Sample records for storage stability tests

  1. Stability of Beriplast P fibrin sealant: storage and reconstitution.

    PubMed

    Eberhard, Ulrich; Broder, Martin; Witzke, Günther

    2006-04-26

    This study was performed to investigate the stability of Beriplast P fibrin sealant (FS) across a range of storage conditions, both pre- and post-reconstitution. Storage stability of the FS was evaluated during long-term refrigeration (24 months) with or without interim storage at elevated temperatures (40 degrees C for 1 week and 25 degrees C for 1 and 3 months). Stability of individual FS components was assessed by measuring: fibrinogen content, Factor XIII activity (FXIII), thrombin activity and aprotinin potency. The package integrity of each component was also checked (sterility testing, moisture content and pH). Storage stability was also evaluated by testing the reconstituted product for adhesion (tearing force testing after mixing the solutions) and sterility. Reconstitution stability was evaluated following 3-months' storage, for up to 50 h post-reconstitution using the same tests as for the storage stability investigations. Pre-defined specifications were met for fibrinogen content, Factor XIII activity, and thrombin activity, demonstrating storage stability. Package integrity and the functionality and sterility of the reconstituted product were confirmed throughout. Reconstitution stability was demonstrated for up to 50 h following reconstitution, in terms of both tearing force and sterility tests. In conclusion, the storage stability of Beriplast P was demonstrated over a range of 24-month storage schedules including interim exposure to elevated temperature, and the reconstituted product was stable for up to 50 h.

  2. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions.

    PubMed

    Mose, Kristian F; Andersen, Klaus E; Christensen, Lars Porskjaer

    2012-04-01

    Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different storage conditions. Petrolatum samples of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxypropyl acrylate (2-HPA), cinnamal and eugenol in patch test concentrations were stored in three different test chambers (IQ chamber™, IQ Ultimate™, and Van der Bend® transport container) at room temperature and in a refrigerator. The samples were analysed in triplicate with high-performance liquid chromatography. The decrease in concentration was substantial for all five allergens under both storage conditions in IQ chamber™ and IQ Ultimate™, with the exception of 2-HEMA during storage in the refrigerator. For these two chamber systems, the contact allergen concentration dropped below the stability limit in the following order: MMA, cinnamal, 2-HPA, eugenol, and 2-HEMA. In the Van der Bend® transport container, the contact allergens exhibited acceptable stability under both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens. © 2012 John Wiley & Sons A/S.

  3. Development of Special Biological Products

    DTIC Science & Technology

    1981-01-01

    Rocky Mountain Spotted Fever (RMSF) 20. Continued B. Tissue Culture / ?Two production lots of FRhL-2 dnd three of MRC-5 were stabilized...104) was potency tested. J. Q Fever Vaccine Storage Stability Potency Testing Q fever vaccine (NDBR 105) was put on potency test. K. Rocky Mountain Spotted Fever (RMSF...Fever Vaccine Storage Stability Potency Testing Two lots of Q fever vaccine (NDBR 105) were put on potency test. K. Rocky Mountain Spotted Fever

  4. Applicability of canisters for sample storage in the determination of hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas J.; Holdren, Michael W.

    This paper evaluates the applicability of canisters for storage of air samples containing volatile organic compounds listed among the 189 hazardous air pollutants (HAPs) in the 1990 U.S. Clean Air Act Amendments. Nearly 100 HAPs have sufficient vapor pressure to be considered volatile compounds. Of those volatile organic HAPs, 52 have been tested previously for stability during storage in canisters. The published HAP stability studies are reviewed, illustrating that for most of the 52 HAPs tested, canisters are an effective sample storage approach. However, the published stability studies used a variety of canister types and test procedures, and generally considered only a few compounds in a very small set of canisters. A comparison of chemical and physical properties of the HAPs has also been conducted, to evaluate the applicability of canister sampling for other HAPs, for which canister stability testing has never been conducted. Of 45 volatile HAPs never tested in canisters, this comparison identifies nine for which canisters should be effective, and 17 for which canisters are not likely to be effective. For the other 19 HAPs, no clear decision can be reached on the likely applicability of air sample storage in canisters.

  5. Silver Nanoparticle Storage Stability in Aqueous and Biological Media

    DTIC Science & Technology

    2015-06-22

    silver nanoparticle stability from the point of synthesis to the point of testing. The recommended conditions of water storage at 4°C protected from... silver nanoparticle formulation for fabrication. (Report No. 2014-73). 13 Métraux, G. S. & Mirkin, C. A. Rapid thermal synthesis of silver ...NAVAL MEDICAL RESEARCH UNIT SAN ANTONIO SILVER NANOPARTICLE STORAGE STABILITY IN AQUEOUS AND BIOLOGICAL MEDIA NATALIE A

  6. [THERMAL STABILITY AS A PROGNOSTIC INDICATOR OF CONSERVATION OF LIVE EMBRYONIC SMALLPOX VACCINE (TEOVAC) DURING STORAGE].

    PubMed

    Zhukov, V A; Kokorev, S V; Rogozhkina, S V; Melnikov, D G; Terentiev, A I; Kovalchuk, E A; Vakhnov, E Yu; Borisevich, S V

    2016-01-01

    Determination of values of coefficients of thermal stability of TEOVac for prognosis of conservation of the vaccine (specific biological activity) during the process of warranty period storage. TEOVac (masticatory tablets) in primary packaging was kept at increased temperature (accelerated and stress-tests) and at the conditions established by PAP for the preparation (long-term tests). Biological activity of the vaccine was determined by titration on 12-day chicken embryos. A correlation between the value of coefficients of thermal stability and conservation of the prepared series of the condition preparation at the final date of storage was experimentally established. Coefficients of thermal stability could be used as a prognostic indicator of quality of the produced pelleted formulation of the preparation for evaluation of conservation of the vaccine during warranty period storage.

  7. Long-term physical and oxidative stability of liposomes containing glycerides of lipoic acid

    USDA-ARS?s Scientific Manuscript database

    The acyl glycerides of lipoic and dihydrolipoic acids may serve as slow-release sources for cutaneous delivery of these antioxidants when formulated in a liposomal vehicle. Accelerated storage testing was conducted to determine the storage stability of the lipoic derivatives and of the soybean phosp...

  8. Pyridostimine Bromide 30mg Stability in Extended Storage Conditions

    DTIC Science & Technology

    2017-12-03

    limit 100 words): Pyridostigmine bromide 30mg is approved by the Federal Drug Administration (FDA) as a pre -treatment of nerve gas exposure. The...under controlled temperatu,re and humidity. The tablets will be tested at 0, 3, 4, 5, and 6 months after removal from refrigerator when stored at both...Guidance definitions of storage conditions required for stability testing to obtain new drug approval in different climate zones in the world. At

  9. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry.

    PubMed

    Brown, Veronica M; Crump, Derrick R; Plant, Neil T; Pengelly, Ian

    2014-07-11

    The standard method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air (ISO 16000-6:2011) specifies sampling onto the sorbent Tenax TA followed by analysis using thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The informative Annex D to the standard suggests the use of multi-sorbent samplers to extend the volatility range of compounds which can be determined. The aim of this study was to investigate the storage performance of Tenax TA and two multi-sorbent tubes loaded with a mixture of nine VOCs of relevance for material emissions testing. The sorbent combinations tested were quartz wool/Tenax TA/Carbograph™ 5TD and quartz wool/Tenax TA/Carbopack™ X. A range of loading levels, loading conditions (humidities and air volume), storage times (1-4 weeks) and storage conditions (refrigerated and ambient) were investigated. Longer term storage trials (up to 1 year) were conducted with Tenax TA tubes to evaluate the stability of tubes used for proficiency testing (PT) of material emissions analyses. The storage performance of the multi-sorbent tubes tested was found to be equal to that for Tenax TA, with recoveries after 4 weeks storage of within about 10% of the amounts loaded. No consistent differences in recoveries were found for the different loading or storage conditions. The longer term storage trials also showed good recovery for these compounds, although two other compounds, hexanal and BHT, were found to be unstable when stored on Tenax TA. The results of this study provide confidence in the stability of nine analytes for up to 4 weeks on two multi-sorbent tubes for material emissions testing and the same compounds loaded on Tenax TA sorbent for a recently introduced PT scheme for material emissions testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Etanercept (Enbrel®) alternative storage at ambient temperature.

    PubMed

    Shannon, Edel; Daffy, Joanne; Jones, Heather; Paulson, Andrea; Vicik, Steven M

    2017-01-01

    Biologic disease-modifying antirheumatic drugs, including tumor necrosis factor inhibitors such as etanercept (Enbrel ® ), have improved outcomes for patients with rheumatic and other inflammatory diseases, with sustained remission being the optimal goal for patients with rheumatoid arthritis. Flexible and convenient treatment options, compatible with modern lifestyle, are important in helping patients maintain treatment and manage their disease. Etanercept drug product (DP) is available in lyophilized powder (Lyo) for solution injection, prefilled syringe, and prefilled pen presentations and is typically stored under refrigerated conditions. We aimed to generate a comprehensive analytical data package from stability testing of key quality attributes, consistent with regulatory requirements, to determine whether the product profile of etanercept is maintained at ambient temperature. Test methods assessing key attributes of purity, quality, potency, and safety were performed over time, following storage of etanercept DP presentations under a range of conditions. Results and statistical analysis from stability testing (based on size exclusion high-performance liquid chromatography, hydrophobic interaction chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis Coomassie) across all etanercept presentations (10 and 25 mg/vial Lyo DP; 25 and 50 mg prefilled syringe DP; 50 mg prefilled pen DP) showed key stability-indicating parameters were within acceptable limits through the alternative storage condition of 25°C±2°C for 1 month. Stability testing performed in line with regulatory requirements supports a single period of storage for etanercept DP at an alternative storage condition of 25°C±2°C for up to 1 month within the approved expiry of the product. This alternative storage condition represents further innovation in the etanercept product lifecycle, providing greater flexibility and enhanced overall convenience for patients.

  11. Dish-mounted latent heat buffer storage

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  12. Stabilization of IgG1 in spray-dried powders for inhalation.

    PubMed

    Schüle, S; Schulz-Fademrecht, T; Garidel, P; Bechtold-Peters, K; Frieb, W

    2008-08-01

    The protein stabilizing capabilities of spray-dried IgG1/mannitol formulations were evaluated. The storage stability was tested at different residual moisture levels prepared by vacuum-drying or equilibration prior to storage. Vacuum-drying at 32 degrees C/0.1mbar for 24h reduced the moisture level below 1%, constituting an optimal basis for improved storage stability. The crystalline IgG1/mannitol powders with a weight ratio of 20/80 up to 40/60 failed to prevent the antibody aggregation as assessed by size exclusion chromatography during storage. Ratios of 60/40 up to 80/20 IgG1/mannitol provided superior stability of the antibody and the powders could be produced with high yields. The lower the residual moisture, the better was the stabilizing capability. An amount of 20% mannitol provided the best stabilization. Storage stability of 60/40, 70/30, and 80/20 IgG1/mannitol formulations over one year was adequate at 2-8 degrees C and 25 degrees C. Closed storage (sealed in vials) at 40 degrees C/75% RH and open storage at 25 degrees C/60% RH revealed that the stability still required optimization. The lower the protein content, the better was the powder flowability. The aerodynamic properties of powders spray-dried with 10% solids content were inadequate, as the particle size ranged between 5.1 and 7.2 microm and the fine particle fraction accounted for only 4-11%. Reduction of the solids content to 2.5% did improve the aerodynamic properties as the mass mean aerodynamic diameter was reduced to 3.6 microm and the fine particle fraction was increased to about 14%. The reduction of the solids content did not influence the storage stability significantly. Also spray-drying at higher temperatures had no significant impact on the storage stability, despite a higher tendency to form amorphous systems. In order to improve the storage stability and to maintain the good flowability of 70/30 IgG1/mannitol powder or to keep the storage stability but to improve the flowability of the 80/20 IgG1/mannitol powder, mannitol was partially substituted by a second excipient such as trehalose, sucrose, glycine, lactose, lactosucrose, or dextran 1. Differences in the stabilizing capability were noticeable upon closed storage at 40 degrees C/75% RH and open powder storage. Protein stabilization was improved by the addition of glycine but trehalose and sucrose were most effective in preventing aggregation, which can be primarily attributed to the water replacement properties of the sugars. The addition of another excipient, isoleucine had positive effects on both flowability and protein stability.

  13. Improved Storage Stability of Meal, Ready-To-Eat Cheese Spread Under Heat-Stressing Conditions

    DTIC Science & Technology

    2009-11-01

    7 3.2 Hunter L*a*b Colorimetry ...10 4.2 Hunter L*a*b Colorimetry ...testing, the study consisted of L*a*b* colorimetry , photography, emulsion stability testing, and First Strike Ration™ field testing at Fort Bragg, NC

  14. Stability of Chronic Hepatitis-Related Parameters in Serum Samples After Long-Term Storage.

    PubMed

    Yu, Rentao; Dan, Yunjie; Xiang, Xiaomei; Zhou, Yi; Kuang, Xuemei; Yang, Ge; Tang, Yulan; Liu, Mingdong; Kong, Weilong; Tan, Wenting; Deng, Guohong

    2017-06-01

    Serum samples are widely used in clinical research, but a comprehensive research of the stability of parameters relevant to chronic hepatitis and the effect of a relatively long-term (up to 10 years) storage on the stability have rarely been studied. To investigate the stability of chronic hepatitis-related parameters in serum samples after long-term storage. The storage stability of common clinical parameters such as total bile acid (TBA), total bilirubin (TBIL), potassium, cholesterol, and protein parameters such as alanine aminotransferase (ALT), creatine kinase (CK), γ-glutamyltransferase (GGT), albumin, high-density lipoprotein (HDL) and also hepatitis B virus (HBV) DNA, hepatitis C virus (HCV) RNA, hepatitis B surface antigen (HBsAg), and chemokine (C-X-C motif) ligand 10 (CXCL10) were tested in serum samples after storing at -20°C or -70°C for 1, 2, 3, 7, 8, and 10 years. Levels of TBA, TBIL, and protein parameters such as ALT, CK, GGT, HDL, and HBsAg decreased significantly, but levels of potassium and cholesterol increased significantly after long-term storage, whereas blood glucose and triglycerides were stable during storage. HBV DNA remained stable at -70°C but changed at -20°C, whereas HCV RNA was stable after 1-, 2-, and 3-year storage. CXCL10 was still detectable after 8-year storage. Low temperatures (-70°C/80°C) are necessary for storage of serum samples in chronic hepatitis B research after long-term storage.

  15. Effect of sample storage temperature and buffer formulation on faecal immunochemical test haemoglobin measurements.

    PubMed

    Symonds, Erin L; Cole, Stephen R; Bastin, Dawn; Fraser, Robert Jl; Young, Graeme P

    2017-12-01

    Objectives Faecal immunochemical test accuracy may be adversely affected when samples are exposed to high temperatures. This study evaluated the effect of two sample collection buffer formulations (OC-Sensor, Eiken) and storage temperatures on faecal haemoglobin readings. Methods Faecal immunochemical test samples returned in a screening programme and with ≥10 µg Hb/g faeces in either the original or new formulation haemoglobin stabilizing buffer were stored in the freezer, refrigerator, or at room temperature (22℃-24℃), and reanalysed after 1-14 days. Samples in the new buffer were also reanalysed after storage at 35℃ and 50℃. Results were expressed as percentage of the initial concentration, and the number of days that levels were maintained to at least 80% was calculated. Results Haemoglobin concentrations were maintained above 80% of their initial concentration with both freezer and refrigerator storage, regardless of buffer formulation or storage duration. Stability at room temperature was significantly better in the new buffer, with haemoglobin remaining above 80% for 20 days compared with six days in the original buffer. Storage at 35℃ or 50℃ in the new buffer maintained haemoglobin above 80% for eight and two days, respectively. Conclusion The new formulation buffer has enhanced haemoglobin stabilizing properties when samples are exposed to temperatures greater than 22℃.

  16. Stressed Stability Techniques for Adjuvant Formulations.

    PubMed

    Hasija, Manvi; Sheung, Anthony; Rahman, Nausheen; Ausar, Salvador F

    2017-01-01

    Stressed stability testing is crucial to the understanding of mechanisms of degradation and the effects of external stress factors on adjuvant stability. These studies vastly help the development of stability indicating tests and the selection of stabilizing conditions for long term storage. In this chapter, we provide detailed protocols for the execution of forced degradation experiments that evaluate the robustness of adjuvant formulations against thermal, mechanical, freeze-thawing, and photo stresses.

  17. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  18. Stability study of carboplatin infusion solutions in 0.9% sodium chloride in polyvinyl chloride bags.

    PubMed

    Myers, Alan L; Zhang, Yang-Ping; Kawedia, Jitesh D; Trinh, Van A; Tran, Huyentran; Smith, Judith A; Kramer, Mark A

    2016-02-01

    Carboplatin is a platinum-containing compound with efficacy against various malignancies. The physico-chemical stability of carboplatin in dextrose 5% water (D5W) has been thoroughly studied; however, there is a paucity of stability data in clinically relevant 0.9% sodium chloride infusion solutions. The manufacturer's limited stability data in sodium chloride solutions hampers the flexibility of carboplatin usage in oncology patients. Hence, the purpose of this study is to determine the physical and chemical stability of carboplatin-sodium chloride intravenous solutions under different storage conditions. The physico-chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL carboplatin-sodium chloride solutions prepared in polyvinyl chloride bags was determined following storage at room temperature under ambient fluorescent light and under refrigeration in the dark. Concentrations of carboplatin were measured at predetermined time points up to seven days using a stability-indicating high-performance liquid chromatography method. All tested solutions were found physically stable for at least seven days. The greatest chemical stability was observed under refrigerated storage conditions. At 4℃, all tested solutions were found chemically stable for at least seven days, with nominal losses of ≤6%. Following storage at room temperature exposed to normal fluorescent light, the chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL solutions was three days, five days, and seven days, respectively. The extended physico-chemical stability of carboplatin prepared in sodium chloride reported herein permits advance preparation of these admixtures, facilitating pharmacy utility and operations. Since no antibacterial preservative is contained within these carboplatin solutions, we recommend storage, when prepared under specified aseptic conditions, no greater than 24 h at room temperature or three days under refrigeration. © The Author(s) 2014.

  19. Quality control of anti-tuberculosis FDC formulations in the global market: part II-accelerated stability studies.

    PubMed

    Ashokraj, Y; Kohli, G; Kaul, C L; Panchagnula, R

    2005-11-01

    To determine the quality and performance of rifampicin (RMP) containing fixed-dose combination (FDC) formulations of anti-tuberculosis drugs sourced from the international market with respect to physical, chemical and dissolution properties after storage at accelerated stability conditions (40 degrees C/75% relative humidity) and to identify appropriate storage specifications. Formulations across different companies and combinations were subjected to 6-month accelerated stability testing in packaging conditions recommended by the manufacturer. Various pharmacopeial and nonpharmacopeial tests for tablets were performed for 3- and 6-month samples. All the formulations were found to be stable, where extent of dissolution was within +/- 10% of that of the initial value, and all formulations passed the pharmacopeial limits for assay and content uniformity of 90-110% and +/- 15% of average drug content, respectively. Good quality RMP-containing FDCs that remain stable after 6-month accelerated stability testing are available in the marketplace.

  20. Improved stability and oral bioavailability of Ganneng dropping pills following transforming lignans of herpetospermum caudigerum into nanosuspensions.

    PubMed

    Li, Juan-Juan; Cheng, Ling; Shen, Gang; Qiu, Ling; Shen, Cheng-Ying; Zheng, Juan; Xu, Rong; Yuan, Hai-Long

    2018-01-01

    The present study was designed to improve storage stability and oral bioavailability of Ganneng dropping pills (GNDP) by transforming lignans of Herpetospermum caudigerum (HL) composed of herpetrione (HPE) and herpetin (HPN) into nanosuspension (HL-NS), the main active ingredient of GNDP, HL-NS was prepared by high pressure homogenization and lyophilized to transform into solid nanoparticles (HL nanoparticles), and then the formulated HL nanoparticles were perfused into matrix to obtain NS-GNDP by melting method. For a period of 3 months, the content uniformity, storage stability and pharmacokinetics test in vivo of NS-GNDP were evaluated and compared with regular GNDP at room temperature. The results demonstrated that uniformity of dosage units of NS-GNDP was acceptable according to the criteria of Chinese Pharmacopoeia 2015J. Physical stability of NS-GNDP was investigated systemically using photon correlation spectroscopy (PCS), zeta potential measurement, and scanning electron microscopy (SEM). There was a slight increase in particles and PI of HL-NS re-dispersed from NS-GNDP after storage for 3 months, compared with new formulated NS-GNDP, which indicated a good redispersibility of the NS-GNDP containing HL-NS after storage. Besides, chemical stability of NS-GNDP was studied and the results revealed that HPE and HPN degradation was less when compared with that of GNDP, providing more than 99% of drug residue after storage for 3 months. In the dissolution test in vitro, NS-GNDP remarkably exhibited an increased dissolution velocity compared with GNDP and no distinct dissolution difference existed within 3 months. The pharmacokinetic study showed that HPE and HPN in NS-GNDP exhibited a significant increase in AUC 0-t , C max and decrease in T max when compared with regular GNDP. These results indicated that NS-GNDP possessed superiority with improved storage stability and increased dissolution rate and oral bioavailability. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. Surface Detail Reproduction and Effect of Disinfectant and Long-Term Storage on the Dimensional Stability of a Novel Vinyl Polyether Silicone Impression Material.

    PubMed

    Nassar, Usama; Chow, Ava K

    2015-08-01

    This study investigated the surface detail reproduction and dimensional stability of a vinyl polyether silicone (VPES) in comparison to a vinylpolysiloxane (VPS) material as a function of prolonged storage for up to 2 weeks. Heavy-body VPES (EXA'lence(TM) Fast Set) and VPS (Imprint(TM) 3 Quick Step) were compared. Forty impression ingots of each material were made using a stainless steel die as described by ANSI/ADA specification No. 19. Twenty impressions of each material were disinfected by immersion in a 2.5% buffered glutaraldehyde solution. Surface quality was assessed and scored immediately after making the ingots. Dimensional stability measurements were made immediately and repeated on the same ingots after 7 and 14 days storage in ambient laboratory conditions. Data were analyzed using the D'Agostino and Pearson omnibus normality test followed by two-way repeated measures ANOVA with post hoc Bonferroni tests. Values of p < 0.01 were deemed to be significant. Disinfected VPES and VPS specimens had significantly reduced dimensional changes at 7 and 14 days when compared with the nondisinfected ones (p < 0.0001). The dimensional stability of both materials was within ANSI/ADA specification No. 19's acceptable limit throughout the 2-week test period, regardless of whether they were disinfected. Out of the initial 80 ingots, 8 VPES and 1 VPS ingot scored a 2 on the surface detail test, while the remaining 71 ingots scored 1. Heavy-body fast-set VPES experienced minimal contraction in vitro after prolonged storage, though surface detail scores were not as consistent as those of the VPS tested. The least contraction occurred when the material was examined immediately after ingot production. © 2014 by the American College of Prosthodontists.

  2. Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches

    PubMed Central

    Chu, Leonard Y.; Ye, Ling; Dong, Ke; Compans, Richard W.; Yang, Chinglai; Prausnitz, Mark R.

    2015-01-01

    Purpose This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. Methods Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. Results While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1–2 weeks outside of refrigeration, vaccine in microneedle patches lost 40–50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. Conclusions These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures. PMID:26620313

  3. The effect of prolonged storage and disinfection on the dimensional stability of 5 vinyl polyether silicone impression materials.

    PubMed

    Nassar, Usama; Flores-Mir, Carlos; Heo, Giseon; Torrealba, Ysidora

    2017-06-01

    Vinyl polyether silicone (VPES) has a different composition from other elastomeric impression materials as it combines vinyl polysiloxane (VPS) and polyether (PE). Therefore, it is important to study its properties and behavior under different test conditions. This study investigated the dimensional stability of 5 VPES consistencies when stored for up to 2 weeks, with and without using a standard disinfection procedure. 40 discs of each VPES consistency (total 200) were made using a stainless steel die and ring as described by ANSI /ADA specification No. 19. 20 discs of each material were immersed in a 2.5% buffered glutaraldehyde solution for 30 minutes. Dimensional stability measurements were calculated immediately after fabrication and repeated on the same discs after 7 and 14 days of storage. The data was analyzed using two-way ANOVA with a significance level set at α = 0.05. The discs mean contraction was below 0.5% at all test times ranging from 0.200 ± 0.014 to 0.325 ± 0.007. Repeated measures ANOVA showed a statistically significant difference after 2-week storage between the disinfected and non-disinfected groups ( P < .001). Although there was no statistically significant difference between the materials at the time of fabrication, the contraction of the materials increased with storage for 1 and 2 weeks. The dimensional changes of VPES impression discs after disinfection and prolonged storage complied with ANSI/ADA standard. The tested VPES impression materials were dimensionally stable for clinical use after disinfection for 30 minutes in glutaraldehyde and storage for up to 2 weeks.

  4. Physicochemical stability and biological activity of Withania somnifera extract under real-time and accelerated storage conditions.

    PubMed

    Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2010-03-01

    Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.

  5. Stability evaluation of quality parameters for palm oil products at low temperature storage.

    PubMed

    Ramli, Nur Aainaa Syahirah; Mohd Noor, Mohd Azmil; Musa, Hajar; Ghazali, Razmah

    2018-07-01

    Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated. In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P < 0.05), whereas the moisture content for CPO, IV for RBDPO and RBDPOo, stearic acid composition for CPO and linolenic acid composition for CPO, RBDPO, RBDPOo and RBDPS did not (P > 0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature. The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  7. Stability and potency of raw and boiled shrimp extracts for skin prick test.

    PubMed

    Pariyaprasert, Wipada; Piboonpocanun, Surapon; Jirapongsananuruk, Orathai; Visitsunthorn, Nualanong

    2015-06-01

    The difference of stability between raw and boiled shrimp extracts used in prick tests has never been investigated despite its potential consequences in tests development. The aim of this study was to compare the raw and boiled shrimp extracts of two species; Macrobrachium rosenbergii (freshwater shrimp) and Penaeus monodon (seawater shrimp) held at 4 ?C for different periods of time for their stability and potency in vivo by using the skin prick test (SPT) method. Raw and boiled M. rosenbergii and P. monodon extracts were prepared and stored at 4 ?C for 1, 7, 14 and 30 days. Thirty patients were pricked with raw and boiled shrimp extracts at all storage times, as well as prick to prick skin test (PTP) to fresh raw and boiled shrimps of both species. The mean wheal diameter (MWD) resulting from prick tests for all shrimp extracts was measured and compared. The shrimp extracts of all storage times yielded positive skin test results in the range of 90% - 100%. Raw P. monodon extracts induced larger wheals than boiled extracts at all storage times. There was no significant difference of MWD between raw and boiled M. rosenbergii extracts on day 1, 7, and 14. Significant correlations between MWD of PTP to fresh shrimps and SPT to all shrimp extracts were observed. All shrimp extracts were sterile at all storage times. Raw and boiled M. rosenbergii and P. monodon extracts were stable and sterile at 4 ?C for at most 30 days. SPT with these extracts induced more than 10 mm in shrimp allergy patients and the results were comparable with PTP to fresh shrimps.

  8. Time Domain Spectral Hole-Burning Storage

    DTIC Science & Technology

    1994-05-02

    unlimited. - ~I& AISTRACT VAtfkAanu 2W, Wors This work achieved wsveral ubsantial reslts. A highly stabilized lase system suiable for many detaild...mlies of data storage phenomena was consructed and made to wor This la was es- sential for the inUetig s which follwed. Using the stabilized lase, a re...time courelaor was dmon ed, which co ly ientd all occumances of a test sequence imbedded in random data. S ) This corxator is the fint de1moration of

  9. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  10. Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt.

    PubMed

    de O Moreira, Isabela; Passos, Thaís S; Chiapinni, Claudete; Silveira, Gabrielle K; Souza, Joana C M; Coca-Vellarde, Luis Guillermo; Deliza, Rosires; de Lima Araújo, Kátia G

    2012-02-01

    Phycobiliproteins are coloured proteins produced by cyanobacteria, which have several applications because of their colour properties. However, there is no available information about the colour stability of phycobiliproteins from Nostoc sp. in food systems. The aim of this work was to study the colour stability of a purple-coloured phycobiliprotein-rich extract from the cyanobacterium Nostoc PCC9205 in acidic solutions and yogurt. Variations of pH for Nostoc PCC9205 extract have shown stability for the L* (lightness) and a* (redness) indexes in the range 1.0-7.0. The b* index (blueness), however, increased at pH values below 4.0, indicating loss of the blue colour. The Nostoc PCC9205 extract was used as colorant in yogurt (pH 4.17) stored for 60 days. Instrumental colour analysis showed no changes for the L* and a* indexes during storage, whereas the b* index changed after 20 days of storage. A multiple comparison test showed colour instability after 20 days of storage. A hedonic scale test performed on the 60th day of storage showed acceptability of the product. The red component of the phycobiliprotein-rich extract from Nostoc PCC9205 presented an improved stability in acidic media and yogurt compared with the blue component of this extract. Copyright © 2011 Society of Chemical Industry.

  11. Impact of hydration state and molecular oxygen on the chemical stability of levothyroxine sodium.

    PubMed

    Hamad, Mazen Lee; Engen, William; Morris, Kenneth R

    2015-05-01

    Levothyroxine sodium is an important medication used primarily for treating patients with hypothyroidism. Levothyroxine sodium tablets have been recalled many times since their 1955 introduction to the US market. These recalls resulted from the failure of lots to meet their content uniformity and potency specifications. The purpose of this study is to test the hypothesis that the chemical stability of levothyroxine sodium pentahydrate is compromised upon exposing the dehydrated substance to molecular oxygen. The impact of temperature, oxygen and humidity storage conditions on the stability of solid-state levothyroxine sodium was examined. After exposure to these storage conditions for selected periods of time, high performance liquid chromatography (HPLC) was used to quantify the formation of impurities. The results showed that levothyroxine sodium samples degraded significantly over a 32-day test period when subjected to dry conditions in the presence of molecular oxygen. However, dehydrated samples remained stable when oxygen was removed from the storage chamber. Furthermore, hydrated samples were stable in the presence of oxygen and in the absence of oxygen. These results reveal conditions that will degrade levothyroxine sodium pentahydrate and elucidate measures that can be taken to stabilize the drug substance.

  12. Buffer layer enhanced stability of sodium-ion storage

    NASA Astrophysics Data System (ADS)

    Wang, Xusheng; Yang, Zhanhai; Wang, Chao; Chen, Dong; Li, Rui; Zhang, Xinxiang; Chen, Jitao; Xue, Mianqi

    2017-11-01

    Se-Se buffer layers are introduced into tin sequences as SnSe2 single crystal to enhance the cycling stability for long-term sodium-ion storage by blazing a trail of self-defence strategy to structural pulverization especially at high current density. Specifically, under half-cell test, the SnSe2 electrodes could yield a high discharge capacity of 345 mAh g-1 after 300 cycles at 1 A g-1 and a high discharge capacity of 300 mAh g-1 after 2100 cycles at 5 A g-1 with stable coulombic efficiency and no capacity fading. Even with the ultrafast sodium-ion storage at 10 A g-1, the cycling stability still makes a positive response and a high discharge capacity of 221 mAh g-1 is demonstrated after 2700 cycles without capacity fading. The full-cell test for the SnSe2 electrodes also demonstrates the superior cycling stability. The flexible and tough Se-Se buffer layers are favourable to accommodate the sodium-ion intercalation process, and the autogenous Na2Se layers could confine the structural pulverization of further sodiated tin sequences by the slip along the Na2Se-NaxSn interfaces.

  13. The effect of prolonged storage and disinfection on the dimensional stability of 5 vinyl polyether silicone impression materials

    PubMed Central

    Flores-Mir, Carlos; Heo, Giseon; Torrealba, Ysidora

    2017-01-01

    PURPOSE Vinyl polyether silicone (VPES) has a different composition from other elastomeric impression materials as it combines vinyl polysiloxane (VPS) and polyether (PE). Therefore, it is important to study its properties and behavior under different test conditions. This study investigated the dimensional stability of 5 VPES consistencies when stored for up to 2 weeks, with and without using a standard disinfection procedure. MATERIALS AND METHODS 40 discs of each VPES consistency (total 200) were made using a stainless steel die and ring as described by ANSI /ADA specification No. 19. 20 discs of each material were immersed in a 2.5% buffered glutaraldehyde solution for 30 minutes. Dimensional stability measurements were calculated immediately after fabrication and repeated on the same discs after 7 and 14 days of storage. The data was analyzed using two-way ANOVA with a significance level set at α = 0.05. RESULTS The discs mean contraction was below 0.5% at all test times ranging from 0.200 ± 0.014 to 0.325 ± 0.007. Repeated measures ANOVA showed a statistically significant difference after 2-week storage between the disinfected and non-disinfected groups (P < .001). Although there was no statistically significant difference between the materials at the time of fabrication, the contraction of the materials increased with storage for 1 and 2 weeks. CONCLUSION The dimensional changes of VPES impression discs after disinfection and prolonged storage complied with ANSI/ADA standard. The tested VPES impression materials were dimensionally stable for clinical use after disinfection for 30 minutes in glutaraldehyde and storage for up to 2 weeks. PMID:28680549

  14. Stability of pseudorabies virus during freeze-drying and storage: effect of suspending media.

    PubMed Central

    Scott, E M; Woodside, W

    1976-01-01

    The effect of suspending media on the stability of pseudorabies virus upon freeze-drying and subsequent storage was studied. A variety of media was tested, including: sodium glutamate; sucrose; lactose; lactalbumin hydrolysate; peptone; a combination of sucrose, dextran, and glutamate; and various combinations of sucrose, glutamate, and potassium phosphates. Suspending media containing glutamate, either alone or in combination with sucrose and either dextran or phosphates, afforded the greatest degree of protection during the freeze-drying process and upon storage. Some possible functions of these additives in preventing injury to the virus during freezing and drying have been suggested. PMID:182713

  15. Long-term sera storage does not significantly modify the interpretation of toxoplasmosis serologies.

    PubMed

    Dard, C; Bailly, S; Drouet, T; Fricker-Hidalgo, H; Brenier-Pinchart, M P; Pelloux, H

    2017-03-01

    Serological investigation of Toxoplasma gondii can answer many questions about toxoplasmosis in human pathology. Along these lines, studies on serum storage in biobanks need to be performed especially in terms of determining the impact of storage on relevance of sera analysis after freezing. This study assessed the impact of long-term sera storage on the stability of anti-Toxoplasma immunoglobulins. The stability of anti-Toxoplasma IgG and IgM was studied in 244 and 242 sera respectively, stored at -20°C from one month to ten years. ELISA-immunoassay (Vidas®, bioMérieux) was used for initial and post-storage analyses. Linear models for repeated measures and subgroup analyses were performed to assess the effect of storage duration and sample characteristics on immunoglobulins stability. Until ten years, the variability attributed to storage (maximum 8.07% for IgG, 13.17% for IgM) was below the variations inherent to the serological technique and allowed by quality assurance systems (15%). Subgroup analysis reported no variation attributed to sera storage. Serological interpretation was modified for 3 sera (1.2%) tested for IgM, all stored more than seven years. Anti-Toxoplasma immunoglobulins can reliably be measured for at least up to six years of storage with no modification of interpretation of toxoplasmosis serologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ni-MH storage test and cycle life test

    NASA Technical Reports Server (NTRS)

    Dell, R. Dan; Klein, Glenn C.; Schmidt, David F.

    1994-01-01

    Gates Aerospace Batteries is conducting two long term test programs to fully characterize the NiMH cell technology for aerospace applications. The first program analyzes the effects of long term storage upon cell performance. The second program analyzes cycle life testing and preliminary production lot testing. This paper summarizes these approaches to testing the NiMH couple and culminates with initial storage and testing recommendations. Long term storage presents challenges to deter the adverse condition of capacity fade in NiMH cells. Elevated but stabilized pressures and elevated but stabilized end-of-charge voltages also appear to be a characteristic phenomenon of long term storage modes. However, the performance degradation is dependent upon specific characteristics of the metal-hydride alloy. To date, there is no objective evidence with which to recommend the proper method for storage and handling of NiMH cells upon shipment. This is particularly critical due to limited data points that indicate open circuit storage at room temperature for 60 to 90 days will result in irrecoverable capacity loss. Accordingly a test plan was developed to determine what method of mid-term to long-term storage will prevent irrecoverable capacity loss. The explicit assumption is that trickle charging at some rate above the self-discharge rate will prevent the irreversible chemical changes to the negative electrode that result in the irrecoverable capacity loss. Another premise is that lower storage temperatures, typically 0 C for aerospace customers, will impede any negative chemical reactions. Three different trickle charge rates are expected to yield a fairly flat response with respect to recoverable capacity versus baseline cells in two different modes of open circuit. Specific attributes monitored include: end-of-charge voltage, end-of-charge pressure, mid-point discharge voltage, capacity, and end-of-discharge pressure. Cycle life testing and preliminary production lot testing continue to dominate the overall technology development effort at GAB. The cell life test program reflects continuing improvements in baseline cell designs. Performance improvements include lower and more stable charge voltages and pressures. The continuing review of production lot testing assures conformance to the design criteria and expectations. This is especially critical during this period of transferring technology from research and development status to production.

  17. Vapor Pressure and Predicted Stability of American Contact Dermatitis Society Core Allergens

    PubMed Central

    Jou, Paul C.; Siegel, Paul D.; Warshaw, Erin M.

    2018-01-01

    Background Accurate patch testing is reliant on proper preparation of patch test allergens. The stability of patch test allergens is dependent on several factors including vapor pressure (VP). Objective This investigation reviews the VP of American Contact Dermatitis Society Core Allergens and compares stability predictions based on VP with those established through clinical testing. Methods Standard references were accessed for determining VP in millimeters of mercury and associated temperature in degrees celsius. If multiple values were listed, VP at temperatures that most approximate indoor storage conditions (20°C and 25°C) were chosen. For mixes, the individual component with the highest VP was chosen as the overall VP, assuming that the most volatile substance would evaporate first. Antigens were grouped into low (≤0.001 mm Hg), moderate (<1 to >0.001 mm Hg), and high (≥1 mm Hg) volatility using arbitrary cutoff values. Conclusions This review is consistent with previously reported data on formaldehyde, acrylates, and fragrance material instability. Given lack of testing data, VP can be useful in predicting patch test compound stability. Measures such as air-tight multidose reagent containers, sealed single-application dispensers, preparation of patches immediately before application, and storage at lower temperatures may remedy some of these issues. PMID:27427821

  18. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  19. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  20. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type.

    PubMed

    Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong

    2016-02-01

    The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Testing sample stability using four storage methods and the macroalgae Ulva and Gracilaria

    EPA Science Inventory

    Concern over the relative importance of different sample preparation and storage techniques frequently used in stable isotope analysis of particulate nitrogen (δ15N) and carbon (δ13C) prompted an experiment to determine how important such factors were to measured values in marine...

  2. Life and stability testing of packaged low-cost energy storage materials

    NASA Astrophysics Data System (ADS)

    Frysinger, G. R.

    1980-07-01

    A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage like containers called Chubs was developed. Results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications was drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a delta T of 30 F can be used for the packaged material.

  3. Deposit formation in liquid fuels. II - The effect of selected compounds on the storage stability of Jet A turbine fuel

    NASA Technical Reports Server (NTRS)

    Worstell, J. H.; Daniel, S. R.

    1981-01-01

    The influence of substituted pyridines, pyrroles, indoles, and quinolines on the storage stability of conventional Jet A turbine fuel is evaluated. Significant increases in the amount of deposit formed in accelerated storage tests are found upon addition of these compounds at levels as low as one ppm nitrogen. While the effect is correlated with basicity of the nitrogen compound within a given compound class, the correlation does not hold between classes (pyridines, quinolines, etc.). Steric hindrance at the nitrogen atom greatly inhibits deposit promotion. The characteristics, but not the elemental composition, of deposits vary with the identity of the added nitrogen compound and with deposition temperature.

  4. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    PubMed

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  5. High-Voltage Leak Detection of a Parenteral Proteinaceous Solution Product Packaged in Form-Fill-Seal Plastic Laminate Bags. Part 3. Chemical Stability and Visual Appearance of a Protein-Based Aqueous Solution for Injection as a Function of HVLD Exposure.

    PubMed

    Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Guazzo, Dana Morton

    2013-01-01

    This Part 3 of this three-part research series reports the impact of high-voltage leak detection (HVLD) exposure on the physico-chemical stability of the packaged product. The product, intended for human administration by injection, is an aqueous solution formulation of the rapid acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. The package is a small-volume form-fill-seal plastic laminate bag. Product-packages exposed to HVLD were compared to unexposed product after storage for 9 months at recommended storage conditions of 5 ± 3 °C. No differences in active ingredient or degradation products assays were noted. No changes in any other stability indicating parameter results were observed. This report concludes this three-part series. Part 1 documented HVLD method development and validation work. Part 2 explored the impact of various package material, package temperature, and package storage conditions on HVLD test results. Detection of leaks in the bag seal area was investigated. In conclusion, HVLD is reported to be a validatable leak test method suitable for rapid, nondestructive container-closure integrity evaluation of the subject product-package. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was proven to find hole leaks in small plastic bags filled with a solution of insulin aspart intended for human injection (NovoRapid®/NovoLog® by Novo Nordisk A/S, Bagsværd, Denmark). In Part 2, the ability of the HVLD method to find other types of package leaks was tested, and the impact of package material and product storage temperature on HVLD results was explored. This final Part 3 checked how well the packaged protein drug solution maintained its potency after HVLD exposure over 9 months of storage under long-term stability conditions. Results showed that HVLD caused no harm to the product.

  6. Drug formulations intended for the global market should be tested for stability under tropical climatic conditions.

    PubMed

    Risha, P G; Vervaet, C; Vergote, G; Bortel, L Van; Remon, J P

    2003-06-01

    The quality of drugs imported into developing countries having a tropical climate may be adversely affected if their formulations have not been optimized for stability under these conditions. The present study investigated the influence of tropical climate conditions (class IV: 40 degrees C, 75% relative humidity) on the drug content, in vitro dissolution and oral bioavailability of different formulations of two essential drugs marketed in Tanzania: diclofenac sodium and ciprofloxacin tablets. Before and after 3 and 6 months storage under class IV conditions the drug content and in vitro dissolution were evaluated using United States Pharmacopoeia (USP) 24 methods. Following a randomized four-period cross-over study, the pharmacokinetic parameters of drug formulations stored for 3 months under class IV conditions were compared with those stored at ambient conditions. Drug content and drug release from all tested ciprofloxacin formulations were within USP-24 requirements and remained stable during storage at simulated tropical conditions. Oral bioavailability was also not influenced by tropical conditions. The dissolution rate of two diclofenac formulations (Diclo 50 manufactured by Camden and Dicloflame 50 manufactured by Intas) reduced significantly during storage under class IV conditions. After oral administration Camden tablets stored for 3 months under class IV conditions showed a reduction in C(max) (90% CI of C(max) ratio: 0.59 - 0.76). This reduction was smaller than expected based on the in vitro tests. Some drug formulations imported into Tanzania are not optimized for stability in a tropical climate. Manufacturers and regulatory authorities should pay more attention to the WHO recommendations for testing the stability of drugs under tropical climate conditions. Efforts should be made to improve the in vitro tests to better predict the bioavailability.

  7. Long-term stability study of clofarabine injection concentrate and diluted clofarabine infusion solutions.

    PubMed

    Kaiser, Jeanette; Krämer, Irene

    2012-06-01

    The aim of this study was to investigate the physicochemical stability of clofarabine (CAFdA) injection concentrate and ready-to-use CAFdA infusion solutions over a prolonged period of 28 days. To determine the stability of CAFdA infusion solutions, the injection concentrate (Evoltra®, 1 mg/mL, Genzyme) was diluted either with 0.9% sodium chloride or 5% glucose infusion solution. The resulting concentrations of 0.2 mg/mL or 0.6 mg/mL, respectively, were chosen to represent the lower and upper limit of the ordinary concentration range. Test solutions were stored under refrigeration (2-8°C) or at room temperature either light protected or exposed to light. CAFdA concentrations and pH values were determined at different time intervals throughout a 28-day storage period. Compatibility of diluted CAFdA infusion solutions (0.1-0.4 mg/mL) with different container materials (polyvinyl chloride (PVC), glass, and polypropylene/polyethylene (PP/PE)) was tested over a 48-h storage period. CAFdA concentrations were measured by a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. CAFdA injection concentrate and CAFdA infusion solutions remained physicochemically stable (>90% CAFdA) for 4 weeks. Results are independent of storage conditions, drug concentrations (0.2, 0.6, and 1.0 mg/mL) and diluents (0.9% sodium chloride, 5% glucose infusion solution). Adsorption of CAFdA to container material can be excluded. CAFdA injection concentrate and diluted infusion solutions in commonly used vehicles are stable for at least 28 days either refrigerated or at room temperature. Physicochemical stability favors pharmacy-based centralized preparation. Due to microbiological reasons, strict aseptic handling and storage of the products under refrigeration is recommended.

  8. Stability of a liposomal formulation containing lipoyl or dihydrolipoyl acylglycerides

    USDA-ARS?s Scientific Manuscript database

    The acylglycerides of lipoic and dihydrolipoic acids may serve as slow-release sources for cutaneous delivery of these antioxidants when formulated in a liposomal vehicle. Testing was conducted to determine the storage stability of the lipoic derivatives and of the soybean phospholipids in which the...

  9. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    NASA Astrophysics Data System (ADS)

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P < 0.0001), supporting the stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together, our results indicate that tree species influence soil C and N storage owing to how differences in decay rates affect mineral stabilization of organic matter. Further, our findings indicate that slow decay promotes soil C and N stocks at the soil surface, whereas fast decay promotes greater soil C and N stocks at depth.

  10. Stability studies of amphetamine and ephedrine derivatives in urine.

    PubMed

    Jiménez, C; de la Torre, R; Ventura, M; Segura, J; Ventura, R

    2006-10-20

    Knowledge of the stability of drugs in biological specimens is a critical consideration for the interpretation of analytical results. Identification of proper storage conditions has been a matter of concern for most toxicology laboratories (both clinical and forensic), and the stability of drugs of abuse has been extensively studied. This concern should be extended to other areas of analytical chemistry like antidoping control. In this work, the stability of ephedrine derivatives (ephedrine, norephedrine, methylephedrine, pseudoephedrine, and norpseudoephedrine), and amphetamine derivatives (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), and 3,4-methylenedioxymethamphetamine (MDMA)) in urine has been studied. Spiked urine samples were prepared for stability testing. Urine samples were quantified by GC/NPD or GC/MS. The homogeneity of each batch of sample was verified before starting the stability study. The stability of analytes was evaluated in sterilized and non-sterilized urine samples at different storage conditions. For long-term stability testing, analyte concentration in urine stored at 4 degrees C and -20 degrees C was determined at different time intervals for 24 months for sterile urine samples, and for 6 months for non-sterile samples. For short-term stability testing, analyte concentration was evaluated in liquid urine stored at 37 degrees C for 7 days. The effect of repeated freezing (at -20 degrees C) and thawing (at room temperature) was also studied in sterile urine for up to three cycles. No significant loss of the analytes under study was observed at any of the investigated conditions. These results show the feasibility of preparing reference materials containing ephedrine and amphetamine derivatives to be used for quality control purposes.

  11. Low-Storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Kennedy, Chistopher A.; Carpenter, Mark H.; Lewis, R. Michael

    1999-01-01

    The derivation of storage explicit Runge-Kutta (ERK) schemes has been performed in the context of integrating the compressible Navier-Stokes equations via direct numerical simulation. Optimization of ERK methods is done across the broad range of properties, such as stability and accuracy efficiency, linear and nonlinear stability, error control reliability, step change stability, and dissipation/dispersion accuracy, subject to varying degrees of memory economization. Following van der Houwen and Wray, 16 ERK pairs are presented using from two to five registers of memory per equation, per grid point and having accuracies from third- to fifth-order. Methods have been assessed using the differential equation testing code DETEST, and with the 1D wave equation. Two of the methods have been applied to the DNS of a compressible jet as well as methane-air and hydrogen-air flames. Derived 3(2) and 4(3) pairs are competitive with existing full-storage methods. Although a substantial efficiency penalty accompanies use of two- and three-register, fifth-order methods, the best contemporary full-storage methods can be pearl), matched while still saving two to three registers of memory.

  12. Physical and chemical stability of pemetrexed in infusion solutions.

    PubMed

    Zhang, Yanping; Trissel, Lawrence A

    2006-06-01

    Pemetrexed is a multitargeted, antifolate, antineoplastic agent that is indicated for single-agent use in locally advanced or metastatic non-small-cell lung cancer after prior chemotherapy and in combination with cisplatin for the treatment of malignant pleural mesothelioma not treatable by surgery. Currently, there is no information on the long-term stability of pemetrexed beyond 24 hours. To evaluate the longer-term physical and chemical stability of pemetrexed 2, 10, and 20 mg/mL in polyvinyl chloride (PVC) bags of dextrose 5% injection and NaCl 0.9% injection. Triplicate samples of pemetrexed were prepared in the concentrations and infusion solutions required. Evaluations for physical and chemical stability were performed initially and over 2 days at 23 degrees C protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C protected from light. Physical stability was assessed using turbidimetric and particulate measurement as well as visual observation. Chemical stability was evaluated by HPLC. All pemetrexed solutions remained chemically stable, with little or no loss of pemetrexed over 2 days at 23 degrees C, protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C, protected from light. The room temperature samples were physically stable throughout the 48 hour test period. However, pemetrexed admixtures developed large numbers of microparticulates during refrigerated storage exceeding 24 hours. Pemetrexed is chemically stable for 2 days at room temperature and 31 days refrigerated in dextrose 5% injection and NaCl 0.9% injection. However, substantial numbers of microparticulates may form in pemetrexed diluted in the infusion solutions in PVC bags, especially during longer periods of refrigerated storage. Limiting the refrigerated storage period to the manufacturer-recommended 24 hours will limit particulate formation.

  13. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise.

    PubMed

    Sun, Chanchan; Liu, Rui; Liang, Bin; Wu, Tao; Sui, Wenjie; Zhang, Min

    2018-06-01

    This article reports caloric value changes, stability and rheological properties of mayonnaises affected by fat mimetic based on Microparticulated whey protein (MWP) and high-methoxy pectin. Lipid was partially substituted at different levels of 20%, 40%, 60%, 80% and 100%, and the samples were referred to as FM20, FM40, FM60, FM80 and FFM, respectively. The full fat (FF) mayonnaise was used as a control experiment. For rheological properties, the addition of fat mimetic resulted in the gradual decrease of pseudoplastic behavior, relative thixotropic area and viscosity index, while elasticity index exhibited the opposite trend. After 30 days of storage, all mayonnaises except FM20 were categorized as weak gels under oscillatory tests, while FM20 displayed high storage stability. Long-term stability studies showed that the addition of the fat mimetic up to 60% could significantly enhance the storage stability of mayonnaises by preventing the coalescence and flocculation of the droplets. Both the dynamic mechanical measurement and stability study results suggested that MWP and pectin could be a potential fat mimetic used in mayonnaise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic (encapsulated) seeds following in vitro storage.

    PubMed

    Lata, Hemant; Chandra, Suman; Techen, Natascha; Khan, Ikhlas A; ElSohly, Mahmoud A

    2011-12-01

    The increasing utilization of synthetic (encapsulated) seeds for germplasm conservation and propagation necessitates the assessment of genetic stability of conserved propagules following their plantlet conversion. We have assessed the genetic stability of synthetic seeds of Cannabis sativa L. during in vitro multiplication and storage for 6 months at different growth conditions using inter simple sequence repeat (ISSR) DNA fingerprinting. Molecular analysis of randomly selected plants from each batch was conducted using 14 ISSR markers. Of the 14 primers tested, nine produced 40 distinct and reproducible bands. All the ISSR profiles from in vitro stored plants were monomorphic and comparable to the mother plant which confirms the genetic stability among the clones. GC analysis of six major cannabinoids [Δ(9)-tetrahydrocannabinol, tetrahydrocannabivarin, cannabidiol, cannabichromene, cannabigerol and cannabinol] showed homogeneity in the re-grown clones and the mother plant with insignificant differences in cannabinoids content, thereby confirming the stability of plants derived from synthetic seeds following 6 months storage. © Springer Science+Business Media B.V. 2011

  15. Improved Stability of a Model IgG3 by DoE-Based Evaluation of Buffer Formulations

    DOE PAGES

    Chavez, Brittany K.; Agarabi, Cyrus D.; Read, Erik K.; ...

    2016-01-01

    Formulating appropriate storage conditions for biopharmaceutical proteins is essential for ensuring their stability and thereby their purity, potency, and safety over their shelf-life. Using a model murine IgG3 produced in a bioreactor system, multiple formulation compositions were systematically explored in a DoE design to optimize the stability of a challenging antibody formulation worst case. The stability of the antibody in each buffer formulation was assessed by UV/VIS absorbance at 280 nm and 410 nm and size exclusion high performance liquid chromatography (SEC) to determine overall solubility, opalescence, and aggregate formation, respectively. Upon preliminary testing, acetate was eliminated as a potentialmore » storage buffer due to significant visible precipitate formation. An additional 2 4full factorial DoE was performed that combined the stabilizing effect of arginine with the buffering capacity of histidine. From this final DoE, an optimized formulation of 200 mM arginine, 50 mM histidine, and 100 mM NaCl at a pH of 6.5 was identified to substantially improve stability under long-term storage conditions and after multiple freeze/thaw cycles. Therefore, our data highlights the power of DoE based formulation screening approaches even for challenging monoclonal antibody molecules.« less

  16. Development and Provision of Functional Foods to Promote Health on Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Bermudez-Aguirre, D.; Cooper, M. R.; Douglas, G.; Smith, S.

    2016-01-01

    During long-duration NASA space missions, such as proposed missions to Mars, astronauts may experience negative physiological effects such as bone loss. Functional foods such as high-lycopene, high-flavonoids and high-omega-3 products and fruits and vegetables may mitigate the negative effects of spaceflight on physiological factors including the bone health of crewmembers. Previous studies showed that current ISS provisions provide high-lycopene and high-omega-3 food items but the variety is limited, which could promote menu fatigue. Bioactive compounds can degrade like other chemical compounds and lose functionality. The native concentrations and stability of bioactive compounds have never been determined in spaceflight foods, and adequate information is not available for commercial products for the storage durations required for space exploration (5 years). The purpose of this task is to develop new spaceflight foods that are high in omega-3 fatty acids, lycopene, or flavonoids, identify commercial products with these bioactive compounds that meet spaceflight requirements, and define the stability of these nutrients in storage to enable purposeful functional food incorporation into the space food system. The impact of storage temperature on the stability of lutein, lycopene, beta-carotene, omega-3 fatty acids, phenolics, anthocyanins and sterols is being studied in 12 ISS menu items stored at three different temperatures (4, 21, 35 degree C) over 2 years. Additionally, nutrient and quality stability are being assessed on a larger food set stored at 21 degree C over 2 years that contains twelve newly developed foods, 10 commercial products repackaged to spaceflight requirements, and another 5 current ISS menu items expected to be good sources of omega-3 fatty acids, lycopene, or flavonoids. All items were shipped overnight to the Linus Pauling Institute at Oregon State University (Corvalis, OR) after processing and 1-year of storage and analyzed for bioactive compound concentrations. Sensory evaluation was conducted on the newly developed functional foods and commercial products with untrained panelists (n is greater than or equal to 25) using a 9-point Hedonic scale to test sensory attributes and overall acceptability after processing and 1-year of storage (21 degree C). Repeat nutritional and sensory analyses will be conducted in the same foods after the 2-year storage period is completed. The stability of bioactive compounds in the selected foods was dependent on storage temperature and food matrix. Omega-3 showed excellent stability in the analyzed products after 1-year of storage, regardless of the storage temperature; phenolic compounds also showed good stability. Lycopene was more stable in oil-based products rather than water-based products because of the protection that lipids offer to lycopene molecules. Also, lycopene was more stable in freeze-dried products than in high moisture foods. The 12 newly developed functional foods showed good overall acceptability in sensory attributes after processing (average score 7.2 out of 9.0) and maintained sensory quality through 1-year (21 degree C); the overall acceptability was on average 7.1 after storage. Similar behavior was observed for the 10 commercial products after 1 year. The developed products are good sources of omega-3 (both plant and marine), vegetables (7 vegetable-based products), and good sources of carotenoids, such as the Curry Pumpkin Soup and the Sweet and Savory Kale. Nine of the new products, such as Mango Salad, Pickled Beets, and Braised Red Cabbage, are rich in phenolic compounds. Stability of most of the studied nutrients seems to be adequate after 1-year of storage in most of the tested foods. However, storage temperature of the food must be considered during long-duration space missions to achieve stability of all nutrients. Likewise, more information is needed regarding nutrient retention after 2-years of storage to identify nutritional gaps that may be expected over the 5-year shelf life required for a Mars mission. New developed products will be filling a gap in the current space food system to minimize menu fatigue, provide specific nutrients to reduce the negative effects of long-duration space missions and maintain crew members' health. Information about bioactive compounds in developed products after 1-year and 2-year of storage will provide the knowledge base for further product development.

  17. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    NASA Astrophysics Data System (ADS)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  18. Fluoride Availability and Stability in Children's Toothpastes in Uruguay.

