Reducing the Cost of System Administration of a Disk Storage System Built from Commodity Components
2000-05-01
quickly by using checkpointing and roll-forward logs. Microsoft Tiger is a video server built from commodity PCs which they call “cubs” [ BBD +96, BFD97...20 cents per megabyte using street prices of components. 3.2.2 Redundancy In designing the TD prototype, we have taken care to ensure it does not have... Td /GridPix/, 1999. [ATP99] Satoshi Asami, Nisha Talagala, and David Patterson. Designing a self-maintaining storage system. In Proceedings of the
Mass storage system reference model, Version 4
NASA Technical Reports Server (NTRS)
Coleman, Sam (Editor); Miller, Steve (Editor)
1993-01-01
The high-level abstractions that underlie modern storage systems are identified. The information to generate the model was collected from major practitioners who have built and operated large storage facilities, and represents a distillation of the wisdom they have acquired over the years. The model provides a common terminology and set of concepts to allow existing systems to be examined and new systems to be discussed and built. It is intended that the model and the interfaces identified from it will allow and encourage vendors to develop mutually-compatible storage components that can be combined to form integrated storage systems and services. The reference model presents an abstract view of the concepts and organization of storage systems. From this abstraction will come the identification of the interfaces and modules that will be used in IEEE storage system standards. The model is not yet suitable as a standard; it does not contain implementation decisions, such as how abstract objects should be broken up into software modules or how software modules should be mapped to hosts; it does not give policy specifications, such as when files should be migrated; does not describe how the abstract objects should be used or connected; and does not refer to specific hardware components. In particular, it does not fully specify the interfaces.
A biometric access personal optical storage device
NASA Astrophysics Data System (ADS)
Davies, David H.; Ray, Steve; Gurkowski, Mark; Lee, Lane
2007-01-01
A portable USB2.0 personal storage device that uses built-in encryption and allows data access through biometric scanning of a finger print is described. Biometric image derived templates are stored on the removable 32 mm write once (WO) media. The encrypted templates travel with the disc and allow access to the data providing the biometric feature (e.g. the finger itself) is present. The device also allows for export and import of the templates under secure key exchange protocols. The storage system is built around the small form factor optical engine that uses a tilt arm rotary actuator and front surface media.
Monitoring, safety systems for LNG and LPG operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
True, W.R.
Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.
Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Yu, Wenhua; Zhao, Weihuan
Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degreesmore » C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.« less
Energy Storage Systems Are Coming: Are You Ready
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, David R.
2015-12-05
Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.
NAFFS: network attached flash file system for cloud storage on portable consumer electronics
NASA Astrophysics Data System (ADS)
Han, Lin; Huang, Hao; Xie, Changsheng
Cloud storage technology has become a research hotspot in recent years, while the existing cloud storage services are mainly designed for data storage needs with stable high speed Internet connection. Mobile Internet connections are often unstable and the speed is relatively low. These native features of mobile Internet limit the use of cloud storage in portable consumer electronics. The Network Attached Flash File System (NAFFS) presented the idea of taking the portable device built-in NAND flash memory as the front-end cache of virtualized cloud storage device. Modern portable devices with Internet connection have built-in more than 1GB NAND Flash, which is quite enough for daily data storage. The data transfer rate of NAND flash device is much higher than mobile Internet connections[1], and its non-volatile feature makes it very suitable as the cache device of Internet cloud storage on portable device, which often have unstable power supply and intermittent Internet connection. In the present work, NAFFS is evaluated with several benchmarks, and its performance is compared with traditional network attached file systems, such as NFS. Our evaluation results indicate that the NAFFS achieves an average accessing speed of 3.38MB/s, which is about 3 times faster than directly accessing cloud storage by mobile Internet connection, and offers a more stable interface than that of directly using cloud storage API. Unstable Internet connection and sudden power off condition are tolerable, and no data in cache will be lost in such situation.
Operational adaptability evaluation index system of pumped storage in UHV receiving-end grids
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Feng, Junshu
2017-01-01
Pumped storage is an effective solution to deal with the emergency reserve shortage, renewable energy accommodating and peak-shaving problems in ultra-high voltage (UHV) transmission receiving-end grids. However, governments and public opinion in China tend to evaluate the operational effectiveness of pumped storage using annual utilization hour, which may result in unreasonable and unnecessary dispatch of pumped storage. This paper built an operational adaptability evaluation index system for pumped storage in UHV-receiving end grids from three aspects: security insurance, peak-shaving and renewable energy accommodating, which can provide a comprehensive and objective way to evaluate the operational performance of a pumped storage station.
Building and managing high performance, scalable, commodity mass storage systems
NASA Technical Reports Server (NTRS)
Lekashman, John
1998-01-01
The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.
Research on an IP disaster recovery storage system
NASA Astrophysics Data System (ADS)
Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng
2008-12-01
According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.
Use of HSM with Relational Databases
NASA Technical Reports Server (NTRS)
Breeden, Randall; Burgess, John; Higdon, Dan
1996-01-01
Hierarchical storage management (HSM) systems have evolved to become a critical component of large information storage operations. They are built on the concept of using a hierarchy of storage technologies to provide a balance in performance and cost. In general, they migrate data from expensive high performance storage to inexpensive low performance storage based on frequency of use. The predominant usage characteristic is that frequency of use is reduced with age and in most cases quite rapidly. The result is that HSM provides an economical means for managing and storing massive volumes of data. Inherent in HSM systems is system managed storage, where the system performs most of the work with minimum operations personnel involvement. This automation is generally extended to include: backup and recovery, data duplexing to provide high availability, and catastrophic recovery through use of off-site storage.
NASA Astrophysics Data System (ADS)
Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico
2017-06-01
CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.
A system for the input and storage of data in the Besm-6 digital computer
NASA Technical Reports Server (NTRS)
Schmidt, K.; Blenke, L.
1975-01-01
Computer programs used for the decoding and storage of large volumes of data on the the BESM-6 computer are described. The following factors are discussed: the programming control language allows the programs to be run as part of a modular programming system used in data processing; data control is executed in a hierarchically built file on magnetic tape with sequential index storage; and the programs are not dependent on the structure of the data.
Town Stems Major Water Losses With New Lines and Storage Tank
With the help of EPA funding, the Town of Chapmanville in Logan County, WV, has a new drinking water storage tank and distribution lines to replace a system built in the late 1940s that was “leaking like a sieve” and posed a risk to public health.
NASA Technical Reports Server (NTRS)
Cohen, B. M.; Rice, R. E.; Rowny, P. E.
1978-01-01
A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed.
Vacuum system for room temperature X-ray lithography source (XLS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuchman, J.C.
1988-09-30
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
Vacuum system for room temperature X-ray lithography source (XLS)
NASA Astrophysics Data System (ADS)
Schuchman, J. C.
1988-09-01
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
Energy Storage System Safety: Plan Review and Inspection Checklist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Pam C.; Conover, David R.
Codes, standards, and regulations (CSR) governing the design, construction, installation, commissioning, and operation of the built environment are intended to protect the public health, safety, and welfare. While these documents change over time to address new technology and new safety challenges, there is generally some lag time between the introduction of a technology into the market and the time it is specifically covered in model codes and standards developed in the voluntary sector. After their development, there is also a timeframe of at least a year or two until the codes and standards are adopted. Until existing model codes andmore » standards are updated or new ones are developed and then adopted, one seeking to deploy energy storage technologies or needing to verify the safety of an installation may be challenged in trying to apply currently implemented CSRs to an energy storage system (ESS). The Energy Storage System Guide for Compliance with Safety Codes and Standards1 (CG), developed in June 2016, is intended to help address the acceptability of the design and construction of stationary ESSs, their component parts, and the siting, installation, commissioning, operations, maintenance, and repair/renovation of ESS within the built environment.« less
Earth Science Data Grid System
NASA Astrophysics Data System (ADS)
Chi, Y.; Yang, R.; Kafatos, M.
2004-05-01
The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
Interest has been shown in the concept of an energy storage system aimed at leveling load and improving energy efficiency by charging during vehicle regeneration and discharging during running. Such a system represents an efficient countermeasure against pantograph point voltage drop, power load fluctuation and regenerative power loss. We selected an EDLC model as an energy storage medium and a step-up/step-down chopper as a power converter to exchange power between the storage medium and overhead lines. Basic verification was conducted using a mini-model for DC 400V, demonstrating characteristics suitable for its use as an energy storage system. Based on these results, an energy storage system was built for DC 600V and a verification test conducted in conjunction with the Enoshima Electric Railway Co. Ltd. This paper gives its experimental analysis of voltage drop compensation in a DC electrified railway and some discussions based on the test.
The Development of Small Solar Concentrating Systems with Heat Storage for Rural Food Preparation
NASA Astrophysics Data System (ADS)
van den Heetkamp, R. R. J.
A system, consisting of a parabolic reflector mounted on a polar axis tracker, has been designed and built. Air at atmospheric pressure is heated by the concentrated solar radiation to temperatures of up to 400°C as it is sucked through the receiver and into the pebble-bed heat storage unit, by means of a fan at the bottom of the storage. The stored heat is recovered by the reversal of the fan and the resulting hot air can be used in a convection oven and other appliances. This report discusses practical aspects, as well as preliminary test results, of such a system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo
A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less
Notes on a storage manager for the Clouds kernel
NASA Technical Reports Server (NTRS)
Pitts, David V.; Spafford, Eugene H.
1986-01-01
The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.
Earth Science Data Grid System
NASA Astrophysics Data System (ADS)
Chi, Y.; Yang, R.; Kafatos, M.
2004-12-01
The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.
Emerging Cyber Infrastructure for NASA's Large-Scale Climate Data Analytics
NASA Astrophysics Data System (ADS)
Duffy, D.; Spear, C.; Bowen, M. K.; Thompson, J. H.; Hu, F.; Yang, C. P.; Pierce, D.
2016-12-01
The resolution of NASA climate and weather simulations have grown dramatically over the past few years with the highest-fidelity models reaching down to 1.5 KM global resolutions. With each doubling of the resolution, the resulting data sets grow by a factor of eight in size. As the climate and weather models push the envelope even further, a new infrastructure to store data and provide large-scale data analytics is necessary. The NASA Center for Climate Simulation (NCCS) has deployed the Data Analytics Storage Service (DASS) that combines scalable storage with the ability to perform in-situ analytics. Within this system, large, commonly used data sets are stored in a POSIX file system (write once/read many); examples of data stored include Landsat, MERRA2, observing system simulation experiments, and high-resolution downscaled reanalysis. The total size of this repository is on the order of 15 petabytes of storage. In addition to the POSIX file system, the NCCS has deployed file system connectors to enable emerging analytics built on top of the Hadoop File System (HDFS) to run on the same storage servers within the DASS. Coupled with a custom spatiotemporal indexing approach, users can now run emerging analytical operations built on MapReduce and Spark on the same data files stored within the POSIX file system without having to make additional copies. This presentation will discuss the architecture of this system and present benchmark performance measurements from traditional TeraSort and Wordcount to large-scale climate analytical operations on NetCDF data.
Energizing the future: New battery technology a reality today
NASA Astrophysics Data System (ADS)
Chase, Henry; Bitterly, Jack; Federici, Al
1997-04-01
The U.S. Flywheel Systems' flywheel energy storage system could be the answer to a critical question: How do we replace conventional chemical batteries with a more-efficient system that lasts longer and is non-polluting? The new product, which has a virtually unlimited life expectancy, has a storage capacity four times greater per pound than conventional chemical batteries. USFS designed and built each component of the system—from the specially wound carbon fiber wheel, the magnetic bearing, the motor/generator, and the electronic control. The flywheel is designed to spin at speeds up to 100,000 rpm and deliver about 50 horsepower using a proprietary high-speed, high-power-density motor/generator that is the size of a typical coffee mug. Some of the important markets and applications for the flywheel storage system include electric vehicles, back-up power supply, peak power smoothing, satellite energy storage systems, and locomotive power.
Experimental results from a laboratory-scale molten salt thermocline storage
NASA Astrophysics Data System (ADS)
Seubert, Bernhard; Müller, Ralf; Willert, Daniel; Fluri, Thomas
2017-06-01
Single-tank storage presents a valid option for cost reduction in thermal energy storage systems. For low-temperature systems with water as storage medium this concept is widely implemented and tested. For high-temperature systems very limited experimental data are publicly available. To improve this situation a molten salt loop for experimental testing of a single-tank storage prototype was designed and built at Fraunhofer ISE. The storage tank has a volume of 0.4 m3 or a maximum capacity of 72 kWhth. The maximum charging and discharging power is 60 kW, however, a bypass flow control system enables to operate the system also at a very low power. The prototype was designed to withstand temperatures up to 550 °C. A cascaded insulation with embedded heating cables can be used to reduce the effect of heat loss on the storage which is susceptible to edge effects due to its small size. During the first tests the operating temperatures were adapted to the conditions in systems with thermal oil as heat transfer fluid and a smaller temperature difference. A good separation between cold and hot fluid was achieved with temperature gradients of 95 K within 16 cm.
Decibel: The Relational Dataset Branching System
Maddox, Michael; Goehring, David; Elmore, Aaron J.; Madden, Samuel; Parameswaran, Aditya; Deshpande, Amol
2017-01-01
As scientific endeavors and data analysis become increasingly collaborative, there is a need for data management systems that natively support the versioning or branching of datasets to enable concurrent analysis, cleaning, integration, manipulation, or curation of data across teams of individuals. Common practice for sharing and collaborating on datasets involves creating or storing multiple copies of the dataset, one for each stage of analysis, with no provenance information tracking the relationships between these datasets. This results not only in wasted storage, but also makes it challenging to track and integrate modifications made by different users to the same dataset. In this paper, we introduce the Relational Dataset Branching System, Decibel, a new relational storage system with built-in version control designed to address these shortcomings. We present our initial design for Decibel and provide a thorough evaluation of three versioned storage engine designs that focus on efficient query processing with minimal storage overhead. We also develop an exhaustive benchmark to enable the rigorous testing of these and future versioned storage engine designs. PMID:28149668
Novel Algorithm/Hardware Partnerships for Real-Time Nonlinear Control
2014-02-28
Investigate Tempest Technologies 28 February 2014 Abstract The real-time implementation of controls in nonlinear systems remains one of the great...button for resetting the FPGA board in Max-Plus MVM FPGA system. We utilize the built-in 32MB BPI flash as storage for the Tempest Max-Plus MVM
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.
Storage system architectures and their characteristics
NASA Technical Reports Server (NTRS)
Sarandrea, Bryan M.
1993-01-01
Not all users storage requirements call for 20 MBS data transfer rates, multi-tier file or data migration schemes, or even automated retrieval of data. The number of available storage solutions reflects the broad range of user requirements. It is foolish to think that any one solution can address the complete range of requirements. For users with simple off-line storage requirements, the cost and complexity of high end solutions would provide no advantage over a more simple solution. The correct answer is to match the requirements of a particular storage need to the various attributes of the available solutions. The goal of this paper is to introduce basic concepts of archiving and storage management in combination with the most common architectures and to provide some insight into how these concepts and architectures address various storage problems. The intent is to provide potential consumers of storage technology with a framework within which to begin the hunt for a solution which meets their particular needs. This paper is not intended to be an exhaustive study or to address all possible solutions or new technologies, but is intended to be a more practical treatment of todays storage system alternatives. Since most commercial storage systems today are built on Open Systems concepts, the majority of these solutions are hosted on the UNIX operating system. For this reason, some of the architectural issues discussed focus around specific UNIX architectural concepts. However, most of the architectures are operating system independent and the conclusions are applicable to such architectures on any operating system.
Design Considerations of a Solid State Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz
2016-11-01
With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Improvement and scale-up of the NASA Redox storage system
NASA Technical Reports Server (NTRS)
Reid, M. A.; Thaller, L. H.
1980-01-01
A preprototype full-function 1.0 kW Redox system (2 kW peak) with 11 kW storage capacity has been built and integrated with the NASA/DOE photovoltaic test facility. The system includes four substacks of 39 cells each (1/3 sq ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Technological advances in membrane and electrodes and results of multicell stack tests are reviewed.
Beam vacuum system of Brookhaven`s muon storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hseuth, H.C.; Snydstrup, L.; Mapes, M.
1995-11-01
A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10{sup -7} Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system willmore » be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 {ell}/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented.« less
NV Energy Electricity Storage Valuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.
2013-06-30
This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp ratemore » resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.« less
Final prototype of magnetically suspended flywheel energy storage system
NASA Technical Reports Server (NTRS)
Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.
1991-01-01
A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.
Final prototype of magnetically suspended flywheel energy storage system
NASA Astrophysics Data System (ADS)
Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.
A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.
Automation of NDE on RSRM Metal Components
NASA Technical Reports Server (NTRS)
Hartman, John; Kirby, Mark; McCool, Alex (Technical Monitor)
2002-01-01
An automated eddy current system has been designed and built, and is being implemented to inspect RSRM (Space Shuttle) metal components. The system provides a significant increase in inspection reliability, as well as other benefits such as data storage, chemical waste reduction and reduction in overall process time. This paper is in viewgraph form.
Design of a high temperature subsurface thermal energy storage system
NASA Astrophysics Data System (ADS)
Zheng, Qi
Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher horizontal-to-vertical permeability ratio is favored by the storage system. A basin-shape reservoir is more favored than a flat reservoir, while a flat reservoir is better than a dome-shape reservoir. The effect of aquifer stratification is variable: it depends on the relative position of the well screen and the impermeable lenses within the reservoir. From the operational aspect, the well screen position is crucial and properly shortening the screen length can help heat recovery. The proportion of the injection/storage/recovery processes within a cycle, rather than their exact lengths, affects the storage efficiency. Reservoir preheating helps improve the energy storage efficiency for the first several cycles. However, it does not contribute much to the system performance in the long run. Simulations also indicate that buoyancy effect is of significant importance in heat distribution and the plume migration. Reducing the gravity override effect of the heat plume could be an important consideration in efficiency optimization.
The storage system of PCM based on random access file system
NASA Astrophysics Data System (ADS)
Han, Wenbing; Chen, Xiaogang; Zhou, Mi; Li, Shunfen; Li, Gezi; Song, Zhitang
2016-10-01
Emerging memory technologies such as Phase change memory (PCM) tend to offer fast, random access to persistent storage with better scalability. It's a hot topic of academic and industrial research to establish PCM in storage hierarchy to narrow the performance gap. However, the existing file systems do not perform well with the emerging PCM storage, which access storage medium via a slow, block-based interface. In this paper, we propose a novel file system, RAFS, to bring about good performance of PCM, which is built in the embedded platform. We attach PCM chips to the memory bus and build RAFS on the physical address space. In the proposed file system, we simplify traditional system architecture to eliminate block-related operations and layers. Furthermore, we adopt memory mapping and bypassed page cache to reduce copy overhead between the process address space and storage device. XIP mechanisms are also supported in RAFS. To the best of our knowledge, we are among the first to implement file system on real PCM chips. We have analyzed and evaluated its performance with IOZONE benchmark tools. Our experimental results show that the RAFS on PCM outperforms Ext4fs on SDRAM with small record lengths. Based on DRAM, RAFS is significantly faster than Ext4fs by 18% to 250%.
Optical mass memory investigation
NASA Technical Reports Server (NTRS)
1980-01-01
The MASTER 1 optical mass storage system advanced working model (AWM) was designed to demonstrate recording and playback of imagery data and to enable quantitative data to be derived as to the statistical distribution of raw errors experienced through the system. The AWM consists of two subsystems, the recorder and storage and retrieval. The recorder subsystem utilizes key technologies such as an acoustic travelling wave lens to achieve recording of digital data on fiche at a rate of 30 Mbits/sec, whereas the storage and retrieval reproducer subsystem utilizes a less complex optical system that employs an acousto-optical beam deflector to achieve data readout at a 5 Mbits/sec rate. The system has the built in capability for detecting and collecting error statistics. The recorder and storage and retrieval subsystems operate independent of one another and are each constructed in modular form with each module performing independent functions. The operation of each module and its interface to other modules is controlled by one controller for both subsystems.
The ERDA/LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Forestieri, A. F.
1977-01-01
A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.
Viability of using energy storage for frequency regulation on power grid
NASA Astrophysics Data System (ADS)
Lim, Y. S.; Hau, L. C.; Loh, K. Y.; Lim, K. Y.; Lyons, P. F.; Taylor, P. C.
2018-05-01
This project is about the development and integration of a real-time network simulator in the laboratory using hardware in the loop (HIL) for the purpose of frequency regulation. Frequency regulation is done using the energy storage system (ESS) and a real-time network test bed developed in the smart energy laboratory in Newcastle University. An IEEE Test System was built in the OPAL-RT network simulator to mimic the power grid with renewable energy sources. The study demonstrates the viability of using an ESS to regulate the frequency under an increased penetration of renewable energy sources.
Improvement and scale-up of the NASA Redox storage system
NASA Technical Reports Server (NTRS)
Reid, M. A.; Thaller, L. H.
1980-01-01
A preprototype 1.0 kW redox system (2 kW peak) with 11 kWh storage capacity was built and integrated with the NASA/DOE photovoltaic test facility at NASA Lewis. This full function redox system includes four substacks of 39 cells each (1/3 cu ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Recent membrane and electrode advances are summarized and the results of multicell stack tests of 1 cu ft are described.
Organizing and Typing Persistent Objects Within an Object-Oriented Framework
NASA Technical Reports Server (NTRS)
Madany, Peter W.; Campbell, Roy H.
1991-01-01
Conventional operating systems provide little or no direct support for the services required for an efficient persistent object system implementation. We have built a persistent object scheme using a customization and extension of an object-oriented operating system called Choices. Choices includes a framework for the storage of persistent data that is suited to the construction of both conventional file system and persistent object system. In this paper we describe three areas in which persistent object support differs from file system support: storage organization, storage management, and typing. Persistent object systems must support various sizes of objects efficiently. Customizable containers, which are themselves persistent objects and can be nested, support a wide range of object sizes in Choices. Collections of persistent objects that are accessed as an aggregate and collections of light-weight persistent objects can be clustered in containers that are nested within containers for larger objects. Automated garbage collection schemes are added to storage management and have a major impact on persistent object applications. The Choices persistent object store provides extensible sets of persistent object types. The store contains not only the data for persistent objects but also the names of the classes to which they belong and the code for the operation of the classes. Besides presenting persistent object storage organization, storage management, and typing, this paper discusses how persistent objects are named and used within the Choices persistent data/file system framework.
NASA Astrophysics Data System (ADS)
Zoschke, Theda; Seubert, Bernhard; Fluri, Thomas
2017-06-01
An existing linear Fresnel power plant with ORC process located in Ben Guerir, Morocco, is retrofitted with a thermal energy storage system and additional collector loops. Two different plant configurations are investigated in this paper. In the first configuration two separate solar fields are built and only the minor one can charge the storage. In the second configuration, there is only one large solar field which offers more flexibility. Two different control strategies are assessed by comparing simulation results. It shows that the simulations of the systems with two solar fields results in higher energy yields throughout the year, but the power production of the system with one solar field is much more flexible and demand oriented. Also it offers great potential for improvement when it comes to weather forecasting.
Using Cloud-based Storage Technologies for Earth Science Data
NASA Astrophysics Data System (ADS)
Michaelis, A.; Readey, J.; Votava, P.
2016-12-01
Cloud based infrastructure may offer several key benefits of scalability, built in redundancy and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and software systems developed for NASA data repositories were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Object storage services are provided through all the leading public (Amazon Web Service, Microsoft Azure, Google Cloud, etc.) and private (Open Stack) clouds, and may provide a more cost-effective means of storing large data collections online. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows superior performance for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.
Field experience with aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Kannberg, L. D.
1987-11-01
Aquifer thermal energy storage (ATES) has the potential to provide storage for large-scale building heating and cooling at many sites in the US. However, implementation requires careful attention to site geohydraulic and geochemical characteristics. Field tests in the US have shown the over 60% of the heat injected at temperatures over 100 C can be recovered on a seasonal cycle. Similarly, aquifer storage of shilled ground water can provide building cooling with annual cooling electrical energy reductions of over 50% and a reduction in summer peak cooling electrical usage by as much as a factor of 20. A number of projects have been built and operated around the world. China has installed numerous ATES systems in many major cities. Installations in Europe and Scandinavia are almost exclusively low-temperature heat storage systems that use heat pumps. Two high-temperature systems (over 100 C) are in operation or undergoing preliminary testing: one in Denmark, the other in France. Heat ATES often requires water treatment to prevent precipitation of calcium and magnesium carbonates. At some sites, consideration of other geochemical and microbiological issues (such as iron bacteria) must be resolved.
Operation and maintenance of the SOL-DANCE building solar system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-07-29
The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less
Safety Outreach and Incident Response Stakeholder Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewater, David Martin; Conover, David
2016-06-01
The objective of this document is to set out a strategy to reach all stakeholders that can impact the timely deployment of safe stationary energy storage systems in the built environment with information on ESS technology and safety that is relevant to their role in deployment of the technology.
NASA Technical Reports Server (NTRS)
Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.
2000-01-01
The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.
Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.
2007-01-01
This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.
The Hall D solenoid helium refrigeration system at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.
Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields withmore » liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.« less
Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas
NASA Technical Reports Server (NTRS)
1980-01-01
A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.
Solar space and water heating system at Stanford University, Central Food Services Building
NASA Astrophysics Data System (ADS)
1980-05-01
This active hydronic domestic hot water and space heating system was 840 sq ft of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices.
Proposal for massively parallel data storage system
NASA Technical Reports Server (NTRS)
Mansuripur, M.
1992-01-01
An architecture for integrating large numbers of data storage units (drives) to form a distributed mass storage system is proposed. The network of interconnected units consists of nodes and links. At each node there resides a controller board, a data storage unit and, possibly, a local/remote user-terminal. The links (twisted-pair wires, coax cables, or fiber-optic channels) provide the communications backbone of the network. There is no central controller for the system as a whole; all decisions regarding allocation of resources, routing of messages and data-blocks, creation and distribution of redundant data-blocks throughout the system (for protection against possible failures), frequency of backup operations, etc., are made locally at individual nodes. The system can handle as many user-terminals as there are nodes in the network. Various users compete for resources by sending their requests to the local controller-board and receiving allocations of time and storage space. In principle, each user can have access to the entire system, and all drives can be running in parallel to service the requests for one or more users. The system is expandable up to a maximum number of nodes, determined by the number of routing-buffers built into the controller boards. Additional drives, controller-boards, user-terminals, and links can be simply plugged into an existing system in order to expand its capacity.
NASA Technical Reports Server (NTRS)
1977-01-01
Components of a videotape storage and retrieval system originally developed for NASA have been adapted as a tool for law enforcement agencies. Ampex Corp., Redwood City, Cal., built a unique system for NASA-Marshall. The first application of professional broadcast technology to computerized record-keeping, it incorporates new equipment for transporting tapes within the system. After completing the NASA system, Ampex continued development, primarily to improve image resolution. The resulting advanced system, known as the Ampex Videofile, offers advantages over microfilm for filing, storing, retrieving, and distributing large volumes of information. The system's computer stores information in digital code rather than in pictorial form. While microfilm allows visual storage of whole documents, it requires a step before usage--developing the film. With Videofile, the actual document is recorded, complete with photos and graphic material, and a picture of the document is available instantly.
Chuai, Xiaowei; Huang, Xianjin; Lu, Qinli; Zhang, Mei; Zhao, Rongqin; Lu, Junyu
2015-11-03
China is undergoing rapid urbanization, enlarging the construction industry, greatly expanding built-up land, and generating substantial carbon emissions. We calculated both the direct and indirect carbon emissions from energy consumption (anthropogenic emissions) in the construction sector and analyzed built-up land expansion and carbon storage losses from the terrestrial ecosystem. According to our study, the total anthropogenic carbon emissions from the construction sector increased from 3,905×10(4) to 103,721.17×10(4) t from 1995 to 2010, representing 27.87%-34.31% of the total carbon emissions from energy consumption in China. Indirect carbon emissions from other industrial sectors induced by the construction sector represented approximately 97% of the total anthropogenic carbon emissions of the sector. These emissions were mainly concentrated in seven upstream industry sectors. Based on our assumptions, built-up land expansion caused 3704.84×10(4) t of carbon storage loss from vegetation between 1995 and 2010. Cropland was the main built-up land expansion type across all regions. The study shows great regional differences. Coastal regions showed dramatic built-up land expansion, greater carbon storage losses from vegetation, and greater anthropogenic carbon emissions. These regional differences were the most obvious in East China followed by Midsouth China. These regions are under pressure for strong carbon emissions reduction.
Follak, A C; Miotti, L L; Lenzi, T L; Rocha, R O; Soares, F Z
The purpose of this study was to evaluate the influence of water storage on bond strength of multimode adhesive systems to artificially induced caries-affected dentin. One hundred twelve sound bovine incisors were randomly assigned to 16 groups (n=7) according to the dentin condition (sound; SND, artificially induced caries-affected dentin; CAD, cariogenic challenge by pH cycling for 14 days); the adhesive system (SU, Scotchbond Universal Adhesive; AB, All-Bond Universal; PB, Prime & Bond Elect; SB, Adper Single Bond 2; and CS, Clearfil SE Bond), and the etching strategy (etch-and-rinse and self-etch). All adhesive systems were applied under manufacturer's instructions to flat dentin surfaces, and a composite block was built up on each dentin surface. After 24 hours of water storage, the specimens were sectioned into stick-shaped specimens (0.8 mm 2 ) and submitted to a microtensile test immediately (24 hours) or after six months of water storage. Bond strength data (MPa) were analyzed using three-way repeated-measures analysis of variance and post hoc Tukey test (α=5%), considering each substrate separately (SND and CAD). The etching strategy did not influence the bond strength of multimode adhesives, irrespective of the dentin condition. Water storage only reduced significantly the bond strength to CAD. The degradation of bond strength due to water storage was more pronounced in CAD, regardless of the etching strategy.
Programmable, automated transistor test system
NASA Technical Reports Server (NTRS)
Truong, L. V.; Sundburg, G. R.
1986-01-01
A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.
Yakami, Masahiro; Ishizu, Koichi; Kubo, Takeshi; Okada, Tomohisa; Togashi, Kaori
2011-04-01
Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. "Ordinary" hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.
NASA Astrophysics Data System (ADS)
Suzuki, Soh Yamagata; Yamauchi, Masanori; Nakao, Mikihiko; Itoh, Ryosuke; Fujii, Hirofumi
2000-10-01
We built a data acquisition system for the BELLE experiment. The system was designed to cope with the average trigger rate up to 500 Hz at the typical event size of 30 kB. This system has five components: (1) the readout sequence controller, (2) the FASTBUS-TDC readout systems using charge-to-time conversion, (3) the barrel shifter event builder, (4) the parallel online computing farm, and (5) the data transfer system to the mass storage. This system has been in operation for physics data taking since June 1999 without serious problems.
2000-10-27
In the Space Station Processing Facility, the Italian-built Multi-Purpose Logistics Module “Raffaello” rests on a workstand where its weight and balance will be evaluated. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001
DOE LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Cull, R. C.; Forestieri, A. F.
1978-01-01
The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.
An overview of Ball Aerospace cryogen storage and delivery systems
NASA Astrophysics Data System (ADS)
Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.
2015-12-01
Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.
Building an organic block storage service at CERN with Ceph
NASA Astrophysics Data System (ADS)
van der Ster, Daniel; Wiebalck, Arne
2014-06-01
Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an "organic" storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.
National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.
2012-06-01
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less
Bacteriorhodopsin films for optical signal processing and data storage
NASA Technical Reports Server (NTRS)
Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)
1996-01-01
This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.
Naval applications of SC magnet systems
NASA Astrophysics Data System (ADS)
Gubser, D. U.
The US Navy continues to develop advanced systems that utilize superconducting (SC) magnets. Recent impetus toward the “all” electric ship is accelerating the desire to produce “engineering” prototypes that can be field tested to ascertain the overall impact of these new technologies toward meeting Navy mission requirements. SC magnets for motors, energy storage, mine sweeping, and RF amplifiers are all being built and tested. This article provides a brief description of these projects.
CHICKEN FEATHER FIBERS FOR HYDROGEN STORAGE
Summary of Findings (Outputs/Outcomes):
A Sievert’s apparatus for measuring the H2 storage capacities of adsorbents was built. The nitrogen adsorption and H2 storage test performed on the pyrolyzed chicken feather fibers (PCFF) prepared by a p...
NASA Astrophysics Data System (ADS)
Chao, Woodrew; Ho, Bruce K. T.; Chao, John T.; Sadri, Reza M.; Huang, Lu J.; Taira, Ricky K.
1995-05-01
Our tele-medicine/PACS archive system is based on a three-tier distributed hierarchical architecture, including magnetic disk farms, optical jukebox, and tape jukebox sub-systems. The hierarchical storage management (HSM) architecture, built around a low cost high performance platform [personal computers (PC) and Microsoft Windows NT], presents a very scaleable and distributed solution ideal for meeting the needs of client/server environments such as tele-medicine, tele-radiology, and PACS. These image based systems typically require storage capacities mirroring those of film based technology (multi-terabyte with 10+ years storage) and patient data retrieval times at near on-line performance as demanded by radiologists. With the scaleable architecture, storage requirements can be easily configured to meet the needs of the small clinic (multi-gigabyte) to those of a major hospital (multi-terabyte). The patient data retrieval performance requirement was achieved by employing system intelligence to manage migration and caching of archived data. Relevant information from HIS/RIS triggers prefetching of data whenever possible based on simple rules. System intelligence embedded in the migration manger allows the clustering of patient data onto a single tape during data migration from optical to tape medium. Clustering of patient data on the same tape eliminates multiple tape loading and associated seek time during patient data retrieval. Optimal tape performance can then be achieved by utilizing the tape drives high performance data streaming capabilities thereby reducing typical data retrieval delays associated with streaming tape devices.
