's A ring. The level of detail is twice as high as this part of the rings has ever been seen before. The view contains many small, bright blemishes due to cosmic rays and charged particle radiation near the planet. The view shows a section of the A ring known to researchers for hosting belts of propellers -- bright, narrow, propeller-shaped disturbances in the ring produced by the gravity of unseen embedded moonlets. Several small propellers are visible in this view. These are on the order of 10 times smaller than the large, bright propellers whose orbits scientists have routinely tracked (and which are given nicknames for famous aviators). This image is a lightly processed version, with minimal enhancement, preserving all original details present in the image. he image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 33,000 miles (54,000 kilometers) from the rings and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (330 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21059

  9. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  10. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  11. Effect of ring-shaped SiO2 current blocking layer thickness on the external quantum efficiency of high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong

    2017-12-01

    A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.

  12. Dawn's Early Light

    NASA Image and Video Library

    2017-07-10

    The light of a new day on Saturn illuminates the planet's wavy cloud patterns and the smooth arcs of the vast rings. The light has traveled around 80 minutes since it left the sun's surface by the time it reaches Saturn. The illumination it provides is feeble; Earth gets 100 times the intensity since it's roughly ten times closer to the sun. Yet compared to the deep blackness of space, everything at Saturn still shines bright in the sunlight, be it direct or reflected. This view looks toward the sunlit side of the rings from about 10 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Feb. 25, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was obtained at a distance of approximately 762,000 miles (1.23 million kilometers) from Saturn. Image scale is 45 miles (73 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21336

  13. 5. INTERIOR SHOWING WOOD STORAGE CABINETS AND 2LIGHT OVER 2LIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR SHOWING WOOD STORAGE CABINETS AND 2-LIGHT OVER 2-LIGHT, DOUBLE-HUNG, WOOD-FRAMED WINDOW THROUGH SOUTHEAST WALL AT PHOTO CENTER. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Lightning Arrestor Vault, Bishop Creek, Bishop, Inyo County, CA

  14. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  15. Upgrades at the Duke Free Electron Laser Laboratory

    NASA Astrophysics Data System (ADS)

    Howell, Calvin R.

    2004-11-01

    Major upgrades to the storage-ring based photon sources at the Duke Free Electron Laser Laboratory (DFELL) are underway. The photon sources at the DFELL are well suited for research in the areas of medicine, biophysics, accelerator physics, nuclear physics and material science. These upgrades, which will be completed by the summer 2006, will significantly enhance the capabilities of the ultraviolet (UV) free-electron laser (FEL) and the high intensity gamma-ray source (HIGS). The HIGS is a relatively new research facility at the DFELL that is operated jointly by the DFELL and the Triangle Universities Nuclear Laboratory. The gamma-ray beam is produced by Compton back scattering of the UV photons inside the FEL optical cavity off the circulating electrons in the storage ring. The gamma-ray beam is 100% polarized and its energy resolution is selected by collimation. The capabilities of the upgraded facility will be described, the status of the upgrades will be summarized, and the proposed first-generation research program at HIGS will be presented.

  16. Next Generation Muon g-2 Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty ofmore » $$a_\\mu$$ from Brookhaven E821 by a factor of 4; that is, $$\\delta a_\\mu \\sim 16 \\times 10^{-11}$$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.« less

  17. Study in Scarlet

    NASA Image and Video Library

    2015-02-09

    If your eyes could only see the color red, this is how Saturn's rings would look. Many Cassini color images, like this one, are taken in red light so scientists can study the often subtle color variations of Saturn's rings. These variations may reveal clues about the chemical composition and physical nature of the rings. For example, the longer a surface is exposed to the harsh environment in space, the redder it becomes. Putting together many clues derived from such images, scientists are coming to a deeper understanding of the rings without ever actually visiting a single ring particle. This view looks toward the sunlit side of the rings from about 11 degrees above the ringplane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on Dec. 6, 2014. The view was acquired at a distance of approximately 870,000 miles (1.4 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 27 degrees. Image scale is 5 miles (8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18301

  18. Two F Ring Views

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views, taken two hours apart, demonstrate the dramatic variability in the structure of Saturn's intriguing F ring.