    PubMed

    Loureiro, Licet Alvarez; Fager, Anunzziatta Fabruccini; Santos Moreira, Maurício José; Maltz, Marisa; Hashizume, Lina Naomi

    2017-05-15

    The purpose of this study was to evaluate the availability and stability of fluoride in children's toothpastes in Uruguay. Six commercial brands of children's toothpaste available in Uruguay were tested. Analyses were made when the dentifrices were purchased (fresh samples) and after one year of storage (aged samples). Total fluoride (TF) and total soluble fluoride (TSF) concentrations were determined using an ion specific electrode. Four of the children's dentifrices showed TF concentration similar to that specified on the package. Three products showed similar concentrations of TF and TSF with no variations after the one-year storage period. Two dentifrices showed an initial insoluble fluoride concentration greater than 50 percent, which increased with toothpaste aging. Most tested toothpastes showed a decrease in the soluble fluoride content with aging. The high quantity of insoluble fluoride found in two tested dentifrices may compromise their anti-caries efficacy.

  19. 21 CFR 58.195 - Retention of records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... specimens (except those specimens obtained from mutagenicity tests and wet specimens of blood, urine, feces, and biological fluids), samples of test or control articles, and specially prepared material, which are relatively fragile and differ markedly in stability and quality during storage, shall be retained...

  20. Long-term stability of 5-fluorouracil stored in PVC bags and in ambulatory pump reservoirs.

    PubMed

    Martel, P; Petit, I; Pinguet, F; Poujol, S; Astre, C; Fabbro, M

    1996-02-01

    Prolonged infusions of 5-fluorouracil (5FU) have been used since the early 1960s, but recently there has been a major resurgence of interest, partly because of the advent of electronically controlled portable infusion pumps. Admixtures of new formulation 5FU were subjected to stability studies to establish the feasability of continuous infusions. In the first study, the stability of 5FU, 1 or 10 mg ml(-1), was determined in poly(vinyl chloride) (PVC) bags (0.9% sodium chloride injection or 5% dextrose injection) at 4 and 21 degrees C after storage for 0, 1, 2, 3, 4, 7 and 14 days. In the second study, the stability of undiluted 5FU was tested at different temperatures (4 or 33 degrees C) in ethylene-vinyl acetate (EVA) or PVC ambulatory pump reservoirs after storage for 0, 3, 5, 7 and 14 days. For each condition, samples from each admixture were tested for drug concentration by stability-indicating high-performance liquid chromatography. The admixtures were also monitored for precipitation, colour change and pH. Evaporative water loss from the containers was measured. The stability of 5FU in PVC bags was unaffected by 14 days of storage at either 4 or 21 degrees C. When stored in EVA reservoirs, 5FU was stable for at least 2 weeks at 33 degrees C and for 3 days at 4 degrees C (a precipitate was observed after 3 days). In PVC reservoirs, 5FU was stable for over 14 days at 33 degrees C, but at 4 degrees C a precipitate appeared after 5 days. Loss of water through the reservoirs was substantial only at 33 degrees C for 14 days, and gave falsely high readings.

  1. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE PAGES

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene; ...

    2016-02-06

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  2. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  3. Clay facial masks: physicochemical stability at different storage temperatures.

    PubMed

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  4. Color stability comparison of silicone facial prostheses following disinfection.

    PubMed

    Goiato, Marcelo Coelho; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline; Zavanelli, Adriana Cristina; Ribeiro, Paula do Prado

    2009-04-01

    The purpose of this study was to evaluate the color stability of two silicones for use in facial prostheses, under the influence of chemical disinfection and storage time. Twenty-eight specimens were obtained half made from Silastic MDX 4-4210 silicone and the other half from Silastic 732 RTV silicone. The specimens were divided into four groups: Silastic 732 RTV and MDX 4-4210 with disinfection three times a week with Efferdent and Sliastic 732 RTV and MDX 4-4210 disinfected with neutral soap. Color stability was analyzed by spectrophotometry, immediately and 2 months after making the specimens. After obtaining the results, ANOVA and Tukey test with 1% reliability were used for statistical analysis. Statistical differences between mean color values were observed. Disinfection with Efferdent did not statistically influence the mean color values. The factors of storage time and disinfection statistically influenced color stability; disinfection acts as a bleaching agent in silicone materials.

  5. Cervarix, the GSK HPV-16/HPV-18 AS04-adjuvanted cervical cancer vaccine, demonstrates stability upon long-term storage and under simulated cold chain break conditions.

    PubMed

    Le Tallec, David; Doucet, Diane; Elouahabi, Abdelatif; Harvengt, Pol; Deschuyteneer, Michel; Deschamps, Marguerite

    2009-07-01

    Cervarix is a recombinant human papillomavirus (HPV)-16 and -18 L1 virus-like-particle (VLP) AS04-adjuvanted vaccine designed to protect against cervical intraepithelial neoplasia and cervical cancer caused by the HPV types 16 and 18. Assessment of the stability of the vaccine during long-term storage and after transient exposure to temperatures out of normal storage range is an integrated part of vaccine quality evaluation. This assessment was done with vaccine samples stored at 2-8 degrees C for up to 36 months, with or without simulated cold chain break (either one week at 37 degrees C, or two or four weeks at 25 degrees C). Among the stability-indicating parameters, antigenicity and immunogenicity were evaluated along with L1 antigen integrity and adsorption to aluminum. Differential scanning calorimetry (DSC) was used to investigate the structural stability of the VLPs before and after vaccine formulation and over time. Cervarix was stable at 2-8 degrees C for at least three years, and the occurrence of cold chain break had no impact, as shown by unchanged product characteristics during the full storage period. DSC analysis demonstrated that the structure of the HPV-16 and -18 L1 proteins and their corresponding VLPs was not affected throughout the manufacturing process. Moreover, the structure of aluminum-adsorbed HPV-16 and -18 L1 VLPs was robust over a 14-month test period. In conclusion, Cervarix was very stable upon long-term storage at 2-8 degrees C with or without transient exposure to higher temperatures (up to 37 degrees C). The observed robust structure of the L1 VLPs contributes to the excellent stability of Cervarix.

  6. Stability testing on typical flavonoid containing herbal drugs.

    PubMed

    Heigl, D; Franz, G

    2003-12-01

    The aim of the presented work was to examine possible changes in the flavonoid pattern of common flavonoid containing herbal drugs during long term and stress testing storage periods. HPLC fingerprint was used to demonstrate the differences in stability of individual flavonoid components. In addition, the total flavonoid content was determined according to the pharmacopoeial photometrical method. Drug material was stored according to the ICH-guidelines at 25 degrees C and 60% rh (relative humidity) for long term testing over a 24 months period or at 40 degrees C and 75% rh under stress conditions for 6 months. Increased temperatures of 80 degrees C and 100 degrees C were chosen to elucidate possible instabilities of selected flavonoids. As an overall result, during long term testing, no significant changes in the flavonoid pattern can be detected. However, some flavonoid containing herbal drugs (e.g. birch leaves), showed a decrease of most flavonoids when stored at high temperature by an increase in the respective aglycones. Similar results were obtained during storage at 40 degrees C/75% rh.

  7. Establishment of an equivalence acceptance criterion for accelerated stability studies.

    PubMed

    Burdick, Richard K; Sidor, Leslie

    2013-01-01

    In this article, the use of statistical equivalence testing for providing evidence of process comparability in an accelerated stability study is advocated over the use of a test of differences. The objective of such a study is to demonstrate comparability by showing that the stability profiles under nonrecommended storage conditions of two processes are equivalent. Because it is difficult at accelerated conditions to find a direct link to product specifications, and hence product safety and efficacy, an equivalence acceptance criterion is proposed that is based on the statistical concept of effect size. As with all statistical tests of equivalence, it is important to collect input from appropriate subject-matter experts when defining the acceptance criterion.

  8. Effect of storage duration on cytokine stability in human serum and plasma.

    PubMed

    Vincent, Fabien B; Nim, Hieu T; Lee, Jacinta P W; Morand, Eric F; Harris, James

    2018-06-14

    Quantification of analytes such as cytokines in serum samples is intrinsic to translational research in immune diseases. Optimising pre-analytical conditions is critical for ensuring study quality, including evaluation of cytokine stability. We aimed to evaluate the effect on cytokine stability of storage duration prior to freezing of serum, and compare to plasma samples obtained from patients with systemic lupus erythematosus (SLE). Protein stability was analysed by simultaneously quantifying 18 analytes using a custom multi-analyte profile in SLE patient serum and plasma samples that had been prospectively stored at 4 °C for pre-determined periods between 0 and 30 days, prior to freezing. Six analytes were excluded from analysis, because most tested samples were above or below the limit of detection. Amongst the 12 analysed proteins, 11 did not show significant signal degradation. Significant signal degradation was observed from the fourth day of storage for a single analyte, CCL19. Proteins levels were more stable in unseparated serum compared to plasma for most analytes, with the exception of IL-37 which appears slightly more stable in plasma. Based on this, a maximum 3 days of storage at 4 °C for unseparated serum samples is recommended for biobanked samples intended for cytokine analysis in studies of human immune disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Clear, T. D.; Weibel, R. T.

    An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.

  10. Effects of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models.

    PubMed

    Wong, Yen-Ming; Siow, Lee-Fong

    2015-05-01

    Red-fleshed dragon fruit (Hylocereus polyrhizus) is rich in antioxidants. The aim of this study was to determine the effects of heat pasteurization, pH adjustment, ascorbic acid addition as well as storage under agitation and light or dark condition on betacyanin content in red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate. The concentrate was produced by concentrating clarified red-fleshed dragon fruit juice in a rotary evaporator at 40 °C. UV-Visible spectrophotometer was used for analyzing betacyanin content. Addition of 0.25 % ascorbic acid, pH 4.0, and pasteurization at 65 °C for 30 min were selected as the best processing conditions to retain betacyanin content in red-fleshed dragon fruit juice. Storage at the agitation speed of 220 rpm showed that the concentrated samples had higher betacyanin stability compared to juice, while both juice and concentrate had almost similar betacyanin stability when tested for storage in the presence of light. In summary, ascorbic acid stabilized betacyanin in both juice and concentrate at agitated or non-agitated conditions. In contrast, light degraded betacyanin in both juice and concentrate models.

  11. Long-term conservation of HCV RNA at 4 degrees C using a new RNA stabilizing solution.

    PubMed

    Gonzalez-Perez, Idania; Cayarga, Anny Armas; Hernández, Yenitse Perea; de la Rosa, Iria García; González, Yaimé Josefina González; León, Carlos Silva; Alvarez, René Robaina

    2010-09-01

    Protecting RNA from degradation, whilst maintaining its biological activity, is essential in molecular biology. However, RNA is very sensitive to degradation by ribonucleases, especially at temperatures above 0 degrees C. The stability of RNA was examined at 4 degrees C and -20 degrees C, in a new stabilizing solution consisting of a low-molarity mixture of chaotropic agents guanidinium and ammonium thiocyanate, a buffer for pH stabilization, phenol, and yeast RNA. Two substrates were tested for storage: RNA in human plasma positive for hepatitis C virus (HCV) and naked RNA (purified from HCV positive human plasma or transcribed in vitro). Stability was followed by viral load estimation, using an in-house competitive RT-PCR assay. Naked RNA purified from human plasma positive for HCV was stable at 4 degrees C for at least 24 months. An RNA standard transcribed in vitro was still viable after 36 months of storage at 4 degrees C. Human plasma dilutions positive for HCV were stable for at least 5 months in this solution when stored at 4 degrees C. It was concluded that the described stabilizing solution ensures long-term stability on naked RNA at 4 degrees C, and ideal for the storage of RNA controls and standards for molecular diagnosis, the solution may be used for preserving clinical samples prior to transport to a clinical laboratory. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    PubMed

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Zhan, Hongbin; Wang, Quanrong; Liang, Xing; Ma, Teng; Chen, Chen

    2017-05-01

    Actual field pumping tests often involve variable pumping rates which cannot be handled by the classical constant-rate or constant-head test models, and often require a convolution process to interpret the test data. In this study, we proposed a semi-analytical model considering an exponentially decreasing pumping rate started at a certain (higher) rate and eventually stabilized at a certain (lower) rate for cases with or without wellbore storage. A striking new feature of the pumping test with an exponentially decayed rate is that the drawdowns will decrease over a certain period of time during intermediate pumping stage, which has never been seen before in constant-rate or constant-head pumping tests. It was found that the drawdown-time curve associated with an exponentially decayed pumping rate function was bounded by two asymptotic curves of the constant-rate tests with rates equaling to the starting and stabilizing rates, respectively. The wellbore storage must be considered for a pumping test without an observation well (single-well test). Based on such characteristics of the time-drawdown curve, we developed a new method to estimate the aquifer parameters by using the genetic algorithm.

  14. Test program to demonstrate the stability of hydrazine in propellant tanks

    NASA Technical Reports Server (NTRS)

    Moran, C. M.; Sutton, D.

    1983-01-01

    The suitability of stainless steels and Inconel for long-term hydrazine propellant-storage tanks is investigated. Rectangular coupon samples cut from propellent tanks were sealed with a measured amount of hydrazine in glass capsules, stored at 43 or 60 C, and removed after 6 to 24 months, when corrosion of the coupon and decomposition of the hydrazine was determined, and SEM and electron spectroscopy were performed on some coupons. Corrosion was found to be unmeasurably low for all the coupons, and hydrazine decomposition produced less than 1.0 cu cm of gas per sq cm of wetted surface per year, except in those few cases when catalysis or contamination were detected. Especially good stability was observed for type 304L stainless steel. The decomposition rates determined in the coupon tests are confirmed by preliminary results of actual tank storage trials.

  15. Standards on the permanence of recording materials

    NASA Astrophysics Data System (ADS)

    Adelstein, Peter Z.

    1996-02-01

    The permanence of recording materials is dependent upon many factors, and these differ for photographic materials, magnetic tape and optical disks. Photographic permanence is affected by the (1) stability of the material, (2) the photographic processing and (3) the storage conditions. American National Standards on the material and the processing have been published for different types of film and standard test methods have been established for color film. The third feature of photographic permanence is the storage requirements and these have been established for photographic film, prints and plates. Standardization on the permanence of electronic recording materials is more complicated. As with photographic materials, stability is dependent upon (1) the material itself and (2) the storage environment. In addition, retention of the necessary (3) hardware and (4) software is also a prerequisite. American National Standards activity in these areas has been underway for the past six years. A test method for the material which determines the life expectancy of CD-ROMs has been standardized. The problems of determining the expected life of magnetic tape have been more formidable but the critical physical properties have been determined. A specification for the storage environment of magnetic tape has been finalized and one on the storage of optical disks is being worked on. Critical but unsolved problems are the obsolescence of both the hardware and the software necessary to read digital images.

  16. Standards on the permanence of recording materials

    NASA Astrophysics Data System (ADS)

    Adelstein, Peter Z.

    1996-01-01

    The permanence of recording materials is dependent upon many factors, and these differ for photographic materials, magnetic tape and optical disks. Photographic permanence is affected by the (1) stability of the material, (2) the photographic processing, and (3) the storage conditions. American National Standards on the material and the processing have been published for different types of film and standard test methods have been established for color film. The third feature of photographic permanence is the storage requirements and these have been established for photographic film, prints, and plates. Standardization on the permanence of electronic recording materials is more complicated. As with photographic materials, stability is dependent upon (1) the material itself and (2) the storage environment. In addition, retention of the necessary (3) hardware and (4) software is also a prerequisite. American National Standards activity in these areas has been underway for the past six years. A test method for the material which determines the life expectancy of CD-ROMs has been standardized. The problems of determining the expected life of magnetic tape have been more formidable but the critical physical properties have been determined. A specification for the storage environment of magnetic tapes has been finalized and one on the storage of optical disks is being worked on. Critical but unsolved problems are the obsolescence of both the hardware and the software necessary to read digital images.

  17. Ionic liquid-based reagents improve the stability of midterm fecal sample storage.

    PubMed

    Hao, Lilan; Xia, Zhongkui; Yang, Huanming; Wang, Jian; Han, Mo

    2017-08-01

    Fecal samples are widely used in metagenomic research, which aims to elucidate the relationship between human health and the intestinal microbiota. However, the best conditions for stable and reliable storage and transport of these samples at room temperature are still unknown, and whether samples stored at room temperature for several days will maintain their microbiota composition is still unknown. Here, we established and tested a preservation method using reagents containing imidazolium- or pyridinium-based ionic liquids. We stored human fecal samples in these reagents for up to 7 days at different temperatures. Subsequently, all samples were sequenced and compared with fresh samples and/or samples treated under other conditions. The 16S rRNA sequencing results suggested that ionic liquid-based reagents could stabilize the composition of the microbiota in fecal samples during a 7-day storage period, particularly when stored at room temperature. Thus, this method may have implications in the storage of fecal samples for metagenomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Studies on the effects of storage stability of bio-oil obtained from pyrolysis of Calophyllum inophyllum deoiled seed cake on the performance and emission characteristics of a direct-injection diesel engine.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-19

    The highly unbalanced nature of bio-oil composition poses a serious threat in terms of storage and utilization of bio-oil as a viable fuel in engines. So it becomes inevitable to study the variations in physicochemical properties of the bio-oil during storage to value its chemical instability, for designing stabilization methodologies. The present study aims to investigate the effects of storage stability of bio-oil extracted from pyrolyzing Calophyllum inophyllum (CI) deoiled seed cake on the engine operating characteristics. The bio-oil is produced in a fixed bed reactor at 500 °C under the constant heating rate of 30 °C/min. All the stability analysis methods involve an accelerated aging procedure based on standards established by ASTM (D5304 and E2009) and European standard (EN 14112). Gas chromatography-mass spectrometry was employed to analytically characterize the unaged and aged bio-oil samples. The results clearly depict that stabilizing Calophyllum inophyllum bio-oil with 10% (w/w) methanol improved its stability than that of the unstabilized sample thereby reducing the aging rate of bio-oil to 0.04 and 0.13 cst/h for thermal and oxidative aging respectively. Engine testing of the bio-oil sample revealed that aged bio-oil samples deteriorated engine performance and increased emission levels at the exhaust. The oxidatively aged sample showed the lowest BTE (24.41%), the highest BSEC (20.14 MJ/kWh), CO (1.51%), HC (132 ppm), NOx (1098 ppm) and smoke opacity (34.8%).

  19. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    PubMed

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  20. A Pilot Stability Study of Dehydroepiandrosterone Rapid-dissolving Tablets Prepared by Extemporaneous Compounding.

    PubMed

    Rush, Steven D; Vernak, Charlene; Zhao, Fang

    2017-01-01

    Dehydroepiandrosterone supplementation is used to treat a variety of conditions. Rapid-dissolving tablets are a relatively novel choice for compounded dehydroepiandrosterone dosage forms. While rapid-dissolving tablets offer ease of administration, there are uncertainties about the physical and chemical stability of the drug and dosage form during preparation and over long-term storage. This study was designed to evaluate the stability of dehydroepiandrosterone rapid-dissolving tablets just after preparation and over six months of storage. The Professional Compounding Centers of America rapid-dissolving tablet mold and base formula were used to prepare 10-mg strength dehydroepiandrosterone rapid-dissolving tablets. The formulation was heated at 100°C to 110°C for 30 minutes, released from the mold, and cooled at room temperature for 30 minutes. The resulting rapid-dissolving tablets were individually packaged in amber blister packs and stored in a stability chamber maintained at 25°C and 60% relative humidity. The stability samples were pulled at pre-determined time points for evaluation, which included visual inspection, tablet weight check, United States Pharmacopeia disintegration test, and stability-indicating high-performance liquid chromatography. The freshly prepared dehydroepiandrosterone rapiddissolving tablets exhibited satisfactory chemical and physical stability. Time 0 samples disintegrated within 40 seconds in water kept at 37°C. The high-performance liquid chromatographic results confirmed that the initial potency was 101.9% of label claim and that there was no chemical degradation from the heating procedure. Over six months of storage, there were no significant changes in visual appearance, physical integrity, or disintegration time for any of the stability samples. The high-performance liquid chromatographic results also indicated that dehydroepiandrosterone rapid-dissolving tablets retained >95% label claim with no detectable degradation products. The dehydroepiandrosterone rapid-dissolving tablets investigated in this pilot study were physically and chemically stable during preparation and over six months of storage at 25°C and 60% relative humidity. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  1. Pumped storage system model and experimental investigations on S-induced issues during transients

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the appropriate measures were summarized, and an important experimental basis for the safe and stable operation of a pumped storage station was provided.

  2. Potential application of corn starch edible films with spice essential oils for the shelf life extension of red meat.

    PubMed

    Radha Krishnan, K; Babuskin, S; Rakhavan, K R; Tharavin, R; Azhagu Saravana Babu, P; Sivarajan, M; Sukumar, M

    2015-12-01

    To investigate the effect of corn starch (CS) edible films with spice oils on the stability of raw beef during refrigerated storage. The antimicrobial properties of corn starch films containing 0-4·0% (w/v) ratios of clove (CL) and cinnamon (CI) essential oils (EOs) were tested against seven meat spoilage organisms by zone inhibition test. Effects of CS films containing 3% CL or CI or a mixture of CL + CI were also tested in raw beef stored at 4°C. Meat samples were analysed for pH, microbial counts, colour values and Thiobarbituric acid reactive substances (TBARS) values for a period of 15 days. CS films with CL + CI resulted in a significant reduction in microbial populations in the meat samples and also improved meat colour stability at the end of storage period. The incorporation of spice EOs in CS films may provide antimicrobial and antioxidant activities that could improve the stability of raw meat. Results from this study may be applied in meat industries as an additional barrier to control microbial spoilage as well as lipid oxidation in meat products. © 2015 The Society for Applied Microbiology.

  3. Combined statistical analyses for long-term stability data with multiple storage conditions: a simulation study.

    PubMed

    Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R

    2014-01-01

    Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.

  4. Recovery and Stability of Δ9-Tetrahydrocannabinol Using the Oral-Eze® Oral Fluid Collection System and Intercept® Oral Specimen Collection Device.

    PubMed

    Samano, Kimberly L; Anne, Lakshmi; Johnson, Ted; Tang, Kenneth; Sample, R H Barry

    2015-10-01

    Oral fluid (OF) is increasingly used for clinical, forensic and workplace drug testing as an alternative to urine. Uncertainties surrounding OF collection device performance, drug stability and testing reproducibility may be partially responsible for delays in the implementation of OF testing in regulated drug testing programs. Stability of Δ(9)-tetrahydrocannabinol (THC) fortified and authentic specimens was examined after routine collection, transport and laboratory testing. Acceptable recovery and stability were observed when THC-fortified OF (1.5 and 4.5 ng/mL) was applied to Oral-Eze devices. Neat OF samples collected with Oral-Eze, processed per the package insert, and fortified with THC (3 and 6 ng/mL) were stable (±20%) at room temperature (21-25°C), refrigerated (2-8°C) and frozen (-25 to -15°C) conditions up to 1 month, while samples collected with Intercept devices showed decreases at refrigerated and room temperatures. After long-term refrigerated or frozen storage, maximum reductions in THC concentrations were 42% for Oral-Eze and 69% for Intercept. After ≥1 year frozen storage, 80.7% of laboratory specimens positive for THC (3 ng/mL cut-off) by GC-MS were reconfirmed positive (within 25%), with an average THC decrease of 4.2%. Specimens (n = 47) processed with Oral-Eze (diluted) and tested via enzyme immunoassay were concordant with LC-MS-MS results and showed 100% sensitivity and 95% specificity. Paired specimens collected with Oral-Eze and Intercept exhibited 98% overall agreement between the immunoassay test systems. Collectively, these data demonstrate consistent and reproducible recovery and stability of THC in OF after collection, transport and laboratory testing using the Oral-Eze OF Collection System. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  6. Selection and use of crystallization inhibitors for matrix-type transdermal drug-delivery systems containing sex steroids.

    PubMed

    Lipp, R

    1998-12-01

    The purpose of this study was to stabilize transdermal drug-delivery systems (TDDS) highly loaded with sex steroids against recrystallization of drugs during storage. To facilitate the selection of potential crystallization inhibitors a drug-excipient interaction test was also established. Analysis of the thermal behaviour of 1:1 steroid-excipient mixtures by differential scanning calorimetry (DSC) revealed that oestradiol and gestodene interact strongly with silicone dioxide and povidones, e.g. povidone K12. The addition of povidone K12 to polyacrylate-based matrix TDDS containing either 3% oestradiol or 2% gestodene resulted in stable systems which did not recrystallize during storage at 25 degrees C for more than 5 years. Significant recrystallization was, on the other hand, observed in non-stabilized reference patches even after 1 to 2 months storage. The DSC screening model proved very effective for selection of inhibitors of the crystallization of sex steroids in matrix TDDS. The crystallization inhibitor approach is a highly versatile stabilization tool for matrix patches containing high concentrations of sex steroids.

  7. Shelf-life of a 2.5% sodium hypochlorite solution as determined by Arrhenius equation.

    PubMed

    Nicoletti, Maria Aparecida; Siqueira, Evandro Luiz; Bombana, Antonio Carlos; Oliveira, Gabriella Guimarães de

    2009-01-01

    Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 degrees C) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 degrees C (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 degrees C, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 degrees C. This model, however, makes it possible to calculate shelf-life at any other given temperature.

  8. Aggregation factor analysis for protein formulation by a systematic approach using FTIR, SEC and design of experiments techniques.

    PubMed

    Feng, Yan Wen; Ooishi, Ayako; Honda, Shinya

    2012-01-05

    A simple systematic approach using Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and design of experiments (DOE) techniques was applied to the analysis of aggregation factors for protein formulations in stress and accelerated testings. FTIR and SEC were used to evaluate protein conformational and storage stabilities, respectively. DOE was used to determine the suitable formulation and to analyze both the main effect of single factors and the interaction effect of combined factors on aggregation. Our results indicated that (i) analysis at a low protein concentration is not always applicable to high concentration formulations; (ii) an investigation of interaction effects of combined factors as well as main effects of single factors is effective for improving conformational stability of proteins; (iii) with the exception of pH, the results of stress testing with regard to aggregation factors would be available for suitable formulation instead of performing time-consuming accelerated testing; (iv) a suitable pH condition should not be determined in stress testing but in accelerated testing, because of inconsistent effects of pH on conformational and storage stabilities. In summary, we propose a three-step strategy, using FTIR, SEC and DOE techniques, to effectively analyze the aggregation factors and perform a rapid screening for suitable conditions of protein formulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. [TESTING STABILITY OF TABLETED ACETAMINOPHEN AND FUROSEMIDE AFTER 6-MONTH STORAGE IN SPACE FLIGHT].

    PubMed

    Bogomolov, V V; Kondratenko, S N; Kovachevich, I V

    2015-01-01

    It was shown that multiple spaceflight factors (i.e., acceleration, overvibration, microgravity etc.) do not impact stability of acetaminophen and furosemide tablets stored onboard the International space station over 6 months. Acetaminophen dose in a tablet was 496.44 ± 6.88 mg (99.29 ± 1.38%) before spaceflight (SF) and 481.77 ± 1 2.40 mg (96.35 ± 0.48%) after 6 mos. of storage; furosemide dose in a tablet was 40.19 ± 0.28 mg (100.47 ± 0.71%) before and 39.24 ± 0.72 mg (98.105 ± 1.80%) after SF remaining within the established limits.

  10. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage.

    PubMed

    Chancelier, L; Diallo, A O; Santini, C C; Marlair, G; Gutel, T; Mailley, S; Len, C

    2014-02-07

    The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. Formulating electrolyte solutions with nonvolatile and hardly flammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids have been reported in the case of abuse conditions (fire, shortcut, overcharge or overdischarge). This work investigates thermal stability up to combustion of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4Im][NTf2]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([PYR14][NTf2]) ionic liquids, and their corresponding electrolytes containing lithium bis(trifluoromethanesulfonyl)imide LiNTf2. Their possible routes of degradation during thermal abuse testings were investigated by thermodynamic studies under several experimental conditions. Their behaviours under fire were also tested, including the analysis of emitted compounds.

  11. Destabilization of mayonnaise induced by lipid crystallization upon freezing.

    PubMed

    Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji

    2016-01-01

    The thermal and rheological history of mayonnaise during freezing and its dispersion stability after the freeze-thaw process were investigated. Mayonnaise was cooled to freeze and stored at -20 to -40 °C while monitoring the temperature; penetration tests were conducted on the mayonnaise, which was sampled at selected times during isothermal storage at -20 °C. Significant increases in the temperature and stress values due to water-phase crystallization and subsequent oil-phase crystallization were observed. The water phase crystallized during the cooling step in all the tested mayonnaise samples. The oil phases of the prepared mayonnaise (with rapeseed oil) and commercial mayonnaise crystallized during isothermal storage after 6 and 4 h, respectively, at -20 °C. The dispersion stability was evaluated from the separation ratio, which was defined as the weight ratio of separated oil after centrifuging to the total amount of oil in the commercial mayonnaise. The separation ratio rapidly increased after 4 h of freezing. This result suggests that crystallization of the oil phase is strongly related to the dispersion stability of mayonnaise.

  12. Evaluation of sample stability for a quantitative faecal immunochemical test and comparison of two sample collection approaches.

    PubMed

    Mellen, Samantha; de Ferrars, Maria; Chapman, Claire; Bevan, Sarah; Turvill, James; Turnock, Daniel

    2018-01-01

    Background Faecal immunochemical testing is increasingly being used to triage symptomatic patients for suspected colorectal cancer. However, there are limited data on the effect of preanalytical factors on faecal haemoglobin when measured by faecal immunochemical testing. The aim of this work was to evaluate the stability of faecal haemoglobin in faeces and to compare two methods of faecal haemoglobin sampling for faecal immunochemical testing. Methods Six patients provided faeces for faecal haemoglobin measurement which were transferred into specialized collection devices at baseline and at 1, 2, 3 and 7 days after storage at either room temperature or 4°C. A total of 137 patients returned both faeces transferred into the specialized collection device and faeces in a standard collection pot. A quantitative immunoturbidometric method was used to measure faecal haemoglobin and results were compared categorically. Discrepant results were assessed against diagnosis. Results Faecal haemoglobin concentration declined rapidly within a day of storage at room temperature but results remained ≥10 μg Hb/g faeces in 5/6 patients after two days. A faecal haemoglobin result ≥10 μg Hb/g faeces was obtained in 4/6 patients after storage for seven days at 4°C. Results obtained when patients used specialized collection devices were significantly different from results obtained when faeces was transferred into the specialized collection device in the laboratory. Conclusion There is considerable heterogeneity in the sample stability of faecal haemoglobin; therefore, samples should be transferred rapidly into specialized collection devices to prevent false-negative results. Use of collection devices by patients can lead to false-positive results compared with their use in a laboratory.

  13. Droplet-size distribution and stability of commercial injectable lipid emulsions containing fish oil.

    PubMed

    Gallegos, Críspulo; Valencia, Concepción; Partal, Pedro; Franco, José M; Maglio, Omay; Abrahamsson, Malin; Brito-de la Fuente, Edmundo

    2012-08-01

    The droplet size of commercial fish oil-containing injectable lipid emulsions, including conformance to United States Pharmacopeia (USP) standards on fat-globule size, was investigated. A total of 18 batches of three multichamber parenteral products containing the emulsion SMOFlipid as a component were analyzed. Samples from multiple lots of the products were evaluated to determine compliance with standards on the volume-weighted percentage of fat exceeding 0.05% (PFAT(5)) specified in USP chapter 729 to ensure the physical stability of i.v. lipid emulsions. The products were also analyzed to determine the effects of various storage times (3, 6, 9, and 12 months) and storage temperatures (25, 30, and 40 °C) on product stability. Larger-size lipid particles were quantified via single-particle optical sensing (SPOS). The emulsion's droplet-size distribution was determined via laser light scattering. SPOS and light-scattering analysis demonstrated mean PFAT(5) values well below USP-specified globule-size limits for all the tested products under all study conditions. In addition, emulsion aging at any storage temperature in the range studied did not result in a significant increase of PFAT(5) values, and mean droplet-size values did not change significantly during storage of up to 12 months at temperatures of 25-40 °C. PFAT(5) values were below the USP upper limits in SMOFlipid samples from multiple lots of three multichamber products after up to 12 months of storage at 25 or 30 °C or 6 months of storage at 40 °C.

  14. Extension of Space Food Shelf Life Through Hurdle Approach

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Sirmons, T. A.; Froio-Blumsack, D.; Mohr, L.; Young, M.; Douglas, G. L.

    2018-01-01

    The processed and prepackaged space food system is the main source of crew nutrition, and hence central to astronaut health and performance. Unfortunately, space food quality and nutrition degrade to unacceptable levels in two to three years with current food stabilization technologies. Future exploration missions will require a food system that remains safe, acceptable and nutritious through five years of storage within vehicle resource constraints. The potential of stabilization technologies (alternative storage temperatures, processing, formulation, ingredient source, packaging, and preparation procedures), when combined in hurdle approach, to mitigate quality and nutritional degradation is being assessed. Sixteen representative foods from the International Space Station food system were chosen for production and analysis and will be evaluated initially and at one, three, and five years with potential for analysis at seven years if necessary. Analysis includes changes in color, texture, nutrition, sensory quality, and rehydration ratio when applicable. The food samples will be stored at -20 C, 4 C, and 21 C. Select food samples will also be evaluated at -80 C to determine the impacts of ultra-cold storage after one and five years. Packaging film barrier properties and mechanical integrity will be assessed before and after processing and storage. At the study conclusion, if tested hurdles are adequate, formulation, processing, and storage combinations will be uniquely identified for processed food matrices to achieve a five-year shelf life. This study will provide one of the most comprehensive investigations of long duration food stability ever completed, and the achievement of extended food system stability will have profound impacts to health and performance for spaceflight crews and for relief efforts and military applications on Earth.

  15. FORMULATION AND STABILITY EVALUATION OF BAUHINIA VARIEGATA EXTRACT TOPICAL EMULSION.

    PubMed

    Mohsin, Sabeeh; Akhtar, Naveed

    2017-05-01

    This study presents the results for the development of water in oil (W/O) emulsion containing 2 % Bauhinia variegata (BV) extract with good antioxidant potential for cosmetic application. Different ratios of surfactant, oil and water were investigated to optimize the ratio of ingredients. It was found that emulsifier and oil4ratio were important in improving the stability of emulsion. The formulation having 2.5% Abil EM90, 12% liquid paraffin, 83.5% distilled water and 2% BV extract was found to be most stable. Stability of the formulation was further evaluated by characterizing for organoleptic, sedimentation, microscopic and rheological properties at a range of storage conditions for a period of 12 weeks. Experimental findings showed stable formulation behavior with respect to color change, liquefaction and phase separation. Centrifugation test was carried out to predict the long term stability..The rheological parameters were evaluated from Power Law and the flow index value less than 1 suggested non-Newtonian behavior of the W/O emulsion. The mean droplet size of the internal phase of freshly prepared formulation was 4.06 ? 1.99 pm that did not change significantly (p > 0.05) during the storage. The newly developed formulation exhibited promising attributes over long term storage and open opportunities for the topical delivery of natural antioxidants for cosmetic and pharmaceutical objectives.

  16. Assessment of the stability of mephedrone in ante-mortem and post-mortem blood specimens.

    PubMed

    Busardò, Francesco Paolo; Kyriakou, Chrystalla; Tittarelli, Roberta; Mannocchi, Giulio; Pantano, Flaminia; Santurro, Alessandro; Zaami, Simona; Baglìo, Giovanni

    2015-11-01

    The aim of this work is to test the stability of mephedrone added to whole blood collected from alive and dead mephedrone free-users and stored at three different temperatures (-20, +4 and +20°C) with and without preservatives up to 6 months, trying to establish the best storage condition in order to reduce possible analyte loss/degradation during the storage period. Different sources of blood were obtained as follow: 10 samples of blood came from 10 alive mephedrone free-users (mean age 34±15.8 years old) (Group 1), whereas 10 post mortem blood samples were obtained from 10 cadavers, in which the post mortem interval was between 24 and 36h (Group 2). The cause of death in post mortem cases (mean age 45±14.2 years old) was not drug related. Pools of blood were spiked with mephedrone at the concentration of 1mg/L and 1mL aliquots were transferred in 2mL Eppendorf capped tubes with and without preservatives as follow: with ethylenediaminetetraacetic acid (EDTA) 3%; with sodium fluoride/potassium oxalate (NaF/KOx) 1.67%/0.2%, respectively; without preservatives. All samples were stored at three different temperatures: -20°C, 4°C and 20°C and extracted and analyzed in duplicate by GC-MS according to a previously published method by Dickson et al., every other day during the first month and then weekly up to 6 months. our study allow us to affirm that -20°C is the best storage temperature for mephedrone stability in ante-mortem and post-mortem blood samples in comparison to the other two tested temperatures (+4 and +20°C), showing higher values in both groups in samples stored with and without preservatives (p<0.0001). The comparison of Group 1 (samples coming from alive subjects) and Group 2 (post-mortem samples) highlights a better stability of mephedrone in Group 1 (p<0.001) at all tested storage conditions. Finally, the analysis of blood specimens stored with and without preservatives in both groups suggests that specimens stored with NaF/KOx maintain mephedrone stability better than those stored with EDTA (p<0.001) and those stored without preservatives (p<0.0001), therefore, we strongly recommend in order to maintain the highest mephedrone stability in blood, to store specimens at -20°C adding NaF/KOx as preservative. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Stability of 21 Cocaine, Opioid and Benzodiazepine Drug Analytes in Spiked Meconium at Three Temperatures.

    PubMed

    Wu, Fang; Marin, Stephanie J; McMillin, Gwendolyn A

    2017-04-01

    In this study, the stability of 21 cocaine, opioid and benzodiazepine analytes in spiked meconium was investigated at three storage temperatures: 4°C, room temperature (RT), and 37°C (body temperature). The drugs/metabolites included were hydrocodone, hydromorphone, codeine, morphine, 6-acetylmorphine (6-AM), oxycodone, oxymorphone, cocaine, cocaethylene, benzoylecgonine, m-hydroxybenzoylecgonine, diazepam, oxazepam, temazepam, nordiazepam, chlordiazepoxide, lorazepam, alprazolam, alpha-hydroxyalprazolam, clonazepam, 7-aminoclonazepam, midazolam, alpha-hydroxymidazolam and zolpidem. Drug testing was performed using mass spectrometry methods that were validated for clinical use. After 2 weeks of storage, a substantial loss was observed in the concentrations of 7-aminoclonazepam (48.4% at 4°C and 71.5% at RT), and chlordiazepoxide (59.5% at RT). A slight decrease was observed in the concentrations of alprazolam (20.9% at 4°C), clonazepam (24.5% at 4°C), chlordiazepoxide (23.5% at 4°C), midazolam (20.8% at 4°C), nordiazepam (22.8% at RT), and alpha-hydroxyalprazolam (20.7% at 4°C). At 37°C, the concentrations of chlordiazepoxide, 7-aminoclonazepam, lorazepam, oxazepam, nordiazepam and temazepam decreased by 81.4%, 86.8%, 56.5%, 59.9%, 45.4% and 31.7%, respectively, after 2 weeks. 6-AM was observed to be unstable regardless of storage temperatures. For morphine, a 33.3% increase at 4°C and a 23.4% increase at RT were observed after 2 weeks, respectively, possibly due to 6-AM degradation, while no changes ≥20% were observed at 37°C. All other analytes were stable up to 2 weeks at all three storage temperatures (concentration changes <20%). The stability of select drug analytes in authentic clinical meconium specimens was consistent with that observed in spiked meconium. In conclusion, some drugs in meconium may not be stable for long periods of time. Sample storage conditions are an important consideration in the context of detection windows and interpreting drug-testing results in meconium. To the best of our knowledge, this is the first stability study of cocaine, opioids and benzodiazepines in meconium concerning the effects of storage temperatures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Recent advances in testing of microsphere drug delivery systems.

    PubMed

    Andhariya, Janki V; Burgess, Diane J

    2016-01-01

    This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.

  19. Mechanically stable ternary heterogeneous electrodes for energy storage and conversion.

    PubMed

    Gao, Libo; Zhang, Hongti; Surjadi, James Utama; Li, Peifeng; Han, Ying; Sun, Dong; Lu, Yang

    2018-02-01

    Recently, solid asymmetric supercapacitor (ASC) has been deemed as an emerging portable power storage or backup device for harvesting natural resources. Here we rationally engineered a hierarchical, mechanically stable heterostructured FeCo@NiCo layered double hydroxide (LDH) with superior capacitive performance by a simple two-step electrodeposition route for energy storage and conversion. In situ scanning electron microscope (SEM) nanoindentation and electrochemical tests demonstrated the mechanical robustness and good conductivity of FeCo-LDH. This serves as a reliable backbone for supporting the NiCo-LDH nanosheets. When employed as the positive electrode in the solid ASC, the assembly presents high energy density of 36.6 W h kg -1 at a corresponding power density of 783 W kg -1 and durable cycling stability (87.3% after 5000 cycles) as well as robust mechanical stability without obvious capacitance fading when subjected to bending deformation. To demonstrate its promising capability for practical energy storage applications, the ASC has been employed as a portable energy source to power a commercially available digital watch, mini motor car, or household lamp bulb as well as an energy storage reservoir, coupled with a wind energy harvester to power patterned light-emitting diodes (LEDs).

  20. Galileo probe lithium-sulfur dioxide cell life testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofland, L.M.; Stofel, E.J.; Taenaka, R.K.

    Several hundred D-sized, Li/SO{sub 2} battery cells have been in a carefully controlled quiescent storage test for up to 14 years, starting at Honeywell but completing at the NASA Ames Research Center, in support of the Atmospheric Probe portion of the Galileo Mission to the planet Jupiter. This population of cells includes similar samples from 8 different manufacturing lots; the earliest from October 1981, the latest from October 1988. The baseline samples have been divided among several storage chambers, each having its own constant temperature, respectively set between 0 to 40 C. Non-invasive measurements have been made repeatedly of openmore » circuit voltage and internal resistance (at 1,000 Hz). At intervals, a small portion of the cells has been removed from storage and fully discharged under repetitive conditions, thus assessing any storage related loss of discharge capacity. The results show that for storage up to 20 C the cells have excellent stability. Above 20 C noticeable degradation occurs.« less

  1. Natural biopolymer for preservation of microorganisms during sampling and storage.

    PubMed

    Sorokulova, Iryna; Watt, James; Olsen, Eric; Globa, Ludmila; Moore, Timothy; Barbaree, James; Vodyanoy, Vitaly

    2012-01-01

    Stability of microbial cultures during sampling and storage is a vital issue in various fields of medicine, biotechnology, food science, and forensics. We have developed a unique bacterial preservation process involving a non-toxic, water-soluble acacia gum polymer that eliminates the need for refrigerated storage of samples. The main goal of this study is to characterize the efficacy of acacia gum polymer for preservation of pathogenic bacteria (Bacillus anthracis and methicillin-resistant Staphylococcus aureus-MRSA) on different materials, used for swabbing and filtration: cotton, wool, polyester, rayon, charcoal cloth, and Whatman paper. Acacia gum polymer used for preservation of two pathogens has been shown to significantly protect bacteria during dehydration and storage in all tested samples at the range of temperatures (5-45°C for MRSA and 40-90°C for B. anthracis). Our results showed higher recovery as well as higher viability during the storage of both bacteria in all materials with acacia gum. Addition of acacia gum polymer to swabbing materials or filters will increase efficacy of sample collection and identification of pathogenic bacteria from locations such as hospitals or the environment. Proposed approach can also be used for long-term storage of culture collections, since acacia gum contributes to viability and stability of bacterial cultures. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.).

    PubMed

    Peredo, Elena L; Arroyo-García, Rosa; Reed, Barbara M; Revilla, M Angeles

    2008-12-01

    Conventional cold storage and cryopreservation methods for hops (Humulus lupulus L.) are available but, to our knowledge, the genetic and epigenetic stability of the recovered plants have not been tested. This study analyzed 51 accessions of hop using the molecular techniques, Random Amplified DNA Polymorphism (RAPD) and Amplified Fragment Length Polymorphism (AFLP), revealing no genetic variation among greenhouse-grown controls and cold stored or cryopreserved plants. Epigenetic stability was evaluated using Methylation Sensitive Amplified Polymorphism (MSAP). Over 36% of the loci were polymorphic when the cold and cryo-treated plants were compared to greenhouse plants. The main changes were demethylation events and they were common to the cryopreserved and cold stored plants indicating the possible effect of the in vitro establishment process, an essential step in both protocols. Protocol-specific methylation patterns were also detected indicating that both methods produced epigenetic changes in plants following cold storage and cryopreservation.

  3. Stability of Routine Biochemical Analytes in Whole Blood and Plasma From Lithium Heparin Gel Tubes During 6-hr Storage.

    PubMed

    Monneret, Denis; Godmer, Alexandre; Le Guen, Ronan; Bravetti, Clotilde; Emeraud, Cecile; Marteau, Anthony; Alkouri, Rana; Mestari, Fouzi; Dever, Sylvie; Imbert-Bismut, Françoise; Bonnefont-Rousselot, Dominique

    2016-09-01

    The stability of biochemical analytes has already been investigated, but results strongly differ depending on parameters, methodologies, and sample storage times. We investigated the stability for many biochemical parameters after different storage times of both whole blood and plasma, in order to define acceptable pre- and postcentrifugation delays in hospital laboratories. Twenty-four analytes were measured (Modular® Roche analyzer) in plasma obtained from blood collected into lithium heparin gel tubes, after 2-6 hr of storage at room temperature either before (n = 28: stability in whole blood) or after (n = 21: stability in plasma) centrifugation. Variations in concentrations were expressed as mean bias from baseline, using the analytical change limit (ACL%) or the reference change value (RCV%) as acceptance limit. In tubes stored before centrifugation, mean plasma concentrations significantly decreased after 3 hr for phosphorus (-6.1% [95% CI: -7.4 to -4.7%]; ACL 4.62%) and lactate dehydrogenase (LDH; -5.7% [95% CI: -7.4 to -4.1%]; ACL 5.17%), and slightly decreased after 6 hr for potassium (-2.9% [95% CI: -5.3 to -0.5%]; ACL 4.13%). In plasma stored after centrifugation, mean concentrations decreased after 6 hr for bicarbonates (-19.7% [95% CI: -22.9 to -16.5%]; ACL 15.4%), and moderately increased after 4 hr for LDH (+6.0% [95% CI: +4.3 to +7.6%]; ACL 5.17%). Based on RCV, all the analytes can be considered stable up to 6 hr, whether before or after centrifugation. This study proposes acceptable delays for most biochemical tests on lithium heparin gel tubes arriving at the laboratory or needing to be reanalyzed. © 2016 Wiley Periodicals, Inc.

  4. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  5. Stability studies of HIV-1 Pr55gag virus-like particles made in insect cells after storage in various formulation media.

    PubMed

    Lynch, Alisson; Meyers, Ann E; Williamson, Anna-Lise; Rybicki, Edward P

    2012-09-18

    HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4°C, -20°C and -70°C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at -70°C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at -70°C for 12 months is most effective in retaining VLP stability.

  6. Effect of Storage Period on Dimensional Stability of Alginplus and Hydrogum 5

    PubMed Central

    Aalaei, Shima; Ganj-Khanloo, Rohollah

    2017-01-01

    Objectives: This study aimed to evaluate the effect of storage period on dimensional stability of Alginplus and Hydrogum 5. Materials and Methods: In this in vitro experimental study, 60 impressions were taken of an upper jaw typodont, including 10 impressions for each storage period to be tested (12 minutes, 24 and 120 hours) for each type of alginate. Then, the impressions were stored in an incubator with stable temperature and humidity, and poured using a type III dental stone. Subsequently, the mesiodistal dimension, occlusogingival height, and interarch distance were measured using a digital caliper with an accuracy of 0.01mm. The data were analyzed using ANOVA and t-test (P<0.05). Results: Alginplus and Hydrogum 5 impressions were not significantly different from the master model after 12 minutes and 24 hours in terms of dimensions (P>0.05). After 120 hours, all dimensions measured on casts were significantly different from those measured on the master model, except for the mesiodistal dimension of the Hydrogum 5 impressions. Conclusions: At a consistent temperature and humidity, the Alginplus and Hydrogum 5 impressions were dimensionally stable for at least 24 hours. PMID:28828015

  7. 42 CFR 493.1423 - Standard; Testing personnel qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., or bachelor's degree in a chemical, physical, biological or clinical laboratory science, or medical... stability and storage; (F) The skills required to implement the quality control policies and procedures of... HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Personnel for Nonwaived...

  8. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system.

    PubMed

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-04-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    PubMed

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  10. Use of External Quality Control Material for HIV-1 RNA Testing To Assess the Comparability of Data Generated in Separate Laboratories and the Stability of HIV-1 RNA in Samples after Prolonged Storage.

    PubMed

    Jennings, Cheryl; Wager, Carrie G; Scianna, Salvatore R; Zaccaro, Daniel J; Couzens, Amy; Mellors, John W; Coombs, Robert W; Bremer, James W

    2018-06-01

    The National Institute of Allergy and Infectious Diseases (NIAID) AIDS Clinical Trials Group (ACTG) stores specimens from its clinical trials in a biorepository and permits the use of these specimens for nonprotocol exploratory studies, once the studies for the original protocol are concluded. We sought to assess the comparability of the data generated from real-time HIV-1 RNA testing during two clinical trials with the data generated from the retesting of different aliquots of the same samples after years of storage at -80°C. Overall, there was 92% agreement in the data generated for 1,570 paired samples (kappa statistic = 0.757; 95% confidence interval [CI], 0.716 to 0.797), where samples were tested in one laboratory using the microwell plate (MWP) version of the Roche HIV-1 Monitor test within 1 to 37 days of collection and retested in another laboratory using the Cobas version of the assay after a median of 6.7 years of storage (range, 5.7 to 8.6 years). Historical external quality control data submitted to the NIAID Virology Quality Assurance program (VQA) by client laboratories using the same two versions of the Monitor assay were used to differentiate between systematic differences in the assays to evaluate the stability of HIV-1 RNA in the stored samples. No significant loss of RNA was noted in samples containing either a low concentration (<50 copies/ml) or a high concentration (≥50 copies/ml) of HIV-1 RNA ( P = 0.10 and P = 0.90, respectively) regardless of the time in storage. These data confirm the quality of the plasma samples in the ACTG biorepository following long-term storage. Copyright © 2018 American Society for Microbiology.

  11. Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability.

    PubMed

    Mahmood, Tariq; Akhtar, Naveed; Manickam, Sivakumar

    2014-05-12

    Multiple emulsions have excellent encapsulating potential and this investigation has been aimed to encapsulate two different plant extracts as functional cosmetic agents in the W/O/W multiple emulsions and the resultant system's long term stability has been determined in the presence of a thickener, hydroxypropyl methylcellulose (HPMC). Multiple W/O/W emulsions have been generated using cetyl dimethicone copolyol as lipophilic emulsifier and a blend of polyoxyethylene (20) cetyl ether and cetomacrogol 1000® as hydrophilic emulsifiers. The generated multiple emulsions have been characterized with conductivity, pH, microscopic analysis, phase separation and rheology for a period of 30 days. Moreover, long term shelf-storage stability has been tested to understand the shelf-life by keeping the generated multiple emulsion formulations at 25 ± 10°C and at 40 ± 10% relative humidity for a period of 12 months. It has been observed that the hydrophilic emulsifiers and HPMC have considerably improved the stability of multiple emulsions for the followed period of 12 months at different storage conditions. These multiple emulsions have shown improved entrapment efficiencies concluded on the release rate of conductometric tracer entrapped in the inner aqueous phase of the multiple emulsions. Multiple emulsions have been found to be stable for a longer period of time with promising characteristics. Hence, stable multiple emulsions loaded with green tea and lotus extracts could be explored for their cosmetic benefits.

  12. Effects of Accelerated Storage on the Quality of Kenaf Seed Oil in Chitosan-Coated High Methoxyl Pectin-Alginate Microcapsules.

    PubMed

    Leong, Mei-Huan; Tan, Chin-Ping; Nyam, Kar-Lin

    2016-10-01

    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage. © 2016 Institute of Food Technologists®.

  13. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage

    PubMed Central

    Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka

    2016-01-01

    Summary Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types. PMID:27904388

  14. Evaluation of the Viabilities and Stabilities of Pathogenic Mold and Yeast Species Using Three Different Preservation Methods Over a 12-Year Period Along with a Review of Published Reports.

    PubMed

    Karabıçak, Nilgün; Karatuna, Onur; Akyar, Işın

    2016-06-01

    Serious mycological work requires a reliable source of cultures that are maintained under safe long-term storage. In this study, 1186 clinical fungal isolates consisting of molds (20 species in 11 genera) and yeasts (21 species in seven genera) maintained in water, under mineral oil at room temperature and cryopreserved at -80 °C for periods ranging from 1 to 12 years, were evaluated for their viabilities and stabilities. The strains were subcultured onto either Sabouraud dextrose agar or potato dextrose agar to determine the viabilities and purities. The stabilities of the dermatophytes were investigated using urease test medium, the Trichophyton agar test and morphological examination. The stabilities of yeasts were evaluated by microscopic morphology and by determining the antifungal susceptibilities of random samples of yeasts (n = 120). Additionally, 365 strains (dermatophytes, n = 115; yeasts, n = 250) were further characterized by "matrix-assisted laser desorption/ionization time-of-flight mass spectrometry." After 12 years of preservation, the survival rates with the three different preservation techniques, i.e., in water, under mineral oil and by freezing, were assessed as 94.7, 82.0 and 97.4 %, respectively. Viability was generally unrelated to the duration of storage. More stable and consistent growth was achieved after storage in water and freezing compared with mineral oil preservation. Our results demonstrate that the procedure for maintaining fungal cultures in water is a simple and inexpensive method, next to cryopreservation, and that both can be reliably used for the long-term preservation of most fungal isolates.

  15. Effect of various stabilizing agents on Imperata cylindrica grass pollen allergen extract.

    PubMed

    Bijli, K M; Singh, B P; Sridhara, S; Gaur, S N; Arora, N

    2003-01-01

    Allergen extracts are unstable, heat labile or susceptible to proteases. Stability of allergen extracts is important for proper diagnosis and therapy of allergic disorders. The present study was undertaken to determine the preservation and stabilization conditions of Imperata cylindrica (Ic) grass pollen extract. The Ic extract was kept with 0.1 mepsilon-aminocaproic acid (EACA), 0.75 m sucrose, 5% glycerol, 0.03% human serum albumin (HSA) or 0.4% phenol for different time periods. The extracts were stored for 3, 6 and 12 months each at 4 degrees C, 4 degrees C with daily exposure to room temperature (RT) for 1 h, and RT. The quality of extracts was analysed by SDS-PAGE, Western blot, ELISA, ELISA inhibition and skin test. Extracts kept with EACA and sucrose retained most of the protein bands followed by glycerol as determined by SDS-PAGE and Western blot during all storage periods and conditions in comparison with standard extracts. The extracts kept with HSA, phenol and without preservative (WP) showed protein degradation below 33 kDa after 3 months storage at all conditions. However, a 67-kDa allergen was stable in these extracts. EACA extract required 75 to 120 ng of protein for 50% inhibition in IgE binding under different conditions, whereas standard extract required 70 ng for the same. ELISA also demonstrated high allergenic reactivity of EACA extract. ID test on allergy patients with EACA extract demonstrated same allergenic potency as that of standard extract. EACA is the best preservative/stabilizing agent of Ic pollen extract, followed by sucrose and glycerol. Ic extract kept with phenol, HSA and without preservative showed degradation within 3 months. EACA preserved extract is equally potent as that of standard extract up to 1 year's storage.

  16. Statistical evaluation for stability studies under stress storage conditions.

    PubMed

    Gil-Alegre, M E; Bernabeu, J A; Camacho, M A; Torres-Suarez, A I

    2001-11-01

    During the pharmaceutical development of a new drug, it is necessary to select as soon as possible the formulation with the best stability characteristics. The current International Commission for Harmonisation (ICH) regulations regarding stability testing requirements for a Registration Application provide the stress testing conditions with the aim of assessing the effect of severe conditions on the drug product. In practice, the well-known Arrhenius theory is still used to make a rapid stability prediction, to estimate a drug product shelf life during early stages of its pharmaceutical development. In this work, both the planning of a stress stability study to obtain a correct stability prediction from a temperature extrapolation and the suitable data treatment to discern the reliability of the stability results are discussed. The study was focused on the early formulation step of a very stable drug, Mitonafide (antineoplastic agent), formulated in a parenteral solution and in tablets. It was observed, for the solid system, that the extrapolated results using Arrhenius theory might be statistically good, but far from the real situation if the stability study is not designed in a correct way. The statistical data treatment and the stress-stability test proposed in this work are suitable to make a reliable stability prediction of different formulations with the same drug, within its pharmaceutical development.

  17. Persistence of human immunodeficiency virus type 1 subtype B DNA in dried-blood samples on FTA filter paper.

    PubMed

    Li, Chung-Chen; Beck, Ingrid A; Seidel, Kristy D; Frenkel, Lisa M

    2004-08-01

    The stability of human immunodeficiency virus type 1 (HIV-1) DNA in whole blood collected on filter paper (FTA Card) was evaluated. After >4 years of storage at room temperature in the dark our qualitative assay detected virus at a rate similar to that of our initial test (58 of 60, 97%; P = 0.16), suggesting long-term HIV-1 DNA stability.

  18. Persistence of Human Immunodeficiency Virus Type 1 Subtype B DNA in Dried-Blood Samples on FTA Filter Paper

    PubMed Central

    Li, Chung-Chen; Beck, Ingrid A.; Seidel, Kristy D.; Frenkel, Lisa M.