Ağralı, Semra; Üçtuğ, Fehmi Görkem; Türkmen, Burçin Atılgan
2018-06-01
We consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nation-wide carbon emissions in an environmentally and economically rewarding manner. The model developed in this study is generic, and it can be applied to any industry at any location, as long as the required inputs are available. Copyright © 2018 Elsevier Ltd. All rights reserved.
Long-term durability of one-step adhesive-composite systems to enamel and dentin.
Foxton, Richard M; Melo, Luciana; Stone, David G; Pilecki, Peter; Sherriff, Martin; Watson, Timothy F
2008-01-01
This study evaluated the long-term durability of three one-step adhesive-composite systems to ground enamel and dentin. Twenty-seven teeth were randomly divided into three groups of nine. The first group had its crowns sectioned to expose superficial dentin, which was then ground with 600 grit SiC paper. One of three one-step adhesives: a trial bonding agent, OBF-2; i Bond or Adper Prompt L-Pop was applied to the dentin of three teeth and built-up with the corresponding resin composite (Estelite sigma, Venus or Filtek Supreme). The second group of nine teeth had their enamel approximal surfaces ground with wet 600-grit SiC paper, then one of the three one-step adhesives was applied and built-up with resin composite. The bonded specimens were sliced into 0.7 mm-thick slabs. After 24 hours and one year of water storage at 37 degrees C, the slabs were sectioned into beams for the microtensile bond strength test. Failure modes were observed using optical and electron scanning microscopy. The third group of nine teeth had approximal wedge-shaped cavities prepared above the CEJ into dentin. Two-to-three grains of rhodamine B were added to each of the three adhesives prior to restoring the cavities with resin composite. After 24 hours storage, the teeth were sectioned and their interfaces examined with a laser scanning confocal microscope. The bond strengths of the three adhesive-composite systems to both enamel and dentin significantly lessened after one year of water storage, however, there was no significant difference between the materials.
Custom sample environments at the ALBA XPEEM.
Foerster, Michael; Prat, Jordi; Massana, Valenti; Gonzalez, Nahikari; Fontsere, Abel; Molas, Bernat; Matilla, Oscar; Pellegrin, Eric; Aballe, Lucia
2016-12-01
A variety of custom-built sample holders offer users a wide range of non-standard measurements at the ALBA synchrotron PhotoEmission Electron Microscope (PEEM) experimental station. Some of the salient features are: an ultrahigh vacuum (UHV) suitcase compatible with many offline deposition and characterization systems, built-in electromagnets for uni- or biaxial in-plane (IP) and out-of-plane (OOP) fields, as well as the combination of magnetic fields with electric fields or current injection. Electronics providing a synchronized sinusoidal signal for sample excitation enable time-resolved measurements at the 500MHz storage ring RF frequency. Copyright © 2016 Elsevier B.V. All rights reserved.
A Highly Scalable Data Service (HSDS) using Cloud-based Storage Technologies for Earth Science Data
NASA Astrophysics Data System (ADS)
Michaelis, A.; Readey, J.; Votava, P.; Henderson, J.; Willmore, F.
2017-12-01
Cloud based infrastructure may offer several key benefits of scalability, built in redundancy, security mechanisms and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and legacy software systems developed for online data repositories within the federal government were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Moreover, services bases on object storage are well established and provided through all the leading cloud service providers (Amazon Web Service, Microsoft Azure, Google Cloud, etc…) of which can often provide unmatched "scale-out" capabilities and data availability to a large and growing consumer base at a price point unachievable from in-house solutions. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows a performance advantage for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.
Ultra-Capacitor Energy Storage in a Large Hybrid Electric Bus
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1997-01-01
The power requirements for inner city transit buses are characterized by power peaks about an order of magnitude larger than the average power usage of the vehicle. For these vehicles, hybrid power trains can offer significantly improved fuel economy and exhaust emissions. A critical design challenge, however, has been developing the energy storage and power management system to respond to these rapid power variations. Most hybrid vehicles today use chemical energy storage batteries to supplement the power from the fuel burning generator unit. Chemical storage batteries however, present several difficulties in power management and control. These difficulties include (1) inadequate life, (2) limited current delivery as well as absorption during regenerative braking, (3) inaccurate measurement of state of charge, and (4) stored energy safety issues. Recent advances in ultra-capacitor technology create an opportunity to address these concerns. The NASA Lewis Research Center, in cooperation with industry and academia, has developed an advanced hybrid electric transit bus using ultra-capacitors as the primary energy storage system. At over 15,000-kg gross weight, this is the largest vehicle of its kind ever built using this advanced energy storage technology. Results of analyses show that the vehicle will match the performance of an equivalent conventionally powered vehicle over typical inner city drive cycles. This paper describes the overall power system architecture, the evolution of the control strategy, and analysis of power flow and vehicle performance.
2000-10-27
In the Space Station Processing Facility, the Italian-built Multi-Purpose Logistics Module “Raffaello” is suspended over a workstand where its weight and balance will be evaluated. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001
2000-10-27
In the Space Station Processing Facility, the Italian-built Multi-Purpose Logistics Module “Raffaello” is lowered onto a workstand where its weight and balance will be evaluated. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001
A Microelectromechanical High-Density Energy Storage/Rapid Release System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.
1999-07-21
One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed,more » fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.« less
Microelectromechanical high-density energy storage/rapid release system
NASA Astrophysics Data System (ADS)
Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.
1999-08-01
One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.
An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horan, D.
1999-04-13
An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less
Principles for timing at spallation neutron sources based on developments at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, R. O.; Merl, R. B.; Rose, C. R.
2001-01-01
Due to AC-power-grid frequency fluctuations, the designers for accelerator-based spallation-neutron facilities have worked to optimize the conflicting demands of accelerator and neutron chopper performance. For the first time, we are able to quantitatively access the tradeoffs between these two constraints and design or upgrade a facility to optimize total system performance using powerful new simulation techniques. We have modeled timing systems that integrate chopper controllers and chopper hardware and built new systems. Thus, at LANSCE, we now operate multiple chopper systems and the accelerator as simple slaves to a single master-timing-reference generator. Based on this experience we recommend that spallationmore » neutron sources adhere to three principles. First, timing for pulsed sources should be planned starting with extraction at a fixed phase and working backwards toward the leading edge of the beam pulse. Second, accelerator triggers and storage ring extraction commands from neutron choppers offer only marginal benefits to accelerator-based spallation sources. Third, the storage-ring RF should be phase synchronized with neutron choppers to provide extraction without the one orbit timing uncertainty.« less
DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & ...
DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & MANUFACTURING COMPANY. BATCH STORAGE SILOS IN BACKGROUND - Chambers Window Glass Company, Batch Plant, North of Drey (Nineteenth) Street, West of Constitution Boulevard, Arnold, Westmoreland County, PA
NASA Astrophysics Data System (ADS)
Dhote, Yogesh; Thombre, Shashikant
2016-10-01
This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.
Effects of water storage on bond strength and dentin sealing ability promoted by adhesive systems.
Cantanhede de Sá, Renata Bacelar; Oliveira Carvalho, Adriana; Puppin-Rontani, Regina Maria; Ambrosano, Glaúcia Maria; Nikaido, Toru; Tagami, Junji; Giannini, Marcelo
2012-12-01
To evaluate the dentin bond strength (BS) and sealing ability (SA) promoted by adhesive systems after 24 h or 6 months of water storage. The tested adhesive systems were: one three-step etch-and-rinse adhesive (Adper Scotchbond Multi-Purpose, SBMP) and three single-step self-etching systems (Adper Easy Bond, Bond Force, and G-Bond Plus). Bovine incisors were used for both evaluations, BS (n = 11) and SA (n = 5). To examine BS, the buccal surface was ground with SiC paper to expose a flat dentin surface. After adhesive application, a block of resin composite was incrementally built up over the bonded surface and sectioned into sticks. These bonded specimens were subjected to microtensile bond strength testing after 24 h and 6 months of water storage using a universal testing machine. For SA analysis, enamel was removed from the buccal surfaces. The teeth were connected to a device to measure the initial SA (10 psi), and the second measurement was taken after treating dentin with EDTA. Afterwards, the adhesive systems were applied to dentin and the SA was re-measured for each adhesive after 24 h and 6 months of water storage. The SA was expressed in terms of percentage of dentinal sealing. BS and SA data were submitted to two-way ANOVA and Tukey's test (α = 0.05). All adhesives showed a reduction of SA after 6 months of water storage. The SA promoted by self-etching adhesives was higher than that of SBMP. No adhesive system showed a reduction of the BS after 6 months. Sealing ability was affected by water storage, while no changes in microtensile bond strength were observed after 6 months of water storage. The single-step self-etching systems showed greater sealing ability than did SBMP, even after 6 months of storage in water.
Zinc-chloride battery technology - Status 1983
NASA Astrophysics Data System (ADS)
Rowan, J. W.; Carr, P.; Warde, C. J.; Henriksen, G. L.
Zinc-chloride batteries are presently under development at Energy Development Associates (EDA) for load-leveling, electric-vehicle, and specialty applications. A 500-kWh battery system has been built at Detroit Edison's Charlotte substation near downtown Detroit. Following shakedown testing, this system will be installed at the Battery Energy Storage Test (BEST) Facility in Hillsborough, New Jersey, in July 1983. Data is presented also for a prototype 50-kWh battery which has successfully operated through 150 cycles. EDA has built and tested three 4-passenger automobiles. The maximum range achieved on a single charge was 200 miles at 40 mph. Recently, the electric-vehicle battery program at EDA has focused on commercial vehicles. Two vans, each powered with a 45-kWh zinc-chloride battery, have been built and track tested. These vehicles, which carry a payload of 1,000 pounds, have a top speed of 55 mph and an operational range in excess of 80 miles. In the specialty battery area, two 6-kWh 12-V reserve batteries have been built and tested. This type of battery offers the prospect of long shelf life and an energy density in excess of 100 Wh/lb.
A data-management system for detailed areal interpretive data
Ferrigno, C.F.
1986-01-01
A data storage and retrieval system has been developed to organize and preserve areal interpretive data. This system can be used by any study where there is a need to store areal interpretive data that generally is presented in map form. This system provides the capability to grid areal interpretive data for input to groundwater flow models at any spacing and orientation. The data storage and retrieval system is designed to be used for studies that cover small areas such as counties. The system is built around a hierarchically structured data base consisting of related latitude-longitude blocks. The information in the data base can be stored at different levels of detail, with the finest detail being a block of 6 sec of latitude by 6 sec of longitude (approximately 0.01 sq mi). This system was implemented on a mainframe computer using a hierarchical data base management system. The computer programs are written in Fortran IV and PL/1. The design and capabilities of the data storage and retrieval system, and the computer programs that are used to implement the system are described. Supplemental sections contain the data dictionary, user documentation of the data-system software, changes that would need to be made to use this system for other studies, and information on the computer software tape. (Lantz-PTT)
An improved waste collection system for space flight
NASA Technical Reports Server (NTRS)
Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry
1986-01-01
Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.
Design and calibration of a vacuum compatible scanning tunneling microscope
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1990-01-01
A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.
Assessment of Zr-Fe-V getter alloy for gas-gap heat switches
NASA Technical Reports Server (NTRS)
Prina, M.; Kulleck, J. G.; Bowman, R. C., Jr.
2000-01-01
A commercial Zr-V-Fe alloy (i.e., SAES Getters trade name alloy St-172) has been assessed as reversible hydrogen storage material for use in actuators of gas gap heat switches. Two prototype actuators containing the SAES St-172 material were built and operated for several thousand cycles to evaluate performance of the metal hydride system under conditions simulating heat switch operation.
NASA Astrophysics Data System (ADS)
Allen, J. W.; Schertz, W. W.; Wantroba, A. S.
1987-03-01
This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the Sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42 deg with respect to the horizon (to match the 42 deg N latitude at ANL). All four collector systems started each day with their storage temperatures at 90 C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy.
Improving vaccination cold chain in the general practice setting.
Page, Sue L; Earnest, Arul; Birden, Hudson; Deaker, Rachelle; Clark, Chris
2008-10-01
This study compared temperature control in different types of vaccine storing refrigerators in general practice and tested knowledge of general practice staff in vaccine storage requirements. Temperature data loggers were set to serially record the temperature within vaccine refrigerators in 28 general practices, recording at 12 minute intervals over a period of 10 days on each occasion. A survey of vaccine storage knowledge and records of divisions of general practice immunisation contacts were also obtained. There was a significant relationship between type of refrigerator and optimal temperature, with the odds ratio for bar style refrigerator being 0.005 (95% CI: 0.001-0.044) compared to the purpose built vaccine refrigerators. Score on a survey of vaccine storage was also positively associated with optimal storage temperature. General practices that invest in purpose built vaccine refrigerators will achieve standards of vaccine cold chain maintenance significantly more reliably than can be achieved through regular cold chain monitoring and practice supports.
Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey
NASA Technical Reports Server (NTRS)
1981-01-01
The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.
Development of a high-efficiency motor/generator for flywheel energy storage
NASA Astrophysics Data System (ADS)
Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.
This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.
Development of a high temperature storage unit for integration with solar dynamic systems
NASA Astrophysics Data System (ADS)
Staehle, H. J.; Lindner, F.
1989-08-01
Lithium fluoride in its capacity as a suitable energy storage material is investigated. Energy is stored as latent heat by melting the LiF. The energy is later released during recrystallization of the salt. Drawbacks to this system are described. The high corrosivity in molten state may lead to container failure in long term use. In order to avoid destruction of canisters, a graphite container is developed as graphite is not wetted by liquid LiF and thus does not suffer any corrosion. In order to match the mechanical forces caused by the volume increase during melting, a channel-like internal structure is tested. The melt formed first can expand into these channels and no pressure is built up. The results of these tests are presented.
Development of a high-efficiency motor/generator for flywheel energy storage
NASA Technical Reports Server (NTRS)
Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.
1991-01-01
This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.
Pulsed Power Supply Based on Magnetic Energy Storage for Non-Destructive High Field Magnets
NASA Astrophysics Data System (ADS)
Aubert, G.; Defoug, S.; Joss, W.; Sala, P.; Dubois, M.; Kuchinsk, V.
2004-11-01
The first test results of a recently built pulsed power supply based on magnetic energy storage will be described. The system consists of the 16 kV shock alternator with a short-circuit power of 3600 MVA of the VOLTA Testing Center of the Schneider Electric SA company, a step-down transformer with a ratio of 1/24, a three-phase diode bridge designed for a current rising exponentially to 120 kA, and a big, 10 ton, heavy, 10 mH aluminum storage coil. The system is designed to store 72 MJ, normal operation will be at 50 MJ, and will work with voltages up to 20 kV. A transfer of 20% of the stored energy into the high field coil should be possible. Special making switches and interrupters have been developed to switch the high currents in a very short time. For safety and redundancy two independent monitoring systems control the energy transfer. A sequencing control system operates the switches on the ac side and protective switches on the dc side, a specially developed real-time control-monitoring system checks several currents and voltages and commands the dc circuit breakers and making switches.
Concentrated Solar Thermoelectric Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Ren, Zhifeng
2015-07-09
The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accuratemore » measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.« less
Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigelow, David; Bent, John; Chen, Hsing-Bung
2010-04-05
Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long asmore » possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.« less
Continuous-variable protocol for oblivious transfer in the noisy-storage model.
Furrer, Fabian; Gehring, Tobias; Schaffner, Christian; Pacher, Christoph; Schnabel, Roman; Wehner, Stephanie
2018-04-13
Cryptographic protocols are the backbone of our information society. This includes two-party protocols which offer protection against distrustful players. Such protocols can be built from a basic primitive called oblivious transfer. We present and experimentally demonstrate here a quantum protocol for oblivious transfer for optical continuous-variable systems, and prove its security in the noisy-storage model. This model allows us to establish security by sending more quantum signals than an attacker can reliably store during the protocol. The security proof is based on uncertainty relations which we derive for continuous-variable systems, that differ from the ones used in quantum key distribution. We experimentally demonstrate in a proof-of-principle experiment the proposed oblivious transfer protocol for various channel losses by using entangled two-mode squeezed states measured with balanced homodyne detection. Our work enables the implementation of arbitrary two-party quantum cryptographic protocols with continuous-variable communication systems.
Forensic Analysis of the Sony Playstation Portable
NASA Astrophysics Data System (ADS)
Conrad, Scott; Rodriguez, Carlos; Marberry, Chris; Craiger, Philip
The Sony PlayStation Portable (PSP) is a popular portable gaming device with features such as wireless Internet access and image, music and movie playback. As with most systems built around a processor and storage, the PSP can be used for purposes other than it was originally intended - legal as well as illegal. This paper discusses the features of the PSP browser and suggests best practices for extracting digital evidence.
Exploring No-SQL alternatives for ALMA monitoring system
NASA Astrophysics Data System (ADS)
Shen, Tzu-Chiang; Soto, Ruben; Merino, Patricio; Peña, Leonel; Bartsch, Marcelo; Aguirre, Alvaro; Ibsen, Jorge
2014-07-01
The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. This paper describes the experience gained after several years working with the monitoring system, which has a strong requirement of collecting and storing up to 150K variables with a highest sampling rate of 20.8 kHz. The original design was built on top of a cluster of relational database server and network attached storage with fiber channel interface. As the number of monitoring points increases with the number of antennas included in the array, the current monitoring system demonstrated to be able to handle the increased data rate in the collection and storage area (only one month of data), but the data query interface showed serious performance degradation. A solution based on no-SQL platform was explored as an alternative to the current long-term storage system. Among several alternatives, mongoDB has been selected. In the data flow, intermediate cache servers based on Redis were introduced to allow faster streaming of the most recently acquired data to web based charts and applications for online data analysis.
Challenges of constructing salt cavern gas storage in China
NASA Astrophysics Data System (ADS)
Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui
2017-11-01
After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.
NASA Astrophysics Data System (ADS)
Charvat, P.; Pech, O.; Hejcik, J.
2013-04-01
The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a "conventional" solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature).
NASA Astrophysics Data System (ADS)
Kollmeyer, Phillip J.
This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the prototype electric truck with a different battery pack, the prototype electric truck with a higher power drivetrain and higher towing capability, and an electric city transit bus. Performance advantages provided by the HESS are demonstrated and verified for these vehicles in several areas including: longer vehicle range, improved low-temperature operation with lithium-ion batteries, and reduced battery losses and cycling stresses.
CSUNSat-1 CubeSat – ELaNa XVII
2017-04-04
The primary mission of CSUNSat1 is to space test an innovative low temperature capable energy storage system developed by the Jet Propulsion Laboratory, raising its TRL level to 7 from 4 to 5. The success of this energy storage system will enable future missions, especially those in deep space to do more science while requiring less energy, mass and volume. This CubeSat was designed, built, programmed, and tested by a team of over 70 engineering and computer science students at CSUN. The primary source of funding for CSUNSat1 comes from NASA’s Smallest Technology Partnership program. Launched by NASA’s CubeSat Launch Initiative on the NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.
Joining the petabyte club with direct attached storage
NASA Astrophysics Data System (ADS)
Haupt, Andreas; Leffhalm, Kai; Wegner, Peter; Wiesand, Stephan
2011-12-01
Our site successfully runs more than a Petabyte of online disk, using nothing but Direct Attached Storage. The bulk of this capacity is grid-enabled and served by dCache, but sizable amounts are provided by traditional AFS or modern Lustre filesystems as well. While each of these storage flavors has a different purpose, owing to their respective strengths and weaknesses for certain use cases, their instances are all built from the same universal storage bricks. These are managed using the same scale-out techniques used for compute nodes, and run the same operating system as those, thus fully leveraging the existing know-how and infrastructure. As a result, this storage is cost effective especially regarding total cost of ownership. It is also competitive in terms of aggregate performance, performance per capacity, and - due to the possibility to make use of the latest technology early - density and power efficiency. Further advantages include a high degree of flexibility and complete avoidance of vendor lock-in. Availability and reliability in practice turn out to be more than adequate for a HENP site's major tasks. We present details about this Ansatz for online storage, hardware and software used, tweaking and tuning, lessons learned, and the actual result in practice.
Iotti, Bryan; Valazza, Alberto
2014-10-01
Picture Archiving and Communications Systems (PACS) are the most needed system in a modern hospital. As an integral part of the Digital Imaging and Communications in Medicine (DICOM) standard, they are charged with the responsibility for secure storage and accessibility of the diagnostic imaging data. These machines need to offer high performance, stability, and security while proving reliable and ergonomic in the day-to-day and long-term storage and retrieval of the data they safeguard. This paper reports the experience of the authors in developing and installing a compact and low-cost solution based on open-source technologies in the Veterinary Teaching Hospital for the University of Torino, Italy, during the course of the summer of 2012. The PACS server was built on low-cost x86-based hardware and uses an open source operating system derived from Oracle OpenSolaris (Oracle Corporation, Redwood City, CA, USA) to host the DCM4CHEE PACS DICOM server (DCM4CHEE, http://www.dcm4che.org ). This solution features very high data security and an ergonomic interface to provide easy access to a large amount of imaging data. The system has been in active use for almost 2 years now and has proven to be a scalable, cost-effective solution for practices ranging from small to very large, where the use of different hardware combinations allows scaling to the different deployments, while the use of paravirtualization allows increased security and easy migrations and upgrades.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.
NASA Astrophysics Data System (ADS)
Volosovitch, Anatoly E.; Konopaltseva, Lyudmila I.
1995-11-01
Well-known methods of optical diagnostics, database for their storage, as well as expert system (ES) for their development are analyzed. A computer informational system is developed, which is based on a hybrid ES built on modern DBMS. As an example, the structural and constructive circuits of the hybrid integrated-optical devices based on laser diodes, diffusion waveguides, geodetic lenses, package-free linear photodiode arrays, etc. are presented. The features of methods and test results as well as the advanced directions of works related to the hybrid integrated-optical devices in the field of metrology are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KESSLER, S.F.
This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weldmore » station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.« less
MPLM Raffaello is moved for a weight and balance check in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, an overhead frame lifts the Italian-built Multi-Purpose Logistics Module '''Raffaello''' off its workstand. The module is being moved to a weight-and-balance workstand. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001.
Delayed Instantiation Bulk Operations for Management of Distributed, Object-Based Storage Systems
2009-08-01
source and destination object sets, while they have attribute pages to indicate that history . Fourth, we allow for operations to occur on any objects...client dialogue to the PostgreSQL database where server-side functions implement the service logic for the requests. The translation is done...to satisfy client requests, and performs delayed instantiation bulk operations. It is built around a PostgreSQL database with tables for storing
Scalable cloud without dedicated storage
NASA Astrophysics Data System (ADS)
Batkovich, D. V.; Kompaniets, M. V.; Zarochentsev, A. K.
2015-05-01
We present a prototype of a scalable computing cloud. It is intended to be deployed on the basis of a cluster without the separate dedicated storage. The dedicated storage is replaced by the distributed software storage. In addition, all cluster nodes are used both as computing nodes and as storage nodes. This solution increases utilization of the cluster resources as well as improves fault tolerance and performance of the distributed storage. Another advantage of this solution is high scalability with a relatively low initial and maintenance cost. The solution is built on the basis of the open source components like OpenStack, CEPH, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, W.T.
The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.
An R package for the design, analysis and operation of reservoir systems
NASA Astrophysics Data System (ADS)
Turner, Sean; Ng, Jia Yi; Galelli, Stefano
2016-04-01
We present a new R package - named "reservoir" - which has been designed for rapid and easy routing of runoff through storage. The package comprises well-established tools for capacity design (e.g., the sequent peak algorithm), performance analysis (storage-yield-reliability and reliability-resilience-vulnerability analysis) and release policy optimization (Stochastic Dynamic Programming). Operating rules can be optimized for water supply, flood control and amenity objectives, as well as for maximum hydropower production. Storage-depth-area relationships are in-built, allowing users to incorporate evaporation from the reservoir surface. We demonstrate the capabilities of the software for global studies using thousands of reservoirs from the Global Reservoir and Dam (GRanD) database fed by historical monthly inflow time series from a 0.5 degree gridded global runoff dataset. The package is freely available through the Comprehensive R Archive Network (CRAN).
1972-01-01
This photograph shows the flight article of the Airlock Module (AM)/Multiple Docking Adapter (MDA) assembly being readied for testing in a clean room at the McDornell Douglas Plant in St. Louis, Missouri. Although the AM and the MDA were separate entities, they were in many respects simply two components of a single module. The AM enabled crew members to conduct extravehicular activities outside Skylab as required for experiment support. Oxygen and nitrogen storage tanks needed for Skylab's life support system were mounted on the external truss work of the AM. Major components in the AM included Skylab's electric power control and distribution station, environmental control system, communication system, and data handling and recording systems. The MDA, forward of the AM, provided docking facilities for the Command and Service Module. It also accommodated several experiment systems, among them the Earth Resource Experiment Package, the materials processing facility, and the control and display console needed for the Apollo Telescope Mount solar astronomy studies. The AM was built by McDonnell Douglas and the MDA was built by Martin Marietta. The Marshall Space Flight Center was responsible for the design and development of the Skylab hardware and experiment management.
1972-03-01
This photograph shows the flight article of the mated Airlock Module (AM) and Multiple Docking Adapter (MDA) being lowering into horizontal position on a transporter. Although the AM and the MDA were separate entities, they were in many respects simply two components of a single module. The AM enabled crew members to conduct extravehicular activities outside Skylab as required for experiment support. Oxygen and nitrogen storage tanks needed for Skylab's life support system were mounted on the external truss work of the AM. Major components in the AM included Skylab's electric power control and distribution station, environmental control system, communication system, and data handling and recording systems. The MDA, forward of the AM, provided docking facilities for the Command and Service Module. It also accommodated several experiment systems, among them the Earth Resource Experiment Package, the materials processing facility, and the control and display console needed for the Apollo Telescope Mount solar astronomy studies. The AM was built by McDornell Douglas and the MDA was built by Martin Marietta. The Marshall Space Flight Center was responsible for the design and development of the Skylab hardware and experiment management.
1976-10-01
should he made for either ixiternal storage or a means of voiding the urinal in a storage container in the compartment’. Development of-Adequate...upper temperature ranges fu- critical components of the M60 tank under desert storage and operational conditions. He found that the Wet Bulb Globe...five-gallon cans on the outside turret bustle racks. If buttoned-up operations for extended periods of time are envisioned, a built-in water storage
Managing high-bandwidth real-time data storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigelow, David D.; Brandt, Scott A; Bent, John M
2009-09-23
There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended tomore » address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.« less
German central solar heating plants with seasonal heat storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, D.; Marx, R.; Nussbicker-Lux, J.
2010-04-15
Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (inmore » Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)« less
A&M. Guard house (TAN638), contextual view. Built in 1968. Camera ...
A&M. Guard house (TAN-638), contextual view. Built in 1968. Camera faces south. Guard house controlled access to radioactive waste storage tanks beyond and to left of view. Date: February 4, 2003. INEEL negative no. HD-33-4-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Data acquisition system for the Belle experiment
NASA Astrophysics Data System (ADS)
Nakao, M.; Yamauchi, M.; Suzuki, S. Y.; Itoh, R.; Fujii, H.
2000-04-01
We built a data acquisition system for the Belle experiment at the KEK B-factory. The system is designed to record the signals from the detectors at 500 Hz trigger rate with a less than 10% dead time fraction. A typical event size is 30 kbyte, which corresponds to a data transfer rate of 15 Mbyte/s. Main components are two kinds of detector readout systems, an event builder, an online computer farm and a data storage system. The system has been reliably in operation at the design performance for a half year. We have completed cosmic-ray data taking for 2.5 months and have started physics data taking on Jun. 1, 1999.
DSCOVR Contamination Lessons Learned
NASA Technical Reports Server (NTRS)
Graziani, Larissa
2015-01-01
The Triana observatory was built at NASA GSFC in the late 1990's, then placed into storage. After approximately ten years it was removed from storage and repurposed as the Deep Space Climate Observatory (DSCOVR). This presentation outlines the contamination control program lessons learned during the integration, test and launch of DSCOVR.
MyFreePACS: a free web-based radiology image storage and viewing tool.
de Regt, David; Weinberger, Ed
2004-08-01
We developed an easy-to-use method for central storage and subsequent viewing of radiology images for use on any PC equipped with Internet Explorer. We developed MyFreePACS, a program that uses a DICOM server to receive and store images and transmit them over the Web to the MyFreePACS Web client. The MyFreePACS Web client is a Web page that uses an ActiveX control for viewing and manipulating images. The client contains many of the tools found in modern image viewing stations including 3D localization and multiplanar reformation. The system is built entirely with free components and is freely available for download and installation from the Web at www.myfreepacs.com.
A lithium ion battery using an aqueous electrolyte solution
Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei
2016-01-01
Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707
Grid-Enabled High Energy Physics Research using a Beowulf Cluster
NASA Astrophysics Data System (ADS)
Mahmood, Akhtar
2005-04-01
At Edinboro University of Pennsylvania, we have built a 8-node 25 Gflops Beowulf Cluster with 2.5 TB of disk storage space to carry out grid-enabled, data-intensive high energy physics research for the ATLAS experiment via Grid3. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes. Once fully functional, the Cluster will be part of Grid3[www.ivdgl.org/grid3]. The current ATLAS simulation grid application, models the entire physical processes from the proton anti-proton collisions and detector's response to the collision debri through the complete reconstruction of the event from analyses of these responses. The end result is a detailed set of data that simulates the real physical collision event inside a particle detector. Grid is the new IT infrastructure for the 21^st century science -- a new computing paradigm that is poised to transform the practice of large-scale data-intensive research in science and engineering. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.
Flywheel energy storage workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Kain, D.; Carmack, J.
Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies,more » and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.« less
Bathymetric contours of Breckenridge Reservoir, Quantico, Virginia
Wicklein, S.M.; Lotspeich, R.R.; Banks, R.B.
2012-01-01
Breckenridge Reservoir, built in 1938, is fed by Chopawamsic Creek and South Branch Chopawamsic Creek. The Reservoir is a main source of drinking water for the U.S. Marine Corps (USMC) Base in Quantico, Virginia. The U.S. Geological Survey (USGS), in cooperation with the USMC, conducted a bathymetric survey of Breckenridge Reservoir in March 2009. The survey was conducted to provide the USMC Natural Resources and Environmental Affairs (NREA) with information regarding reservoir storage capacity and general bathymetric properties. The bathymetric survey can provide a baseline for future work on sediment loads and deposition rates for the reservoir. Bathymetric data were collected using a boat-mounted Wide Area Augmentation System (WAAS) differential global positioning system (DGPS), echo depth-sounding equipment, and computer software. Data were exported into a geographic information system (GIS) for mapping and calculating area and volume. Reservoir storage volume at the time of the survey was about 22,500,000 cubic feet (517 acre-feet) with a surface area of about 1,820,000 square feet (41.9 acres).
Principles of Dataset Versioning: Exploring the Recreation/Storage Tradeoff
Bhattacherjee, Souvik; Chavan, Amit; Huang, Silu; Deshpande, Amol; Parameswaran, Aditya
2015-01-01
The relative ease of collaborative data science and analysis has led to a proliferation of many thousands or millions of versions of the same datasets in many scientific and commercial domains, acquired or constructed at various stages of data analysis across many users, and often over long periods of time. Managing, storing, and recreating these dataset versions is a non-trivial task. The fundamental challenge here is the storage-recreation trade-off: the more storage we use, the faster it is to recreate or retrieve versions, while the less storage we use, the slower it is to recreate or retrieve versions. Despite the fundamental nature of this problem, there has been a surprisingly little amount of work on it. In this paper, we study this trade-off in a principled manner: we formulate six problems under various settings, trading off these quantities in various ways, demonstrate that most of the problems are intractable, and propose a suite of inexpensive heuristics drawing from techniques in delay-constrained scheduling, and spanning tree literature, to solve these problems. We have built a prototype version management system, that aims to serve as a foundation to our DataHub system for facilitating collaborative data science. We demonstrate, via extensive experiments, that our proposed heuristics provide efficient solutions in practical dataset versioning scenarios. PMID:28752014
Dynamic testing system for hybrid magneto-optical recording
NASA Astrophysics Data System (ADS)
Chen, Lu; Xu, Wendong; Fan, Yongtao; Zhu, Qing
2008-12-01
Hybrid Magneto-Optical Recording is a potential data storage technology in the future informational society. To construct a research platform for hybrid recording, a dynamic testing system is designed and built in this paper, in which 406.7nm blue laser is used for recording and 655nm red laser for focus servo. With high modularization, the computer serves as the control core for the laser external modulation, focus servo, and sample plate spinning. Each module and its function are discussed in detail in the paper. Experimental results are also given to verify the stable and smooth performance of the system, in which the key obstacle, vibration noise, is successfully surmounted.