    In the image at the left, ringlets in the F ring and Encke Gap display distinctive kinks, and there is a bright patch of material on the F ring's inner edge. Saturn's moon Janus (181 kilometers, or 113 miles across) is shown here, partly illuminated by reflected light from the planet.

    At the right, Prometheus (102 kilometers, or 63 miles across) orbits ahead of the radial striations in the F ring, called 'drapes' by scientists. The drapes appear to be caused by successive passes of Prometheus as it reaches the greatest distance (apoapse) in its orbit of Saturn. Also in this image, the outermost ringlet visible in the Encke Gap displays distinctive bright patches.

    These views were obtained from about three degrees below the ring plane.

    The images were taken in visible light with the Cassini spacecraft narrow-angle camera on June 29, 2005, when Cassini was about 1.5 million kilometers (900,000 miles) from Saturn. The image scale is about 9 kilometers (6 miles) per pixel.

  19. Ultraviolet Ring Around the Galaxies

    NASA Image and Video Library

    2010-08-11

    Astronomers have found unexpected rings and arcs of ultraviolet light around a selection of galaxies, four of which are shown here as viewed by NASA and the European Space Agency Hubble Space Telescope.

  20. 1. Keeper's house, oil house, light tower and storage building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house, oil house, light tower and storage building, view northeast, south or southwest sides - Petit Manan Light Station, 2.5 miles south of Petit Manan Point, Milbridge, Washington County, ME

  1. Dual Visible Light Photoredox and Gold-Catalyzed Arylative Ring Expansion

    PubMed Central

    2015-01-01

    A combination of visible light photocatalysis and gold catalysis is applied to a ring expansion–oxidative arylation reaction. The reaction provides an entry into functionalized cyclic ketones from the coupling reaction of alkenyl and allenyl cycloalkanols with aryl diazonium salts. A mechanism involving generation of an electrophilic gold(III)–aryl intermediate is proposed on the basis of mechanistic studies, including time-resolved FT-IR spectroscopy. PMID:24730447

  2. An advancement in removing extraneous color from wood for low-magnification reflected-light image analysis of conifer tree rings

    Treesearch

    Paul R. Sheppard; Alex Wiedenhoeft

    2007-01-01

    This paper describes the removal of extraneous color from increment cores of conifers prior to reflected-light image analysis of tree rings. Ponderosa pine in central New Mexico was chosen for study. Peroxide bleaching was used as a pretreatment to remove extraneous color and still yield usable wood for image analysis. The cores were bleached in 3% peroxide raised to...

  3. Earth Observation

    NASA Image and Video Library

    2012-08-09

    ISS032-E-017635 (9 Aug. 2012) --- A nighttime view of Kuwait City is featured in this image photographed by an Expedition 32 crew member on the International Space Station. Seen at night Kuwait City, the capital of the small Persian Gulf state of Kuwait, contrasts dramatically with the dark surface of the Persian Gulf (top) and the very sparsely populated desert area (bottom). Night views also show at a glance some aspects of urban geography that are difficult to perceive in daylight images. Here the focus of radial traffic arteries and ?ring roads? guide the eye to the financial center of the city?on the cape extending into Kuwait Bay north of the First Ring Road. The numbering of the ring roads shows the progressive southward development of the city, towards the Seventh Ring Road which still lies outside the built-up area at lower right. The striking differences in color of city lighting also provide information on the urban geography. Areas with lighting of a green tinge are, in each case, newer residential districts. The town of Al Ahmadi (lower right), known for its verdant vegetation, was built in 1946 when oil was struck and stands out with its characteristic blue night lights. Kuwait International Airport, like most major airports around the globe, is particularly bright due to the high concentration of lights.

  4. Selective enhancement of Selényi rings induced by the cross-correlation between the interfaces of a two-dimensional randomly rough dielectric film

    NASA Astrophysics Data System (ADS)

    Banon, J.-P.; Hetland, Ø. S.; Simonsen, I.