    2004-01-01

    The stability of human immunodeficiency virus type 1 (HIV-1) DNA in whole blood collected on filter paper (FTA Card) was evaluated. After >4 years of storage at room temperature in the dark our qualitative assay detected virus at a rate similar to that of our initial test (58 of 60, 97%; P = 0.16), suggesting long-term HIV-1 DNA stability. PMID:15297546

  19. Urine stability studies for novel biomarkers of acute kidney injury.

    PubMed

    Parikh, Chirag R; Butrymowicz, Isabel; Yu, Angela; Chinchilli, Vernon M; Park, Meyeon; Hsu, Chi-Yuan; Reeves, W Brian; Devarajan, Prasad; Kimmel, Paul L; Siew, Edward D; Liu, Kathleen D

    2014-04-01

    The study of novel urinary biomarkers of acute kidney injury has expanded exponentially. Effective interpretation of data and meaningful comparisons between studies require awareness of factors that can adversely affect measurement. We examined how variations in short-term storage and processing might affect the measurement of urine biomarkers. Cross-sectional prospective. Hospitalized patients from 2 sites: Yale New Haven Hospital (n=50) and University of California, San Francisco Medical Center (n=36). We tested the impact of 3 urine processing conditions on these biomarkers: (1) centrifugation and storage at 4°C for 48 hours before freezing at -80°C, (2) centrifugation and storage at 25°C for 48 hours before freezing at -80°C, and (3) uncentrifuged samples immediately frozen at -80°C. Urine concentrations of 5 biomarkers: neutrophil gelatinase-associated lipocalin (NGAL), interleukin 18 (IL-18), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein (L-FABP), and cystatin C. We measured urine biomarkers by established enzyme-linked immunosorbent assay methods. Biomarker values were log-transformed, and agreement with a reference standard of immediate centrifugation and storage at -80°C was compared using concordance correlation coefficients (CCCs). Neither storing samples at 4°C for 48 hours nor centrifugation had a significant effect on measured levels, with CCCs higher than 0.9 for all biomarkers tested. For samples stored at 25°C for 48 hours, excellent CCC values (>0.9) also were noted between the test sample and the reference standard for NGAL, cystatin C, L-FABP and KIM-1. However, the CCC for IL-18 between samples stored at 25°C for 48 hours and the reference standard was 0.81 (95% CI, 0.66-0.96). No comparisons to fresh, unfrozen samples; no evaluation of the effect of protease inhibitors. All candidate markers tested using the specified assays showed high stability with both short-term storage at 4°C and without centrifugation prior to freezing. For optimal fidelity, urine for IL-18 measurement should not be stored at 25°C before long-term storage or analysis. Copyright © 2014 National Kidney Foundation, Inc. All rights reserved.

  20. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  1. A study of the Al content impact on the properties of MmNi 4.4- xCo 0.6Al x alloys as precursors for negative electrodes in NiMH batteries

    NASA Astrophysics Data System (ADS)

    Bliznakov, S.; Lefterova, E.; Dimitrov, N.; Petrov, K.; Popov, A.

    AB 5-type hydrogen storage alloys with MmNi 4.4- xCo 0.6Al x (Mm-mischmetal) composition are synthesized, structurally and thermodynamically characterized, and electrochemically tested in 6 M KOH electrolyte. It is shown that an increase of the Al content in the alloy results in expansion of both the alloy lattice cell size and the unit cell volume. These structural changes lead to decrease of the plateau pressure and increase of the plateau width in the pressure-composition-temperature desorption isotherms. Improvement of the specific electrode capacity is also registered with the increase of the cell parameters. In addition to that the higher Al content is found to enhance the stability of the alloy components' hydrides. Maximum discharge capacity of 278 mAh g -1 is measured with an electrode made from a MmNi 3.6Co 0.6Al 0.8 alloy. Cycle life tests of the accordingly prepared electrodes suggest a stability that is comparable to the stability of commercially available hydrogen storage electrodes.

  2. Mechanisms of nitrogen heterocycle influence on turbine fuel stability

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.; Worstell, J. H.

    1980-01-01

    Lewis bases were extracted from a Utah COED syncrude via ligand exchange. Addition of this extract to Jet A at levels as low as 5 ppm N produced deterioration of stability in both JFTOT and accelerated storage tests (7 days at 394 K with 13:1air to fuel ratio). Comparable effects on Jet A stability were obtained by addition of pyridine and quinoline, while pyrrole and indole were less detrimental at the same concentration level. The weight of deposit produced accelerated storage tests was found to be proportional to the concentration of added nitrogen compound. Over the narrow temperature range accessible with the experimental method, Arrhenius plots obtained by assuming specific rate to be proportional to the weight of material deposited in seven days exhibit greater slopes in the presence of those nitrogen compounds producing the greater deposition rates. It is shown that despite variation in appearance the elemental composition and spectral characteristics of the deposits are unaffected by addition of the nitrogen compounds. The linearity of the Arrhenius plots and of a plot of Arrhenius slope versus intercept for all the compounds suggests a constancy of mechanism over the range of temperature and heterocycles studied.

  3. Chelonia: A self-healing, replicated storage system

    NASA Astrophysics Data System (ADS)

    Kerr Nilsen, Jon; Toor, Salman; Nagy, Zsombor; Read, Alex

    2011-12-01

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  4. Rapid fabrication of superhydrophobic Al/Fe2O3 nanothermite film with excellent energy-release characteristics and long-term storage stability

    NASA Astrophysics Data System (ADS)

    Ke, Xiang; Zhou, Xiang; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei

    2017-06-01

    One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe2O3 nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al2O3 shell and FAS-17. Superhydrophobic Al/Fe2O3 nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in natural aging test and 60.5% in accelerated aging test. This study is instructive to the practical applications of nanothermites, especially in highly humid environment.

  5. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers

    NASA Technical Reports Server (NTRS)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry

    2005-01-01

    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  6. Impact of microbial growth inhibition and proteolytic activity on the stability of a new formulation containing a phytate-degrading enzyme obtained from mushroom.

    PubMed

    Spier, Michele R; Siepmann, Francieli B; Staack, Larissa; Souza, Priscila Z; Kumar, Vikas; Medeiros, Adriane B P; Soccol, Carlos R

    2016-10-02

    The development of stable enzymes is a key issue in both the food and feed industries. Consequently, the aim of the current study is to evaluate the impact of various additives (sodium chloride, sodium citrate, mannitol, methylparaben, polyethylene glycol 3350, ethylenediaminetetraacetic acid disodium salt, and a serine protease inhibitor) on the stability of a mushroom phytase produced by solid-state cultivation and recovery. Also observed was the effect of the additives on microbial growth inhibition by monitoring both the change in optical density over 30 days of storage and proteolytic activity. Initially, eight experimental formulations were prepared along with a control. After screening, a 3(2) factorial design was applied to define suitable concentrations of the selected additives. Among the eight formulations tested, the formulation containing NaCl, PEG 3350, and methylparaben retained all of the initial phytase activity after 50 days of storage, with no detected interference from protease activity. Sodium citrate, a metal chelation agent, presented the unusual effect of reducing protease activity in the formulations. Although all formulations presented better phytase stability when compared to the control, NaCl and PEG were both able to prolong the stability of the enzyme activity and also to inhibit microbial growth during storage, making them favorable for application as food and feed additives.

  7. Extended Shelf Life of Precooked Meals

    DTIC Science & Technology

    1974-06-01

    results of the first and second tests: Microbiology Test Results» for Test I and II Product Creamed Beef (l) 28-32°F. 35-40 °F. Creamed Pork(ll...number) Meals Refrigerating Storage stability Freezing Temperature Microbiological deterioration Public health Shelf life Deterioration Food...experience especially the so-called NACKA system in Sweden and con- sideration of the microbiological and public health aspects it is clear that such a

  8. Impact of Storage Time on Hepatitis B Virus DNA Stability in Clinical Specimens Determined by Quantitative Real-time PCR.

    PubMed

    Zhang, Xiaolian; Yang, Dongmei; Lu, Yu; Lao, Xianjun; Qin, Xue; Li, Shan

    2016-01-01

    Detecting blood levels of hepatitis B virus (HBV) DNA must be accurate and credible. Shipment and storage conditions of clinical samples affect the quality of nucleic acids and can interfere with HBV DNA analysis. The aim of our study was to compare HBV DNA stability in plasma specimens at 4 degrees C for different storage periods. Blood samples from 30 hepatitis B surface antigen (HBsAg) positive patients were collected in tubes containing EDTA-K2. Each sample was divided into eight aliquots, one of which was measured immediately for the initial viral load. The remaining aliquots were then stored at 4 degrees C and assessed after 1, 2, 3, 7, 14, 21, and 30 days of storage. Quantification of HBV DNA was performed by real-time polymerase chain reaction (RT-PCR), and the difference in HBV DNA concentrations between two different time points was analysed with a paired-samples t-test. HBV DNA was measured in a range of 2.00 - 8.00 IU/mL, with low within-run and between-run coefficients of variation (< 10%). Storing plasma for one month at 4 degrees C revealed no significant decrease in HBV DNA level (p = 0.231), and no trend was evident to indicate continued reduction over a 3-week storage period. Based on the results of this study, storing plasma for up to one month at 4 degrees C does not affect the stability of HBV DNA, regardless of the initial viral load.

  9. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads.

    PubMed

    Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Osorio, Coralia; Nazareno, Mónica Azucena

    2016-07-01

    Betalain encapsulation was performed by ionic gelation as a stabilization strategy for these natural pigments. Betalains were extracted from purple cactus fruits and encapsulated in calcium-alginate and in combination of calcium alginate and bovine serum albumin. Beads were characterised by scanning electron microscopy and thermal analysis using differential scanning calorimetry and thermogravimetry. Moisture sorption isotherms were determined. Bead morphology was affected by matrix composition. Pigments storage stability was evaluated at different equilibrium relative humidity and temperatures. Pigment composition of beads was determined by HPLC-MS-MS and degradation products were also analysed after storage; betalamic acid being the major one. Both types of matrices protected the encapsulated pigments, being their storage stability better at low relative humidity than that of the non-encapsulated control material. Antiradical activities of beads were proportional to remaining betalain contents. At high relative humidity, there was no protection and low storage stability was observed in the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    PubMed

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  11. Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia

    USGS Publications Warehouse

    Brown, Donald L.; Silvey, William Dudley

    1977-01-01

    Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)

  12. Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies.

    PubMed

    de Diego-Castilla, Graciela; Cruz-Gil, Patricia; Mateo-Martí, Eva; Fernández-Calvo, Patricia; Rivas, Luis A; Parro, Víctor

    2011-10-01

    Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances.

  13. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.

    PubMed

    Jones, Gregg W; Pichler, Thomas

    2007-02-01

    Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.

  14. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    PubMed Central

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  15. Evaluation of accelerated stability test conditions for medicated chewing gums.

    PubMed

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  16. EFFECTS OF STORAGE ON STABILITY AND PATHOGEN REDUCTION IN BIOSOLIDS

    EPA Science Inventory

    Storage can be an effective means of stabilizing small quantities of wastewater sludge. This paper summarizes the performance of two laboratory-scale sludge storage units and that of four full-scale tanks sampled at four treatment facilities in eastern Nebraska. The bench-scale u...

  17. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    PubMed

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  18. Impact of wind farms with energy storage on transient stability

    NASA Astrophysics Data System (ADS)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  19. Influence of Hemostatic Solution on Bond Strength and Physicochemical Properties of Resin Cement.

    PubMed

    Araújo, Isabela Sousa de; Prado, Célio Jesus do; Raposo, Luís Henrique Araújo; Soares, Carlos José; Zanatta, Rayssa Ferreira; Torres, Carlos Rocha Gomes; Ruggiero, Reinaldo; Silva, Gisele Rodrigues da

    2017-01-01

    The aim of this study was to evaluate the degree of conversion, color stability, chemical composition, and bond strength of a light-cured resin cement contaminated with three different hemostatic solutions. Specimens were prepared for the control (uncontaminated resin cement) and experimental groups (resin cement contaminated with one of the hemostatic solutions) according to the tests. For degree of conversion, DC (n = 5) and color analyses (n = 10), specimens (3 mm in diameter and 2 mm thick) were evaluated by Fourier transform infrared spectroscopy (FTIR) and CIELAB spectrophotometry (L*, a*, b*), respectively. For elemental chemical analysis (n = 1), specimens (2 mm thick and 6 mm in diameter) were evaluated by x-ray energy-dispersive spectroscopy (EDS). The bond strengths of the groups were assessed by the microshear test (n = 20) in a leucite-reinforced glass ceramic substrate, followed by failure mode analysis by scanning electron microscopy (SEM). The mean values, except for the elemental chemical evaluation and failure mode, were evaluated by ANOVA and Tukey's HSD test. The color stability was influenced by storage time (p<0.001) and interaction between contamination and storage time (p<0.001). Hemostop and Viscostat Clear contamination did not affect the DC, however Viscostat increased the DC. Bond strength of the resin cement to ceramic was negatively affected by the contaminants (p<0.001). Contamination by hemostatic agents affected the bond strength, degree of conversion, and color stability of the light-cured resin cement tested.

  20. Moisture content impacts the stability of DNA adsorbed onto gold microparticles.

    PubMed

    Smyth, Tyson J; Betker, Jamie; Wang, Wei; Anchordoquy, Thomas J

    2011-11-01

    Particle-mediated epidermal delivery (PMED) of small quantities of DNA (0.5-4.0 μg) has been reported to both induce an immune response and protect against disease in human subjects. In order for the PMED of DNA to be a viable technique for vaccination, the adsorbed DNA must be stable during shipping and storage. Here, we report that the storage stability of plasmid DNA adsorbed to 2-μm gold particles is strongly dependent on sample water content. Gold/DNA samples stored at 60°C and 6% relative humidity (RH) maintained supercoil content after 4-month storage, whereas storage at higher RHs facilitated degradation. Storage with desiccants had stabilizing effects on DNA similar to storage at 6% RH. However, storage with "indicating" Drierite and phosphorus pentoxide resulted in enhanced rates of DNA degradation. Copyright © 2011 Wiley-Liss, Inc.

  1. Stabilities of Dried Suspensions of Influenza Virus Sealed in a Vacuum or Under Different Gases

    PubMed Central

    Greiff, Donald; Rightsel, Wilton A.

    1969-01-01

    Suspensions of purified influenza virus, dried to a 1.4% content of residual moisture by sublimation of ice in vacuo, were sealed in a vacuum or under different gases of high purity. The stabilities of the several preparations were determined by an accelerated storage test. Based on the times predicted for the dried preparations stored at different temperatures to lose 1 log of infectivity titer, the order of stabilities in relation to sealing in vacuum or under different gases was as follows: helium > hydrogen > vacuum > argon > nitrogen > oxygen > carbon dioxide. Images PMID:5797938

  2. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    NASA Astrophysics Data System (ADS)

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie

    2016-05-01

    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  3. FIRST BEAM TESTS OF THE APS MBA UPGRADE ORBIT FEEDBACK CONTROLLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sereno, N. S.; Arnold, N.; Brill, A.

    The new orbit feedback system required for the APS multi-bend acromat (MBA) ring must meet challenging beam stability requirements. The AC stability requirement is to correct rms beam motion to 10 % the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. In addition long term drift over a period of 7 days is required to be 1 micron or less at insertion de- vice BPMs and 2 microns formore » arc bpms. We present test re- sults of theMBA prototype orbit feedback controller (FBC) in the APS storage ring. In this test, four insertion device BPMs were configured to send data to the FBC for process- ing into four fast corrector setpoints. The configuration of four bpms and four fast correctors creates a 4-bump and the configuration of fast correctors is similar to what will be implemented in the MBA ring. We report on performance benefits of increasing the sampling rate by a factor of 15 to 22.6 kHz over the existing APS orbit feedback system, lim- itations due to existing storage ring hardware and extrapo- lation to theMBA orbit feedback design. FBC architecture, signal flow and processing design will also be discussed.« less

  4. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  5. Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability

    PubMed Central

    2014-01-01

    Background and aims Multiple emulsions have excellent encapsulating potential and this investigation has been aimed to encapsulate two different plant extracts as functional cosmetic agents in the W/O/W multiple emulsions and the resultant system’s long term stability has been determined in the presence of a thickener, hydroxypropyl methylcellulose (HPMC). Methods Multiple W/O/W emulsions have been generated using cetyl dimethicone copolyol as lipophilic emulsifier and a blend of polyoxyethylene (20) cetyl ether and cetomacrogol 1000® as hydrophilic emulsifiers. The generated multiple emulsions have been characterized with conductivity, pH, microscopic analysis, phase separation and rheology for a period of 30 days. Moreover, long term shelf-storage stability has been tested to understand the shelf-life by keeping the generated multiple emulsion formulations at 25 ± 10°C and at 40 ± 10% relative humidity for a period of 12 months. Results It has been observed that the hydrophilic emulsifiers and HPMC have considerably improved the stability of multiple emulsions for the followed period of 12 months at different storage conditions. These multiple emulsions have shown improved entrapment efficiencies concluded on the release rate of conductometric tracer entrapped in the inner aqueous phase of the multiple emulsions. Conclusion Multiple emulsions have been found to be stable for a longer period of time with promising characteristics. Hence, stable multiple emulsions loaded with green tea and lotus extracts could be explored for their cosmetic benefits. PMID:24885994

  6. Stability of local anesthetics in the dental cartridge.

    PubMed

    Hondrum, S O; Seng, G F; Rebert, N W

    1993-01-01

    Recent manufacturer recalls of local anesthetics have emphasized the problems with storage stability. This article reviews the principles of drug stability, mechanisms of degradation of commonly used vasoconstrictors, research on the stability of commercially produced local anesthetic preparations, and possible effects of the container-closure system. The review concludes with a list of practical and clinical suggestions on how to minimize storage stability problems with dental local anesthetics.

  7. Surface Detail Reproduction and Dimensional Stability of Contemporary Irreversible Hydrocolloid Alternatives after Immediate and Delayed Pouring.

    PubMed

    Kusugal, Preethi; Chourasiya, Ritu Sunil; Ruttonji, Zarir; Astagi, Preeti; Nayak, Ajay Kumar; Patil, Abhishekha

    2018-01-01

    To overcome the poor dimensional stability of irreversible hydrocolloids, alternative materials were introduced. The dimensional changes of these alternatives after delayed pouring are not well studied and documented in the literature. The purpose of the study is to evaluate and compare the surface detail reproduction and dimensional stability of two irreversible hydrocolloid alternatives with an extended-pour irreversible hydrocolloid at different time intervals. All testing were performed according to the ANSI/ADA specification number 18 for surface detail reproduction and specification number 19 for dimensional change. The test materials used in this study were newer irreversible hydrocolloid alternatives such as AlgiNot FS, Algin-X Ultra FS, and Kromopan 100 which is an extended pour irreversible hydrocolloid as control. The surface detail reproduction was evaluated using stereomicroscope. The dimensional change after storage period of 1 h, 24 h, and 120 h was assessed and compared between the test materials and control. The data were analyzed using one-way ANOVA and post hoc Bonferroni test. Statistically significant results ( P < 0.001) were seen when mean scores of the tested materials were compared with respect to reproduction of 22 μm line from the metal block. Kromopan 100 showed statistically significant differences between different time intervals ( P < 0.001) and exhibited more dimensional change. Algin-X Ultra FS proved to be more accurate and dimensionally stable. Newer irreversible hydrocolloid alternative impression materials were more accurate in surface detail reproduction and exhibited minimal dimensional change after storage period of 1 h, 24 h, and 120 h than extended-pour irreversible hydrocolloid impression material.

  8. Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts.

    PubMed

    Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza

    2014-11-01

    Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey's post-hoc test (P<0.05). Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001). Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates.

  9. Towards muscle-specific meat color stability of Chinese Luxi yellow cattle: A proteomic insight into post-mortem storage.

    PubMed

    Wu, Wei; Yu, Qian-Qian; Fu, Yu; Tian, Xiao-Jing; Jia, Fei; Li, Xing-Min; Dai, Rui-Tong

    2016-09-16

    Searching for potential predictors of meat color is a challenging task for the meat industry. In this study, the relationship between meat color parameters and the sarcoplasmic proteome of M. longissimuss lumborum (LL) and M. psoas major (PM) from Chinese Luxi yellow cattle during post-mortem storage (0, 5, 10 and 15days) were explored with the aid of the integrated proteomics and bioinformatics approaches. Meat color attributes revealed that LL displayed better color stability than PM during storage. Furthermore, sarcoplasmic proteins of these two muscles were compared between days 5, 10, 15 and day 0. Several proteins were closely correlated with meat color attributes and they were muscle-specific and responsible for the meat color stability at different storage periods. Glycerol-3-phosphate dehydrogenase, fructose-bisphosphate aldolase A isoform, glycogen phosphorylase, peroxiredoxin-2, phosphoglucomutase-1, superoxide dismutase [Cu-Zn], heat shock cognate protein (71kDa) might serve as the candidate predictors of meat color stability during post-mortem storage. In addition, bioinformatics analyses indicated that more proteins were involved in glycolytic metabolism of LL, which contributed to better meat color stability of LL than PM. The present results could provide a proteomic insight into muscle-specific meat color stability of Chinese Luxi yellow cattle during post-mortem storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Developing eco-friendly biofungicide for the management of major seed borne diseases of rice and assessing their physical stability and storage life.

    PubMed

    Naveenkumar, Ramasamy; Muthukumar, Arjunan; Sangeetha, Ganesan; Mohanapriya, Ramanathan

    2017-04-01

    Three plant oils (Cymbopogon citratus, Cymbopogon martini, and Pelargonium graveolens) were developed as EC formulations and tested for their physical stabilities. EC formulations (10EC, 20EC and 30EC) of C. citratus, C. martini and P. graveolens had emulsion stability, spontaneity property, heat and cold stability. EC formulated plant oils were screened against the major seed borne fungi of rice such as Curvularia lunata, Fusarium moniliforme, Bipolaris oryzae, and Sarocladium oryzae. The level of inhibition varied among the concentrations of EC formulations. Among the three EC formulations, that of C. citratus oil 30EC recorded 100% inhibition on the mycelial growth of test pathogens. In the blotter paper method, rice seeds treated with a formulation of C. citratus oil 30EC controlled the infection of C. lunata, F. moniliforme, B. oryzae and S. oryzae in rice seed to the tune of 66.0%, 60.4%, 66.0% and 69.1%, respectively. Seed soaking with formulation of C. citratus oil 30EC showed the highest percentage of normal seedlings, the lowest number of abnormal seedling and fresh ungerminated seeds when tested with the roll-towel method. Seed soaking with 30EC formulation of C. citratus oil increased seed germination, shoot length, root length and vigour of rice seedlings when tested with the plastic tray method. Transmission of pathogens from seed to seedling was reduced significantly by the 30EC formulation of C. citratus oil when tested with the plastic pot method. The effect of the storage life of the 30EC formulation of C. citratus oil showed that it had retained their antifungal effect till the end of the incubation period (120 days), and is able to inhibit the mycelial growth of all test pathogens to the 100% level. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  11. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites.

    PubMed

    Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick

    2015-02-01

    To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of antioxidative effect in ice cream with Kalakai (Stenochlaena palustris) water extract

    NASA Astrophysics Data System (ADS)

    Hadhiwaluyo, Kristania; Rahmawati, Della; Gunawan Puteri, Maria D. P. T.

    2017-11-01

    Kalakai (Stenochlaena. palustris) extract was used to develop the ice cream. The antioxidant activity of the extracts and its stability over process and storage were evaluated through various antioxidant assay including DPPH assay, Folin-Ciocalteau assay and aluminum chloride colorimetric method. In general, the leaves of S. palustris had a significantly higher antioxidant activity (p < 0.05) than the branches and approximately, 0.10 mg/ml S. palustris leaves extract was able to develop antioxidant activity (IC50) with suitable iron content (< 0.3 mg/l) that could be used to produce ice cream without affecting the sensory properties of the ice cream. In addition, the high phenolic and flavonoid content also suggest the more compounds that were capable to act as an antioxidant. The result of the stability test also suggested the ability low temperature storage and processing in maintaining the stability of the antioxidant activity of the extract (p > 0.05) over processing and storage. Thus, this strengthen the feasibility of S. palustris to be used as a potential functional food ingredient that is low cost and easily accessible with an antioxidant activity and safe iron content that is beneficial to increase the quality of food produced including in ice cream.

  13. An Extrapolation of a Radical Equation More Accurately Predicts Shelf Life of Frozen Biological Matrices.

    PubMed

    De Vore, Karl W; Fatahi, Nadia M; Sass, John E

    2016-08-01

    Arrhenius modeling of analyte recovery at increased temperatures to predict long-term colder storage stability of biological raw materials, reagents, calibrators, and controls is standard practice in the diagnostics industry. Predicting subzero temperature stability using the same practice is frequently criticized but nevertheless heavily relied upon. We compared the ability to predict analyte recovery during frozen storage using 3 separate strategies: traditional accelerated studies with Arrhenius modeling, and extrapolation of recovery at 20% of shelf life using either ordinary least squares or a radical equation y = B1x(0.5) + B0. Computer simulations were performed to establish equivalence of statistical power to discern the expected changes during frozen storage or accelerated stress. This was followed by actual predictive and follow-up confirmatory testing of 12 chemistry and immunoassay analytes. Linear extrapolations tended to be the most conservative in the predicted percent recovery, reducing customer and patient risk. However, the majority of analytes followed a rate of change that slowed over time, which was fit best to a radical equation of the form y = B1x(0.5) + B0. Other evidence strongly suggested that the slowing of the rate was not due to higher-order kinetics, but to changes in the matrix during storage. Predicting shelf life of frozen products through extrapolation of early initial real-time storage analyte recovery should be considered the most accurate method. Although in this study the time required for a prediction was longer than a typical accelerated testing protocol, there are less potential sources of error, reduced costs, and a lower expenditure of resources. © 2016 American Association for Clinical Chemistry.

  14. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Junyong; Andriamitantsoa, Radoelizo S.; Atinafu, Dimberu G.; Gao, Hongyi; Dong, Wenjun; Wang, Ge

    2018-03-01

    A novel in-situ assembly strategy has been developed to synthesis polyethylene glycol (PEG)@iron-benzenetricarboxylate metal-organic gel (MOG-100-Fe) shape-stabilized composite phase change materials by regulating metal-to-ligand ratio. The PEG@MOG-100-Fe was prepared by an ingenious introduction of PEG into the traditional sol-gel prepared MOG-100-Fe. The composite exhibited high heat storage density and thermal stability. The PEG loading content reached up to 92% without any leakage above its melting point. The heat storage density reaches to 152.88

  15. Stability of Tranexamic Acid after 12-Week Storage at Temperatures from -20 deg C to 50 deg C

    DTIC Science & Technology

    2013-07-01

    PRELIMINARY REPORTS STABILITY OF TRANEXAMIC ACID AFTER 12-WEEK STORAGE AT TEMPERATURES FROM –20◦C TO 50◦C Rodolfo de Guzman, Jr., MT, I. Amy...Polykratis, BS, Jill L. Sondeen, PhD, Daniel N. Darlington, PhD, Andrew P. Cap, MD, PhD, Michael A. Dubick, PhD ABSTRACT Background. Tranexamic acid (TXA) is... tranexamic acid ; temperature stability; HPLC; thromboelastography; storage PREHOSPITAL EMERGENCY CARE 2013;17:394–400 BACKGROUND Hemorrhage is the leading

  16. The impact of geological storage of CO2 on the mechanical behaviour of faults - Can we predict frictional strength and stability?

    NASA Astrophysics Data System (ADS)

    Bakker, Elisenda; Hangx, Suzanne J. T.; Spiers, Christopher J.

    2013-04-01

    CO2 storage in depleted oil and gas reservoirs is seen as an important climate change mitigation strategy. In order to evaluate storage integrity of the reservoir-caprock system, potential leakage pathways, such as pre-existing or induced faults, need to be investigated. The mechanical and transport properties of intact and fractured rock may be affected by both short and long-term (> 100 years) fluid-rock interactions. In practice, chemical interactions that occur on timescales longer than a few months are too slow and difficult to reproduce in laboratory experiments. Recently, research within the CCS community has steered towards investigating the effect of CO2 on fault stability and particularly towards induced seismicity. In this context, we performed a variety of mechanical tests on rock types relevant for CCS sites, with the aim of investigating the effect of CO2/brine/rock interactions on the mechanical and transport properties of faults. To this end, we used both CO2-exposed and unaltered rocks obtained from sandstone reservoirs of natural CO2 fields located at Green River (Utah, USA) and Werkendam (The Netherlands). Two main types of experiment were performed: 1) triaxial tests in which cylindrical samples were shear fractured, studying subsequent slip on the fault, and 2) direct shear tests performed on (simulated) fault gouge prepared by crushing intact rock. Our results showed that the frictional stability of fault gouges is largely controlled by factors such as mineralogical composition, notably carbonate content, and temperature. We have placed our results in the context of the large body of data that already exists on fault gouge friction behaviour. The combined body of work encompasses materials ranging from clay-quartz mixtures, to anhydrite and carbonate rocks, all of which are relevant rock types for CCS. In this way, we delineate the knowledge gaps that still exist, and we show how the available data can be used to make preliminary predictions on fault friction behaviour and (micro)seismic fault reactivation potential in geological CO2-storage systems.

  17. Evaluation of new indigenous "point-of-care" ABO and Rh grouping device.

    PubMed

    Tiwari, Aseem Kumar; Setya, Divya; Aggarwal, Geet; Arora, Dinesh; Dara, Ravi C; Ratan, Ankita; Bhardwaj, Gunjan; Acharya, Devi Prasad

    2018-01-01

    Erycard 2.0 is a "point-of-care" device that is primarily being used for patient blood grouping before transfusion. Erycard 2.0 was compared with conventional slide technology for accuracy and time taken for ABO and Rh forward grouping result with column agglutination technology (CAT) being the gold standard. Erycard 2.0 as a device was also evaluated for its stability under different storage conditions and stability of result till 48 h. In addition, grouping of hemolyzed samples was also tested with Erycard 2.0. Ease of use of Erycard 2.0 was evaluated with a survey among paramedical staff. Erycard 2.0 demonstrated 100% concordance with CAT as compared with slide technique (98.9%). Mean time taken per test by Erycard 2.0 and slide technique was 5.13 min and 1.7 min, respectively. After pretesting storage under different temperature and humidity conditions, Erycard 2.0 did not show any deviation from the result. The result did not change even after 48 h of testing and storage under room temperature. 100% concordance was recorded between pre- and post-hemolyzed blood grouping. Ease of use survey revealed that Erycard 2.0 was more acceptable to paramedical staff for its simplicity, objectivity, and performance than conventional slide technique. Erycard 2.0 can be used as "point-of-care" device for blood donor screening for ABO and Rh blood group and can possibly replace conventional slide technique.

  18. Evaluation of new indigenous “point-of-care” ABO and Rh grouping device

    PubMed Central

    Tiwari, Aseem Kumar; Setya, Divya; Aggarwal, Geet; Arora, Dinesh; Dara, Ravi C.; Ratan, Ankita; Bhardwaj, Gunjan; Acharya, Devi Prasad

    2018-01-01

    BACKGROUND: Erycard 2.0 is a “point-of-care” device that is primarily being used for patient blood grouping before transfusion. MATERIALS AND METHODS: Erycard 2.0 was compared with conventional slide technology for accuracy and time taken for ABO and Rh forward grouping result with column agglutination technology (CAT) being the gold standard. Erycard 2.0 as a device was also evaluated for its stability under different storage conditions and stability of result till 48 h. In addition, grouping of hemolyzed samples was also tested with Erycard 2.0. Ease of use of Erycard 2.0 was evaluated with a survey among paramedical staff. RESULTS: Erycard 2.0 demonstrated 100% concordance with CAT as compared with slide technique (98.9%). Mean time taken per test by Erycard 2.0 and slide technique was 5.13 min and 1.7 min, respectively. After pretesting storage under different temperature and humidity conditions, Erycard 2.0 did not show any deviation from the result. The result did not change even after 48 h of testing and storage under room temperature. 100% concordance was recorded between pre- and post-hemolyzed blood grouping. Ease of use survey revealed that Erycard 2.0 was more acceptable to paramedical staff for its simplicity, objectivity, and performance than conventional slide technique. CONCLUSION: Erycard 2.0 can be used as “point-of-care” device for blood donor screening for ABO and Rh blood group and can possibly replace conventional slide technique. PMID:29403211

  19. Stability of user-friendly blood typing kits stored under typical military field conditions.

    PubMed

    Bienek, Diane R; Chang, Cheow K; Charlton, David G

    2009-10-01

    To help preserve in-theater strength within deployed military units, commercially available, rapid, user-friendly ABO-Rh blood typing kits were evaluated to determine their stability in storage conditions commonly encountered by the warfighter. Methods for environmental exposure testing were based on MIL-STD-810F. When Eldon Home Kits 2511 were exposed to various temperature/relative humidity conditions, the results were comparable to those obtained with the control group and those obtained with industry-standard methods. For the ABO-Rh Combination Blood Typing Experiment Kits, 2 of the exposure treatments rendered them unusable. In addition, a third set of exposure treatments adversely affected the kits, resulting in approximately 30% blood type misclassifications. Collectively, this evaluation of commercial blood typing kits revealed that diagnostic performance can vary between products, lots, and environmental storage conditions.

  20. Stability of Pharmaceuticals in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Y-Uyen

    2009-01-01

    Stability testing is a tool used to access shelf life and effects of storage conditions for pharmaceutical formulations. Early research from the International Space Station (ISS) revealed that some medications may have degraded while in space. This potential loss of medication efficacy would be very dangerous to Crew health. The aim of this research project, Stability of Pharmacotherapeutic Compounds, is to study how the stability of pharmaceutical compounds is affected by environmental conditions in space. Four identical pharmaceutical payload kits containing medications in different dosage forms (liquid for injection, tablet, capsule, ointment and suppository) were transported to the ISS aboard a Space Shuttle. One of the four kits was stored on that Shuttle and the other three were stored on the ISS for return to Earth at various time intervals aboard a pre-designated Shuttle flight. The Pharmacotherapeutics laboratory used stability test as defined by the United States Pharmacopeia (USP), to access the degree of degradation to the Payload kit medications that may have occurred during space flight. Once these medications returned, the results of stability test performed on them were compared to those from the matching ground controls stored on Earth. Analyses of the results obtained from physical and chemical stability assessments on these payload medications will provide researchers additional tools to promote safe and efficacious medications for space exploration.

  1. Stability of Dexmedetomidine in 0.9% Sodium Chloride in Two Types of Intravenous Infusion Bags.

    PubMed

    Marquis, Kathleen; Hohlfelder, Benjamin; Szumita, Paul M

    2017-01-01

    Dexmedetomidine is a frequently used sedative in the critical care setting. It is commercially available as a 4-mg/mL premixed compound or as 200-mcg/2-mL vials that must be further diluted prior to administration. However, limited data exist regarding the stability of dexmedetomidine admixtures compounded from the 200-mcg/2-mL vials, particularly for durations greater than 48 hours. Therefore, we performed stability testing on compounded dexmedetomidine prepared in two types of intravenous infusion bags for 14 days. Dexmedetomidine is available as 200-mcg/2-mL vials for dilution, 80-mcg/20-mL single-dose vials, and as 200-mcg/50-mL and 400-mcg/100-mL glass bottles. The stability of dexmedetomidine admixtures has previously been tested for 48 hours. The purpose of this analysis was to test the stability of dexmedetomidine admixtures for 14 days. Six dexmedetomidine admixtures of 200 mcg/50 mL were compounded in polyvinyl chloride and non-polyvinyl chloride bags, three of which were stored under refrigeration and three of which were kept at room temperature. High-performance liquid chromatography testing was performed to determine the concentration at Days 1 through 14. Stability was determined by taking the mean concentration of samples taken from each bag. All samples were tested in duplicate. A sample was considered stable if the concentration was greater than 90% of the original concentration. All samples retained over 90% of the drug under their respective storage conditions for the duration of the study. At time 0, the concentration of dexmedetomidine was between 3.99 mcg/mL and 4.01 mcg/mL. On Day 14, the mean concentration was between 95.8% and 98.9%, depending on the bag type and storage condition. The pH remained between 4.7 and 5.8 during the study period as has previously been reported in the literature. Dexmedetomidine admixtures of 200 mcg/50 mL were stable in both polyvinyl chloride bags and non-polyvinyl chloride bags for 14 days under refrigeration and 48 hours at room temperature. This represents the longest time allowable under United States Pharmacopeia Chapter <797> without the need for sterility testing. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  2. Stability of (13) C-Urea Breath Test Samples Over Time in the Diagnosis of Helicobacter pylori.

    PubMed

    Perets, Tsachi Tsadok; Shporn, Einav; Boltin, Doron; Dickman, Ram; Niv, Yaron

    2016-05-01

    The accuracy and repeatability of breath test in the diagnosis of Helicobacter pylori infection have not been adequately investigated. Although it has been shown that storage for long periods does not affect the analysis results, no data are available on the effect of repetitive testing. In this study, our aim was to evaluate the repeatability of the analyses of breath samples at room temperature. A total of 202 positive breath samples were collected in duplicates, before and after administration of 75 mg (13) C- urea dissolved in 100 ml of orange juice. Breath test results were expressed as delta (13) CO2 . The cut-off value was 3.5 parts per thousand. Each sample was analyzed in a mass spectrometer 7, 14, 21, and 28 days after collection. The accuracy calculation was based on the comparison of the delta (13) CO2 obtained in the three consecutive weeks following the first test run to the delta (13) CO2 obtained in the first test run. Two hundred (99%), 197 (97.52%), and 196 (97%) of the 202 samples tested positive in the second, third, and fourth test runs, respectively. The accuracy of the delta (13) CO2 was 98.6%, 99.2%, and 96.7% in the three consecutive runs, respectively. Short-term storage of 1 month does not affect sample stability or the results of (13) C-urea breath tests in up to three consecutive repeats. © 2015 Wiley Periodicals, Inc.

  3. ICI optical data storage tape: An archival mass storage media

    NASA Technical Reports Server (NTRS)

    Ruddick, Andrew J.

    1993-01-01

    At the 1991 Conference on Mass Storage Systems and Technologies, ICI Imagedata presented a paper which introduced ICI Optical Data Storage Tape. This paper placed specific emphasis on the media characteristics and initial data was presented which illustrated the archival stability of the media. More exhaustive analysis that was carried out on the chemical stability of the media is covered. Equally important, it also addresses archive management issues associated with, for example, the benefits of reduced rewind requirements to accommodate tape relaxation effects that result from careful tribology control in ICI Optical Tape media. ICI Optical Tape media was designed to meet the most demanding requirements of archival mass storage. It is envisaged that the volumetric data capacity, long term stability and low maintenance characteristics demonstrated will have major benefits in increasing reliability and reducing the costs associated with archival storage of large data volumes.

  4. Accelerated Storage Stability and Corrosion Characteristics Study Protocol

    EPA Pesticide Factsheets

    EPA has determined that studies using this protocol will, in certain circumstances, provide the Agency with all the information it needs to make a determination on the storage stability of pesticides.

  5. Stable Carboxylate-Terminated Gold Surfaces Produced by Spontaneous Grafting of an Alkyl Tin Compound.

    PubMed

    Ortiz, Mayreli; Mehdi, Ahmed; Methivier, Christophe; Thorimbert, Serge; Hasenknopf, Bernold; O'Sullivan, Ciara K

    2018-05-21

    Self-assembled monolayers formed by chemisorption of thiolated molecules on gold surfaces are widely applied for biosensing. Moreover, and due to the low stability of thiol-gold chemistry, contributions to the functionalisation of gold substrates with linkers that provide a more stable platform for the immobilisation of electroactive or biological molecules are highly appreciated. In the work reported here, we demonstrate that a carboxylated organotin compound can be successfully grafted onto gold substrates to form a highly stable organic layer with reactivity for subsequent binding to an aminated molecule. A battery of techniques was used to characterise the surface chemistry. The grafted layer was used to anchor aminoferrocene and subjected to both thermostability tests and long term stability studies over the period of one year, demonstrating thermostability up to 90 oC and storage stability for at least 12 months when stored at 4 oC protected from light. The stable surface tethering of molecules on gold substrates can be exploited in a plethora of applications including molecular techniques such as solid-phase amplification and solid-phase melting curve analysis that require elevated temperature stability, as well as biosensors, which require long-term storage stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Storage stability and composition changes of three cold-pressed nut oils under refrigeration and room temperature conditions.

    PubMed

    Rabadán, Adrián; Álvarez-Ortí, Manuel; Pardo, José Emilio; Alvarruiz, Andrés

    2018-09-01

    Chemical composition and stability parameters of three cold-pressed nut oils (almond, walnut and pistachio) were monitored for up to 16 months of storage at 5 °C, 10 °C, 20 °C and room temperature. Freshly pressed pistachio oil had lower peroxide value than almond oil and higher induction period than almond and walnut oils, indicating a higher stability. The peroxide values increased faster at room temperature than at lower temperatures during the storage time, and the highest increase was for pistachio oil stored at room temperature exposed to daylight. The induction period decreased for all three nut oils during the storage time, regardless of the storage conditions. Pistachio oil remained the most stable oil at the end of the storage time, followed by almond oil. The percentage of polyunsaturated fatty acids decreased slightly throughout the storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of light, packaging condition and dark storage durations on colour and lipid oxidative stability of cooked ham.

    PubMed

    Haile, Demewez Moges; De Smet, Stefaan; Claeys, Erik; Vossen, Els

    2013-04-01

    The colour and lipid oxidative stability of sliced cooked ham stored at 4 °C were studied in relation to dark storage duration, lighting and packaging conditions. Colour stability was monitored by instrumental colour measurement (CIE L*a*b* colour space) whereas lipid stability was measured by the determination of the 2-thiobarbituric acid reactive substances (TBARS). A significantly higher discoloration observed in products wrapped in foil and kept in light than products wrapped in foil and kept in dark. Colour loss was estimated by loss of redness (a*), a*/b*, nitrosomyoglobin, chroma (C); or increase of lightness (L*), MetMb, hue angle (H°). Colour loss was more dependent upon photochemical process than dark storage duration and packaging types. Lipid oxidation was not significantly affected by light exposure. However lipid oxidation was significantly affected by dark storage duration as noticed from better lipid stability of products stored for short duration in dark. Better colour stability was observed on products packed in MAP with less residual oxygen.

  8. The effects of organosulfur compounds upon the storage stability of Jet A fuel. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Heneman, F. C.

    1981-01-01

    This study examined the effect of sulfur-containing compounds on the storage stability of Jet A turbine fuel. It was found that alkyl sulfides and disulfides increased the fuel's stability while all thiols and thiophene derivatives tested decreased fuel stability (increased deposit formation) at temperatures and sulfur concentrations selected. Linear Arrhenius plots of sulfur-spiked fuel samples demonstrated that deposit formation decreased with increased slope for all alkyl sulfides, alkyl disulfides, thiols, and thiophene derivatives. A plot of insoluble deposit vs. concentration of added alkyl sulfide produces a negative slope. It appears that the inhibiting mechanism for alkyl sulfides is a result of the compound's reactivity with intermediate soluble precursors to deposit in the fuel. A method of approximating the relative basicity of weak organosulfur bases was developed via measurement of their resonance chemical shifts in proton NMR. Linear plots of log gm. deposit vs. change in chemical shift (shift differences between sulfur bases neat and complexed with I2) were found for alkyl sulfides and alkyl thiols. This suggests the possibility that increased deposit formation is due to base catalysis with these compound classes.

  9. Electrolyte-stimulated biphasic dissolution profile and stability enhancement for tablets containing drug-polyelectrolyte complexes.

    PubMed

    Kindermann, Christoph; Matthée, Karin; Sievert, Frank; Breitkreutz, Jörg

    2012-10-01

    Recently introduced drug-polyelectrolyte complexes prepared by hot-melt extrusion should be processed to solid dosage forms with tailor-made release properties. Their potential of stability enhancement should be investigated. Milled hot-melt extruded naproxen-EUDRAGIT® E PO polyelectrolyte complexes were subsequently processed to double-layer tablets with varying complex loadings on a rotary-die press. Physicochemical interactions were studied under ICH guideline conditions and using the Gordon-Taylor equation. Sorption and desorption were determined to investigate the influence of moisture and temperature on the complex and related to stability tests under accelerated conditions. Naproxen release from the drug-polyelectrolyte complex is triggered by electrolyte concentration. Depending on the complex loading, phosphate buffer pH 6.8 stimulated a biphasic dissolution profile of the produced double-layer tablets: immediate release from the first layer with 65% loading and prolonged release from the second layer within 24 h (98.5% loading). XRPD patterns proved pseudopolymorphism for tablets containing the pure drug under common storage conditions whereas the drug-complex was stable in the amorphous state. Drug-polyelectrolyte complexes enable tailor-made dissolution profiles of solid dosage forms by electrolyte stimulation and increase stability under common storage conditions.

  10. Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections.

    PubMed

    Peiren, Jindrich; Buyse, Joke; De Vos, Paul; Lang, Elke; Clermont, Dominique; Hamon, Sylviane; Bégaud, Evelyne; Bizet, Chantal; Pascual, Javier; Ruvira, María A; Macián, M Carmen; Arahal, David R

    2015-04-01

    The objective of this study is to improve the viability after freeze-drying and during storage of delicate or recalcitrant strains safeguarded at biological resource centers. To achieve this objective, a joint experimental strategy was established among the different involved partner collections of the EMbaRC project ( www.embarc.eu ). Five bacterial strains considered as recalcitrant to freeze-drying were subjected to a standardized freeze-drying protocol and to seven agreed protocol variants. Viability of these strains was determined before and after freeze-drying (within 1 week, after 6 and 12 months, and after accelerated storage) for each of the protocols. Furthermore, strains were exchanged between partners to perform experiments with different freeze-dryer-dependent parameters. Of all tested variables, choice of the lyoprotectant had the biggest impact on viability after freeze-drying and during storage. For nearly all tested strains, skim milk as lyoprotectant resulted in lowest viability after freeze-drying and storage. On the other hand, best freeze-drying and storage conditions were strain and device dependent. For Aeromonas salmonicida CECT 894(T), best survival was obtained when horse serum supplemented with trehalose was used as lyoprotectant, while Aliivibrio fischeri LMG 4414(T) should be freeze-dried in skim milk supplemented with marine broth in a 1:1 ratio. Freeze-drying Campylobacter fetus CIP 53.96(T) using skim milk supplemented with trehalose as lyoprotectant resulted in best recovery. Xanthomonas fragariae DSM 3587(T) expressed high viability after freeze-drying and storage for all tested lyoprotectants and could not be considered as recalcitrant. In contrary, Flavobacterium columnare LMG 10406(T) did not survive the freeze-drying process under all tested conditions.

  11. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) andmore » roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no deposits or abnormal wear for any fuel. The results provide some confidence that the ASTM D7467 stability requirement of 6 hr. minimum IP for B6 to B20 blends provides adequate protection for modern engine fuel systems.« less

  12. Influence of artificial accelerated aging on dimensional stability of acrylic resins submitted to different storage protocols.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides

    2010-08-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.

  13. Stability of serum eye drops after storage of 6 months.

    PubMed

    Fischer, Kai R; Opitz, Andreas; Böeck, Markus; Geerling, Gerd

    2012-11-01

    Serum eye drops are used for the treatment of ocular surface disease (eg, Sicca syndrome). The objective of this experimental study was to investigate whether they maintain their wound-healing potency after a prolonged storage of 6 months at -20 °C and to find a parameter that can serve as a quality and stability indicator. After obtaining whole blood from 10 volunteers and preparing 100% (AS100), 50% (AS50), and 20% (AS20) serum eye drops, epitheliotrophic factors including EGF, fibronectin, vitamins A and E, albumin, and immunoglobulin A were quantified before and after storage for 7 days at 6 °C or 3 and 6 months at -20 °C. Human corneal epithelial (HCE) cell lines were used to investigate proliferation, migration, and overall wound healing potency of the cells in response to different serum preparations. The proliferation, migration, and wound healing of HCE cells were measured after incubation with different serum eye drop concentrations and after different storage conditions. The concentration of epidermal growth factor, fibronectin, vitamins A and E, immunoglobulin A, and albumin showed no significant reduction over the test period. Proliferation, migration, and wound healing of HCE cells was significantly better after incubation with undiluted serum in comparison with diluted serum. No significant loss of cytokine concentration, wound healing, and proliferation effect in HCE culture of AS100, AS50, and AS20 could be detected over the 6 months of storage. The concentration of a spectrum of cytokines involved in corneal epithelial wound healing and the epitheliothrophic effect of serum are not significantly changed after a prolonged storage of 6 months at -20 °C. Hence, it seems justifiable to provide patients with appropriate freezer capacity with a 6-month supply of autologous serum eye drops. Albumin--which is known to be relevant for ocular surface health--could serve as a cost-effective parameter for stability controls.

  14. Thermophysical Properties and Corrosion Characterization of Low Cost Lithium Containing Nitrate Salts Produced in Northern Chile for Thermal Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Angel G.; Gomez, Judith C.; Galleguillos, Hector

    In recent years, lithium containing salts have been studied for thermal energy storage (TES) systems applications, because of their optimal thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, due to its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations of carbon and low chromium steels were performed at 390 degrees C for 1000 hours. Thermophysicalmore » properties of the salt mixtures, such as thermal stability and heat capacity, were measured before and after corrosion tests. Chemical composition of the salts was also determined and an estimation of Chilean production costs is reported. Results showed that purity, thermal stability and heat capacity of the salts were reduced, caused by partial thermal decomposition and incorporation of corrosion products from the steel.« less

  15. Stability Study of Cervical Specimens Collected by Swab and Stored Dry Followed by Human Papillomavirus DNA Detection Using the cobas 4800 Test.

    PubMed

    Lin, Chun-Qing; Zeng, Xi; Cui, Jian-Feng; Liao, Guang-Dong; Wu, Ze-Ni; Gao, Qian-Qian; Zhang, Xun; Yu, Xiu-Zhang; Chen, Wen; Xi, Ming-Rong; Qiao, You-Lin

    2017-02-01

    Safer, more convenient methods for cervical sample collection and storage are necessary to facilitate human papillomavirus (HPV) DNA testing in low-resource settings. Our study aimed to evaluate the stability of cervical specimens collected with dry swabs and stored dry, compared to liquid-based cytology (LBC) samples, as detected by HPV DNA testing. Women with abnormal cytological findings or HPV-positive results at colposcopy were recruited from the West China Second University Hospital, Sichuan University, between October 2013 and March 2014. From each woman, physicians collected cervical specimens with a swab placed into a Sarstedt tube and a CytoBrush placed into LBC medium. Samples were randomly assigned to be stored at uncontrolled ambient temperature for 2, 7, 14, or 28 days and then were tested for 14 high-risk HPV (HR-HPV) types using the cobas HPV test. The rates of agreement between dry swab and LBC samples for any HR-HPV type, HPV16, HPV18, and the 12 pooled HR-HPV types were 93.8%, 97.8%, 99.4%, and 93.2%, respectively, with kappa values of 0.87 (95% confidence interval [CI], 0.83 to 0.91), 0.94 (95% CI, 0.91 to 0.97), 0.94 (95% CI, 0.87 to 1.00), and 0.86 (95% CI, 0.82 to 0.90). The performance of swab samples for detection of cervical precancerous lesions by means of cobas HPV testing was equal to that of LBC samples, even with stratification by storage time. Dry storage of swab-collected cervical samples can last for 1 month without loss of test performance by cobas HPV testing, compared to LBC samples, which may offer a simple inexpensive approach for cervical cancer screening in low-resource settings. Copyright © 2017 American Society for Microbiology.

  16. Instability risk analysis and risk assessment system establishment of underground storage caverns in bedded salt rock

    NASA Astrophysics Data System (ADS)

    Jing, Wenjun; Zhao, Yan

    2018-02-01

    Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.

  17. Fundamental Study of Energy Storage for Electric Railway Combining Electric Double-layer Capacitors and Battery

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi

    The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regenerative power lapse and so on, have been important issues in DC railway feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. Electric double-layer capacitors (EDLC) can be charged and discharged rapidly in a short time with large power. On the other hand, a battery has a high energy density so that it is proper to be charged and discharged for a long time. Therefore, from a viewpoint of load pattern for electric railway, hybrid energy storage system combining both energy storage media may be effective. This paper introduces two methods for hybrid energy system theoretically, and describes the results of the fundamental tests.

  18. Geopolymer encapsulation of a chloride salt phase change material for high temperature thermal energy storage

    NASA Astrophysics Data System (ADS)

    Jacob, Rhys; Trout, Neil; Raud, Ralf; Clarke, Stephen; Steinberg, Theodore A.; Saman, Wasim; Bruno, Frank

    2016-05-01

    In an effort to reduce the cost and increase the material compatibility of encapsulated phase change materials (EPCMs) a new encapsulated system has been proposed. In the current study a molten salt eutectic of barium chloride (53% wt.), potassium chloride (28% wt.) and sodium chloride (19% wt.) has been identified as a promising candidate for low cost EPCM storage systems. The latent heat, melting point and thermal stability of the phase change material (PCM) was determined by DSC and was found to be in good agreement with results published in the literature. To cope with the corrosive nature of the PCM, it was decided that a fly-ash based geopolymer met the thermal and economic constraints for encapsulation. The thermal stability of the geopolymer shell was also tested with several formulations proving to form a stable shell for the chosen PCM at 200°C and/or 600°C. Lastly several capsules of the geopolymer shell with a chloride PCM were fabricated using a variety of methods with several samples remaining stable after exposure to 600°C testing.

  19. Stability of gabapentin in extemporaneously compounded oral suspensions.

    PubMed

    Friciu, Mihaela; Roullin, V Gaëlle; Leclair, Grégoire

    2017-01-01

    This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days.

  20. Stability of oseltamivir in various extemporaneous liquid preparations.

    PubMed

    Ford, Stephen M; Kloesel, Lawson G; Grabenstein, John D

    2007-01-01

    The purpose of this study was to determine the stability of oseltamivir, the active ingredient in Tamiflu, in contemporaneously compounded suspensions for a period of not less than 90 days. The suspension vehicles provided for the study were chosen because of ease of preparation, commercial availability, and palatability. Stability of the active ingredient was demonstrated for suspensions prepared in PCCA-Plus, PCCA Acacia, and 1% methylcellulose and was independent of storage temperature (tested temperatures were 2 deg C to 8 deg C and 25 deg C). A control sample of the commercial liquid form of Tamiflu was prepared, stored and analyzed along with the samples prepared from the contents of capsules. There was no difference in the apparent stability of the two forms of the drug preparation.

  1. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  2. Surface Detail Reproduction and Dimensional Stability of Contemporary Irreversible Hydrocolloid Alternatives after Immediate and Delayed Pouring

    PubMed Central

    Kusugal, Preethi; Chourasiya, Ritu Sunil; Ruttonji, Zarir; Astagi, Preeti; Nayak, Ajay Kumar; Patil, Abhishekha

    2018-01-01

    Purpose: To overcome the poor dimensional stability of irreversible hydrocolloids, alternative materials were introduced. The dimensional changes of these alternatives after delayed pouring are not well studied and documented in the literature. The purpose of the study is to evaluate and compare the surface detail reproduction and dimensional stability of two irreversible hydrocolloid alternatives with an extended-pour irreversible hydrocolloid at different time intervals. Materials and Methods: All testing were performed according to the ANSI/ADA specification number 18 for surface detail reproduction and specification number 19 for dimensional change. The test materials used in this study were newer irreversible hydrocolloid alternatives such as AlgiNot FS, Algin-X Ultra FS, and Kromopan 100 which is an extended pour irreversible hydrocolloid as control. The surface detail reproduction was evaluated using stereomicroscope. The dimensional change after storage period of 1 h, 24 h, and 120 h was assessed and compared between the test materials and control. The data were analyzed using one-way ANOVA and post hoc Bonferroni test. Results: Statistically significant results (P < 0.001) were seen when mean scores of the tested materials were compared with respect to reproduction of 22 μm line from the metal block. Kromopan 100 showed statistically significant differences between different time intervals (P < 0.001) and exhibited more dimensional change. Algin-X Ultra FS proved to be more accurate and dimensionally stable. Conclusions: Newer irreversible hydrocolloid alternative impression materials were more accurate in surface detail reproduction and exhibited minimal dimensional change after storage period of 1 h, 24 h, and 120 h than extended-pour irreversible hydrocolloid impression material. PMID:29599578

  3. Comparison of techniques for stabilizing hemoglobins of rainbow trout (Salmo gairdneri) during frozen storage

    USGS Publications Warehouse

    Reinitz, G.L.

    1976-01-01

    1. The stability of hemoglobin of rainbow trout under frozen conditions in oxyform, carboxyform, and cyanometform was examined.2. Carboxyhemoglobin retained its original electrophoretic banding pattern after 14 days of frozen storage, whereas oxyform and cyanometform hemoglobins did not.3. Banding patterns changed in some samples in all treatment groups after 21 days of storage.

  4. Effect of storage in short--and long-term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa.

    PubMed

    De Ambrogi, Marco; Ballester, Juan; Saravia, Fernando; Caballero, Ignacio; Johannisson, Anders; Wallgren, Margareta; Andersson, Magnus; Rodriguez-Martinez, Heriberto

    2006-10-01

    For artificial insemination (AI) in pigs, preservation of liquid boar semen at 16-20 degrees C is still common practice as sperm cryopreservation remains suboptimal in this species. To meet the different needs of the swine industry, several extenders have been developed to preserve semen in liquid form for short--and long-term storage. In the present study, three different commercial extenders devised for short-term (BTS+) or long-term preservation (MR-A and X-Cell), were used to test whether storage of semen from four mature, fertile boars at 17 degrees C for 96 h would affect sperm characteristics relevant for fertility, such as motility, membrane integrity and chromatin stability. Computer-assisted sperm analysis, and stainings with the acylated membrane dye SYBR-14/propidium iodide, and acridine orange in connection with flow cytometry were used to evaluate these variables. Percentages of total motile spermatozoa decreased slightly, but significantly, after 72-96 h. While membrane integrity values varied during the period of study, no significant changes in either membrane integrity or chromatin stability were, however, registered. This suggests a customary 96-day storage at 17 degrees C in these extenders was too short an interval to cause losses of integrity in nuclear DNA in the boar population studied.

  5. [Effect of three aging challenges on the bonding stability of resin-dentin interface using an etch-and-rinse adhesive].