NASA Technical Reports Server (NTRS)
Jones, Terry; Mark, Richard; Martin, Jeanne; May, John; Pierce, Elsie; Stanberry, Linda
1996-01-01
This paper describes an implementation of the proposed MPI-IO (Message Passing Interface - Input/Output) standard for parallel I/O. Our system uses third-party transfer to move data over an external network between the processors where it is used and the I/O devices where it resides. Data travels directly from source to destination, without the need for shuffling it among processors or funneling it through a central node. Our distributed server model lets multiple compute nodes share the burden of coordinating data transfers. The system is built on the High Performance Storage System (HPSS), and a prototype version runs on a Meiko CS-2 parallel computer.
Built spaces and features associated with user satisfaction in maternity waiting homes in Malawi.
McIntosh, Nathalie; Gruits, Patricia; Oppel, Eva; Shao, Amie
2018-07-01
To assess satisfaction with maternity waiting home built spaces and features in women who are at risk for underutilizing maternity waiting homes (i.e. residential facilities that temporarily house near-term pregnant mothers close to healthcare facilities that provide obstetrical care). Specifically we wanted to answer the questions: (1) Are built spaces and features associated with maternity waiting home user satisfaction? (2) Can built spaces and features designed to improve hygiene, comfort, privacy and function improve maternity waiting home user satisfaction? And (3) Which built spaces and features are most important for maternity waiting home user satisfaction? A cross-sectional study comparing satisfaction with standard and non-standard maternity waiting home designs. Between December 2016 and February 2017 we surveyed expectant mothers at two maternity waiting homes that differed in their design of built spaces and features. We used bivariate analyses to assess if built spaces and features were associated with satisfaction. We compared ratings of built spaces and features between the two maternity waiting homes using chi-squares and t-tests to assess if design features to improve hygiene, comfort, privacy and function were associated with higher satisfaction. We used exploratory robust regression analysis to examine the relationship between built spaces and features and maternity waiting home satisfaction. Two maternity waiting homes in Malawi, one that incorporated non-standardized design features to improve hygiene, comfort, privacy, and function (Kasungu maternity waiting home) and the other that had a standard maternity waiting home design (Dowa maternity waiting home). 322 expectant mothers at risk for underutilizing maternity waiting homes (i.e. first-time mothers and those with no pregnancy risk factors) who had stayed at the Kasungu or Dowa maternity waiting homes. There were significant differences in ratings of built spaces and features between the two differently designed maternity waiting homes, with the non-standard design having higher ratings for: adequacy of toilets, and ratings of heating/cooling, air and water quality, sanitation, toilets/showers and kitchen facilities, building maintenance, sleep area, private storage space, comfort level, outdoor spaces and overall satisfaction (p = <.0001 for all). The final regression model showed that built spaces and features that are most important for maternity waiting home user satisfaction are toilets/showers, guardian spaces, safety, building maintenance, sleep area and private storage space (R 2 = 0.28). The design of maternity waiting home built spaces and features is associated with user satisfaction in women at risk for underutilizing maternity waiting homes, especially related to toilets/showers, guardian spaces, safety, building maintenance, sleep area and private storage space. Improving maternity waiting home built spaces and features may offer a promising area for improving maternity waiting home satisfaction and reducing barriers to maternity waiting home use. Copyright © 2018 Elsevier Ltd. All rights reserved.
Data Movement Dominates: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, Bruce L.
Over the past three years in this project, what we have observed is that the primary reason for data movement in large-scale systems is that the per-node capacity is not large enough—i.e., one of the solutions to the data-movement problem (certainly not the only solution that is required, but a significant one nonetheless) is to increase per-node capacity so that inter-node traffic is reduced. This unfortunately is not as simple as it sounds. Today’s main memory systems for datacenters, enterprise computing systems, and supercomputers, fail to provide high per-socket capacity [Dirik & Jacob 2009; Cooper-Balis et al. 2012], except atmore » extremely high price points (factors of 10–100x the cost/bit of consumer main-memory systems) [Stokes 2008]. The reason is that our choice of technology for today’s main memory systems—i.e., DRAM, which we have used as a main-memory technology since the 1970s [Jacob et al. 2007]—can no longer keep up with our needs for density and price per bit. Main memory systems have always been built from the cheapest, densest, lowest-power memory technology available, and DRAM is no longer the cheapest, the densest, nor the lowest-power storage technology out there. It is now time for DRAM to go the way that SRAM went: move out of the way for a cheaper, slower, denser storage technology, and become a cache instead. This inflection point has happened before, in the context of SRAM yielding to DRAM. There was once a time that SRAM was the storage technology of choice for all main memories [Tomasulo 1967; Thornton 1970; Kidder 1981]. However, once DRAM hit volume production in the 1970s and 80s, it supplanted SRAM as a main memory technology because it was cheaper, and it was denser. It also happened to be lower power, but that was not the primary consideration of the day. At the time, it was recognized that DRAM was much slower than SRAM, but it was only at the supercomputer level (For instance the Cray X-MP in the 1980s and its follow-on, the Cray Y-MP, in the 1990s) that could one afford to build ever- larger main memories out of SRAM—the reasoning for moving to DRAM was that an appropriately designed memory hierarchy, built of DRAM as main memory and SRAM as a cache, would approach the performance of SRAM, at the price-per-bit of DRAM [Mashey 1999]. Today it is quite clear that, were one to build an entire multi-gigabyte main memory out of SRAM instead of DRAM, one could improve the performance of almost any computer system by up to an order of magnitude—but this option is not even considered, because to build that system would be prohibitively expensive. It is now time to revisit the same design choice in the context of modern technologies and modern systems. For reasons both technical and economic, we can no longer afford to build ever-larger main memory systems out of DRAM. Flash memory, on the other hand, is significantly cheaper and denser than DRAM and therefore should take its place. While it is true that flash is significantly slower than DRAM, one can afford to build much larger main memories out of flash than out of DRAM, and we show that an appropriately designed memory hierarchy, built of flash as main memory and DRAM as a cache, will approach the performance of DRAM, at the price-per-bit of flash. In our studies as part of this project, we have investigated Non-Volatile Main Memory (NVMM), a new main-memory architecture for large-scale computing systems, one that is specifically designed to address the weaknesses described previously. In particular, it provides the following features: non-volatility: The bulk of the storage is comprised of NAND flash, and in this organization DRAM is used only as a cache, not as main memory. Furthermore, the flash is journaled, which means that operations such as checkpoint/restore are already built into the system. 1+ terabytes of storage per socket: SSDs and DRAM DIMMs have roughly the same form factor (several square inches of PCB surface area), and terabyte SSDs are now commonplace. performance approaching that of DRAM: DRAM is used as a cache to the flash system. price-per-bit approaching that of NAND: Flash is currently well under $0.50 per gigabyte; DDR3 SDRAM is currently just over $10 per gigabyte [Newegg 2014]. Even today, one can build an easily affordable main memory system with a terabyte or more of NAND storage per CPU socket (which would be extremely expensive were one to use DRAM), and our cycle- accurate, full-system experiments show that this can be done at a performance point that lies within a factor of two of DRAM.« less
LH2 Liquid Separator Tank Delivery
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank will be lifted and rotated for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
C3I (Command, Control, Communications and Intelligence) Teradata Study.
1986-03-01
data storage capacity of one trillion bytes. The largest configuration currently built consists of 60 processors and 60 disks. .--. ,[ -... "I i The DBC... FMEA ) was developed to l indicate potential points of failure in the configuration and their - effects on total system operation. -"ince the contract did...number or IrPs and AMPs Int is the Integer function Thus, for a maximum configuration (see Section 3.3) of 1024 processors, there are ten tiers in Uhe
ERDA-NASA wind energy project ready to involve users
NASA Technical Reports Server (NTRS)
Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.
1976-01-01
The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.
New Beamlines For Protein Crystallography At The EMBL-Outstation Hamburg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, C.; Gehrmann, T.; Jahn, D.
2004-05-12
Three new beamlines for Protein Crystallography were built up on a bending magnet fan of the DORIS III storage ring. A 10 mrad wide fan of white Synchrotron Radiation (SR) is evenly distributed among 3 individual stations: X12, a central, wavelength-tunable station intended for anomalous scattering experiments (MAD) and fixed wavelength, high intensity stations symmetrically on either side. The fixed wavelength beamlines X11 and X13 comprise triangular, asymmetrically cut Si (111) monochromators as horizontally focusing optical elements. The tunable station is based on a fixed-exit, horizontally focusing double crystal monochromator system. Vertical focusing is achieved on all three lines bymore » trapezoidal shaped, continuous Rh-coated mirrors which can be dynamically bent. In all three lines the X-ray beam can be examined at various points on its way through the optical system by removable screens and PIN-diode based intensity monitors. Purpose built crystallographic end-stations complete the set-up. The design of individual components and their performance will be described.« less
NASA Technical Reports Server (NTRS)
2001-01-01
This is the official crew portrait of the STS-100 mission. Seated are astronauts Kent V. Rominger, (left) and Jeffrey S. Ashby, commander and pilot, respectively. Standing (from the left) are cosmonaut Yuri V. Lonchakov with astronauts Scott E. Parazynski, Umberto Guidoni of the European Space Agency, Chris A. Hadfield, and John L. Phillips, all mission specialists. The seven launched from the Kennedy Space Center aboard the Space shuttle Orbiter Endeavour on April 19, 2001 for an 11-day mission. The STS-100 mission, the sixth International Space Station (ISS) assembly flight, accomplished the following objectives: The delivery of the Canadian-built Space Station Remote Manipulator System (SSRMS), Canadarm2, which is needed to perform assembly operations on later flights; The delivery and installation of a UHF antenna that provides space-to-space communications capability for U.S.-based space walks; and carried the Italian-built Multipurpose Logistics Module Raffaello containing six system racks and two storage racks for the U.S. Lab, Destiny.
Rossner, Alan; Jordan, Carolyn E; Wake, Cameron; Soto-Garcia, Lydia
2017-10-01
The interest in biomass fuel is continuing to expand globally and in the northeastern United States as wood pellets are becoming a primary source of fuel for residential and small commercial systems. Wood pellets for boilers are often stored in basement storage rooms or large bag-type containers. Due to the enclosed nature of these storage areas, the atmosphere may exhibit increased levels of carbon monoxide. Serious accidents in Europe have been reported over the last decade in which high concentrations of carbon monoxide (CO) have been found in or near bulk pellet storage containers. The aim of this study was to characterize the CO concentrations in areas with indoor storage of bulk wood pellets. Data was obtained over approximately 7 months (December 2013 to June 2014) at 25 sites in New Hampshire and Massachusetts: 16 homes using wood pellet boilers with indoor pellet storage containers greater than or equal to 3 ton capacity; 4 homes with wood pellet heating systems with outdoor pellet storage; 4 homes using other heating fuels; and a university laboratory site. CO monitors were set up in homes to collect concentrations of CO in the immediate vicinity of wood pellet storage containers, and data were then compared to those of homes using fossil fuel systems. The homes monitored in this study provided a diverse set of housing stock spanning two and a half centuries of construction, with homes built from 1774 to 2013, representing a range of air exchange rates. The CO concentration data from each home was averaged hourly and then compared to a threshold of 9 ppm. While concentrations of CO were generally low for the homes studied, the need to properly design storage locations for pellets is and will remain a necessary component of wood pellet heating systems to minimize the risk of CO exposure. This paper is an assessment of carbon monoxide (CO) exposure from bulk wood pellet storage in homes in New Hampshire and Massachusetts. Understanding the CO concentrations in homes allows for better designs for storage bins and ventilation for storage areas. Hence, uniform policies for stored wood pellets in homes, schools, and businesses can be framed to ensure occupant safety. Currently in New York State rebates for the installation of wood pellet boilers are only provided if the bulk pellet storage is outside of the home, yet states such as New Hampshire, Vermont, and Maine currently do not have these restrictions.
Online & Offline data storage and data processing at the European XFEL facility
NASA Astrophysics Data System (ADS)
Gasthuber, Martin; Dietrich, Stefan; Malka, Janusz; Kuhn, Manuela; Ensslin, Uwe; Wrona, Krzysztof; Szuba, Janusz
2017-10-01
For the upcoming experiments at the European XFEL light source facility, a new online and offline data processing and storage infrastructure is currently being built and verified. Based on the experience of the system being developed for the Petra III light source at DESY, presented at the last CHEP conference, we further develop the system to cope with the much higher volumes and rates ( 50GB/sec) together with a more complex data analysis and infrastructure conditions (i.e. long range InfiniBand connections). This work will be carried out in collaboration of DESY/IT, European XFEL and technology support from IBM/Research. This presentation will shortly wrap up the experience of 1 year runtime of the PetraIII ([3]) system, continue with a short description of the challenges for the European XFEL ([2]) experiments and the main section, showing the proposed system for online and offline with initial result from real implementation (HW & SW). This will cover the selected cluster filesystem GPFS ([5]) including Quality of Service (QOS), extensive use of flash based subsystems and other new and unique features this architecture will benefit from.
Progress towards broadband Raman quantum memory in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Saglamyurek, Erhan; Hrushevskyi, Taras; Smith, Benjamin; Leblanc, Lindsay
2017-04-01
Optical quantum memories are building blocks for quantum information technologies. Efficient and long-lived storage in combination with high-speed (broadband) operation are key features required for practical applications. While the realization has been a great challenge, Raman memory in Bose-Einstein condensates (BECs) is a promising approach, due to negligible decoherence from diffusion and collisions that leads to seconds-scale memory times, high efficiency due to large atomic density, the possibility for atom-chip integration with micro photonics, and the suitability of the far off-resonant Raman approach with storage of broadband photons (over GHz) [5]. Here we report our progress towards Raman memory in a BEC. We describe our apparatus recently built for producing BEC with 87Rb atoms, and present the observation of nearly pure BEC with 5x105 atoms at 40 nK. After showing our initial characterizations, we discuss the suitability of our system for Raman-based light storage in our BEC.
Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying
2015-07-08
Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.
EPICS-based control and data acquisition for the APS slope profiler (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sullivan, Joseph; Assoufid, Lahsen; Qian, Jun; Jemian, Peter R.; Mooney, Tim; Rivers, Mark L.; Goetze, Kurt; Sluiter, Ronald L.; Lang, Keenan
2016-09-01
The motion control, data acquisition and analysis system for APS Slope Measuring Profiler was implemented using the Experimental Physics and Industrial Control System (EPICS). EPICS was designed as a framework with software tools and applications that provide a software infrastructure used in building distributed control systems to operate devices such as particle accelerators, large experiments and major telescopes. EPICS was chosen to implement the APS Slope Measuring Profiler because it is also applicable to single purpose systems. The control and data handling capability available in the EPICS framework provides the basic functionality needed for high precision X-ray mirror measurement. Those built in capabilities include hardware integration of high-performance motion control systems (3-axis gantry and tip-tilt stages), mirror measurement devices (autocollimator, laser spot camera) and temperature sensors. Scanning the mirror and taking measurements was accomplished with an EPICS feature (the sscan record) which synchronizes motor positioning with measurement triggers and data storage. Various mirror scanning modes were automatically configured using EPICS built-in scripting. EPICS tools also provide low-level image processing (areaDetector). Operation screens were created using EPICS-aware GUI screen development tools.
Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce
NASA Astrophysics Data System (ADS)
Farhan Husain, Mohammad; Doshi, Pankil; Khan, Latifur; Thuraisingham, Bhavani
Handling huge amount of data scalably is a matter of concern for a long time. Same is true for semantic web data. Current semantic web frameworks lack this ability. In this paper, we describe a framework that we built using Hadoop to store and retrieve large number of RDF triples. We describe our schema to store RDF data in Hadoop Distribute File System. We also present our algorithms to answer a SPARQL query. We make use of Hadoop's MapReduce framework to actually answer the queries. Our results reveal that we can store huge amount of semantic web data in Hadoop clusters built mostly by cheap commodity class hardware and still can answer queries fast enough. We conclude that ours is a scalable framework, able to handle large amount of RDF data efficiently.
Pulse Code Modulation (PCM) data storage and analysis using a microcomputer
NASA Technical Reports Server (NTRS)
Massey, D. E.
1986-01-01
A PCM storage device/data analyzer is described. This instrument is a peripheral plug-in board especially built to enable a personal computer to store and analyze data from a PCM source. This board and custom written software turns a computer into a snapshot PCM decommutator. This instrument will take in and store many hundreds or thousands of PCM telemetry data frames, then sift through them over and over again. The data can be converted to any number base and displayed, examined for any bit dropouts or changes in particular words or frames, graphically plotted, or statistically analyzed. This device was designed and built for use on the NASA Sounding Rocket Program for PCM encoder configuration and testing.
ZFS on RBODs - Leveraging RAID Controllers for Metrics and Enclosure Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearman, D. M.
2015-03-30
Traditionally, the Lustre file system has relied on the ldiskfs file system with reliable RAID (Redundant Array of Independent Disks) storage underneath. As of Lustre 2.4, ZFS was added as a backend file system, with built-in software RAID, thereby removing the need of expensive RAID controllers. ZFS was designed to work with JBOD (Just a Bunch Of Disks) storage enclosures under the Solaris Operating System, which provided a rich device management system. Long time users of the Lustre file system have relied on the RAID controllers to provide metrics and enclosure monitoring and management services, with rich APIs and commandmore » line interfaces. This paper will study a hybrid approach using an advanced full featured RAID enclosure which is presented to the host as a JBOD, This RBOD (RAIDed Bunch Of Disks) allows ZFS to do the RAID protection and error correction, while the RAID controller handles management of the disks and monitors the enclosure. It was hoped that the value of the RAID controller features would offset the additional cost, and that performance would not suffer in this mode. The test results revealed that the hybrid RBOD approach did suffer reduced performance.« less
An Oracle-based event index for ATLAS
NASA Astrophysics Data System (ADS)
Gallas, E. J.; Dimitrov, G.; Vasileva, P.; Baranowski, Z.; Canali, L.; Dumitru, A.; Formica, A.; ATLAS Collaboration
2017-10-01
The ATLAS Eventlndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS (relational database management system), the services we have built based on this architecture, and our experience with it. We’ve indexed about 26 billion real data events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data with other complementary metadata in ATLAS, the system has been easily extended to perform essential assessments of data integrity and completeness and to identify event duplication, including at what step in processing the duplication occurred.
Reservoirs in the United States
Harbeck, G. Earl
1948-01-01
Man has engaged in the control of flowing water since history began. Among his early recorded efforts were reservoirs for muncipal water-supplies constructed near ancient Jerusalem to store water which was brought there in masonry conduits. 1/ Irrigation was practiced in Egypt as early as 2000 B. C. There the "basin system" was used from ancient times until the 19th century. The land was divided , into basins of approximately 40,000 acres, separated by earthen dikes. 2/ Flood waters of the Nile generally inundated the basins through canals, many of which were built by the Pharaohs. Even then the economic consequences of a deficient annual flood were recognized. Lake Maeris, which according to Herodotus was an ancient storage reservoir, is said to have had an area of 30,000 acres. In India, the British found at the time of their occupancy of the Presidency of Madras about 50,000 reservoirs for irrigation, many believed to be of ancient construction. 3/ During the period 115-130 A. D. reservoirs were built to improve the water-supply of Athens. Much has been written concerning the elaborate collection and distribution system built to supply Rome, and parts of it remain to this day as monuments to the engineering skill employed by the Romans in solving the problem of large-scale municipal water-supplies.
Overview of magnetic suspension research at Langley Research Center
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1992-01-01
An overview of research in small- and large-gap magnetic suspension systems at LaRC is presented. The overview is limited to systems which have been built as laboratory models or engineering models. Small-gap systems applications include the Annular Momentum Control Device (AMCD), which is a momentum storage device for the stabilization and control of spacecraft, and the Annular Suspension and Pointing System (ASPS), which is a general purpose pointing mount designed to provide orientation, mechanical isolation, and fine pointing space experiments. These devices are described and control and linearization approaches for the magnetic suspension systems for these devices are discussed. Large-gap systems applications at LaRC have been almost exclusively wind tunnel magnetic suspension systems. A brief description of these efforts is also presented.
11. The work area of a typical fuel storage and ...
11. The work area of a typical fuel storage and transfer basin. The wooden floor was built over the 20-foot deep water-filled basin. Buckets filled with irradiated fuel of dummy slugs in the floor and were hung on trolleys attached to the monorail tracks suspended from the ceiling. 85-H807 - B Reactor, Richland, Benton County, WA
Climate change impacts on high-elevation hydroelectricity in California
NASA Astrophysics Data System (ADS)
Madani, Kaveh; Guégan, Marion; Uvo, Cintia B.
2014-03-01
While only about 30% of California's usable water storage capacity lies at higher elevations, high-elevation (above 300 m) hydropower units generate, on average, 74% of California's in-state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to store sufficient water for release in high-demand periods. Previous studies have explored the climate warming effects on California's high-elevation hydropower by focusing on the supply side (exploring the effects of hydrological changes on generation and revenues) ignoring the warming effects on hydroelectricity demand and pricing. This study extends the previous work by simultaneous consideration of climate change effects on high-elevation hydropower supply and pricing in California. The California's Energy-Based Hydropower Optimization Model (EBHOM 2.0) is applied to evaluate the adaptability of California's high-elevation hydropower system to climate warming, considering the warming effects on hydroelectricity supply and pricing. The model's results relative to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generation and storage capacity expansion are examined and discussed. These results are compared with previous studies to emphasize the need to consider climate change effects on hydroelectricity demand and pricing when exploring the effects of climate change on hydropower operations.
NASA Astrophysics Data System (ADS)
Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng
2013-03-01
At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.
Parameter Design and Optimal Control of an Open Core Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Pang, D.; Anand, D. K.; Kirk, J. A.
1996-01-01
In low earth orbit (LEO) satellite applications spacecraft power is provided by photovoltaic cells and batteries. To overcome battery shortcomings the University of Maryland, working in cooperation with NASA/GSFC and NASA/LeRC, has developed a magnetically suspended flywheel for energy storage applications. The system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. Successful application of flywheel energy storage requires integration of several technologies, viz. bearings, rotor design, motor/generator, power conditioning, and system control. In this paper we present a parameter design method which has been developed for analyzing the linear SISO model of the magnetic bearing controller for the OCCF. The objective of this continued research is to principally analyze the magnetic bearing system for nonlinear effects in order to increase the region of stability, as determined by high speed and large air gap control. This is achieved by four tasks: (1) physical modeling, design, prototyping, and testing of an improved magnetically suspended flywheel energy storage system, (2) identification of problems that limit performance and their corresponding solutions, (3) development of a design methodology for magnetic bearings, and (4) design of an optimal controller for future high speed applications. Both nonlinear SISO and MIMO models of the magnetic system were built to study limit cycle oscillations and power amplifier saturation phenomenon observed in experiments. The nonlinear models include the inductance of EM coils, the power amplifier saturation, and the physical limitation of the flywheel movement as discussed earlier. The control program EASY5 is used to study the nonlinear SISO and MIMO models. Our results have shown that the characteristics and frequency responses of the magnetic bearing system obtained from modeling are comparable to those obtained experimentally. Although magnetic saturation is shown in the bearings, there are good correlations between the theoretical model and experimental data. Both simulation and experiment confirm large variations of the magnetic bearing characteristics due to air gap growth. Therefore, the gap growth effect should be considered in the magnetic bearing system design. Additionally, the magnetic bearing control system will be compared to other design methods using not only parameter design but H-infinity optimal control and mu synthesis.
A new digital pulse power supply in heavy ion research facility in Lanzhou
NASA Astrophysics Data System (ADS)
Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin
2013-11-01
To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.
Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC
NASA Technical Reports Server (NTRS)
Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr
2014-01-01
Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.
CSUNSat-1 Team working on their CubeSat at California State University Northridge
2015-03-02
CSUNSat-1 Team (Adam Kaplan, James Flynn, Donald Eckels) working on their CubeSat at California State University Northridge. The primary mission of CSUNSat1 is to space test an innovative low temperature capable energy storage system developed by the Jet Propulsion Laboratory, raising its TRL level to 7 from 4 to 5. The success of this energy storage system will enable future missions, especially those in deep space to do more science while requiring less energy, mass and volume. This CubeSat was designed, built, programmed, and tested by a team of over 70 engineering and computer science students at CSUN. The primary source of funding for CSUNSat1 comes from NASA’s Smallest Technology Partnership program. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, W.S.; Loef, G.O.G.
1981-03-01
Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation aremore » provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.« less
NASA Astrophysics Data System (ADS)
Motte, Fabrice; Bugler-Lamb, Samuel L.; Falcoz, Quentin
2015-07-01
The attraction of solar energy is greatly enhanced by the possibility of it being used during times of reduced or non-existent solar flux, such as weather induced intermittences or the darkness of the night. Therefore optimizing thermal storage for use in solar energy plants is crucial for the success of this sustainable energy source. Here we present a study of a structured bed filler dedicated to Thermocline type thermal storage, believed to outweigh the financial and thermal benefits of other systems currently in use such as packed bed Thermocline tanks. Several criterions such as Thermocline thickness and Thermocline centering are defined with the purpose of facilitating the assessment of the efficiency of the tank to complement the standard concepts of power output. A numerical model is developed that reduces to two dimensions the modeling of such a tank. The structure within the tank is designed to be built using simple bricks harboring rectangular channels through which the solar heat transfer and storage fluid will flow. The model is scrutinized and tested for physical robustness, and the results are presented in this paper. The consistency of the model is achieved within particular ranges for each physical variable.
A Web-based telemedicine system for diabetic retinopathy screening using digital fundus photography.
Wei, Jack C; Valentino, Daniel J; Bell, Douglas S; Baker, Richard S
2006-02-01
The purpose was to design and implement a Web-based telemedicine system for diabetic retinopathy screening using digital fundus cameras and to make the software publicly available through Open Source release. The process of retinal imaging and case reviewing was modeled to optimize workflow and implement use of computer system. The Web-based system was built on Java Servlet and Java Server Pages (JSP) technologies. Apache Tomcat was chosen as the JSP engine, while MySQL was used as the main database and Laboratory of Neuro Imaging (LONI) Image Storage Architecture, from the LONI-UCLA, as the platform for image storage. For security, all data transmissions were carried over encrypted Internet connections such as Secure Socket Layer (SSL) and HyperText Transfer Protocol over SSL (HTTPS). User logins were required and access to patient data was logged for auditing. The system was deployed at Hubert H. Humphrey Comprehensive Health Center and Martin Luther King/Drew Medical Center of Los Angeles County Department of Health Services. Within 4 months, 1500 images of more than 650 patients were taken at Humphrey's Eye Clinic and successfully transferred to King/Drew's Department of Ophthalmology. This study demonstrates an effective architecture for remote diabetic retinopathy screening.
LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift the tank and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
LH2 Liquid Separator Tank Delivery
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane will be used to lift and rotate the tank for delivery to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane is used to lift and rotate the tank before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
Note: Device for obtaining volumetric, three-component velocity fields inside cylindrical cavities.
Ramírez, G; Núñez, J; Hernández, G N; Hernández-Cruz, G; Ramos, E
2015-11-01
We describe a device designed and built to obtain the three-component, steady state velocity field in the whole volume occupied by a fluid in motion contained in a cavity with cylindrical walls. The prototype comprises a two-camera stereoscopic particle image velocimetry system mounted on a platform that rotates around the volume under analysis and a slip ring arrangement that transmits data from the rotating sensors to the data storage elements. Sample observations are presented for natural convection in a cylindrical container but other flows can be analyzed.
2005-06-27
www.embraer.com The EMB-314 Super Tucano is produced by Empresa Brasil De Aeronautica (EMBRAER). An advanced derivative of the EMB-312 which entered...Bronco. Built by Rockwell International, the Bronco was des igned spec i f ica l ly to f igh t l im i ted ‘brushfire’ wars and entered the LARA com...packaging, handling, storage and transportation ; computer resources; maintenance planning; support equipment; manpower & personnel; facilities; training
Seasonal thermal storage: Swedish practice, developments and cost projections
NASA Astrophysics Data System (ADS)
Margen, P.
1981-06-01
The types of heat store being developed in Sweden for seasonal storage of heat are discussed. This type of storage allows summer excess heat from industrial waste heat plants, garbage burning plants and future central solar heat stations to be stored for winter use on district heating networks. Whereas above ground steel or concrete tanks are usually too expensive insulated earth pits, uninsulated rock caverns and deep ground schemes using rock or clay promise to achieve sufficiently low costs to justify storage when supplied with free or cheap summer treat. For all these concepts demonstration plants were or are being built in Sweden.
An explosively driven high-power microwave pulsed power system.
Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L
2012-02-01
The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.
An explosively driven high-power microwave pulsed power system
NASA Astrophysics Data System (ADS)
Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.
2012-02-01
The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.
SIOExplorer: Modern IT Methods and Tools for Digital Library Management
NASA Astrophysics Data System (ADS)
Sutton, D. W.; Helly, J.; Miller, S.; Chase, A.; Clarck, D.
2003-12-01
With more geoscience disciplines becoming data-driven it is increasingly important to utilize modern techniques for data, information and knowledge management. SIOExplorer is a new digital library project with 2 terabytes of oceanographic data collected over the last 50 years on 700 cruises by the Scripps Institution of Oceanography. It is built using a suite of information technology tools and methods that allow for an efficient and effective digital library management system. The library consists of a number of independent collections, each with corresponding metadata formats. The system architecture allows each collection to be built and uploaded based on a collection dependent metadata template file (MTF). This file is used to create the hierarchical structure of the collection, create metadata tables in a relational database, and to populate object metadata files and the collection as a whole. Collections are comprised of arbitrary digital objects stored at the San Diego Supercomputer Center (SDSC) High Performance Storage System (HPSS) and managed using the Storage Resource Broker (SRB), data handling middle ware developed at SDSC. SIOExplorer interoperates with other collections as a data provider through the Open Archives Initiative (OAI) protocol. The user services for SIOExplorer are accessed from CruiseViewer, a Java application served using Java Web Start from the SIOExplorer home page. CruiseViewer is an advanced tool for data discovery and access. It implements general keyword and interactive geospatial search methods for the collections. It uses a basemap to georeference search results on user selected basemaps such as global topography or crustal age. User services include metadata viewing, opening of selective mime type digital objects (such as images, documents and grid files), and downloading of objects (including the brokering of proprietary hold restrictions).
NASA Astrophysics Data System (ADS)
Joewondo, N.; Zhang, Y.; Prasad, M.
2016-12-01
Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental results.
Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.
E. H. Helmer; Thomas J. Brandeis; Ariel E. Lugo; Todd Kennaway
2008-01-01
Little is known about the tropical forests that undergo clearing as urban/built-up and other developed lands spread. This study uses remote sensing-based maps of Puerto Rico, multinomial logit models and forest inventory data to explain patterns of forest age and the age of forests cleared for land development and assess their implications for forest carbon storage and...
NASA Technical Reports Server (NTRS)
Collett, C.
1976-01-01
A test system was built and several short term tests were completed. The test system included, in addition to the 30-cm ion thruster, a console for powering the thruster and monitoring performance, a vacuum facility for simulating a space environment, and a storage and feed system for the thruster propellant. This system was used to perform three short term tests (one 100-hour and two 500-hour tests), an 1108-hour endurance test which was aborted by a vacuum facility failure, and finally the 10,000-hour endurance test. In addition to the two 400 series thrusters which were used in the short term and 1100-hour tests, four more 400 series thrusters were fabricated, checked out, and delivered to NASA. Three consoles similar to the one used in the test program were also fabricated and delivered.
Innovative IT system for material management in warehouses
NASA Astrophysics Data System (ADS)
Papoutsidakis, Michael; Sigala, Maria; Simeonaki, Eleni; Tseles, Dimitrios
2017-09-01
Nowadays through the rapid development of technology in all areas there is a constant effort to introduce technological solutions in everyday life with emphasis on materials management information systems (Enterprise Resource Planning). During the last few years the variety of these systems has been increased for small business or for SMEs as well as for larger companies and industries. In the field of material management and main management operations with automated processes, ERP applications have only recently begun to make their appearance. In this paper will be presented the development of a system for automated material storage process in a system built through specific roles that will manage materials using an integrated barcode scanner. In addition we will analyse and describe the operation and modules of other systems that have been created for the same usage. The aim of this project is to create a prototype application that will be innovative with a flexible nature that will give solutions, with low cost and it will be user friendly. This application will allow quick and proper materials management for storage. The expected result is that the application can be used by smart devices in android environment and computers without an external barcode scanner, making the application accessible to the buyer at low cost.
Fabrication and assembly of a superconducting undulator for the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasse, Quentin; Fuerst, J. D.; Ivanyushenkov, Y.
2014-01-29
A prototype superconducting undulator magnet (SCU0) has been built at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) and has successfully completed both cryogenic performance and magnetic measurement test programs. The SCU0 closed loop, zero-boil-off cryogenic system incorporates high temperature superconducting (HTS) current leads, cryocoolers, a LHe reservoir supplying dual magnetic cores, and an integrated cooled beam chamber. This system presented numerous challenges in the design, fabrication, and assembly of the device. Aspects of this R and D relating to both the cryogenic and overall assembly of the device are presented here. The SCU0 magnet has been installedmore » in the APS storage ring.« less
Method of electric powertrain matching for battery-powered electric cars
NASA Astrophysics Data System (ADS)
Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping
2013-05-01
The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.