    2018-02-01

    By the use of both perturbative and non-perturbative solutions of the reduced Rayleigh equation, we present a detailed study of the scattering of light from two-dimensional weakly rough dielectric films. It is shown that for several rough film configurations, Selényi interference rings exist in the diffusely scattered light. For film systems supported by dielectric substrates where only one of the two interfaces of the film is weakly rough and the other planar, Selényi interference rings are observed at angular positions that can be determined from simple phase arguments. For such single-rough-interface films, we find and explain by a single scattering model that the contrast in the interference patterns is better when the top interface of the film (the interface facing the incident light) is rough than when the bottom interface is rough. When both film interfaces are rough, Selényi interference rings exist but a potential cross-correlation of the two rough interfaces of the film can be used to selectively enhance some of the interference rings while others are attenuated and might even disappear. This feature may in principle be used in determining the correlation properties of interfaces of films that otherwise would be difficult to access.

  5. Spin Pit Application of Image Derotated Holographic Interferometry.

    DTIC Science & Technology

    1980-09-01

    temperatures resulting from induction heating of the test structuore through the interaction of the electromagnets and the magnetic ring. Subsequent...reference beam, and a Tektronix Model 7633 storage oscilloscope. When the laser is fired, a trigger signal from the laser power supply initiates the...rapid induction heating of the test structure due to the interaction of the electromagnets and the magnetic ring was evi(lent with the switch from dc to

  6. Fused thiophene-based conjugated polymers and their use in optoelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facchetti, Antonio; Marks, Tobin J.; Takai, Atsuro

    The present teachings relate to polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds generally include as repeating units at least one annulated thienyl-vinylene-thienyl (TVT) unit and at least one other pi-conjugated unit. The annulated TVT unit can be represented by the formula: ##STR00001## where Cy.sup.1 and Cy.sup.2 can be a five- or six-membered carbocyclic ring. The annulated TVT unit can be optionally substituted at any available ring atom(s), and can be covalently linked tomore » the other pi-conjugated unit via either the thiophene rings or the carbocyclic rings Cy.sup.1 and Cy.sup.2. The other pi-conjugated unit can be a conjugated linear linker including one or more unsaturated bonds, or a conjugated cyclic linker including one or more carbocyclic and/or heterocyclic rings.« less

  7. Photocontrol of Spirodela intermedia flavonoids 1

    PubMed Central

    McClure, Jerry W.

    1968-01-01

    Clone 115 of Spirodela intermedia W. Koch grown in Hutner's medium with sucrose produces the glycoflavones vitexin and orientin in darkness or in light of various wavelengths. The anthocyanin cyanidin-3-monoglucoside was present only after prolonged illumination of the plants with white or blue light. No cyanidin-glucoside was formed under constant red light. The substitution of red, blue, or far-red light for the last 24 hours of culture under constant white light reduced each flavonoid over those maintained in white light or given 24 hours of darkness. Reducing the light intensity from 900 to 400 ft-c of constant cool-white fluorescent light had no appreciable influence on vitexin (4′-hydroxyl) but markedly reduced orientin and cyanidin-glucoside (both 3′4′-hydroxyl). Substituting alternate 12-hour periods of light and darkness for continuous light reduced the glycoflavones approximately 50% while cyanidin-glucoside was reduced about 85%. Most responses to red, blue, or far-red light are consistent with a phytochrome-controlled promotion of vitexin synthesis. The evidence suggests that in S. intermedia: A) Environmental conditions which elicit cyanidin-glucoside and glycoflavone synthesis are different since a prolonged illumination with white light is required for the former but not the latter. B) The availability of a 3′4′-hydroxyl precursor for orientin and anthocyanin probably limits their synthesis in low intensity light. Since vitexin is essentially unaltered under these conditions this also suggests that acetate or malonate units for the A-ring and the deamination products of aromatic amino acids for the B-ring and carbons of the C-ring are not limiting factors. C) Light controls the biosynthesis of flavonols in the same manner as glycoflavones; under all experimental conditions the synthesis of kaempferol paralleled vitexin while quercetin responded in the same manner as crientin. PMID:16656751