    PubMed

    Xu, Shuai; Zhang, Ling; Li, Fang; Zhou, Wei; Chen, Yujiang; Chen, Jihua

    2014-06-01

    To systematically investigate the aging effect of thermocycling, water storage and bacteria aggression on the stability of resin-dentin bonds. Forty molars were sectioned perpendicularly to the axis of the teeth to expose the middle-coronal dentin surfaces. The dentin surfaces were then treated with Single Bond 2 and made a core build-up. According to random digits table, the bonding specimens were divided into four groups (n = 10) as follows: immediate control group, aging group with thermocycling for 5 000 times, aging group with artificial saliva storage for 6 months and aging group with bacteria aggression for 14 days. The specimens in each group were then subjected to microtensile bond strengths (µTBS) testing and nanoleakage evaluation respectively. After aging treatments, the three aging groups showed significantly lower µTBS than the immediate control group [(44.24 ± 12.75) MPa, P < 0.05]. The immediate control group also showed the lowest value of nanoleakage. The µTBS of aging group with bacteria aggression [(25.53 ± 7.39) MPa] was significantly lower than those of the other aging groups with artificial saliva storage[(29.72 ± 6.51) MPa] and thermocycling [(31.92 ± 11.87) MPa, P < 0.05]. There were no differences in the nanoleakage values among the three aging groups (P > 0.05). All the aging treatments with artificial saliva storage, thermocycling and bacteria aggression could accelerate the degradation of bonding interfaces between an etch-and-rinse adhesive and dentin. Bacteria aggression showed the most impairing effect on the stability of resin-dentin bonds.

  6. Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation

    PubMed Central

    2011-01-01

    Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH3−nRn (R = Me, Et; n = 0−3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2−nRn (R = Me, Et; n = 0−2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine−alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of ΔG° for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system. PMID:22962624

  7. Effect of Storage Time of Extended-Pour and Conventional Alginate Impressions on Dimensional Accuracy of Casts

    PubMed Central

    Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza

    2014-01-01

    Objectives: Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. Materials and Methods: In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey’s post-hoc test (P<0.05). Results: Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001). Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. Conclusion: Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates. PMID:25628695

  8. Effect of Storage Time and Temperature on Dimensional Stability of Impressions Made with Zinc Oxide Impression Paste

    PubMed Central

    Habibzadeh, Sareh; Safaeian, Shima; Behruzibakhsh, Marjan; Kaviyani, Parisa; Kharazifard, Mohamadjavad

    2016-01-01

    Objectives: This study aimed to assess the effect of storage time and temperature on dimensional stability of impressions made with Cavex Outline zinc oxide impression paste. Materials and Methods: A round stainless steel mold with five grooves (three horizontal and two vertical) was used in this in-vitro experimental study. Cavex Outline impression paste was prepared according to the manufacturer’s instructions and applied to the mold. The mold was placed on a block and stored at 35°C and 100% humidity for setting. The impressions were poured with stone immediately and also after 30, 120, 240 and 420 minutes and 24 hours. The distance between the vertical lines on the casts was measured and compared with that in the immediately poured cast. Results: Storage in a refrigerator and at room temperature for zero to seven hours had no significant effect on dimensional stability of the impressions; however, 24 hours of storage in a refrigerator or at room temperature decreased the dimensional stability of Cavex Outline (P=0.001). Also, a significant association was found between dimensional changes following 24 hours of storage in a refrigerator (4°C) and at room temperature (23°C; P<0.01). Conclusions: The optimal pouring time of Cavex Outline impressions with stone is between zero to seven hours, and 24 hours of storage significantly decreases the dimensional stability. PMID:28392816

  9. Suppression of Instabilities Generated by an Anti-Damper with a Nonlinear Magnetic Element in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, E.

    The Integrable Optics Test Accelerator (IOTA) storage ring is being constructed at Fermilab as a testbed for new accelerator concepts. One important series of experiments tests the use of a novel nonlinear magnetic insert to damp coherent instabilities. To test the damping power of the element, an instability of desired strength may be intentionally excited with an anti-damper. We report on simulations of beam stabilization using the Synergia modeling framework over ranges of driving and damping strengths.

  10. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose.

    PubMed

    Esfahani, Siavash; Sagar, Nidhi M; Kyrou, Ioannis; Mozdiak, Ella; O'Connell, Nicola; Nwokolo, Chuka; Bardhan, Karna D; Arasaradnam, Ramesh P; Covington, James A

    2016-01-25

    The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose--an instrument designed to replicate the biological olfactory system. Of the possible biological media available to "sniff", urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at -80 °C. Here we investigated the effect of storage time (years) on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at -80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry--a type of electronic nose). It was discovered that gas emissions (concentration and diversity) reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life.

  11. MALDI-TOF mass spectrometry and high-consequence bacteria: safety and stability of biothreat bacterial sample testing in clinical diagnostic laboratories.

    PubMed

    Tracz, Dobryan M; Tober, Ashley D; Antonation, Kym S; Corbett, Cindi R

    2018-03-01

    We considered the application of MALDI-TOF mass spectrometry for BSL-3 bacterial diagnostics, with a focus on the biosafety of live-culture direct-colony testing and the stability of stored extracts. Biosafety level 2 (BSL-2) bacterial species were used as surrogates for BSL-3 high-consequence pathogens in all live-culture MALDI-TOF experiments. Viable BSL-2 bacteria were isolated from MALDI-TOF mass spectrometry target plates after 'direct-colony' and 'on-plate' extraction testing, suggesting that the matrix chemicals alone cannot be considered sufficient to inactivate bacterial culture and spores in all samples. Sampling of the instrument interior after direct-colony analysis did not recover viable organisms, suggesting that any potential risks to the laboratory technician are associated with preparation of the MALDI-TOF target plate before or after testing. Secondly, a long-term stability study (3 years) of stored MALDI-TOF extracts showed that match scores can decrease below the threshold for reliable species identification (<1.7), which has implications for proficiency test panel item storage and distribution.

  12. Sensory Quality Preservation of Coated Walnuts.

    PubMed

    Grosso, Antonella L; Asensio, Claudia M; Grosso, Nelson R; Nepote, Valeria

    2017-01-01

    The objective of this study was to evaluate the sensory stability of coated walnuts during storage. Four walnut samples were prepared: uncoated (NC), and samples coated with carboxymethyl cellulose (NCMC), methyl cellulose (NMC), or whey protein (NPS). The samples were stored at room temperature for 210 d and were periodically removed from storage to perform a sensory descriptive analysis. A consumer acceptance test was carried out on the fresh product (storage day 0) to evaluate flavor. All samples exhibited significant differences in their sensory attributes initially and after storage. Intensity ratings for oxidized and cardboard flavors increased during storage. NC showed the highest oxidized and cardboard intensity ratings (39 and 22, respectively) and NMC exhibited the lowest intensity ratings for these negative attributes (8 and 17, respectively) after 210 d of storage. Alternatively, the intensity ratings for sweetness and walnut flavors were decreased for all samples. NMC had the lowest decrease at the end of storage for these positive attributes (75.86 in walnut flavor and 12.09 in sweetness). The results of this study suggest a protective effect of the use of an edible coating to preserve sensory attributes during storage, especially for samples coated with MC. The results of the acceptance test showed that addition of the coating negatively affected the flavor acceptance for NMC and NCMC coated walnuts. Edible coatings help to preserve sensory attributes in walnuts, improving their shelf-life, however, these coatings may affect consumer acceptance in some cases. © 2016 Institute of Food Technologists®.

  13. [Basic Studies on the Stability of Flavored Oral Solutions of Rebamipide].

    PubMed

    Yajima, Ryo; Imaoka, Futa; Wako, Tetsuya; Kuroda, Yuko; Matsumoto, Kazuaki; Kizu, Junko; Katayama, Shiro

    2015-01-01

    Stomatitis frequently occurs during chemotherapy and radiotherapy for cancer. Because of its pharmacological properties including anti-inflammatory activity and stimulatory effects on endogenous prostaglandin synthesis, rebamipide has been suggested as a potentially effective treatment against stomatitis. In the present study we tested the stability of oral rebamipide solutions prepared in our hospital pharmacy using sodium alginate as a thickener to increase retention of this agent in the oral cavity, and the addition of different flavoring mixtures intended for use in enteral diets to reduce the bitterness of rebamipide and sodium alginate. Samples of oral rebamipide solution prepared with 13 kinds of flavoring and sodium alginate were evaluated in terms of their appearance, redispersibility, pH, viscosity, and rebamipide content immediately after preparation and 1, 3, 7, and 10 days after storage at room temperature under ambient light or in a cool, dark place. After 10 days of storage, favorable stability was observed in four sample solutions supplemented with green apple, pineapple, yogurt, and tomato flavoring mixtures intended for use in Elental(®) diets. These oral solutions may have potential clinical application.

  14. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.

    PubMed

    Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz

    2016-02-01

    This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.

  15. A composite material with CeO2-ZrO2 nanocrystallines embedded in SiO2 matrices and its enhanced thermal stability and oxygen storage capacity

    NASA Astrophysics Data System (ADS)

    Yang, Runnong; Liu, Yumei; Yu, Lin; Zhao, Xiangyun; Yang, Xiaobo; Sun, Ming; Luo, Junyin; Fan, Qun; Xiao, Jianming; Zhao, Yuzhong

    2018-06-01

    A simple hydrothermal procedure is introduced, which leads to the successful synthesis of a new composite material with fine CeO2-ZrO2 nanocrystallites embedded in amorphous and porous SiO2 matrices. The composite material possesses an extraordinary high thermal stability. After being calcined at 1000 °C, it retains CeO2-ZrO2 nanocrystallites of the size around 5 nm, a BET-specific surface area of 165 m2/g, and an oxygen storage capacity of 468 μmol/g. No phase segregation for CeO2-ZrO2 nanocrystallites is detected and the SiO2 matrices remain not crystallized. The composite material shows a great potential as a support of three-way catalyst, as evidenced in catalytic tests with supported Pt.

  16. Design and stability study of an oral solution of amlodipine besylate for pediatric patients.

    PubMed

    van der Vossen, A C; van der Velde, I; Smeets, O S N M; Postma, D J; Vermes, A; Koch, B C P; Vulto, A G; Hanff, L M

    2016-09-20

    Amlodipine is an antihypertensive agent recommended for the management of hypertension in children and adolescents. The commercially available tablets of 5 and 10mg do not provide the necessary flexibility in dosing needed for treating children. Our goal was to develop a pediatric oral solution of amlodipine, using a robust manufacturing process suitable for ex-tempora and larger scale production. The parameters API and preservative content, related substances, appearance and pH were studied under four different storage conditions. Samples were analyzed up to 12months. Microbiological quality was studied in an 18-week in-use test based on a two-times daily dosing schedule. The stability of the formulation was influenced by storage conditions and composition. A formulation containing amlodipine besylate, sucrose syrup and methyl paraben remained physically stable for 12months at 4°C with no loss of amlodipine content. Related substances increased during the study but remained below 0.5%. In-use stability was proven up to 18weeks. Storage under refrigerated conditions was necessary to prevent precipitation and to obtain an acceptable shelf-life. In conclusion, we have developed and validated an amlodipine oral solution, suitable for the pediatric population. This liquid formulation is preferred over manipulated commercial dosage forms or non-standardized extemporaneously compounded formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design.

    PubMed

    Lecheb, Fatma; Benamara, Salem

    2015-01-01

    This article reports on the feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design. First, the mixture design was applied to optimize the cosmetic formula. The responses (dependent variables) were the spreadability (YSp) and viscosity (YVis), the factors (independent variables) being the weight proportions of the fatty phase (X1), the aqueous date seed extract (X2), and the beeswax (X3). Second, the cosmetic stability study was conducted by applying a full factorial design. Here, three responses were considered [spreadability (Sp), viscosity (Vis), and peroxide index (PI)], the independent variables being the concentration of the date seed oil (DSO) (x1), storage temperature (x2), and storage time (x3). Results showed that in the case of mixture design, the second-order polynomial equations correctly described experimental data. Globally, results show that there is a relatively wide composition range to ensure a suitable cosmetic cream from the point of view of Sp and Vis. Regarding the cosmetic stability, the storage time was found to be the most influential factor on both Vis and PI, which are considered here as indicators of physical and chemical stability of the emulsion, respectively. Finally, the elaborated and commercial cosmetics were compared in terms of pH, Sp, and centrifugation test (Ct).

  18. The Effect of Sampling and Storage on the Fecal Microbiota Composition in Healthy and Diseased Subjects

    PubMed Central

    Tedjo, Danyta I.; Jonkers, Daisy M. A. E.; Savelkoul, Paul H.; Masclee, Ad A.; van Best, Niels; Pierik, Marieke J.; Penders, John

    2015-01-01

    Large-scale cohort studies are currently being designed to investigate the human microbiome in health and disease. Adequate sampling strategies are required to limit bias due to shifts in microbial communities during sampling and storage. Therefore, we examined the impact of different sampling and storage conditions on the stability of fecal microbial communities in healthy and diseased subjects. Fecal samples from 10 healthy controls, 10 irritable bowel syndrome and 8 inflammatory bowel disease patients were collected on site, aliquoted immediately after defecation and stored at -80°C, -20°C for 1 week, at +4°C or room temperature for 24 hours. Fecal transport swabs (FecalSwab, Copan) were collected and stored for 48-72 hours at room temperature. We used pyrosequencing of the 16S gene to investigate the stability of microbial communities. Alpha diversity did not differ between all storage methods and -80°C, except for the fecal swabs. UPGMA clustering and principal coordinate analysis showed significant clustering by test subject (p<0.001) but not by storage method. Bray-Curtis dissimilarity and (un)weighted UniFrac showed a significant higher distance between fecal swabs and -80°C versus the other methods and -80°C samples (p<0.009). The relative abundance of Ruminococcus and Enterobacteriaceae did not differ between the storage methods versus -80°C, but was higher in fecal swabs (p<0.05). Storage up to 24 hours (at +4°C or room temperature) or freezing at -20°C did not significantly alter the fecal microbial community structure compared to direct freezing of samples from healthy subjects and patients with gastrointestinal disorders. PMID:26024217

  19. Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment.

    PubMed

    Morello, Luca; Raga, Roberto; Sgarbossa, Paolo; Rosson, Egle; Cossu, Raffaello

    2018-05-01

    The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Artifactual degradation of secondary amine-containing drugs during accelerated stability testing when saturated sodium nitrite solutions are used for humidity control.

    PubMed

    Sluggett, Gregory W; Zelesky, Todd; Hetrick, Evan M; Babayan, Yelizaveta; Baertschi, Steven W

    2018-02-05

    Accelerated stability studies of pharmaceutical products are commonly conducted at various combinations of temperature and relative humidity (RH). The RH of the sample environment can be controlled to set points using humidity-controlled stability chambers or via storage of the sample in a closed container in the presence of a saturated aqueous salt solution. Herein we report an unexpected N-nitrosation reaction that occurs upon storage of carvedilol- or propranolol-excipient blends in a stability chamber in the presence of saturated sodium nitrite (NaNO 2 ) solution to control relative humidity (∼60% RH). In both cases, the major products were identified as the corresponding N-nitroso derivatives of the secondary amine drugs based on mass spectrometry, UV-vis and retention time. These degradation products were not observed upon storage of the samples at the same temperature and humidity but in the presence of saturated potassium iodide (KI) solution (∼60% RH) for humidity control. The levels of the N-nitrosamine derivatives varied with the pH of various NaNO 2 batches. The presence of volatile NOx species in the headspace of a container containing saturated NaNO 2 solution was confirmed via the Griess assay. The process for formation of the N-nitrosamine derivatives is proposed to involve volatilization of nitric oxide (NO) from aqueous nitrite solution into the headspace of the container followed by diffusion into the solid drug-excipient blend and subsequent reaction of NOx with the secondary amine. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Performance of advanced chromium electrodes for the NASA Redox Energy Storage System

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Charleston, J.; Ling, J. S.; Reid, M. A.

    1981-01-01

    Chromium electrodes were prepared for the NASA Redox Storage System with meet the performance requirements for solar-photovoltaic, wind-turbine and electric utility applications. Gold-lead catalyzed carbon felt electrodes up tp 930 sq cm were fabricated and tested in single cells and multicell stacks for hydrogen evolution, coulombic efficiency, catalyst stability and electrochemical activity. Factors which affect the overall performance of a particular electrode include the carbon felt lot, the cleaning treatment and the gold catalyzation method. Effects of the chromium solution chemistry and impurities on charge/discharge performance are also presented.

  2. Physicochemical Properties and Oxidative Storage Stability of Milled Roselle (Hibiscus sabdariffa L.) Seeds.

    PubMed

    Juhari, Nurul Hanisah; Petersen, Mikael Agerlin

    2018-02-11

    Milled Roselle ( Hibiscus sabdariffa L.) seeds of the UMKL cultivar were analyzed for proximate composition, water and oil absorption capacity, and the influence of storage conditions on storage stability. The storage stability was determined under four types of conditions: light/oxygen (air) (LO), light/nitrogen (LN), darkness/oxygen (air) (DO), and darkness/nitrogen (DN) while monitoring for seven consecutive months. During the storage period, the formation of volatiles was determined using dynamic headspace sampling and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. In total, 85 volatiles were identified, mainly aldehydes, alcohols, ketones, furans, and acids indicating lipid oxidation. It is recommended that milled Roselle seeds should be flushed with nitrogen and stored in darkness. Under these conditions, the seeds can be stored for at least three months without changes in volatile profile. This is important to ensure the good quality of milled Roselle seeds for further commercialization.

  3. An investigation of the stability of free and glucuronidated 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid in authentic urine samples.

    PubMed

    Skopp, Gisela; Pötsch, Lucia

    2004-01-01

    Preanalytical stability of a drug and its major metabolites is an important consideration in pharmacokinetic studies or whenever the analyte pattern is used to estimate drug habits. Firstly, the stability of free and glucuronidated 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH, THCCOOglu) in authentic urine samples was investigated. Random urine samples of cannabis users (n = 38) were stored at -20, 4, and 20 degrees C up to 15 days and up to 5 days at 40 degrees C, and alterations of the analyte pattern during storage were followed by liquid chromatography-tandem mass spectrometry. Secondly, the influence of pH (range 5.0-8.0) on the stability of the analytes was studied using spiked urine to elucidate the results obtained from authentic samples. In authentic urine samples, the initial pH ranged from 5.1 to 8.8. The glucuronide was found to be highly labile at a storage temperature of 4 degrees C and above. Initially, 18 urine samples tested positive for THCCOOH. After 2 days storage at 20 degrees C, THCCOOH was detectable in a further 4 samples, and 7 more samples tested positive for THCCOOH (5-81 ng/mL) after 15 days. Depending on time and temperature, the glucuronide concentration decreased, resulting in an increase of THCCOOH concentration. However, a loss in mean total THCCOOH concentration was found, which was significantly higher in deteriorated samples than in samples without signs of deterioration after 15 days of storage at 20 degrees C. In the drug-free urine sample separately spiked with THCCOOglu or THCCOOH, the investigations on the stability of the target analytes at various pH values revealed that THCCOOH was stable at pH 5.0. At higher pH values, its concentration slightly decreased with time, and about 69% of the initial THCCOOH concentration was still present at pH 8.0 on day 5. THCCOOglu concentrations rapidly decreased with increasing pH value. For example, only 72% of the initial THCCOOglu concentration could be detected at pH 5.0 on day 1. Degradation of the glucuronide resulted in formation of THCCOOH, which was observed even at pH 5.0. In light of the present findings, advanced forensic interpretations based on the presence of THCCOOH or the pattern of THCCOOH and THCCOOglu in stored urine samples seems questionable.

  4. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: comparison of their stability in an accelerated test.

    PubMed

    Herrera, María; Tattini, Virgilio; Pitombo, Ronaldo N M; Gutiérrez, José María; Borgognoni, Camila; Vega-Baudrit, José; Solera, Federico; Cerdas, Maykel; Segura, Alvaro; Villalta, Mauren; Vargas, Mariángela; León, Guillermo

    2014-11-01

    Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  6. Efficacy testing of 35-year-old commercially-produced ERM bacterin reveals the remarkable stability of this product

    USDA-ARS?s Scientific Manuscript database

    Recently, a bottle of ERM bacterin that was approximately 35-years-old and labeled by Wildlife Vaccines with a serial number of 236 and an expiration date of October 18, 1982 was discovered in a storage closet at room temperature at the Clear Springs Foods Research Division. Microscopic evaluation a...

  7. Evaluation of the physical stability of two oleogels.

    PubMed

    Almeida, Isabel F; Bahia, M Fernanda

    2006-12-11

    Oleogels are semisolid systems obtained with an organogelator and a hydrophobic liquid that have been investigated over the past few years and that could play an important role as dermatological bases. Recently, we have developed an oleogel of sorbitan monostearate (19wt.%) and sweet almond oil (SM-SAO) and another one of cholesterol (3.5wt.%) and liquid paraffin (Ch-LP). The aim of this work is to access their physical stability using three different methodologies. The gels were stored at different temperatures (20 and 40 degrees C) over a 3-month period. Appearance and textural properties were assessed on each month. An accelerated test was also performed where the temperature changed between 4 and 40 degrees C every 24h, during 7 days. Rheological tests were also carried out as they could provide useful elements to predict stability. The gels were quite stable at 20 degrees C, being the SM-SAO gel the most stable. The textural properties of both gels were influenced by temperature. The decrease of the textural parameters, observed after storage at 40 degrees C and in the cycling test, was more significant for the SM-SAO gel. A good correlation was found between rheological analysis and conventional stability tests. The heating/cooling cycle test provided useful information in a short period of time.

  8. EDTA improves stability of whole blood C-peptide and insulin to over 24 hours at room temperature.

    PubMed

    McDonald, Timothy J; Perry, Mandy H; Peake, Roy W A; Pullan, Nicola J; O'Connor, John; Shields, Beverley M; Knight, Beatrice A; Hattersley, Andrew T

    2012-01-01

    C-peptide and insulin measurements in blood provide useful information regarding endogenous insulin secretion. Conflicting evidence on sample stability and handling procedures continue to limit the widespread clinical use of these tests. We assessed the factors that altered the stability of insulin and C-peptide in blood. We investigated the impact of preservative type, time to centrifugation, storage conditions and duration of storage on the stability of C-peptide and insulin on three different analytical platforms. C-peptide was stable for at least 24 hours at room temperature in both centrifuged and whole blood collected in K(+)-EDTA and serum gel tubes, with the exception of whole blood serum gel, which decreased to 78% of baseline at 24 hours, (p = 0.008). Insulin was stable at room temperature for 24 hours in both centrifuged and whole blood collected in K(+)-EDTA tubes. In contrast insulin levels decreased in serum gel tubes both centrifuged and whole blood (66% of baseline, p = 0.01 and 76% of baseline p = 0.01, by 24 hours respectively). C-peptide and insulin remained stable after 6 freeze-thaw cycles. The stability of C-peptide and insulin in whole blood K(+)-EDTA tubes negates the need to conform to strict sample handling procedures for these assays, greatly increasing their clinical utility.

  9. Materials for interocclusal records and their ability to reproduce a 3-dimensional jaw relationship.

    PubMed

    Ockert-Eriksson, G; Eriksson, A; Lockowandt, P; Eriksson, O

    2000-01-01

    The purpose of this study was to determine if accuracy and dimensional stability of vinyl polysiloxanes and irreversible hydrocolloids stabilized by a tray used for fixed prosthodontics, removable partial, and complete denture cases are comparable to those of waxes and record rims and if storage time (24 hours or 6 days) affects dimensional stability of the tested materials. Two waxes, two record rims, three vinyl polysiloxanes, and one irreversible hydrocolloid (alginate) were examined. Three pairs of master casts with measuring steel rods were mounted on an articulator (initial position). Five records were made of each material, and the upper cast was remounted after 24 hours or 6 days so that deviations from the initial position could be measured. Vinyl polysiloxanes reinforced by a stabilization tray were the most accurate materials able to reproduce a settled interocclusal position. Mounting casts (fixed prosthodontics cases) without records gave accuracy similar to wax records. Record rims used for removable partial and complete denture cases produced lesser accuracy than vinyl polysiloxanes and irreversible hydrocolloid stabilized by a tray. Accuracy was not significantly affected by storage time. The results show that accuracy of vinyl polysiloxanes and irreversible hydrocolloids reinforced by a tray is superior to that of record rims with regard to the complete denture case and is among the most accurate with regard to the removable partial denture case. For fixed prosthodontics, however, reinforcement is unnecessary.

  10. Stability of Bovine viral diarrhea virus 1 nucleic acid in fetal bovine samples stored under different conditions.

    PubMed

    Ridpath, Julia F; Neill, John D; Chiang, Yu-Wei; Waldbillig, Jill

    2014-01-01

    Infection of pregnant cattle with both species of Bovine viral diarrhea virus (BVDV) can result in reproductive disease that includes fetal reabsorption, mummification, abortion, stillbirths, congenital defects affecting structural, neural, reproductive, and immune systems, and the birth of calves persistently infected with BVDV. Accurate diagnosis of BVDV-associated reproductive disease is important to control BVDV at the production unit level and assessment of the cost of BVDV infections in support of BVDV control programs. The purpose of the current study was to examine the stability of viral nucleic acid in fetal tissues exposed to different conditions, as measured by detection by polymerase chain reaction. Five different types of fetal tissue, including brain, skin and muscle, ear, and 2 different pooled organ samples, were subjected to conditions that mimicked those that might exist for samples collected after abortions in production settings or possible storage conditions after collection and prior to testing. In addition, tissues were archived for 36 months at -20°C and then retested, to mimic conditions that might occur in the case of retrospective surveillance studies. Brain tissue showed the highest stability under the conditions tested. The impact of fecal contamination was increased following archiving in all tissue types suggesting that, for long-term storage, effort should be made to reduce environmental contaminants before archiving.

  11. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts.

    PubMed

    Ali, Ameena; Chong, Chien Hwa; Mah, Siau Hui; Abdullah, Luqman Chuah; Choong, Thomas Shean Yaw; Chua, Bee Lin

    2018-02-23

    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle 's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di- tert -butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients ( R ² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).

  12. Local tolerance and stability up to 24 months of a new 20% proline-stabilized polyclonal immunoglobulin for subcutaneous administration.

    PubMed

    Maeder, Werner; Lieby, Patricia; Sebald, Andrea; Spycher, Martin; Pedrussio, Renzo; Bolli, Reinhard

    2011-01-01

    Subcutaneous administration of human IgG is an alternative to intravenous replacement therapy that is associated with more stable serum IgG levels and fewer systemic adverse events. Highly concentrated IgG solutions are most convenient to minimize infusion volume, but their preparation and stability presents substantial technical difficulties. We report on the stability and local tolerance of IgPro20, an l-proline-stabilized, 20% polyvalent human IgG developed for subcutaneous administration. Stability was tested according to ICH guidelines. Local tolerance and vasoactivity were examined in rabbit and rat models, respectively. The presence of l-proline in IgPro20 reduced viscosity and addition of Polysorbate 80 and inert gassing improved the appearance of the solution. After storage at 25 °C for 24 months, monomer + dimer content, aggregates, and fragments were within specification (≥ 90.0%, ≤ 4.0%, and ≤ 10.0%, respectively), and Fc function and antibody activities were maintained. In rats, intravenous injection of IgPro20 produced mild and transient hypotension comparable to that seen with intravenous IgG products. Local tolerance of IgPro20 in rabbits was comparable to that of a marketed subcutaneous IgG, Beriglobin P. Functionality and quality of IgPro20 are maintained during storage at 25 °C for at least 24 months. The product is well tolerated as assessed in animal models. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  13. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

    PubMed

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.

  14. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  15. STORAGE STABILITY OF PESTICIDES IN EXTRACT SOLVENTS AND SAMPLING MEDIA

    EPA Science Inventory

    Demonstrating that pesticides are stable in field media and their extracts over extended storage periods allows operational flexibility and cost efficiency. Stability of the 31 neutral pesticides and 2 acid herbicides of the Agricultural Health Study exposure pilot was evaluate...

  16. Applying the methodology of Design of Experiments to stability studies: a Partial Least Squares approach for evaluation of drug stability.

    PubMed

    Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok

    2018-05-01

    The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.

  17. Stability of gabapentin in extemporaneously compounded oral suspensions

    PubMed Central

    Friciu, Mihaela; Roullin, V. Gaëlle

    2017-01-01

    This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days. PMID:28414771

  18. Stability of extemporaneous oral ribavirin liquid preparation.

    PubMed

    Chan, John P; Tong, Henry H Y; Chow, Albert H L

    2004-01-01

    Ribavirin is an antiviral agent commonly used in Hong Kong for the treatment of severe acute respiratory syndrome. The choice of oral ribavirin therapeutic products available in the local market is currently limited to capsules. The present study investigated the chemical stability of an oral ribavirin suspension (200 mg/5mL) prepared extemporaneously from oral capsules using a sugar-free suspension formula. The suspension was subjected to stability testing at 4 deg C for up to 28 days. Employing a validated stability-indicating high-performance liquid chromatographic method, the ribavirin content of the extemporaneous preparation has been demonstrated to exhibit negligible changes throughout the storage period. No degradation product was observable in all high-peroformance liquid chromatograms, suggesting that the suspension remained chermically stable under the stated conditions.

  19. Stability of Schmallenberg virus during long-term storage.

    PubMed

    Wernike, Kerstin; Beer, Martin

    2016-01-01

    Schmallenberg virus (SBV), a novel insect-transmitted orthobunyavirus that infects ruminants, caused a large epidemic in European livestock since its emergence in 2011. For the in vitro characterization of this hitherto unknown virus as well as for antibody detection tests like indirect immunofluorescence and neutralization test infectious virus is necessary. To determine the most suitable storage temperature, culture-grown SBV was kept at 37°C, 28°C, 4°C, -20°C and -70°C for up to one year. A storage at 37°C led to a complete loss of infectivity within days and at 28°C within a few weeks. When stored at 4°C the infectious titer decreased dependent on the starting quantity, whereas the viral titer was almost constant for a month at -20°C and remained constant for the study period when stored at -70°C. Consequently, SBV should be kept at -70°C, if retention of infectivity is required.

  20. Meso-oblate spheroids of thermal-stabile linker-free aggregates with size-tunable subunits for reversible lithium storage.

    PubMed

    Deng, Da; Lee, Jim Yang

    2014-01-22

    The organization of nanoscale materials as building units into extended structures with specific geometry and functional properties is a challenging endeavor. Hereby, an environmentally benign, simple, and scalable method for preparation of stable, linker-free, self-supported, high-order 3D meso-oblate spheroids of CuO nanoparticle aggregates with size-tunable building nanounits for reversible lithium-ion storage is reported. In contrast to traditional spherical nanoparticle aggregation, a unique oblate spheroid morphology is achieved. The formation mechanism of the unusual oblate spheroid of aggregated nanoparticles is proposed. When tested for reversible lithium ion storage, the unique 3D meso-oblate spheroids of CuO nanoparticle aggregate demonstrated highly improved electrochemical performance (around ∼600 mAh/g over 20 cycles), which could be ascribed to the nanoporous aggregated mesostructure with abundant crystalline imperfection. Furthermore, the size of building units can be controlled (12 and 21 nm were tested) to further improve their electrochemical performance.

  1. Comparison of Temperature and Additives Affecting the Stability of the Probiotic Weissella cibaria

    PubMed Central

    Kang, Mi-Sun; Kim, Youn-Shin; Lee, Hyun-Chul; Lim, Hoi-Soon

    2012-01-01

    Daily use of probiotic chewing gum might have a beneficial effect on oral health, and it is important that the viability of the probiotics be maintained in this food product. In this study, we examined the stability of probiotic chewing gum containing Weissella cibaria. We evaluated the effects of various factors, including temperature and additives, on the survival of freeze-dried probiotic W. cibaria powder. No changes in viability were detected during storage at 4℃ for 5 months, whereas the viability of bacteria stored at 20℃ decreased. The stability of probiotic chewing gum decreased steadily during storage at 20℃ for 4 weeks. The viability of the freeze-dried W. cibaria mixed with various additives, such as xylitol, sorbitol, menthol, sugar ester, magnesium stearate, and vitamin C, was determined over a 4-week storage period at 20℃. Most of the freeze-dried bacteria except for those mixed with menthol and vitamin C were generally stable during a 3-week storage period. Overall, our study showed that W. cibaria was more stable at 4℃ than that at 20℃. In addition, menthol and vitamin C had a detrimental effect on the storage stability of W. cibaria. This is the first study to examine the effects of various chewing gum additives on the stability of W. cibaria. Further studies will be needed to improve the stability of probiotic bacteria for developing a novel probiotic W. cibaria gum. PMID:23323221

  2. Evaluation of the effect of non-B DNA structures on plasmid integrity via accelerated stability studies.

    PubMed

    Ribeiro, S C; Monteiro, G A; Prazeres, D M F

    2009-04-01

    Plasmid biopharmaceuticals are a new class of medicines with an enormous potential. Attempts to increase the physical stability of highly purified supercoiled (SC) plasmid DNA in pharmaceutical aqueous solutions have relied on: (i) changing the DNA sequence, (ii) improving manufacturing to reduce deleterious impurities and initial DNA damage, and (iii) controlling the storage medium characteristics. In this work we analyzed the role of secondary structures on the degradation of plasmid molecules. Accelerated stability experiments were performed with SC, open circular (OC) and linear (L) isoforms of three plasmids which differed only in the "single-strandlike" content of their polyadenylation (poly A) signals. We have proved that the presence of more altered or interrupted (non-B) DNA secondary structures did not directly translate into an easier strand scission of the SC isoforms. Rather, those unusual structures imposed a lower degree of SC in the plasmids, leading to an increase in their resistance to thermal degradation. However, this behavior was reversed when the relaxed or L isoforms were tested, in which case the absence of SC rendered the plasmids essentially double-stranded. Overall, this work suggests that plasmid DNA sequence and secondary structures should be taken into account in future investigations of plasmid stability during prolonged storage.

  3. Thermal and storage characteristics of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Thermal oxidative stability and effect of different storage conditions on quality characteristics of tomato seed oil have not been studied. The objectives of this research were to determine the changes in quality and oxidative stability of tomato seed oil, including color, antioxidant activity, per...

  4. Nitrogen source affects productivity, desiccation tolerance, and storage stability of Beauveria bassiana blastospores

    USDA-ARS?s Scientific Manuscript database

    Aims: Nitrogen is a critical element in industrial fermentation media. This study investigated the influence of various nitrogen sources on blastospore production, tolerance to anhydrobiosis stress, and storage stability using two strains of the cosmopolitan insect pathogenic fungus Beauveria bassia...

  5. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing.

    PubMed

    Wong, David; Moturi, Sharmili; Angkachatchai, Vach; Mueller, Reinhold; DeSantis, Grace; van den Boom, Dirk; Ehrich, Mathias

    2013-08-01

    Fetal mutations and fetal chromosomal abnormalities can be detected by molecular analysis of circulating cell free fetal DNA (ccffDNA) from maternal plasma. This comprehensive study was aimed to investigate and verify blood collection and blood shipping conditions that enable Noninvasive Prenatal Testing. Specifically, the impact of shipping and storage on the stability and concentration of circulating cell-free DNA (ccfDNA) in Streck® Cell-Free DNA™ Blood Collection Tubes (Streck BCTs, Streck, Omaha NE). These BCTs were designed to minimize cellular degradation, and thus effectively prevent dilution of fetal ccf DNA by maternal genomic DNA, was evaluated. Peripheral venous maternal blood was collected into Streck BCTs to investigate four aspects of handling and processing conditions: (1) time from blood draw to plasma processing; (2) storage temperature; (3) mechanical stress; and (4) lot-to-lot tube variations. Maternal blood stored in Streck BCTs for up to 7 days at ambient temperature provides stable concentrations of ccffDNA. The amount of fetal DNA did not change over a broad range of storage temperatures (4°C, 23°C, 37°C, 40°C), but the amount of total (largely maternal) DNA increased in samples stored at 23°C and above, indicating maternal cell degradation and genomic DNA release at elevated temperatures. Shipping maternal blood in Streck BCTs, did not affect sample quality. Maternal plasma DNA stabilized for 0 to 7 days in Streck BCTs can be used for non-invasive prenatal molecular applications, when temperatures are maintained within the broad parameters assessed in this study. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Long-term stability of acyclovir in 0.9% NaCl infusion polyolefin bags at 5±3°C after freeze-thaw treatment: a generic product versus the brand name.

    PubMed

    Dewulf, J; Galanti, L; Godet, M; Gillet, P; Jamart, J; Hecq, J-D

    2015-03-01

    The aim of the study was to investigate the long-term stability of acyclovir 5 mg/mL (a generic product versus the brand name) in NaCl 0.9% after storage at 5±3°C and to evaluate the influence of initial freezing and microwave thawing on this stability. Five bags of Acyclovir® Hospira 5 mg/mL (A) and five bags of Zovirax® GSK 5 mg/mL (B) were prepared under aseptic conditions and stored 3 months at -20°C, then thawed and stored 30 days at 4°C. Five bags of Acyclovir® 5 mg/mL (C) and five bags of Zovirax® 5 mg/mL (D) were also prepared under aseptic conditions and stored 30 days at 5±3°C. Optic density measurement at different wavelengths, pH measurement and optic microscope observations were performed periodically during the storage. A forced degradation test with HCl 12 M and NaOH 5 M before and after heating at 100°C was also performed. The concentrations were measured by HPLC-PDA. The only one forced degradation test that yielded chromatograms with degradation products peak was the test with the acid solution heated at 100°C without interference with the native product. No significant change in pH values or optic densities were seen during the study for both products. No crystals were seen with the optic microscope during the study. Acyclovir® and Zovirax® solutions were stable for at least 21 days according to the FDA recommendations. Moreover, there was no statistical difference between regression lines of those two products and two storage conditions. Under the conditions of this study, Acyclovir® 5 mg/mL in 100 mL of NaCl 0.9% infusion remains stable at least for 21 days at 5±3°C with or without freezing at -20°C during the three previous months. There is no statistical difference between the brand name and a generic product. Acyclovir may be prepared in advanced by a centralized intravenous additive service, frozen in polyolefin bags and microwave thawed before storage under refrigeration until 21 days. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Rotation of Boar Semen Doses During Storage Affects Sperm Quality.

    PubMed

    Schulze, M; Rüdiger, K; Waberski, D

    2015-08-01

    It is common practice to rotate boar semen doses during storage for prevention of sperm sedimentation. In this study, the effect of rotation of boar semen doses during storage on sperm quality was investigated. Manual turning twice daily and automatic rotation five times per hour resulted in the following effects: alkalinization of the BTS-extender, loss of membrane integrity at day 3, and loss of motility and changes in sperm kinematics during a thermoresistance test at day 5. Using a pH-stabilized variant of BTS extender, sperm motility and velocity decreased in continuously rotated samples, whereas membrane integrity and mitochondrial activity remain unaffected. It is concluded that rotation of semen samples adversely affects sperm quality and, therefore, should no longer be recommended for AI practice. © 2015 Blackwell Verlag GmbH.

  8. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia.

    PubMed

    Gálvez-Martín, Patricia; Hmadcha, Abdelkrim; Soria, Bernat; Calpena-Campmany, Ana C; Clares-Naveros, Beatriz

    2014-04-01

    Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1×10(6) cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Evaluation of the thermal stability of a novel strain of live-attenuated mumps vaccine (RS-12 strain) lyophilized in different stabilizers.

    PubMed

    Jamil, Razieh Kamali; Taqavian, Mohammad; Sadigh, Zohreh-Azita; Shahkarami, Mohammad-Kazem; Esna-Ashari, Fatemeh; Hamkar, Rasool; Hosseini, Seyedeh-Marzieh; Hatami, Alireza

    2014-04-01

    The stability of live-attenuated viral vaccines is important for immunization efficacy. Here, the thermostabilities of lyophilized live-attenuated mumps vaccine formulations in two different stabilizers, a trehalose dihydrate-based stabilizer and a stabilizer containing sucrose, human serum albumin and sorbitol were investigated using accelerated stability tests at 4°C, 25°C and 37°C at time points between 4h (every 4h for the first 24h) and 1 week. Even under the harshest storage conditions of 37°C for 1 week, the 50% cell culture infective dose (CCID50) determined from titrations in Vero cells dropped by less than 10-fold using each stabilizer formulation and thus complied with the World Health Organization's requirements for the potency of live-attenuated mumps vaccines. However, as the half-life of the RS-12 strain mumps virus infectivity was lengthened substantially at elevated temperatures using the trehalose dihydrate (TD)-based stabilizer, this stabilizer is recommended for vaccine use. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Physical stability, centrifugation tests, and entrapment efficiency studies of carnauba wax-decyl oleate nanoparticles used for the dispersion of inorganic sunscreens in aqueous media.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-06-01

    Aqueous nanoscale lipid dispersions consisting of carnauba wax-decyl oleate mixtures acting as carriers or accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate, and titanium dioxide were prepared by high pressure homogenization. For the manufacture of these nanosuspensions, three pigment concentrations (%wt), namely 2, 4, and 6, and two carnauba wax-decyl oleate ratios, 1:1 and 2:1, were used, being some of these combinations chosen for stability studies. Six-month physical stability tests at 4, 20, and 40 degrees C selecting the mean particle size and the polydispersity index of the nanosuspensions as reference parameters were performed. Centrifugation tests of the nanosuspensions assessed by transmission electron microscopy and by the determination of the content of pigments and carnauba wax in the separated fractions were done. The mean particle sizes and the polydispersity indices of the nanosuspensions were not altered after six-month storages at 20 and at 40 degrees C. However, the storage of those at 4 degrees C considerably increased the particle size and polydispersity of the systems, particularly when wax-oil ratios (2:1) were used for the entrapment of the pigments. Transmission electron micrographs of centrifuged samples denoted the presence of three major fractions showing the different types of particles integrated into the nanosuspensions. Furthermore, it was observed that not all the carnauba wax participated in the entrapment of the pigment. Regarding the amount of pigment being encapsulated or bonded by the wax-oil matrices, entrapment efficiencies higher than 85.52% were reported.

  11. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    PubMed

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers

    USDA-ARS?s Scientific Manuscript database

    Provitamin A carotenoids in staple crops are not very stable during storage and their loss compromises nutritional quality. To elucidate the fundamental mechanisms underlying carotenoid accumulation and stability, we investigated transgenic potato tubers that express the cauliflower Orange (Or) gene...

  13. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  14. Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide

    2017-01-01

    To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.

  15. Use of Encapsulated Zinc Particles in a Eutectic Chloride Salt to Enhance Thermal Energy Storage Capacity for Concentrated Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingarapu, Sreeram; Singh, Dileep; Timofeeva, Elena V.

    2015-08-01

    Concentrated Solar Power (CSP) is considered as a viable large-scale renewable energy source to produce electricity. However, current costs to produce electricity from CSP are not cost competitive as compared to the traditional energy generation technologies based on fossil fuels and nuclear. It is envisioned that development of high efficiency and high heat capacity thermal storage fluids will increase system efficiency, reduce structural storage volume, and hence, contribute to reducing costs. Particularly, with respect to CSP, current high temperature energy storage fluids, such as molten salts, are relatively limited in terms of their thermal energy storage capacity and thermal conductivity.more » The current work explores possibility of boosting the thermal storage capacity of molten salts through latent heat of added phase change materials. We studied the advantage Of adding coated Zn micron-sized particles to alkali chloride salt eutectic for enhanced thermal energy storage. Zinc particles (0.6 mu m and 5 mu m) obtained from commercial source were coated with an organo-phosphorus shell to improve chemical stability and to prevent individual particles from coalescing with one another during melt/freeze cycles. Thermal cycling tests (200 melt/freeze cycles) showed that coated Zn particles have good thermal stability and are chemically inert to alkali chloride salt eutectic in both N-2 and in air atmospheres. Elemental mapping of the cross-sectional view of coated Zn particles from the composite after thermal cycles showed no signs of oxidation, agglomeration or other type of particle degradation. The measured enhancement in volumetric thermal storage capacity of the composite with just similar to 10 vol% of coated Zn particles over the base chloride salt eutectic varies from 15% to 34% depending on cycling temperature range (Delta T = 50 degrees C -100 degrees C. (C) 2015 Elsevier Ltd. All rights reserved.« less

  16. Stability of toxic arsenic species and arsenosugars found in the dry alga Hijiki and its water extracts.

    PubMed

    García-Salgado, Sara; Quijano, M Ángeles

    2014-10-01

    The achievement of reliable results in speciation analysis requires not only sensitive techniques but also sureness of species stability. Therefore, it is necessary to carry out stability studies because it is important to know with absolute certainty that there is not any species transformation during sample treatment and/or storage. Although several procedures have been recommended for the preservation of species integrity, there is no general agreement, as arsenic species stability depends on the sample matrix, the concentration level and the sample treatment procedure, so it is necessary to assess the arsenic species stability for each case. Thus, the present paper reports the stability tests of arsenic species carried out on the commercially available edible alga Hijiki (Hizikia fusiformis), from Japan, in both the dry sample and its water extracts, which were stored in amber glass and polystyrene containers at -18 and +4°C in the dark. Extractions were carried out with deionized water by microwave-assisted extraction, at a temperature of 90°C and three extraction steps of 5 min each, whereas arsenic speciation analysis was performed by anion exchange high performance liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry. The results obtained for the dry alga showed that the arsenic species present in it (arsenate (As(V)), dimethylarsinic acid (DMA) and the arsenosugars glycerol (Gly-sug), phosphate (PO4-sug), sulfonate (SO3-sug) and sulfate (SO4-sug)) were stable for at least 12 months when the sample was stored in polystyrene containers at +20°C in the dark. Regarding water extracts, the best storage conditions consisted of the use of polystyrene containers and a temperature of +4°C, for a maximum storage time of seven days. Therefore, the immediate analysis of Hijiki water extracts would not be necessary, and they could be stored for one week before analysis, ensuring arsenic species stability. This information about species integrity in extracts is especially useful when the sample treatment for arsenic species extraction is time-consuming. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Impact of Oral Fluid Collection Device on Cannabinoid Stability Following Smoked Cannabis

    PubMed Central

    Anizan, Sébastien; Bergamaschi, Mateus M.; Barnes, Allan J.; Milman, Garry; Desrosiers, Nathalie; Lee, Dayong; Gorelick, David A.; Huestis, Marilyn A.

    2014-01-01

    Evaluation of cannabinoid stability in authentic oral fluid (OF) is critical, as most OF stability studies employed fortified or synthetic OF. Participants (n=16) smoked a 6.8% delta-9-tetrahydrocannabinol (THC) cigarette, and baseline concentrations of THC, 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) were determined within 24h in 16 separate pooled samples (collected 1h before to 10.5 or 13h after smoking). OF was collected with the StatSure Saliva Sampler™ and Oral-Eze® devices. Oral-Eze samples were re-analyzed after room temperature (RT) storage for 1 week, and for both devices after 4°C for 1 and 4 weeks, and –20°C for 4 and 24 weeks. Concentrations ±20% from initial concentrations were considered stable. With the StatSure device, all cannabinoids were within 80-120% median %baseline for all storage conditions. Individual THC, CBD, CBN and THCCOOH pool concentrations were stable in 100%, 100%, 80-94% and >85%, respectively, across storage conditions. With the Oral-Eze device, at RT or refrigerated storage (for 1 and 4 weeks), THC, CBD and THCCOOH were stable in 94-100%, 78-89% and 93-100% of samples, respectively, while CBN concentrations were 53–79% stable. However, after 24 weeks at -20°C, stability decreased, especially for CBD, with a median of 56% stability. Overall, the collection devices’ elution/stabilizing buffers provided good stability for OF cannabinoids, with the exception of the more labile CBN. To ensure OF cannabinoid concentration accuracy, these data suggest analysis within 4 weeks at 4°C storage for Oral-Eze collection and within 4 weeks at 4°C or 24 weeks at -20°C for StatSure collection. PMID:24995604

  18. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  19. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  20. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  1. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  2. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  3. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose

    PubMed Central

    Esfahani, Siavash; Sagar, Nidhi M.; Kyrou, Ioannis; Mozdiak, Ella; O’Connell, Nicola; Nwokolo, Chuka; Bardhan, Karna D.; Arasaradnam, Ramesh P.; Covington, James A.

    2016-01-01

    The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose—an instrument designed to replicate the biological olfactory system. Of the possible biological media available to “sniff”, urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at −80 °C. Here we investigated the effect of storage time (years) on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at −80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry—a type of electronic nose). It was discovered that gas emissions (concentration and diversity) reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life. PMID:26821055

  4. Parenteral oil-based drospirenone microcrystal suspensions-evaluation of physicochemical stability and influence of stabilising agents.

    PubMed

    Nippe, Stefanie; General, Sascha

    2011-09-15

    Drospirenone (DRSP) is a contraceptive drug substance with challenging physicochemical properties, due to insufficient solubility in aqueous and oil-based vehicles as well as low chemical stability in aqueous fluids. Although it is one of the most popular orally used progestins, no parenteral long-acting contraceptive containing the drug substance is marketed. An oil-based DRSP microcrystal suspension (MCS) might be an attractive formulation option. The main focus of this study was to investigate the physicochemical stability of such preparations. Moreover, syringeability and injectability via autoinjector were analysed using a materials testing machine. A high chemical stability of DRSP was found in oil-based vehicles. Span(®) 83, cholesteryl oleate, lecithin, methyl cholate, Aerosil(®) R972 and 200 Pharma were tested for increasing the physical stability of DRSP dispersions. Changes in viscosity, rheological properties, and solubility were analysed. The intention was to show a stabilising effect of the excipients without increasing viscosity and solubility. To evaluate the physical stability of DRSP MCS with and without addition of stabilising agents, sedimentation and particle growth after storage were examined. Especially, the silica derivatives Aerosil(®) 200 and R972 Pharma influenced the physical stability positively. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea mays L.) Genotypes during Controlled Postharvest Storage.

    PubMed

    Ortiz, Darwin; Rocheford, Torbert; Ferruzzi, Mario G

    2016-04-06

    Maize is a staple crop that has been the subject of biofortification efforts to increase the natural content of provitamin A carotenoids. Although significant progress toward increasing provitamin A carotenoid content in maize varieties has been made, postharvest handling factors that influence carotenoid stability during storage have not been fully established. The objectives of this study were to determine carotenoid profiles of six selected provitamin A biofortified maize genotypes at various developmental stages and assess the stability of carotenoids in maize kernels during controlled storage conditions (12 month period), including elevated temperature and relative humidity. There were no significant changes in the content of individual carotenoids within genotypes during kernel development from 45 days after pollination through the time of harvest. Carotenoid losses through traditional grain drying were also minimal (<9%). However, the stability of carotenoids in maize kernels over storage time after harvest was found to be dependent on both temperature and humidity, with variation observed among genotypes. Different forms of provitamin A carotenoids follow similar degradation rates. The genotype C17xDE3 had a degradation rate 2 times faster than those of the other genotypes evaluated (P < 0.001). These differences in carotenoid stability under controlled storage were attributed, in part, to observed differences in the physical properties of the kernels (surface area and porosity). These results support the notion that effective control of moisture content and temperature of the kernels during storage conditions is essential to reduce the speed of degradative reactions.

  6. Hydrogen storage of Mg1-xMxH2 (M = Ti, V, Fe) studied using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bhihi, M.; Lakhal, M.; Labrim, H.; Benyoussef, A.; A. El, Kenz; Mounkachi, O.; K. Hlil, E.

    2012-09-01

    In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg1-x Mx H2 (M = Ti, V, Fe, 0 <= x <= 0.1), are studied using the Korringa—Kohn—Rostoker (KKR) calculation with the coherent potential approximation (CPA). In particular, the nature and concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities.

  7. Storage Stability of Food Protein Hydrolysates-A Review.

    PubMed

    Rao, Qinchun; Klaassen Kamdar, Andre; Labuza, Theodore P

    2016-05-18

    In recent years, mainly due to the specific health benefits associated with (1) the discovery of bioactive peptides in protein hydrolysates, (2) the reduction of protein allergenicity by protein hydrolysis, and (3) the improved protein digestibility and absorption of protein hydrolysates, the utilization of protein hydrolysates in functional foods and beverages has significantly increased. Although the specific health benefits from different hydrolysates are somewhat proven, the delivery and/or stability of these benefits is debatable during distribution, storage, and consumption. In this review, we discuss (1) the quality changes in different food protein hydrolysates during storage; (2) the resulting changes in the structure and texture of three food matrices, i.e., low moisture foods (LMF, aw < 0.6), intermediate moisture foods (IMF, 0.6 ≤ aw < 0.85), and high moisture foods (HMF, aw ≥ 0.85); and (3) the potential solutions to improve storage stability of food protein hydrolysates. In addition, we note there is a great need for evaluation of biofunction availability of bioactive peptides in food protein hydrolysates during storage.

  8. Physical and chemical stability of proflavine contrast agent solutions for early detection of oral cancer.

    PubMed

    Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S

    2016-02-01

    Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.

  9. Quality Control of Traditional Cannabis Tinctures: Pattern, Markers, and Stability

    PubMed Central

    Peschel, Wieland

    2016-01-01

    Traditional tinctures of Cannabis sativa L. became obsolete before elucidation of the main cannabinoids and routine quality testing for medicines. In view of increasing medicinal use of cannabinoids and associated safety concerns, tinctures from a Δ9-tetrahydrocannabinol (THC)-type chemovar were studied. High-performance liquid chromatography with diode-array detection (HPLC/DAD) was used to determine THC, Δ9-tetrahydrocannabinolic acid A (THCA), cannabinol (CBN), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabigerol (CBG), cannabigerolic acid (CBGA), cannflavin A/B, and total phenolics. Derived group and ratio markers describe absolute and relative profiles when varying plant part (flos, folium), extraction solvent (EtOH percentage), storage conditions (‘shelf’ or ‘fridge’ up to 15 months), and pasteurization (2 h 70 °C, 20 min 80 °C). Tinctures from female flowering tops contained ten-fold more cannabinoids than tinctures from leaves; tinctures (80%–90% EtOH) contained ten-fold more cannabinoids than tinctures (40% EtOH). The analysis of CBGA + CBG, the main co-cannabinoids aside from THCA + THC, appears more relevant than CBDA + CBD. The decarboxylation of THCA to THC—the main change during storage of freshly prepared tinctures—is after 15 months in the ‘fridge’ comparable to 3 months on the ‘shelf’. Minimally increased CBN totals did not correlate to diminished totals of THCA and THC (up to 15% after 3 months ‘shelf’, 45% after 15 months ‘fridge’). Instead, total cannabinoids or acidic/neutral cannabinoid ratios are better stability markers. Moderate changes after pasteurization and partial losses below 10% for total cannabinoids after 9 months ‘fridge’ indicate possibilities for a reasonable shelf life. Yet storage and use of non-stabilized tinctures remain critical without authorized specification and stability data because a consistent cannabinoid content is not guaranteed. PMID:28117322

  10. Improvement in storage stability of infrared dried rough rice

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...

  11. Quantitative Method for Analysis of Hydrocodone, Hydromorphone and Norhydrocodone in Human Plasma by Liquid Chromatography-tandem Mass Spectrometry

    DTIC Science & Technology

    2013-03-01

    ratio ranges obtained for the six standards. Twelve samples were analyzed to demonstrate the efficiency of the extraction procedure. Drug and internal...frozen (−70 ◦C). Refrigerated samples were tested after 2 months of storage ; frozen samples were tested for up to 1 year from stor- age date. The...freeze–thaw stability was evaluated by analyzing three subject samples with known drug concentrations and two quality control samples at concentrations

  12. Advances in membrane technology for the NASA redox energy storage system

    NASA Technical Reports Server (NTRS)

    Ling, J. S.; Charleston, J.

    1980-01-01

    Anion exchange membranes used in the system serve as a charge transferring medium as well as a reactant separator and are the key enabling component in this storage technology. Each membrane formulation undergoes a series of screening tests for area-resistivity, static (non-flow) diffusion rate determination, and performance in Redox systems. The CDIL series of membranes has, by virtue of its chemical stability and high ion exchange capacity, demonstrated superior properties in the redox environment. Additional resistivity results at several acid and iron solution concentrations, iron diffusion rates, and time dependent iron fouling of the various membrane formulations are presented in comparison to past standard formulations.

  13. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects

    NASA Astrophysics Data System (ADS)

    Becker, Ina; Strauch, Sebastian M.; Hauslage, Jens; Lebert, Michael

    2017-05-01

    The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork.

  14. Challenges Encountered Using Ophthalmic Anesthetics in Space Medicine

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Law, J.; Alexander, D.; Moynihan, S.; LeBlanc, C.; Langford, K.; Magalhaes, L.

    2015-01-01

    On orbit, ophthalmic anesthetics are used for tonometry and off-nominal corneal examinations. Proparacaine has been flown traditionally. However, the manufacturers recently changed its storage requirements from room temperature storage to refrigerated storage to preserve stability and prolong the shelf-life. Since refrigeration on orbit is not readily available and there were stability concerns about flying proparacaine unrefrigerated, tetracaine was selected as an alternative ophthalmic anesthetic in 2013. We will discuss the challenges encountered flying and using these anesthetics on the International Space Station.

  15. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  16. Impact of pilling and long-term topsoil storage on the potential soil microbial activity in the Northern Chihuahuan Desert

    USDA-ARS?s Scientific Manuscript database

    Cryptobiotic soil crusts in arid regions contribute to ecosystem stability through increased water infiltration, soil aggregate stability, and nutrient cycling between the soil community and vascular plants. Natural gas mining involves removal of the topsoil, including surface crust, and storage of ...

  17. Stabilization of Neem Oil Biodiesel with Corn Silk Extract during Long-term Storage.

    PubMed

    Ali, Rehab Farouk M; El-Anany, Ayman M

    2017-02-01

    The current study aimed to evaluate the antioxidant efficiency of different extracts of corn silk. In addition, the impact of corn silk extract on oxidative stability of neem biodiesel during storage was studied. The highest phenolics, DPPH radical scavenging and reducing power activities were recorded for methanol-water extract. The longest oxidation stability (10 h) was observed for biodiesel samples blended with 1000 ppm of corn silk extract (CSE). At the end of storage period the induction time of biodiesel samples mixed with 1000 ppm of CSE or butylated hydroxytoluene (BHT) were about 6.72 and 5.63 times as high as in biodiesel samples without antioxidants. Biodiesel samples blended with 1000 ppm of CSE had the lowest acidity at the end of storage period. Peroxide value of biodiesel samples containing 1000 ppm of CSE was about 4.28 times as low as in control sample without antioxidants.