NASA Astrophysics Data System (ADS)
Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.
2008-03-01
A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.
Advances in X-Ray Simulator Technology
1995-07-01
d’Etudes de Gramat ; I. Vitkovitsky, Logicon RDA INTRODUCTION DNA’s future x-ray simulators are based upon inductive energy storage, a technology which...switch. SYRINX, a proposed design to be built by the Centre d’Etudes de Gramat (CEG) in France would employ a modular approach, possibly with a...called SYRINX, would be built at the Centred’ Etudes de Gramat (CEG). It would employ a modular.long conduction time current source to drive a PRS
Composition and method for hydrogen storage
NASA Technical Reports Server (NTRS)
Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)
2004-01-01
A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.
LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. The tank has been lifted and rotated by crane and lowered back onto the flatbed truck for transport to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. Construction workers check lines as a crane is attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahrdt, J.; Baecker, H.-J.; Frentrup, W.
Helmholtzzentrum Berlin has built an APPLE II undulator for the storage ring PETRA III. The device has a total length of 5m and a minimum gap of 11mm. The high magnetic forces in particular in the inclined mode have been analyzed by means of finite element methods (FEM). Specific mechanic components such as flexible joints have been optimized to cope with the gap- and shift-dependent 3D-forces and a sophisticated control and drive system has been implemented. After completion of the device, detailed laser interferometer measurements for all operation modes have been performed. The data are compared to the FEM simulations.
LH2 Liquid Separator Tank Lift, Rotate, and Move to Trailer
2016-11-17
A new liquid hydrogen separator tank arrives at NASA's Kennedy Space Center in Florida. A crane has been attached to the tank to lift and rotate it before it is delivered to Launch Pad 39B. The new separator/storage tank will be added to the pad's existing hydrogen vent system to assure gaseous hydrogen is delivered downstream to the flare stack. The 60,000 gallon tank was built by INOXCVA, in Baytown, Texas, a subcontractor of Precision Mechanical Inc. in Cocoa Florida. The new tank will support all future launches from the pad.
Advanced Communications Technology Satellite (ACTS): Design and on-orbit performance measurements
NASA Technical Reports Server (NTRS)
Gargione, F.; Acosta, R.; Coney, T.; Krawczyk, R.
1995-01-01
The Advanced Communications Technology Satellite (ACTS), developed and built by Lockheed Martin Astro space for the NASA Lewis Research Center, was launched in September 1993 on the shuttle STS 51 mission. ACTS is a digital experimental communications test bed that incorporates gigahertz bandwidth transponders operating at Ka band, hopping spot beams, on-board storage and switching, and dynamic rain fade compensation. This paper describes the ACTS enabling technologies, the design of the communications payload, the constraints imposed on the spacecraft bus, and the measurements conducted to verify the performance of the system in orbit.
Wei, Zuoan; Yin, Guangzhi; Wang, J G; Wan, Ling; Li, Guangzhi
2013-01-01
Rapid development of China's economy demands for more mineral resources. At the same time, a vast quantity of mine tailings, as the waste byproduct of mining and mineral processing, is being produced in huge proportions. Tailings impoundments play an important role in the practical surface disposal of these large quantities of mining waste. Historically, tailings were relatively small in quantity and had no commercial value, thus little attention was paid to their disposal. The tailings were preferably discharged near the mines and few tailings storage facilities were constructed in mainland China. This situation has significantly changed since 2000, because the Chinese economy is growing rapidly and Chinese regulations and legislation require that tailings disposal systems must be ready before the mining operation begins. Consequently, data up to 2008 shows that more than 12 000 tailings storage facilities have been built in China. This paper reviews the history of tailings disposal in China, discusses three cases of tailings dam failures and explores failure mechanisms, and the procedures commonly used in China for planning, design, construction and management of tailings impoundments. This paper also discusses the current situation, shortcomings and key weaknesses, as well as future development trends for tailings storage facilities in China.
Details technologies that can be used to store electricity so it can be used at times when demand exceeds generation, which helps utilities operate more effectively, reduce brownouts, and allow for more renewable energy resources to be built and used.
Analysis of the efficiency of a hybrid foil tunnel heating system
NASA Astrophysics Data System (ADS)
Kurpaska, Sławomir; Pedryc, Norbert
2017-10-01
The paper analyzes the efficiency of the hybrid system used to heat the foil tunnel. The tested system was built on the basis of heat gain in a cascade manner. The first step is to heat the water in the storage tank using the solar collectors. The second stage is the use of a heat pump (HP) in order to heat the diaphragm exchangers. The lower HP heat source is a cascade first stage buffer. In the storage tank, diaphragm exchangers used for solar collectors and heat pumps are installed. The research was carried out at a research station located in the University of Agriculture in Cracow. The aim was to perform an analysis of the efficiency of a hybrid system for the heating of a foil tunnel in the months from May to September. The efficiency of the entire hybrid system was calculated as the relation of the effect obtained in reference to the electrical power used to drive the heat pump components (compressor drive, circulation pump), circulation pumps and fans installed in the diaphragm heaters. The resulting effect was the amount of heat supplied to the interior of the object as a result of the internal air being forced through the diaphragm exchangers.
The design of a petabyte archive and distribution system for the NASA ECS project
NASA Technical Reports Server (NTRS)
Caulk, Parris M.
1994-01-01
The NASA EOS Data and Information System (EOSDIS) Core System (ECS) will contain one of the largest data management systems ever built - the ECS Science and Data Processing System (SDPS). SDPS is designed to support long term Global Change Research by acquiring, producing, and storing earth science data, and by providing efficient means for accessing and manipulating that data. The first two releases of SDPS, Release A and Release B, will be operational in 1997 and 1998, respectively. Release B will be deployed at eight Distributed Active Archiving Centers (DAAC's). Individual DAAC's will archive different collections of earth science data, and will vary in archive capacity. The storage and management of these data collections is the responsibility of the SDPS Data Server subsystem. It is anticipated that by the year 2001, the Data Server subsystem at the Goddard DAAC must support a near-line data storage capacity of one petabyte. The development of SDPS is a system integration effort in which COTS products will be used in favor of custom components in very possible way. Some software and hardware capabilities required to meet ECS data volume and storage management requirements beyond 1999 are not yet supported by available COTS products. The ECS project will not undertake major custom development efforts to provide these capabilities. Instead, SDPS and its Data Server subsystem are designed to support initial implementations with current products, and provide an evolutionary framework that facilitates the introduction of advanced COTS products as they become available. This paper provides a high-level description of the Data Server subsystem design from a COTS integration standpoint, and discussed some of the major issues driving the design. The paper focuses on features of the design that will make the system scalable and adaptable to changing technologies.
An inexpensive economical solar heating system for homes
NASA Technical Reports Server (NTRS)
Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.
1976-01-01
A low-cost solar home heating system to supplement existing warm-air heating systems is described. The report is written in three parts: (1) a brief background on solar heating, (2) experience with a demonstration system, and (3) information for the homeowner who wishes to construct such a system. Instructions are given for a solar heating installation in which the homeowner supplies all labor necessary to install off-the-shelf components estimated to cost $2,000. These components, which include solar collector, heat exchanger, water pump, storage tank, piping, and controls to make the system completely automatic, are available at local lumber yards, hardware stores, and plumbing supply stores, and are relatively simple to install. Manufacturers and prices of each component used and a rough cost analysis based on these prices are included. This report also gives performance data obtained from a demonstration system which was built and tested at the Langley Research Center.
Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
Vienken, T; Schelenz, S; Rink, K; Dietrich, P
2015-01-01
Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Pilipovich, V. A.; Esman, A. K.; Goncharenko, I. A.; Posed'ko, V. S.; Solonovich, I. F.
1995-10-01
A method for increasing the information capacity and enhancing the reliability of information storage in a dynamic fibre-optic memory is proposed. An additional built-in channel with counterpropagating circulation of signals is provided for this purpose. This additional channel can be used to transmit both information and service signals, such as address words, clock signals, correcting sequences, etc. The possibility of compensating the attenuation of an information signal by stimulated Raman scattering is considered.
Computer Programming Manual for the Jovial (J73) Language
1981-06-01
in function is: C - BYTE("ABCDEFŕ ,2,3); The built-in function extracts "BCD" from the string "ABCDEF". ( - 9 - 1: introduction ’ Two of the built...Tabl,’ Declarations Oil -fIt Chapter 8 BLOCK DECLARATIONS A block groups items, tables, and other blocks into contiguous storage. A block also gives a...substring to be extracted starts. Length specifies the number of bits in the subetring. Bits in a bit string are numbered from left to right, beginning with
NASA's Involvement in Technology Development and Transfer: The Ohio Hybrid Bus Project
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government and industry cooperative is using advanced power technology in a city transit bus that will offer double the fuel economy, and reduce emissions to one tenth of government standards. The heart of the vehicle's power system is a natural gas fueled generator unit. Power from both the generator and an advanced energy storage system is provided to a variable speed electric motor attached to the rear drive axle. A unique aspect of the vehicle's design is its use of "super" capacitors for recovery of energy during braking. This is the largest vehicle ever built using this advanced energy recovery technology. This paper describes the project goals and approach, results of its system performance modeling, and the status of the development team's effort.
ERIC Educational Resources Information Center
Miller, Michael J.
1984-01-01
Description of the Macintosh personal, educational, and business computer produced by Apple covers cost; physical characteristics including display devices, circuit boards, and built-in features; company-produced software; third-party produced software; memory and storage capacity; word-processing features; and graphics capabilities. (MBR)
The Salem Smart Power Center: An Assessment of Battery Performance and Economic Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balducci, Patrick J.; Alam, M. J.E.; Viswanathan, Vilayanur
This paper presents an assessment of the economic potential of a 5 MW/1.25 MWh Energy Storage System (ESS) installed at the Salem Smart Power Center (SSPC), a smart grid technology demonstration facility owned and operated by Portland General Electric (PGE) in Salem, Oregon. The ESS and the grid conditions in which it operates were modeled using Pacific Northwest National Laboratory’s Battery Storage Evaluation Tool (BSET) to explore tradeoffs between services, and to develop optimal control strategies. This assessment monetized the value derived from nine services the SSPC could provide to PGE and the customers it serves. The ESS and themore » grid conditions in which it operates were modeled using PNNL’s in-house optimization tool BSET to explore tradeoffs between services, and to develop optimal control strategies. The analysis resulted in a number of lessons that provide crucial insights into the practical application of ESS, including; The SSPC, which was originally conceived as a research and test facility and built with the prevailing maturity technology level, was built at a cost ($20.4 million) that exceeds current day prices ($5.4 million) for a similarly designed and built 5 MW/1.25 MWh system; In terms of economic operation, the SSPC is currently underutilized, deployed only for primary frequency response. PNNL modeling indicates that optimal operation of the ESS could generate an additional value of $2.3 million over 20 years. It should also be noted that primary frequency response is the highest benefit application but requires a response from the SSPC only 17 hours each year. While optimally engaged, the ESS would provide arbitrage and ancillary services 78 percent of the time, but those services generate only 27 percent of the total value; Participation in Western EIM represents an interesting opportunity for PGE with a potential to generate $2.1 million value in PV terms over 20 years in the 5-min real-time market; With an energy to power ratio of only 0.25, the SSPC is not well suited to engage in most energy-intensive applications such as arbitrage or ancillary services. By upsizing the storage capacity to 5 MWh and 10MWh, the additional value allows the benefits ($13.3 million and 20.3 million, respectively) to exceed the system’s revenue requirements ($11.5 and $16.4 million, respectively). For the SSPC, ROI ratios exceeded 1.0 when the energy to power ratio fell between 0.5 and 3.5, and peaked at an energy to power ratio of 2.0. This report represents the output of the first of a two-phase effort. Phase II will involve the development of enhanced control strategies to assist PGE in realizing the benefits of energy storage in real-time.« less
Kumar, Vinod; Afrin, Samia; Ortega, Jesus; ...
2013-09-01
A prototype of a concentrating solar collector (CSC) receiver was designed, built, and evaluated on-sun at the University of Texas at El Paso in El Paso, TX. This prototype receiver consists of two parabolic trough-reflectors but, in principle, the design can be efficiently extended to multiple units for achieving a higher temperature throughput. Each reflector has a vacuum tube collector at the focal point of the trough. The solar collector system was combined with a single-tank thermocline thermal energy storage (TES) for off-solar thermal usage. The main goal of this study is to develop an advanced solar hot water systemmore » for most residential applications. The focus of this study is to investigate the feasibility and performance of the solar thermal system by employing the recent advancement in the TES—a thermocline based TES—system for the concentrating solar power technologies developed by the Sandia National Laboratories and National Renewable Energy Laboratories for electricity production. A CSC when combined with TES has potential to provide uninterrupted thermal energy for most residential usages. This paper presents a detailed description of prototype design and materials required. The thermal energy storage tank utilizes an insulated 170 l (45 gal) galvanized steel tank. In order to maintain thermocline in the TES tank, with hot water on top and cold water at the bottom, two plate distributors are installed in the tank. The data showed a significant enhancement in thermal energy generation. This thermocline based single tank presented a thermal energy storage potential for at least three days (with diminishing storage capacity) that test were performed. The whole prototype was made for approximately USD 355 (excludes any labor costs) and hence also has strong potential for supplying clean thermal energy in most developing countries. As a result, tests of the prototype were conducted in November 2011.« less
Microbial growth under a high-pressure CO2 environment
NASA Astrophysics Data System (ADS)
Thompson, J. R.; Hernandez, H. H.
2009-12-01
Carbon capture and storage (CCS) of CO2 has the potential to significantly reduce the emission of greenhouse gasses associated with fossil fuel combustion. The largest potential for storing captured CO2 in the United Sates is in deep geologic saline formations. Currently, little is known about the effects of CO2 storage on biologically active microbial communities found in the deep earth biosphere. Therefore, to investigate how deep earth microbial communities will be affected by the storage of CO2, we have built a high-pressure microbial growth system in which microbial samples are subjected to a supercritical CO2 (scCO2) environment. Recently we have isolated a microbial consortium that is capable of growth and extracellular matrix production in nutrient media under a supercritical CO2 headspace. This consortium was cultivated from hydrocarbon residues associated with saline formation waters and includes members of the gram-positive Bacillus genus. The cultivation of actively growing cells in an environment containing scCO2 is unexpected based on previous experimental evidence of microbial sterilization attributed to the acidic, desiccating, and solvent-like properties of scCO2. Such microbial consortia have potential for development as (i) biofilm barriers for geological carbon-dioxide sequestration, and as (ii) agents of biocatalysis in environmentally-friendly supercritical (sc) CO2 solvent systems. The discovery that microbes can remain biologically active, and grow, in these environments opens new frontiers for the use of self-regenerating biological systems in engineering applications.
The Portuguese gamma irradiation facility
NASA Astrophysics Data System (ADS)
Mendes, C. M.; Almeida, J. C.; Botelho, M. L.; Cavaco, M. C.; Almeida-Vara, E.; Andrade, M. E.
A Gamma Radiation Facility was built up in the National Laboratory of Industrial Technology and Engineering (LNETI), Lisbon, Portugal. This plant (UTR GAMA-Pi) is a Cobalt-60 dry storage continuous facility with a nominal capacity of 1.5X10 16 Bq. The initial activity is 1.1X10 16 Bq and the troughput capacity 10 3 ton/year for product with a bulk density of 0.2 g/cm 3 treated with a minimum absorbed dose of 25 kGy. Complementary control devices were installed: ventilation system, closed water refrigeration circuit, internal TV system, detection and extinction fire system and emergency power group. It must be emphasized that the best attention was given to the conception and efficiency of the interlock safety systems. This facility will be utilized mainly for radiosterilization of medical articles and decontamination of wine cork stoppers.
Commercial aerospace and terrestrial applications of nickel-hydrogen batteries
NASA Astrophysics Data System (ADS)
Caldwell, Dwight B.; Coates, Dwaine K.; Fox, Chris L.; Miller, Lee E.
1996-03-01
The nickel-hydrogen battery system, used extensively in the aerospace industry to supply electrical power to earth-orbital satellites for communications, observation, and military applications, is being developed for commercial, terrestrial applications. Low-cost components, electrodes, cell designs, and battery designs are currently being tested. Catalytic hydrogen electrodes have been developed which are compatible with commercial nickel battery cost. Prismatic and spiral-wound cell designs have been built and tested. Common pressure vessel and dependent pressure vessel battery designs are also being evaluated. The nickel-hydrogen battery offers potential cycle life unequaled by any other battery system. This makes the battery ideal for many commercial and terrestrial energy storage applications such as telecommunication, remote stand-alone power systems, utility load-leveling, and other applications which require long life and a truly maintenance-free and abuse-tolerant battery system.
Suciu, George; Suciu, Victor; Martian, Alexandru; Craciunescu, Razvan; Vulpe, Alexandru; Marcu, Ioana; Halunga, Simona; Fratu, Octavian
2015-11-01
Big data storage and processing are considered as one of the main applications for cloud computing systems. Furthermore, the development of the Internet of Things (IoT) paradigm has advanced the research on Machine to Machine (M2M) communications and enabled novel tele-monitoring architectures for E-Health applications. However, there is a need for converging current decentralized cloud systems, general software for processing big data and IoT systems. The purpose of this paper is to analyze existing components and methods of securely integrating big data processing with cloud M2M systems based on Remote Telemetry Units (RTUs) and to propose a converged E-Health architecture built on Exalead CloudView, a search based application. Finally, we discuss the main findings of the proposed implementation and future directions.
A household survey of medicine storage practices in Gondar town, northwestern Ethiopia.
Teni, Fitsum Sebsibe; Surur, Abdrrahman Shemsu; Belay, Assefa; Wondimsigegn, Dawit; Gelayee, Dessalegn Asmelashe; Shewamene, Zewdneh; Legesse, Befikadu; Birru, Eshetie Melese
2017-03-09
Household surveys are crucial to get accurate information on how medicines are acquired, and used by consumers, as they provide the best evidence in the area. The objective of this study was to document household medicine storage practices in Gondar town, northwestern Ethiopia. A cross-sectional household survey was conducted from April 5 to May 6, 2015. In the study, 809 households were surveyed from four sub-cities in the town selected through multistage sampling with 771 included in the final analysis. Data on the extent of storage, storage conditions, sources of medicines and their current status among others were collected through structured interviews and observations. The data were entered in to Epidata version 3.1, exported to and analyzed using Statistical Packages for Social Sciences (SPSS) version 21. Of the 771 households in the study, 44.2% stored medicines. Presence of family members with chronic illness(es) and higher levels of household incomes predicted higher likelihood of medicine storage. In the households which allowed observation of stored medicines (n = 299), a mean of 1.85 [SD = 1.09] medicines per household were found. By category, anti-infectives for systemic use (23.9%), medicines for alimentary tract and metabolism (19.2%) and those for cardiovascular system (17.7%) ranked top. Among individual medicines stored, diclofenac (10.7%), paracetamol (9.9%) and amoxicillin (8.0%) were on top of the list. Dispensaries (97.8%) and physicians (83.5%) were almost exclusive sources of medicines and advices/orders for medicines respectively. Nearly two-thirds of the medicines found were on use and a vast majority (76.5%) were stored in chests of drawers. Proportion of expired medicines was very low (3.14%). The use of physicians' and pharmacists' advice to get medicines; use of dispensaries as principal sources, large proportion of medicines being in use and very low proportion of expiry showed good practices. However, storage places of medicines were not purpose built. Encouraging good practices through continued medicine use education and advocating appropriate medicine storage in medicine cabinets is required to improve storage conditions and consequent use of medicines.
Test Plan for the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing themore » internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.« less
Badak field's oil flowing; gas is ready
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J.L.
1975-03-24
Within about 5 y after discovery of the Badak field in East Kalimantan, Indonesia, first deliveries are scheduled to be made from a new LNG plant fed over 530 million CF/day by the field. Badak is also flowing about 13,000 bbl/day of oil, which is piped to the Santan terminal. Other promising gas reserves found in the area could boost production to a level that - when coupled with Badak - would support an LNG-plant input of up to 1 billion CF/day. Indeed, the plant is being built with provisions for adding 2 more trains later. The plant will usemore » an Air Products Co. propane-precooled liquefaction process. The storage system will include four 600,000-bbl aboveground double-wall insulated tanks. Seven 4.4 million cu ft (125,000 cu m) tankers will be constructed to move the LNG from Bontang Bay to market in Japan, where 4 receiving terminals will be built - Chubu, Himeji, Kitakyushu, and Semboku II.« less
Monitoring complex detectors: the uSOP approach in the Belle II experiment
NASA Astrophysics Data System (ADS)
Di Capua, F.; Aloisio, A.; Ameli, F.; Anastasio, A.; Branchini, P.; Giordano, R.; Izzo, V.; Tortone, G.
2017-08-01
uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.
Moving Large Data Sets Over High-Performance Long Distance Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Stephen W; Poole, Stephen W; Ruwart, Thomas
2011-04-01
In this project we look at the performance characteristics of three tools used to move large data sets over dedicated long distance networking infrastructure. Although performance studies of wide area networks have been a frequent topic of interest, performance analyses have tended to focus on network latency characteristics and peak throughput using network traffic generators. In this study we instead perform an end-to-end long distance networking analysis that includes reading large data sets from a source file system and committing large data sets to a destination file system. An evaluation of end-to-end data movement is also an evaluation of themore » system configurations employed and the tools used to move the data. For this paper, we have built several storage platforms and connected them with a high performance long distance network configuration. We use these systems to analyze the capabilities of three data movement tools: BBcp, GridFTP, and XDD. Our studies demonstrate that existing data movement tools do not provide efficient performance levels or exercise the storage devices in their highest performance modes. We describe the device information required to achieve high levels of I/O performance and discuss how this data is applicable in use cases beyond data movement performance.« less
NASA Technical Reports Server (NTRS)
Dickson, J.; Drury, H.; Van Essen, D. C.
2001-01-01
Surface reconstructions of the cerebral cortex are increasingly widely used in the analysis and visualization of cortical structure, function and connectivity. From a neuroinformatics perspective, dealing with surface-related data poses a number of challenges. These include the multiplicity of configurations in which surfaces are routinely viewed (e.g. inflated maps, spheres and flat maps), plus the diversity of experimental data that can be represented on any given surface. To address these challenges, we have developed a surface management system (SuMS) that allows automated storage and retrieval of complex surface-related datasets. SuMS provides a systematic framework for the classification, storage and retrieval of many types of surface-related data and associated volume data. Within this classification framework, it serves as a version-control system capable of handling large numbers of surface and volume datasets. With built-in database management system support, SuMS provides rapid search and retrieval capabilities across all the datasets, while also incorporating multiple security levels to regulate access. SuMS is implemented in Java and can be accessed via a Web interface (WebSuMS) or using downloaded client software. Thus, SuMS is well positioned to act as a multiplatform, multi-user 'surface request broker' for the neuroscience community.
Biological productivity in small impoundments
USDA-ARS?s Scientific Manuscript database
Most ponds and small impoundments are built or used with a principal use in mind. That use may be recreational fishing, commercial aquaculture, waterfowl hunting, potable water storage, irrigation water supply, livestock watering, stormwater retention, landscaping, swimming, or others. In practice, ...
Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian
2018-05-01
This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.
A Compute Capable SSD Architecture for Next-Generation Non-volatile Memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Arup
2014-01-01
Existing storage technologies (e.g., disks and ash) are failing to cope with the processor and main memory speed and are limiting the overall perfor- mance of many large scale I/O or data-intensive applications. Emerging fast byte-addressable non-volatile memory (NVM) technologies, such as phase-change memory (PCM), spin-transfer torque memory (STTM) and memristor are very promising and are approaching DRAM-like performance with lower power con- sumption and higher density as process technology scales. These new memories are narrowing down the performance gap between the storage and the main mem- ory and are putting forward challenging problems on existing SSD architecture, I/O interfacemore » (e.g, SATA, PCIe) and software. This dissertation addresses those challenges and presents a novel SSD architecture called XSSD. XSSD o oads com- putation in storage to exploit fast NVMs and reduce the redundant data tra c across the I/O bus. XSSD o ers a exible RPC-based programming framework that developers can use for application development on SSD without dealing with the complication of the underlying architecture and communication management. We have built a prototype of XSSD on the BEE3 FPGA prototyping system. We implement various data-intensive applications and achieve speedup and energy ef- ciency of 1.5-8.9 and 1.7-10.27 respectively. This dissertation also compares XSSD with previous work on intelligent storage and intelligent memory. The existing ecosystem and these new enabling technologies make this system more viable than earlier ones.« less
NASA Technical Reports Server (NTRS)
1979-01-01
Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.
NASA Technical Reports Server (NTRS)
Trase, Larry M.
2002-01-01
High-energy flywheel systems for aerospace power storage and attitude control applications are being developed because of the potential for increasing the energy density and reducing operational costs. A significant challenge facing the development of the test hardware is containment of the rotating elements in the event of a failure during the development and qualification stages of testing. This containment is critical in order to ensure the safety of the test personnel and the facility. A containment system utilizing water as the containment media is presented. Water containment was found to be a low cost, flexible, and highly effective containment system. Ballistic test results and analytical results are discussed along with a description of a flywheel test facility that was designed and built utilizing the water containment system at the NASA Glenn Research Center at Lewis Field in Cleveland, Ohio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Phase I program and the design plan for the Phase II Experiment Integration wherein the AAI Corporation's 24/1 concentrating collector is used to produce hot water to cure concrete blocks is described. This concept has a tremendous potential since each block requires about 1500 Btu for curing at a temperature of 140/sup 0/F to 180/sup 0/F. To demonstrate this process, the solar hot water system will be installed at the new block fabricating plant being built by the York Building Products Co., Inc. at Harrisburg, Pa. A circular underground curing tank will be the storage tank for the solarmore » system. Since the plane is new, no retrofitting is required. The collectors will be mounted on the roof of the new block producing facility. A full-scale 256 ft/sup 2/ module of the 24/1 collector has been built and tested by AAI Corporation. A 9216 ft/sup 2/ array of collectors is required for this experiment. AAI Corporation is pursuing a development program planned to culminate in the marketing of the 24/1 collector at a selling price of $7 to $10 per square foot. The collector is built in 9 ft by 34 ft modules and is self-supporting with pads located at the four corners. It can be inclined at the most favorable angle for solar performance, and can be located on a roof, or as a separate unit on the ground. A final design and performance analysis and an economic analysis are presented. (WHK)« less
Reconfigurable HIL Testing of Earth Satellites
NASA Technical Reports Server (NTRS)
2008-01-01
In recent years, hardware-in-the-loop (HIL) testing has carved a strong niche in several industries, such as automotive, aerospace, telecomm, and consumer electronics. As desktop computers have realized gains in speed, memory size, and data storage capacity, hardware/software platforms have evolved into high performance, deterministic HIL platforms, capable of hosting the most demanding applications for testing components and subsystems. Using simulation software to emulate the digital and analog I/O signals of system components, engineers of all disciplines can now test new systems in realistic environments to evaluate their function and performance prior to field deployment. Within the Aerospace industry, space-borne satellite systems are arguably some of the most demanding in terms of their requirement for custom engineering and testing. Typically, spacecraft are built one or few at a time to fulfill a space science or defense mission. In contrast to other industries that can amortize the cost of HIL systems over thousands, even millions of units, spacecraft HIL systems have been built as one-of-a-kind solutions, expensive in terms of schedule, cost, and risk, to assure satellite and spacecraft systems reliability. The focus of this paper is to present a new approach to HIL testing for spacecraft systems that takes advantage of a highly flexible hardware/software architecture based on National Instruments PXI reconfigurable hardware and virtual instruments developed using LabVIEW. This new approach to HIL is based on a multistage/multimode spacecraft bus emulation development model called Reconfigurable Hardware In-the-Loop or RHIL.
Polyethylene process is ready to barge in and be used by Ipako in Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-04-02
Ipako S.A.'s new 120,000 ton/yr Unipol low-density polyethylene (LDPE) plant will be built on a barge by Ishikawajima-Harima Heavy Industries Co. and towed 14,000 mi to Bahia Blanca, Argent., where the barge will be moored to the shore. Union Carbide Corp. is offering barge-mounted LDPE plants using its Unipol process in 75,000 and 120,000 metric ton/yr sizes. The plants have the same design as land-based plants. The plant being built in Japan measures 300 ft long, 73.8 ft wide, and 175 ft to the top of the flare, and includes a raw materials storage and handling section, an onboard nitrogenmore » plant, a purification system, fresh- and salt-water cooling systems, an enclosed personnel area, laboratory and process control facilities, a power distribution center, and an emergency power-generating plant. With construction in the shipyard, the plant can be completed in less time than would be required on site. When the plant starts operation, probably by the end of 1982, Ipako will become the largest LDPE producer in Argentina. Other companies, including Davy Offshore, have been promoting the idea of offshore plants.« less
An object-oriented class library for medical software development.
O'Kane, K C; McColligan, E E
1996-12-01
The objective of this research is the development of a Medical Object Library (MOL) consisting of reusable, inheritable, portable, extendable C++ classes that facilitate rapid development of medical software at reduced cost and increased functionality. The result of this research is a library of class objects that range in function from string and hierarchical file handling entities to high level, procedural agents that perform increasingly complex, integrated tasks. A system built upon these classes is compatible with any other system similarly constructed with respect to data definitions, semantics, data organization and storage. As new objects are built, they can be added to the class library for subsequent use. The MOL is a toolkit of software objects intended to support a common file access methodology, a unified medical record structure, consistent message processing, standard graphical display facilities and uniform data collection procedures. This work emphasizes the relationship that potentially exists between the structure of a hierarchical medical record and procedural language components by means of a hierarchical class library and tree structured file access facility. In doing so, it attempts to establish interest in and demonstrate the practicality of the hierarchical medical record model in the modern context of object oriented programming.
Effects of different artificial ageing methods on the degradation of adhesive-dentine interfaces.
Deng, Donglai; Yang, Hongye; Guo, Jingmei; Chen, Xiaohui; Zhang, Weiping; Huang, Cui
2014-12-01
To compare the effects of four commonly used artificial ageing methods (water storage, thermocycling, NaOCl storage and pH cycling) on the degradation of adhesive-dentine interfaces. Fifty molars were sectioned parallel to the occlusal plane, polished and randomly divided into two adhesive groups: An etch-and-rinse adhesive Adper SingleBond 2 and a self-etch adhesive G-Bond. After the composite built up, the specimens from each adhesive group were sectioned into beams, which were then assigned to one of the following groups: Group 1 (control), 24h of water storage; Group 2, 6 months of water storage; Group 3, 10,000 runs of thermocycling; Group 4, 1h of 10% NaOCl storage; and Group 5, 15 runs of pH cycling. The microtensile bond strengths were then tested. The failure modes were classified with a stereomicroscope and representative interface was analyzed with a field-emission scanning electron microscopy (FESEM). Nanoleakage expression was evaluated through FESEM in the backscattered mode. The four artificial ageing methods decreased the bonding strength to nearly 50% and increased the nanoleakage expression of both adhesive systems compared with the control treatment. Adhesive failures were the predominant fracture modes in all groups. However, differences in detailed morphology were observed among the different groups. Water storage, thermocycling, NaOCl storage and pH cycling could obtain similar degradation effectiveness through appropriate parameter selection. Each in vitro artificial ageing method had its own mechanisms, characteristics and application scope for degrading the adhesive-dentin interfaces. Water storage is simple, low-cost but time-consuming; thermocycling lacks of a standard agreement; NaOCl storage is time-saving but mainly degrades the organic phase; pH cycling can resemble cariogenic condition but needs further studies. Researchers focusing on bonding durability studies should be deliberate in selecting an appropriate ageing model based on the differences of test material, purpose and time. Copyright © 2014 Elsevier Ltd. All rights reserved.
1984-09-21
largest planned among all the dams completed in Burma. On the course of the Pan-laung river there is a series of dams built by the old kings of Burma...far completed in Burma. The intention of the plans for the Kinda storage dam is that at a distance of 9 miles above the present Kinda dam a storage...with these parallel intentions . For generation of hydroelectric power it is intended to include in the main dam a penstock 1,525 feet long and 24
Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank
NASA Technical Reports Server (NTRS)
Werkheiser, Arthur
2015-01-01
The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.
View of automotive repair and gas station, facing southwest from ...
View of automotive repair and gas station, facing southwest from across Pope Street. Garage built for storage of employee automobiles in left background - Automotive Repair & Gas Station, Southwest corner of Pope Street & Olympic Avenue, Port Gamble, Kitsap County, WA
Optimizing the Use of Storage Systems Provided by Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Gallagher, J. H.; Potter, N.; Byrne, D. A.; Ogata, J.; Relph, J.