  8. Distinct Temporal-Spatial Roles for Rho Kinase and Myosin Light Chain Kinase in Epithelial Purse-String Wound Closure

    PubMed Central

    RUSSO, JOHN M.; FLORIAN, PETER; SHEN, LE; GRAHAM, W. VALLEN; TRETIAKOVA, MARIA S.; GITTER, ALFRED H.; MRSNY, RANDALL J.; TURNER, JERROLD R.

    2005-01-01

    Background & Aims Small epithelial wounds heal by purse-string contraction of an actomyosin ring that is regulated by myosin light chain (MLC) kinase (MLCK) and rho kinase (ROCK). These studies aimed to define the roles of these kinases in purse-string wound closure. Methods Oligocellular and single-cell wounds were created in intestinal epithelial monolayers. Fluorescence imaging and electrophysiologic data were collected during wound closure. Human biopsies were studied immunohistochemically. Results Live-cell imaging of enhanced green fluorescent protein-β-actin defined rapid actin ring assembly within 2 minutes after wounding. This progressed to a circumferential ring within 8 minutes that subsequently contracted and closed the wound. We therefore divided this process into 2 phases: ring assembly and wound contraction. Activated rho and ROCK localized to the wound edge during ring assembly. Consistent with a primary role in the assembly phase, ROCK inhibition prevented actin ring assembly and wound closure. ROCK inhibition after ring assembly was complete had no effect. Recruitment and activation of MLCK occurred after ring assembly was complete and coincided with ring contraction. MLCK inhibition slowed and then stopped contraction but did not prevent ring assembly. MLCK inhibition also delayed barrier function recovery. Studies of human colonic biopsy specimens suggest that purse-string wound closure also occurs in vivo, because MLC phosphorylation was enhanced surrounding oligocellular wounds. Conclusions These results suggest complementary roles for these kinases in purse-string closure of experimental and in vivo oligocellular epithelial wounds; rho and ROCK are critical for actin ring assembly, while the activity of MLCK drives contraction. PMID:15825080

  9. The cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  10. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  11. The insertion device magnetic measurement facility: Prototype and operational procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkel, L.; Dejus, R.; Maines, J.

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less

  12. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  13. Code comparison for accelerator design and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1988-01-01

    We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary inmore » these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs.« less

  14. TSR: A storage and cooling ring for HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  15. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability.

    PubMed

    Li, Jie; Liu, Yuan; Zhu, Zhijian; Zhang, Guozhu; Zou, Tao; Zou, Zhijun; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2013-01-01

    A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300-1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice.

  16. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOEpatents

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  17. Tunable electromagnetically induced transparency in integrated silicon photonics circuit.

    PubMed

    Li, Ang; Bogaerts, Wim

    2017-12-11

    We comprehensively simulate and experimentally demonstrate a novel approach to generate tunable electromagnetically induced transparency (EIT) in a fully integrated silicon photonics circuit. It can also generate tunable fast and slow light. The circuit is a single ring resonator with two integrated tunable reflectors inside, which form an embedded Fabry-Perot (FP) cavity inside the ring cavity. The mode of the FP cavity can be controlled by tuning the reflections using integrated thermo-optic tuners. Under correct tuning conditions, the interaction of the FP mode and the ring resonance mode will generate a Fano resonance and an EIT response. The extinction ratio and bandwidth of the EIT can be tuned by controlling the reflectors. Measured group delay proves that both fast light and slow light can be generated under different tuning conditions. A maximum group delay of 1100 ps is observed because of EIT. Pulse advance around 1200 ps is also demonstrated.

  18. Development and operating experience of a 1.1-m-long superconducting undulator at the Advanced Photon Source

    DOE PAGES

    Ivanyushenkov, Y.; Harkay, K.; Borland, M.; ...