  18. Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils.

    PubMed

    Raczyk, Marianna; Siger, Aleksander; Radziejewska-Kubzdela, Elżbieta; Ratusz, Katarzyna; Rudzińska, Magdalena

    2017-01-01

    Pumpkin seed oil is valuable oil for its distinctive taste and aroma, as well as supposed health- promoting properties. The aim of this study was to investigate how roasting pumpkin seeds influences the physicochemical properties of cold-pressed oils. The fatty acid composition, content of phytosterols, carotenoids and tocopherols, oxidative stability and colour were determined in oils after cold pressing and storage for 3 months using GC-FID, GCxGC-ToFMS, HPLC, Rancimat and spectrophotometric methods. The results of this study indicate that the seed-roasting and storage process have no effect on the fatty acid composition of pumpkin seed oils, but does affect phytosterols and tocopherols. The carotenoid content decreased after storage. The colour of the roasted oil was darker and changed significantly during storage. Pumpkin oil obtained from roasted seeds shows better physicochemical properties and oxidative stability than oil from unroasted seeds.

  19. Accurate prediction of vaccine stability under real storage conditions and during temperature excursions.

    PubMed

    Clénet, Didier

    2018-04-01

    Due to their thermosensitivity, most vaccines must be kept refrigerated from production to use. To successfully carry out global immunization programs, ensuring the stability of vaccines is crucial. In this context, two important issues are critical, namely: (i) predicting vaccine stability and (ii) preventing product damage due to excessive temperature excursions outside of the recommended storage conditions (cold chain break). We applied a combination of advanced kinetics and statistical analyses on vaccine forced degradation data to accurately describe the loss of antigenicity for a multivalent freeze-dried inactivated virus vaccine containing three variants. The screening of large amounts of kinetic models combined with a statistical model selection approach resulted in the identification of two-step kinetic models. Predictions based on kinetic analysis and experimental stability data were in agreement, with approximately five percentage points difference from real values for long-term stability storage conditions, after excursions of temperature and during experimental shipments of freeze-dried products. Results showed that modeling a few months of forced degradation can be used to predict various time and temperature profiles endured by vaccines, i.e. long-term stability, short time excursions outside the labeled storage conditions or shipments at ambient temperature, with high accuracy. Pharmaceutical applications of the presented kinetics-based approach are discussed. Copyright © 2018 The Author. Published by Elsevier B.V. All rights reserved.

  20. Stability and changes in astaxanthin ester composition from Haematococcus pluvialis during storage

    NASA Astrophysics Data System (ADS)

    Miao, Fengping; Geng, Yahong; Lu, Dayan; Zuo, Jincheng; Li, Yeguang

    2013-11-01

    In this paper, we investigated the effects of temperature, oxygen, antioxidants, and corn germ oil on the stability of astaxanthin from Haematococcus pluvialis under different storage conditions, and changes in the composition of astaxanthin esters during storage using high performance liquid chromatography and spectrophotometry. Oxygen and high temperatures (22-25°C) significantly reduced the stability of astaxanthin esters. Corn germ oil and antioxidants (ascorbic acid and vitamin E) failed to protect astaxanthin from oxidation, and actually significantly increased the instability of astaxanthin. A change in the relative composition of astaxanthin esters was observed after 96 weeks of long-term storage. During storage, the relative amounts of free astaxanthin and astaxanthin monoesters declined, while the relative amount of astaxanthin diesters increased. Thus, the ratio of astaxanthin diester to monoester increased, and this ratio could be used to indicate if astaxanthin esters have been properly preserved. If the ratio is greater than 0.2, it suggests that the decrease in astaxanthin content could be higher than 20%. Our results show that storing algal powder from H. pluvialis or other natural astaxanthin products under vacuum and in the dark below 4°C is the most economical and applicable storage method for the large-scale production of astaxanthin from H. pluvialis. This storage method can produce an astaxanthin preservation rate of at least 80% after 96 weeks of storage.

  1. Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.

    PubMed Central

    Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C

    2003-01-01

    BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548

  2. Compression molded energy storage flywheels

    NASA Astrophysics Data System (ADS)

    Burdick, P. A.

    Materials choices, manufacturing processes, and benefits of flywheels as an effective energy storage device are discussed. Tests at the LL Laboratories have indicated that compressing molding of plies of structural sheet molding compound (SMC) filled with randomly oriented fibers produces a laminated disk with transversely isotropic properties. Good performance has been realized with a carbon/epoxy system, which displays satisfactory stiffness and strength in flywheel applications. A core profile has been selected, consisting of a uniform 1 in cross sectional thickness and a 21 in diam. Test configurations using three different resin paste formulations were compared after being mounted elastomerically on aluminum hubs. Further development was found necessary on accurate balancing and hub bonding. It was concluded that the SMC flywheels display the low-cost, sufficient energy densities, suitable dynamic stability characteristics, and acceptably benign failure modes for automotive applications.

  3. Dc microgrid stabilization through fuzzy control of interleaved, heterogeneous storage elements

    NASA Astrophysics Data System (ADS)

    Smith, Robert David

    As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

  4. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags

    PubMed Central

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Amann, Anton

    2016-01-01

    The stability of 41 selected breath constituents in three types of polymer sampling bags, Tedlar, Kynar, and Flexfilm, was investigated using solid phase microextraction and gas chromatography mass spectrometry. The tested molecular species belong to different chemical classes (hydrocarbons, ketones, aldehydes, aromatics, sulphurs, esters, terpenes, etc.) and exhibit close-to-breath low ppb levels (3–12 ppb) with the exception of isoprene, acetone and acetonitrile (106 ppb, 760 ppb, 42 ppb respectively). Stability tests comprised the background emission of contaminants, recovery from dry samples, recovery from humid samples (RH 80% at 37 °C), influence of the bag’s filling degree, and reusability. Findings yield evidence of the superiority of Tedlar bags over remaining polymers in terms of background emission, species stability (up to 7 days for dry samples), and reusability. Recoveries of species under study suffered from the presence of high amounts of water (losses up to 10%). However, only heavier volatiles, with molecular masses higher than 90, exhibited more pronounced losses (20–40%). The sample size (the degree of bag filling) was found to be one of the most important factors affecting the sample integrity. To sum up, it is recommended to store breath samples in pre-conditioned Tedlar bags up to 6 hours at the maximum possible filling volume. Among the remaining films, Kynar can be considered as an alternative to Tedlar; however, higher losses of compounds should be expected even within the first hours of storage. Due to the high background emission Flexfilm is not suitable for sampling and storage of samples for analyses aiming at volatiles at a low ppb level. PMID:23323261

  5. Applying quality by design principles to the small-scale preparation of the bone-targeting therapeutic radiopharmaceutical rhenium-188-HEDP.

    PubMed

    Lange, Rogier; Ter Heine, Rob; van der Gronde, Toon; Selles, Suzanne; de Klerk, John; Bloemendal, Haiko; Hendrikse, Harry

    2016-07-30

    Rhenium-188-HEDP ((188)Re-HEDP) is a therapeutic radiopharmaceutical for treatment of osteoblastic bone metastases. No standard procedure for the preparation of this radiopharmaceutical is available. Preparation conditions may influence the quality and in vivo behaviour of this product. In this study we investigate the effect of critical process parameters on product quality and stability of (188)Re-HEDP. A stepwise approach was used, based on the quality by design (QbD) concept of the ICH Q8 (Pharmaceutical Development) guideline. Potential critical process conditions were identified. Variables tested were the elution volume, the freshness of the eluate, the reaction temperature and time, and the stability of the product upon dilution and storage. The impact of each variable on radiochemical purity was investigated. The acceptable ranges were established by boundary testing. With 2ml eluate, adequate radiochemical purity and stability were found. Nine ml eluate yielded a product that was less stable. Using eluate stored for 24h resulted in acceptable radiochemical purity. Complexation for 30min at room temperature, at 60°C and at 100°C generated appropriate and stable products. A complexation time of 10min at 90°C was too short, whereas heating 60min resulted in products that passed quality control and were stable. Diluting the end product and storage at 32.5°C resulted in notable decomposition. Two boundary tests, an elution volume of 9ml and a heating time of 10min, yielded products of inadequate quality or stability. The product was found to be instable after dilution or when stored above room temperature. Our findings show that our previously developed preparation method falls well within the proven acceptable ranges. Applying QbD principles is feasible and worthwhile for the small-scale preparation of radiopharmaceuticals. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Plutonium inventories for stabilization and stabilized materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials withinmore » 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.« less

  7. Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part II — Techno-economic assessment

    DOE PAGES

    Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin; ...

    2017-04-26

    The seasonal variability in algal biomass production and its susceptibility to rapid degradation increases uncertainty in algal productivity and increases risks to feedstock supply for conversion. During summer months when algal biomass productivity is highest, production could exceed conversion capacity, resulting in delayed processing and risk of biomass degradation. Drying algae for preservation is energy-intensive and can account for over 50% of the total energy demand in algae preprocessing. Anaerobic wet storage – ensiling – is a widely used storage technique for stabilization of high moisture forage. Wet stabilization of algae eliminates the need for drying, and blending with herbaceousmore » biomass allows for the utilization of the silage industry’s existing harvest, handling and storage infrastructure. A storage facility co-located with the algae production and conversion operations was designed to stabilize algal biomass produced in excess of conversion capacity during summer months for use in the winter when algal biomass production is reduced. Techno-economic assessment of the costs associated with ensiling algae and corn stover blends suggest it to be a cost effective approach, compared to drying. In a high algal biomass productivity scenario, costs of wet storage ($/gallon diesel) were only 65% of the cost of drying. When a reduced algal biomass productivity scenario was considered, the stored blend was able to cost-effectively provide sufficient biomass such that winter production in the algal ponds could cease, meanwhile incurring only 91% of the costs of drying; such an approach would facilitate algal biomass production in northern latitudes. Moreover, the wet storage approaches requiring only 8-10% of the total energy consumption and releasing only 20-25% of the greenhouse gasses when compared to a natural-gas based drying approach for microalgae stabilization.« less

  8. Sample preparation and storage can change arsenic speciation in human urine.

    PubMed

    Feldmann, J; Lai, V W; Cullen, W R; Ma, M; Lu, X; Le, X C

    1999-11-01

    Stability of chemical speciation during sample handling and storage is a prerequisite to obtaining reliable results of trace element speciation analysis. There is no comprehensive information on the stability of common arsenic species, such as inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine, in human urine. We compared the effects of the following storage conditions on the stability of these arsenic species: temperature (25, 4, and -20 degrees C), storage time (1, 2, 4, and 8 months), and the use of additives (HCl, sodium azide, benzoic acid, benzyltrimethylammonium chloride, and cetylpyridinium chloride). HPLC with both inductively coupled plasma mass spectrometry and hydride generation atomic fluorescence detection techniques were used for the speciation of arsenic. We found that all five of the arsenic species were stable for up to 2 months when urine samples were stored at 4 and -20 degrees C without any additives. For longer period of storage (4 and 8 months), the stability of arsenic species was dependent on urine matrices. Whereas the arsenic speciation in some urine samples was stable for the entire 8 months at both 4 and -20 degrees C, other urine samples stored under identical conditions showed substantial changes in the concentration of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid. The use of additives did not improve the stability of arsenic speciation in urine. The addition of 0.1 mol/L HCl (final concentration) to urine samples produced relative changes in inorganic As(III) and As(V) concentrations. Low temperature (4 and -20 degrees C) conditions are suitable for the storage of urine samples for up to 2 months. Untreated samples maintain their concentration of arsenic species, and additives have no particular benefit. Strong acidification is not appropriate for speciation analysis.

  9. Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part II — Techno-economic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin

    The seasonal variability in algal biomass production and its susceptibility to rapid degradation increases uncertainty in algal productivity and increases risks to feedstock supply for conversion. During summer months when algal biomass productivity is highest, production could exceed conversion capacity, resulting in delayed processing and risk of biomass degradation. Drying algae for preservation is energy-intensive and can account for over 50% of the total energy demand in algae preprocessing. Anaerobic wet storage – ensiling – is a widely used storage technique for stabilization of high moisture forage. Wet stabilization of algae eliminates the need for drying, and blending with herbaceousmore » biomass allows for the utilization of the silage industry’s existing harvest, handling and storage infrastructure. A storage facility co-located with the algae production and conversion operations was designed to stabilize algal biomass produced in excess of conversion capacity during summer months for use in the winter when algal biomass production is reduced. Techno-economic assessment of the costs associated with ensiling algae and corn stover blends suggest it to be a cost effective approach, compared to drying. In a high algal biomass productivity scenario, costs of wet storage ($/gallon diesel) were only 65% of the cost of drying. When a reduced algal biomass productivity scenario was considered, the stored blend was able to cost-effectively provide sufficient biomass such that winter production in the algal ponds could cease, meanwhile incurring only 91% of the costs of drying; such an approach would facilitate algal biomass production in northern latitudes. Moreover, the wet storage approaches requiring only 8-10% of the total energy consumption and releasing only 20-25% of the greenhouse gasses when compared to a natural-gas based drying approach for microalgae stabilization.« less

  10. Stability of 35 biochemical and immunological routine tests after 10 hours storage and transport of human whole blood at 21°C.

    PubMed

    Henriksen, Linda O; Faber, Nina R; Moller, Mette F; Nexo, Ebba; Hansen, Annebirthe B

    2014-10-01

    Suitable procedures for transport of blood samples from general practitioners to hospital laboratories are requested. Here we explore routine testing on samples stored and transported as whole blood in lithium-heparin or serum tubes. Blood samples were collected from 106 hospitalized patients, and analyzed on Architect c8000 or Advia Centaur XP for 35 analytes at base line, and after storage and transport of whole blood in lithium-heparin or serum tubes at 21 ± 1°C for 10 h. Bias and imprecision (representing variation from analysis and storage) were calculated from values at baseline and after storage, and differences tested by paired t-tests. Results were compared to goals set by the laboratory. We observed no statistically significant bias and results within the goal for imprecision between baseline samples and 10-h samples for albumin, alkaline phosphatase, antitrypsin, bilirubin, creatinine, free triiodothyronine, γ-glutamyl transferase, haptoglobin, immunoglobulin G, lactate dehydrogenase, prostate specific antigen, total carbon dioxide, and urea. Alanine aminotransferase, amylase, C-reactive protein, calcium, cholesterol, creatine kinase, ferritin, free thyroxine, immunoglobulin A, immunoglobulin M, orosomucoid, sodium, transferrin, and triglycerides met goals for imprecision, though they showed a minor, but statistically significant bias in results after storage. Cobalamin, folate, HDL-cholesterol, iron, phosphate, potassium, thyroid stimulating hormone and urate warranted concern, but only folate and phosphate showed deviations of clinical importance. We conclude that whole blood in lithium-heparin or serum tubes stored for 10 h at 21 ± 1°C, may be used for routine analysis without restrictions for all investigated analytes but folate and phosphate.

  11. Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part I—Storage performance

    DOE PAGES

    Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin; ...

    2017-06-01

    Here, algal biomass is becoming increasingly attractive as a feedstock for biofuel production. However, the swing in algal biomass production between summer and winter months poses a challenge for delivering predictable, constant feedstock supply to a conversion facility. Drying is one approach for stabilizing algal biomass produced in excess during high productivity summer months for utilization during low productivity months, yet drying is energy intensive and thus costly. Wet, anaerobic storage, or ensiling, is a low-cost approach that is commonly used to preserve high moisture herbaceous feedstock. The potential for microalgae stabilization without the need for drying was investigated inmore » this study by simulating ensiling, in which oxygen limitation drives anaerobic fermentation of soluble sugars to organic acids, dropping the pH and thereby stabilizing the material. Algal biomass, Scenedesmus obliquus, was blended with corn stover and stored in acidic, anaerobic conditions at 60% moisture (wet basis) to simulate wet storage by means of ensiling. Results demonstrate that algae and corn stover blends were successfully preserved in anaerobic, acidic conditions for 30 days with < 2% dry matter loss occurring during storage compared to 21% loss in aerobic, non-acidified conditions. Likewise, Scenedesmus obliquus stored alone at 80% moisture (wet basis) in acidified, anaerobic conditions for 30 days, resulted in dry matter losses of 6–14%, compared to 44% loss in neutral pH, anaerobic storage and 37% loss in a neutral pH, aerobically stored condition. Additional experiments were performed at a larger scale in which an algae and corn stover blend was subject to mechanical oxygen exclusion and a Lactobacillus acidophilus inoculum, resulting in 8% loss over 35 days and further indicating that acidic, anaerobic conditions can stabilize microalgae biomass. In summary, the stabilization of harvested algae can be achieved through anaerobic storage, securing a feedstock that is labile yet of high value.« less

  12. Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part I—Storage performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin

    Here, algal biomass is becoming increasingly attractive as a feedstock for biofuel production. However, the swing in algal biomass production between summer and winter months poses a challenge for delivering predictable, constant feedstock supply to a conversion facility. Drying is one approach for stabilizing algal biomass produced in excess during high productivity summer months for utilization during low productivity months, yet drying is energy intensive and thus costly. Wet, anaerobic storage, or ensiling, is a low-cost approach that is commonly used to preserve high moisture herbaceous feedstock. The potential for microalgae stabilization without the need for drying was investigated inmore » this study by simulating ensiling, in which oxygen limitation drives anaerobic fermentation of soluble sugars to organic acids, dropping the pH and thereby stabilizing the material. Algal biomass, Scenedesmus obliquus, was blended with corn stover and stored in acidic, anaerobic conditions at 60% moisture (wet basis) to simulate wet storage by means of ensiling. Results demonstrate that algae and corn stover blends were successfully preserved in anaerobic, acidic conditions for 30 days with < 2% dry matter loss occurring during storage compared to 21% loss in aerobic, non-acidified conditions. Likewise, Scenedesmus obliquus stored alone at 80% moisture (wet basis) in acidified, anaerobic conditions for 30 days, resulted in dry matter losses of 6–14%, compared to 44% loss in neutral pH, anaerobic storage and 37% loss in a neutral pH, aerobically stored condition. Additional experiments were performed at a larger scale in which an algae and corn stover blend was subject to mechanical oxygen exclusion and a Lactobacillus acidophilus inoculum, resulting in 8% loss over 35 days and further indicating that acidic, anaerobic conditions can stabilize microalgae biomass. In summary, the stabilization of harvested algae can be achieved through anaerobic storage, securing a feedstock that is labile yet of high value.« less

  13. A new class of solid oxide metal-air redox batteries for advanced stationary energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan

    Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this study, the constituted battery of which is termed solid oxide iron-air redox battery (or SOFeARB). The first objective of this PhD work is aimed at demonstrating the proof-of-concept. By combining a commercial anode-supported tubular RSOFC and Fe-based redox couple, the first generation SOFeARB operated at 800°C has been demonstrated to produce an energy capacity of 348Wh/kg-Fe and round-trip efficiency of 91.5% over twenty stable charge/discharge cycles. Further system optimization leads to an 800°C-SOFeARB comprised of a commercial electrolyte-supported planar RSOFC and Fe-based redox couple; this configuration has become a standard testing system for later studies. The 800°C planar SOFeARBs have been investigated under various current densities and cycle durations. The results show that metal utilization plays a determining role in balancing the energy capacity and round-trip efficiency. Increasing metal utilization increases the energy capacity, but at the expense of lowered round-trip efficiency. The second objective of this work is to lower the operating temperature of SOMARBs to intermediate temperature (IT) range (e.g. 550-650°C). Two changes were made in order to enable operation at IT range: introduction of optimized Sr- and Mg- doped LaGaO3 (LSGM) based RSOFC by tape-casting and infiltration techniques, and optimization of morphology of ESU through innovative synthesis methods. The optimized battery can reach a round-trip efficiency as high as 82.5% and specific energy 91% of the theoretical value in the IT range. The third objective of this work is to improve the cyclic durability and stability of IT-SOFeARBs. The results show that the performance, reversibility and stability of a 550°C-SOFeARB can be significantly improved by nanostructuring energy storage materials synthesized from a low-cost carbothermic reaction. The 100-cycle test explicitly shows an improvement of 12.5%, 27.8% and 214% in specific energy, round-trip efficiency and stability, respectively, over the baseline battery. The fourth objective of this work is to explore metal-air chemistries other than Fe-air. The two new metal-air chemistries of choice are W-air and Mo-air. The selection of W and Mo as the redox metals is based on their faster kinetic rate and higher specific densities per oxygen than the Fe-based counterparts. Each battery was electrochemically compared with the baseline SOFeARB at a specific temperature. The results show that these heavy metals based SOMARBs can indeed produce higher energy density (capacity per unit volume) than the baseline battery SOFeARB by allowing more mass loading and higher oxygen storage capacity. The better kinetic rates also lead to a higher cycle efficiency and cycle stability. In summary, this dissertation work demonstrates a new energy storage mechanism that has great potential for stationary applications. The new storage battery has been studied in the perspectives of theoretical assessment, materials development, parametric optimization, and test methodology. According to these systematic investigations, a set of standard testing and characterization protocols has been configured for future testing of larger systems. Thermodynamics and kinetics have constantly been employed to guide materials selection and electrochemical testing. The experimental results are often found consistent with the theoretical predictions.

  14. Assaying the Stability and Inactivation of AAV Serotype 1 Vectors

    PubMed Central

    Howard, Douglas B.; Harvey, Brandon K.

    2017-01-01

    Adeno-associated virus (AAV) vectors are a commonplace tool for gene delivery ranging from cell culture to human gene therapy. One feature that makes AAV a desirable vector is its stability, in regard to both the duration of transgene expression and retention of infectivity as a viral particle. This study examined the stability of AAV serotype 1 (AAV1) vectors under different conditions. First, transducibility after storage at 4°C decreased 20% over 7 weeks. Over 10 freeze–thaw cycles, the resulting transduction efficiency became variable at 60–120% of a single thaw. Using small stainless steel slugs to mimic a biosafety cabinet or metal lab bench surface, it was found that an AAV1 vector can be reconstituted after 6 days of storage at room temperature. The stability of AAV is a desired feature, but effective decontamination procedures must be available for safety and experimental integrity. Multiple disinfectants commonly used in the laboratory for ability to inactivate an AAV1 vector were tested, and it was found that autoclaving, 0.25% peracetic acid, iodine, or 10% Clorox bleach completely prevented AAV-mediated transgene expression. These data suggest that peracetic acid should be used for inactivating AAV1 vectors on metal-based surfaces or instruments in order to avoid inadvertent transgene expression in human cells or cross-contamination of instruments. PMID:28192678

  15. Effect of residual oxygen on colour stability during chill storage of sliced, pasteurised ham packaged in modified atmosphere.

    PubMed

    Møller, J K; Jensen, J S; Olsen, M B; Skibsted, L H; Bertelsen, G

    2000-04-01

    The critical level of residual oxygen to avoid light induced oxidative discoloration during chill storage of sliced, pasteurised ham packaged in modified atmosphere (20% carbon dioxide balanced with nitrogen in a 1:3 product to headspace volume ratio) was found to lie between 0.1 and 0.5% oxygen. In 0.5% oxygen light induced discoloration was significant, as detected by the tristimulus colorimetry redness parameter, when compared to the same product stored in the dark, while at 0.1 and 0.02% oxygen the colour was stable both in the dark and when exposed to light for up to 27 days in chill storage. Lipid oxidation, determined as 2-thiobarbituric acid-reactive substances, and total plate counts showed no difference between discoloured and colour stable products, although a trained panel in a triangle test could differentiate between the taste of ham from packages with 0.02 and 0.5% oxygen after 27 days of chill storage.

  16. Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway

    NASA Astrophysics Data System (ADS)

    Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi

    The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.

  17. Aggregates of octenylsuccinate oat β-glucan as novel capsules to stabilize curcumin over food processing, storage and digestive fluids and to enhance its bioavailability.

    PubMed

    Liu, J; Lei, L; Ye, F; Zhou, Y; Younis, Heba G R; Zhao, G

    2018-01-24

    Self-aggregates of octenylsuccinate oat β-glucan (A OSG ) have been verified as nanocapsules to load curcumin, a representative of hydrophobic phytochemicals. This study primarily investigated the stability of curcumin-loaded A OSG s over food processing, storage and digestive fluids. Curcumin in A OSG s showed better stability over storage and thermal treatment than its free form. Curcumin loaded in A OSGs stored at 4 °C in the dark exhibited higher stability than that at higher temperatures or exposed to light. Approximately 18% of curcumin was lost after five freeze-thaw cycles. Curcumin in A OSG was more stable than its free form in mimetic intestinal fluids, attesting to the effective protection of A OSG for curcumin over digestive environments. When curcumin-loaded A OSG travelled across mimetic gastric and intestinal fluids, curcumin was tightly accommodated in the capsule, while it rapidly escaped as the capsule reached the colon. Interestingly, the curcumin loaded in A OSG generated higher values of C max and area under the curve than did its free counterpart. These observations showed that A OSG is a powerful vehicle for stabilizing hydrophobic phytochemicals in food processing and storage, facilitating their colon-targeted delivery and enhancing their bioavailability.

  18. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen.

    PubMed

    Strobel, Timothy A; Koh, Carolyn A; Sloan, E Dendy

    2008-02-21

    X-ray diffraction and Raman spectroscopic measurements confirm that molecular hydrogen can be contained within the small water cavities of a binary sH clathrate hydrate using large guest molecules that stabilize the large cavity. The potential increase in hydrogen storage could be more than 40% when compared with binary sII hydrates. This work demonstrates the stabilization of hydrogen in a hydrate structure previously unknown for encapsulating molecular hydrogen, indicating the potential for other inclusion compound materials with even greater hydrogen storage capabilities.

  19. Implementation of an Outer Can Welding System for Savannah River Site FB-Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, S.R.

    2003-03-27

    This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing.

  20. The role of silica nanoparticles on long-term room-temperature stabilization of water-in-oil emulsions containing microalgae.

    PubMed

    Fernández, L; Scher, H; VanderGheynst, J S

    2015-12-01

    Prior research has demonstrated that microalgae can be stored for extended periods of time at room temperature in water-in-oil (W/O) emulsions stabilized by surface modified silica nanoparticles. However, little research has been done to examine the impact of nanoparticle concentration on emulsion stability. Such information is important for large-scale production of emulsions for microalgae storage and delivery. Studies were done to examine the impact of silica nanoparticle concentration on emulsion stability and identify the lower limit for nanoparticle concentration. Emulsion physical stability was determined using internal phase droplet size measurements and biological stability was evaluated using cell density measurements. The results demonstrate that nanoparticle concentrations as low as 0·5wt% in the oil phase can be used without significant losses in emulsion stability and microalgae viability. Stabilization technologies are needed for long-term storage and application of microalgae in agricultural-scale systems. While prior work has demonstrated that water-in-oil emulsions containing silica nanoparticles offer a promising solution for long-term microalgae storage at room temperature, little research has been done to examine the impact of nanoparticle concentration on emulsion stability. Here, we show the effects of silica nanoparticle concentration on maintaining physical stability of emulsions and sustaining viable cells. The results enable informed decisions to be made regarding production of emulsions containing silica nanoparticles and associated impacts on stabilization of microalgae. © 2015 The Society for Applied Microbiology.

  1. Temperature stability of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at -80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C.

    PubMed

    Bian, Y Z; Guo, C; Chang, T M S

    2016-01-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (Poly-[Hb-SOD-CAT-CA]) contains all three major functions of red blood cells (RBCs) at an enhanced level. It transports oxygen, removes oxygen radicals and transports carbon dioxide. Our previous studies in a 90-min 30 mm Hg Mean Arterial Pressure (MAP) sustained hemorrhagic shock rat model shows that it is more effective than blood in the lowering of elevated intracellular pCO2, recovery of ST-elevation and histology of the heart and intestine. This paper is to analyze the storage and temperature stability. Allowable storage time for RBC is about 1 d at room temperature and 42 d at 4 °C. Also, RBC cannot be pasteurized to remove infective agents like HIV and Ebola. PolyHb can be heat sterilized and can be stored for 1 year even at room temperature. However, Poly-[Hb-SOD-CAT-CA] contains both Hb and enzymes and enzymes are particularly sensitive to storage and heat. We thus carried out studies to analyze its storage stability at different temperatures and heat pasteurization stability. Results of storage stability show that lyophilization extends the storage time to 1 year at 4 °C and 40 d at room temperature (compared to respectively, 42 d and 1 d for RBC). After the freeze-dry process, the enzyme activities of Poly-[SFHb-SOD-CAT-CA] was 100 ± 2% for CA, 100 ± 2% for SOD and 93 ± 3.5% for CAT. After heat pasteurization at 70 °C for 2 h, lyophilized Poly-[Hb-SOD-CAT-CA] retained good enzyme activities of CA 97 ± 4%, SOD 100 ± 2.5% and CAT 63.8 ± 4%. More CAT can be added during the crosslinking process to maintain the same enzyme ratio after heat pasteurization. Heat pasteurization is possible only for the lyophilized form of Poly-[Hb-SOD-CAT-CA] and not for the solution. It can be easily reconstituted by dissolving in suitable solutions that continues to have good storage stability though less than that for the lyophilized form. According to the P50 value, Poly-[SFHb-SOD-CAT-CA] retains its oxygen carrying ability before and after long-term storage.

  2. Sputtered Pd as hydrogen storage for a chip-integrated microenergy system.

    PubMed

    Slavcheva, E; Ganske, G; Schnakenberg, U

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance.

  3. Fluidized-Bed Drying and Storage Stability of Cryptococcus flavescens OH 182.9, a Biocontrol Agent of Fusarium Head Blight

    USDA-ARS?s Scientific Manuscript database

    A method to produce dried granules of Cryptococcus flavescens (formerly Cryptococcus nodaensis) OH 182.9 was developed and the granules evaluated for storage stability. Small spherical granules were produced and dried using a fluidized bed dryer. A drying and survival curve was produced for the pr...

  4. [Immobilization of pectawamorine G10x by gel entrapment].

    PubMed

    Bogatskiĭ, A V; Davidenko, T I; Areshidze, I V; Gren', T A; Sevast'ianov, O V

    1979-01-01

    Polyacrylamide gel immobilization of pectawamorine G10x was investigated. Its pectinesterase and polygalacturonase activity and stability in storage were measured. The degree of pectawamorine binding during gel immobilization was 80--90%, 55% of initial activity being retained. Thermal stability of the immobilized and native preparations was equal. Pectinesterase activity of the gel immobilized enzyme increased during storage.

  5. Storage stability of biodegradable polyethylene glycol microspheres

    NASA Astrophysics Data System (ADS)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  6. Flavor and chiral stability of lemon-flavored hard tea during storage.

    PubMed

    He, Fei; Qian, YanPing L; Qian, Michael C

    2018-01-15

    Flavor stability of hard tea beverage was investigated over eight weeks of storage. The volatile compounds were analyzed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and two-dimensional GC-MS. Quantitative analysis showed that the concentrations of linalool, citronellol, geranial, neral, geraniol, and nerol decreased dramatically during storage, whereas α-terpineol showed an increasing trend during storage. Heart-cut two-dimensional GC-MS (2D-GC-MS) chirality analysis showed that (R)-(+)-limonene, (R)-(-)-linalool, (S)-(-)-α-terpineol and (S)-(-)-4-terpineol dominated in the fresh hard tea samples, however, the configuration changed during storage for the terpene alcohols. The storage conditions did not change the configuration of limonene. A conversion of (R)-(-)-linalool to (S)-(+) form was observed during storage. Both (S)-α-terpineol and (S)-4-terpineol dominated at beginning of the storage, but (R)-(+)-α-terpineol became dominated after storage, suggested in addition to isomerization from (S)-α-terpineol, other precursors could also generate α-terpineol with (R)-isomer preference. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions.

    PubMed

    Agregán, Rubén; Munekata, Paulo E; Domínguez, Ruben; Carballo, Javier; Franco, Daniel; Lorenzo, José M

    2017-09-01

    Extracts from three macroalgae species (Ascophyllum nodosum (ANE), Bifurcaria bifurcata (BBE) and Fucus vesiculosus (FVE)) were tested for proximate composition (total solid, protein and total carbohydrate contents), total phenols content (TPC), and for their antioxidant activities in vitro in comparison to that of BHT compound by using four different assays (ABTS radical cation decolouration, DPPH free radical scavenging activity, ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC)). The inclusion of the extracts as oil stabilizers in canola oil in substitution of the synthetic antioxidant (BHT) was also evaluated by assessing lipid oxidation parameters (peroxide value (PV), p-anisidine value (AV), TBARS value, conjugated dienes (CD) and TOTOX index) under accelerated storage conditions (16days, 60°C). There was an inverse relationship between total solid content and total polyphenols content in the seaweed extracts. FVE showed an intermediate TPC (1.15g PGE/100g extract), but it presented the highest in vitro antioxidant activity when measured using the ABTS, DPPH and FRAP tests. BBE, that displayed the highest TPC (1.99g PGE/100g extract), only showed the highest in vitro antioxidant activity when measured using the ORAC test. ANE showed the lowest TPC and the lowest antioxidant activity in all the tests performed. The seaweed extracts added in a 500ppm concentration significantly reduced the oxidation during canola oil storage at 60°C, being this antioxidant effect significantly higher than that of BHT added at 50ppm. Results indicate that seaweed extracts can effectively inhibit the oxidation of canola oil and they can be a healthier alternative to the synthetic antioxidants in the oil industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test

    PubMed Central

    Gilbert, Hunter B.; Hendrick, Richard J.; Webster, Robert J.

    2016-01-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot’s workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures. PMID:27042170

  9. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.

    PubMed

    Lestringant, Pauline; Guri, Anilda; Gülseren, Ibrahim; Relkin, Perla; Corredig, Milena

    2014-08-20

    Varying amounts of epigallocatechin-3-gallate (EGCG) were encapsulated in β-lactoglobulin (β-Lg) nanoparticles, either native or processed, denoted as heated or desolvated protein. The stability, physical properties, and bioactivity of the β-Lg-EGCG complexes were tested. Native β-Lg-EGCG complexes showed comparable stability and binding efficacy (EGCG/β-Lg molar ratio of 1:1) to heated β-Lg nanoparticles (1% and 5% protein w/w). The sizes of heated and desolvated β-Lg nanoparticles were comparable, but the latter showed the highest binding affinity for EGCG. The presence of EGCG complexed with β-Lg did not affect the interfacial tension of the protein when tested at the soy oil-water interface but caused a decrease in dilational elasticity. All β-Lg complexes (native, heated, or desolvated) showed a decrease in cellular proliferation similar to that of free ECGC. In summary, protein-EGCG complexes did not alter the bioefficacy of EGCG and contributed to increased stability with storage, demonstrating the potential benefits of nanoencapsulation.

  10. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test.

    PubMed

    Gilbert, Hunter B; Hendrick, Richard J; Webster, Robert J

    2016-02-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.

  11. Stability of thiopental and pentobarbital in human plasma determined with a new easy and specific gas chromatography-mass spectrometry assay.

    PubMed

    Martens-Lobenhoffer, J

    1999-08-01

    A gas chromatographic-mass spectrometric (GC-MS) assay for the determination of thiopental and its main metabolite pentobarbital in human plasma is presented in this study. The sample preparation consists only in the addition of the internal standard barbital and an acidic extraction with ethyl acetate. Analytical separation is accomplished on a RTX-1 15 m x 0.25 mm capillary column with a film thickness of 0.5 micron. The effluent is observed by a mass selective detector operating in the single ion monitoring mode. The limits of detection are 5 ng/ml for pentobarbital and 10 ng/ml for thiopental, the intra-day variabilities are 2.2% and 4.0% and the inter-day variabilities are 3.3% and 7.1% at concentrations of 5 micrograms/ml, respectively. Applying this assay, the stability of thiopental and pentobarbital in human plasma was tested at concentrations of 5 micrograms/ml each. Thiopental is stable in human plasma at least over 41 days stored at -20 degrees C and 5 degrees C, respectively. A decay of about 2%/day is observed under storage at ambient temperature (19-20 degrees C). Pentobarbital is stable under all storage conditions. Methanolic solutions of thiopental are stable for 83 days under storage at 5 degrees C. Aqueous solutions of thiopental-sodium are stable for at least 23 days under storage at 5 degrees C or ambient temperature.

  12. Microwave freeze-thaw technique of injectable drugs. A review from 1980 to 2014.

    PubMed

    Hecq, J-D; Godet, M; Jamart, J; Galanti, L

    2015-11-01

    Microwave freeze-thaw treatment (MFTT) of injectable drugs can support the development of centralized intravenous admixtures services (CIVAS). The aim of the review is to collect information and results about this method. A systematic review of the scientific literature about injectable drug stability studies was performed. The data are presented in a table and describe name of the drug, producer, final concentration, temperature and time of freezing storage, type of microwave oven, thawing power, method of dosage and results after treatment or final long-term storage at 5±3 °C. From 1980 to 2014, 59 drugs were studied by MFTT and the results were presented in 49 publications. Forty papers were presented by 8 teams (2 to 18 by team). The temperatures of freezing storage vary from -70 °C to -10 °C, the time storage from 4 hours to 12 months, the thaw from low to full power. Dosages are mainly made by high performance liquid chromatography. Most of the 59 drugs are stable during and after treatment. Only 3 teams have tested the long-term stability after MFTT, the first for ganciclovir after 7 days, the second for ceftizoxime after 30 days and the third for 19 drugs after 11 to 70 days. This review can help CIVAS to take in charge the productions of ready-to-use injectable drugs. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  13. Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions.

    PubMed

    Aboushelib, Moustafa N; Mirmohamadi, Hesam; Matinlinna, Jukka P; Kukk, Edwin; Ounsi, Hani F; Salameh, Ziad

    2009-08-01

    The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers. Selective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60min. The bilayered specimens were cut into microbars (1mm(2) in cross-section area) and zirconia-resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 degrees C. Scanning electron microscopy (SEM) was used to analyze the fracture surface. There was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28-41MPa to ca. 15-18MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1h of mixing time. The novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.

  14. Formulation and Stabilization of Francisella tularensis Live Vaccine Strain

    PubMed Central

    OHTAKE, SATOSHI; MARTIN, RUSSELL A.; SAXENA, ATUL; LECHUGA-BALLESTEROS, DAVID; SANTIAGO, ARACELI E; BARRY, EILEEN M.; TRUONG-LE, VU

    2012-01-01

    Francisella tularensis live vaccine strain (F. tularensis LVS), a promising vaccine candidate for protection against F. tularensis exposure, is a particularly thermolabile vaccine and difficult to stabilize sufficiently for storage under refrigerated conditions. Our preliminary data show that F. tularensis LVS can be stabilized in the dried state using foam drying, a modified freeze drying method, with sugar-based formulations. The process was conducted under mild drying conditions, which resulted in a good titer retention following processing. The inclusion of osmolytes in the growth media resulted in an acceleration of growth kinetics, although no change in osmotolerance was observed. The optimized F. tularensis formulation, which contained trehalose, gelatin, and Pluronic F68 demonstrated stability for approximately 1.5 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1 log10 colony forming unit) and for 12 weeks at 25°C. At refrigerator storage condition (4°C), stabilized F. tularensis LVS vaccine exhibited no activity loss for at least 12 weeks. This stabilization method utilizes conventional freeze dryers and pharmaceutically approved stabilizers, and thus can be readily implemented at many manufacturing sites for large-scale production of stabilized vaccines. The improved heat stability of the F. tularensis LVS could mitigate risks of vaccine potency loss during long-term storage, shipping, and distribution. PMID:21491457

  15. Cognitive performance deficits in a simulated climb of Mount Everest - Operation Everest II

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.; Dunlap, W. P.; Banderet, L. E.; Smith, M. G.; Houston, C. S.

    1989-01-01

    Cognitive function at simulated altitude was investigated in a repeated-measures within-subject study of performance by seven volunteers in a hypobaric chamber, in which atmospheric pressure was systematically lowered over a period of 40 d to finally reach a pressure equivalent to 8845 m, the approximate height of Mount Everest. The automated performance test system employed compact computer design; automated test administrations, data storage, and retrieval; psychometric properties of stability and reliability; and factorial richness. Significant impairments of cognitive function were seen for three of the five tests in the battery; on two tests, grammatical reasoning and pattern comparison, every subject showed a substantial decrement.

  16. Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid

    NASA Astrophysics Data System (ADS)

    Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco

    2013-03-01

    A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.

  17. Effect of processing and storage on the stability of flaxseed lignan added to bakery products.

    PubMed

    Hyvärinen, Helena K; Pihlava, Juha-Matti; Hiidenhovi, Jaakko A; Hietaniemi, Veli; Korhonen, Hannu J T; Ryhänen, Eeva-Liisa

    2006-01-11

    The study focused on the effects of processing and storage on the stability of flaxseed-derived secoisolariciresinol diglucoside (SDG) added to various bakery products. The SDG concentration of doughs, baked rye breads, graham buns, and muffins was analyzed by high-performance liquid chromatography-diode array detection; the baked products were analyzed immediately after baking and upon storage at room temperature for 1 week and at -25 degrees C for 1 and 2 months, respectively. Added SDG was found to withstand normal baking temperatures in all bakery products. SDG also was a relatively stable compound during storage. Similarly, the content of SDG in flax buns containing fat-free flaxseed meal was unaffected by storage. We conclude that cereal-based bakery products can be supplemented with flaxseed-derived SDG.

  18. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography.

    PubMed

    Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José

    2002-04-25

    The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.

  19. Real time simulation application to monitor the stability limit of power system

    NASA Astrophysics Data System (ADS)

    Hartono, Kuo, Ming-Tse

    2017-06-01

    If the power system falls into an unsteady state, there will be voltage collapse in which the power system will be separated into small systems. Identifying the stability reserve in conformity with a certain practical operation condition is very important for the system management and operation. In fact, the global power system issue has caused serious outages due to voltage collapse such as in the United States-Canada in August 14, 2003; South London in August 28, 2003; southern Sweden and eastern Denmark in September 23, 2003; and Italy on September 28, 2003, and in Vietnam where power system problem led to power loss on 17 May 2005, 27 December 2006, 20 July 2007, and 10 September 2007. The analysis shows that the phenomenon is related to the loss of system stability. Thus, the operational system as well as the power system designs should be studied related to the issue of the system stability. To study the static stability of the power system, different approximate standards, called pragmatic criteria, were examined. Markovits has investigated the application of the standard of dP/dd to test the stability of the power button and dq/dU to check the voltage stability of the load button [1]. However, the storage stability when calculating standard dP/d d is usually much larger than the reserves when calculating standard dq/dU [1]. This paper presents a method to build a possible operation region in the power plane of load bus which works in comply with the stability limit to evaluate the stability reserve of the power system. This method is used to build a program to monitor the stability reserve of IEEE 39 Bus Power System in real time. To monitor the stability reserve of IEEE 39 nodes power system, articles based on the standard dq/dU was used to calculate the assessment. When using standard dq/dU to check for voltage stability load button, the amount of storage stability can be calculated by the following steps: first, transformed replacement scheme Masonry on the schematic rays of the source and node load stability was examined by using Gaussian elimination algorithm [1, 2, 3], then on the basis of ray diagrams the construction work, allowed domain of spare capacity load capacity in space and storage stability for the load button were determined. The GS-ODT program was built on the basis of Gaussian elimination algorithm and stable domain construction work algorithm for Masonic load button by dQ/dU pragmatic criteria. The GS-ODT program has a simple interface and easy to use with the main function is to identify the allowed domain for the load button and thus can assess visually stable reserve still according to the load capacity of the nodes of the IEEE 39 nodes power system in real-time.

  20. Effect of ascorbic acid on the stability of beta-carotene and capsanthin in paprika (Capsicum annuum) powder.

    PubMed

    Morais, H; Rodrigues, P; Ramos, C; Forgács, E; Cserháti, T; Oliveira, J

    2002-10-01

    The effect of ascorbic acid, light, and storage on the stability of the pigments beta-carotene and capsanthin in red pepper (Capsicum annuum) powder has been elucidated by determining the amount of pigment in samples treated by various concentrations of ascorbic acid. Determination of pigment concentration has been performed after different storage times using high-performance liquid chromatography. The dependence of the concentration of pigments on the concentration of ascorbic acid, presence of light and the storage time has been assessed by stepwise regression analysis. The concentration of pigments decreased at longer storage time and increased at higher concentration of ascorbic acid, beta-carotene being more sensitive towards storage time and concentration of ascorbic acid than capsanthin. Interaction between the effects of light and storage time, and light and concentration of ascorbic acid has been established.

  1. Can 1% chlorhexidine diacetate and ethanol stabilize resin-dentin bonds?

    PubMed Central

    Manso, Adriana Pigozzo; Grande, Rosa Helena Miranda; Bedran-Russo, Ana Karina; Reis, Alessandra; Loguercio, Alessandro D.; Pashley, David Henry; Carvalho, Ricardo Marins

    2014-01-01

    Objectives To examine the effects of the combined use of chlorhexidine and ethanol on the durability of resin-dentin bonds. Methods Forty-eight flat dentin surfaces were etched (32% phosphoric acid), rinsed (15 s) and kept wet until bonding procedures. Dentin surfaces were blot-dried with absorbent paper and re-wetted with water (Water, control), 1% chlorhexidine diacetate in water (CHD/Water), 100% ethanol (Ethanol), or 1% chlorhexidine diacetate in ethanol (CHD/Ethanol) solutions for 30 s. They were then bonded with All Bond 3 (AB3, Bisco) or Excite (EX, Ivoclar-Vivadent) using a smooth, continuous rubbing application (10 s), followed by 15 s gentle air stream to evaporate solvents. The adhesives were light-cured (20 s) and resin composite build-ups constructed for the microtensile method. Bonded beams were obtained and tested after 24-hours, 6-months and 15-months of water storage at 37°C. Storage water was changed every month. Effects of treatment and testing periods were analyzed (ANOVA, Holm-Sidak, p<0.05) for each adhesive. Results There were no interactions between factors for both etch-and-rinse adhesives. AB3 was significantly affected only by storage (p = 0.003). Excite was significantly affected only by treatments (p = 0.048). AB3 treated either with ethanol or CHD/ethanol resulted in reduced bond strengths after 15 months. The use of CHD/ethanol resulted in higher bond strengths values for Excite. Conclusions Combined use of ethanol/1% chlorhexidine diacetate did not stabilize bond strengths after 15 months. PMID:24815823

  2. Final prototype of magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    1991-01-01

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  3. Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability.

    PubMed

    Xie, Jian; Rui, Xianhong; Gu, Peiyang; Wu, Jiansheng; Xu, Zhichuan J; Yan, Qingyu; Zhang, Qichun

    2016-07-06

    Herein we report the development of nanostructured poly(1,4-dihydro-11H-pyrazino[2',3':3,4]cyclopenta[1,2-b]quinoxalin-11-one) (PPCQ), a novel conjugated ladderlike oligomer with the presence of a rich amount of heteroatoms, as the anode material. Beyond its remarkable lithium storage of 972 mAh g(-1) after 120 cycles, the superior cycle life and stable capacity performance of 489 mAh g(-1) revealed by ultralong testing of 1000 cycles (with an average Coulombic efficiency 99.8%) at a high current density of 2.5 A g(-1) indicate its excellent electrochemical stability to be promisingly applied for high-performance lithium-ion batteries (LIBs).

  4. Final prototype of magnetically suspended flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  5. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.

    PubMed

    Dhumal, Ravindra S; Shimpi, Shamkant L; Paradkar, Anant R

    2007-09-01

    The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.

  6. The effects of surfactant and electrolyte concentrations on the size of nanochitosan during storage

    NASA Astrophysics Data System (ADS)

    Primaningtyas, Annisa; Budhijanto, Wiratni; Fahrurrozi, Mohammad; Kusumastuti, Yuni

    2017-05-01

    The nano-sized particle of chitosan (nanochitosan) is a potential natural preservative agent for fresh fish and fish product preservation. Theoretically, nano-sized particles exert strong van der Waals force to each other so that the problem associated with nanochitosan is agglomeration that leads to size instability during storage. Size stability is of importance in the application of nanochitosan as an antimicrobial agent because it considerably affects the antimicrobial activity of chitosan. In this study, the formulation of nanochitosan was optimized with respect to the two major factors in colloid dispersion theory, which were the presence of surfactant and electrolyte. Polysorbate-80 was chosen as the representative of food grade surfactant while NaCl was used as the electrolyte. The purposes of this study were to evaluate the effect of polysorbate-80 concentration and to determine the effect of NaCl ions on the particle size of nanochitosan for at least one month storage period. Data were analyzed using Analysis of Variance (ANOVA) to identify the factors significantly affect the size stability. The dynamics of particle size distribution during storage was measured by Particle Size Analyzer (PSA). The result showed that surfactant did not significantly affect the particle size stability. On the other hand, the addition of electrolyte into the colloidal dispersion of nanochitosan consistently stabilized and also narrowed the particle size distribution during storage in the range of 175-391 nm.

  7. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria.

    PubMed

    Brown, Teagan L; Thomas, Tereen; Odgers, Jessica; Petrovski, Steve; Spark, Marion Joy; Tucci, Joseph

    2017-03-01

    Resistance of bacteria to antimicrobial agents is of grave concern. Further research into the development of bacteriophage as therapeutic agents against bacterial infections may help alleviate this problem. To formulate bacteriophage into a range of semisolid and solid dosage forms and investigate the capacity of these preparations to kill bacteria under laboratory conditions. Bacteriophage suspensions were incorporated into dosage forms such as creams, ointments, pastes, pessaries and troches. These were applied to bacterial lawns in order to ascertain lytic capacity. Stability of these formulations containing phage was tested under various storage conditions. A range of creams and ointments were able to support phage lytic activity against Propionibacterium acnes. Assessment of the stability of these formulations showed that storage at 4 °C in light-protected containers resulted in optimal phage viability after 90 days. Pessaries/suppositories and troches were able to support phage lytic activity against Rhodococcus equi. We report here the in-vitro testing of semisolid and solid formulations of bacteriophage lytic against a range of bacteria known to contribute to infections of the epithelia. This study provides a basis for the future formulation of diverse phage against a range of bacteria that infect epithelial tissues. © 2016 Royal Pharmaceutical Society.

  8. Effects of heat stress and probiotic supplementation on protein functionality and oxidative stability of ground chicken leg meat during display storage

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate effects of heat stress and probiotic supplementation on protein functionality and oxidative stability of ground chicken leg meat during display storage. Two hundred and forty 1-day-old male chicks (5 bird per pen) were randomly subjected to four treatments...

  9. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.

    2015-12-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.

  10. Proteomic analysis to investigate color changes of chilled beef longissimus steaks held under carbon monoxide and high oxygen packaging.

    PubMed

    Yang, Xiaoyin; Wu, Shuang; Hopkins, David L; Liang, Rongrong; Zhu, Lixian; Zhang, Yimin; Luo, Xin

    2018-08-01

    This study investigated the proteome basis for color stability variations in beef steaks packaged under two modified atmosphere packaging (MAP) methods: HiOx-MAP (80% O 2 /20% CO 2 ) and CO-MAP (0.4% CO/30% CO 2 /69.6% N 2 ) during 15 days of storage. The color stability, pH, and sarcoplasmic proteome analysis of steaks were evaluated on days 0, 5, 10 and 15 of storage. Proteomic results revealed that the differential expression of the sarcoplasmic proteome during storage contributed to the variations in meat color stability between the two MAP methods. Compared with HiOx-MAP steaks, some glycolytic and energy metabolic enzymes important in NADH regeneration and antioxidant processes, antioxidant peroxiredoxins (thioredoxin-dependent peroxide reductase, peroxiredoxin-2, peroxiredoxin-6) and protein DJ-1 were more abundant in CO-MAP steaks. The over-expression of these proteins could induce CO-MAP steaks to maintain high levels of metmyoglobin reducing activity and oxygen consumption rate, resulting in CO-MAP steaks exhibiting better color stability than HiOx-MAP steaks during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    PubMed

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  12. Biscuits fortified with micro-encapsulated shrimp oil: characteristics and storage stability.

    PubMed

    Takeungwongtrakul, Sirima; Benjakul, Soottawat

    2017-04-01

    Characteristics and storage stability of biscuits fortified with micro-encapsulated shrimp oil (MSO) were determined. The addition of MSO increased spread ratio, whilst decreased the thickness of biscuit. The highest hardness of biscuit was obtained with addition of 9 or 12% MSO. Biscuit surface showed higher redness and yellowness when MSO was incorporated ( p  < 0.05). The addition of MSO up to 6% had no adverse effect on biscuit quality and acceptability. When biscuits added with 6% MSO were stored under different illumination conditions (light and dark), lipid oxidation in all samples increased throughout the storage of 12 days. Light accelerated lipid oxidation of biscuits as evidenced by the increases in both peroxide values and abundance of volatile compounds. No marked change in EPA, DHA and astaxanthin contents were noticeable in biscuit fortified with MSO after 12 days of storage. Therefore, the biscuit could be fortified with MSO up to 6% and must be stored in dark to assure its oxidative stability.

  13. Effects of storage and yogurt matrix on the stability of tocotrienols encapsulated in chitosan-alginate microcapsules.

    PubMed

    Tan, Phui Yee; Tan, Tai Boon; Chang, Hon Weng; Tey, Beng Ti; Chan, Eng Seng; Lai, Oi Ming; Baharin, Badlishah Sham; Nehdi, Imededdine Arbi; Tan, Chin Ping

    2018-02-15

    Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Improved stability of chokeberry juice anthocyanins by β-cyclodextrin addition and refrigeration.

    PubMed

    Howard, Luke R; Brownmiller, Cindi; Prior, Ronald L; Mauromoustakos, Andy

    2013-01-23

    Chokeberry anthocyanins are susceptible to degradation during processing and storage of processed products. This study determined the effects of three pH levels (2.8, 3.2, and 3.6) and four β-cyclodextrin (BCD) concentrations (0, 0.5, 1, and 3%) alone and in combination on the stability of chokeberry juice anthocyanins before and after pasteurization and over 8 months of storage at 4 and 25 °C. Lowering the pH from 3.6 to 2.8 in the absence of BCD provided marginal protection against anthocyanin losses during processing and storage. Addition of 3% BCD at the natural chokeberry pH of 3.6 resulted in excellent protection of anthocyanins, with 81 and 95% retentions after 8 months of storage at 25 and 4 °C, respectively. The protective effect of BCD was lessened with concentrations <3% and reduction in pH, indicating changes in anthocyanin structure play an important role in BCD stabilization of anthocyanins.

  15. Stabilization of anthocyanins in blackberry juice by glutathione fortification.

    PubMed

    Stebbins, Nathan B; Howard, Luke R; Prior, Ronald L; Brownmiller, Cindi; Mauromoustakos, Andy

    2017-10-18

    Blackberry anthocyanins provide attractive color and antioxidant activity. However, anthocyanins degrade during juice processing and storage, so maintaining high anthocyanin concentrations in berry juices may lead to greater antioxidant and health benefits for the consumer. This study evaluated potential additives to stabilize anthocyanins during blackberry juice storage. The anthocyanin stabilizing agents used were: glutathione, galacturonic acid, diethylenetriaminepentaacetic acid and tannic acid, which were added at a level of 500 mg L -1 . Juice anthocyanin, flavonol, and ellagitannin content and percent polymeric color were measured over five weeks of accelerated storage at 30 °C. Glutathione had the greatest protective effect on total anthocyanins and polymeric color. Therefore a second study was performed with glutathione in combination with lipoic and ascorbic acids in an effort to use antioxidant recycling to achieve a synergistic effect. However, the antioxidant recycling system had no protective effect relative to glutathione alone. Glutathione appears to be a promising blackberry juice additive to protect against anthocyanin degradation during storage.

  16. The effect of structured triglycerides on the kinetic stability of total nutrient admixtures.

    PubMed

    Balogh, Judit; Bubenik, Júlia; Dredán, Judit; Csempesz, Ferenc; Kiss, Dorottya; Zelkó, Romána

    2005-10-05

    The physical stability of two types of total parenteral nutrient (TPN) admixtures was studied as a function of storage time and temperature. One of them contained only structured triglycerides and the other exclusively long-chain triglycerides as lipid components. Droplet size of the mixtures was followed by photon correlation spectroscopy for 10 days. Zeta potential and dynamic surface tension measurements were carried out to evaluate the possible changes in the charge and interfacial surface tension of the emulsion droplets during the storage. pH values were monitored in order to follow the possible decomposition processes in the course of storage. Droplet size of emulsions prepared with lipids containing exclusively long-chain triglycerides showed remarkable increase after 4 days of storage in contrast with that of the mixtures containing structured lipids. The obtained results indicate that besides the advantageous metabolic effects of structured triglycerides, their application is recommended to improve the physical stability of TPN admixtures.

  17. Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder.

    PubMed

    Colla, L M; Bertol, C D; Ferreira, D J; Bavaresco, J; Costa, J A V; Bertolin, T E

    2017-01-01

    This work aimed to evaluate the thermal and photo stability of the antioxidant potential (AP) of the Spirulina platensis biomass. Thermal stability was established at 25ºC, 40ºC and 50ºC for 60 days, in the dark, protected from light. Photo stability was evaluated using UV (15 W, λ = 265 nm) and fluorescent (20 W, 0.16 A, power factor FP > 0.5, 50/60 Hz, 60 lm/w, 1200 lm) light for 90 days in capsules, glass and Petri dishes, at room temperature. The AP of the biomass in these conditions was determined at intervals (every 7 and 30 days in the studies of thermal and photo stability, respectively) using the induction of the oxidation of a lipid system by heat and aeration. In this lipid system, the biomass submitted to degradation was used as an antioxidant. The kinetics of the reaction was determined by the Arrhenius method. Thermal degradation was found to follow zero order kinetics, whereas photo degradation followed first order kinetics. The AP decreased 50% after 50 days at 25°C. At 40°C and 50°C, the AP decreased more than 50% after 35 and 21 days of exposition, respectively. The decrease of the AP of Spirulina was more sensible to UV and fluorescence light. After 30 days of exposition, the AP decreased more than 50% in all storage conditions tested. The antioxidant potential of Spirulina platensis is easily degraded when the biomass is exposed to heat and light, indicating the need for care to be taken in its storage.