2013-12-01
Cloud computing systems present a set of features that include familiar computing resources (albeit augmented to support dynamic scaling of processing power) bundled with a mix of conventional and unconventional storage systems. The linux base on which many Cloud environments (e.g., Amazon) are based make it tempting to assume that any Unix software will run efficiently in this environment efficiently without change. OPeNDAP and NODC collaborated on a short project to explore how the S3 and Glacier storage systems provided by the Amazon Cloud Computing infrastructure could be used with a data server developed primarily to access data stored in a traditional Unix file system. Our work used the Amazon cloud system, but we strived for designs that could be adapted easily to other systems like OpenStack. Lastly, we evaluated different architectures from a computer security perspective. We found that there are considerable issues associated with treating S3 as if it is a traditional file system, even though doing so is conceptually simple. These issues include performance penalties because using a software tool that emulates a traditional file system to store data in S3 performs poorly when compared to a storing data directly in S3. We also found there are important benefits beyond performance to ensuring that data written to S3 can directly accessed without relying on a specific software tool. To provide a hierarchical organization to the data stored in S3, we wrote 'catalog' files, using XML. These catalog files map discrete files to S3 access keys. Like a traditional file system's directories, the catalogs can also contain references to other catalogs, providing a simple but effective hierarchy overlaid on top of S3's flat storage space. An added benefit to these catalogs is that they can be viewed in a web browser; our storage scheme provides both efficient access for the data server and access via a web browser. We also looked at the Glacier storage system and found that the system's response characteristics are very different from a traditional file system or database; it behaves like a near-line storage system. To be used by a traditional data server, the underlying access protocol must support asynchronous accesses. This is because the Glacier system takes a minimum of four hours to deliver any data object, so systems built with the expectation of instant access (i.e., most web systems) must be fundamentally changed to use Glacier. Part of a related project has been to develop an asynchronous access mode for OPeNDAP, and we have developed a design using that new addition to the DAP protocol with Glacier as a near-line mass store. In summary, we found that both S3 and Glacier require special treatment to be effectively used by a data server. It is important to add (new) interfaces to data servers that enable them to use these storage devices through their native interfaces. We also found that our designs could easily map to a cloud environment based on OpenStack. Lastly, we noted that while these designs invited more liberal use of remote references for data objects, that can expose software to new security risks.
Feasible variants for intermediate storage of the spent fuel obtained at NPP Cernavoda, Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radu, M.; Popescu, G.
1993-12-31
The 5 CANDU-PHW Reactors of 600 Standard type of Cernavoda Nuclear Power Plant are under construction and the first unit is expected to be commissioned in 1995, group 2 following after 2 years, and then groups 3, 4 and 5 one each year. In this study there are presented feasible variants for intermediate storage of spent fuel, obtained during 30 years of operation from the stations at Cernavoda. From the solutions applied worldwide, both dry and wet storage have been taken into account. In any of the two variants, a unique intermediate storage will be provided and the storage buildingmore » was proposed to be built in 4 different stages. As a first estimation, considering the fact that, by now Romania has only one nuclear plant of CANDU fuel type the dry variant seems to be the best.« less
Graphene Based Ultra-Capacitors for Safer, More Efficient Energy Storage
NASA Technical Reports Server (NTRS)
Roberson, Luke B.; Mackey, Paul J.; Zide, Carson J.
2016-01-01
Current power storage methods must be continuously improved in order to keep up with the increasingly competitive electronics industry. This technological advancement is also essential for the continuation of deep space exploration. Today's energy storage industry relies heavily on the use of dangerous and corrosive chemicals such as lithium and phosphoric acid. These chemicals can prove hazardous to the user if the device is ruptured. Similarly they can damage the environment if they are disposed of improperly. A safer, more efficient alternative is needed across a wide range of NASA missions. One solution would a solid-state carbon based energy storage device. Carbon is a safer, less environmentally hazardous alternative to current energy storage materials. Using the amorphous carbon nanostructure, graphene, this idea of a safer portable energy is possible. Graphene was electrochemically produced in the lab and several coin cell devices were built this summer to create a working prototype of a solid-state graphene battery.
Study on storage efficiency of the fresh food e-commerce
NASA Astrophysics Data System (ADS)
Wang, Xin; Sun, Jie; Li, Huihui
2017-06-01
As the last cake in the area of e-commerce industry, the temperature of fresh food e-commerce is always rising starting from about 2014. This paper is based on the imperfection that the existing study about fresh food e-commerce is lack of studies on storage efficiency. And we took some variables in this paper such as consumers’ satisfaction and length for preservation and storage time. On this basis we built the model of storage efficiency of fresh food e-commerce. We find that as the development of fresh food e-commerce, the fresh food e-commerce enterprise will pay more attention to the consumers’ satisfaction. They can take some effective ways like reducing the wastage of fresh food and lengthening the refreshing time of fresh food and so on.
2011-12-07
CAPE CANAVERAL, Fla. – Space shuttle Discovery sports three replica shuttle main engines (RSMEs) in Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida. The RSMEs were installed on Discovery during Space Shuttle Program transition and retirement activities. The replicas are built in the Pratt & Whitney Rocketdyne engine shop at Kennedy to replace the shuttle engines which will be placed in storage to support NASA's Space Launch System, under development. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Travis
2007-01-26
Toba is an extensible personal information retrieval system. It supports various plugins which the user uses to create and store bits of information. It comes configured to store meeting notes, task items, issue, and business development opportunities. Plugins could be written to support almost any kind of digital information. So with the right plugins, Toba could become a full fledged contact manager, project management application, programmer's toolkit, or almost any other type of data storage/search/retrieval application imaginable. Toba comes with a built in command line interface and via a plugin it has a fully scripting language (jython). The information storedmore » can be searched by keyword or through SQL queries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpelli, Andrea
Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation,more » able to measure intensity, position and transverse cross-section beam.« less
13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...
13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. THE DOCK FEATURED FOUR HULETT UNLOADERS, EACH WITH A BUCKET CAPACITY OF 17 TONS; A 15-TON CAPACITY ORE STOCKING AND REHANDLING BRIDGE; AND A ONE-MILLION-TON CAPACITY ORE STORAGE YARD. THE WILLIAM-SEAVER-MORGAN COMPANY OF CLEVELAND BUILT THE DOCK EQUIPMENT. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH
MHSS: a material handling system simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomernacki, L.; Hollstien, R.B.
1976-04-07
A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less
NASA Technical Reports Server (NTRS)
1982-01-01
Shuttle's propellant measurement system is produced by Simmonds Precision. Company has extensive experience in fuel management systems and other equipment for military and commercial aircraft. A separate corporate entity, Industrial Controls Division was formed due to a number of non-aerospace spinoffs. One example is a "custody transfer" system for measuring and monitoring liquefied natural gas (LNG). LNG is transported aboard large tankers at minus 260 degrees Fahrenheit. Value of a single shipload may reach $15 million. Precision's LNG measurement and monitoring system aids accurate financial accounting and enhances crew safety. Custody transfer systems have been provided for 10 LNG tankers, built by Owing Shipbuilding. Simmonds also provided measurement systems for several liquefied petroleum gas (LPG) production and storage installations. Another spinoff developed by Simmonds Precision is an advanced ignition system for industrial boilers that offers savings of millions of gallons of fuel, and a computer based monitoring and control system for improving safety and reliability in electrical utility applications. Simmonds produces a line of safety systems for nuclear and non-nuclear electrical power plants.
NASA Astrophysics Data System (ADS)
Bagheri, Shahriar; Wu, Nan; Filizadeh, Shaahin
2018-06-01
This paper presents an iterative numerical method that accurately models an energy harvesting system charging a capacitor with piezoelectric patches. The constitutive relations of piezoelectric materials connected with an external charging circuit with a diode bridge and capacitors lead to the electromechanical coupling effect and the difficulty of deriving accurate transient mechanical response, as well as the charging progress. The proposed model is built upon the Euler-Bernoulli beam theory and takes into account the electromechanical coupling effects as well as the dynamic process of charging an external storage capacitor. The model is validated through experimental tests on a cantilever beam coated with piezoelectric patches. Several parametric studies are performed and the functionality of the model is verified. The efficiency of power harvesting system can be predicted and tuned considering variations in different design parameters. Such a model can be utilized to design robust and optimal energy harvesting system.
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
The Integrated Sensor System Data Enhancement Package
NASA Technical Reports Server (NTRS)
Trankle, T. L.; Reed, W. B.; Rabin, U.; Vincent, J.
1983-01-01
The purpose of the Integrated Sensor System (ISS) Data Enhancement Package (DEP) is to improve the accuracies of the data obtained from the inflight tests performed on aircraft. The DEP is a microprocessor-based, flight-qualified electronics package that assimilates data from a Ring Laser Gyro (RGL) system, a standard NASA air data package, and other inputs. The DEP then processes these inputs in real-time to obtain optimal estimates of the aircraft velocity, attitude, and altitude. These estimates can be passed to the flight crew, downlinked, and/or stored on a mass storage medium. The DEP is now being built for the NASA Dryden Flight Research Center. Completion is anticipated in early 1984. A primary use of the ISS/DEP will be for the collection of quality data for the estimation of aircraft aerodynamic coefficients, including stability derivatives, using system identification methods. Initial anticipated applications will be on the AV-8B, F-14, and X-29 test aircraft.
A data distribution strategy for the 1990s (files are not enough)
NASA Technical Reports Server (NTRS)
Tankenson, Mike; Wright, Steven
1993-01-01
Virtually all of the data distribution strategies being contemplated for the EOSDIS era revolve around the use of files. Most, if not all, mass storage technologies are based around the file model. However, files may be the wrong primary abstraction for supporting scientific users in the 1990s and beyond. Other abstractions more closely matching the respective scientific discipline of the end user may be more appropriate. JPL has built a unique multimission data distribution system based on a strategy of telemetry stream emulation to match the responsibilities of spacecraft team and ground data system operators supporting our nations suite of planetary probes. The current system, operational since 1989 and the launch of the Magellan spacecraft, is supporting over 200 users at 15 remote sites. This stream-oriented data distribution model can provide important lessons learned to builders of future data systems.
Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun
2012-01-01
Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.
Plasma-electric field controlled growth of oriented graphene for energy storage applications
NASA Astrophysics Data System (ADS)
Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya
2018-04-01
It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.
Thermal storage HVAC system retrofit provides economical air conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.F.
1993-03-01
This article describes an EMS-controlled HVAC system that meets the ventilation and cooling needs of an 18,000-seat indoor ice hockey arena. The Buffalo Memorial Auditorium (affectionately referred to as the Aud) was built in 1937 under the Works Project Administration of the federal government. Its original configuration included a 12,000-seat arena with an ice skating rink. By the late 1980s, the city was unsuccessfully attempting to attract events and tenants to the auditorium, which lacked air conditioning and other modern amenities. Thus, it was decided to renovate the facility to make it marketable. The first phase of the renovation includedmore » installing an air-conditioning system in the arena and repairing the existing building systems that were inoperable because of deferred maintenance. After considering the existing conditions (such as size of the space, intermittent usage, construction restrictions, operating budgets and the limited operations staff), the engineering team designed an innovative HVAC system. The system's features include: a carbon dioxide monitoring device that controls the intake of outside air; an ice storage system that provides chilled water and shifts electrical demand to off-peak hours; and a design that uses the building mass as a heat sink. A new energy management system (EMS) determines building cooling needs based on the type of event, ambient conditions and projected audience size. Then, it selects the most economical method to obtain the desired arena temperature.« less
Credit BG. Southeast and northeast facades of concrete block structure ...
Credit BG. Southeast and northeast facades of concrete block structure built in the late 1960s. It is now used to store miscellaneous equipment - Edwards Air Force Base, North Base, Liquid Oxygen Storage Facility, Second Street, Boron, Kern County, CA
Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplified interpretation of results. Two different arrangements of ducting were used to mimic conditions for aboveground and belowground storage configurations for vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured throughout the test assembly. The induced air mass flow rate was measured for both the aboveground and belowground configurations. In addition, the impact of cross-wind conditions on the belowground configuration was quantified. Over 40 unique data sets were collected and analyzed for these efforts. Fourteen data sets for the aboveground configuration were recorded for powers and internal pressures ranging from 0.5 to 5.0 kW and 0.3 to 800 kPa absolute, respectively. Similarly, fourteen data sets were logged for the belowground configuration starting at ambient conditions and concluding with thermal-hydraulic steady state. Over thirteen tests were conducted using a custom-built wind machine. The results documented in this report highlight a small, but representative, subset of the available data from this test series. This addition to the dry cask experimental database signifies a substantial addition of first-of-a-kind, high-fidelity transient and steady-state thermal-hydraulic data sets suitable for CFD model validation.« less
Campos, Roberto E; Santos Filho, Paulo César F; de O Júnior, Osmir Batista; Ambrosano, Gláucia M B; Pereira, Cristina Alves
2018-01-01
Bond strength (BS) values from in vitro studies are useful when dentists are selecting an adhesive system, but there is no ideal measuring method. The purpose of this in vitro study was to investigate the influence of the evaluation method in the BS between dentin and composite resin. Molars with exposed superficial dentin (N=240) were divided into 3 groups according to the test: microtensile (μTBS), microshear (μSBS), and micropush-out (μPBS). Each one was subdivided into 4 groups according to the adhesive system: total etch, 3- and 2-step; and self-etch, 2- and 1-step). For the μPBS test, a conical cavity was prepared and restored with composite resin. An occlusal slice (1.5 mm in thickness) was obtained from each tooth. For the μSBS test, a composite resin cylinder (1 mm in diameter) was built on the dentin surface of each tooth. For the μTBS test, a 2-increment composite resin cylinder was built on the dentin surface, and beams with a sectional area of 0.5 mm 2 were obtained. Each subgroup was divided into 2 (n=10) as the specimens were tested after 7 days and 1 year of water storage. The specimens were submitted to load, and the failure recorded in units of megapascals. Original BS values from the μTBS and μSBS tests were normalized for the area from μPBS specimens. Original and normalized results were submitted to a 3-way ANOVA (α=.05). The correlation among mechanical results, stress distribution, and failure pattern was investigated. Significant differences (P<.05) were found among the adhesive systems and methods within both the original and normalized data but not between the storage times (P>.05). Within the 7 days of storage, the original BS values from μTBS were significantly higher (P<.001) than those from μPBS and μSBS. After 1 year, μSBS presented significantly lower results (P<.001). However, after the normalization for area, the BS values of the μTBS and μPBS tests were similar, and both were higher (P<.001) than that of μSBS in both storage times. In the μSBS and μTBS specimens, cohesive and adhesive failures were observed, whereas μPBS presented 100% of adhesive failures. The failure modes were compatible with the stress distribution. The storage time did not affect the results, but differences were found among the adhesives and methods. For comparisons of bond strength from tests with different bonding areas, the normalization for area seemed essential. The microshear bond test should not be used for bond strength evaluation, and the microtensile test needs improvement to enable reliable results regarding stress concentration and failure mode. The micropush-out test may be considered more reliable than the microtensile in the bond strength investigation, as demonstrated by the uniform stress concentration and adhesive failure pattern. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Adhesion of multimode adhesives to enamel and dentin after one year of water storage.
Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo
2017-06-01
This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.
Sedimentation Survey of Lago Icacos, Puerto Rico, March 2004
Soler-López, Luis R.
2007-01-01
The Lago Icacos, a small reservoir built in 1930 and owned by the Puerto Rico Electric Power Authority, is part of the Rio Blanco Hydroelectric Power System. The reservoir is located in Naguabo, within the Caribbean National Forest in eastern Puerto Rico. The original storage capacity of the reservoir was 19,119 cubic meters in 1930. The bathymetric survey conducted by the U.S. Geological Survey in March 2004 indicates a storage capacity of 7,435 cubic meters or 39 percent of the original storage capacity, and a maximum depth of 5.3 meters. The reservoir has been dredged several times to restore lost storage capacity caused by high sediment loads and the frequent landslides that occur upstream from the dam, which have partially or completely filled the Lago Icacos. Because sediment removal activities have not been documented, sedimentation rates could not be determined using storage volume comparisons. A reservoir sedimentation rate was calculated using the daily sediment load data gathered at the U.S. Geological Survey Rio Icacos streamflow station upstream of the reservoir, the estimated Lago Icacos sediment trapping efficiency, and the estimated sediment yield of the Lago Icacos basin extrapolated from the Rio Icacos sediment load data. Using these properties, the Lago Icacos sedimentation rate was estimated as 71 cubic meters per year, equivalent to about 1 percent of the original storage capacity per year. The Lago Icacos 7.47-square-kilometer drainage area sediment yield was estimated as 7,126 tonnes per year or about 954 tonnes per square kilometer per year. Based on the current estimated sedimentation rate of 71 cubic meters per year, Lago Icacos has a useful life of about 105 years or to year 2109.
Resurrected DSCOVR Propulsion System - Challenges and Lessons Learned
NASA Technical Reports Server (NTRS)
Varia, Apurva P.; Scroggins, Ashley R.
2015-01-01
The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, is a unique mission, not because of its objectives but because of how long it was in storage before launch. The Triana spacecraft was built in the late 90s and later renamed as DSCOVR, but the project was canceled before the spacecraft was launched. The nearly-complete spacecraft was put in controlled storage for 10 years, until the National Oceanic and Atmospheric Administration (NOAA) provided funding for the National Aeronautics and Space Administration (NASA) to refurbish the spacecraft. On February 11, 2015, DSCOVR was launched on a Falcon 9 v1.1 from launch complex 40 at Cape Canaveral Air Force Station. This paper describes the DSCOVR propulsion system, which utilizes ten 4.5 N thrusters in blowdown mode to perform Midcourse Correction (MCC) maneuvers, Lissajous Orbit Insertion (LOI) at Lagrangian point L1, momentum unloading maneuvers, and station keeping delta-v maneuvers at L1. This paper also describes the testing that was performed, including susbsystem-level and spacecraft-level tests, to verify the propulsion system's integrity for flight. Finally, this paper concludes with a discussion of the challenges and lessons learned during this unique mission, including replacement of a bent thruster and installation of an auxiliary heater over existing propellant line heaters.
Development and Evaluation of Heartbeat: A Machine Perfusion Heart Preservation System.
Li, Yongnan; Zeng, Qingdong; Liu, Gang; Du, Junzhe; Gao, Bingren; Wang, Wei; Zheng, Zhe; Hu, Shengshou; Ji, Bingyang
2017-11-01
Static cold storage is accompanied with a partial safe ischemic interval for donor hearts. In this current study, a machine perfusion system was built to provide a better preservation for the donor heart and assessment for myocardial function. Chinese mini-swine (weight 30-35 kg, n = 16) were randomly divided into HTK, Celsior, and Heartbeat groups. All donor hearts were respectively preserved for 8 hours under static cold storage or machine perfusion. The perfusion solution is aimed to maintain its homeostasis based on monitoring the Heartbeat group. The ultrastructure of myocardium suggests better myocardial protection in the Heartbeat group compared with HTK or Celsior-preserved hearts. The myocardial and coronary artery structural and functional integrity was evaluated by immunofluorescence and Western blots in the Heartbeat. In the Heartbeat group, donor hearts maintained a high adenosine triphosphate level. Bcl-2 and Beclin-1 protein demonstrates high expression in the Celsior group. The Heartbeat system can be used to preserve donor hearts, and it could guarantee the myocardial and endothelial function of hearts during machine perfusion. Translating Heartbeat into clinical practice, it is such as to impact on donor heart preservation for cardiac transplantation. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.
Prototype of Kepler Processing Workflows For Microscopy And Neuroinformatics
Astakhov, V.; Bandrowski, A.; Gupta, A.; Kulungowski, A.W.; Grethe, J.S.; Bouwer, J.; Molina, T.; Rowley, V.; Penticoff, S.; Terada, M.; Wong, W.; Hakozaki, H.; Kwon, O.; Martone, M.E.; Ellisman, M.
2016-01-01
We report on progress of employing the Kepler workflow engine to prototype “end-to-end” application integration workflows that concern data coming from microscopes deployed at the National Center for Microscopy Imaging Research (NCMIR). This system is built upon the mature code base of the Cell Centered Database (CCDB) and integrated rule-oriented data system (IRODS) for distributed storage. It provides integration with external projects such as the Whole Brain Catalog (WBC) and Neuroscience Information Framework (NIF), which benefit from NCMIR data. We also report on specific workflows which spawn from main workflows and perform data fusion and orchestration of Web services specific for the NIF project. This “Brain data flow” presents a user with categorized information about sources that have information on various brain regions. PMID:28479932
NASA Astrophysics Data System (ADS)
Weeden, R.; Horn, W. B.; Dimarchi, H.; Arko, S. A.; Hogenson, K.
2017-12-01
A problem often faced by Earth science researchers is the question of how to scale algorithms that were developed against few datasets and take them to regional or global scales. This problem only gets worse as we look to a future with larger and larger datasets becoming available. One significant hurdle can be having the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon cloud services such as Lambda, Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. HyP3 provides an Application Programming Interface (API) through which users can programmatically interface with the HyP3 system; allowing them to monitor and control processing jobs running in HyP3, and retrieve the generated HyP3 products when completed. This presentation will focus on the development techniques and enabling technologies that were used in developing the HyP3 system. Data and process flow, from new subscription through to order completion will be shown, highlighting the benefits of the cloud for each step. Because the HyP3 system can be accessed directly from a user's Python scripts, powerful applications leveraging SAR products can be put together fairly easily. This is the true power of HyP3; allowing people to programmatically leverage the power of the cloud.
Modification of a liquid hydrogen tank for integrated refrigeration and storage
NASA Astrophysics Data System (ADS)
Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.
2015-12-01
The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.
Attention Novices: Friendly Intro to Shiny Disks.
ERIC Educational Resources Information Center
Bardes, D'Ellen
1986-01-01
Provides an overview of how optical storage technologies--videodisk, Write-Once disks, and CD-ROM CD-I disks are built into and controlled via DEC, Apple, Atari, Amiga, and IBM PC compatible microcomputers. Several available products are noted and a list of producers is included. (EM)
13. DETAIL OF THE EAST WING ARCADE WALL. SHOWS REMOVABLE ...
13. DETAIL OF THE EAST WING ARCADE WALL. SHOWS REMOVABLE WOODEN WINDOWS, A PERMANENT CONCRETE WINDOW, AND BUILT-IN CONCRETE STORAGE BINS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
The KACST Heavy-Ion Electrostatic Storage Ring
NASA Astrophysics Data System (ADS)
Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.
2011-10-01
A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfred, J.W.; Shinn, J.M. Jr; Kirby, C.E.
1976-07-01
This report describes a low-cost solar home heating system to supplement the home-owner's present warm-air heating system. It has three parts: (1) A brief background on solar heating, (2) Langley's experience with a demonstration system, and (3) information for the home-owner who wishes to construct such a system. Instructions are given for a solar heating installation in which he supplies all labor needed to install off-the-shelf components estimated to cost $2000. These components, which include solar collector, heat exchanger, water pump, storage tank, piping, and controls to make the system completely automatic, are readily available at local lumber yards, hardwaremore » stores, and plumbing supply stores, and they are relatively simple to install. Manufacturers and prices of each component used and a rough cost analysis based on these prices are given for the owner's convenience. This report also gives performance data obtained from a demonstration system which has been built and tested at the Langley Research Center.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibeault, Mark Leonide
This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual designmore » will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.« less
20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...
20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Production Management System for AMS Computing Centres
NASA Astrophysics Data System (ADS)
Choutko, V.; Demakov, O.; Egorov, A.; Eline, A.; Shan, B. S.; Shi, R.
2017-10-01
The Alpha Magnetic Spectrometer [1] (AMS) has collected over 95 billion cosmic ray events since it was installed on the International Space Station (ISS) on May 19, 2011. To cope with enormous flux of events, AMS uses 12 computing centers in Europe, Asia and North America, which have different hardware and software configurations. The centers are participating in data reconstruction, Monte-Carlo (MC) simulation [2]/Data and MC production/as well as in physics analysis. Data production management system has been developed to facilitate data and MC production tasks in AMS computing centers, including job acquiring, submitting, monitoring, transferring, and accounting. It was designed to be modularized, light-weighted, and easy-to-be-deployed. The system is based on Deterministic Finite Automaton [3] model, and implemented by script languages, Python and Perl, and the built-in sqlite3 database on Linux operating systems. Different batch management systems, file system storage, and transferring protocols are supported. The details of the integration with Open Science Grid are presented as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The battery energy stored quasi-Z-source (BES-qZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. However, the second harmonic (2 ) power ripple will degrade the system's performance and affect the system's design. An accurate model to analyze the 2 ripple is very important. The existing models did not consider the battery, and with the assumption L1=L2 and C1=C2, which causes the non-optimized design for the impedance parameters of qZS network. This paper proposes a comprehensive model for single-phase BES-qZS-PV inverter system, where the battery is considered and without any restrictionmore » of L1, L2, C1, and C2. A BES-qZS impedance design method based on the built model is proposed to mitigate the 2 ripple. Simulation and experimental results verify the proposed 2 ripple model and design method.« less
From Informal to Formal: Status and Challenges of Informal Water Infrastructures in Indonesia
NASA Astrophysics Data System (ADS)
Maryati, S.; Humaira, A. N. S.; Kipuw, D. M.
2018-05-01
Informal water infrastructures in Indonesia have emerged due to the government’s inability or incapacity to guarantee the service of water provision to all communities. Communities have their own mechanisms to meet their water needs and arrange it as a self-supplying or self-governed form of water infrastructure provision. In general, infrastructure provisions in Indonesia are held in the form of public systems (centralized systems) that cover most of the urban communities; communal systems that serve some groups of households limited only to a particular small-scale area; and individual systems. The communal and individual systems are systems that are provided by the communities themselves, sometimes with some intervention by the government. This kind of system is usually built according to lower standards compared to the system built by the government. Informal systems in this study are not defined in terms of their legal aspect, but more in technical terms. The aim of this study was to examine the existing status and challenges in transforming informal water infrastructures to formal infrastructures. Formalizing informal infrastructures is now becoming an issue because of the limitations the government faces in building new formal infrastructures. On the other hand, global and national targets state 100% access to water supplies for the whole population in the near future. Formalizing informal infrastructures seems more realistic than building new infrastructures. The scope of this study were the technical aspects thereof. Making descriptive and comparative analyses was the methodology used. Generally, most of the informal systems do not apply progressive tariffs, do not have storage/reservoirs, do not have water treatment plants, and rarely conduct treatment in accordance with standards and procedures as formal systems do, which leads to dubious access to safe water, especially considering the quality aspect.
NASA Astrophysics Data System (ADS)
Chemekov, V. V.; Kharchenko, V. V.
2013-03-01
Matters concerned with setting up environmentally clean supply of heat to dwelling houses in the resort zone of the Russian Black Sea coast on the basis of air-water type heat pumps powered from wind power installations are discussed. The investigations were carried out as applied to the system supplying heat for an individual dwelling house with an area of around 300 m2 situated in the Tuapse city. The design heat load of the building's heating system is around 8.3 kW. The Viessmann Vitocal 300 AW pump is chosen as the main source of heat supply, and a 4-kW electric heater built into a storage tank is chosen as a standby source. The selected wind power installation (the EuroWind 10 unit) has a power capacity of 13 kWe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.
2011-10-10
The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conductmore » simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.« less
NASA Technical Reports Server (NTRS)
Joseph, T. A.; Birman, Kenneth P.
1989-01-01
A number of broadcast protocols that are reliable subject to a variety of ordering and delivery guarantees are considered. Developing applications that are distributed over a number of sites and/or must tolerate the failures of some of them becomes a considerably simpler task when such protocols are available for communication. Without such protocols the kinds of distributed applications that can reasonably be built will have a very limited scope. As the trend towards distribution and decentralization continues, it will not be surprising if reliable broadcast protocols have the same role in distributed operating systems of the future that message passing mechanisms have in the operating systems of today. On the other hand, the problems of engineering such a system remain large. For example, deciding which protocol is the most appropriate to use in a certain situation or how to balance the latency-communication-storage costs is not an easy question.
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
Impacts of Trees on Urban Environment in the Contiguous United States
NASA Astrophysics Data System (ADS)
Wang, C.; Upreti, R.; Wang, Z.; Yang, J.
2017-12-01
Mounting empirical evidence shows that urban trees are effective in mitigating the thermal stress in the built environment, whereas large scale numerical simulations remain scarce. In this study, we evaluated the effects of shade trees on the built environment in terms of radiative cooling, pedestrian thermal comfort, and surface energy balance, carried out over the contiguous United States (CONUS). A coupled Weather Research and Forecasting-urban modeling system was adopted, incorporating exclusively the radiative shading effect of urban trees. Results show that on average the mean 2-m air temperature in urban areas decreases by 3.06 ˚C, and the 2-m relative humidity increases by 13.62% over the entire CONUS with the shading effect. Analysis of pedestrian thermal comfort shows that shade trees help to improve summer thermal comfort level, but could be detrimental in the winter for Northern cities. In addition, it was found that trees alter the surface energy balance by primarily enhancing the radiative cooling, leading to significant re-distribution of the sensible heat while leaving the ground heat storage comparatively intact.
Solar process water heat for the IRIS images custom color photo lab
NASA Technical Reports Server (NTRS)
1980-01-01
The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.
Grid Computing Environment using a Beowulf Cluster
NASA Astrophysics Data System (ADS)
Alanis, Fransisco; Mahmood, Akhtar
2003-10-01
Custom-made Beowulf clusters using PCs are currently replacing expensive supercomputers to carry out complex scientific computations. At the University of Texas - Pan American, we built a 8 Gflops Beowulf Cluster for doing HEP research using RedHat Linux 7.3 and the LAM-MPI middleware. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes that were compiled in C on the cluster using the LAM-XMPI graphics user environment. We will demonstrate a "simple" prototype grid environment, where we will submit and run parallel jobs remotely across multiple cluster nodes over the internet from the presentation room at Texas Tech. University. The Sphinx Beowulf Cluster will be used for monte-carlo grid test-bed studies for the LHC-ATLAS high energy physics experiment. Grid is a new IT concept for the next generation of the "Super Internet" for high-performance computing. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.
Calculators and Polynomial Evaluation.
ERIC Educational Resources Information Center
Weaver, J. F.
The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…
SensorKit: A Flexible and Extensible System for In-Situ Data Acquisition
NASA Astrophysics Data System (ADS)
Silva, F.; Deschon, A.; Chang, J.; Westrich, S.; Cho, Y. H.; Gullapalli, S.; Benzel, T.; Graham, E. A.
2009-12-01
Over the years, sensor networks technology has evolved tremendously and has great potential in environmental sensing applications. However, because sensor networks are usually designed and built by computer scientists and engineers with little input from the scientific community, the resulting technology is often complex and out of reach for most field scientists. A few sensor, and data logger vendors have released data acquisition systems that can be used with their products. Unfortunately, these are generally vendor-specific, requiring scientists with heterogeneous sensors to use multiple systems to acquire data from all their sensors. A few, more generic systems, are compatible with multiple brands. However, these often offer only limited functionality, little flexibility, and no extensibility. We built SensorKit to overcome these limitations and to accelerate the adoption of sensor networks by field scientists. Using a simplicity-through-sophistication approach, we provide scientists with a powerful tool for field data collection. SensorKit is hardware agnostic, and was built using commercial off-the-shelf components. By employing a Linux-based ultra low-power generic embedded processing platform with a variety of dataloggers (including Berkeley motes, National Instruments' Compact RIOs, as well as legacy and newer PakBus-based Campbell data loggers), we support requirements from a large number of scientists. The user interfaces are designed to be intuitive so that most scientists can deploy, configure, and operate the system without extensive training. Working in close collaboration with field scientists allowed us to better understand scientific requirements and ensure system relevancy. The requirements for data acquisition, data storage, and data communication vary significantly for each deployment. Data acquisition needs to include capabilities for different analog, digital, and other complex sensors (e.g. cameras, and robotic sensors). Moreover, the sensors may be geographically dispersed, requiring the use of a local sensor network for moving data at the site. Data storage has to accommodate varying sampling rates from several times a second, to once every hour (or longer), and handle situations where data is accumulated for several days or even weeks at a time. Additionally, different deployments require the use of varying communication technologies (e.g. satellite, cellular, long range radios, wi-fi, etc) and while some scientists need live access to their data, others are able to tolerate delays of hours, if not days. Finally, power and environmental conditions can have great influence in the type of data acquisition and communication technology that can be used at a certain site. During the past few years, we have used a spiral build, deploy, and revise approach in order to verify our design and incorporate what we have learned at each deployment. In this poster, we present our system architecture, how SensorKit has been used by scientists in a number of places around the world, and how it has evolved over time, adapting to a wide range of deployment requirements in order to accommodate different scientific applications.
The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, C.; Thomas, I.
2013-07-01
This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less
NASA Astrophysics Data System (ADS)
Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.
Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.
Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talman, Richard
2015-07-01
Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such anmore » electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)« less
Toward a low-cost gait analysis system for clinical and free-living assessment.
Ladha, Cassim; Del Din, Silvia; Nazarpour, Kianoush; Hickey, Aodhan; Morris, Rosie; Catt, Michael; Rochester, Lynn; Godfrey, Alan
2016-08-01
Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to bespoke clinical facilities until recently. The use of inexpensive wearable technologies is an attractive alternative and offers the potential to assess gait in any environment. In this paper we present the development of a low cost analysis gait system built using entirely open source components. The system is used to capture spatio-temporal gait characteristics derived from an existing conceptual model, sensitive to ageing and neurodegenerative pathology (e.g. Parkinson's disease). We demonstrate the system is suitable for use in a clinical unit and will lead to pragmatic use in a free-living (home) environment. The system consists of a wearable (tri-axial accelerometer and gyroscope) with a Raspberry Pi module for data storage and analysis. This forms ongoing work to develop gait as a low cost diagnostic in modern healthcare.