    2017-10-03

    Development of superconducting undulators continues at the Advanced Photon Source (APS). Two years after successful installation and commissioning of the first relatively short superconducting undulator “SCU0” in Sector 6 of the APS storage ring, the second 1.1-m long superconducting undulator “SCU1” was installed in Sector 1 of the APS. The device has been in user operation since its commissioning in May 2015. This paper describes the magnetic and cryogenic design of the SCU1 together with the results of stand-alone cold tests. The SCU1’s magnetic and cryogenic performance as well as its operating experience in the APS storage ring are alsomore » presented.« less

  19. The development of enabling technologies for producing active interrogation beams.

    PubMed

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  20. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  1. Development and operating experience of a 1.1-m-long superconducting undulator at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanyushenkov, Y.; Harkay, K.; Borland, M.

    Development of superconducting undulators continues at the Advanced Photon Source (APS). Two years after successful installation and commissioning of the first relatively short superconducting undulator “SCU0” in Sector 6 of the APS storage ring, the second 1.1-m long superconducting undulator “SCU1” was installed in Sector 1 of the APS. The device has been in user operation since its commissioning in May 2015. This paper describes the magnetic and cryogenic design of the SCU1 together with the results of stand-alone cold tests. The SCU1’s magnetic and cryogenic performance as well as its operating experience in the APS storage ring are alsomore » presented.« less

  2. Time domain analysis of coherent terahertz synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol'tsman, G.

    2005-10-01

    The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ˜1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (˜5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.

  3. Status of the RF BPM upgrade at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietryla, A.; Bui, H.; Decker, G.

    2008-01-01

    The Advanced Photon Source (APS),a third-generation synchrotron light source, has been in operation for eleven years. The monopulse radio frequency (rf) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field-programmable gate array (FPGA) that performs the signal processing. A first-article system has beenmore » constructed and is currently being evaluated. This paper presents the results of testing of the first-article system as well as the progress made in other areas of this upgrade effort.« less

  4. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

  5. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less

  6. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajaev, V.; Borland, M.; Chae, Y.-C.

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for onemore » APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.« less

  7. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy.

    PubMed

    Hoesch, M; Kim, T K; Dudin, P; Wang, H; Scott, S; Harris, P; Patel, S; Matthews, M; Hawkins, D; Alcock, S G; Richter, T; Mudd, J J; Basham, M; Pratt, L; Leicester, P; Longhi, E C; Tamai, A; Baumberger, F

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm 2 , and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ⋅ 10 13 ph/s and well below 3 meV for high resolution spectra.

  8. Superbends expand the scope of Berkeley's ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin, David S.; Robinson, Arthur L.; Tamura, Lori S.

    2002-01-22

    While the ALS has turned out to be a world-leader in providing beams of soft X-rays -- indeed, furnishing these beams remains its core mission -- there has nonetheless been a steadily growing demand from synchrotron radiation users for harder X-rays with higher photon energies. The clamor has been strongest from protein crystallographers whose seemingly insatiable appetite for solving structures of biological macromolecules could not be satisfied by the number of crystallography beamlines available worldwide. But how to provide these X-rays in a cost-effective way without disrupting the thriving research programs of the existing ALS users was the problem. Superconductingmore » bend magnets (superbends) provided the answer for the ALS, which adopted a proposal to replace some of the normal combined-function (gradient) magnets in the curved arcs of the storage ring with superconducting dipoles that could generate higher magnetic fields and thus synchrotron light with a higher critical energy.« less

  9. Slow Orbit Feedback at the ALS Using Matlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.

    1999-03-25

    The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the globalmore » orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our resultsmore » further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).« less

  11. Two-dimensional single crystal diamond refractive x-ray lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S., E-mail: s.antipov@euclidtechlabs.com; Baryshev, S. V.; Butler, J. E.