  18. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects.

    PubMed

    Becker, Ina; Strauch, Sebastian M; Hauslage, Jens; Lebert, Michael

    2017-05-01

    The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. Study of chemical stability of lemon oil components in sodium caseinate-lactose glycoconjugate-stabilized oil-in-water emulsions using solid-phase microextraction-gas chromatography.

    PubMed

    Sabik, Hassan; Achouri, Allaoua; Alfaro, Maria; Pelletier, Marylène; Belanger, Denis; Britten, Michel; Fustier, Patrick

    2014-07-25

    A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed to quantify lemon oil components and their degradation products in oil-in-water (O/W) emulsions prepared with sodium caseinate-heated-lactose (NaC-T + Lact) glycoconjugates as wall materials at two pH values (3.0 and 6.8). NaC-T + Lact conjugates had a significantly lower solubility at both pHs. Hydrolysis prior to glycation enhanced the solubility of glycoconjugates. Glycation with lactose did not improve the emulsion activity of NaC, while caseinate glycoconjugates showed much stronger antioxidant activity than the NaC-control sample. This might be due to the presence of melanoidins formed between the sugar and amino acid compounds as supported by the increase in browning intensity. Among the SPME-fibres tested, carboxen/polydimethylsiloxane (CAR/PDMS) provided better results in terms of sensitivity and selectivity for oil lemon components and their degradation products. Storage studies of these emulsions demonstrated that glycated NaC-T + Lact showed protection against peroxidation compared to the control. However, acidic pH conditions altered their stability over storage time. The major off-flavor components (α-terpineol and carvone) were inhibited in emulsions stabilized with glycated NaC, particularly at pH 6.8. The use of NaC-T + Lact conjugates showed improved encapsulation efficiency and stability and could be used as potential food ingredient-emulsifiers for stabilising citrus oils against oxidative degradation in food and beverage applications.

  20. Physical stability and recrystallization kinetics of amorphous ibipinabant drug product by fourier transform raman spectroscopy.

    PubMed

    Sinclair, Wayne; Leane, Michael; Clarke, Graham; Dennis, Andrew; Tobyn, Mike; Timmins, Peter

    2011-11-01

    The solid-state physical stability and recrystallization kinetics during storage stability are described for an amorphous solid dispersed drug substance, ibipinabant, at a low concentration (1.0%, w/w) in a solid oral dosage form (tablet). The recrystallization behavior of the amorphous ibipinabant-polyvinylpyrrolidone solid dispersion in the tablet product was characterized by Fourier transform (FT) Raman spectroscopy. A partial least-square analysis used for multivariate calibration based on Raman spectra was developed and validated to detect less than 5% (w/w) of the crystalline form (equivalent to less than 0.05% of the total mass of the tablet). The method provided reliable and highly accurate predictive crystallinity assessments after exposure to a variety of stability storage conditions. It was determined that exposure to moisture had a significant impact on the crystallinity of amorphous ibipinabant. The information provided by the method has potential utility for predictive physical stability assessments. Dissolution testing demonstrated that the predicted crystallinity had a direct correlation with this physical property of the drug product. Recrystallization kinetics was measured using FT Raman spectroscopy for the solid dispersion from the tablet product stored at controlled temperature and relative humidity. The measurements were evaluated by application of the Johnson-Mehl-Avrami (JMA) kinetic model to determine recrystallization rate constants and Avrami exponent (n = 2). The analysis showed that the JMA equation could describe the process very well, and indicated that the recrystallization kinetics observed was a two-step process with an induction period (nucleation) followed by rod-like crystal growth. Copyright © 2011 Wiley-Liss, Inc.

  1. Stability of seasonal influenza vaccines investigated by spectroscopy and microscopy methods.

    PubMed

    Patois, E; Capelle, M A H; Gurny, R; Arvinte, T

    2011-10-06

    The stability of different seasonal influenza vaccines was investigated by spectroscopy and microscopy methods before and after the following stress-conditions: (i) 2 and 4 weeks storage at 25°C, (ii) 1 day storage at 37°C and (iii) one freeze-thaw cycle. The subunit vaccine Influvac (Solvay Pharma) and the split vaccine Mutagrip (Sanofi Pasteur) were affected by all stresses. The split vaccine Fluarix (GlaxoSmithKline) was affected only by storage at 25°C. The virosomal vaccine Inflexal V (Berna Biotech) was stable after the temperature stresses but aggregated after one freeze-thaw cycle. This study provides new insights into commercial vaccines of low antigen concentration and highlights the importance of using multiple techniques to assess vaccine stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effect of temperature on long-term storage of codling moth granulovirus formulations.

    PubMed

    Lacey, Lawrence A; Headrick, Heather L; Arthurs, Steven P

    2008-04-01

    Codling moth, Cydia pomonella (L.), is the major pest of apple (Malus spp.) in the western United States and many other regions of the world. The codling moth granulovirus (CpGV) provides a selective and safe means of its control. We assessed the long-term stability and storage potential of two commercial formulations of CpGV, Cyd-X, and Virosoft. All assays were performed with individual C. pomonella neonate larvae in 2-ml vials on 1 ml of artificial larval diet that was surface inoculated with 10 microl of the test virus suspension. Baseline quantitative assays for the two formulations revealed that the LC50 and LC95 values (occlusion bodies per vial) did not differ significantly between the formulations. For year-long studies on Cyd-X stability, the product was stored at -20, 2, 25, and 35 degrees C, and quantitative bioassays were conducted after 0, 3, 6, and 12 mo of storage. Cyd-X retained good larvicidal activity from -20 to 25 degrees C, and it was the least negatively affected at the lowest temperature. Storage of Cyd-X at 35 degrees C was detrimental to its larvicidal activity within 3 mo of storage. For longer term storage studies, Cyd-X and Virosoft formulations were stored at 2, 25, and 35 degrees C, and assayed for larvicidal activity over a 3-yr period. For recently produced product, a 10-microl sample of a 10(-5) dilution of both formulations resulted in 95-100% mortality in neonate larvae. Larvicidal activity for the Cyd-X formulation remained essentially unaffected for 156 wk when stored at 2 and 25 degrees C, but it began to decline significantly after 20 wk of storage at 35 degrees C. The Virosoft formulation stored at 2 degrees C also remained active throughout the 3-yr study, but it began to decline in larvicidal activity after 144 wk at 25 degrees C and 40 wk at 35 degrees C. The information reported in this study should be useful to growers and commercial suppliers for avoiding decreases in CpGV potency due to improper storage conditions.

  3. Stable White Coatings

    NASA Technical Reports Server (NTRS)

    Zerlaut, Gene A.; Gilligan, J. E.; Harada, Y.

    1965-01-01

    In a previous research program for the Jet Propulsion- Laboratory, extensive studies led to the development and specifications of three zinc oxide-pigmented thermal-control coatings. The principal objectives of this program are: improvement of the three paints (as engineering materials), determination of the validity of our accelerated space-simulation testing, and continuation of the zinc oxide photolysis studies begun in the preceding program. Specific tasks that are discussed include: improvement of potassium silicate coatings as engineering materials and elucidation of their storage and handling problems; improvement of methyl silicone coatings as engineering materials; studies of zinc oxide photolysis to establish reasons for the observed stability of zinc oxide; and determination of space-simulation parameters such as long-term stability (to 8000 ESH), effect of coating surface temperature on the rate of degradation, and validity of accelerated testing (by reciprocity and wavelength dependency studies).

  4. An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser

    NASA Astrophysics Data System (ADS)

    Hadmack, Michael R.

    A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point and driving the FEL. A feed-forward amplitude and phase compensation system has been built and demonstrated to substantially improve the uniformity of the electron bunch phase, thus enhancing both the laser performance and the beam stability required for efficient x-ray production. Results of all of these efforts are presented, together with a summary of future work.

  5. Assessment of the antioxidant activity of Bifurcaria bifurcata aqueous extract on canola oil. Effect of extract concentration on the oxidation stability and volatile compound generation during oil storage.

    PubMed

    Agregán, Rubén; Lorenzo, José M; Munekata, Paulo E S; Dominguez, Ruben; Carballo, Javier; Franco, Daniel

    2017-09-01

    In this research the antioxidant activity of water extracts of Bifurcaria bifurcata (BBE) at different dose against butylated hydroxytoluene (BHT) was evaluated in canola oil. Water extracts were firstly characterized in terms of total solid and polyphenolic compound contents, and their antioxidant activity together with that of BHT was evaluated using several in vitro tests (DPPH, ABTS, ORAC and FRAP). Next, the progress of lipid oxidation was assessed in canola oil added with five BBE concentrations (200, 400, 600, 800 and 1000ppm) and two BHT concentrations (50 and 200ppm) using an accelerated oxidation test. The progress in lipid oxidation was monitored by assessing some chemical indices (peroxide value, p-anisidine value, and conjugated dienes) during oil storage and some volatile compounds at the end of the storage period. BBE showed a significant antioxidant effect, being this ability concentration-dependent. The extent of lipid oxidation was inversely related to BBE dose, specially with regard to primary oxidation products. At the highest level of BBE, significant decreases of primary and secondary oxidation products, with respect to the control, were obtained with reduction percentages of 71.53%, 72.78%, 68.17% and 71.3% for peroxides, conjugated dienes, p-anisidine and TOTOX values, respectively. A level of 600ppm or higher concentration of the extract inhibits the lipid oxidation in a similar way than BHT at 200ppm. Regarding the inhibition of the formation of volatile compounds, both BBE and BHT strongly inhibited the formation of volatiles during oil storage, being this inhibition similar for all the concentrations of BBE and BHT essayed. Overall, results indicated that BBE can be used as a potential natural additive for improving oxidative stability of canola oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    PubMed

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  7. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage

    PubMed Central

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-01-01

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems. PMID:28809232

  8. Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System.

    PubMed

    Bilal, Muhammad; Asgher, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-09-01

    In this study, the matrix-entrapment technique was adopted to immobilize a novel manganese peroxidase (MnP). Agarose beads developed from 3.0% agarose concentration furnished the preeminent immobilization yield (92.76%). The immobilized MnP exhibited better resistance to changes in the pH and temperature as compared to the free counterpart, with optimal conditions being pH 6.0 and 45°C. Thermal and storage stability characteristics were significantly improved after immobilization, and the immobilized-MnP displayed higher tolerance against different temperatures than free MnP state. After 72h, the insolubilized MnP retained its activity up to 41.2±1.7% and 33.6±1.4% at 55°C and 60°C, respectively, and 34.3±1.9% and 22.0±1.1% activities at 65°C and 70°C, respectively, after 48h of the incubation period. A considerable reusability profile was recorded with ten consecutive cycles. Moreover, to explore the industrial applicability, the agarose-immobilized-MnP was tested for bioremediation of textile industry effluent purposes. After six consecutive cycles, the tested effluents were decolorized to different extents (with a maximum of 98.4% decolorization). In conclusion, the remarkable bioremediation potential along with catalytic, thermo-stability, reusability, as well as storage stability features of the agarose-immobilized-MnP reflect its prospects as a biocatalyst for bioremediation and other industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry.

    PubMed

    Huyge, Katrien; Van Reeth, Kristien; De Beer, Thomas; Landman, Wil J M; van Eck, Jo H H; Remon, Jean Paul; Vervaet, Chris

    2012-04-01

    Dry powders containing a live-attenuated Newcastle disease vaccine (LZ58 strain) and intended for mass vaccination of poultry were prepared by spray drying using mannitol in combination with trehalose or inositol, polyvinylpyrrolidone (PVP) and/or bovine serum albumin (BSA) as stabilizers. These powders were evaluated for vaccine stabilizing capacity during production and storage (at 6 °C and 25 °C), moisture content, hygroscopicity and dry powder dispersibility. A mixture design, varying the ratio of mannitol, inositol and BSA, was used to select the stabilizer combination which resulted in the desired powder properties (i.e. good vaccine stability during production and storage, low moisture content and hygroscopicity and good dry dispersibility). Inositol-containing powders had the same vaccine stabilizing capacity as trehalose powders, but were less hygroscopic. Incorporation of BSA enhanced the vaccine stability in the powders compared to PVP-containing formulations. However, increasing the BSA concentration increased the hygroscopicity and reduced the dry dispersibility of the powder. No valid mathematical model could be calculated for vaccine stability during production or storage, but the individual experiments indicated that a formulation combining mannitol, inositol and BSA in a ratio of 73.3:13.3:13.3 (wt/wt) resulted in the lowest vaccine titre loss during production (1.6-2.0 log(10) 50% egg infectious dose (EID(50)) and storage at 6 °C (max. 0.8 log(10) EID(50) after 6 months) in combination with a low moisture content (1.1-1.4%), low hygroscopicity (1.9-2.1% water uptake at 60% relative humidity) and good dry dispersibility properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.

    PubMed

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-25

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  11. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    PubMed Central

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-01

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency. PMID:28787870

  12. Oil palm frond juice as future fermentation substrate: a feasibility study.

    PubMed

    Maail, Che Mohd Hakiman Che; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito

    2014-01-01

    Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities.

  13. Genetic stability of ectomycorrhizal fungi is not affected by cryopreservation at -130 °C or cold storage with repeated sub-cultivations over a period of 2 years.

    PubMed

    Crahay, Charlotte; Munaut, Françoise; Colpaert, Jan V; Huret, Stéphanie; Declerck, Stéphane

    2017-08-01

    Cryopreservation is considered the most reliable method for storage of filamentous fungi including ectomycorrhizal (ECM) fungi. A number of studies, however, have reported genetic changes in fungus cultures following cryopreservation. In the present study, the genetic stability of six ECM fungus isolates was analyzed using amplified fragment length polymorphism (AFLP). The isolates were preserved for 2 years either by cryopreservation (at -130 °C) or by storage at 4 °C with regular sub-cultivation. A third preservation treatment consisting of isolates maintained on Petri dishes at 22-23 °C for 2 years (i.e., without any sub-cultivation) was included and used as a control. The differences observed in AFLP patterns between the three preservation methods remained within the range of the total error generated by the AFLP procedure (6.85%). Therefore, cryopreservation at -130 °C and cold storage with regular sub-cultivation did not affect the genetic stability of the ECM fungus isolates, and both methods can be used for the routine storage of ECM fungus isolates over a period of 2 years.

  14. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage.

    PubMed

    Loewen, Anisa; Chan, Benny; Li-Chan, Eunice C Y

    2018-02-01

    The objectives of this study were to apply response surface methodology to optimize fat-soluble vitamin loading in re-assembled casein micelles, and to evaluate vitamin D stability of dry formulations during ambient or accelerated storage and in fortified fluid skim milk stored under refrigeration. Optimal loading of vitamin A (1.46-1.48mg/100mgcasein) was found at 9.7mM phosphate, 5.5mM citrate and 30.0mM calcium, while optimal loading of vitamin D (1.38-1.46mg/100mg casein) was found at 4.9mM phosphate, 4.0mM citrate and 26.1mM calcium. In general, more vitamin D was retained in vitamin D-re-assembled casein micelles than control powders during storage, while vitamin D loss was not different for vitamin D-re-assembled casein micelles and control fortified milks after 21days of refrigerated storage with light exposure. In conclusion, re-assembled casein micelles with high loading efficiency show promise for improving vitamin D stability during dry storage. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    PubMed Central

    Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-01-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204

  16. Reactive composite compositions and mat barriers

    DOEpatents

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  17. The effectiveness of various Rhizobacteria carriers to improve the shelf life and the stability of Rhizobacteria as Bioherbicide

    NASA Astrophysics Data System (ADS)

    Rakian, T. C.; Karimuna, L.; Taufik, M.; Sutariati, G. A. K.; Muhidin; Fermin, U.

    2018-02-01

    Deleterius Rhizobacteria (DRB) has a potential to control of weed and act as a bioherbicide. Developing a method to weed control that environmentally sound friendly has been increasingly studied. Rhizobacteria can form colonies on weed rooting and synthesize the secondary metabolite compounds. The effectiveness of rhizobacteria as bioherbicide is determined by its survival to be stored for a long time. The objective of this study is to obtain the type of carrier which effectively maintains the life and stability of DRB. Therefore it is necessary to do in vivo and in-vitro research. This study consists of two stages of testing the effectiveness of the carrier in increasing the shelf life of rhizobacteria and testing the effectiveness stability as a bioherbicide on Ageratum conyzoides weed after storage for 20 weeks. Research was conducted in Agronomy Lab, Agriculture Faculty, Halu Oleo University Kendari, Since August to December 2016. Research found that the talc powder and chaff charcoal powder were effective as a carrier of rhizobacteria and able to maintain the viability of rhizobacteria Bacillus lentus A05 and Pseudomonas aeruginosa A08 for five months and also able to maintain the stability of rhizobacteria as bioherbicide.

  18. [Evaluation of the influence of sterilization method on the stability of carboxymethyl cellulose wound dressing].

    PubMed

    Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš

    2013-04-01

    Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.

  19. Advances in neglected tropical disease vaccines: Developing relative potency and functional assays for the Na-GST-1/Alhydrogel hookworm vaccine.

    PubMed

    Brelsford, Jill B; Plieskatt, Jordan L; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J; Diemert, David; Bethony, Jeffrey M

    2017-02-01

    A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2-8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines.

  20. Supercapacitor to Provide Ancillary Services: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Luo, Yusheng

    Supercapacitor technology has reached a level of maturity as a viable energy storage option available to support a modern electric power system grid; however, its application is still limited because of its energy capacity and the cost of the commercial product. In this paper, we demonstrate transient models of supercapacitor energy storage plants operating in coordination with run-of-the-river (ROR), doubly-fed induction generator hydropower plants (HPP) using a system control concept and architecture developed. A detailed transient model of a supercapacitor energy storage device is coupled with the grid via a three-phase inverter/rectifier and bidirectional DC-DC converter. In addition, we usemore » a version of a 14-bus IEEE test case that includes the models of the supercapacitor energy storage device, ROR HPPs, and synchronous condensers that use the rotating synchronous generators of retired coal-powered plants. The purpose of the synchronous condensers is to enhance the system stability by providing voltage and reactive power control, provide power system oscillations damping, and maintain system inertia at secure levels. The control layer provides coordinated, decentralized operation of distributed ROR HPPs and energy storage as aggregate support to power system operations.« less

  1. Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles.

    PubMed

    Zaloga, Jan; Janko, Christina; Agarwal, Rohit; Nowak, Johannes; Müller, Robert; Boccaccini, Aldo R; Lee, Geoffrey; Odenbach, Stefan; Lyer, Stefan; Alexiou, Christoph

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.

  2. Evaluation of Two Matrices for Long-Term, Ambient Storage of Bacterial DNA.

    PubMed

    Miernyk, Karen M; DeByle, Carolynn K; Rudolph, Karen M

    2017-12-01

    Culture-independent molecular analyses allow researchers to identify diverse microorganisms. This approach requires microbiological DNA repositories. The standard for DNA storage is liquid nitrogen or ultralow freezers. These use large amounts of space, are costly to operate, and could fail. Room temperature DNA storage is a viable alternative. In this study, we investigated storage of bacterial DNA using two ambient storage matrices, Biomatrica DNAstable ® Plus and GenTegra ® DNA. We created crude and clean DNA extracts from five Streptococcus pneumoniae isolates. Extracts were stored at -30°C (our usual DNA storage temperature), 25°C (within the range of temperatures recommended for the products), and 50°C (to simulate longer storage time). Samples were stored at -30°C with no product and dried at 25°C and 50°C with no product, in Biomatrica DNAstable Plus or GenTegra DNA. We analyzed the samples after 0, 1, 2, 4, 8, 16, 32, and 64 weeks using the Nanodrop 1000 to determine the amount of DNA in each aliquot and by real-time PCR for the S. pneumoniae genes lytA and psaA. Using a 50°C storage temperature, we simulated 362 weeks of 25°C storage. The average amount of DNA in aliquots stored with a stabilizing matrix was 103%-116% of the original amount added to the tubes. This is similar to samples stored at -30°C (average 102%-121%). With one exception, samples stored with a stabilizing matrix had no change in lytA or psaA cycle threshold (Ct) value over time (Ct range ≤2.9), similar to samples stored at -30°C (Ct range ≤3.0). Samples stored at 25°C with no stabilizing matrix had Ct ranges of 2.2-5.1. DNAstable Plus and GenTegra DNA can protect dried bacterial DNA samples stored at room temperature with similar effectiveness as at -30°C. It is not effective to store bacterial DNA at room temperature without a stabilizing matrix.

  3. Environmental testing of the ATHENA mirror modules (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Landgraf, Boris; Girou, David; Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; van Baren, Coen; Eigenraam, Alexander

    2017-09-01

    The European Space Agency (ESA) is studying the ATHENA (Advanced Telescope for High ENergy Astrophysics) X-ray telescope, the second L-class mission in their Cosmic Vision 2015 - 2025 program with a launch spot in 2028. The baseline technology for the X-ray lens is the newly developed high-performance, light-weight and modular Silicon Pore Optics (SPO). As part of the technology preparation, ruggedisation and environmental testing studies are being conducted to ensure mechanical stability and optical performance of the optics during and after launch, respectively. At cosine, a facility with shock, vibration, tensile strength, long time storage and thermal testing equipment has been set up in order to test SPO mirror module (MM) materials for compliance with an Ariane launch vehicle and the mission requirements. In this paper, we report on the progress of our ongoing investigations regarding tests on mechanical and thermal stability of MM components like single SPO stacks with and without multilayer coatings and complete MMs of inner (R = 250 mm), middle (R = 737 mm) and outer (R = 1500 mm) radii.

  4. Effects of Processing and Storage on Pediococcus pentosaceus SB83 in Vaginal Formulations: Lyophilized Powder and Tablets

    PubMed Central

    Borges, Sandra; Costa, Paulo; Silva, Joana; Teixeira, Paula

    2013-01-01

    Vaginal probiotics have an important role in preventing the colonization of the vagina by pathogens. This study aimed to investigate different formulations with Pediococcus pentosaceus SB83 (lyophilized powder and tablets with and without retarding polymer) in order to verify its stability and antilisterial activity after manufacture and during storage. The bacteriocinogenic activity of P. pentosaceus SB83 against Listeria monocytogenes was evaluated in simulated vaginal fluid. Suspension of Pediococcus pentosaceus SB83 reduced the pathogen only after 2 h and the lyophilized bacteria after 24 h of contact, and, in the tablets, P. pentosaceus SB83 lost the antimicrobial activity. The pH of simulated vaginal fluid decreased for all the tested conditions. As lyophilized powder demonstrated better results concerning antimicrobial activity, this formulation was selected to evaluate the antilisterial activity during the 12 months of storage. During storage at room temperature, lyophilized bacteria totally inhibited the pathogen only until one month of storage. At 4°C, P. pentosaceus SB83 showed antimicrobial activity during all the time of storage investigated. Therefore, the better formulation of P. pentosaceus SB83 is the lyophilized powder stored at 4°C, which may be administered intravaginally as a washing solution. PMID:23844367

  5. Related Studies in Long Term Lithium Battery Stability

    NASA Technical Reports Server (NTRS)

    Horning, R. J.; Chua, D. L.

    1984-01-01

    The continuing growth of the use of lithium electrochemical systems in a wide variety of both military and industrial applications is primarily a result of the significant benefits associated with the technology such as high energy density, wide temperature operation and long term stability. The stability or long term storage capability of a battery is a function of several factors, each important to the overall storage life and, therefore, each potentially a problem area if not addressed during the design, development and evaluation phases of the product cycle. Design (e.g., reserve vs active), inherent material thermal stability, material compatibility and self-discharge characteristics are examples of factors key to the storability of a power source.

  6. Influence of Addition of Carboxyl Functionalized MWCNTs on Performance of Neat and Carbon Fiber Reinforced EPON 862

    DTIC Science & Technology

    2013-05-01

    control system (without CNTs). In addition, storage modulus, glass transition temperature, thermal stability were all improved in MWCNTs modified carbon...curve obtained from Flexural response of different composites (b) variation in flexural properties with the concentration of MWCNTs ...tensile test (b) variation in tensile strength and Young’s modulus with the percentage of MWCNT .... 65 7.4 Fracture morphology of (a) Neat, (b

  7. Bibliography: Storage Stability of Semiperishable Subsistence Items

    DTIC Science & Technology

    1993-04-01

    Quartermaster Food and Container Institute, 1962. Charalambous, G., ed., The Shelf Life of Food and Beverages , Proceedings of the 4th International Flavor...1972. 10 Corey, H., Texture in Foodstuffs, CRC Critical Reviews in Food Technology 1(2), 161-198, 1970. Delves-Broughton, J., Nisin and Its Uses as a...Food Science 39(3), 555-558, 1974. Sensory Evaluation Guide for Testing Food and Beverage Products, Sensory Evaluation Division of the Institute of Food

  8. Stability of metal particle and metal particulate media

    NASA Technical Reports Server (NTRS)

    Okamoto, Kazuhiro

    1992-01-01

    Metal particulate (MP) video tape was launched for 8 mm video tape in 1985. Since then MP tapes have been applied to several consumer formats and instrumental formats because of its superior electrical performance. Recently data storage media, such as DDS and D-8, have started employing MP tape. However, there are serious concerns with archival stability of MP tape particularly in the case of data storage use, as metal particles essentially have problems with chemical instability and are susceptible to oxidation and corrosion. Although there were some studies about the archival stability of metal particles or MP tapes, a clear understanding has yet to be reached. In this paper, we report the stability of magnetic properties of current metal particles, and then discuss the new technologies to improve the stability further.

  9. Effect of saliva stabilisers on detection of porcine reproductive and respiratory syndrome virus in oral fluid by quantitative reverse transcriptase real-time PCR.

    PubMed

    Decorte, Inge; Van der Stede, Yves; Nauwynck, Hans; De Regge, Nick; Cay, Ann Brigitte

    2013-08-01

    This study evaluated the effect of extraction-amplification methods, storage temperature and saliva stabilisers on detection of porcine reproductive and respiratory syndrome virus (PRRSV) RNA by quantitative reverse transcriptase real-time PCR (qRT-PCR) in porcine oral fluid. The diagnostic performance of different extraction-amplification methods was examined using a dilution series of oral fluid spiked with PRRSV. To determine RNA stability, porcine oral fluid, with or without commercially available saliva stabilisers, was spiked with PRRSV, stored at 4°C or room temperature and tested for the presence of PRRSV RNA by qRT-PCR. PRRSV RNA could be detected in oral fluid using all extraction-amplification combinations, but the limit of detection varied amongst different combinations. Storage temperature and saliva stabilisers had an effect on the stability of PRRSV RNA, which could only be detected for 7 days when PRRSV spiked oral fluid was kept at 4°C or stabilised at room temperature with a commercial mRNA stabiliser. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings

    PubMed Central

    Shabihkhani, Maryam; Lucey, Gregory M.; Wei, Bowen; Mareninov, Sergey; Lou, Jerry J.; Vinters, Harry V.; Singer, Elyse J.; Cloughesy, Timothy F.; Yong, William H.

    2014-01-01

    Well preserved frozen biospecimens are ideal for evaluating the genome, transcriptome, and proteome. While papers reviewing individual aspects of frozen biospecimens are available, we present a current overview of experimental data regarding procurement, storage, and quality assurance that can inform the handling of frozen biospecimens. Frozen biospecimen degradation can be influenced by factors independent of the collection methodology including tissue type, premortem agonal changes, and warm ischemia time during surgery. Rapid stabilization of tissues by snap freezing immediately can mitigate artifactually altered gene expression and, less appreciated, protein phosphorylation profiles. Collection protocols may be adjusted for specific tissue types as cellular ischemia tolerance varies widely. If data is not available for a particular tissue type, a practical goal is snap freezing within 20 minutes. Tolerance for freeze-thaw events is also tissue type dependent. Tissue storage at −80°C can preserve DNA and protein for years but RNA can show degradation at 5 years. For −80°C freezers, aliquots frozen in RNAlater or similar RNA stabilizing solutions is a consideration. It remains unresolved as to whether storage at −150°C provides significant advantages relative to −80°C. Histologic quality assurance of tissue biospecimens is typically performed at the time of surgery but should also be conducted on the aliquot to be distributed because of tissue heterogeneity. Biobanking protocols for blood and its components are highly dependent on intended use and multiple collection tube types may be needed. Additional quality assurance testing should be dictated by the anticipated downstream applications. PMID:24424103

  11. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.

  12. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  13. Research and Development on the Storage Ring Vacuum System for the APS Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillwell, B.; Brajuskovic, B.; Carter, J.

    A number of research and development activities are underway at Argonne National Laboratory to build confidence in the designs for the storage ring vacuum system required for the Advanced Photon Source Up-grade project (APS-U) [1]. The predominant technical risks are: excessive residual gas pressures during operation; insufficient beam position monitor stability; excessive beam impedance; excessive heating by induced electrical surface currents; and insufficient operational reliability. Present efforts to mitigate these risks include: building and evaluating mockup assemblies; performing mechanical testing of chamber weld joints; developing computational tools; investigating design alternatives; and performing electrical bench measurements. Status of these activities andmore » some of what has been learned to date will be shared.« less

  14. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble drug.

    PubMed

    Rogers, True L; Johnston, Keith P; Williams, Robert O

    2003-01-01

    The objective of this study was to investigate the physical stability of micronized powders produced by the spray-freezing into liquid (SFL) particle engineeringtechnology. Danazol was formulated with polyvinyl alcohol (MW 22,000), poloxamer 407, and polyvinylpyrrolidone K-15 to form a cosolvent solution that was SFL processed. The dried micronized SFL powders were sealed in glass vials with desiccant and exposed to 25 degrees C/60% RH for 3 and 6 mo, 40 degrees C/75% RH for 1, 2, 3, and 6 mo, and conditions where the temperature was cycled between -5 and +40 degrees C (6 cycles/24 hr) with constant 75% RH for 1, 2, 3 and 4 wk. The samples were characterized by using Karl-Fisher titration, differential scanning calorimetry, x-ray diffraction, specific surface area, scanning electron microscopy, and dissolution testing. Micronized SFL powders consisting of porous aggregates with small-particle domains were characterized as having high surface areas and consisted of amorphous danazol embedded within a hydrophilic excipient matrix. Karl-Fischer titration revealed no moisture absorption over the duration of the stability studies. Differential scanning calorimetry studies demonstrated high degrees of molecular interactions between danazol, PVA, poloxamer, and PVP. Scanning electron microscopy studies confirmed these interactions, especially those between danazol and poloxamer. These interactions facilitated API dissolution in the aqueous media. Powder surface area remained constant during storage at the various stability conditions, and danazol recrystallization did not occur during the entirety of the stability studies. Micronized SFL powders containing danazol dissolved rapidly and completely within 5 min in aqueous media. No differences were observed in the enhanced dissolution profiles of danazol after exposure to the storage conditions investigated. Physically stable micronized powders produced by the SFL particle engineering technology were produced for the purpose of enhancing the dissolution of an insoluble drug. The potential of the SFL particle-engineering technology as a micronization technique for enhancing the dissolution of hydrophobic drugs was demonstrated in this study. The robustness of the micronized SFL powders to withstand stressed storage conditions was shown.

  16. Storage length, storage temperature, and lean formulation influence the shelf-life and stability of traditionally packaged ground beef.

    PubMed

    Martin, J N; Brooks, J C; Brooks, T A; Legako, J F; Starkey, J D; Jackson, S P; Miller, M F

    2013-11-01

    The effect of storage length and temperature on the shelf life of three ground beef formulations (lean:fat: 73:27, 81:19 and 91:9) was investigated. Coarsely ground beef was stored at -1.7 or 2.3°C for up to 28d. Traditional overwrap packages were produced every 7d prior to retail display for 24h. Lipid oxidation (TBARS), subjective color, instrumental color, and aerobic bacteria were evaluated after 0 and 24h of display. Formulation influenced initial L* and subjective color values (P<0.05). Storage temperature did not affect initial color, but product stored at 2.3°C was more discolored after 24h (P<0.05). Aerobic bacteria increased as storage d and temperature increased (P<0.05). Initial TBARS increased through d 21, but were lower after 28d. Overall, initial characteristics depended on formulation; however, ground beef shelf-life and stability were largely influenced by storage length and storage temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Rheology, fatty acid profile and storage characteristics of cookies as influenced by flax seed (Linum usitatissimum).

    PubMed

    Rajiv, Jyotsna; Indrani, Dasappa; Prabhasankar, Pichan; Rao, G Venkateswara

    2012-10-01

    Flaxseed is a versatile functional ingredient owing to its unique nutrient profile. Studies on the effect of substitution of roasted and ground flaxseed (RGF) at 5, 10, 15 and 20% level on the wheat flour dough properties showed that amylograph peak viscosity, farinograph dough stability, extensograph resistance to extension and extensibility values decreased with the increase in the substitution of RGF from 0-20%. The cookie baking test showed a marginal decrease in spread ratio but beyond substitution of 15% RGF the texture and flavour of the cookies was adversely affected. The data on storage characteristics of control and cookies with 15% RGF showed no significant change with respect to acidity of extracted fat and peroxide values due to storage of cookies upto 90 days in metallised polyester pouches at ambient conditions. The gas chromatographic analysis of fatty acid profile indicated that the control cookies contained negligible linolenic acid and the flaxseed cookies contained 4.75 to 5.31% of linolenic acid which showed a marginal decrease over storage. Hence flaxseed could be used as a source of omega-3-fatty acid.

  18. Stability of picrotoxin during yogurt manufacture and storage.

    PubMed

    Jablonski, J E; Jackson, L S

    2008-10-01

    Picrotoxin is a neurotoxin found in the berries of Anamirta cocculus, a plant native to Southeast Asia. Picrotoxin has potential for being used as a biological weapon since the toxin is relatively easy to isolate and purify. Limited information exists on the stability and detection of picrotoxin added to foods before or after processing. The objective of this study was to determine the stability of picrotoxin during yogurt manufacture and storage. Direct, cup-set yogurt was produced by using methods that mimic the conditions used in full-scale production of yogurt. Milk (full-fat or low-fat) was pasteurized at 85 degrees C for 30 min, and then cooled to 43 degrees C. Yogurt starter culture (thermophilic culture or thermophilic + probiotic culture) and picrotoxin (200 mug/mL milk) were added. Samples of yogurt during fermentation (5 to 6 h, 43 degrees C) and during 30 d refrigerated (4 to 6 degrees C) storage were analyzed for pH, titratable acidity, and picrototoxin levels. Regardless of starter culture used or fat content of milk, there were no significant differences in the pH and titratable acidities of the picrotoxin-spiked yogurt and the control yogurt (no added picrotoxin) during fermentation and up to 4 wk of refrigerated storage. The color or texture of the yogurt was not affected by addition of picrotoxin. Levels of picrotoxinin and picrotin (components of picrotoxin) in yogurt, as measured by LC/MS (APCI(+)/SIR) did not change significantly during fermentation and storage. A separate experiment determined that addition of picrotoxin to milk before pasteurization (85 degrees C, 30 min) did not affect picrotoxin stability. These results indicate that picrotoxin is stable in yogurt during manufacture and storage.

  19. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    PubMed

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in <5 min at 180 °C, superior reversibility, and excellent long-term cycling stability over ∼435 h. The significant reduction of the enthalpy and activation energy observed in the MHCH-5 demonstrated enhancement of the kinetics of de-/hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  20. Stability of fragrance patch test preparations applied in test chambers.

    PubMed

    Mowitz, M; Zimerson, E; Svedman, C; Bruze, M

    2012-10-01

    Petrolatum patch test preparations are for practical reasons often applied in test chambers in advance, several hours or even days before the patient is tested. As many fragrance compounds are volatile it may be suspected that petrolatum preparations applied in test chambers are not stable over time. To investigate the stability of petrolatum preparations of the seven chemically defined components in the fragrance mix (FM I) when stored in test chambers. Samples of petrolatum preparations applied in test chambers stored at room temperature and in a refrigerator for between 4 and 144 h were analysed using liquid chromatographic methods. The concentration decreased by ≥ 20% within 8 h in four of seven preparations stored in Finn chambers at room temperature. When stored in a refrigerator only the preparation of cinnamal had decreased by ≥ 20% within 24 h. The stability of preparations of cinnamal stored in IQ chambers with a plastic cover was slightly better, but like the preparations applied in Finn chambers, the concentration decreased by ≥ 20% within 4 h at room temperature and within 24 h in a refrigerator. Cinnamal and cinnamyl alcohol were found to be more stable when analysed as ingredients in FM I compared with when analysed in individual preparations. Within a couple of hours several fragrance allergens evaporate from test chambers to an extent that may affect the outcome of the patch test. Application to the test chambers should be performed as close to the patch test occasion as possible and storage in a refrigerator is recommended. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  1. Synthesis of Pt/K2CO3/MgAlOx–reduced graphene oxide hybrids as promising NOx storage–reduction catalysts with superior catalytic performance

    PubMed Central

    Mei, Xueyi; Yan, Qinghua; Lu, Peng; Wang, Junya; Cui, Yuhan; Nie, Yu; Umar, Ahmad; Wang, Qiang

    2017-01-01

    Pt/K2CO3/MgAlOx–reduced graphene oxide (Pt/K/MgAlOx–rGO) hybrids were synthesized, characterized and tested as a promising NOx storage and reduction (NSR) catalyst. Mg–Al layered double hydroxides (LDHs) were grown on rGO via in situ hydrothermal crystallization. The structure and morphology of samples were thoroughly characterized using various techniques. Isothermal NOx adsorption tests indicated that MgAlOx–rGO hybrid exhibited better NOx trapping performance than MgAlOx, from 0.44 to 0.61 mmol · g−1, which can be attributed to the enhanced particle dispersion and stabilization. In addition, a series of MgAlOx–rGO loaded with 2 wt% Pt and different loadings (5, 10, 15, and 20 wt%) of K2CO3 (denoted as Pt/K/MgAlOx–rGO) were obtained by sequential impregnation. The influence of 5% H2O on the NOx storage capacity of MgAlOx–rGO loaded with 2 wt% Pt and 10% K2CO3 (2Pt/10 K/MgAlOx–rGO) catalyst was also evaluated. In all, the 2Pt/10 K/MgAlOx–rGO catalyst not only exhibited high thermal stability and NOx storage capacity of 1.12 mmol · g−1, but also possessed excellent H2O resistance and lean–rich cycling performance, with an overall 78.4% of NOx removal. This work provided a new scheme for the preparation of highly dispersed MgAlOx–rGO hybrid based NSR catalysts. PMID:28205630

  2. Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads.

    PubMed

    Lin, Shen-Fu; Chen, Ying-Chen; Chen, Ray-Neng; Chen, Ling-Chun; Ho, Hsiu-O; Tsung, Yu-Han; Sheu, Ming-Thau; Liu, Der-Zen

    2016-01-01

    There has been considerable interest in the biological functions of astaxanthin and its potential applications in the nutraceutical, cosmetics, food, and feed industries in recent years. However, the unstable structure of astaxanthin considerably limits its application. Therefore, this study reports the encapsulation of astaxanthin in calcium alginate beads using the extrusion method to improve its stability. This study also evaluates the stability of the encapsulated astaxanthin under different storage conditions. The evaluation of astaxanthin stability under various environmental factors reveals that temperature is the most influential environmental factor in astaxanthin degradation. Stability analysis shows that, regardless of the formulation used, the content of astaxanthin encapsulated in alginate beads remains above 90% of the original amount after 21 days of storage at 25°C. These results suggest that the proposed technique is a promising way to enhance the stability of other sensitive compounds.

  3. Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads

    PubMed Central

    Lin, Shen-Fu; Chen, Ying-Chen; Chen, Ray-Neng; Chen, Ling-Chun; Ho, Hsiu-O; Tsung, Yu-Han; Sheu, Ming-Thau; Liu, Der-Zen

    2016-01-01

    There has been considerable interest in the biological functions of astaxanthin and its potential applications in the nutraceutical, cosmetics, food, and feed industries in recent years. However, the unstable structure of astaxanthin considerably limits its application. Therefore, this study reports the encapsulation of astaxanthin in calcium alginate beads using the extrusion method to improve its stability. This study also evaluates the stability of the encapsulated astaxanthin under different storage conditions. The evaluation of astaxanthin stability under various environmental factors reveals that temperature is the most influential environmental factor in astaxanthin degradation. Stability analysis shows that, regardless of the formulation used, the content of astaxanthin encapsulated in alginate beads remains above 90% of the original amount after 21 days of storage at 25°C. These results suggest that the proposed technique is a promising way to enhance the stability of other sensitive compounds. PMID:27093175

  4. Impact of oral fluid collection device on cannabinoid stability following smoked cannabis.

    PubMed

    Anizan, Sébastien; Bergamaschi, Mateus M; Barnes, Allan J; Milman, Garry; Desrosiers, Nathalie; Lee, Dayong; Gorelick, David A; Huestis, Marilyn A

    2015-02-01

    Evaluation of cannabinoid stability in authentic oral fluid (OF) is critical, as most OF stability studies employed fortified or synthetic OF. Participants (n = 16) smoked a 6.8% delta-9-tetrahydrocannabinol (THC) cigarette, and baseline concentrations of THC, 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) were determined within 24 h in 16 separate pooled samples (collected 1 h before to 10.5 or 13 h after smoking). OF was collected with the StatSure Saliva Sampler™ and Oral-Eze® devices. Oral-Eze samples were re-analyzed after room temperature (RT) storage for 1 week, and for both devices after 4 °C for 1 and 4 weeks, and -20 °C for 4 and 24 weeks. Concentrations ±20% from initial concentrations were considered stable. With the StatSure device, all cannabinoids were within 80-120% median %baseline for all storage conditions. Individual THC, CBD, CBN and THCCOOH pool concentrations were stable in 100%, 100%, 80-94% and >85%, respectively, across storage conditions. With the Oral-Eze device, at RT or refrigerated storage (for 1 and 4 weeks), THC, CBD and THCCOOH were stable in 94-100%, 78-89%, and 93-100% of samples, respectively, while CBN concentrations were 53-79% stable. However, after 24 weeks at -20 °C, stability decreased, especially for CBD, with a median of 56% stability. Overall, the collection devices' elution/stabilizing buffers provided good stability for OF cannabinoids, with the exception of the more labile CBN. To ensure OF cannabinoid concentration accuracy, these data suggest analysis within 4 weeks at 4 °C storage for Oral-Eze collection and within 4 weeks at 4 °C or 24 weeks at -20 °C for StatSure collection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  5. The Stability of Bioactive Compounds in Spaceflight Foods

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature. Because of the limited number of foods with high concentrations of the bioactive compounds, additional menu variety, formulation optimization, and reduced temperature storage will be required to ensure delivery of several bioactive compounds in the space food system. Validation of stability to five years will enable provisioning of these functional foods within the space food system for a mission to Mars.

  6. Bleeding Efficiency and Meat Oxidative Stability and Microbiological Quality of New Zealand White Rabbits Subjected to Halal Slaughter without Stunning and Gas Stun-killing

    PubMed Central

    Nakyinsige, K.; Fatimah, A. B.; Aghwan, Z. A.; Zulkifli, I.; Goh, Y. M.; Sazili, A. Q.

    2014-01-01

    A study was conducted to compare the effect of halal slaughter without stunning and gas stun killing followed by bleeding on residual blood content and storage stability of rabbit meat. Eighty male New Zealand white rabbits were divided into two groups of 40 animals each and subjected to either halal slaughter without stunning (HS) or gas stun-kill (GK). The volume of blood lost during exsanguination was measured. Residual blood was further quantified by determination of haemoglobin content in Longissimus lumborum (LL) muscle. Storage stability of the meat was evaluated by microbiological analysis and measuring lipid oxidation in terms of thiobarbituric acid reactive substances (TBARS). HS resulted in significantly higher blood loss than GK. HS had significantly lower residual haemoglobin in LL muscle compared to GK. Slaughter method had no effect on rabbit meat lipid oxidation at 0, 1, and 3 d postmortem. However, at 5 and 8 days of storage at 4°C, significant differences (p<0.05) were found, with meat from the GK group exhibiting significantly higher levels of MDA than that from HS. At day 3, greater growth of Pseudomonas aeroginosa and E. coli were observed in the GK group (p<0.05) with B. thermosphacta and total aerobic counts remained unaffected by slaughter method. At days 5 and 7 postmortem, bacterial counts for all tested microbes were affected by slaughter method, with GK exhibiting significantly higher growth than HS. It can be concluded that slaughter method can affect keeping quality of rabbit meat, and HS may be a favourable option compared to GK due to high bleed out. PMID:25049968

  7. Bleeding Efficiency and Meat Oxidative Stability and Microbiological Quality of New Zealand White Rabbits Subjected to Halal Slaughter without Stunning and Gas Stun-killing.

    PubMed

    Nakyinsige, K; Fatimah, A B; Aghwan, Z A; Zulkifli, I; Goh, Y M; Sazili, A Q

    2014-03-01

    A study was conducted to compare the effect of halal slaughter without stunning and gas stun killing followed by bleeding on residual blood content and storage stability of rabbit meat. Eighty male New Zealand white rabbits were divided into two groups of 40 animals each and subjected to either halal slaughter without stunning (HS) or gas stun-kill (GK). The volume of blood lost during exsanguination was measured. Residual blood was further quantified by determination of haemoglobin content in Longissimus lumborum (LL) muscle. Storage stability of the meat was evaluated by microbiological analysis and measuring lipid oxidation in terms of thiobarbituric acid reactive substances (TBARS). HS resulted in significantly higher blood loss than GK. HS had significantly lower residual haemoglobin in LL muscle compared to GK. Slaughter method had no effect on rabbit meat lipid oxidation at 0, 1, and 3 d postmortem. However, at 5 and 8 days of storage at 4°C, significant differences (p<0.05) were found, with meat from the GK group exhibiting significantly higher levels of MDA than that from HS. At day 3, greater growth of Pseudomonas aeroginosa and E. coli were observed in the GK group (p<0.05) with B. thermosphacta and total aerobic counts remained unaffected by slaughter method. At days 5 and 7 postmortem, bacterial counts for all tested microbes were affected by slaughter method, with GK exhibiting significantly higher growth than HS. It can be concluded that slaughter method can affect keeping quality of rabbit meat, and HS may be a favourable option compared to GK due to high bleed out.

  8. Skylab

    NASA Image and Video Library

    1972-01-01

    This image, with callouts, depicts the storage area of the forward compartment at the upper level of the Orbital Workshop (OWS). The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  9. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Studies on processing, consumer survey and storage stability of a ready-to-reconstitute fish cutlet mix.

    PubMed

    Shaviklo, G Reza; Thorkelsson, Gudjon; Sveinsdottir, Kolbrun; Pourreza, Fatemeh

    2013-10-01

    A convenience ready-to-reconstitute cutlet mix containing 30% fish protein powder was developed to improve the nutritional quality of the product. Consumer survey was based on the home use test (HUT) method. The acceptance of the fish cutlet mix (FCM) was studied using a 9-point hedonic scale ranging from 1 (extremely dislike) to 9 (extremely like). Product's characteristics and stability were studied during 6 months of storage at 27 ± 2 °C. The FCM packed in a polyethylene bag and cardboard box was stable during the storage period. There were no changes in colour, moisture gain and water activity, and TBARS values remained low. The FCM was accepted by the consumers in the study (n = 85). The average liking was high (7.5 ± 1.3) and it was influenced by frequency of fish and chicken consumption, educational level and household size. People who ate fish once a week liked the product more than other consumers. Also those with higher educational level and bigger household size. The results in this paper are important information for companies planning to develop ready-to-eat products fortified with fish proteins. The products could be means of increasing fish consumption in countries/areas where there is no tradition of consuming fresh or frozen fish.

  11. Evaluation of a solid matrix for collection and ambient storage of RNA from whole blood

    PubMed Central

    2014-01-01

    Background Whole blood gene expression-based molecular diagnostic tests are becoming increasingly available. Conventional tube-based methods for obtaining RNA from whole blood can be limited by phlebotomy, volume requirements, and RNA stability during transport and storage. A dried blood spot matrix for collecting high-quality RNA, called RNA Stabilizing Matrix (RSM), was evaluated against PAXgene® blood collection tubes. Methods Whole blood was collected from 25 individuals and subjected to 3 sample storage conditions: 18 hours at either room temperature (baseline arm) or 37°C, and 6 days at room temperature. RNA was extracted and assessed for integrity by Agilent Bioanalyzer, and gene expression was compared by RT-qPCR across 23 mRNAs comprising a clinical test for obstructive coronary artery disease. Results RSM produced RNA of relatively high integrity across the various tested conditions (mean RIN ± 95% CI: baseline arm, 6.92 ± 0.24; 37°C arm, 5.98 ± 0.48; 6-day arm, 6.72 ± 0.23). PAXgene samples showed comparable RNA integrity in both baseline and 37°C arms (8.42 ± 0.17; 7.92 ± 0.1 respectively) however significant degradation was observed in the 6-day arm (3.19 ± 1.32). Gene expression scores on RSM were highly correlated between the baseline and 37°C and 6-day study arms (median r = 0.96, 0.95 respectively), as was the correlation to PAXgene tubes (median r = 0.95, p < 0.001). Conclusion RNA obtained from RSM shows little degradation and comparable RT-qPCR performance to PAXgene RNA for the 23 genes analyzed. Further development of this technology may provide a convenient method for collecting, shipping, and storing RNA for gene expression assays. PMID:24855452

  12. Sputtered Pd as Hydrogen Storage for a Chip-Integrated Microenergy System

    PubMed Central

    Slavcheva, E.; Ganske, G.; Schnakenberg, U.

    2014-01-01

    The work presents a research on preparation and physical and electrochemical characterisation of dc magnetron sputtered Pd films envisaged for application as hydrogen storage in a chip-integrated hydrogen microenergy system. The influence of the changes in the sputtering pressure on the surface structure, morphology, and roughness was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AMF). The electrochemical activity towards hydrogen adsorption/desorption and formation of PdH were investigated in 0.5 M H2SO4 using the methods of cyclic voltammetry and galvanostatic polarisation. The changes in the electrical properties of the films as a function of the sputtering pressure and the level of hydrogenation were evaluated before and immediately after the electrochemical charging tests, using a four-probe technique. The research resulted in establishment of optimal sputter regime, ensuring fully reproducible Pd layers with highly developed surface, moderate porosity, and mechanical stability. Selected samples were integrated as hydrogen storage in a newly developed unitized microenergy system and tested in charging (water electrolysis) and discharging (fuel cell) operative mode at ambient conditions demonstrating a stable recycling performance. PMID:24516356

  13. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for application of ascorbyl palmitate.

    PubMed

    Uner, M; Wissing, S A; Yener, G; Müller, R H

    2005-08-01

    The aim of this study was to improve the chemical stability of ascorbyl palmitate (AP) in a colloidal lipid carrier for its topical use. For this purpose, AP-loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and for comparison, a nanoemulsion (NE) were prepared employing the high pressure homogenization technique and stored at room temperature (RT), 4 degrees C and 40 degrees C. During 3 months, physical stability of these formulations compared to placebo formulations which were prepared by the same production method, was studied including recrystallization behaviour of the lipid with differential scanning calorimetry (DSC), particle size distribution and storage stability with photon correlation spectroscopy (PCS) and laser diffractometry (LD). After evaluating data indicating excellent physical stability, AP-loaded SLN, NLC and NE were incorporated into a hydrogel by the same production method as the next step. Degradation of AP by HPLC and physical stability in the same manner were investigated at the same storage temperatures during 3 months. As a result, AP was found most stable in both the NLC and SLN stored at 4 degrees C (p > 0.05) indicating the importance of storage temperature. Nondegraded AP content in NLC, SLN and NE was found to be 71.1% +/- 1.4, 67.6% +/- 2.9 and 55.2% +/- 0.3 after 3 months, respectively. Highest degradation was observed with NE at all the storage temperatures indicating even importance of the carrier structure.

  14. The effect of high pressure and residual oxygen on the color stability of minced cured restructured ham at different levels of drying, pH, and NaCl.

    PubMed

    Bak, Kathrine Holmgaard; Lindahl, Gunilla; Karlsson, Anders H; Lloret, Elsa; Gou, Pere; Arnau, Jacint; Orlien, Vibeke

    2013-10-01

    Color stability of minced cured restructured ham was studied by considering the effects of high pressure (HP) (600 MPa, 13°C, 5 min), raw meat pH24 (low, normal, high), salt content (15, 30 g/kg), drying (20%, 50% weight loss), and residual oxygen level (0.02%-0.30%). Raw hams were selected by pH24 in Semimembranosus, mixed with additives, frozen, sliced, and dried by the Quick-Dry-Slice® (QDS) process followed by HP treatment or not (control). Packaging and storage simulated industrial packaging: modified atmosphere containing 80% N2, 20% CO2, and residual O2 in one of three intervals: <0.1%, 0.1%-0.2%, or 0.2%-0.3%, and retail storage conditions: chill storage, 12 h light, 12 h darkness. HP improved the stability of the redness of 20% QDS hams, while the stabilizing effect on 50% QDS hams was smaller, concluding that water has the dominating role. Raw meat pH24, salt content, and residual oxygen level had varying effects on the stability of the red color. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  16. Basal buffer systems for a newly glycosylated recombinant human interferon-β with biophysical stability and DoE approaches.

    PubMed

    Kim, Nam Ah; Song, Kyoung; Lim, Dae Gon; Hada, Shavron; Shin, Young Kee; Shin, Sangmun; Jeong, Seong Hoon

    2015-10-12

    The purpose of this study was to develop a basal buffer system for a biobetter version of recombinant human interferon-β 1a (rhIFN-β 1a), termed R27T, to optimize its biophysical stability. The protein was pre-screened in solution as a function of pH (2-11) using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the result, its experimental pI and optimal pH range were 5.8 and 3.6-4.4, respectively. Design of experiment (DoE) approach was developed as a practical tool to aid formulation studies as a function of pH (2.9-5.7), buffer (phosphate, acetate, citrate, and histidine), and buffer concentration (20 mM and 50 mM). This method employed a weight-based procedure to interpret complex data sets and to investigate critical key factors representing protein stability. The factors used were Tm, enthalpy, and relative helix contents which were obtained by DSC and Fourier Transform Infrared spectroscopy (FT-IR). Although the weights changed by three responses, objective functions from a set of experimental designs based on four buffers were highest in 20 mM acetate buffer at pH 3.6 among all 19 scenarios tested. Size exclusion chromatography (SEC) was adopted to investigate accelerated storage stability in order to optimize the pH value with susceptible stability since the low pH was not patient-compliant. Interestingly, relative helix contents and storage stability (monomer remaining) increased with pH and was the highest at pH 4.0. On the other hand, relative helix contents and thermodynamic stability decreased at pH 4.2 and 4.4, suggesting protein aggregation issues. Therefore, the optimized basal buffer system for the novel biobetter was proposed to be 20 mM acetate buffer at pH 3.8±0.2. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Oxidative stability of red palm oils blended chicken nuggets during frozen storage

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, Nurkhuzaiah; Babji, Abdul Salam

    2014-09-01

    The effects of red palm oils known as Naturally Vitamin Rich Oil (NVRO) on the lipid stability of chicken nuggets were determined. Lipid oxidation was analyzed during frozen storage (-18 °C) for up to 4 months. Thiobarbituric acid (TBA) values and peroxide value (PV) for all samples chicken nuggets increased throughout 3 months of frozen storage and then start to decrease thereafter. Chicken nuggets formulated with NVRO, NVRO-100 and NVRO-50 showed lower TBA values and PV compared to the samples prepared with chicken fat. However, among NVRO, there were not significantly different for most of the months. It was concluded that the utilization of red palm oils in chicken nuggets significantly reduced the oxidation of lipid, which was indicated by the PV throughout 4 months of frozen storage.

  18. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines

    PubMed Central

    2012-01-01

    Background As more point of care diagnostics become available, the need to transport and store perishable medical commodities to remote locations increases. As with other diagnostics, malaria rapid diagnostic tests (RDTs) must be highly reliable at point of use, but exposure to adverse environmental conditions during distribution has the potential to degrade tests and accuracy. In remote locations, poor quality diagnostics and drugs may have significant negative health impact that is not readily detectable by routine monitoring. This study assessed temperature and humidity throughout supply chains used to transport and store health commodities, such as RDTs. Methods Monitoring devices capable of recording temperature and humidity were deployed to Burkina Faso (8), Senegal (10), Ethiopia (13) and the Philippines (6) over a 13-month period. The devices travelled through government supply chains, usually alongside RDTs, to health facilities where RDTs are stored, distributed and used. The recording period spanned just over a year, in order to avoid any biases related to seasonal temperature variations. Results In the four countries, storage and transport temperatures regularly exceeded 30.0°C; maximum humidity level recorded was above 94% for the four countries. In three of the four countries, temperatures recorded at central storage facilities exceeded pharmaceutical storage standards for over 20% of the time, in another case for a majority of the time; and sometimes exceeded storage temperatures at peripheral sites. Conclusions Malaria RDTs were regularly exposed to temperatures above recommended limits for many commercially-available RDTs and other medical commodities such as drugs, but rarely exceeded the recommended storage limits for particular products in use in these countries. The results underline the need to select RDTs, and other commodities, according to expected field conditions, actively manage the environmental conditions in supply chains in tropical and sub-tropical climates. This would benefit from a re-visit of current global standards on stability of medical commodities based in tropical and sub-tropical climatic zones. PMID:23217104

  19. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines.