Edwards, Roger L; Edwards, Sandra L; Bryner, James; Cunningham, Kelly; Rogers, Amy; Slattery, Martha L
2008-04-01
We describe a computer-assisted data collection system developed for a multicenter cohort study of American Indian and Alaska Native people. The study computer-assisted participant evaluation system or SCAPES is built around a central database server that controls a small private network with touch screen workstations. SCAPES encompasses the self-administered questionnaires, the keyboard-based stations for interviewer-administered questionnaires, a system for inputting medical measurements, and administrative tasks such as data exporting, backup and management. Elements of SCAPES hardware/network design, data storage, programming language, software choices, questionnaire programming including the programming of questionnaires administered using audio computer-assisted self-interviewing (ACASI), and participant identification/data security system are presented. Unique features of SCAPES are that data are promptly made available to participants in the form of health feedback; data can be quickly summarized for tribes for health monitoring and planning at the community level; and data are available to study investigators for analyses and scientific evaluation.
Development of an integrated semi-automated system for in vitro pharmacodynamic modelling.
Wang, Liangsu; Wismer, Michael K; Racine, Fred; Conway, Donald; Giacobbe, Robert A; Berejnaia, Olga; Kath, Gary S
2008-11-01
The aim of this study was to develop an integrated system for in vitro pharmacodynamic modelling of antimicrobials with greater flexibility, easier control and better accuracy than existing in vitro models. Custom-made bottle caps, fittings, valve controllers and a modified bench-top shaking incubator were used. A temperature-controlled automated sample collector was built. Computer software was developed to manage experiments and to control the entire system including solenoid pinch valves, peristaltic pumps and the sample collector. The system was validated by pharmacokinetic simulations of linezolid 600 mg infusion. The antibacterial effect of linezolid against multiple Staphylococcus aureus strains was also studied in this system. An integrated semi-automated bench-top system was built and validated. The temperature-controlled automated sample collector allowed unattended collection and temporary storage of samples. The system software reduced the labour necessary for many tasks and also improved the timing accuracy for performing simultaneous actions in multiple parallel experiments. The system was able to simulate human pharmacokinetics of linezolid 600 mg intravenous infusion accurately. A pharmacodynamic study of linezolid against multiple S. aureus strains with a range of MICs showed that the required 24 h free drug AUC/MIC ratio was approximately 30 in order to keep the organism counts at the same level as their initial inoculum and was about > or = 68 in order to achieve > 2 log(10) cfu/mL reduction in the in vitro model. The integrated semi-automated bench-top system provided the ability to overcome many of the drawbacks of existing in vitro models. It can be used for various simple or complicated pharmacokinetic/pharmacodynamic studies efficiently and conveniently.
NASA Astrophysics Data System (ADS)
Gilpin, Matthew R.
Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling technology for the platform. The use of silicon and boron as high temperature latent heat thermal energy storage materials has been in the background of solar thermal research for decades without a substantial investigation. This is despite a broad agreement in the literature about the performance benefits obtainable from a latent heat mechanisms which provides a high energy storage density and quasi-isothermal heat release at high temperature. In this work, an experimental approach was taken to uncover the practical concerns associated specifically with applying silicon as an energy storage material. A new solar furnace was built and characterized enabling the creation of molten silicon in the laboratory. These tests have demonstrated the basic feasibility of a molten silicon based thermal energy storage system and have highlighted asymmetric heat transfer as well as silicon expansion damage to be the primary engineering concerns for the technology. For cylindrical geometries, it has been shown that reduced fill factors can prevent damage to graphite walled silicon containers at the expense of decreased energy storage density. Concurrent with experimental testing, a cooling model was written using the "enthalpy method" to calculate the phase change process and predict test section performance. Despite a simplistic phase change model, and experimentally demonstrated complexities of the freezing process, results coincided with experimental data. It is thus possible to capture essential system behaviors of a latent heat thermal energy storage system even with low fidelity freezing kinetics modeling allowing the use of standard tools to obtain reasonable results. Finally, a technological road map is provided listing extant technological concerns and potential solutions. Improvements in container design and an increased understanding of convective coupling efficiency will ultimately enable both high temperature latent heat thermal energy storage and a new class of high performance bi-modal solar thermal spacecraft.
1997-07-19
Lockheed Martin Missile and Space Co. employees Joe Collingwood, at right, and Ken Dickinson retract pins in the storage base to release a radioisotope thermoelectric generator (RTG) in preparation for hoisting operations. This RTG and two others will be installed on the Cassini spacecraft for mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by NASA’s Jet Propulsion Laboratory
1997-07-19
Supported on a lift fixture, this radioisotope thermoelectric generator (RTG), at center, is hoisted from its storage base using the airlock crane in the Payload Hazardous Servicing Facility (PHSF). Jet Propulsion Laboratory (JPL) workers are preparing to install the RTG onto the Cassini spacecraft, in background at left, for mechanical and electrical verification testing. The three RTGs on Cassini will provide electrical power to the spacecraft on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL
1997-07-19
Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the installation cart to a lift fixture in preparation for returning the power unit to storage. The three RTGs underwent mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL
Modeling, hybridization, and optimal charging of electrical energy storage systems
NASA Astrophysics Data System (ADS)
Parvini, Yasha
The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems analytically. Efficiency analysis for constant power (CP) and optimal charging strategies under different charging times (slow and fast) was performed. In case of the lithium ion battery, the model included the electronic as well as polarization resistance. Furthermore, in order to investigate the influence of temperature on the internal resistance of the lithium ion battery, the optimal charging problem for a three state electro-thermal model was solved using dynamic programming (DP). The ability to charge electric vehicles is a pace equivalent to fueling a gasoline car will be a game changer in the widespread acceptability and feasibility of the electric vehicles. Motivated by the knowledge gained from the optimal charging study, the challenges facing the fast charging of lithium ion batteries are investigated. In this context, the suitable models for the study of fast charging, high rate anode materials, and different charging strategies are studied. The side effects of fast charging such as lithium plating and mechanical failure are also discussed. This dissertation has targeted some of the most challenging questions in the field of electrical energy storage systems and the reported results are applicable to a wide range of applications such as in electronic gadgets, medical devices, electricity grid, and electric vehicles.
NASA Astrophysics Data System (ADS)
Giordano, N.; Arato, A.; Comina, C.; Mandrone, G.
2017-05-01
A Borehole Thermal Energy Storage living lab was built up nearby Torino (Northern Italy). This living lab aims at testing the ability of the alluvial deposits of the north-western Po Plain to store the thermal energy collected by solar thermal panels and the efficiency of energy storage systems in this climatic context. Different monitoring approaches have been tested and analyzed since the start of the thermal injection in April 2014. Underground temperature monitoring is constantly undertaken by means of several temperature sensors located along the borehole heat exchangers and within the hydraulic circuit. Nevertheless, this can provide only pointwise information about underground temperature distribution. For this reason, a geophysical approach is proposed in order to image the thermally affected zone (TAZ) caused by the heat injection: surface electrical resistivity measurements were carried out with this purpose. In the present paper, results of time-lapse acquisitions during a heating day are reported with the aim of imaging the thermal plume evolution within the subsoil. Resistivity data, calibrated on local temperature measurements, have shown their potentiality in imaging the heated plume of the system and depicting its evolution throughout the day. Different types of data processing were adopted in order to face issues mainly related to a highly urbanized environment. The use of apparent resistivity proved to be in valid agreement with the results of different inversion approaches. The inversion processes did not significantly improve the qualitative and quantitative TAZ imaging in comparison to the pseudo-sections. This suggested the usefulness of apparent resistivity data alone for a rough monitoring of TAZ in this kind of applications.
Development of a single-phase thermosiphon for cold collection and storage of radiative cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu
A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facilitymore » was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.« less
Alteration of municipal and industrial slags under atmospheric conditions
NASA Astrophysics Data System (ADS)
Rafał Kowalski, Piotr; Michalik, Marek
2014-05-01
The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in content of soluble minerals, like halite, in comparison to the output samples was noted. These phases where probably dissolved and washed out from the samples. After 12 months of atmospheric exposure in municipal slags only slight changes in weight (1 wt%) were observed, whereas in industrial slags slightly above 10 wt% of the material was removed. After 12 months of atmospheric exposure more significant changes are expected such as changes in chemical and mineral compositions and changes in heavy metals and toxic elements concentrations due to leaching.
NASA Astrophysics Data System (ADS)
Jung, S.; Lee, J. H.; Yoon, M.; Lee, H.; Jang, G.
The study of the application process of the relatively small size 'Superconducting Flywheel Energy Storage (SFES)' system is conducted to regulate voltage fluctuation of the DC On-Line Electric Vehicle (OLEV) system, which is designed by using DC power system network. It is recommended to construct the power conversion system nearby the substation because the charging system is under the low voltage. But as the system is usually built around urban area and it makes hard to construct the subsystems at every station, voltage drop can occur in power supply inverter that is some distance from the substation. As the alternative of this issue, DC distribution system is recently introduced and has possibility to solve the above issue. In this paper, SFES is introduced to solve the voltage drop under the low voltage distribution system by using the concept of the proposed DC OLEV which results in building the longer distance power supply system. The simulation to design the SFES by using DC power flow analysis is carried out and it is verified in this paper.
Influence of Different Dentin Substrate (Caries-Affected, Caries-Infected, Sound) on Long-Term μTBS.
Costa, Ana Rosa; Garcia-Godoy, Franklin; Correr-Sobrinho, Lourenço; Naves, Lucas Zago; Raposo, Luís Henrique Araújo; Carvalho, Fabíola Galbiatti de; Sinhoreti, Mário Alexandre Coelho; Puppin-Rontani, Regina Maria
2017-01-01
The aim of this study was to evaluate the μTBS in different dentin substrates and water-storage periods. Twenty-four dentin blocks obtained from sound third molars were randomly divided into 3 groups: Sound dentin (Sd), Caries-affected dentin (Ca) and Caries-infected dentin (Ci). Dentin blocks from Ca and Ci groups were subjected to artificial caries development (S. mutans biofilm). The softest carious tissue was removed using spherical drills under visual inspection with Caries Detector solution (Ca group). It was considered as Ci (softer and deeply red stained dentin) and Ca (harder and slightly red stained dentin). The Adper Single Bond 2 adhesive system was applied and Z350 composite blocks were built in all groups. Teeth were stored in deionized water for 24 h at 37 ºC and sectioned into beams (1.0 mm2 section area). The beams from each tooth were randomly divided into three storages periods: 24 h, 6 months or 1 year. Specimens were submitted to µTBS using EZ test machine at a crosshead speed of 1.0 mm/min. Failure mode was examined by SEM. Data from µTBS were submitted to split plot two-way ANOVA and Tukey's HSD tests (a=0.05). The µTBS (MPa) of Sd (41.2) was significantly higher than Ca (32.4) and Ci (27.2), regardless of storage. Ca and Ci after 6 months and 1 year, presented similar µTBS. Mixed and adhesive failures predominated in all groups. The highest µTBS values (48.1±9.1) were found for Sd at 24 h storage. Storage of specimens decreased the µTBS values for all conditions.
NASA Astrophysics Data System (ADS)
Zipf, Verena; Willert, Daniel; Neuhäuser, Anton
2016-05-01
An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.
Replacement of tritiated water from irradiated fuel storage bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo, I.; Boniface, H.; Suppiah, S.
2015-03-15
Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface.more » A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, D.
1976-06-01
Construction crews had their ups and downs while building an 84-km (52-mi.) crude oil trunkline for Petroleo Brasiliero in the Serra do Mar region of Brazil's State of Sao Paulo. The system begins at a tanker terminal and storage facility on the South Atlantic coast at Sao Sebastiano and extends inland to a storage plant at Guararema. The right of way is through a mountainous area with steep slopes and knife-edged ridges in a tropical jungle. Near the coast the climate is damp and rainy during most of the year. Inland it is wetter. On an average of 252 daysmore » per year and 150 to 250 cm (59 to 98 in.) of rain falls on this zone. Construction got under way in January 1975 and was completed in March 1976. Numerous grades of 50 percent were encountered and frequently, where the line was built along a ridgecrest, sections of the ROW were bordered by nearly vertical drops from 15 to 30 m (50 to 100 ft.) or more.« less
The Pain in Storage: Work Safety in a High-Density Shelving Facility
ERIC Educational Resources Information Center
Atkins, Stephanie A.
2005-01-01
An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…
The KACST Heavy-Ion Electrostatic Storage Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.
2011-10-27
A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The developmentmore » of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.« less
GOES Type III Loop Heat Pipe Life Test Results
NASA Technical Reports Server (NTRS)
Ottenstein, Laura
2011-01-01
The GOES Type III Loop Heat Pipe (LHP) was built as a life test unit for the loop heat pipes on the GOES N-Q series satellites. This propylene LHP was built by Dynatherm Corporation in 2000 and tested continuously for approximately 14 months. It was then put into storage for 3 years. Following the storage period, the LHP was tested at Swales Aerospace to verify that the loop performance hadn t changed. Most test results were consistent with earlier results. At the conclusion of testing at Swales, the LHP was transferred to NASA/GSFC for continued periodic testing. The LHP has been set up for testing in the Thermal Lab at GSFC since 2006. A group of tests consisting of start-ups, power cycles, and a heat transport limit test have been performed every six to nine months since March 2006. Tests results have shown no change in the loop performance over the five years of testing. This presentation will discuss the test hardware, test set-up, and tests performed. Test results to be presented include sample plots from individual tests, along with conductance measurements for all tests performed.
Elastic and inelastic scattering of positrons in gases and solids
NASA Technical Reports Server (NTRS)
Mcgowan, J. W.
1972-01-01
Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.
NASA Technical Reports Server (NTRS)
White, D. R.
1976-01-01
A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.
Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Theilacker, J.; Klebaner, A.
2015-11-05
The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05more » PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.« less
The CMS High Level Trigger System: Experience and Future Development
NASA Astrophysics Data System (ADS)
Bauer, G.; Behrens, U.; Bowen, M.; Branson, J.; Bukowiec, S.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Flossdorf, A.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Hartl, C.; Hegeman, J.; Holzner, A.; Hwong, Y. L.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Polese, G.; Racz, A.; Raginel, O.; Sakulin, H.; Sani, M.; Schwick, C.; Shpakov, D.; Simon, S.; Spataru, A. C.; Sumorok, K.
2012-12-01
The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.
Nakajima, Masatoshi; Hosaka, Keiichi; Yamauti, Monica; Foxton, Richard M; Tagami, Junji
2006-06-01
To evaluate the bonding durability of a self-etching primer system to normal and caries-affected dentin under hydrostatic pulpal pressure. 18 extracted human molars with occlusal caries were used. Their occlusal dentin surfaces were ground flat to expose normal and caries-affected dentin using #600 SiC paper under running water. Clearfil SE Bond was placed on the dentin surface including the caries-affected dentin according to the manufacturer's instructions and then the crowns were built up with resin composite (Clearfil AP-X) under either a pulpal pressure of 15 cm H2O or none (control). The bonded specimens were stored in 100% humidity for 1 day (control) or for 1 week and 1 month with hydrostatic pulpal pressure. After storage, the specimens were serially sectioned into 0.7 mm-thick slabs and trimmed to an hour-glass shape with a 1 mm2 cross-section, isolated by normal or caries-affected dentin, and then subjected to the micro-tensile bond test. Data were analyzed by two-way ANOVA and Tukey's test (P< 0.05). Hydrostatic pulpal pressure significantly reduced the bond strength to normal dentin after 1-month storage (P< 0.05), but did not affect the bond strength to caries-affected dentin.
[Wireless device for monitoring the patients with chronic disease].
Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A
2008-01-01
Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.
Architecture for biomedical multimedia information delivery on the World Wide Web
NASA Astrophysics Data System (ADS)
Long, L. Rodney; Goh, Gin-Hua; Neve, Leif; Thoma, George R.
1997-10-01
Research engineers at the National Library of Medicine are building a prototype system for the delivery of multimedia biomedical information on the World Wide Web. This paper discuses the architecture and design considerations for the system, which will be used initially to make images and text from the third National Health and Nutrition Examination Survey (NHANES) publicly available. We categorized our analysis as follows: (1) fundamental software tools: we analyzed trade-offs among use of conventional HTML/CGI, X Window Broadway, and Java; (2) image delivery: we examined the use of unconventional TCP transmission methods; (3) database manager and database design: we discuss the capabilities and planned use of the Informix object-relational database manager and the planned schema for the HNANES database; (4) storage requirements for our Sun server; (5) user interface considerations; (6) the compatibility of the system with other standard research and analysis tools; (7) image display: we discuss considerations for consistent image display for end users. Finally, we discuss the scalability of the system in terms of incorporating larger or more databases of similar data, and the extendibility of the system for supporting content-based retrieval of biomedical images. The system prototype is called the Web-based Medical Information Retrieval System. An early version was built as a Java applet and tested on Unix, PC, and Macintosh platforms. This prototype used the MiniSQL database manager to do text queries on a small database of records of participants in the second NHANES survey. The full records and associated x-ray images were retrievable and displayable on a standard Web browser. A second version has now been built, also a Java applet, using the MySQL database manager.
An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.
Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S
2015-11-05
For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.
An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
NASA Astrophysics Data System (ADS)
Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.
2015-11-01
For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.
A Concept for the One Degree Imager (ODI) Data Reduction Pipeline and Archiving System
NASA Astrophysics Data System (ADS)
Knezek, Patricia; Stobie, B.; Michael, S.; Valdes, F.; Marru, S.; Henschel, R.; Pierce, M.
2010-05-01
The One Degree Imager (ODI), currently being built by the WIYN Observatory, will provide tremendous possibilities for conducting diverse scientific programs. ODI will be a complex instrument, using non-conventional Orthogonal Transfer Array (OTA) detectors. Due to its large field of view, small pixel size, use of OTA technology, and expected frequent use, ODI will produce vast amounts of astronomical data. If ODI is to achieve its full potential, a data reduction pipeline must be developed. Long-term archiving must also be incorporated into the pipeline system to ensure the continued value of ODI data. This paper presents a concept for an ODI data reduction pipeline and archiving system. To limit costs and development time, our plan leverages existing software and hardware, including existing pipeline software, Science Gateways, Computational Grid & Cloud Technology, Indiana University's Data Capacitor and Massive Data Storage System, and TeraGrid compute resources. Existing pipeline software will be augmented to add functionality required to meet challenges specific to ODI, enhance end-user control, and enable the execution of the pipeline on grid resources including national grid resources such as the TeraGrid and Open Science Grid. The planned system offers consistent standard reductions and end-user flexibility when working with images beyond the initial instrument signature removal. It also gives end-users access to computational and storage resources far beyond what are typically available at most institutions. Overall, the proposed system provides a wide array of software tools and the necessary hardware resources to use them effectively.
Student-Built Underwater Video and Data Capturing Device
NASA Astrophysics Data System (ADS)
Whitt, F.
2016-12-01
Students from Stockbridge High School Robotics Team invention is a low cost underwater video and data capturing device. This system is capable of shooting time-lapse photography and/or video for up to 3 days of video at a time. It can be used in remote locations without having to change batteries or adding additional external hard drives for data storage. The video capturing device has a unique base and mounting system which houses a pi drive and a programmable raspberry pi with a camera module. This system is powered by two 12 volt batteries, which makes it easier for users to recharge after use. Our data capturing device has the same unique base and mounting system as the underwater camera. The data capturing device consists of an Arduino and SD card shield that is capable of collecting continuous temperature and pH readings underwater. This data will then be logged onto the SD card for easy access and recording. The low cost underwater video and data capturing device can reach depths up to 100 meters while recording 36 hours of video on 1 terabyte of storage. It also features night vision infrared light capabilities. The cost to build our invention is $500. The goal of this was to provide a device that can easily be accessed by marine biologists, teachers, researchers and citizen scientists to capture photographic and water quality data in marine environments over extended periods of time.
NASA Astrophysics Data System (ADS)
Ham, J. M.
2016-12-01
New microprocessor boards, open-source sensors, and cloud infrastructure developed for the Internet of Things (IoT) can be used to create low-cost monitoring systems for environmental research. This project describes two applications in soil science and hydrology: 1) remote monitoring of the soil temperature regime near oil and gas operations to detect the thermal signature associated with the natural source zone degradation of hydrocarbon contaminants in the vadose zone, and 2) remote monitoring of soil water content near the surface as part of a global citizen science network. In both cases, prototype data collection systems were built around the cellular (2G/3G) "Electron" microcontroller (www.particle.io). This device allows connectivity to the cloud using a low-cost global SIM and data plan. The systems have cellular connectivity in over 100 countries and data can be logged to the cloud for storage. Users can view data real time over any internet connection or via their smart phone. For both projects, data logging, storage, and visualization was done using IoT services like Thingspeak (thingspeak.com). The soil thermal monitoring system was tested on experimental plots in Colorado USA to evaluate the accuracy and reliability of different temperature sensors and 3D printed housings. The soil water experiment included comparison opens-source capacitance-based sensors to commercial versions. Results demonstrate the power of leveraging IoT technology for field research.
Re-building Daniell Cell with a Li-ion exchange Film
Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao
2014-01-01
Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, although it has been supplanted in the late 19th century by more modern battery designs because of Cu2+-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-built by using a ceramic Li-ion exchange film to separate Cu and Zn electrodes for preventing Cu2+-crossover between two electrodes. The re-built Zn-Cu battery can be cycled for 150 times without capacity attenuation and self-discharge, and displays a theoretical energy density of 68.3 Wh kg−1. It is more important that both electrodes of the battery are renewable, reusable, low toxicity and environmentally friendly. Owing to these advantages mentioned above, the re-built Daniell cell can be considered as a promising and green stationary power source for large-scale energy storage. PMID:25369833
NASA Astrophysics Data System (ADS)
Rosner, Guenther
2007-05-01
The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.
Longitudinal Gradient Dipole Magnet Prototype for APS at ANL
Kashikhin, V. S.; Borland, M.; Chlachidze, G.; ...
2016-01-26
We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Bue, Grant C.
2009-01-01
A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.
Measurement and Compensation of BPM Chamber Motion in HLS
NASA Astrophysics Data System (ADS)
Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.
2010-06-01
Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.
FORESEE™ User-Centric Energy Automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
FORESEE™ is a home energy management system (HEMS) that provides a user centric energy automation solution for residential building occupants. Built upon advanced control and machine learning algorithms, FORESEE intelligently manages the home appliances and distributed energy resources (DERs) such as photovoltaics and battery storage in a home. Unlike existing HEMS in the market, FORESEE provides a tailored home automation solution for individual occupants by learning and adapting to their preferences on cost, comfort, convenience and carbon. FORESEE improves not only the energy efficiency of the home but also its capability to provide grid services such as demand response. Highlymore » reliable demand response services are likely to be incentivized by utility companies, making FORESEE economically viable for most homes.« less
Global terrestrial water storage connectivity revealed using complex climate network analyses
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Chen, J.; Donges, J.
2015-07-01
Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.
Durability of a fin-tube latent heat storage using high density polyethylene as PCM
NASA Astrophysics Data System (ADS)
Zauner, Christoph; Hengstberger, Florian; Etzel, Mark; Lager, Daniel; Hofmann, Rene; Walter, Heimo
2017-10-01
Polymers have rarely been used as storage materials in latent heat storages up to now. Thus, we systematically screened all polymers available on a large-scale, selected promising ones based on their theoretical properties and experimentally tested more than 50 candidates. We found that polyethylene, polyoxymethylene and polyamides are promising even as recycled material. Especially high density polyethylene (HDPE) turned out to be suitable as was shown by detailed thermophysical characterization including more than 1000 heating and cooling cycles for INEOS Rigidex HD6070EA. We built a storage with 170 kg HDPE and a total mass of 600 kg based on a fin-tube heat exchanger and characterized its energy capacity, power characteristics and temperature profiles using a thermal oil test rig. In total we performed 30 melting and crystallization cycles where the whole storage was above 100 °C for more than 140 hours. After usage we examined the interior of the storage by cutting it into various pieces. A thin layer of degradation was observed on the surfaces of the PCM which is most likely related to thermo-oxidative degeneration of HDPE. However, the bulk of the PCM is still intact as well as the heat exchanger itself.
NASA Astrophysics Data System (ADS)
Healey, S. P.; Patterson, P.; Garrard, C.
2014-12-01
Altered disturbance regimes are likely a primary mechanism by which a changing climate will affect storage of carbon in forested ecosystems. Accordingly, the National Forest System (NFS) has been mandated to assess the role of disturbance (harvests, fires, insects, etc.) on carbon storage in each of its planning units. We have developed a process which combines 1990-era maps of forest structure and composition with high-quality maps of subsequent disturbance type and magnitude to track the impact of disturbance on carbon storage. This process, called the Forest Carbon Management Framework (ForCaMF), uses the maps to apply empirically calibrated carbon dynamics built into a widely used management tool, the Forest Vegetation Simulator (FVS). While ForCaMF offers locally specific insights into the effect of historical or hypothetical disturbance trends on carbon storage, its dependence upon the interaction of several maps and a carbon model poses a complex challenge in terms of tracking uncertainty. Monte Carlo analysis is an attractive option for tracking the combined effects of error in several constituent inputs as they impact overall uncertainty. Monte Carlo methods iteratively simulate alternative values for each input and quantify how much outputs vary as a result. Variation of each input is controlled by a Probability Density Function (PDF). We introduce a technique called "PDF Weaving," which constructs PDFs that ensure that simulated uncertainty precisely aligns with uncertainty estimates that can be derived from inventory data. This hard link with inventory data (derived in this case from FIA - the US Forest Service Forest Inventory and Analysis program) both provides empirical calibration and establishes consistency with other types of assessments (e.g., habitat and water) for which NFS depends upon FIA data. Results from the NFS Northern Region will be used to illustrate PDF weaving and insights gained from ForCaMF about the role of disturbance in carbon storage.
Fate of 14C-acrylamide in roasted and ground coffee during storage.
Baum, Matthias; Böhm, Nadine; Görlitz, Jessica; Lantz, Ingo; Merz, Karl Heinz; Ternité, Rüdiger; Eisenbrand, Gerhard
2008-05-01
Acrylamide (AA) is formed during heating of carbohydrate rich foods in the course of the Maillard reaction. AA has been classified as probably carcinogenic to humans. Storage experiments with roasted coffee have shown that AA levels decrease depending on storage time and temperature. In the present study the fate of AA lost during storage of roasted and ground (R&G) coffee was studied, using 14C-labeled AA as radiotracer. Radiolabel was measured in coffee brew, filter residue, and volatiles. In the brew, total (14)C-label decreased during storage of R&G coffee, while activity in the filter residue built up concomitantly. [2,3-14C]-AA (14C-AA) was the only 14C-related water extractable low molecular compound in the brew detected by radio-HPLC. No formation of volatile 14C-AA-related compounds was detected during storage and coffee brewing. Close to 90% of the radiolabel in the filter residue (spent R&G coffee, spent grounds) remained firmly bound to the matrix, largely resisting extraction by aqueous ammonia, ethyl acetate, chloroform, hexane, and sequential polyenzymatic digest. Furanthiols, which are abundant as aroma components in roasted coffee, have not been found to be involved in the formation of covalent AA adducts and thus do not contribute substantially to the decrease of AA during storage.
Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF
NASA Technical Reports Server (NTRS)
1997-01-01
Lockheed Martin Missile and Space Co. employees Joe Collingwood, at right, and Ken Dickinson retract pins in the storage base to release a radioisotope thermoelectric generator (RTG) in preparation for hoisting operations. This RTG and two others will be installed on the Cassini spacecraft for mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by NASA's Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Ulrich, Steve; Veilleux, Jean-François; Landry Corbin, François
2009-01-01
The European Student Moon Orbiter (ESMO) spacecraft is a student-built mini satellite being designed for a mission to the Moon. Designing and launching mini satellites are becoming a current trend in the space sector since they provide an economic way to perform innovative scientific experiments and in-flight demonstration of novel space technologies. The generation, storage, control, and distribution of the electrical power in a mini satellite represents unique challenges to the power engineer since the mass and volume restrictions are very stringent. Regardless of these problems, every subsystem and payload equipment must be operated within their specified voltage band whenever they required to be turned on. This paper presents the preliminary design of a lightweight, compact, and reliable power system for ESMO that can generate 720 W. Some of the key components of the EPS include ultra triple-junction (UTJ) GaAs solar cells controlled by maximum power point trackers, and high efficiency Li-ion secondary batteries recharged in parallel.
NASA Astrophysics Data System (ADS)
Ricco, Antonio J.; Parra, Macarena; Niesel, David; Piccini, Matthew; Ly, Diana; McGinnis, Michael; Kudlicki, Andrzej; Hines, John W.; Timucin, Linda; Beasley, Chris; Ricks, Robert; McIntyre, Michael; Friedericks, Charlie; Henschke, Michael; Leung, Ricky; Diaz-Aguado, Millan; Kitts, Christopher; Mas, Ignacio; Rasay, Mike; Agasid, Elwood; Luzzi, Ed; Ronzano, Karolyn; Squires, David; Yost, Bruce
2011-02-01
We designed, built, tested, space-qualified, launched, and collected telemetered data from low Earth orbit from Pharma- Sat, a 5.1-kg free flying "nanosatellite" that supported microbial growth in 48 microfluidic wells, dosed microbes with multiple concentrations of a pharmaceutical agent, and monitored microbial growth and metabolic activity using a dedicated 3-color optical absorbance system at each microwell. The PharmaSat nanosatellite comprised a structure approximately 10 x 10 x 35 cm, including triple-junction solar cells, bidirectional communications, power-generation and energy- storage system, and a sealed payload 1.2-L containment vessel that housed the biological organisms along with the fluidic, optical, thermal, sensor, and electronic subsystems. Growth curves for S. cerevisiae (Brewer's yeast) were obtained for multiple concentrations of the antifungal drug voriconazole in the microgravity conditions of low Earth orbit. Corresponding terrestrial control experiments were conducted for comparison.
A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform
Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes
2015-01-01
This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587
Smart Building: Decision Making Architecture for Thermal Energy Management.
Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo
2015-10-30
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.
Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF
NASA Technical Reports Server (NTRS)
1997-01-01
Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the installation cart to a lift fixture in preparation for returning the power unit to storage. The three RTGs underwent mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.
Small PACS implementation using publicly available software
NASA Astrophysics Data System (ADS)
Passadore, Diego J.; Isoardi, Roberto A.; Gonzalez Nicolini, Federico J.; Ariza, P. P.; Novas, C. V.; Omati, S. A.
1998-07-01
Building cost effective PACS solutions is a main concern in developing countries. Hardware and software components are generally much more expensive than in developed countries and also more tightened financial constraints are the main reasons contributing to a slow rate of implementation of PACS. The extensive use of Internet for sharing resources and information has brought a broad number of freely available software packages to an ever-increasing number of users. In the field of medical imaging is possible to find image format conversion packages, DICOM compliant servers for all kinds of service classes, databases, web servers, image visualization, manipulation and analysis tools, etc. This paper describes a PACS implementation for review and storage built on freely available software. It currently integrates four diagnostic modalities (PET, CT, MR and NM), a Radiotherapy Treatment Planning workstation and several computers in a local area network, for image storage, database management and image review, processing and analysis. It also includes a web-based application that allows remote users to query the archive for studies from any workstation and to view the corresponding images and reports. We conclude that the advantage of using this approach is twofold. It allows a full understanding of all the issues involved in the implementation of a PACS and also contributes to keep costs down while enabling the development of a functional system for storage, distribution and review that can prove to be helpful for radiologists and referring physicians.
Experimental Verification and Integration of a Next Generation Smart Power Management System
NASA Astrophysics Data System (ADS)
Clemmer, Tavis B.
With the increase in energy demand by the residential community in this country and the diminishing fossil fuel resources being used for electric energy production there is a need for a system to efficiently manage power within a residence. The Smart Green Power Node (SGPN) is a next generation energy management system that automates on-site energy production, storage, consumption, and grid usage to yield the most savings for both the utility and the consumer. Such a system automatically manages on-site distributed generation sources such as a PhotoVoltaic (PV) input and battery storage to curtail grid energy usage when the price is high. The SGPN high level control features an advanced modular algorithm that incorporates weather data for projected PV generation, battery health monitoring algorithms, user preferences for load prioritization within the home in case of an outage, Time of Use (ToU) grid power pricing, and status of on-site resources to intelligently schedule and manage power flow between the grid, loads, and the on-site resources. The SGPN has a scalable, modular architecture such that it can be customized for user specific applications. This drove the topology for the SGPN which connects on-site resources at a low voltage DC microbus; a two stage bi-directional inverter/rectifier then couples the AC load and residential grid connect to on-site generation. The SGPN has been designed, built, and is undergoing testing. Hardware test results obtained are consistent with the design goals set and indicate that the SGPN is a viable system with recommended changes and future work.
A global distributed storage architecture
NASA Technical Reports Server (NTRS)
Lionikis, Nemo M.; Shields, Michael F.