    2016-07-27

    The next generation light sources such as diffraction-limited storage rings and high repetition rate x-ray free-electron lasers will generate x-ray beams with significantly increased brilliance. These future machines will require X-ray optical components that are capable of handling higher instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Single crystal diamond is one of the best bulk materials for this application, because it is radiation hard, has a suitable uniform index of refraction and the best available thermal properties. In this paper we report on fabrication and experimental testing ofmore » a two-dimensional (2D) single crystal diamond compound refractive X-ray lenses (CRL). These lenses were manufactured using femto-second laser cutting and tested at the Advanced Photon Source of Argonne National Laboratory.« less

  12. Design of barrier bucket kicker control system

    NASA Astrophysics Data System (ADS)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  13. Fabrication and test of model superconducting inflector for g-2 at FNAL

    DOE PAGES

    Krave, Steven; Kashikhin, Vladimir S.; Strauss, Thomas

    2017-03-01

    The new FNAL g-2 experiment is based on the muon storage ring previously used at BNL. The 1.45 T dipole magnetic field in the storage ring is required to have very high (1 ppm) homogeneity. The muon beam injected into the ring must be transported through the magnet yoke and the main superconducting coil cryostat with minimal distortions. The old inflector magnet shielded the main dipole fringe field inside the muon transport beam pipe, with an outer NbTi superconducting screen, and did not disturb the field in the area of circulating beam. Nevertheless, this magnet had coils with closed endsmore » in which a large fraction of muon beam particles were lost. A new magnet is envisioned utilizing the same cross section as the original with open ends for improved beam transport. A model magnet has been wound utilizing 3d printed parts to verify the magnetic behavior of the magnet at room temperature and validate winding of the complicated geometry required for the magnet ends. Finally, room temperature magnetic measurements have been performed and confirm the magnetic design« less

  14. Electron molecular ion recombination: product excitation and fragmentation.

    PubMed

    Adams, Nigel G; Poterya, Viktoriya; Babcock, Lucia M

    2006-01-01

    Electron-ion dissociative recombination is an important ionization loss process in any ionized gas containing molecular ions. This includes the interstellar medium, circumstellar shells, cometary comae, planetary ionospheres, fusion plasma boundaries, combustion flames, laser plasmas and chemical deposition and etching plasmas. In addition to controlling the ionization density, the process generates many radical species, which can contribute to a parallel neutral chemistry. Techniques used to obtain rate data and product information (flowing afterglows and storage rings) are discussed and recent data are reviewed including diatomic to polyatomic ions and cluster ions. The data are divided into rate coefficients and cross sections, including their temperature/energy dependencies, and quantitative identification of neutral reaction products. The latter involve both ground and electronically excited states and including vibrational excitation. The data from the different techniques are compared and trends in the data are examined. The reactions are considered in terms of the basic mechanisms (direct and indirect processes including tunneling) and recent theoretical developments are discussed. Finally, new techniques are mentioned (for product identification; electrostatic storage rings, including single and double rings; Coulomb explosion) and new ways forward are suggested.

  15. 4. Storage building, outhouse, oil house, keeper's house and light ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Storage building, outhouse, oil house, keeper's house and light tower, view southwest, northeast sides (southeast and northeast sides of keeper's house) - Petit Manan Light Station, 2.5 miles south of Petit Manan Point, Milbridge, Washington County, ME