    PubMed

    Albertini, Audrey; Lee, Evan; Coulibaly, Sheick Oumar; Sleshi, Markos; Faye, Babacar; Mationg, Mary Lorraine; Ouedraogo, Kadi; Tsadik, Abeba G; Feleke, Sendeaw Maksha; Diallo, Ibrahima; Gaye, Oumar; Luchavez, Jennifer; Bennett, Jessica; Bell, David

    2012-12-06

    As more point of care diagnostics become available, the need to transport and store perishable medical commodities to remote locations increases. As with other diagnostics, malaria rapid diagnostic tests (RDTs) must be highly reliable at point of use, but exposure to adverse environmental conditions during distribution has the potential to degrade tests and accuracy. In remote locations, poor quality diagnostics and drugs may have significant negative health impact that is not readily detectable by routine monitoring. This study assessed temperature and humidity throughout supply chains used to transport and store health commodities, such as RDTs. Monitoring devices capable of recording temperature and humidity were deployed to Burkina Faso (8), Senegal (10), Ethiopia (13) and the Philippines (6) over a 13-month period. The devices travelled through government supply chains, usually alongside RDTs, to health facilities where RDTs are stored, distributed and used. The recording period spanned just over a year, in order to avoid any biases related to seasonal temperature variations. In the four countries, storage and transport temperatures regularly exceeded 30.0°C; maximum humidity level recorded was above 94% for the four countries. In three of the four countries, temperatures recorded at central storage facilities exceeded pharmaceutical storage standards for over 20% of the time, in another case for a majority of the time; and sometimes exceeded storage temperatures at peripheral sites. Malaria RDTs were regularly exposed to temperatures above recommended limits for many commercially-available RDTs and other medical commodities such as drugs, but rarely exceeded the recommended storage limits for particular products in use in these countries. The results underline the need to select RDTs, and other commodities, according to expected field conditions, actively manage the environmental conditions in supply chains in tropical and sub-tropical climates. This would benefit from a re-visit of current global standards on stability of medical commodities based in tropical and sub-tropical climatic zones.

  20. Storage Stability and Improvement of Intermediate Moisture Foods, Phase 3

    NASA Technical Reports Server (NTRS)

    Labuza, T. P.

    1975-01-01

    Methods were determined for the improvement of shelf-life stability of intermediate moisture foods (IMF). Microbial challenge studies showed that protection against molds and Staphylococcus aureus could be achieved by a combination of antimicrobial agents, humectants and food acids. Potassium sorbate and propylene glycol gave the best results. It was also confirmed that the maximum in heat resistance shown by vegetative pathogens at intermediate water activities also occurred in a solid food. Glycols and sorbitol both achieve browning inhibition because of their action as a medium for reaction and effect on viscosity of the adsorbed phase. Chemical availability results showed rapid lysine loss before visual discoloration occurred. This is being confirmed with a biological test using Tetrahymena pyriformis W. Accelerated temperature tests show that effectiveness of food antioxidants against rancidity development can be predicted; however, the protection factor changes with temperature. BHA was found to be the best antioxidant for iron catalyzed oxidation.

  1. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.

  2. Ergovaline Stability in Tall Fescue Based on Sample Handling and Storage Methods

    NASA Astrophysics Data System (ADS)

    Lea, Krista; Smith, Lori; Gaskill, Cynthia; Coleman, Robert; Smith, S.

    2014-09-01

    Ergovaline is an ergot alkaloid produced by the endophyte Neotyphodium coenophialum (Morgan-Jones and Gams) found in tall fescue (Schedonorus arundinacea (Schreb.) Dumort.) and blamed for a multitude of livestock disorders. Ergovaline is known to be unstable and affected by many variables. The objective of this study was to determine the effect of sample handling and storage on the stability of ergovaline in tall fescue samples. Fresh tall fescue was collected from a horse farm in central Kentucky at three harvest dates and transported on ice to the University of Kentucky Veterinary Diagnostic Laboratory. Plant material was frozen in liquid nitrogen, milled and mixed before being allocated into different sub-samples. Three sub-samples were assigned to each of 14 sample handling or storage treatments. Sample handling included increased heat and UV light to simulate transportation in a vehicle and on ice in a cooler per standard transportation recommendations. Storage conditions included storage at 22oC, 5oC and -20oC for up to 28 days. Each sub-sample was then analyzed for ergovaline concentration using HPLC with fluorescence detection and this experiment was repeated for each harvest date. Sub-samples exposed to UV light and heat lost a significant fraction of ergovaline in 2 hours, while sub-samples stored on ice in a cooler showed no change in ergovaline in 2 hours. All sub-samples stored at 22oC, 5oC and -20oC lost a significant fraction of ergovaline in the first 24 hours of storage. There was little change in ergovaline in the freezer (-20oC) after the first 24 hours up to 28 days of storage but intermittent losses were observed at 22oC and 5oC. To obtain results that most closely represent levels in the field, all samples should be transported on ice to the laboratory immediately after harvest for same day analysis. If immediate testing is not possible, samples should be stored at -20oC until analysis.

  3. Pre-analytical stability of the plasma proteomes based on the storage temperature

    PubMed Central

    2013-01-01

    Background This study examined the effect of storage temperature on the protein profile of human plasma. Plasma samples were stored for 13 days at -80°C, -20°C, +4°C and room temperature (20-25°C) prior to proteomic analysis. The proteomic comparisons were based on the differences of mean intensity values of protein spots between fresh plasma samples (named “time zero”) and plasma samples stored at different temperatures. To better understand the thermally induced biochemical changes that may affect plasma proteins during storage we identified proteins with different expressions with respect to the time zero sample. Results Using two-dimensional electrophoresis followed by MALDI-TOF MS and /or LC-MS/MS 20 protein spots representing 10 proteins were identified with significant differences in abundance when stored at different temperatures. Our results, in agreement with various authors, indicate that during storage for a short period (13 days) at four different temperatures plasma proteins were more affected by degradation processes at +4°C compared to the other temperatures analysed. However, we founded that numerous protein spots (vitamin D binding protein, alpha-1-antitrypsin, serotransferrin, apoplipoprotein A-I, apolipoprotein E, haptoglobin and complement factor B) decrease in abundance with increasing temperature up to 4°C, but at room temperature their intensity mean values are similar to those of time zero and -80°C. We hypothesize that these proteins are labile at 4°C, but at the same time they are stable at room temperature (20-25°C). Furthermore we have grouped the proteins based on their different sensitivity to the storage temperature. Spots of serum albumin, fibrinogen gamma chain and haptoglobin are more resistant to the higher temperatures tested, as they have undergone changes in abundance only at room temperature; conversely, other spots of serum albumin, fibrinogen beta chain and serotransferrin are more labile as they have undergone changes in abundance at all temperatures except at -80°C. Conclusions Although there are many studies concerning protein stability of clinical samples during storage these findings may help to provide a better understanding of the changes of proteins induced by storage temperature. PMID:23518135

  4. Quality and storability of chicken nuggets formulated with green banana and soybean hulls flours.

    PubMed

    Kumar, Vinay; Biswas, Ashim Kumar; Sahoo, Jhari; Chatli, Manish Kumar; Sivakumar, S

    2013-12-01

    The present study was envisaged to investigate the effect of green banana (GBF) and soybean hulls flours (SHF) on the physicochemical characteristics, colour, texture and storage stability of chicken meat nuggets. The addition of GBF and SHF in the nugget formulations was effective in sustaining desired cooking yield and emulsion stability besides nutritional benefits. Protein and fat contents were decreased (p > 0.05), but fibers and ash contents was increased (p < 0.05) amongst treatments. The flour formulated samples were lighter (L* value) less dark (a*) than control. Textural values were affected significantly. On storage, samples with GBF showed lower pH (p > 0.05%) than control and treatments. Lipid oxidation products, however, unaffected (p > 0.05) but increased in all samples over storage time. Flour treatments showed a positive impact in respect to microbiological quality, however, sensory evaluation indicated comparable scores for all attributes at all times. So, incorporation of GBF and SHF in the formulation could improve the quality and storage stability of chicken nuggets.

  5. Stability of omega-3 fatty acids in fortified surimi seafoods during chilled storage.

    PubMed

    Pérez-Mateos, Miriam; Boyd, Leon; Lanier, Tyre

    2004-12-29

    Physical, chemical, and sensory properties of cooked surimi seafood gels (crab analogue) fortified with omega-3 fatty acids (FA) were monitored during chilled storage. Three sources of stabilized omega-3 FA (fish oil concentrate, menhaden oil, and a purified marine oil) were each incorporated into gels to an omega-3 FA content of 1.5 or 2.5%, w/w. Omega-3 FA stability, development of off-flavors, and changes in color and texture were monitored during chilled storage for 2 months. Gels with fish oil concentrate developed fishy flavor and aroma within 30 days and were eliminated from the study. Gels containing menhaden oil and purified marine oil exhibited little change in sensory properties or oxidation products throughout 2 months of storage. Relative polyene index values (ratio of polyunsaturated to saturated fatty acids) indicated that the omega-3 FA were stable at both levels of addition. Omega-3 fortified gels were whiter than control gels, and gel texture was modified when menhaden and purified oils were added but not significantly affected by the level of omega-3 addition.

  6. Antioxidant effects of soy sauce on color stability and lipid oxidation of raw beef patties during cold storage.

    PubMed

    Kim, Hyun-Wook; Choi, Yun-Sang; Choi, Ji-Hun; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Soo-Yoen; Lee, Mi-Ai; Kim, Cheon-Jei

    2013-11-01

    This study was conducted to evaluate the antioxidant effects of soy sauce on lipid oxidation and color stability of raw beef patties. Raw beef patties were formulated with four solutions such as NaCl (sodium chloride solution), NaCl/SS (1:1 ratio of sodium chloride and soy sauce solution), SS (soy sauce solution), or SS/A (soy sauce solution combined with 0.05% ascorbic acid) in the same salt concentration. Addition of soy sauce resulted in the decreased pH, lightness, and increased yellowness. Treatment SS/A had the lowest percent of metmyoglobin during storage (P<0.05). A reduction (P<0.05) in the 2-thiobarbituric acid, peroxide, and conjugated diene concentration as result of soy sauce addition were observed in treatments SS and SS/A at the end of the storage period. There were no differences (P>0.05) in free fatty acid concentration at the end of storage. The combined addition of soy sauce and ascorbic acid greatly improved (P<0.05) color stability and retarded lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis.

    PubMed

    Ahmed, Faruq; Li, Yan; Fanning, Kent; Netzel, Michael; Schenk, Peer M

    2015-08-01

    Astaxanthin is a powerful antioxidant with various health benefits such as prevention of age-related macular degeneration and improvement of the immune system, liver and heart function. To improve the post-harvesting stability of astaxanthin used in food, feed and nutraceutical industries, the biomass of the high astaxanthin producing alga Haematococcus pluvialis was dried by spray- or freeze-drying and under vacuum or air at -20°C to 37°C for 20weeks. Freeze-drying led to 41% higher astaxanthin recovery compared to commonly-used spray-drying. Low storage temperature (-20°C, 4°C) and vacuum-packing also showed higher astaxanthin stability with as little as 12.3±3.1% degradation during 20weeks of storage. Cost-benefit analysis showed that freeze-drying followed by vacuum-packed storage at -20°C can generate AUD$600 higher profit compared to spray-drying from 100kgH. pluvialis powder. Therefore, freeze-drying can be suggested as a mild and more profitable method for ensuring longer shelf life of astaxanthin from H. pluvialis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of Water Activity and Packaging Material on the Quality of Dehydrated Taro (Colocasia esculenta (L.) Schott) Slices during Accelerated Storage

    PubMed Central

    Jefferies, L. K.

    2016-01-01

    The quality of dehydrated taro slices in accelerated storage (45°C and 75% RH) was determined as a function of initial water activity (a w) and package type. Color, rehydration capacity, thiamin content, and α-tocopherol content were monitored during 34 weeks of storage in polyethylene and foil laminate packaging at initial storage a w of 0.35 to 0.71. Initial a w at or below 0.54 resulted in less browning and higher rehydration capacity, but not in significantly higher α-tocopherol retention. Foil laminate pouches resulted in a higher rehydration capacity and increased thiamin retention compared to polyethylene bags. Type of packaging had no effect on the color of the samples. Product stability was highest when stored in foil laminate pouches at 0.4a w. Sensory panels were held to determine the acceptability of rehydrated taro slices using samples representative of the taro used in the analytical tests. A hedonic test on rehydrated taro's acceptability was conducted in Fiji, with panelists rating the product an average of 7.2 ± 1.5 on a discrete 9-point scale. Using a modified Weibull analysis (with 50% probability of product failure), it was determined that the shelf life of dehydrated taro stored at 45°C was 38.3 weeks. PMID:27891508

  9. SECARB Commercial Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George J.; Pashin, Jack; Walsh, Peter

    The Commercial Scale Project is a US DOE/NETL funded initiative aimed at enhancing the knowledge-base and industry’s ability to geologically store vast quantities of anthropogenic carbon. In support of this goal, a large-scale, stacked reservoir geologic model was developed for Gulf Coast sediments centered on the Citronelle Dome in southwest Alabama, the site of the SECARB Phase III Anthropogenic Test. Characterization of regional geology to construct the model consists of an assessment of the entire stratigraphic continuum at Citronelle Dome, from surface to the depth of the Donovan oil-bearing formation. This project utilizes all available geologic data available, which includes:more » modern geophysical well logs from three new wells drilled for SECARB’s Anthropogenic Test; vintage logs from the Citronelle oilfield wells; porosity and permeability data from whole core and sidewall cores obtained from the injection and observation wells drilled for the Anthropogenic Test; core data obtained from the SECARB Phase II saline aquifer injection test; regional core data for relevant formations from the Geological Survey of Alabama archives. Cross sections, isopach maps, and structure maps were developed to validate the geometry and architecture of the Citronelle Dome for building the model, and assuring that no major structural defects exist in the area. A synthetic neural network approach was used to predict porosity using the available SP and resistivity log data for the storage reservoir formations. These data are validated and applied to extrapolate porosity data over the study area wells, and to interpolate permeability amongst these data points. Geostatistical assessments were conducted over the study area. In addition to geologic characterization of the region, a suite of core analyses was conducted to construct a depositional model and constrain caprock integrity. Petrographic assessment of core was conducted by OSU and analyzed to build a depositional framework for the region and provide modern day analogues. Stability of the caprock over several test parameters was conducted by UAB to yield comprehensive measurements on long term stability of caprocks. The detailed geologic model of the full earth volume from surface thru the Donovan oil reservoir is incorporated into a state-of-the-art reservoir simulation conducted by the University of Alabama at Birmingham (UAB) to explore optimization of CO 2 injection and storage under different characterizations of reservoir flow properties. The application of a scaled up geologic modeling and reservoir simulation provides a proof of concept for the large scale volumetric modeling of CO 2 injection and storage the subsurface.« less

  10. Effect of buffer and antioxidant on stability of a mercaptopurine suspension.

    PubMed

    Aliabadi, Hamidreza Montazeri; Romanick, Marcel; Desai, Sunil; Lavasanifar, Afsaneh

    2008-03-01

    The stability of standard and modified mercaptopurine suspensions when stored at room temperature and under refrigerated conditions to test the feasibility of increasing shelf life was studied. A 50-mg/mL mercaptopurine suspension was compounded by adding simple syrup, cherry syrup, and sterile water for irrigation to triturated mercaptopurine tablets for the initial reference formulation. Three additional formulations were prepared by adding an antioxidant (ascorbic acid 10 mg), a buffer (sodium phosphate monobasic monohydrate 500 mg), and a combination of antioxidant and buffer to the reference formulation. Each compounded batch was divided into two parts and stored in amber bottles at room temperature (19-23 degrees C) or under refrigerated conditions (4-8 degrees C). Analysis through high-performance liquid chromatography determined mercaptopurine levels after three and seven days and weekly thereafter for at least two weeks after shelf life was reached under specified storage conditions. Solutions with at least 93% of the original mercaptopurine concentration and with no observable sign of aggregation or cake formation were considered stable. The reference suspension of mercaptopurine showed an acceptable physical and chemical stability of up to 5 weeks when stored at room temperature. The addition of ascorbic acid extended the shelf life of the compounded suspension to 11 weeks. However, the addition of sodium phosphate monobasic did not improve the stability of mercaptopurine in the suspension. The results showed a higher stability for all formulations after storage at room temperature compared with those stored in a refrigerator. A standard oral suspension of mercaptopurine contained an acceptable drug concentration for up to 5 weeks when stored at room temperature. The addition of ascorbic acid at a concentration of 0.1% w/v to the standard formulation increased the suspension's shelf life at room temperature to 11 weeks.

  11. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags.

    PubMed

    Karlage, Kelly; Earhart, Zachary; Green-Boesen, Kelly; Myrdal, Paul B

    2011-08-15

    The stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride (PVC) and polyolefin bags under varying conditions was evaluated. Triplicate solutions of midazolam hydrochloride 1-mg/mL were prepared in polyolefin and PVC i.v. bags by diluting midazolam hydrochloride injection 5 mg/mL with 5% dextrose injection. Bags were then stored under refrigeration (3-4 °C), exposed to light at room temperature (20-25 °C), or protected from light in amber bags at room temperature. Samples were taken immediately after preparation (day 0) and on days 1, 2, 3, 6, 13, 20, and 27 for analysis with a stability-indicating high-performance liquid chromatography assay in order to determine solution concentration. Stability was defined as retention of at least 90% of the initial drug concentration. The pH of each solution was also measured weekly. Sterility of the i.v. bags was determined at the end of the study by microbiological testing with culture in growth media. Differences in concentrations under the various storage conditions and bags used were analyzed using analysis of variance. All solutions retained over 98% of the initial midazolam hydrochloride concentration, with no statistically significant (p ≥ 0.05) change in concentration over the four-week period. Stability was not affected by temperature, exposure to light, or bag type. The pH of all solutions remained between 3.2 and 3.4 throughout the study. Sterility after 28 days was retained. Midazolam hydrochloride 1-mg/mL solutions diluted in 5% dextrose injection remained stable over 27 days in both polyolefin and PVC i.v. bags, regardless of storage condition.

  12. Vaccine stability study design and analysis to support product licensure.

    PubMed

    Schofield, Timothy L

    2009-11-01

    Stability evaluation supporting vaccine licensure includes studies of bulk intermediates as well as final container product. Long-term and accelerated studies are performed to support shelf life and to determine release limits for the vaccine. Vaccine shelf life is best determined utilizing a formal statistical evaluation outlined in the ICH guidelines, while minimum release is calculated to help assure adequate potency through handling and storage of the vaccine. In addition to supporting release potency determination, accelerated stability studies may be used to support a strategy to recalculate product expiry after an unintended temperature excursion such as a cold storage unit failure or mishandling during transport. Appropriate statistical evaluation of vaccine stability data promotes strategic stability study design, in order to reduce the uncertainty associated with the determination of the degradation rate, and the associated risk to the customer.

  13. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Retrieval and sleep both counteract the forgetting of spatial information.

    PubMed

    Antony, James W; Paller, Ken A

    2018-06-01

    Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through repeated retrieval as well. That is, memories may generally be subject to forgetting that can be counteracted when memories become reactivated, and there are several types of reactivation: (i) via intentional restudying, (ii) via testing, (iii) without provocation during wake, or (iv) during sleep. We thus measured forgetting for spatial material subjected to repeated study or repeated testing followed by retention intervals with sleep versus wake. Four groups of subjects learned a set of visual object-location associations and either restudied the associations or recalled locations given the objects as cues. We found the advantage for restudied over retested information was greater in the PM than AM group. Additional groups tested at 5-min and 1-wk retention intervals confirmed previous findings of greater relative benefits for restudying in the short-term and for retesting in the long-term. Results overall support the conclusion that repeated reactivation through testing or sleeping stabilizes information against forgetting. © 2018 Antony and Paller; Published by Cold Spring Harbor Laboratory Press.

  15. Practical stability limits of magnesium electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, Albert L.; Han, Sang -Don; Pan, Baofei

    2016-08-13

    The development of a Mg ion based energy storage system could provide several benefits relative to today's Li-ion batteries, such as improved energy density. The electrolytes for Mg batteries, which are typically designed to efficiently plate and strip Mg, have not yet been proven to work with high voltage cathode materials that are needed to achieve high energy density. One possibility is that these electrolytes are inherently unstable on porous electrodes. To determine if this is indeed the case, the electrochemical properties of a variety of electrolytes were tested using a porous carbon coating on graphite foil and stainless steelmore » electrodes. It was determined that the oxidative stability limit on these porous electrodes is considerably reduced as compared to those found using polished platinum electrodes. Furthermore, the voltage stability was found to be about 3 V vs. Mg metal for the best performing electrolytes. In conclusion, these results imply the need for further research to improve the stability of Mg electrolytes to enable high voltage Mg batteries.« less

  16. [Cereal bars with soy protein and wheat germ, physicochemical characteristics and texture during the storage].

    PubMed

    Castro Freitas, Daniela D G

    2005-09-01

    Studies analyzing cereal bars have reported on consumer characteristics and preferences in sensory analyses and on their market growth, however little has been published on their physicochemical data and texture properties. Thus the objective of this research was to provide information about the storage of a cereal bar formulation with high protein and vitamin levels based on soy protein and wheat germ, packaged in 3 different films (A: PET/PEBD; B: PETmet/PEBD; C: PET/PEBD/AL/PEBD), during 6 months under environmental conditions of temperature (25 +/- 2 degrees C) and relative humidity (56%). The moisture content, water activity, pH and total acidity of the cereal bars were determined. The textural measurements accompanied during storage were breaking strength, hardness and cohesiveness. The cereal bars presented variations in water activity (Aw), moisture content and total acidity during storage. The moisture content of the bars tended to increase, which led to a significant (p = 0.05) influence on the texture characteristics of breaking strength and hardness, in the different packaging films tested. The increase in the values for breaking strength (A: 4756,5N; B: 5093,0N; C: 5575,6N) at 45 days of storage was attributed to a possible crystallization of the agglutinating syrup used for the bars. The textured soy protein used in the formulation could also have contributed to this fact due to its hygroscopic character, also interfering in the decrease in the cohesiveness measurements (deformation) with time. The effect of the different barrier properties of the packaging films tested was significant (p < 0.05) in the stability of the cereal bars during storage.

  17. Stability of cannabinoids in urine in three storage temperatures.

    PubMed

    Golding Fraga, S; Díaz-Flores Estévez, J; Díaz Romero, C

    1998-01-01

    Stability of cannabinoid compounds in urine samples were evaluated using several storage temperatures. Appreciable losses (> 22.4 percent) were observed in some urine samples, after being stored at room temperature for 10 days. Lower losses (8.1 percent) were observed when the urine samples were refrigerated for 4 weeks. The behavior of urine samples depended on the analyzed urine. This could be due to the different stability of the cannabinoids present in each urine sample. Important losses of 8.0 +/- 10.6, 15.8 +/- 4.2, and 19.6 +/- 6.7 percent were found when the urine samples were frozen during 40 days, 1 year, and 3 years, respectively. Average losses (> > 5 percent) can be observed after one day which could mainly be due to the decrease of the solubility of 11-nor-U9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) or adsorption process of cannabinoid molecules to the plastic storage containers.

  18. Color stabilization of porcine hemoglobin during spray-drying and powder storage by combining chelating and reducing agents.

    PubMed

    Salvador, P; Toldrà, M; Parés, D; Carretero, C; Saguer, E

    2009-10-01

    This work focuses on the effects of adding a chelating agent - such as nicotinic acid (NA, 2% w/v) or nicotinamide (Nam, 2.5% w/v) - along with glucose as a reducing agent (G, 10% w/v) to fresh porcine hemoglobin in order to stabilize its red color during spray-drying and powder storage at room temperature. Correlations between the CIELAB color parameters and the relative percentages of the different hemoglobin derivatives (liganded and deliganded ferrohemoglobin, and methemoglobin) were analyzed. The results indicate that, although little effects could be observed for any of the combined treatments on fresh hemoglobin, they were effective against pigment autoxidation during dehydration and subsequent storage. From the results, it can also be concluded that glucose was the main contributor to the color stabilization of the hemoglobin powder, probably due to its high water retention capacity.

  19. Oil Palm Frond Juice as Future Fermentation Substrate: A Feasibility Study

    PubMed Central

    Che Maail, Che Mohd Hakiman; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito

    2014-01-01

    Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities. PMID:25057489

  20. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  1. The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture.

    PubMed

    Hagen, Live Heldal; Vivekanand, Vivekanand; Pope, Phillip B; Eijsink, Vincent G H; Horn, Svein J

    2015-07-01

    A new biogas process is initiated by adding a microbial community, typically in the form of a sample collected from a functional biogas plant. This inoculum has considerable impact on the initial performance of a biogas reactor, affecting parameters such as stability, biogas production yields and the overall efficiency of the anaerobic digestion process. In this study, we have analyzed changes in the microbial composition and performance of an inoculum during storage using barcoded pyrosequencing of bacterial and archaeal 16S ribosomal RNA (rRNA) genes, and determination of the biomethane potential, respectively. The inoculum was stored at room temperature, 4 and -20 °C for up to 11 months and cellulose was used as a standard substrate to test the biomethane potential. Storage up to 1 month resulted in similar final methane yields, but the rate of methane production was reduced by storage at -20 °C. Longer storage times resulted in reduced methane yields and slower production kinetics for all storage conditions, with room temperature and frozen samples consistently giving the best and worst performance, respectively. Both storage time and temperature affected the microbial community composition and methanogenic activity. In particular, fluctuations in the relative abundance of Bacteroidetes were observed. Interestingly, a shift from hydrogenotrophic methanogens to methanogens with the capacity to perform acetoclastic methanogensis was observed upon prolonged storage. In conclusion, this study suggests that biogas inocula may be stored up to 1 month with low loss of methanogenic activity, and identifies bacterial and archaeal species that are affected by the storage.

  2. Stability of collapse lyophilized influenza vaccine formulations.

    PubMed

    Anamur, Cihad; Winter, Gerhard; Engert, Julia

    2015-04-10

    A clear limitation of many liquid vaccines is the obligatory cold-chain distribution system. Therefore, distribution of a dried vaccine formulation may be beneficial in terms of vaccine stability, handling and transport. Collapse freeze-drying is a process which utilizes fairly aggressive but at the same time economic lyophilization cycles where the formulation is dried above its glass transition temperature. In this study, we used collapse freeze-drying for a thermosensitive model influenza vaccine (Pandemrix(®)). The dried lyophilizates were further cryo-milled to engineer powder particles in the size range of approximately 20-80 μm which is applicable for epidermal powder immunization. Vaccine potency and stability were neither affected by high temperature input during collapse lyophilization nor over a storage period of six months. Furthermore, cryo-milled vaccine lyophilizates showed good storage stability of up to three months at high storage temperature (40 °C). This technique can provide a powerful tool for the worldwide distribution of vaccine and for new application technologies such as engineered powder immunization. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Stability of miRNA in human urine supports its biomarker potential

    PubMed Central

    Mall, Christine; Rocke, David M; Durbin-Johnson, Blythe; Weiss, Robert H

    2013-01-01

    Aim miRNAs are showing utility as biomarkers in urologic disease, however, a rigorous evaluation of their stability in urine is lacking. Here, we evaluate the stability of miRNAs in urine under clinically relevant storage procedures. Materials & methods Eight healthy individuals provided clean catch urine samples that were stored at room temperature or at 4°C for 5 days, or subjected to ten freeze–thaw cycles at -80°C. For each condition, two miRNAs, miR-16 and miR-21, were quantitated by quantitative real-time PCR. Results All conditions demonstrated a surprising degree of stability of miRNAs in the urine: by the end of ten freeze–thaw cycles, 23–37% of the initial amount remained; over the 5-day period of storage at room temperature, 35% of the initial amount remained; and at 4°C, 42–56% of the initial amount remained. Both miRNAs also showed degradation at approximately the same rate. Conclusion miRNAs are relatively stable in urine under a variety of storage conditions, which supports their utility as urinary biomarkers. PMID:23905899

  4. Stability of purified tuberculin in high dilution

    PubMed Central

    Magnus, Knut; Guld, Johannes; Waaler, Hans; Magnusson, Mogens

    1958-01-01

    The authors have investigated the effect of storage on the potency of 5 TU dilutions (5 TU per 0.1 ml) of the purified tuberculin RT 19-21 (Statens Seruminstitut, Copenhagen). Dilutions stored at 2-4°C, 20°C and 37°C for different periods up to 18 months were compared by intradermal testing. About 900 BCG-vaccinated schoolchildren were given duplicate tests and in addition 500 tests were made in BCG-vaccinated guinea-pigs. The results showed unexpected variability. It appeared that this variability was due to unsystematic variations in potency both between dilutions prepared at different times and between ampoules of the same dilution. Because of this variability only limited conclusions could be drawn. At 2-4°C the effect of storage seemed to be very slight, the potency of the dilutions being reduced by less than 25% after 18 months. At the higher temperatures, the decrease in activity was more rapid. Nevertheless, the dilutions could be stored at room temperature (20°C) for some months without any practically significant loss of potency. PMID:13618718

  5. Storage stability of a commercial hen egg yolk powder in dry and intermediate-moisture food matrices.

    PubMed

    Rao, Qinchun; Fisher, Mary Catherine; Guo, Mufan; Labuza, Theodore P

    2013-09-11

    Quality loss in intermediate-moisture foods (IMF) such as high-protein nutrition bars (HPNB) in the form of hardening, nonenzymatic browning, and free amino group loss is a general concern for the manufacturers. To measure the extent of quality loss over time in terms of these negative attributes, through changing the ratio by weight between two commercial spray-dried hen egg powders, egg white (DEW) and egg yolk (DEY), the storage stability of 10 IMF systems (water activity (aw) ∼ 0.6) containing 5% glycerol, 10% shortening, 35% protein, and 50% sweetener (either maltitol or 50% high-fructose corn syrup/50% corn syrup (HFCS/CS)) were studied. Additionally, the storage stability of the DEY powder itself was investigated. Overall, during storage at different temperatures (23, 35, and 45 °C), the storage stability of DEY in dry and IMF matrices was mainly controlled by the coaction of three chemical reactions (disulfide bond interaction, Maillard reaction, and lipid oxidation). The results showed that by replacing 25% of DEW in an IMF model system with DEY, the rate of bar hardening was significantly lower than that of the models with only DEW at all temperatures due to the softening effect of the fat in DEY. Furthermore, the use of maltitol instead of HFCS/CS in all bar systems not only resulted in decreased hardness but also drastically decreased the change in the total color difference (ΔE*). Interestingly, there was no significant loss of free amino groups in the maltitol systems at any DEW/DEY ratio.

  6. Impact of storage conditions on the urinary metabolomics fingerprint.

    PubMed

    Laparre, Jérôme; Kaabia, Zied; Mooney, Mark; Buckley, Tom; Sherry, Mark; Le Bizec, Bruno; Dervilly-Pinel, Gaud

    2017-01-25

    Urine stability during storage is essential in metabolomics to avoid misleading conclusions or erroneous interpretations. Facing the lack of comprehensive studies on urine metabolome stability, the present work performed a follow-up of potential modifications in urinary chemical profile using LC-HRMS on the basis of two parameters: the storage temperature (+4 °C, -20 °C, -80 °C and freeze-dried stored at -80 °C) and the storage duration (5-144 days). Both HILIC and RP chromatographies have been implemented in order to globally monitor the urinary metabolome. Using an original data processing associated to univariate and multivariate data analysis, our study confirms that chemical profiles of urine samples stored at +4 °C are very rapidly modified, as observed for instance for compounds such as:N-acetyl Glycine, Adenosine, 4-Amino benzoic acid, N-Amino diglycine, creatine, glucuronic acid, 3-hydroxy-benzoic acid, pyridoxal, l-pyroglutamic acid, shikimic acid, succinic acid, thymidine, trigonelline and valeryl-carnitine, while it also demonstrates that urine samples stored at -20 °C exhibit a global stability over a long period with no major modifications compared to -80 °C condition. This study is the first to investigate long term stability of urine samples and report potential modifications in the urinary metabolome, using both targeted approach monitoring individually a large number (n > 200) of urinary metabolites and an untargeted strategy enabling assessing for global impact of storage conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of antiaggregants on the in vitro viability, cell count and stability of abalone (Haliotis iris) haemocytes.

    PubMed

    Grandiosa, Roffi; Bouwman, Mai-Louise; Young, Tim; Mérien, Fabrice; Alfaro, Andrea C

    2018-07-01

    The ability to successfully prepare and preserve haemocyte cells for microscopy and flow cytometry is critical for the investigation of animal immune systems. In this study, we observed the total cell count, in vitro viability and stability of New Zealand black-footed abalone (Haliotis iris) haemocytes with different antiaggregants and handling protocols. Haemocyte stability was evaluated by direct observation of haemocytes under the microscope and calculating the aggregation index. Haemocyte counts and viability were measured via flow cytometry and tested for the effect of different antiaggregants (Alsever's solution at three concentrations, and specialised blood collection tubes containing lithium heparin and K 2 EDTA) at different temperatures and storage times. Results showed that Alsever's solution is an effective antiaggregant at haemolymph:antiaggregant dilution ratios of 1:1, 1:2 and 1:3. Lithium heparin was ineffective as an antiaggregant, whereas K 2 EDTA was similarly as effective as Alsever's solution. The influence of different mixing techniques (vortex, pipetting and flipping) were subsequently tested using the K 2 EDTA Microtainer ® tubes, revealing that proper mixing should be performed immediately. High cell viability can be achieved by mixing samples by either 10 s of vortexing (1000 rpm), 10 times pipetting or 20 times flipping. The in vitro storage of abalone haemocytes in AS and K 2 EDTA as antiaggregants at ambient room temperature was highly effective for up to 24 h (75-85% viability; 0.05-0.15 aggregation index) and is recommended for haemocyte studies in H. iris. Utilization of K 2 EDTA Microtainer ® tubes were advantageous since they are more cost effective compared to Alsever's solution, and samples can be prepared more efficiently. Copyright © 2018. Published by Elsevier Ltd.

  8. Solubilization and Stability of Mitomycin C Solutions Prepared for Intravesical Administration.

    PubMed

    Myers, Alan L; Zhang, Yan-Ping; Kawedia, Jitesh D; Zhou, Ximin; Sobocinski, Stacey M; Metcalfe, Michael J; Kramer, Mark A; Dinney, Colin P N; Kamat, Ashish M

    2017-06-01

    Mitomycin C (MMC) is an antitumor agent that is often administered intravesically to treat bladder cancer. Pharmacologically optimized studies have suggested varying methods to optimize delivery, with drug concentration and solution volume being the main drivers. However, these MMC concentrations (e.g. 2.0 mg/mL) supersede its solubility threshold, raising major concerns of inferior drug delivery. In this study, we seek to confirm that the pharmacologically optimized MMC concentrations are achievable in clinical practice through careful modifications of the solution preparation methods. MMC admixtures (1.0 and 2.0 mg/mL) were prepared in normal saline using conventional and alternative compounding methods. Conventional methodology resulted in poorly soluble solutions, with many visible particulates and crystallates. However, special compounding methods, which included incubation of solutions at 50 °C for 50 min followed by storage at 37 °C, were sufficient to solubilize drug. Chemical degradation of MMC solutions was determined over 6 h using high-performance liquid chromatography (HPLC) analytics, while physical stability was tested in parallel. Immediately following the 50 min incubation, both MMC solutions exhibited approximately 5-7% drug degradation. Based on the measured concentrations and linear regression of degradation plots, additional storage of these solutions at 37 °C for 5 h retained chemical stability criterion (< 10% overall drug loss). No physical changes were observed in any solutions at any test time points. We recommend that the described alternative preparation methods may improve intravesicular delivery of MMC in this urological setting, and advise that clinicians employing these changes should closely monitor patients for MMC toxicities and pharmacodynamics (change in clinical outcomes) that result from the potential enhancement of MMC exposure in the bladder.

  9. Solid state properties and drug release behavior of co-amorphous indomethacin-arginine tablets coated with Kollicoat® Protect.

    PubMed

    Petry, Ina; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Leopold, Claudia S

    2017-10-01

    A promising approach to improve the solubility of poorly water-soluble drugs and to overcome the stability issues related to the plain amorphous form of the drugs, is the formulation of drugs as co-amorphous systems. Although polymer coatings have been proven very useful with regard to tablet stability and modifying drug release, there is little known on coating co-amorphous formulations. Hence, the aim of the present study was to investigate whether polymer coating of co-amorphous formulations is possible without inducing recrystallization. Tablets containing either a physical mixture of crystalline indomethacin and arginine or co-amorphous indomethacin-arginine were coated with a water soluble polyvinyl alcohol-polyethylene glycol graft copolymer (Kollicoat® Protect) and stored at 23°C/0% RH and 23°C/75% RH. The solid state properties of the coated tablets were analyzed by XRPD and FTIR and the drug release behavior was tested for up to 4h in phosphate buffer pH 4.5. The results showed that the co-amorphous formulation did not recrystallize during the coating process or during storage at both storage conditions for up to three months, which confirmed the high physical stability of this co-amorphous system. Furthermore, the applied coating could partially inhibit recrystallization of indomethacin during drug release testing, as coated tablets reached a higher level of supersaturation compared to the respective uncoated formulations and showed a lower decrease of the dissolved indomethacin concentration upon precipitation. Thus, the applied coating enhanced the AUC of the dissolution curve of the co-amorphous tablets by about 30%. In conclusion, coatings might improve the bioavailability of co-amorphous formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Tao, Yang; Huo, Quan

    2015-01-01

    To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30) x ( x = 0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50- y Cu y Mn0.30Al0.30)0.70 ( y = 0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase; in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Thermodynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with increasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ameliorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.

  11. Long-term Stability of Urinary Biomarkers of Acute Kidney Injury in Children.

    PubMed

    Schuh, Meredith P; Nehus, Edward; Ma, Qing; Haffner, Christopher; Bennett, Michael; Krawczeski, Catherine D; Devarajan, Prasad

    2016-01-01

    Recent meta-analyses support the utility of urinary biomarkers for the diagnosis and prognosis of acute kidney injury. It is critical to establish optimal sample handling conditions for short-term processing and long-term urinary storage prior to widespread clinical deployment and meaningful use in prospective clinical trials. Prospective study. 80 children (median age, 1.1 [IQR, 0.5-4.2] years) undergoing cardiac surgery with cardiopulmonary bypass at our center. 50% of patients had acute kidney injury (defined as ≥50% increase in serum creatinine from baseline). We tested the effect on biomarker concentrations of short-term urine storage in ambient, refrigerator, and freezer conditions. We also tested the effects of multiple freeze-thaw cycles, as well as prolonged storage for 5 years. Urine concentrations of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), and interleukin 18 (IL-18). All biomarkers were measured using commercially available kits. All 3 biomarkers were stable in urine stored at 4°C for 24 hours, but showed significant degradation (5.6%-10.1% from baseline) when stored at 25°C. All 3 biomarkers showed only a small although significant decrease in concentration (0.77%-2.9% from baseline) after 3 freeze-thaw cycles. Similarly, all 3 biomarkers displayed only a small but significant decrease in concentration (0.84%-3.2%) after storage for 5 years. Only the 3 most widely studied biomarkers were tested. Protease inhibitors were not evaluated. Short-term storage of urine samples for measurement of NGAL, KIM-1, and IL-18 may be performed at 4°C for up to 24 hours, but not at room temperature. These urinary biomarkers are stable at -80°C for up to 5 years of storage. Our results are reassuring for the deployment of these assays as biomarkers in clinical practice, as well as in prospective clinical studies requiring long-term urine storage. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  12. Volatiles formation in gelled emulsions enriched in polyunsaturated fatty acids during storage: type of oil and antioxidant.

    PubMed

    Gayoso, Lucía; Poyato, Candelaria; Calvo, María Isabel; Cavero, Rita Yolanda; Ansorena, Diana; Astiasarán, Iciar

    2017-08-01

    Gelled emulsions with carrageenan are a novel type of emulsion that could be used as a carrier of unsaturated fatty acids in functional foods formulations. Lipid degradation through volatile compounds was studied in gelled emulsions which were high in polyunsaturated oils (sunflower or algae oil) after 49 days of storage. Aqueous Lavandula latifolia extract was tested as a natural antioxidant. Analysis of the complete volatile profile of the samples resulted in a total of 40 compounds, classified in alkanes, alkenes, aldehydes, ketones, acids, alcohols, furans, terpenes and aromatic hydrocarbons. During storage, the formation of the volatile compounds was mostly related to the oxidation of the main fatty acids of the sunflower oil (linolenic acid) and the algae oil (docosahexaenoic acid). Despite the antioxidant capacity shown by the L. latifolia extract, its influence in the oxidative stability in terms of total volatiles was only noticed in sunflower oil gels ( p  < 0.05), where a significant decrease in the aldehydes fraction was found.

  13. The Philippine National Collection of Microorganisms (PNCM): Repository of microbial diversity of the country

    NASA Astrophysics Data System (ADS)

    Monsalud, R. G.; Magbanua, F. O.; Parungao, M. P.; Banaay, C. G. B.; Bayer, M. H. D.; Yap, J. K.; Tapay, L. M.

    2002-04-01

    The prime function of the Philippine National Collection of Microorganisms (PNCM), being the national repository of microbial strains, is to collect and preserve strains for their continued viability and availability for future use. To date, a total of 2144 strains of bacteria (1357), yeasts (250), filamentous, fungi (377), algae (14), and strains still to be identified (146) are maintained at the PNCM. These are preserved and maintained using various methods which include modified liquid drying (lyophilization), ultra-low temperature (-70°C) storage in 10% glycerol, storage in sterile soil, distilled water and overlaying with mineral oil. Periodic viability testing is done to assess the stability of these preserved cultures under storage. Aside from preservation and maintenance of cultures, the PNCM is also involved in several research activities. One of these is the isolation, characterization and identification of some Vibrio isolates from the Philippines. Details on this particular study is presented in this report.

  14. Transparent and Flexible Supercapacitors with Networked Electrodes.

    PubMed

    Kiruthika, S; Sow, Chaitali; Kulkarni, G U

    2017-10-01

    Transparent and flexible energy storage devices have received immense attention due to their suitability for innovative electronics and displays. However, it remains a great challenge to fabricate devices with high storage capacity and high degree of transmittance. This study describes a simple process for fabrication of supercapacitors with ≈75% of visible transparency and areal capacitance of ≈3 mF cm -2 with high stability tested over 5000 cycles of charging and discharging. The electrodes consist of Au wire networks obtained by a simple crackle template method which are coated with MnO 2 nanostructures by electrodeposition process. Importantly, the membrane separator itself is employed as substrate to bring in the desired transparency and light weight while additionally exploiting its porous nature in enhancing the interaction of electrolyte with the active material from both sides of the substrate, thereby enhancing the storage capacity. The method opens up new ways for fabricating transparent devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stability of lycopene during food processing and storage.

    PubMed

    Xianquan, S; Shi, J; Kakuda, Y; Yueming, J

    2005-01-01

    With an increasing understanding of the health benefit of lycopene, how to preserve lycopene during food processing and storage has caused much attention. Lycopene belongs to the carotenoid family and mostly exists in nature as the all-trans form. Heat, light, oxygen, and different food matrices are factors that have an effect on lycopene isomerization and autooxidation. Lycopene may isomerize to mono- or poly-cis forms with the presence of heat or oil or during dehydration. Reisomerization takes place during storage. After oxidation, the lycopene molecule split, which causes loss of color and off-flavor. The effects of heat, oxygen, light, and the presence of oil on the stability of lycopene are uniform in much of the literature; however, controversy still exists on some details, such as the conditions causing the occurrence of isomerization, the optimal moisture, and temperature for storage.

  16. Formulation and process considerations affecting the stability of solid dosage forms formulated with methacrylate copolymers.

    PubMed

    Petereit, H U; Weisbrod, W

    1999-01-01

    General considerations concerning the stability of coated dosage forms are discussed, in order to avoid predictable interactions which may cause long-term stability problems. As polymers themselves maintain a high chemical stability and a low reactivity, instability phenomena mainly have to be explained by interactions of low molecular weight substances or physical changes. Possible interactions of functional groups can be predicted easily and insulating subcoates are proper countermeasures. Impurities, remaining in the polymeric material from the manufacturing process, may accelerate the hydrolysis of sensitive drugs. Instabilities of coated dosage forms are mainly based on physical interactions, caused by improper formulations of coating suspensions (i.e. plasticizers or pigments) or the film coating process. Residual moisture or solvents, probably enclosed in the core and migrating over time, may increase the permeability of coatings, due to plasticizing effects. The functionality of coatings from aqueous dispersions is linked to coalescence of latex particles. Thus any incomplete film formation, caused by too high or too low coating temperatures, may result in high permeable coatings. During storage, preferably under stress conditions this process will continue and thus change the release profile. Therefore bed temperatures of 10-20 degrees C above MFT must ensure the formation of homogeneous polymer layers during the coating process. Stability test procedures and packaging materials also need to be adapted to the physicochemical properties of the dosage form, in order to get meaningful results in stability tests.

  17. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.

  18. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  19. Metal-functionalized silicene for efficient hydrogen storage.

    PubMed

    Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev

    2013-10-21

    First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stability of flavoured phytosterol-enriched drinking yogurts during storage as affected by different packaging materials.

    PubMed

    Semeniuc, Cristina Anamaria; Cardenia, Vladimiro; Mandrioli, Mara; Muste, Sevastiţa; Borsari, Andrea; Rodriguez-Estrada, Maria Teresa

    2016-06-01

    The aim of this study was to investigate the influence of different packaging materials on storage stability of flavoured phytosterol-enriched drinking yogurts. White vanilla (WV) and blood orange (BO) phytosterol-enriched drinking yogurts conditioned in mono-layer and triple-layer co-extruded plastic bottles were stored at +6 ± 1 °C for 35 days (under alternating 12 h light and 12 h darkness) to simulate shelf-life conditions. Samples were collected at three different storage times and subjected to determination of total sterol content (TSC), peroxide value (PV) and thiobarbituric acid reactive substances (TBARs). TSC was not significantly affected by packaging material or storage time and met the quantity declared on the label. PV was significantly influenced by yogurt type × packaging material × storage time interaction and TBARs by packaging material × storage time interaction. Between the two packaging materials, the triple-layer plastic mini bottle with black coloured and completely opaque intermediate layer offered the best protection against lipid oxidation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Advances in neglected tropical disease vaccines: Developing relative potency and functional assays for the Na-GST-1/Alhydrogel hookworm vaccine

    PubMed Central

    Brelsford, Jill B.; Plieskatt, Jordan L.; Yakovleva, Anna; Jariwala, Amar; Keegan, Brian P.; Peng, Jin; Xia, Pengjun; Li, Guangzhao; Campbell, Doreen; Periago, Maria Victoria; Correa-Oliveira, Rodrigo; Bottazzi, Maria Elena; Hotez, Peter J.

    2017-01-01

    A new generation of vaccines for the neglected tropical diseases (NTDs) have now advanced into clinical development, with the Na-GST-1/Alhydrogel Hookworm Vaccine already being tested in Phase 1 studies in healthy adults. The current manuscript focuses on the often overlooked critical aspects of NTD vaccine product development, more specifically, vaccine stability testing programs. A key measure of vaccine stability testing is "relative potency" or the immunogenicity of the vaccine during storage. As with most NTD vaccines, the Na-GST-1/Alhydrogel Hookworm Vaccine was not developed by attenuation or inactivation of the pathogen (Necator americanus), so conventional methods for measuring relative potency are not relevant for this investigational product. Herein, we describe a novel relative potency testing program and report for the first time on the clinical lot of this NTD vaccine during its first 60 months of storage at 2–8°C. We also describe the development of a complementary functional assay that measures the ability of IgG from animals or humans immunized with Na-GST-1/Alhydrogel to neutralize this important hookworm enzyme. While 90% inhibition of the catalytic activity of Na-GST-1 was achieved in animals immunized with Na-GST-1/Alhydrogel, lower levels of inhibition were observed in immunized humans. Moreover, anti-Na-GST-1 antibodies from volunteers in non-hookworm endemic areas were better able to inhibit catalytic activity than anti-Na-GST-1 antibodies from volunteers resident in hookworm endemic areas. The results described herein provide the critical tools for the product development of NTD vaccines. PMID:28192438

  2. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications.

  3. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  4. Optimizing cord blood sample cryopreservation.

    PubMed

    Harris, David T

    2012-03-01

    Cord blood (CB) banking is becoming more and more commonplace throughout the medical community, both in the USA and elsewhere. It is now generally recognized that storage of CB samples in multiple aliquots is the preferred approach to banking because it allows the greatest number of uses of the sample. However, it is unclear which are the best methodologies for cryopreservation and storage of the sample aliquots. In the current study we analyzed variables that could affect these processes. CB were processed into mononuclear cells (MNC) and frozen in commercially available human serum albumin (HSA) or autologous CB plasma using cryovials of various sizes and cryobags. The bacteriophage phiX174 was used as a model virus to test for cross-contamination. We observed that cryopreservation of CB in HSA, undiluted autologous human plasma and 50% diluted plasma was equivalent in terms of cell recovery and cell viability. We also found that cryopreservation of CB samples in either cryovials or cryobags displayed equivalent thermal characteristics. Finally, we demonstrated that overwrapping the CB storage container in an impermeable plastic sheathing was sufficient to prevent cross-sample viral contamination during prolonged storage in the liquid phase of liquid nitrogen dewar storage. CB may be cryopreserved in either vials or bags without concern for temperature stability. Sample overwrapping is sufficient to prevent microbiologic contamination of the samples while in liquid-phase liquid nitrogen storage.

  5. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion☆

    PubMed Central

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900

  6. Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar.

    PubMed

    Hoffmann, Jessica Fernanda; Zandoná, Giovana Paula; Dos Santos, Priscila Silveira; Dallmann, Camila Müller; Madruga, Francine Bonemann; Rombaldi, Cesar Valmor; Chaves, Fábio Clasen

    2017-12-15

    Butia odorata is a palm tree native to southern Brazil whose fruit (known as butiá) and leaves are used to make many food products and crafts. Butiá contain several biologically active compounds with potential health benefits. However, processing conditions can alter quality attributes including bioactive compound content. This study evaluated the stability of bioactive compounds in butiá pulp upon pasteurization, during 12months of frozen storage, and in butiá nectar after a 3-month storage period. Pulp pasteurization resulted in a reduction in phenolic, flavonoid, carotenoid, and ascorbic acid contents. After a 12-month frozen storage period, flavonoid, phenolic, and ascorbic acid contents decreased while carotenoid content remained unaltered. Carotenoid, ascorbic acid, and phenolic contents were unaffected by the 3-month storage of butiá nectar; however, flavonoid content and antioxidant potential were reduced. Despite bioactive compound degradation upon heat treatment and storage, butiá nectar remained rich in phenolics, especially (-)-epicatechin, rutin, and (+)-catechin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Multiferroic composites for magnetic data storage beyond the super-paramagnetic limit

    NASA Astrophysics Data System (ADS)

    Vopson, M. M.; Zemaityte, E.; Spreitzer, M.; Namvar, E.

    2014-09-01

    Ultra high-density magnetic data storage requires magnetic grains of <5 nm diameters. Thermal stability of such small magnetic grain demands materials with very large magneto-crystalline anisotropy, which makes data write process almost impossible, even when Heat Assisted Magnetic Recording (HAMR) technology is deployed. Here, we propose an alternative method of strengthening the thermal stability of the magnetic grains via elasto-mechanical coupling between the magnetic data storage layer and a piezo-ferroelectric substrate. Using Stoner-Wohlfarth single domain model, we show that the correct tuning of this coupling can increase the effective magneto-crystalline anisotropy of the magnetic grains making them stable beyond the super-paramagnetic limit. However, the effective magnetic anisotropy can also be lowered or even switched off during the write process by simply altering the applied voltage to the substrate. Based on these effects, we propose two magnetic data storage protocols, one of which could potentially replace HAMR technology, with both schemes promising unprecedented increases in the data storage areal density beyond the super-paramagnetic size limit.

  8. Rheology-A pre-formulation tool for evaluating mechanical and thermal properties of transdermal formulations

    NASA Astrophysics Data System (ADS)

    Modi, Nisarg

    Rheological characterization of pharmaceutical gel is of importance as it provides fundamental information required for the assessment of some of the final properties of a product such as viscosity, elasticity, quality and physical storage stability. The effect of formulation and process variables on product characteristics such as consistency, drug release, and physical stability can also be attained. Moreover, some of the transdermal patch problems such as leaking from reservoir patch or cold flow in matrix patch can also be estimated using rheological characterization. During this research, various tests were employed to characterize the mechanical properties of gel such as oscillation test (Frequency and Amplitude Sweep), flow and viscosity curves and yield point measurements, as well as temperature sweep and temperature ramp test. The present studies evaluate rheological properties of hydroxypropyl cellulose (Klucel HF) gels prepared containing fatty acids with different carbon chain length at different homogenization speed. A controlled stress rheometer was used to study the effect of different number of carbon chain fatty acids, homogenization speed and storage period on the rheological properties and microstructure of transdermal gels. The studies demonstrated that as the carbon chain length increased (C10-C 18) the thixotropic area decreased, which suggested that the stability of gel structure was increased with increase in carbon chain of fatty acids. Cohesive Energy was affected by the homogenization speed and carbon chain of fatty acids. There was decreased in cohesive energy as increase in carbon chain of fatty acids. Temperature sweep data revealed that gels prepared with oleic acid (C18) at 25000 RPM gave the best thermal stability after the longest storage period (60-Days) compare to the capric(C10) acid and Lauirc (C12) acid. There was only 31% decreased in temperature loop area for oleic (C18) acid as compare to 54% and 86% for capric (C10) acid and lauric acid (C12) respectively. During different mixing speeds at initial time period (t=0), oleic acid showed lowest temperature loop area, which was not affected by storage period. Furthermore, by applying power law model to frequency sweep data, mechanical propereties of transdermal gels were evaluated. Transdermal gels are "physical gels" in nature which showed both frequency dependency and also had a cross-over point. Moreover, the value of n is less than 1. Time Temperature superposition principle can apply to the rheological data of Transdermal gels to obtain the thermal properties of formulations. Thermal properties of transdermal gels are very difficult to measure using traditional DSC equipment. By applying TTS principle, frequency sweep data were obtained between 5-50 °C and extrapolated to achieve the glass transition temperature, free volume and thermal expansion co-efficient of the formulations. Last but not least, In-vitro studies using human cadaver skin showed that Capric acid is the best permeability enhancing agent for escitalopram oxalate in current formulations. Furthermore, increase in carbon chain length of fatty acids decreased the permeability enhancing effect of Escitalopram Oxalate through human cadaver skin during In-vitro diffusion studies.

  9. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    NASA Astrophysics Data System (ADS)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  10. Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries.

    PubMed

    Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

    2016-06-08

    Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.

  11. Thyroglobulin assay in fluids from lymph node fine needle-aspiration washout: influence of pre-analytical conditions.

    PubMed

    Casson, Florence Boux de; Moal, Valérie; Gauchez, Anne-Sophie; Moineau, Marie-Pierre; Sault, Corinne; Schlageter, Marie-Hélène; Massart, Catherine

    2017-04-01

    The aim of this study was to evaluate the pre-analytical factors contributing to uncertainty in thyroglobulin measurement in fluids from fine-needle aspiration (FNA) washout of cervical lymph nodes. We studied pre-analytical stability, in different conditions, of 41 samples prepared with concentrated solutions of thyroglobulin (FNA washout or certified standard) diluted in physiological saline solution or buffer containing 6% albumin. In this buffer, over time, no changes in thyroglobulin concentrations were observed in all storage conditions tested. In albumin free saline solution, thyroglobulin recovery rates depended on initial sample concentrations and on modalities of their conservation (in conventional storage tubes, recovery mean was 56% after 3 hours-storage at room temperature and 19% after 24 hours-storage for concentrations ranged from 2 to 183 μg/L; recovery was 95%, after 3 hours or 24 hours-storage at room temperature, for a concentration of 5,656 μg/L). We show here that these results are due to non-specific adsorption of thyroglobulin in storage tubes, which depends on sample protein concentrations. We also show that possible contamination of fluids from FNA washout by plasma proteins do not always adequately prevent this adsorption. In conclusion, non-specific adsorption in storage tubes strongly contributes to uncertainty in thyroglobulin measurement in physiological saline solution. It is therefore recommended, for FNA washout, to use a buffer containing proteins provided by the laboratory.

  12. Role of blooming in determining the storage stability of lipid-based dosage forms.

    PubMed

    Khan, Nurzalina; Craig, Duncan Q M

    2004-12-01

    Gelucire 50/13 alone and solid dispersions in this material containing two model drugs (10% w/w caffeine and paracetamol) have been studied with a view to establishing the mechanism underpinning changes in drug-release characteristics as a function of storage time and temperature. The lipid systems were fabricated into tablets and stored for up to 180 days at temperatures of 20 and 37 degrees C. The dispersions were studied using differential scanning calorimetry (DSC), scanning electron microscopy, and dissolution testing. DSC studies indicated that the Gelucire 50/13 exists in two principal melting forms (melting points 38 and 43 degrees C) that undergo transformation to the higher melting form on storage at 37 degrees C. Scanning electron microscopy studies indicated that the systems exhibit "blooming," with crystal formation on the surface being apparent on storage at both temperatures. The dissolution rate increased on storage, with the effect being particularly marked at higher storage temperatures and for the paracetamol systems. However, whereas these changes corresponded well to those seen for the morphology, the correlation between the changes in dissolution and those of the DSC profiles was poor. The study has suggested a novel explanation for the storage instability of Gelucire 50/13 whereby the change in dissolution is associated not with molecular rearrangement as such but with the gross distribution of the constituent components, this in turn altering the physical integrity of the lipid bases. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  13. On the stability, storage capacity, and design of nonlinear continuous neural networks

    NASA Technical Reports Server (NTRS)

    Guez, Allon; Protopopsecu, Vladimir; Barhen, Jacob

    1988-01-01

    The stability, capacity, and design of a nonlinear continuous neural network are analyzed. Sufficient conditions for existence and asymptotic stability of the network's equilibria are reduced to a set of piecewise-linear inequality relations that can be solved by a feedforward binary network, or by methods such as Fourier elimination. The stability and capacity of the network is characterized by the post synaptic firing rate function. An N-neuron network with sigmoidal firing function is shown to have up to 3N equilibrium points. This offers a higher capacity than the (0.1-0.2)N obtained in the binary Hopfield network. Moreover, it is shown that by a proper selection of the postsynaptic firing rate function, one can significantly extend the capacity storage of the network.