1996-01-01
NSA architects and planners have come to realize that to gain the maximum benefit from, and keep pace with, emerging technologies, we must move to a radically different computing architecture. The compute complex of the future will be a distributed heterogeneous environment, where, to a much greater extent than today, network-based services are invoked to obtain resources. Among the rewards of implementing the services-based view are that it insulates the user from much of the complexity of our multi-platform, networked, computer and storage environment and hides its diverse underlying implementation details. In this paper, we will describe one of the fundamental services being built in our envisioned infrastructure; a global, distributed archive with near-real-time access characteristics. Our approach for adapting mass storage services to this infrastructure will become clear as the service is discussed.
Asymmetry in Time Evolution of Magnetization in Magnetic Nanostructures
Tóbik, Jaroslav; Cambel, Vladimir; Karapetrov, Goran
2015-07-22
Strong interest in nanomagnetism stems from the promise of high storage densities of information through control of ever smaller and smaller ensembles of spins. There is a broad consensus that the Landau-Lifshitz-Gilbert equation reliably describes the magnetization dynamics on classical phenomenological level. On the other hand, it is not so evident that the magnetization dynamics governed by this equation contains built-in asymmetry in the case of broad topology sets of symmetric total energy functional surfaces. The magnetization dynamics in such cases shows preference for one particular state from many energetically equivalent available minima. Here, we demonstrate this behavior on amore » simple one-spin model which can be treated analytically. Depending on the ferromagnet geometry and material parameters, this asymmetric behavior can be robust enough to survive even at high temperatures opening simplified venues for controlling magnetic states of nanodevices in practical applications. Using micromagnetic simulations we demonstrate the asymmetry in magnetization dynamics in a real system with reduced symmetry such as Pacman-like nanodot. Finally, exploiting the built-in asymmetry in the dynamics could lead to practical methods of preparing desired spin configurations on nanoscale. Introduction« less
Enhancing water supply through reservoir reoperation
NASA Astrophysics Data System (ADS)
Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.
2017-12-01
Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.
Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.
Bao, Shunxing; Plassard, Andrew J; Landman, Bennett A; Gokhale, Aniruddha
2017-04-01
Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based "medical image processing-as-a-service" offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop's distributed file system. Despite this promise, HBase's load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage.
Global and Regional Real-time Systems for Flood and Drought Monitoring and Prediction
NASA Astrophysics Data System (ADS)
Hong, Y.; Gourley, J. J.; Xue, X.; Flamig, Z.
2015-12-01
A Hydrometeorological Extreme Mapping and Prediction System (HyXtreme-MaP), initially built upon the Coupled Routing and Excess STorage (CREST) distributed hydrological model, is driven by real-time quasi-global TRMM/GPM satellites and by the US Multi-Radar Multi-Sensor (MRMS) radar network with dual-polarimetric upgrade to simulate streamflow, actual ET, soil moisture and other hydrologic variables at 1/8th degree resolution quasi-globally (http://eos.ou.edu) and at 250-meter 2.5-mintue resolution over the Continental United States (CONUS: http://flash.ou.edu). Multifaceted and collaborative by-design, this end-to-end research framework aims to not only integrate data, models, and applications but also brings people together (i.e., NOAA, NASA, University researchers, and end-users). This presentation will review the progresses, challenges and opportunities of such HyXTREME-MaP System used to monitor global floods and droughts, and also to predict flash floods over the CONUS.
Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Codd, Daniel S.; Zhou, Lei; Trumper, David; Calvet, Nicolas; Slocum, Alexander H.
2016-05-01
Currently, the majority of concentrated solar power (CSP) plants built worldwide integrate thermal energy storage (TES) systems which enable dispatchable output and higher global plant efficiencies. TES systems are typically based on two tank molten salt technology which involves inherent drawbacks such as parasitic pumping losses and electric tracing of pipes, risk of solidification and high capital costs. The concept presented in this paper is based on a single tank where the concentrated sunlight is directly focused on the molten salt. Hot and cold volumes of salt (at 565 °C and 280 °C, respectively) are axially separated by an insulated divider plate which helps maintain the thermal gradient. The concept, based on existing technologies, seeks to avoid the listed drawbacks as well as reducing the final cost of the TES system. In order to demonstrate its feasibility, Masdar Institute (MI) and Massachusetts Institute of Technology are developing a 25 kW prototype to be tested in the Masdar Solar Platform beam down facility.
Dispatchable Renewable Energy Model for Microgrid Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiou, Fred; Gentle, Jake P.; McJunkin, Timothy R.
2017-04-01
Over the years, many research projects have been performed and focused on finding out the effective ways to balance the power demands and supply on the utility grid. The causes of the imbalance could be the increasing demands from the end users, the loss of power generation (generators down), faults on the transmission lines, power tripped due to overload, and weather conditions, etc. An efficient Load Frequency Control (LFC) can assure the desired electricity quality provided to the residential, commercial and industrial end users. A simulation model is built in this project to investigate the contribution of the modeling ofmore » dispatchable energy such as solar energy, wind power, hydro power and energy storage to the balance of the microgrid power system. An analysis of simplified feedback control system with proportional, integral, and derivative (PID) controller was performed. The purpose of this research is to investigate a simulation model that achieves certain degree of the resilient control for the microgrid.« less
Portable wireless ultrasonic systems for remote inspection
NASA Astrophysics Data System (ADS)
Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.
2015-03-01
The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.
Innovative ventilation system for animal anatomy laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, D.R.; Smith, D.C.
1997-04-01
A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 airmore » changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.« less
NASA Astrophysics Data System (ADS)
Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan
2017-10-01
We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobler, Jeremy; Zaccheo, T. Scott; Blume, Nathan
This report describes the development and testing of a novel system, the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE), for Monitoring, Reporting and Verification (MRV) of CO 2 at Geological Carbon Storage (GCS) sites. The system consists of a pair of laser based transceivers, a number of retroreflectors, and a set of cloud based data processing, storage and dissemination tools, which enable 2-D mapping of the CO 2 in near real time. A system was built, tested locally in New Haven, Indiana, and then deployed to the Zero Emissions Research and Technology (ZERT) facility in Bozeman, MT. Testing at ZERTmore » demonstrated the ability of the GreenLITE system to identify and map small underground leaks, in the presence of other biological sources and with widely varying background concentrations. The system was then ruggedized and tested at the Harris test site in New Haven, IN, during winter time while exposed to temperatures as low as -15 °CºC. Additional testing was conducted using simulated concentration enhancements to validate the 2-D retrieval accuracy. This test resulted in a high confidence in the reconstruction ability to identify sources to tens of meters resolution in this configuration. Finally, the system was deployed for a period of approximately 6 months to an active industrial site, Illinois Basin – Decatur Project (IBDP), where >1M metric tons of CO 2 had been injected into an underground sandstone basin. The main objective of this final deployment was to demonstrate autonomous operation over a wide range of environmental conditions with very little human interaction, and to demonstrate the feasibility of the system for long term deployment in a GCS environment.« less
Expanding Scales and Applications for 2D Spatial Mapping of CO2 using GreenLITE
NASA Astrophysics Data System (ADS)
Erxleben, W. H.; Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Braun, M.
2015-12-01
The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system is a new measurement approach originally developed under a cooperative agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL), Atmospheric Environmental Sciences (AER) and Exelis Inc. (now part of Harris Corp.). The original system design provides 24/7 monitoring of Ground Carbon Storage (GCS) sites, in order to help ensure worker safety and verify 99% containment. The first generation was designed to cover up to 1km2 area, and employs the Exelis Continuous Wave (CW) Intensity Modulated (IM) approach to measure differential transmission. A pair of scanning transceivers was built and combined with a series of retro reflectors, and a local weather station to provide the information required for producing estimates of the atmospheric CO2 concentration over a number of overlapping lines-of-site. The information from the transceivers, and weather station, are sent remotely to a web-based processing and storage tool, which in-turn uses the data to generate estimates of the 2D spatial distribution over the area of coverage and disseminate that information near real-time via a secure web interface. Recently, in 2015, Exelis and AER have invested in the expansion of the GreenLITE transceiver system to 5 km range, enabling areas up to 25 km2 to be evaluated with this technology, and opening new possibilities for applications such as urban scale monitoring. The 5 km system is being tested in conjunction with the National Institute of Standards and Technology at the Boulder Atmospheric Observatory in August of this year. This talk will review the initial GreenLITE system, testing and deployment of that system, and the more recent development, expansion and testing of the 5 km system.
Planning ATES systems under uncertainty
NASA Astrophysics Data System (ADS)
Jaxa-Rozen, Marc; Kwakkel, Jan; Bloemendal, Martin
2015-04-01
Aquifer Thermal Energy Storage (ATES) can contribute to significant reductions in energy use within the built environment, by providing seasonal energy storage in aquifers for the heating and cooling of buildings. ATES systems have experienced a rapid uptake over the last two decades; however, despite successful experiments at the individual level, the overall performance of ATES systems remains below expectations - largely due to suboptimal practices for the planning and operation of systems in urban areas. The interaction between ATES systems and underground aquifers can be interpreted as a common-pool resource problem, in which thermal imbalances or interference could eventually degrade the storage potential of the subsurface. Current planning approaches for ATES systems thus typically follow the precautionary principle. For instance, the permitting process in the Netherlands is intended to minimize thermal interference between ATES systems. However, as shown in recent studies (Sommer et al., 2015; Bakr et al., 2013), a controlled amount of interference may benefit the collective performance of ATES systems. An overly restrictive approach to permitting is instead likely to create an artificial scarcity of available space, limiting the potential of the technology in urban areas. In response, master plans - which take into account the collective arrangement of multiple systems - have emerged as an increasingly popular alternative. However, permits and master plans both take a static, ex ante view of ATES governance, making it difficult to predict the effect of evolving ATES use or climactic conditions on overall performance. In particular, the adoption of new systems by building operators is likely to be driven by the available subsurface space and by the performance of existing systems; these outcomes are themselves a function of planning parameters. From this perspective, the interactions between planning authorities, ATES operators, and subsurface conditions form a complex adaptive system, for which agent-based modelling provides a useful analysis framework. This study therefore explores the interactions between endogenous ATES adoption processes and the relative performance of different planning schemes, using an agent-based adoption model coupled with a hydrologic model of the subsurface. The models are parameterized to simulate typical operating conditions for ATES systems in a dense urban area. Furthermore, uncertainties relating to planning parameters, adoption processes, and climactic conditions are explicitly considered using exploratory modelling techniques. Results are therefore presented for the performance of different planning policies over a broad range of plausible scenarios.
Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid
NASA Astrophysics Data System (ADS)
Yu, Xunwei
As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing between DC MG and SST, State of Charge (SOC) for battery, are both considered in the system energy management strategy. Then the DC MG output power is controllable and the battery is autonomous charged and discharged based on its SOC and system information without communication. The system operation modes are defined, analyzed and the simulation results verify the strategy. The second power and energy management strategy is the hierarchical control. In this control strategy, three-layer control structure is presented and defined. The first layer is the primary control for the DC MG in islanding mode, which is to guarantee the DC MG system power balance without communication to increase the system reliability. The second control layer is to implement the seamless switch for DC MG system from islanding mode to SST-enabled mode. The third control layer is the tertiary control for the system energy management and the communication is also involved. The tertiary layer not only controls the whole DC MG output power, but also manages battery module charge and discharge statuses based on its SOC. The simulation and experimental results verify the methods. Some practical issues for the SST interfaced DC MG are also investigated. Power unbalance issue of SST is analyzed and a distributed control strategy is presented to solve this problem. Simulation and experimental results verify it. Furthermore, the control strategy for SST interfaced DC MG blackout is presented and the simulation results are shown to valid it. Also a plug and play SST interfaced DC MG is constructed and demonstrated. Several battery and PV modules construct a typical DC MG and a DC source is adopted to simulate the SST. The system is in distributed control and can operate in islanding mode and SST-enabled mode. The experimental results verify that individual module can plug into and unplug from the DC MG randomly without affecting the system stability. Furthermore, the communication ports are embedded into the system and a universal communication protocol is proposed to implement the plug and play function. Specified ID is defined for individual PV and battery for system recognition. A database is built to store the whole system date for visual display, monitor and history query.
High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2015-01-01
Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.
High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2014-01-01
Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.
NASA Astrophysics Data System (ADS)
Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.
2015-07-01
A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.
An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser
NASA Astrophysics Data System (ADS)
Hadmack, Michael R.
A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point and driving the FEL. A feed-forward amplitude and phase compensation system has been built and demonstrated to substantially improve the uniformity of the electron bunch phase, thus enhancing both the laser performance and the beam stability required for efficient x-ray production. Results of all of these efforts are presented, together with a summary of future work.
CREM monitoring: a wireless RF application
NASA Astrophysics Data System (ADS)
Valencia, J. D.; Burghard, B. J.; Skorpik, J. R.; Silvers, K. L.; Schwartz, M. J.
2005-05-01
Recent security lapses within the Department of Energy laboratories prompted the establishment and implementation of additional procedures and training for operations involving classified removable electronic media (CREM) storage. In addition, the definition of CREM has been expanded and the number of CREM has increased significantly. Procedures now require that all CREM be inventoried and accounted for on a weekly basis. Weekly inventories consist of a physical comparison of each item against the reportable inventory listing. Securing and accounting for CREM is a continuous challenge for existing security systems. To address this challenge, an innovative framework, encompassing a suite of technologies, has been developed by Pacific Northwest National Laboratory (PNNL) to monitor, track, and locate CREM in safes, vaults, and storage areas. This Automated Removable Media Observation and Reporting (ARMOR)framework, described in this paper, is an extension of an existing PNNL program, SecureSafe. The key attributes of systems built around the ARMOR framework include improved accountability, reduced risk of human error, improved accuracy and timeliness of inventory data, and reduced costs. ARMOR solutions require each CREM to be tagged with a unique electronically readable ID code. Inventory data is collected from tagged CREM at regular intervals and upon detection of an access event. Automated inventory collection and report generation eliminates the need for hand-written inventory sheets and allows electronic transfer of the collected inventory data to a modern electronic reporting system. An electronic log of CREM access events is maintained, providing enhanced accountability for daily/weekly checks, routine audits, and follow-up investigations.
17. Interior view of courtroom looking towards judge's bench; showing ...
17. Interior view of courtroom looking towards judge's bench; showing built in linear seating on both ends of room, clerical desk and equipment, through wall air conditioning units, exterior windows and door; north end of west wing on top floor; view to northwest. - Ellsworth Air Force Base, Group Administration & Secure Storage Building, 2372 Westover Avenue, Blackhawk, Meade County, SD
NASA Astrophysics Data System (ADS)
Gurov, S. M.; Akimov, A. V.; Akimov, V. E.; Anashin, V. V.; Anchugov, O. V.; Baranov, G. N.; Batrakov, A. M.; Belikov, O. V.; Bekhtenev, E. A.; Blum, E.; Bulatov, A. V.; Burenkov, D. B.; Cheblakov, P. B.; Chernyakin, A. D.; Cheskidov, V. G.; Churkin, I. N.; Davidsavier, M.; Derbenev, A. A.; Erokhin, A. I.; Fliller, R. P.; Fulkerson, M.; Gorchakov, K. M.; Ganetis, G.; Gao, F.; Gurov, D. S.; Hseuh, H.; Hu, Y.; Johanson, M.; Kadyrov, R. A.; Karnaev, S. E.; Karpov, G. V.; Kiselev, V. A.; Kobets, V. V.; Konstantinov, V. M.; Kolmogorov, V. V.; Korepanov, A. A.; Kramer, S.; Krasnov, A. A.; Kremnev, A. A.; Kuper, E. A.; Kuzminykh, V. S.; Levichev, E. B.; Li, Y.; Long, J. De; Makeev, A. V.; Mamkin, V. R.; Medvedko, A. S.; Meshkov, O. I.; Nefedov, N. B.; Neyfeld, V. V.; Okunev, I. N.; Ozaki, S.; Padrazo, D.; Petrov, V. V.; Petrichenkov, M. V.; Philipchenko, A. V.; Polyansky, A. V.; Pureskin, D. N.; Rakhimov, A. R.; Rose, J.; Ruvinskiy, S. I.; Rybitskaya, T. V.; Sazonov, N. V.; Schegolev, L. M.; Semenov, A. M.; Semenov, E. P.; Senkov, D. V.; Serdakov, L. E.; Serednyakov, S. S.; Shaftan, T. V.; Sharma, S.; Shichkov, D. S.; Shiyankov, S. V.; Shvedov, D. A.; Simonov, E. A.; Singh, O.; Sinyatkin, S. V.; Smaluk, V. V.; Sukhanov, A. V.; Tian, Y.; Tsukanova, L. A.; Vakhrushev, R. V.; Vobly, P. D.; Utkin, A. V.; Wang, G.; Wahl, W.; Willeke, F.; Yaminov, K. R.; Yong, H.; Zhuravlev, A.; Zuhoski, P.
The National Synchrotron Light Source II is a third generation light source, which was constructed at Brookhaven National Laboratory. This project includes a highly-optimized 3 GeV electron storage ring, linac preinjector, and full-energy synchrotron injector. Budker Institute of Nuclear Physics built and delivered the booster for NSLS-II. The commissioning of the booster was successfully completed. This paper reviews fulfilled work by participants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blekhman, David
The College of Engineering, Computer Science, & Technology at California State University, Los Angeles as part of its alternative and renewable energy leadership efforts has built a sustainable hydrogen station to teach and demonstrate the production and application of hydrogen as the next generation of fully renewable fuel for transportation. The requested funding was applied toward the acquisition of the core hydrogen station equipment: electrolyzer, compressors and hydrogen storage.
NASA Astrophysics Data System (ADS)
Zhao, X.; Chang, Y.; Peng, F.; Wu, J.
2016-12-01
Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.
Data Relay Board with Protocol for High-Speed, Free-Space Optical Communications
NASA Technical Reports Server (NTRS)
Wright, Malcolm; Clare, Loren; Gould, Gary; Pedyash, Maxim
2004-01-01
In a free-space optical communication system, the mitigation of transient outages through the incorporation of error-control methods is of particular concern, the outages being caused by scintillation fades and obscurants. The focus of this innovative technology is the development of a data relay system for a reliable high-data-rate free-spacebased optical-transport network. The data relay boards will establish the link, maintain synchronous connection, group the data into frames, and provide for automatic retransmission (ARQ) of lost or erred frames. A certain Quality of Service (QoS) can then be ensured, compatible with the required data rate. The protocol to be used by the data relay system is based on the draft CCSDS standard data-link protocol Proximity-1, selected by orbiters to multiple lander assets in the Mars network, for example. In addition to providing data-link protocol capabilities for the free-space optical link and buffering the data, the data relay system will interface directly with user applications over Gigabit Ethernet and/or with highspeed storage resources via Fibre Channel. The hardware implementation is built on a network-processor-based architecture. This technology combines the power of a hardware switch capable of data switching and packet routing at Gbps rates, with the flexibility of a software- driven processor that can host highly adaptive and reconfigurable protocols used, for example, in wireless local-area networks (LANs). The system will be implemented in a modular multi-board fashion. The main hardware elements of the data relay system are the new data relay board developed by Rockwell Scientific, a COTS Gigabit Ethernet board for user interface, and a COTS Fibre Channel board that connects to local storage. The boards reside in a cPCI back plane, and can be housed in a VME-type enclosure.
Mission Control Technologies: A New Way of Designing and Evolving Mission Systems
NASA Technical Reports Server (NTRS)
Trimble, Jay; Walton, Joan; Saddler, Harry
2006-01-01
Current mission operations systems are built as a collection of monolithic software applications. Each application serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish specific tasks, each application embodies specialized functional knowledge and has its own data storage, data models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities across a set of monolithic applications. These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions. Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to build mission control systems that overcome the problems inherent in systems of monolithic applications. The keys to the solution are modularity and interoperability. Modularity will increase extensibility (evolution), reusability, and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components. Modularity and interoperability together contribute to flexibility. The Mission Control Technologies (MCT) Project, a collaboration of multiple NASA Centers, led by NASA Ames Research Center, is building a framework to enable software to be assembled from flexible collections of components and services.
Controlling changes - lessons learned from waste management facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.; Koplow, A.S.; Stoll, F.E.
This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less
Measurement and Compensation of BPM Chamber Motion in HLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. W.; Sun, B. G.; Cao, Y.
2010-06-23
Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS.more » The horizontal drifts of beam orbit have been really suppressed within 20{mu}m without the compensation of BPM chamber motion in the runtime.« less
Synergy Between Archives, VO, and the Grid at ESAC
NASA Astrophysics Data System (ADS)
Arviset, C.; Alvarez, R.; Gabriel, C.; Osuna, P.; Ott, S.
2011-07-01
Over the years, in support to the Science Operations Centers at ESAC, we have set up two Grid infrastructures. These have been built: 1) to facilitate daily research for scientists at ESAC, 2) to provide high computing capabilities for project data processing pipelines (e.g., Herschel), 3) to support science operations activities (e.g., calibration monitoring). Furthermore, closer collaboration between the science archives, the Virtual Observatory (VO) and data processing activities has led to an other Grid use case: the Remote Interface to XMM-Newton SAS Analysis (RISA). This web service-based system allows users to launch SAS tasks transparently to the GRID, save results on http-based storage and visualize them through VO tools. This paper presents real and operational use cases of Grid usages in these contexts
NASA Astrophysics Data System (ADS)
Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.
2017-11-01
Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.
Digital Library Storage using iRODS Data Grids
NASA Astrophysics Data System (ADS)
Hedges, Mark; Blanke, Tobias; Hasan, Adil
Digital repository software provides a powerful and flexible infrastructure for managing and delivering complex digital resources and metadata. However, issues can arise in managing the very large, distributed data files that may constitute these resources. This paper describes an implementation approach that combines the Fedora digital repository software with a storage layer implemented as a data grid, using the iRODS middleware developed by DICE (Data Intensive Cyber Environments) as the successor to SRB. This approach allows us to use Fedoras flexible architecture to manage the structure of resources and to provide application- layer services to users. The grid-based storage layer provides efficient support for managing and processing the underlying distributed data objects, which may be very large (e.g. audio-visual material). The Rule Engine built into iRODS is used to integrate complex workflows at the data level that need not be visible to users, e.g. digital preservation functionality.
Small and Shaping the Future Energy Eco-house System
NASA Astrophysics Data System (ADS)
Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki
2010-11-01
The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.
Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China.
Liao, Z L; Zhang, G Q; Wu, Z H; He, Y; Chen, H
2015-01-01
Although low impact development (LID) has been commonly applied across the developed countries for mitigating the negative impacts of combined sewer overflows (CSOs) on urban hydrological environment, it has not been widely used in developing countries yet. In this paper, a typical combined sewer system in an urbanized area of Shanghai, China was used to demonstrate how to design and choose CSO control solutions with LID using stormwater management model. We constructed and simulated three types of CSO control scenarios. Our findings support the notion that LID measures possess favorable capability on CSO reduction. Nevertheless, the green scenarios which are completely comprised by LID measures fail to achieve the maximal effectiveness on CSO reduction, while the gray-green scenarios (LID measure combined with gray measures) achieve it. The unit cost-effectiveness of each type of scenario sorts as: green scenario > gray-green scenario > gray scenario. Actually, as the storage tank is built in the case catchment, a complete application of green scenario is inaccessible here. Through comprehensive evaluation and comparison, the gray-green scenario F which used the combination of storage tank, bio-retention and rain barrels is considered as the most feasible one in this case.
Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.
Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei
2016-01-29
In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.
NASA Technical Reports Server (NTRS)
Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.
1994-01-01
A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.
Liang, Weihua; Liu, Yushan; Ge, Baoming; ...
2017-09-08
The battery energy stored quasi-Z-source (BESqZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. But, the second harmonic (2ω) power ripple degrades the system’s performance and affects the system’s design. An accurate model to analyze the 2ω ripple is very important. The existing models did not consider the battery, or assumed a symmetric qZS network with L 1=L 2 and C 1=C 2, which limits the design freedom and causes oversized impedance parameters. Our paper proposes a comprehensive model for the single-phase BES-qZS-PV inverter system, where the battery is consideredmore » and there is no restriction of L 1=L 2 and C 1=C 2. Based on the built model, a BES-qZS impedance design method is proposed to mitigate the 2ω ripple with asymmetric qZS network. Simulation and experimental results verify the proposed 2ω ripple model and impedance design method.« less
High Pressure Electrolyzer System Evaluation
NASA Technical Reports Server (NTRS)
Prokopius, Kevin; Coloza, Anthony
2010-01-01
This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Weihua; Liu, Yushan; Ge, Baoming
The battery energy stored quasi-Z-source (BESqZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. But, the second harmonic (2ω) power ripple degrades the system’s performance and affects the system’s design. An accurate model to analyze the 2ω ripple is very important. The existing models did not consider the battery, or assumed a symmetric qZS network with L 1=L 2 and C 1=C 2, which limits the design freedom and causes oversized impedance parameters. Our paper proposes a comprehensive model for the single-phase BES-qZS-PV inverter system, where the battery is consideredmore » and there is no restriction of L 1=L 2 and C 1=C 2. Based on the built model, a BES-qZS impedance design method is proposed to mitigate the 2ω ripple with asymmetric qZS network. Simulation and experimental results verify the proposed 2ω ripple model and impedance design method.« less
Development and evaluation of an instantaneous atmospheric corrosion rate monitor
NASA Astrophysics Data System (ADS)
Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.
1985-06-01
A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.
Sediment Flux and Storage in a Rural Southeastern Piedmont River System
NASA Astrophysics Data System (ADS)
Jackson, C. R.; Martin, J. K.
2001-12-01
A sediment budget was developed for a representative rural southeastern Piedmont watershed to provide information on the relative importance of sediment sources. Sediment issues in the southeastern Piedmont are complicated by the so-called legacy sediment produced by poor farming practices during the cotton-farming era, approximately 1810-1930. The Murder Creek basin near Monticello, GA was chosen because: it featured forestry and agriculture as the principal land uses; a USGS gage provided a flow record; and the creek deposited in a reservoir built in 1948. Suspended load export was calculated using a sediment rating curve and the USGS flow time series. Bed load export was determined by estimating the volume of sediment deposited in the reservoir since construction. Unpaved road erosion was estimated using the WEPP model, and other surface erosion was estimated using USLE and delivery ratios. Historical floodplain storage was determined by coring floodplain deposits, measuring the depth to the pre-historic/historic sediment interface, and multiplying by the area of the floodplain. Recent accretion rates were estimated using dendrogeomorphology. Results showed that the practices of the cotton farming era deposited an average of 1.6 meters of sediment on the floodplains. This depth was relatively uniform across the watershed. The cotton-farming sediment in storage exceeds the current annual export by a factor of about 5000. Approximately half of the current export comes from current inputs, and half comes from remobilized floodplain sediments.
Changes in the Arctic: Background and Issues for Congress
2016-05-12
discovery of new oil and gas deposits far from existing storage, pipelines , and shipping facilities cannot be developed until infrastructure is built...markets. Other questions in need of answers include the status of port, pipeline , and liquid natural gas infrastructure; whether methane hydrates...Changes to the Arctic brought about by warming temperatures will likely allow more exploration for oil, gas , and minerals. Warming that causes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moren, Richard J.; Grindstaff, Keith D.
Hanford's Long-Term Stewardship (LTS) Program has evolved from a small, informal process, with minimal support, to a robust program that provides comprehensive transitions from cleanup contractors to long-term stewardship for post-cleanup requirements specified in the associated cleanup decision documents. The LTS Program has the responsibility for almost 100,000 acres of land, along with over 200 waste sites and will soon have six cocooned reactors. Close to 2,600 documents have been identified and tagged for storage in the LTS document library. The program has successfully completed six consecutive transitions over the last two years in support of the U.S. DOE Richlandmore » Operations Office's (DOE-RL) near-term cleanup objectives of significantly reducing the footprint of active cleanup operations for the River Corridor. The program has evolved from one that was initially responsible for defining and measuring Institutional Controls for the Hanford Site, to a comprehensive, post remediation surveillance and maintenance program that begins early in the transition process. In 2013, the first reactor area -- the cocooned 105-F Reactor and its surrounding 1,100 acres, called the F Area was transitioned. In another first, the program is expected to transition the five remaining cocooned reactors into the program through using a Transition and Turnover Package (TTP). As Hanford's LTS Program moves into the next few years, it will continue to build on a collaborative approach. The program has built strong relationships between contractors, regulators, tribes and stakeholders and with the U.S. Department of Energy's Office of Legacy Management (LM). The LTS Program has been working with LM since its inception. The transition process utilized LM's Site Transition Framework as one of the initial requirement documents and the Hanford Program continues to collaborate with LM today. One example of this collaboration is the development of the LTS Program's records management system in which, LM has been instrumental. The development of a rigorous data collection and records management systems has been influenced and built off of LMs success, which also ensures compatibility between what Hanford's LTS Program develops and LM. In another example, we are exploring a pilot project to ship records from the Hanford Site directly to LM for long-term storage. This pilot would gain program efficiencies so that records would be handled only once. Rather than storage on-site, then shipment to an interim Federal Records Center in Seattle, records would be shipped directly to LM. The Hanford LTS Program is working to best align programmatic processes, find efficiencies, and to benchmark site transition requirements. Involving the Hanford LTS Program early in the transition process with an integrated contractor and DOE team is helping to ensure that there is time to work through details on the completed remediation of transitioning areas. It also will allow for record documentation and storage for the future, and is an opportunity for the program to mature through the experiences that will be gained by implementing LTS Program activities over time.« less
NASA Technical Reports Server (NTRS)
Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig
2005-01-01
Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.
NASA Astrophysics Data System (ADS)
Grimmond, C. S. B.; Salmond, J. A.; Oke, T. R.; Offerle, B.; Lemonsu, A.
2004-12-01
Eddy covariance (EC) observations above the densely built-up center of Marseille during the Expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'émissions (ESCOMPTE) summertime measurement campaign extend current understanding of surface atmosphere exchanges in cities. The instrument array presented opportunities to address issues of the representativeness of local-scale fluxes in urban settings. Separate EC systems operated at two levels, and a telescoping tower allowed the pair to be exposed at two different sets of heights. The flux and turbulence observations taken at the four heights, stratified by wind conditions (mistral wind and sea breeze), are used to address the partitioning of the surface energy balance in an area with large roughness elements. The turbulent sensible heat flux dominates in the daytime, although the storage heat flux is a significant term that peaks before solar noon. The turbulent latent heat flux is small but not negligible. Carbon dioxide fluxes show that this central city district is almost always a source, but the vegetation reduces the magnitude of the fluxes in the afternoon. The atmosphere in such a heavily developed area is rarely stable. The turbulence characteristics support the empirical functions proposed by M. Roth.
NREL Testing Erigo's and EaglePicher's Microgrid Energy Storage System |
EaglePicher's Microgrid Energy Storage System NREL researchers are testing an energy storage system for a contains three independently controllable energy storage technologies. Photo of energy storage system hardware in a laboratory Photo by Dennis Schroeder Microgrids-and effective storage systems supporting them
Machine learning based job status prediction in scientific clusters
Yoo, Wucherl; Sim, Alex; Wu, Kesheng
2016-09-01
Large high-performance computing systems are built with increasing number of components with more CPU cores, more memory, and more storage space. At the same time, scientific applications have been growing in complexity. Together, they are leading to more frequent unsuccessful job statuses on HPC systems. From measured job statuses, 23.4% of CPU time was spent to the unsuccessful jobs. Here, we set out to study whether these unsuccessful job statuses could be anticipated from known job characteristics. To explore this possibility, we have developed a job status prediction method for the execution of jobs on scientific clusters. The Random Forestsmore » algorithm was applied to extract and characterize the patterns of unsuccessful job statuses. Experimental results show that our method can predict the unsuccessful job statuses from the monitored ongoing job executions in 99.8% the cases with 83.6% recall and 94.8% precision. Lastly, this prediction accuracy can be sufficiently high that it can be used to mitigation procedures of predicted failures.« less
Quantum control of topological defects in magnetic systems
NASA Astrophysics Data System (ADS)
Takei, So; Mohseni, Masoud
2018-02-01
Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .
Machine learning based job status prediction in scientific clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Sim, Alex; Wu, Kesheng
Large high-performance computing systems are built with increasing number of components with more CPU cores, more memory, and more storage space. At the same time, scientific applications have been growing in complexity. Together, they are leading to more frequent unsuccessful job statuses on HPC systems. From measured job statuses, 23.4% of CPU time was spent to the unsuccessful jobs. Here, we set out to study whether these unsuccessful job statuses could be anticipated from known job characteristics. To explore this possibility, we have developed a job status prediction method for the execution of jobs on scientific clusters. The Random Forestsmore » algorithm was applied to extract and characterize the patterns of unsuccessful job statuses. Experimental results show that our method can predict the unsuccessful job statuses from the monitored ongoing job executions in 99.8% the cases with 83.6% recall and 94.8% precision. Lastly, this prediction accuracy can be sufficiently high that it can be used to mitigation procedures of predicted failures.« less
1997-05-27
Jet Propulsion Laboratory (JPL) technicians finish mounting a thermal model of a radioisotope thermoelectric generator (RTG) on the installation cart which will be used to install the RTG in the Cassini spacecraft at Level 14 of Space Launch Complex 40, Cape Canaveral Air Station. The technicians use the thermal model to practice installation procedures. The three actual RTGs which will provide electrical power to Cassini on its 6.7-mile trip to the Saturnian system, and during its four-year mission at Saturn, are being tested and monitored in the Radioisotope Thermoelectric Generator Storage Building in KSC's Industrial Area. The RTGs use heat from the natural decay of plutonium to generate electric power. RTGs enable spacecraft to operate far from the Sun where solar power systems are not feasible. The RTGs on Cassini are of the same design as those flying on the already deployed Galileo and Ulysses spacecraft. The Cassini mission is targeted for an October 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL
Designing Hysteresis with Dipolar Chains
NASA Astrophysics Data System (ADS)
Concha, Andrés; Aguayo, David; Mellado, Paula
2018-04-01
Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.