  16. The Search for Ringed Exoplanets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    Are planetary rings as common in our galaxy as they are in our solar system? A new study demonstrates how we might search for ringed exoplanets and then possibly finds one!Saturns Elsewhere?Artists illustration of the super ring system around exoplanet J1407b. This is the only exoplanet weve found with rings, but its not at all like Saturn. [Ron Miller]Our solar system is filled with moons and planetary rings, so it stands to reason that exoplanetary systems should exhibit the same features. But though weve been in the planet-hunting game for decades, weve only found one exoplanet thats surrounded by a ring system. Whats more, that system J1407b has enormous rings that are vastly different from the modest, Saturn-like rings that we might expect to be more commonplace.Have we not discovered ringed exoplanets just because theyre hard to identify? Or is it because theyre not out there? A team of scientists led by Masataka Aizawa (University of Tokyo) has set out to answer this question by conducting a systematic search for rings around long-period planet candidates.The transit light curve of KIC 10403228, shown with three models: the best-fitting planet-only model (blue) and the two best-fitting planet+ring models (green and red). [Aizawa et al. 2017]The Hunt BeginsWhy long-period planets? Rings are expected to be unstable as the planet gets closer to the central star. Whats more, the planet needs to be far enough away from the stars warmth for the icy rings to exist. The authors therefore select from the collection of candidate transiting planets 89 long-period candidates that might be able to host rings.Aizawa and collaborators then fit single-planet models (with no rings) to the light curves of these planets and search for anomalies curves that arent fit well by these standard models. Particularly suspicious characteristics include a long ingress/egress as the planet moves across the face of the star, and asymmetry of the transit shape.After applying a series of checks to eliminate false positives, the authors are left with one candidate: KIC 10403228.Rings or Not?Schematics of the two best-fitting ringed-exoplanet models for KIC 10403228, and the possible parameters of the system. The planet crosses the disk of the star from left to right with a grazing transit. [Adapted from Aizawa et al. 2017]Next, the authors apply a wide range of ringed-exoplanet models to KIC 10403228s light curve. They find two different scenarios that fit the data well: one in which the ring is significantly tilted with respect to the orbital plane, and another in which its only slightly tilted.The authors conclude by testing a variety of other scenarios that could explain the anomalies in the light curve instead. They find that two other scenarios are plausible: 1) the star is in an eclipsing binary system, with the second star surrounded by a circumstellar disk, and 2) the star is part of a hierarchical triple, and the transits are caused by a binary star system as it orbits KIC 10403228.Though Aizawa and collaborators arent able to rule either of these other two scenarios out, they suggest that follow-up spectroscopy or high-resolution imaging may help distinguish between the different scenarios. In the meantime, their methodology for systematically searching for ringed exoplanets has proven worthwhile, and they plan to extend it now to a larger data set. Perhaps well soon find other Saturn-like planets in our galaxy!CitationMasataka Aizawa () et al 2017 AJ 153 193. doi:10.3847/1538-3881/aa6336

  17. 9975 Shipping package component long-term degradation rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    Special nuclear materials are being stored in the K-Area Complex using 3013 containers that are held within Model 9975 shipping packages. The service life for these packages in storage was recently increased from 15 to 20 years, since some of these packages have been stored for nearly 15 years. A strategy is also being developed whereby such storage might be extended beyond 20 years. This strategy is based on recent calculations that support acceptable 9975 package performance for 20 years with internal heat loads up to 19 watts, and identifies a lower heat load limit for which the package componentsmore » should degrade at half the bounding rate or less, thus doubling the effective storage life for these lower wattage packages. The components of the 9975 package that are sensitive to aging under storage conditions are the fiberboard overpack and the O-ring seals, although some degradation of the lead shield and outer drum are also possible. This report summarizes degradation rates applicable to lower heat load storage conditions. In particular, the O-ring seals should provide leak-tight performance for more than 40 years in packages for which their maximum temperature is ≤135 °F. Similarly, the fiberboard should remain acceptable in performance of its required safety functions for up to 40 years in packages with a maximum fiberboard temperature ≤125 °F.« less

  18. Hawaii Energy and Environmental Technologies Initiative 2010 (HEET10)

    DTIC Science & Technology

    2016-09-30

    illustrated how local battery storage support of the lOMW Hawi wind farm can cause grid-wide issues. However, it was found that battery cycling can...capabilities pertaining to three different ex situ diagnostics were acquired and used under HEETlO. Focus was given to the catalyst (rotating ring ...cell. These capabilities are illustrated in Figure 9 1.1.1. Figure 1.1.1: (left) rotating ring /disc electrode; (middle) membrane conductivity cell

  19. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Turner, Neal J.; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light.

  20. A FODO racetrack ring for nuSTORM: design and optimization

    DOE PAGES

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-17

    Here, the goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize themore » arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less

Top