  14. Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices.

    PubMed

    Benson, Jim; Kovalenko, Igor; Boukhalfa, Sofiane; Lashmore, David; Sanghadasa, Mohan; Yushin, Gleb

    2013-12-03

    Pulsed electrodeposition of polyaniline (PANI) allows the fabrication of flexible, electrically conductive, nonwoven PANI-carbon nanotube (PANI-CNT) composite fabrics. They possess specific tensile strength and a modulus of toughness higher than that of aluminum matrix composites, titanium and aluminum alloys, steels, and many other structural materials. Electrochemical tests show that these nanocomposites additionally offer excellent cycle stability and ion electro-sorption and storage properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Anchorage strength and slope stability of a landfill liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villard, P.; Gourc, J.P.; Feki, N.

    1997-11-01

    In order to determine reliable dimensions of an anchorage system and satisfactory operation of the watertight liner in a waste landfill, it is essential to make an accurate assessment of the tensions acting on the geosynthetics on the top of the slope. Experimental and theoretical studies have been carried out in parallel. The former concern a full-scale experiment undertaken in Montreuil sur Barse on a waste storage site with instrumented slope. The latter concern anchorage tests performed on a scale model for different anchorage geometries.

  16. Assessment of Nutrient Stability in Space Foods

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Perchonok, M.; Braby, L. A.; Kloeris, V. A.; Smith, S. M.

    2009-01-01

    Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient metabolism or nutrient requirements are needed.

  17. PHYSICAL AND CHEMICAL STABILITY ANALYSIS OF COSMETIC MULTI- PLE EMULSIONS LOADED WITH ASCORBYL PALMITATE AND SODIUM ASCORBYL PHOSPHATE SALTS.

    PubMed

    Khan, Hira; Akhtar, Naveed; Ali, Atif; Khan, Haji M Shoaib; Sohail, Muhammad; Naeem, Muhammad; Nawaz, Zarqa

    2016-09-01

    Stability of hydrophilic and lipophilic vitamin C derivatives for quenching synergistic antioxidant activities and to treat oxidative related diseases is a major issue. This study was aimed to encapsulate hydrophilic and lipophilic vitamin C derivatives (ascorbyl palmitate and sodium ascorbyl phosphate) as functional ingredients in a newly formulated multiple emulsion of the W//W type to attain the synergistic antioxidant effects and the resultant system's long term physical and chemical stability. Several multiple emulsions using the same concentration of emulsifiers but different concentrations of ascorbyl palmitate and sodium ascorbyl phosphate were developed. Three finally selected multiple emulsions (ME₁, ME₂ and ME₃) were evaluated for physical stability in terms of rheology, microscopy, conductivity, pH, and organoleptic characteristics under different storage conditions for 3 months. Chemical stability was determined by HPLC on Sykam GmbH HPLC system (Germany), equipped with a variable UV detector. Results showed that at accelerated storage conditions all the three multiple emulsions had shear thinning behavior of varying shear stress with no influence of location of functional ingredients in a carrier system. Conductivity values increased and pH values remained within the skin pH range for 3 months. Microscopic analysis showed an increase in globule size with the passage of time, especially at higher temperatures while decreased at low temperatures. Centrifugation test did not cause phase separation till the 45th day, but little effects after 2 months. Chemical stability analysis by HPLC at the end of 3 months showed that ascorbyl palmitate and sodium ascorbyl phosphate were almost stable in all multiple emulsions with no influence of their location in a carrier system. Multiple emulsions were found a stable carrier for hydrophilic and lipophilic vitamin C derivatives to enhance their desired effects. Considering that many topical formulations contain simple vitamin C it is suggested that present study may contribute to the development of more stable formulations with a combination of vitamin C derivatives to enhance their cosmetic benefits.

  18. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  19. Optimization of extraction of novel pectinase enzyme discovered in red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Zohdi, Nor Khanani; Amid, Mehrnoush

    2013-11-20

    Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.

  20. The influence of storage and heat treatment on a magnesium-based implant material: an in vitro and in vivo study.

    PubMed

    Bracht, Katja; Angrisani, Nina; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Reifenrath, Janin

    2015-10-19

    Magnesium alloys are recommended as a potential material for osteosynthesis. It is known that storage-induced property modifications can occur in materials like aluminum. Thus the aim of this study was to analyze the influence of storage durations of up to 48 weeks on the biomechanical, structural, and degradation properties of the degradable magnesium alloy LAE442. Extruded implants (n = 104; Ø 2.5 mm × 25 mm) were investigated after storage periods of 0, 12, 24, and 48 weeks in three different sub-studies: (I) immediately after the respective storage duration and after an additional (II) 56 days of in vitro corrosion in simulated body fluid (SFB), and (III) 48 weeks in vivo corrosion in a rabbit model, respectively. In addition, the influence of a T5-heat treatment (206 °C for 15 h in an argon atmosphere) was tested (n = 26; 0 week of storage). Evaluation was performed by three-point bending, scanning electron microscopy, radiography, µ-computed tomography, evaluation of the mean grain size, and contrast analysis of precipitations (such as aluminum or lithium). The heat treatment induced a significant reduction in initial stability, and enhanced the corrosion resistance. In vivo experiments showed a good biocompatibility for all implants. During the storage of up to 48 weeks, no significant changes occurred in the implant properties. LAE442 implants can be safely used after up to 48 weeks of storage.

  1. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    PubMed

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  2. Stability Studies of a Freeze-Dried Recombinant Human Epidermal Growth Factor Formulation for Wound Healing.

    PubMed

    Santana, Héctor; García, Gerardo; Vega, Maribel; Beldarraín, Alejandro; Páez, Rolando

    2015-01-01

    We report on the stability assessment of a recombinant human epidermal growth factor (rhEGF) freeze-dried formulation for wound healing by intra-lesional injections. The suitability of packaging material for the light protection of finished dried powder was evaluated after stressed exposure conditions. Degradation kinetics of powder for injection was investigated at concentrations of 25-250 μg/vial and temperatures of 45, 60, and 70 °C. The long-term stability was evaluated after storage at 25 ± 2 °C/60 ± 5% relative humidity (6 months) and 2-8 °C (24 months) in the dark and analyzed at several time points. The stability after reconstitution with various diluents was also assessed after 24 h storage at 2-8 °C. The rhEGF samples were analyzed for structural integrity by reversed-phase high-performance liquid chromatography (RP-HPLC), size-exclusion HPLC, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Biological activity was investigated by measuring the cell proliferation in a murine fibroblast cell line. Results show that freeze-dried rhEGF in primary packaging only was photosensitive, as degradation by RP-HPLC that was completely suppressed by the secondary carton package was revealed. An increase in freeze-dried rhEGF stability was observed with the increase in protein concentration from 25 to 250 μg/vial. The long-term stability study showed no significant rhEGF degradation or physical change within the freeze-dried formulations containing 25 or 250 μg/vial of rhEGF. No physical, chemical or biological changes were observed for rhEGF after reconstitution in water for injection or 0.9% sodium chloride during the storage conditions studied. The stability of a recombinant human epidermal growth factor (rhEGF) freeze-dried formulation for wound healing by intra-lesional injections was assessed. The suitability of packaging material for the light protection of finished dried powder was evaluated after stressed exposure conditions. Degradation kinetics of powder for injection was investigated at concentrations of 25-250 μg/vial and temperatures of 45, 60, and 70 °C. The accelerated, long-term, and reconstitution stabilities were examined according to ICH guidelines for their utility time. The stability of rhEGF samples was analyzed by different chemical, physical, and biological activity assays. Results show that freeze-dried rhEGF in primary packaging only was photosensitive, as degradation by reversed-phase high performance liquid chromatography that was completely suppressed by the secondary carton package was revealed. An increase in freeze-dried rhEGF stability was observed with the increase in protein concentration. No significant rhEGF degradation or physical changes were observed within the freeze-dried formulations after 6 months storage at 25 ± 2 °C/60 ± 5% relative humidity or 24 months storage at 2-8 °C. No physical, chemical, or biological changes were observed for rhEGF after reconstitution in water for injection or 0.9% sodium chloride after 24 h storage at 2-8 °C. © PDA, Inc. 2015.

  3. Methane Storage in Biosilica-Supported Semiclathrates at Ambient Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Suying; Wang, Weixing

    2018-01-01

    Two key issues regarding the use of clathrates and semiclathrates for practical gas storage and transport is the pressure-temperature stability of the material and very low formation kinetics. For many practical applications, the avoidance of cooling, gas overpressure, and mechanical mixing would be very desirable. Here, we show that biosilica supports from rice husks greatly enhance gases uptake kinetics in tetra-iso-amyl ammonium bromide semiclathrates without introducing complex mixing technologies. These systems show excellent thermal stability and good recyclability.

  4. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates.

    PubMed

    Scherließ, Regina; Ajmera, Ankur; Dennis, Mike; Carroll, Miles W; Altrichter, Jens; Silman, Nigel J; Scholz, Martin; Kemter, Kristina; Marriott, Anthony C

    2014-04-17

    Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion, utilising the SPS formulation technology, spray-drying and terminal sterilisation of influenza A(H1N1)pdm09 split virus vaccine is feasible. Findings indicate the potential utility of such formulated vaccines e.g. for needle-free vaccination routes and delivery to countries with uncertain cold chain facilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Preserving enzymatic activity and enhancing biochemical stability of glutathione transferase by soluble additives under free and tethered conditions.

    PubMed

    Karamitros, Christos S; Labrou, Nikolaos E

    2017-09-01

    In the present study, we report the effect of four different soluble additives (sucrose, lactitol, superfloc c577, and dextran sulfate) on the stability of glutathione transferase 1 enzyme from Zea mays (ZmGSTF1-1) under free and tethered conditions at 4 and 25 °C. Among all additives, the best stabilizing effects were observed in the case of superfloc c577 and sucrose at both tested temperatures, yet at distinct concentrations at each condition. Those two stabilizing agents were further combined and potential positive synergistic effects were investigated. In addition, we assessed the long-term storage and operational stability of ZmGSTF1-1 under tethered conditions in the presence of additives, which provided the most conducive effects on its stability under free conditions. Our results strongly suggest that the presence of additives may be beneficial to the stability of the enzyme under both free and tethered conditions. Thermodynamic analysis of the free enzyme in the presence of sucrose, which exhibited the best stabilizing effect at both temperatures, shed light on the possible mechanism of action. Given the considerable importance of the development of GST-based biosensors with prolonged stability, the present work may be of general interest to researchers in the field of applied enzymology. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin

    Abstract. Due to the enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, reduced cycling stability and total electrode capacity. In this work, we report a size-dependent excess capacity beyond the theoretical value of 170 mAhg-1 in a special carbon coated LiFePO4 composite cathode material, which delivers capacities of 191.2 and 213.5 mAhg-1 with the mean particle sizes of 83 nm and 42 nm, respectively. Moreover, this LiFePO4 composite also shows excellent cycling stability and high ratemore » performance. Our further experimental tests and ab initio calculations reveal that the excess capacity comes from the charge passivation for which the C-O-Fe bonds would lead to charge redistribution on the surface of LiFePO4 and hence to enhance the bonding interaction between surface O atoms and Li-ions. The surface reconstruction for excess Li-ion storage makes full use of the large specific surface area for the nanocrystallites, which can maintain the fast Li-ion transport and enhance the capacity greatly that the nanocrystallites usually suffers.« less

  7. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    NASA Astrophysics Data System (ADS)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  8. High temperature metal hydrides as heat storage materials for solar and related applications.

    PubMed

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  9. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    PubMed Central

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  10. Formulation and characterization of a 0.1% rapamycin cream for the treatment of Tuberous Sclerosis Complex-related angiofibromas.

    PubMed

    Bouguéon, Guillaume; Lagarce, Frédéric; Martin, Ludovic; Pailhoriès, Hélène; Bastiat, Guillaume; Vrignaud, Sandy

    2016-07-25

    Medicines for the treatment of rare diseases frequently do not attract the interest of the pharmaceutical industry, and hospital pharmacists are thus often requested by physicians to prepare personalized medicines. Tuberous Sclerosis Complex (TSC) is a rare disease that causes disfiguring lesions named facial angiofibromas. Various topical formulations of rapamycin (=sirolimus) have been proved effective in treating these changes in small case series. The present study provides for the first time characterization of a 0.1% rapamycin cream formulation presenting good rapamycin solubilisation. The first step of the formulation is solubilisation of rapamycin in Transcutol(®), and the second step is the incorporation of the mixture in an oil-in-water cream. A HPLC stability-indicating method was developed. Rapamycin concentration in the cream was tested by HPLC and confirmed that it remained above 95% of the initial concentration for at least 85days, without characteristic degradation peaks. The preparation met European Pharmacopoeia microbial specifications throughout storage in aluminum tubes, including when patient use was simulated. Odour, appearance and colour of the preparation were assessed and no change was evidenced during storage. The rheological properties of the cream also remained stable throughout storage. To conclude, we report preparation of a novel cream formulation presenting satisfactory rapamycin solubilisation for the treatment of TSC cutaneous manifestations, with stability data. The cream is currently being used by our patients. Efficacy and tolerance will be reported later. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Tuning the Hydrogen Storage in Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Er, Suleyman; de Wijs, Gilles A.; Brocks, Geert

    2011-03-01

    We investigate the hydrogen storage properties of promising magnesium alloys. Mg H2 (7.6 wt % H) would be a very useful storage material if the (de)hydrogenation kinetics can be improved and the desorption temperature is markedly lowered. Using first principles calculations, we show that hydrides of Mg-transition metal (TM) alloys adopt a structure that promotes faster (de)hydrogenation kinetics, as is also observed in experiment. Within the lightweight TMs, the most promising alloying element is titanium. Alloying Mg with Ti alone, however, is not sufficient to decrease the stability of the hydride phases, which is necessary to reduce the hydrogen desorption temperature. We find that adding aluminium or silicon markedly destabilizes Mg-Ti hydrides and stabilizes Mg-Ti alloys. Finally, we show that controlling the structure of Mg-Ti-Al(Si) system by growing it as multilayers, has a beneficial influence on the thermodynamic properties and makes it a stronger candidate for hydrogen storage.

  12. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  13. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  14. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  15. Oxygen radical absorbance capacity of different varieties of strawberry and the antioxidant stability in storage.

    PubMed

    Li, Chunyang; Huang, Wu-Yang; Wang, Xing-Na; Liu, Wen-Xu

    2013-01-25

    Total antioxidant capacity of different varieties of strawberry (Ningfeng, Ningyu, Zijin 4, Toyonoka, Benihope, Sweet Charlie) in different developmental stages (including green unripe stages, half red stages, and red ripe stages) was investigated by oxygen radical absorbance capacity (ORAC) assay. In addition, effects of the antioxidant properties of strawberry stored at 4 °C or -18 °C for a period of five months were studied. The results showed that antioxidant capacity of strawberry changed based on tested part, developmental stage, variety, and time of collection. Calyces had significantly higher ORAC values compared with fruits. Strawberry fruits had higher ORAC values during the green unripe stages than the half red stages and red ripe stages. Strawberries got higher ORAC values during short-time storage, and then decreased during long-time storage. Samples stored at -18 °C exhibited higher antioxidant capacity than those stored at 4 °C, while vacuum treatment could further increase ORAC values. The results indicated the potential market role of strawberries as a functional food and could provide great value in preventing oxidation reaction in food processing and storage for the dietary industry.

  16. Colour, lipid and protein stability of Rhea americana meat during air- and vacuum-packaged storage: influence of muscle on oxidative processes.

    PubMed

    Filgueras, R S; Gatellier, P; Aubry, L; Thomas, A; Bauchart, D; Durand, D; Zambiazi, R C; Santé-Lhoutellier, V

    2010-11-01

    Physicochemical characteristics and oxidative stability during storage were determined in Gastrocnemius pars interna (GN) and Iliofiburalis (IF) muscles of Rhea americana. Glycolytic potential (GP) and pH decline of muscles were measured within the first 24 h post mortem. Colour, lipid and protein stability were determined during storage of meat, i.e. 5 days under air-packaging at 4°C, or 28 days under vacuum-packaging at 4°C. In parallel, anti-oxidant status of muscles was estimated by measuring α-tocopherol content and anti-oxidant enzyme activities (superoxide dismutase and catalase), while pro-oxidant status was evaluated by determining haeminic iron and long chain fatty acids (especially polyunsaturated fatty acids). The ultimate pH was similar in both muscles, but the GP value was significantly higher in IF than in GN muscle. Haeminic iron and alpha-tocopherol content differed between muscles, with 30% more haeminic iron (p<0.05) and 134% more alpha-tocopherol (p<0.001) in IF than GN muscle. The IF muscle presented higher lipid content and lower PUFA/SFA ratio (polyunsaturated fatty acids/saturated fatty acids) than GN muscle. With storage under air-packaging, lipid and protein oxidation of rhea muscles increased up to 275% and 30%, respectively. This increase was more rapidly and marked in IF muscle. The IF also showed high level of metmyoglobin accumulation after 3 days of storage (47%) and was rejected by 1 consumer out of 2 in sensorial analysis. Under vacuum-packaging, both muscles showed a high stability of colour and no oxidation of lipids and proteins. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  17. Stability of X-band EPR signals from fingernails under vacuum storage.

    PubMed

    Sholom, Sergey; McKeever, Stephen

    2017-12-01

    EPR signals of different origin have been tested in human finger- and toe-nails with an X-band EPR technique for different conditions of nail storage. Three different signals were identified, namely a singlet at g=2.005, a doublet at g=2.004 with a splitting constant A=1.8 mT, and an anisotropic signal at g1=2.057, g2=2.029 and g3=2.003 (positions of local extrema). All EPR spectra from nails, whether irradiated or mechanically stressed, can be described as a superposition of these three signals. The singlet is responsible for the background signal (BG), is the main component of radiation-induced signals (RIS) for low doses (100 Gy or lower) and also contributes to mechanically-induced signals (MIS). This signal is quite stable under vacuum storage, but can be reduced almost to zero by soaking in water. The behavior of this signal under ambient conditions depends on many factors, such as absorbed dose, air humidity, and ambient illumination intensity at the place of storage. The doublet arises after exposure of nails to high (few hundreds Gy and higher) doses or after mechanical stress of samples. Depending on how this signal was obtained, it may have bulk or surface locations with quite different stability properties. The surface-located doublet (generated on the nail edges during cutting or clipping) is quite unstable and decays over about two hours for samples stored at ambient conditions and within several seconds for samples immersed in water. The volume-distributed doublet decays within a few minutes in water, several hours at ambient conditions and several days in vacuum. The anisotropic signal may also be generated by both ionizing radiation and mechanical stress; this signal is quite stable in vacuum and decays over several days at ambient conditions or a few tens of minutes in water. The reference lines for the above-described three EPR signals were obtained and a procedure of spectra deconvolution was developed and tested on samples exposed to both ionizing radiation and mechanical stress.

  18. Food Fortification Stability Study

    NASA Technical Reports Server (NTRS)

    Sirmons, T.; Cooper, M.; Douglas, G.

    2017-01-01

    NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The length of proposed Mars missions and the lack of resupply missions increases the importance of nutritional content in the food system, which will need a five-year shelf life. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortification nutrients will remain stable through a long duration exploration mission at sufficient levels if compatible formulation, processing, and storage temperatures are achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX) such that the vitamin concentration per serving equaled 25% of the recommended daily intake after two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermo-stabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced, with and without the vitamin premix, to assess the impact of the added fortification on color and taste and to determine the stability of supplemental vitamins in spaceflight foods. The addition of fortification to spaceflight foods did not greatly alter the organoleptic properties of most products. In most cases, overall acceptability scores remained above 6.0 (minimum acceptable score) following six months and one year of low-temperature storage. Likewise, the color of fortified products appears to be preserved over one year of storage. The only exceptions were Grilled pork Chop and Chicken Noodle Soup whose individual components appeareddegrade rapidly over one year of storage. Finally, most vitamins appeared to be stable during long-term storage. The only exception was thiamin, which degraded rapidly during the first year of storage at 35°C. It was previously believed that the imprecise method of fortification would prove problematic for nutrient quantification; however, this was only an issue in stored samples of Grilled Pork Chop, Italian Vegetables and Curry Sauce with Vegetables. Year two data may further reveal the extent to which this is a problem, as well as identify overall quality changes over time.

  19. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  20. The Influence of Tablet Formulation, Drug Concentration, and pH Modification on the Stability of Extemporaneously Compounded Levothyroxine Suspensions.

    PubMed

    Svirskis, Darren; Lin, Shao-Wei; Brown, Helen; Sangaroomthong, Annie; Shin, Daniel; Wang, Ziqi; Xu, Hongtao; Dean, Rebecca; Vareed, Preetika; Jensen, Maree; Wu, Zimei

    2018-01-01

    Three brands of levothyroxine tablets are currently available in New Zealand (Eltroxin, Mercury Pharma, Synthroid) for extemporaneous compounding into suspensions. This study aims to determine whether tablet brand (i.e., formulation), concentration, storage conditions, as well as pH, impact the stability of compounded levothyroxine suspensions. Using the three available brands of levothyroxine tablets, suspensions were compounded at concentrations of 15 µg/mL and 25 µg/mL and stored at 4°C and 22°C. Samples were withdrawn weekly for 4 weeks, and chemical stability was evaluated using high-performance liquid chromatographic analysis. Physical appearance, ease of resuspension, and pH were also monitored weekly. To evaluate the effect on drug stability, pH modifiers were added to a suspension. As demonstrated by high-performance liquid chromatographic analysis, the suspensions compounded from the Eltroxin and Mercury Pharma tablets were more stable (>90% remaining after 4 weeks) than Synthroid across both storage conditions and concentrations. The drug was more stable at the higher concentration of 25 µg/mL than at 15 µg/mL. Levothyroxine was stable when pH was increased to pH 8 through the addition of sodium citrate; stability was reduced at a lower pH. Storage temperature did not affect the stability of the suspensions during the 4-week study. This is the first study demonstrating the impact of tablet brand, with different excipients, and drug concentrations on stability, and thus the beyond-use date of the compounded levothyroxine liquid formulations. The pH control achieved by sodium citrate, either as an excipient in tablets or an additive during compounding, improved drug stability. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  1. Preparation and properties of high storage stability polyester polyol dispersion for two-component waterborne polyurethane coating

    NASA Astrophysics Data System (ADS)

    Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.

    2017-01-01

    A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.

  2. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method.

    PubMed

    Wagner, Michael E; Spoth, Katherine A; Kourkoutis, Lena F; Rizvi, Syed S H

    2016-12-01

    Niosomes were prepared using a novel supercritical carbon dioxide based method to simultaneously encapsulate ferrous sulfate and vitamin D3 as hydrophilic and hydrophobic cargo, respectively. Vesicle particle size was determined to be bimodal with peak diameters of 1.44 ± 0.16 μm and 7.21 ± 0.64 μm, with the smaller peak comprising 98.8% of the total niosomal volume. Encapsulation efficiency of ferrous sulfate was 25.1 ± 0.2% and encapsulation efficiency of vitamin D3 was 95.9 ± 1.47%. Physical stability of the produced niosomes was assessed throughout a storage period of 21 days. Niosomes showed good physical stability at 20 °C, but storage at 4 °C showed an initial burst release, indicating possible rupture of the niosomal membrane. The Korsmeyer-Peppas equation was used to model the release of ferrous sulfate over time at both storage temperatures.

  3. Chemical composition, rheological, quality characteristics and storage stability of buns enriched with coriander and curry leaves.

    PubMed

    Sudha, M L; Rajeswari, G; Venkateswara Rao, G

    2014-12-01

    Effect of addition of normal (NL) and dehydrated (DL) curry leaves (Murraya koeniggi) and coriander leaves (Corinadrum sativum) in the ratio of 1:1 to refined wheat flour (WF) or a blend of refined wheat flour-whole wheat flour (WF-WWF, 1:1) on the rheological, nutritional, storage and quality characteristics of the buns were studied. Water absorption increased on addition of increasing levels of DL from 0 to 7.5 % to WF-WWF when compared to WF. Dough weakening was greater when DL was added to WF-WWF as seen in decrease in dough stability and abscissa at rupture values. Addition of gluten and emulsifiers improved the quality characteristics of buns prepared using either 25 % NL or 5 % DL. Storage stability of buns with DL was better. The protein, dietary fiber, iron and carotenoids in buns prepared from WF-WWF were higher. The results indicate the utilization of leaves in dehydrated form in the preparation of nutritionally improved buns.

  4. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    PubMed

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  5. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Behle, Robert W; Kobori, Nilce N; Júnior, Ítalo Delalibera

    2016-10-01

    The yeast form (blastospore) of the dimorphic insect-pathogenic fungus Beauveria bassiana can be rapidly produced using liquid fermentation methods but is generally unable to survive rapid dehydration processes or storage under non-refrigerated conditions. In this study, we evaluated the influence of two convective drying methods, various modified atmosphere packaging systems, and storage temperatures on the desiccation tolerance, storage stability, and virulence of blastospores of B. bassiana ESALQ 1432. All blastospore formulations were dried to <5 % water content equivalent to aw < 0.3. The viability of B. bassiana blastospores after air drying and spray drying was greater than 80 %. Vacuum-packaged blastospores remained viable longer when stored at 4 °C compared with 28 °C with virtually no loss in viability over 9 months regardless the drying method. When both oxygen and moisture scavengers were added to sealed packages of dried blastospore formulations stored at 28 °C, viability was significantly prolonged for both air- and spray-dried blastospores. The addition of ascorbic acid during spray drying did not improve desiccation tolerance but enhanced cell stability (∼twofold higher half-life) when stored at 28 °C. After storage for 4 months at 28 °C, air-dried blastospores produced a lower LC80 and resulted in higher mortality to whitefly nymphs (Bemisia tabaci) when compared with spray-dried blastospores. These studies identified key storage conditions (low aw and oxygen availability) that improved blastospore storage stability at 28 °C and will facilitate the commercial development of blastospores-based bioinsecticides.

  6. The effect of high pressures on the yoghurt from milk with the stabilizer

    NASA Astrophysics Data System (ADS)

    Reps, A.; Jankowska, A.; Wiśniewska, K.

    2008-07-01

    The effect of high pressures on the microbiological and physio-chemical properties of yoghurt was investigated. The best results were obtained when the yoghurt was manufactured from milk with the addition of MYO 752 stabilizer (starch, gelatin, pectin) selected from 10 stabilizers. Yoghurt manufactured with the addition of 0, 6% MYO 752 stabilizer was processed at the pressure of 400-600 MPa/15 min. in the range of 50 MPa. Pressurization caused a total reduction of number of Lactobacillus delbrueckii ssp. Bulgaricus and reduced the number of Streptococcus thermophilus by 1-2 orders of magnitude. Pressurized and non-pressurized yoghurts characterized of a homogenous consistency and typical plain yoghurt taste. The decrease of the number of living bacteria was observed in yoghurts during the storage. The acidity of pressurized yoghurts remained on the some level at the temperature of 4°C and 20°C. The more intensive antibacterial activity of microflora was observed in yoghurts storaged at 20°C in comparison with yoghurts storaged at 4°C. Disadvantageous changes of the pressurized yoghurts consistency were not found. The taste and aroma of yoghurts remained without any changes.

  7. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability.

    PubMed

    Thiagarajan, Geetha; Semple, Andrew; James, Jose K; Cheung, Jason K; Shameem, Mohammed

    2016-01-01

    With the rapid growth of biopharmaceutical product development, knowledge of therapeutic protein stability has become increasingly important. We evaluated assays that measure solution-mediated interactions and key molecular characteristics of 9 formulated monoclonal antibody (mAb) therapeutics, to predict their stability behavior. Colloidal interactions, self-association propensity and conformational stability were measured using effective surface charge via zeta potential, diffusion interaction parameter (kD) and differential scanning calorimetry (DSC), respectively. The molecular features of all 9 mAbs were compared to their stability at accelerated (25°C and 40°C) and long-term storage conditions (2-8°C) as measured by size exclusion chromatography. At accelerated storage conditions, the majority of the mAbs in this study degraded via fragmentation rather than aggregation. Our results show that colloidal stability, self-association propensity and conformational characteristics (exposed tryptophan) provide reasonable prediction of accelerated stability, with limited predictive value at 2-8°C stability. While no correlations to stability behavior were observed with onset-of-melting temperatures or domain unfolding temperatures, by DSC, melting of the Fab domain with the CH2 domain suggests lower stability at stressed conditions. The relevance of identifying appropriate biophysical assays based on the primary degradation pathways is discussed.

  8. Box-Behnken study design for optimization of bicalutamide-loaded nanostructured lipid carrier: stability assessment.

    PubMed

    Kudarha, Ritu; Dhas, Namdev L; Pandey, Abhijeet; Belgamwar, Veena S; Ige, Pradum P

    2015-01-01

    Bicalutamide (BCM) is an anti-androgen drug used to treat prostate cancer. In this study, nanostructured lipid carriers (NLCs) were chosen as a carrier for delivery of BCM using Box-Behnken (BB) design for optimizing various quality attributes such as particle size and entrapment efficiency which is very critical for efficient drug delivery and high therapeutic efficacy. Stability of formulated NLCs was assessed with respect to storage stability, pH stability, hemolysis, protein stability, serum protein stability and accelerated stability. Hot high-pressure homogenizer was utilized for formulation of BCM-loaded NLCs. In BB response surface methodology, total lipid, % liquid lipid and % soya lecithin was selected as independent variable and particle size and %EE as dependent variables. Scanning electron microscopy (SEM) was done for morphological study of NLCs. Differential scanning calorimeter and X-ray diffraction study were used to study crystalline and amorphous behavior. Analysis of design space showed that process was robust with the particle size less than 200 nm and EE up to 78%. Results of stability studies showed stability of carrier in various storage conditions and in different pH condition. From all the above study, it can be concluded that NLCs may be suitable carrier for the delivery of BCM with respect to stability and quality attributes.

  9. An Inside Look: NSLS-II Storage Ring

    ScienceCinema

    Fries, Gregory

    2018-06-12

    Look inside the storage ring of the National Synchrotron Light Source II, under construction at Brookhaven Lab. Exactly 843 magnets now encircle the ring. Their job will be to steer, stabilize, and store electrons racing around at near light speed.

  10. Hydroxypropyl cellulose stabilizes amorphous solid dispersions of the poorly water soluble drug felodipine.

    PubMed

    Sarode, Ashish L; Malekar, Swapnil A; Cote, Catherine; Worthen, David R

    2014-11-04

    Overcoming the low oral bioavailability of many drugs due to their poor aqueous solubility is one of the major challenges in the pharmaceutical industry. The production of amorphous solid dispersions (ASDs) of these drugs using hydrophilic polymers may significantly improve their solubility. However, their storage stability and the stability of their supersaturated solutions in the gastrointestinal tract upon administration are unsolved problems. We have investigated the potential of a low viscosity grade of a cellulosic polymer, hydroxypropyl cellulose (HPC-SSL), and compared it with a commonly used vinyl polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA), for stabilizing the ASDs of a poorly water soluble drug, felodipine. The ASDs were produced using hot melt mixing and stored under standard and accelerated stability conditions. The ASDs were characterized using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. Drug dissolution and partitioning rates were evaluated using single- and biphasic dissolution studies. The ASDs displayed superior drug dissolution and partitioning as compared to the pure crystalline drug, which might be attributed to the formation of a drug-polymer molecular dispersion, amorphous conversion of the drug, and drug-polymer hydrogen bonding interactions. Late phase separation and early re-crystallization occurred at lower and higher storage temperatures, respectively, for HPC-SSL ASDs, whereas early phase separation, even at low storage temperatures, was noted for PVP-VA ASDs. Consequently, the partitioning rates for ASDs dispersed in HPC-SSL were greater than those of PVP-VA at lower and room temperature storage, whereas the performance of both of the ASDs was similar when stored at higher temperatures. Copyright © 2014. Published by Elsevier Ltd.

  11. Thermal and capillary effects on the caprock mechanical stability at In Salah, Algeria

    DOE PAGES

    Vilarrasa, Víctor; Rutqvist, Jonny; Rinaldi, Antonio Pio

    2015-04-20

    Thermo-mechanical effects are important in geologic carbon storage because CO 2 will generally reach the storage formation colder than the rock, inducing thermal stresses. Capillary functions, i.e., retention and relative permeability curves, control the CO 2 plume shape, which may affect overpressure and thus, caprock stability. To analyze these thermal and capillary effects, we numerically solve non-isothermal injection of CO 2 in deformable porous media considering the In Salah, Algeria, CO 2 storage site. Here, we find that changes in the capillary functions have a negligible effect on overpressure and thus, caprock stability is not affected by capillary effects. But,more » we show that for the strike slip stress regime prevalent at In Salah, stability decreases in the lowest parts of the caprock during injection due to cooling-induced thermal stresses. Simulations show that shear slip along pre-existing fractures may take place in the cooled region, whereas tensile failure is less likely to occur. Indeed, only the injection zone and the lowest tens of meters of the 900-m-thick caprock at In Salah might be affected by cooling effects, which would thus not jeopardize the overall sealing capacity of the caprock. Furthermore, faults are likely to remain stable far away from the injection well because outside the cooled region the injection-induced stress changes are not sufficient to exceed the anticipated shear strength of minor faults. Nonetheless, we recommend that thermal effects should be considered in the site characterization and injection design of future CO 2 injection sites to assess caprock stability and guarantee a permanent CO 2 storage.« less

  12. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    NASA Astrophysics Data System (ADS)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  13. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories

    PubMed Central

    Lou, Jerry J; Mirsadraei, Leili; Sanchez, Desiree E; Wilson, Ryan W; Shabihkhani, Maryam; Lucey, Gregory M; Wei, Bowen; Singer, Elyse J; Mareninov, Sergey; Yong, William H

    2014-01-01

    Frozen biospecimens are crucial for translational research and contain well preserved nucleic acids and protein. However, the risk for catastrophic freezer failure as well as space, cost, and environmental concerns argue for evaluating long-term room temperature storage alternatives. Formalin-fixed paraffin embedded (FFPE) tissues have great value but their use is limited by cross-linking and fragmentation of nucleic acids, as well as loss of enzymatic activity. Stabilization solutions can now robustly preserve fresh tissue for up to 7 days at room temperature. For longer term storage, commercial vendors of chemical matrices claim real time stability of nucleic acids of over 2 years and their accelerated aging studies to date suggest stability for 12 years for RNA and 60 years for DNA. However, anatomic pathology biorepositories store mostly frozen tissue rather than nucleic acids. Small quantities of tissue can be directly placed on some chemical matrices to stabilize DNA, however RNA and proteins are not preserved. Current lyophilization approaches can preserve histomorphology, DNA, RNA, and proteins though RNA shows moderate degradation after 1–2 years. Formalin free fixatives show improved but varying abilities to preserve nucleic acids and face validation as well as cost barriers in replacing FFPE specimens. The paraffin embedding process can degrade RNA. Development of robust long-term room temperature biospecimen tissue storage technology can potentially reduce costs for the biomedical community in the face of growing targeted therapy needs and decreasing budgets. PMID:24362270

  14. Effects of heat stress and probiotic supplementation on protein functionality and oxidative stability of ground chicken leg meat during display storage.

    PubMed

    Kim, Hyun-Wook; Kim, Ji-Han; Yan, Feifei; Cheng, Heng-Wei; Brad Kim, Yuan H

    2017-12-01

    The present study aimed to evaluate the effects of heat stress and probiotic supplementation on protein functionality and oxidative stability of ground chicken leg during display storage. Two hundred and forty, 1-day-old male chicks (5 birds per pen) were subjected to four treatments in a 2 (thermoneutral condition at 21 °C and cyclic heat stress at 32-21-32 °C for 10 h day -1 ) × 2 (regular diet with 0 or 0.25 g kg -1 Bacillus subtilis) factorial design. Chickens were harvested at day 46, and pairs of whole legs were collected at 1 day postmortem. The chicken legs were deboned, ground, tray-packaged with oxygen-permeable film, and displayed for 3 days. Heat stress and probiotic supplementation had no impact on pH, water-holding capacity, color, protein functionality, lipid lipolysis and lipid/protein oxidation stability (P > 0.05). Display storage increased the pH and lipid oxidation of ground chicken legs (P < 0.05). In addition, protein oxidation occurred during display storage, as determined via an increased carbonyl group (P = 0.0109) and reduced thiol group (P < 0.0001). The results of the present study indicate that chronic heat stress and probiotic supplementation had no practical adverse impact on protein functionality and oxidative stability of ground chicken leg meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Quality and storage stability of extruded puffed corn-fish snacks during 6-month storage at ambient temperature.

    PubMed

    Shaviklo, Gholam Reza; Thorkelsson, Gudjon; Rafipour, Fereidon; Sigurgisladottir, Sjofn

    2011-03-30

    Cereal-based snacks are usually low in protein and other nutrients. Increased health awareness of consumers has led the food industry to develop fortified snacks with functional ingredients. Three types of extruded corn-fish snacks, containing 150 g kg(-1) carp mince and 150 g kg(-1) trout mince, 30 g kg(-1) freeze-dried saithe protein and a regular corn snack (control). were produced to study quality changes and storage stability of the products during 6-month storage at 27±2 °C. All products had the same level of water activity and proximate composition except for protein. Fortified snacks had a protein content of 93-98 g kg(-1) , compared with 65 g kg(-1) in the control. A significant increase was observed for peroxide value during storage (0.0 to 2.8 meq kg(-1)). Scores for attributes describing oxidation and off odors and flavors increased after 5-6 months' storage but attributes describing puffed corn snack odor and flavor did not change during storage of any of the products. Extrusion of corn grits with fish flesh/fish protein can be used to produce high-protein products that would be an option to provide nutrient snacks for consumers and to increase fish consumption. Copyright © 2011 Society of Chemical Industry.

  16. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    PubMed

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  17. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity

    PubMed Central

    Oehlke, Kathleen; Behsnilian, Diana; Mayer-Miebach, Esther; Weidler, Peter G.; Greiner, Ralf

    2017-01-01

    Ferulic acid (FA) and tocopherol (Toc) loaded solid lipid nanoparticles (SLN) were prepared by a hot homogenisation method. The particle size distribution, zeta potential and melting behaviour of the SLN as well as the stability, encapsulation efficiency and radical scavenging activity of FA and Toc in the SLN were analysed. The different formulations containing up to 2.8 mg g−1 of FA or Toc were stable during at least 15 weeks of storage at room temperature. Despite partial degradation and / or release of FA and Toc during storage, significant radical scavenging activity was maintained. DSC measurements and radical scavenging tests after different time periods revealed that the re-structuring of the lipid matrix was connected to the enhanced antioxidant activity of Toc but did not affect the activity of FA. PMID:28192494

  19. Mechanistic Approach to Stability Studies as a Tool for the Optimization and Development of New Products Based on L. rhamnosus Lcr35® in Compliance with Current Regulations

    PubMed Central

    Muller, Claudia; Busignies, Virginie; Mazel, Vincent; Forestier, Christiane; Nivoliez, Adrien; Tchoreloff, Pierre

    2013-01-01

    Probiotics are of great current interest in the pharmaceutical industry because of their multiple effects on human health. To beneficially affect the host, an adequate dosage of the probiotic bacteria in the product must be guaranteed from the time of manufacturing to expiration date. Stability test guidelines as laid down by the ICH-Q1A stipulate a minimum testing period of 12 months. The challenge for producers is to reduce this time. In this paper, a mechanistic approach using the Arrhenius model is proposed to predict stability. Applied for the first time to laboratory and industrial probiotic powders, the model was able to provide a reliable mathematical representation of the effects of temperature on bacterial death (R2>0.9). The destruction rate (k) was determined according to the manufacturing process, strain and storage conditions. The marketed product demonstrated a better stability (k = 0.08 months−1) than the laboratory sample (k = 0.80 months−1). With industrial batches, k obtained at 6 months of studies was comparable to that obtained at 12 months, evidence of the model’s robustness. In addition, predicted values at 12 months were greatly similar (±30%) to those obtained by real-time assessing the model’s reliability. This method could be an interesting approach to predict the probiotic stability and could reduce to 6 months the length of stability studies as against 12 (ICH guideline) or 24 months (expiration date). PMID:24244412

  20. Evaluation of Nucleic Acid Stabilization Products for Ambient Temperature Shipping and Storage of Viral RNA and Antibody in a Dried Whole Blood Format

    PubMed Central

    Dauner, Allison L.; Gilliland, Theron C.; Mitra, Indrani; Pal, Subhamoy; Morrison, Amy C.; Hontz, Robert D.; Wu, Shuenn-Jue L.

    2015-01-01

    Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6–97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing. PMID:25940193

  1. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    PubMed

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg 2 NiH 4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg 2 NiH 4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol -1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil.

    PubMed

    Ammar, Imène; BenAmira, Amal; Khemakem, Ibtihel; Attia, Hamadi; Ennouri, Monia

    2017-05-01

    This study was focused on the evaluation of the quality and the oxidative stability of olive oil added with Opuntia ficus - indica flowers. Two different amounts of O. ficus - indica flowers were considered 5 and 15% (w/w). The olive oils were evaluated towards their quality, fatty acids profile, total phenol contents and thermal properties by differential scanning calorimetry. The oxidative stability was also monitored by employing the Rancimat and the oven test based on accelerating the oxidation process during storage. The addition of O. ficus - indica flowers induced an increase in free acidity values and a variation in fatty acids profile of olive oils but values remained under the limits required for an extra-virgin olive oil. The obtained olive oils were nutritionally enriched due to the increase in their phenols content. The oxidative stability was generally improved, mainly in olive oil enriched with 5% Opuntia ficus - indica flowers. These findings proved that this enriched olive oil could be considered as a product with a greater added value.

  3. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  4. Radiation resistant polypropylene blended with mobilizer,. antioxidants and nucleating agent

    NASA Astrophysics Data System (ADS)

    Shamshad, A.; Basfar, A. A.

    2000-03-01

    Post-irradiation storage of medical disposables prepared from isotactic polypropylene renders them brittle due to degradation. To avoid this, isotactic polypropylene [(is)PP] was blended with a mobilizer, dioctyl pthallate (DOP), three antioxidants (hindered amines and a secondary antioxidant) and benzoic acid to obtain radiation-resistant, thermally-stable and transparent material. Different formulations prepared were subjected to gamma radiation to doses of 25 and 50 kGy. Tests of breakage on bending after ageing in an oven at 70°C up to 12 months have shown that the addition of DOP and the antioxidants imparts improved radiation and thermal stability as compared to (is)PP alone or its blend with DOP. All the formulations irradiated or otherwise demonstrated excellent colour stability even after accelerated ageing at 70°C for prolonged periods.

  5. Implementation study of patient-ready syringes containing 25 mg/mL methotrexate solution for use in treating ectopic pregnancy.

    PubMed

    Respaud, R; Gaudy, A S; Arlicot, C; Tournamille, J F; Viaud-Massuard, M C; Elfakir, C; Antier, D

    2014-01-01

    Ectopic pregnancy (EP) is a significant cause of morbidity and mortality during the first trimester of pregnancy. Small unruptured tubal pregnancies can be treated medically with a single dose of methotrexate (MTX). The aim of this study was to evaluate the stability of a 25 mg/mL solution of MTX to devise a secure delivery circuit for the preparation and use of this medication in the management of EP. MTX solutions were packaged in polypropylene syringes, stored over an 84-day period, and protected from light either at +2 to +8°C or at 23°C. We assessed the physical and chemical stability of the solutions at various time points over the storage period. A pharmaceutical delivery circuit was implemented that involved the batch preparation of MTX syringes. We show that 25 mg/mL MTX solutions remain stable over an 84-day period under the storage conditions tested. Standard doses were prepared, ranging from 50 mg to 100 mg. The results of this study suggest that MTX syringes can be prepared in advance by the pharmacy, ready to be dispensed at any time that a diagnosis of EP is made. The high stability of a 25 mg/mL MTX solution in polypropylene syringes makes it possible to implement a flexible and cost-effective delivery circuit for ready-to-use preparations of this drug, providing 24-hour access and preventing treatment delays.

  6. Natural phenolics greatly increase flax (Linum usitatissimum) oil stability.

    PubMed

    Hasiewicz-Derkacz, Karolina; Kulma, Anna; Czuj, Tadeusz; Prescha, Anna; Żuk, Magdalena; Grajzer, Magdalena; Łukaszewicz, Marcin; Szopa, Jan

    2015-06-30

    Flaxseed oil is characterized by high content of essential polyunsaturated fatty acids (PUFA) promoted as a human dietary supplement protecting against atherosclerosis. The disadvantage of the high PUFA content in flax oil is high susceptibility to oxidation, which can result in carcinogenic compound formation. Linola flax cultivar is characterized by high linoleic acid content in comparison to traditional flax cultivars rich in linolenic acid. The changes in fatty acid proportions increase oxidative stability of Linola oil and broaden its use as an edible oil for cooking. However one of investigated transgenic lines has high ALA content making it suitable as omega-3 source. Protection of PUFA oxidation is a critical factor in oil quality. The aim of this study was to investigate the impact of phenylpropanoid contents on the oil properties important during the whole technological process from seed storage to grinding and oil pressing, which may influence health benefits as well as shelf-life, and to establish guidelines for the selection of new cultivars. The composition of oils was determined by chromatographic (GS-FID and LC-PDA-MS) methods. Antioxidant properties of secondary metabolites were analyzed by DPPH method. The stability of oils was investigated: a) during regular storage by measuring acid value peroxide value p-anisidine value malondialdehyde, conjugated dienes and trienes; b) by using accelerated rancidity tests by TBARS reaction; c) by thermoanalytical - differential scanning calorimetry (DSC). In one approach, in order to increase oil stability, exogenous substances added are mainly lipid soluble antioxidants from the isoprenoid pathway, such as tocopherol and carotene. The other approach is based on transgenic plant generation that accumulates water soluble compounds. Increased accumulation of phenolic compounds in flax seeds was achieved by three different strategies that modify genes coding for enzymes from the phenylpropanoid pathway. The three types of transgenic flax had different phenylpropanoid profiles detected in oil, highly increasing its stability. We found that hydrophilic phenylpropanoids more than lipophilic isoprenoid compounds determine oil stability however they can work synergistically. Among phenolics the caffeic acid was most effective in increasing oil stability.

  7. Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.

    PubMed

    Wang, Min; Yang, Zhenzhong; Li, Weihan; Gu, Lin; Yu, Yan

    2016-05-01

    Carbonaceous materials have attracted immense interest as anode materials for Na-ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na-storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O-dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g(-1) at 100 mA g(-1) after 100 cycles and retaining a capacity of 240 mAh g(-1) at 2 A g(-1) after 2000 cycles. The NOC composite with 3D well-defined porosity and N,O-dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O-dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    PubMed Central

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-01-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices. PMID:27546225

  9. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications.

    PubMed

    Zequine, Camila; Ranaweera, C K; Wang, Z; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Gupta, Bipin Kumar; Ramasamy, K; Kahol, P K; Dvornic, P R; Gupta, Ram K

    2016-08-22

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm(2) at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  10. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    NASA Astrophysics Data System (ADS)

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-08-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  11. The potential of kiwifruit puree as a clean label ingredient to stabilize high pressure pasteurized cloudy apple juice during storage.

    PubMed

    Yi, Junjie; Kebede, Biniam; Kristiani, Kristiani; Buvé, Carolien; Van Loey, Ann; Grauwet, Tara; Hendrickx, Marc

    2018-07-30

    In the fruit juice industry, high pressure (HP) processing has become a commercial success. However, enzymatic browning, cloud loss, and flavor changes during storage remain challenges. The aim of this study is to combine kiwifruit puree and HP pasteurization (600 MPa/3 min) to stabilize cloudy apple juice during storage at 4 °C. A wide range of targeted and untargeted quality characteristics was evaluated using a multivariate approach. Due to high ascorbic acid content and high viscosity, kiwifruit puree allowed to prevent enzymatic browning and phase separation of an apple-kiwifruit mixed juice. Besides, no clear changes in organic acids, viscosity, and particle size distribution were detected in mixed juice during storage. Sucrose of apple and mixed juices decreased with glucose and fructose increasing during storage. The volatile changes of both juices behaved similar, mainly esters being degraded. Sensory evaluation demonstrated consumer preferred the aroma of mixed juice compared to apple juice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. An ultrasonic-accelerated oxidation method for determining the oxidative stability of biodiesel.

    PubMed

    Avila Orozco, Francisco D; Sousa, Antonio C; Domini, Claudia E; Ugulino Araujo, Mario Cesar; Fernández Band, Beatriz S

    2013-05-01

    Biodiesel is considered an alternative energy because it is produced from fats and vegetable oils by means of transesterification. Furthermore, it consists of fatty acid alkyl esters (FAAS) which have a great influence on biodiesel fuel properties and in the storage lifetime of biodiesel itself. The biodiesel storage stability is directly related to the oxidative stability parameter (Induction Time - IT) which is determined by means of the Rancimat® method. This method uses condutimetric monitoring and induces the degradation of FAAS by heating the sample at a constant temperature. The European Committee for Standardization established a standard (EN 14214) to determine the oxidative stability of biodiesel, which requires it to reach a minimum induction period of 6h as tested by Rancimat® method at 110°C. In this research, we aimed at developing a fast and simple alternative method to determine the induction time (IT) based on the FAAS ultrasonic-accelerated oxidation. The sonodegradation of biodiesel samples was induced by means of an ultrasonic homogenizer fitted with an immersible horn at 480Watts of power and 20 duty cycles. The UV-Vis spectrometry was used to monitor the FAAS sonodegradation by measuring the absorbance at 270nm every 2. Biodiesel samples from different feedstock were studied in this work. In all cases, IT was established as the inflection point of the absorbance versus time curve. The induction time values of all biodiesel samples determined using the proposed method was in accordance with those measured through the Rancimat® reference method by showing a R(2)=0.998. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Stability of polymyxin B sulfate diluted in 0.9% sodium chloride injection and stored at 4 or 25 degrees C.

    PubMed

    He, Jie; Figueroa, Deborah A; Lim, Tze-Peng; Chow, Diana S; Tam, Vincent H

    2010-07-15

    The stability of polymyxin B sulfate in infusion bags containing 0.9% sodium chloride injection stored at 4 and 25 degrees C was studied. Seven manufacturing batches of polymyxin B from different sources were tested. The products were reconstituted in sterile water for injection, diluted in infusion bags containing 0.9% sodium chloride injection, and stored at room temperature (25 degrees C) or under refrigeration (4 degrees C). Samples were withdrawn at the same time on days 0, 1, 2, 3, 5, and 7. A modified microbiological assay was used to determine the concentrations, as indicated by zones of inhibition, of polymyxin B. Bordetella bronchiseptica served as the reference organism. Stability was defined as retention of >90% of the initial concentration. The decomposition kinetics of polymyxin B in 0.9% sodium chloride injection were evaluated by plotting the polymyxin B concentration remaining versus time. On average, the samples retained over 90% of their initial concentration for up to two days at both storage temperatures. All samples retained over 90% of their initial concentration at 24 hours. The decomposition kinetics of polymyxin B in infusion bags containing 0.9% sodium chloride injection exhibited pseudo-first-order kinetics, with rate constants of 0.024-0.075 day(-1) at 25 degrees C and 0.022-0.043 day(-1) at 4 degrees C (p > 0.05). Polymyxin B was stable for at least one day when stored at 4 or 25 degrees C in infusion bags containing 0.9% sodium chloride injection. Stability did not differ significantly between the two storage temperatures.

  14. Supersaturation and crystallization: non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery.

    PubMed

    Kawakami, Kohsaku

    2017-06-01

    Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use. Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitro-in vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability. Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.

  15. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, S.; Kawase, K.; Iijima, K.

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup andmore » waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)« less

  16. Phenolic and physicochemical stability of a functional beverage powder mixture during storage: effect of the microencapsulant inulin and food ingredients.

    PubMed

    de Beer, Dalene; Pauck, Claire E; Aucamp, Marique; Liebenberg, Wilna; Stieger, Nicole; van der Rijst, Marieta; Joubert, Elizabeth

    2018-06-01

    The need for a convenience herbal iced tea product with reduced kilojoules merited investigation of the shelf-life of powder mixtures containing a green Cyclopia subternata Vogel (honeybush) extract with proven blood glucose-lowering activity and alternative sweetener mixture. Prior to long-term storage testing, the wettability of powder mixtures containing food ingredients and the compatibility of their components were confirmed using the static sessile drop method and isothermal microcalorimetry, respectively. The powders packed in semi-sealed containers remained stable during storage at 25 °C/60% relative humidity (RH) for 6 months, except for small losses of specific phenolic compounds, namely mangiferin, isomangiferin, 3-β-d-glucopyranosyliriflophenone, vicenin-2 and 3',5'-di-β-d-glucopyranosylphloretin, especially when both citric acid and ascorbic acid were present. These acids drastically increased the degradation of phenolic compounds under accelerated storage conditions (40 °C/75% RH). Accelerated storage also caused changes in the appearance of powders and the colour of the reconstituted beverage solutions. Increased moisture content and a w of the powders, as well as moisture released due to dehydration of citric acid monohydrate, contributed to these changes. A low-kilojoule honeybush iced tea powder mixture will retain its functional phenolic compounds and physicochemical properties during shelf-life storage at 25 °C for 6 months. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Storage of red blood cells in a novel polyolefin blood container: a pilot in vitro study.

    PubMed

    Gulliksson, H; Meinke, S; Ravizza, A; Larsson, L; Höglund, P

    2017-01-01

    The present general plasticizer di-2-ethylhexyl-phthalate in polyvinylchloride (PVC) blood bags is only physically dispersed in PVC and will therefore leach into blood components. The objective of this study was to perform a first preliminary red blood cell (RBC) storage evaluation in a new blood bag manufactured of polyolefin without any inclusion of potentially migrating substances. This is a RBC storage study for 42 days. Blood collection was performed in a polyolefin-based PVC-free blood bag. RBCs were prepared within 8 h. Two different RBC additive solutions were used, either PAGGS-M or PAGGG-M. We weekly measured pH, K + , glucose, lactate, haemolysis, red cell ATP and 2,3-DPG. RBC storage in PAGGS-M resulted in high haemolysis levels already after 21 days, exceeding the European maximum limit of 0·8%, and low ATP levels by the end of the storage period. With PAGGG-M, haemolysis exceeded 0·8% after 28 days of storage. For additional parameters, the results were comparable to those of previous studies in conventional blood bags. This is a first preliminary study of RBC storage in a new type of blood bags. PAGGG-M gave encouraging results except for its inability to prevent increased haemolysis. There will be room for further development of RBC additive solutions to address the haemolysis problems. Plasma should also be tested regarding the stability of coagulation and activation pathway variables. There may also be a potential for future use of the bag for preparation of pooled buffy-coat-derived platelets. © 2016 International Society of Blood Transfusion.

  18. Consumer acceptance and stability of spray dried betanin in model juices.

    PubMed

    Kaimainen, Mika; Laaksonen, Oskar; Järvenpää, Eila; Sandell, Mari; Huopalahti, Rainer

    2015-11-15

    Spray dried beetroot powder was used to colour model juices, and the consumer acceptance of the juices and stability of the colour during storage at 60 °C, 20 °C, 4 °C, and -20 °C were studied. The majority of the consumers preferred the model juices coloured with anthocyanins or beetroot extract over model juices coloured with spray dried beetroot powder. The consumers preferred more intensely coloured samples over lighter samples. Spray dried betanin samples were described as 'unnatural' and 'artificial' whereas the colour of beetroot extract was described more 'natural' and 'real juice'. No beetroot-derived off-odours or off-flavours were perceived in the model juices coloured with beetroot powder. Colour stability in model juices was greatly dependent on storage temperature with better stability at lower temperatures. Colour stability in the spray dried powder was very good at 20 °C. Betacyanins from beetroot could be a potential colourant for food products that are stored cold. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo

    2014-05-01

    The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Stability of tacrolimus injection diluted in 0.9% sodium chloride injection and stored in Excel bags.

    PubMed

    Myers, Alan L; Zhang, Yanping; Kawedia, Jitesh D; Shank, Brandon R; Deaver, Melissa A; Kramer, Mark A

    2016-12-15

    The chemical stability and physical compatibility of tacrolimus i.v. infusion solutions prepared in Excel bags and stored at 23 or 4 °C for up to nine days were studied. Tacrolimus admixtures (2, 4, and 8 μg/mL) were prepared in Excel bags using 0.9% sodium chloride injection and stored at 23 °C without protection from light or at 4 °C in the dark. Test samples were withdrawn from triplicate bag solutions immediately after preparation and at predetermined time intervals (1, 3, 5, 7, and 9 days). Chemical stability was assessed by measuring tacrolimus concentrations using a validated stability-indicating high-performance liquid chromatography assay. The physical stability of the admixtures was assessed by visual examination and by measuring turbidity, particle size, and drug content. All test solutions stored at 23 or 4 °C had a no greater than 6% loss of the initial tacrolimus concentration throughout the nine-day study period. All test samples of tacrolimus admixtures, under both storage conditions, were without precipitation and remained clear initially and throughout the nine-day observation period. Changes in turbidities were minor; measured particulates remained few in number in all samples throughout the study. Extemporaneously prepared infusion solutions of tacrolimus 2, 4, and 8 μg/mL in 0.9% sodium chloride injection in Excel bags were chemically and physically stable for at least nine days when stored at room temperature (23 °C) without protection from light and when stored in a refrigerator (4 °C) in the dark. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

Top