Designing Hysteresis with Dipolar Chains.
Concha, Andrés; Aguayo, David; Mellado, Paula
2018-04-13
Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.
Sudbrock, F; Schomäcker, K; Drzezga, A
2017-01-01
For planned and ongoing storage of liquid radioactive waste in a designated plant for a nuclear medicine therapy ward (decontamination system/decay system), detailed knowledge of basic parameters such as the amount of radioactivity and the necessary decay time in the plant is required. The design of the plant at the Department of Nuclear Medicine of the University of Cologne, built in 2001, was based on assumptions about the individual discharge of activity from patients, which we can now retrospectively validate. The decontamination factor of the plant is at present in the order of 10 -9 for 131 I. The annual discharges have been continuously reduced over the period of operation and are now in the region of a few kilobecquerels. This work emphasizes the high efficacy of the decontamination plant to reduce the amount of radioactivity released from the nuclear medicine ward into the environment to almost negligible levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smart Building: Decision Making Architecture for Thermal Energy Management
Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo
2015-01-01
Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978
Recent Beam Measurements and New Instrumentation at the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, F.; Baptiste, K.; Barry, W.
2012-04-11
The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less
RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter
2008-05-05
The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less
Applying deep neural networks to HEP job classification
NASA Astrophysics Data System (ADS)
Wang, L.; Shi, J.; Yan, X.
2015-12-01
The cluster of IHEP computing center is a middle-sized computing system which provides 10 thousands CPU cores, 5 PB disk storage, and 40 GB/s IO throughput. Its 1000+ users come from a variety of HEP experiments. In such a system, job classification is an indispensable task. Although experienced administrator can classify a HEP job by its IO pattern, it is unpractical to classify millions of jobs manually. We present how to solve this problem with deep neural networks in a supervised learning way. Firstly, we built a training data set of 320K samples by an IO pattern collection agent and a semi-automatic process of sample labelling. Then we implemented and trained DNNs models with Torch. During the process of model training, several meta-parameters was tuned with cross-validations. Test results show that a 5- hidden-layer DNNs model achieves 96% precision on the classification task. By comparison, it outperforms a linear model by 8% precision.
Introducing a New Software for Geodetic Analysis
NASA Astrophysics Data System (ADS)
Hjelle, G. A.; Dähnn, M.; Fausk, I.; Kirkvik, A. S.; Mysen, E.
2016-12-01
At the Norwegian Mapping Authority, we are currently developing Where, a newsoftware for geodetic analysis. Where is built on our experiences with theGeosat software, and will be able to analyse and combine data from VLBI, SLR,GNSS and DORIS. The software is mainly written in Python which has proved veryfruitful. The code is quick to write and the architecture is easily extendableand maintainable. The Python community provides a rich eco-system of tools fordoing data-analysis, including effective data storage and powerfulvisualization. Python interfaces well with other languages so that we can easilyreuse existing, well-tested code like the SOFA and IERS libraries. This presentation will show some of the current capabilities of Where,including benchmarks against other software packages. In addition we will reporton some simple investigations we have done using the software, and outline ourplans for further progress.
One GHz digitizer for space based laser altimeter
NASA Technical Reports Server (NTRS)
Staples, Edward J.
1991-01-01
This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.
The SERI solar energy storage program
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Wright, J. D.; Wyman, C. E.
1980-01-01
In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.
An undulator based soft x-ray source for microscopy on the Duke electron storage ring
NASA Astrophysics Data System (ADS)
Johnson, Lewis Elgin
1998-09-01
This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the storage ring. A diagnostic beamline consisting of a transmission grating spectrometer and scanning wire beam profile monitor was constructed to measure the spatial and spectral characteristics of the undulator radiation. Test of the system with a circulating electron beam has confirmed the magnetic and focusing properties of the undulator, and verified that it can be used without perturbing the orbit of the beam.
Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)
Implications of Transaction Costs for Acquisition Program Cost Breaches
2013-06-01
scope of the work, communicating the basis on which the estimate is built, identifying the quality of the data, determining the level of risk, and...projects such as bases, schools, missile storage facilities, maintenance facilities, medical/ dental clinics, libraries, and military family housing...was established as a threshold for measuring cost growth. This prevents a program from rebaselining to avoid a Nunn- McCurdy cost threshold breach. In
Marcellus Shale fracking waste caused earthquakes in Ohio
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-08-01
Before January 2011, Youngstown, Ohio, had never had an earthquake since observations began in 1776. In December 2010 the Northstar 1 injection well came online; this well was built to pump wastewater produced by hydraulic fracturing projects in Pennsylvania into storage deep underground. In the year that followed, seismometers in and around Youngstown recorded 109 earthquakes—the strongest of the set being a magnitude 3.9 earthquake on 31 December 2011.
Foresee: A user-centric home energy management system for energy efficiency and demand response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A.; Christensen, Dane T.
This paper presents foresee, a user-centric home energy management system that can help optimize how a home operates to concurrently meet users' needs, achieve energy efficiency and commensurate utility cost savings, and reliably deliver grid services based on utility signals. Foresee is built on a multiobjective model predictive control framework, wherein the objectives consist of energy cost, thermal comfort, user convenience, and carbon emission. Foresee learns user preferences on different objectives and acts on their behalf to operate building equipment, such as home appliances, photovoltaic systems, and battery storage. In this work, machine-learning algorithms were used to derive data-driven appliancemore » models and usage patterns to predict the home's future energy consumption. This approach enables highly accurate predictions of comfort needs, energy costs, environmental impacts, and grid service availability. Simulation studies were performed on field data from a residential building stock data set collected in the Pacific Northwest. Results indicated that foresee generated up to 7.6% whole-home energy savings without requiring substantial behavioral changes. When responding to demand response events, foresee was able to provide load forecasts upon receipt of event notifications and delivered the committed demand response services with 10% or fewer errors. Foresee fully utilized the potential of the battery storage and controllable building loads and delivered up to 7.0-kW load reduction and 13.5-kW load increase. As a result, these benefits are provided while maintaining the occupants' thermal comfort or convenience in using their appliances.« less
Scaling to Nanotechnology Limits with the PIMS Computer Architecture and a new Scaling Rule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debenedictis, Erik P.
2015-02-01
We describe a new approach to computing that moves towards the limits of nanotechnology using a newly formulated sc aling rule. This is in contrast to the current computer industry scali ng away from von Neumann's original computer at the rate of Moore's Law. We extend Moore's Law to 3D, which l eads generally to architectures that integrate logic and memory. To keep pow er dissipation cons tant through a 2D surface of the 3D structure requires using adiabatic principles. We call our newly proposed architecture Processor In Memory and Storage (PIMS). We propose a new computational model that integratesmore » processing and memory into "tiles" that comprise logic, memory/storage, and communications functions. Since the programming model will be relatively stable as a system scales, programs repr esented by tiles could be executed in a PIMS system built with today's technology or could become the "schematic diagram" for implementation in an ultimate 3D nanotechnology of the future. We build a systems software approach that offers advantages over and above the technological and arch itectural advantages. Firs t, the algorithms may be more efficient in the conventional sens e of having fewer steps. Second, the algorithms may run with higher power efficiency per operation by being a better match for the adiabatic scaling ru le. The performance analysis based on demonstrated ideas in physical science suggests 80,000 x improvement in cost per operation for the (arguably) gene ral purpose function of emulating neurons in Deep Learning.« less
Foresee: A user-centric home energy management system for energy efficiency and demand response
Jin, Xin; Baker, Kyri A.; Christensen, Dane T.; ...
2017-08-23
This paper presents foresee, a user-centric home energy management system that can help optimize how a home operates to concurrently meet users' needs, achieve energy efficiency and commensurate utility cost savings, and reliably deliver grid services based on utility signals. Foresee is built on a multiobjective model predictive control framework, wherein the objectives consist of energy cost, thermal comfort, user convenience, and carbon emission. Foresee learns user preferences on different objectives and acts on their behalf to operate building equipment, such as home appliances, photovoltaic systems, and battery storage. In this work, machine-learning algorithms were used to derive data-driven appliancemore » models and usage patterns to predict the home's future energy consumption. This approach enables highly accurate predictions of comfort needs, energy costs, environmental impacts, and grid service availability. Simulation studies were performed on field data from a residential building stock data set collected in the Pacific Northwest. Results indicated that foresee generated up to 7.6% whole-home energy savings without requiring substantial behavioral changes. When responding to demand response events, foresee was able to provide load forecasts upon receipt of event notifications and delivered the committed demand response services with 10% or fewer errors. Foresee fully utilized the potential of the battery storage and controllable building loads and delivered up to 7.0-kW load reduction and 13.5-kW load increase. As a result, these benefits are provided while maintaining the occupants' thermal comfort or convenience in using their appliances.« less
NASA Astrophysics Data System (ADS)
Huang, J. C.; Wright, W. V.
1982-04-01
The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.
Experimental and numerical investigation of a packed-bed thermal energy storage device
NASA Astrophysics Data System (ADS)
Yang, Bei; Wang, Yan; Bai, Fengwu; Wang, Zhifeng
2017-06-01
This paper presents a pilot-scale setup built to study a packed bed thermal energy storage device based on ceramic balls randomly poured into a cylindrical tank while using air as heat transfer fluid. Temperature distribution of ceramic balls throughout the packed bed is investigated both experimentally and numerically. Method of characteristic is adopted to improve the numerical computing efficiency, and mesh independence is verified to guarantee the accuracy of numerical solutions and the economy of computing time cost at the same time. Temperature in tests is as high as over 600 °C, and modeling prediction shows good agreements with experimental results under various testing conditions when heat loss is included and thermal properties of air are considered as temperature dependent.
Spacecraft cryogenic gas storage systems
NASA Technical Reports Server (NTRS)
Rysavy, G.
1971-01-01
Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.
A Preliminary Study of the Carbon Emissions Reduction Effects of Land Use Control
Chuai, Xiaowei; Huang, Xianjin; Qi, Xinxian; Li, Jiasheng; Zuo, Tianhui; Lu, Qinli; Li, Jianbao; Wu, Changyan; Zhao, Rongqin
2016-01-01
Land use change not only directly influences carbon storage in terrestrial ecosystems but can also cause energy-related carbon emissions. This study examined spatiotemporal land use change across Jiangsu Province, China; calculated vegetation carbon storage loss caused by land use change and energy-related carbon emissions; analysed the relationship among land use change, carbon emissions and social-economic development; and optimized land use structure to maximize carbon storage. Our study found that 13.61% of the province’s land area underwent a change in type of land use between 1995 and 2010, mainly presented as built-up land expansion and cropland shrinkage, especially in southern Jiangsu. Land use change caused a 353.99 × 104 t loss of vegetation carbon storage loss. Energy-related carbon emissions increased 2.5 times from 1995 to 2013; the energy consumption structure has been improved to some extent while still relying on coal. The selected social-economic driving forces have strong relationships with carbon emissions and land use changes, while there are also other determinants driving land use change, such as land use policy. The optimized land use structure will slow the rate of decline in vegetation carbon storage compared with the period between 1995 and 2010 and will also reduce energy-related carbon emissions by 12%. PMID:27845428
A Preliminary Study of the Carbon Emissions Reduction Effects of Land Use Control.
Chuai, Xiaowei; Huang, Xianjin; Qi, Xinxian; Li, Jiasheng; Zuo, Tianhui; Lu, Qinli; Li, Jianbao; Wu, Changyan; Zhao, Rongqin
2016-11-15
Land use change not only directly influences carbon storage in terrestrial ecosystems but can also cause energy-related carbon emissions. This study examined spatiotemporal land use change across Jiangsu Province, China; calculated vegetation carbon storage loss caused by land use change and energy-related carbon emissions; analysed the relationship among land use change, carbon emissions and social-economic development; and optimized land use structure to maximize carbon storage. Our study found that 13.61% of the province's land area underwent a change in type of land use between 1995 and 2010, mainly presented as built-up land expansion and cropland shrinkage, especially in southern Jiangsu. Land use change caused a 353.99 × 10 4 t loss of vegetation carbon storage loss. Energy-related carbon emissions increased 2.5 times from 1995 to 2013; the energy consumption structure has been improved to some extent while still relying on coal. The selected social-economic driving forces have strong relationships with carbon emissions and land use changes, while there are also other determinants driving land use change, such as land use policy. The optimized land use structure will slow the rate of decline in vegetation carbon storage compared with the period between 1995 and 2010 and will also reduce energy-related carbon emissions by 12%.
Job submission and management through web services: the experience with the CREAM service
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Fina, S. D.; Ronco, S. D.; Dorigo, A.; Gianelle, A.; Marzolla, M.; Mazzucato, M.; Sgaravatto, M.; Verlato, M.; Zangrando, L.; Corvo, M.; Miccio, V.; Sciaba, A.; Cesini, D.; Dongiovanni, D.; Grandi, C.
2008-07-01
Modern Grid middleware is built around components providing basic functionality, such as data storage, authentication, security, job management, resource monitoring and reservation. In this paper we describe the Computing Resource Execution and Management (CREAM) service. CREAM provides a Web service-based job execution and management capability for Grid systems; in particular, it is being used within the gLite middleware. CREAM exposes a Web service interface allowing conforming clients to submit and manage computational jobs to a Local Resource Management System. We developed a special component, called ICE (Interface to CREAM Environment) to integrate CREAM in gLite. ICE transfers job submissions and cancellations from the Workload Management System, allowing users to manage CREAM jobs from the gLite User Interface. This paper describes some recent studies aimed at assessing the performance and reliability of CREAM and ICE; those tests have been performed as part of the acceptance tests for integration of CREAM and ICE in gLite. We also discuss recent work towards enhancing CREAM with a BES and JSDL compliant interface.
Mouri, Abdelkader; Legrand, Philippe; El Ghzaoui, Abdeslam; Dorandeu, Christophe; Maurel, Jean Claude; Devoisselle, Jean-Marie
2016-04-11
Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown. Copyright © 2016 Elsevier B.V. All rights reserved.
The XENONnT Dark Matter Experiment
NASA Astrophysics Data System (ADS)
Aprile, Elena; Xenon Collaboration
2017-01-01
With XENON1T ready to search for dark matter with the highest sensivity of any experiment to-date the XENON collaboration started to secure funding and resources to upgrade the detector by the end of 2018- phase which we refer to as XENONnT. The XENONnT experiment will utilize the already-built-and-tested XENON1T infrastructures, such as the cryogenic system, Kr distillation system and Xe storage and recovery system, with the main upgrade of the time projection chamber (TPC). The upgraded XENONnT detector will be filled with 7.5-ton ultra-pure liquid xenon, tripling the active liquid xenon target mass of XENON1T. About 500 low-radioactive three-inch R11410 PMTs will be used. Background from internal sources such as radon will be reduced. It will enable another order of magnitude improvement in dark matter search sensitivity compared to that of XENON1T, or accumulate statistics if a positive dark matter signal is observed by XENON1T. The detailed TPC upgrade plan, the background control and reduction techniques, the predicted sensitivity reach will be presented.
Improvement of urban water environment of Kaohsiung City, Taiwan, by ecotechnology.
Yang, Lei
2012-01-01
Kaohsiung City is the second largest city in Taiwan and suffers from serious floods during the wet season, but it also badly needs water during the dry season. As economic development advances and pollutants increase, water pollution and shortage of water resources become issues of concern for local people in Kaohsiung. A project has been proposed by the city government and executed by the authors to establish a system of sustainable water management in urban areas. In this system, the Caogong Canals, irrigation channels which were established 170 years ago during the Ching Dynasty of China and are still used today for irrigation, were renovated to bring stable and clean water to the urban areas. It is planned to pump clean water into the canal from a river near the city. In this project, 12 constructed wetland systems, functioning as wetland parks, stormwater storage tanks or eco-detention ponds, were built in the city, and the Caogong Canals are planned to connect all these urban constructed wetlands in the second stage of the project.
Economic and energetic analysis of capturing CO2 from ambient air
House, Kurt Zenz; Baclig, Antonio C.; Ranjan, Manya; van Nierop, Ernst A.; Wilcox, Jennifer; Herzog, Howard J.
2011-01-01
Capturing carbon dioxide from the atmosphere (“air capture”) in an industrial process has been proposed as an option for stabilizing global CO2 concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO2 from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO2, based on experience with as-built large-scale trace gas removal systems. PMID:22143760
NASA Astrophysics Data System (ADS)
Jaworski, Allan
1993-08-01
The Earth Observing System (EOS) Data and Information System (EOSDIS) will serve as a major resource for the earth science community, supporting both command and control of complex instruments onboard the EOS spacecraft and the archiving, distribution, and analysis of data. The scale of EOSDIS and the volume of multidisciplinary research to be conducted using EOSDIS resources will produce unparalleled needs for technology transparency, data integration, and system interoperability. The scale of this effort far outscopes any previous scientific data system in its breadth or operational and performance needs. Modern hardware technology can meet the EOSDIS technical challenge. Multiprocessing speeds of many giga-flops are being realized by modern computers. Online storage disk, optical disk, and videocassette libraries with storage capacities of many terabytes are now commercially available. Radio frequency and fiber optics communications networks with gigabit rates are demonstrable today. It remains, of course, to perform the system engineering to establish the requirements, architectures, and designs that will implement the EOSDIS systems. Software technology, however, has not enjoyed the price/performance advances of hardware. Although we have learned to engineer hardware systems which have several orders of magnitude greater complexity and performance than those built in the 1960's, we have not made comparable progress in dramatically reducing the cost of software development. This lack of progress may significantly reduce our capabilities to achieve economically the types of highly interoperable, responsive, integraded, and productive environments which are needed by the earth science community. This paper describes some of the EOSDIS software requirements and current activities in the software community which are applicable to meeting the EOSDIS challenge. Some of these areas include intelligent user interfaces, software reuse libraries, and domain engineering. Also included are discussions of applicable standards in the areas of operating systems interfaces, user interfaces, communications interfaces, data transport, and science algorithm support, and their role in supporting the software development process.
Stand-alone digital data storage control system including user control interface
NASA Technical Reports Server (NTRS)
Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)
1994-01-01
A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.
NASA Astrophysics Data System (ADS)
Zhao, F. R.; Healey, S. P.; McCarter, J. B.; Garrard, C.; Zhu, Z.; Huang, C.
2016-12-01
Natural disturbances and land management directly alter C stored in biomass and soil pools, and forest recovery following these events are critical for long-term regional C balance. The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of different land ownerships within similar environmental settings, making it an ideal site to examine the impacts of land management, disturbance and forest recovery on regional C dynamics. Recent advances in the remote sensing of vegetation condition and change, along with new techniques linking remote sensing with inventory records, have allowed investigations that are much more tightly constrained to actual landscape environments instead of hypothetical or generalized conditions. These new capabilities are built into the Forest Carbon Management Framework (ForCaMF), which is being used by the National Forest System to not only model, but to monitor across very specific management units, the impact of different kinds of disturbance on carbon storage. In this study, we used the ForCaMF approach to examine three C related management questions in GYE National Parks and National Forests: 1) what was the carbon storage impact of fire disturbance and management activities from 1985 to 2010 in the GYE National Parks and National Forests? 2) Using an historic fire that occurred in 1988 as a basis for comparison, what difference would active post-fire forest restoration make in subsequent C storage? 3) In light of the fact that GYE National Forests significantly reduced harvest rates in the 1990s, how would maintaining high harvest rates of the 1980s impacted C storage? Simulation results show that recent forest fires in the GYE National Parks induced an accumulative C storage loss of about 12 Mg/ha, compared with C storage loss up to 2 Mg/ha in the GYE National Forests by harvests. If the high harvest rates as of the 1980s had been maintained, C emissions from the National Forests ( 11 Mg/ha) would approach fire-induced C storage loss in the National Parks during the study interval. New monitoring techniques such as ForCaMF leverage broadly available but locally specific monitoring resources to assess C dynamics on real landscapes. Resulting insights should have very practical applications in support of adaptive forest management across the country.
Thermal Storage Applications Workshop. Volume 2: Contributed Papers
NASA Technical Reports Server (NTRS)
1979-01-01
The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.
Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service
Bao, Shunxing; Plassard, Andrew J.; Landman, Bennett A.; Gokhale, Aniruddha
2017-01-01
Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage. PMID:28884169
Thermal energy storage devices, systems, and thermal energy storage device monitoring methods
Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.
2016-09-13
Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.
Open systems storage platforms
NASA Technical Reports Server (NTRS)
Collins, Kirby
1992-01-01
The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.
NASA Astrophysics Data System (ADS)
El-Kady, Maher F.; Kaner, Richard B.
2013-02-01
The rapid development of miniaturized electronic devices has increased the demand for compact on-chip energy storage. Microscale supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. However, conventional micro-fabrication techniques have proven to be cumbersome in building cost-effective micro-devices, thus limiting their widespread application. Here we demonstrate a scalable fabrication of graphene micro-supercapacitors over large areas by direct laser writing on graphite oxide films using a standard LightScribe DVD burner. More than 100 micro-supercapacitors can be produced on a single disc in 30 min or less. The devices are built on flexible substrates for flexible electronics and on-chip uses that can be integrated with MEMS or CMOS in a single chip. Remarkably, miniaturizing the devices to the microscale results in enhanced charge-storage capacity and rate capability. These micro-supercapacitors demonstrate a power density of ~200 W cm-3, which is among the highest values achieved for any supercapacitor.
Evaluating the Role of Small Impoundments in Legacy Sediment Storage
NASA Astrophysics Data System (ADS)
Bain, D. J.; Salant, N.; Green, M. B.; Wreschnig, A. J.; Urbanova, T.
2009-12-01
Recent research highlighting the prevalence of dams built for water power in the mid-1800s has led to suggestions that strategies for managing legacy sediment in the Eastern United States should be re-evaluated. However, the link between reach-scale observations of historic dam sites to processes at the catchment scale have not been examined, nor have the role of other, similar historic changes been evaluated. This presentation will compare dam dynamics, including mill density data and synthetic estimates of beaver populations with sedimentation rates recorded in sediment cores. If low-head dams were a dominant mechanism in sediment storage, we expect to see changes in sedimentation rates with the expatriation of the beaver and the rise and decline of water power. Further, we expect to see spatial variation in these changes as beaver and mill densities and potential sediment yield are spatially heterogeneous. Ultimately, dramatic changes in sediment yield due to land use and hydrological alterations likely drove sedimentation rates; the mechanistic importance of storage likely depends on temporal coincidence.
Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doose, C.; Dejus, R.; Jaski, M.
2017-06-01
Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces tomore » gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.« less
Consolidating WLCG topology and configuration in the Computing Resource Information Catalogue
Alandes, Maria; Andreeva, Julia; Anisenkov, Alexey; ...
2017-10-01
Here, the Worldwide LHC Computing Grid infrastructure links about 200 participating computing centres affiliated with several partner projects. It is built by integrating heterogeneous computer and storage resources in diverse data centres all over the world and provides CPU and storage capacity to the LHC experiments to perform data processing and physics analysis. In order to be used by the experiments, these distributed resources should be well described, which implies easy service discovery and detailed description of service configuration. Currently this information is scattered over multiple generic information sources like GOCDB, OIM, BDII and experiment-specific information systems. Such a modelmore » does not allow to validate topology and configuration information easily. Moreover, information in various sources is not always consistent. Finally, the evolution of computing technologies introduces new challenges. Experiments are more and more relying on opportunistic resources, which by their nature are more dynamic and should also be well described in the WLCG information system. This contribution describes the new WLCG configuration service CRIC (Computing Resource Information Catalogue) which collects information from various information providers, performs validation and provides a consistent set of UIs and APIs to the LHC VOs for service discovery and usage configuration. The main requirements for CRIC are simplicity, agility and robustness. CRIC should be able to be quickly adapted to new types of computing resources, new information sources, and allow for new data structures to be implemented easily following the evolution of the computing models and operations of the experiments.« less
Consolidating WLCG topology and configuration in the Computing Resource Information Catalogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alandes, Maria; Andreeva, Julia; Anisenkov, Alexey
Here, the Worldwide LHC Computing Grid infrastructure links about 200 participating computing centres affiliated with several partner projects. It is built by integrating heterogeneous computer and storage resources in diverse data centres all over the world and provides CPU and storage capacity to the LHC experiments to perform data processing and physics analysis. In order to be used by the experiments, these distributed resources should be well described, which implies easy service discovery and detailed description of service configuration. Currently this information is scattered over multiple generic information sources like GOCDB, OIM, BDII and experiment-specific information systems. Such a modelmore » does not allow to validate topology and configuration information easily. Moreover, information in various sources is not always consistent. Finally, the evolution of computing technologies introduces new challenges. Experiments are more and more relying on opportunistic resources, which by their nature are more dynamic and should also be well described in the WLCG information system. This contribution describes the new WLCG configuration service CRIC (Computing Resource Information Catalogue) which collects information from various information providers, performs validation and provides a consistent set of UIs and APIs to the LHC VOs for service discovery and usage configuration. The main requirements for CRIC are simplicity, agility and robustness. CRIC should be able to be quickly adapted to new types of computing resources, new information sources, and allow for new data structures to be implemented easily following the evolution of the computing models and operations of the experiments.« less
Using DoD Maps to Examine the Influence of Large Wood on Channel Morphodynamics
NASA Astrophysics Data System (ADS)
MacKenzie, L. C.; Eaton, B. C.
2012-12-01
Since the advent of logging and slash burning, many streams in British Columbia have experienced changes to the amount of large wood added to or removed from these systems, which has, in turn, influenced the storage and movement of sediment within these channels. This set of flume experiments examines and quantifies the impacts of large wood on the reach-scale morphodynamics. Understanding the relation between the wood load and channel morphodynamics is important when assessing the quality of the aquatic habitat of a stream. The experiments were conducted using a fixed-bank, mobile bed Froude-scaled physical model of Fishtrap Creek, British Columbia, built in a shallow flume that is 1.5 m wide and 11 m long. The stream table was run without wood until it reached equilibrium at which point wood pieces of varying sizes were added to the channel. The bed morphology was surveyed using a laser profiling system at five-hour intervals. The laser profiles were then interpolated to create digital elevation models (DEM) from which DEM of difference (DoD) maps were produced. Analysis of the DoD maps focused on quantifying and locating differences in the distribution of sediment storage, erosion, and deposition between the runs as well as those induced by the addition of large wood into the stream channel. We then assessed the typical influence of individual pieces and of jams on pool frequency, size and distribution along the channels.
Consolidating WLCG topology and configuration in the Computing Resource Information Catalogue
NASA Astrophysics Data System (ADS)
Alandes, Maria; Andreeva, Julia; Anisenkov, Alexey; Bagliesi, Giuseppe; Belforte, Stephano; Campana, Simone; Dimou, Maria; Flix, Jose; Forti, Alessandra; di Girolamo, A.; Karavakis, Edward; Lammel, Stephan; Litmaath, Maarten; Sciaba, Andrea; Valassi, Andrea
2017-10-01
The Worldwide LHC Computing Grid infrastructure links about 200 participating computing centres affiliated with several partner projects. It is built by integrating heterogeneous computer and storage resources in diverse data centres all over the world and provides CPU and storage capacity to the LHC experiments to perform data processing and physics analysis. In order to be used by the experiments, these distributed resources should be well described, which implies easy service discovery and detailed description of service configuration. Currently this information is scattered over multiple generic information sources like GOCDB, OIM, BDII and experiment-specific information systems. Such a model does not allow to validate topology and configuration information easily. Moreover, information in various sources is not always consistent. Finally, the evolution of computing technologies introduces new challenges. Experiments are more and more relying on opportunistic resources, which by their nature are more dynamic and should also be well described in the WLCG information system. This contribution describes the new WLCG configuration service CRIC (Computing Resource Information Catalogue) which collects information from various information providers, performs validation and provides a consistent set of UIs and APIs to the LHC VOs for service discovery and usage configuration. The main requirements for CRIC are simplicity, agility and robustness. CRIC should be able to be quickly adapted to new types of computing resources, new information sources, and allow for new data structures to be implemented easily following the evolution of the computing models and operations of the experiments.
NASA Astrophysics Data System (ADS)
Hogenson, K.; Arko, S. A.; Buechler, B.; Hogenson, R.; Herrmann, J.; Geiger, A.
2016-12-01
A problem often faced by Earth science researchers is how to scale algorithms that were developed against few datasets and take them to regional or global scales. One significant hurdle can be the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively, while remaining generic enough to incorporate new algorithms with limited administration time or expense. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon services such as Lambda, the Simple Notification Service (SNS), Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. The HyP3 user interface was written using elastic beanstalk, and the system uses SNS and Lamdba to handle creating, instantiating, executing, and terminating EC2 instances automatically. Data are sent to S3 for delivery to customers and removed using standard data lifecycle management rules. In HyP3 all data processing is ephemeral; there are no persistent processes taking compute and storage resources or generating added cost. When complete, HyP3 will leverage the automatic scaling up and down of EC2 compute power to respond to event-driven demand surges correlated with natural disaster or reprocessing efforts. Massive simultaneous processing within EC2 will be able match the demand spike in ways conventional physical computing power never could, and then tail off incurring no costs when not needed. This presentation will focus on the development techniques and technologies that were used in developing the HyP3 system. Data and process flow will be shown, highlighting the benefits of the cloud for each step. Finally, the steps for integrating a new processing algorithm will be demonstrated. This is the true power of HyP3; allowing people to upload their own algorithms and execute them at archive level scales.
The new CMS DAQ system for run-2 of the LHC
Bawej, Tomasz; Behrens, Ulf; Branson, James; ...
2015-05-21
The data acquisition (DAQ) system of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high level trigger (HLT) farm. The HLT farm selects interesting events for storage and offline analysis at a rate of around 1 kHz. The DAQ system has been redesigned during the accelerator shutdown in 2013/14. The motivation is twofold: Firstly, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime by the time the LHC restarts. Secondly, in ordermore » to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increasing the number of readout channels and replacing the off-detector readout electronics with a μTCA implementation. The new DAQ architecture will take advantage of the latest developments in the computing industry. For data concentration, 10/40 Gb/s Ethernet technologies will be used, as well as an implementation of a reduced TCP/IP in FPGA for a reliable transport between custom electronics and commercial computing hardware. A Clos network based on 56 Gb/s FDR Infiniband has been chosen for the event builder with a throughput of ~ 4 Tb/s. The HLT processing is entirely file based. This allows the DAQ and HLT systems to be independent, and to use the HLT software in the same way as for the offline processing. The fully built events are sent to the HLT with 1/10/40 Gb/s Ethernet via network file systems. Hierarchical collection of HLT accepted events and monitoring meta-data are stored into a global file system. As a result, this paper presents the requirements, technical choices, and performance of the new system.« less
Clark, Victoria R; Herzog, Howard J
2014-07-15
On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.
NASA Astrophysics Data System (ADS)
Salant, N.; Bain, D.; Brandt, S.
2008-12-01
Hydrologic systems of the northeastern United States were transformed by European settler activities. The colonial economy shifted engineered water structures from beaver dams to human dams built for power generation. While the geomorphic effects of human-constructed dams have recently garnered considerable attention, few studies have investigated how intensive trapping for the fur trade, the near extermination of the Northeast beaver population, and the consequent loss of beaver ponds altered the regional water balance. Although reconstructions of colonial beaver populations have been made, none link the decline in beavers to its hydrologic impact. Beaver population models based on pre-colonial population estimates, historic harvest rates, and current-day population dynamics were used to simulate the corresponding decrease in pond numbers over time. Beaver populations declined dramatically during the seventeenth century, with harvest rates estimated at 2,000-10,000 beavers per year, resulting in expatriation in some sub-regions by the early 1700s. Using contemporary estimates of beaver pond volumes, the calculated loss in pond storage between 1600 and 1840 was approximately 17 million cubic meters of water and sediment, considerably larger than estimated storage gains from dam construction in the same period, suggesting that beaver eradication was a major driver of hydrologic change during the colonial era.
NASA Astrophysics Data System (ADS)
Mohan, C.
In this paper, I survey briefly some of the recent and emerging trends in hardware and software features which impact high performance transaction processing and data analytics applications. These features include multicore processor chips, ultra large main memories, flash storage, storage class memories, database appliances, field programmable gate arrays, transactional memory, key-value stores, and cloud computing. While some applications, e.g., Web 2.0 ones, were initially built without traditional transaction processing functionality in mind, slowly system architects and designers are beginning to address such previously ignored issues. The availability, analytics and response time requirements of these applications were initially given more importance than ACID transaction semantics and resource consumption characteristics. A project at IBM Almaden is studying the implications of phase change memory on transaction processing, in the context of a key-value store. Bitemporal data management has also become an important requirement, especially for financial applications. Power consumption and heat dissipation properties are also major considerations in the emergence of modern software and hardware architectural features. Considerations relating to ease of configuration, installation, maintenance and monitoring, and improvement of total cost of ownership have resulted in database appliances becoming very popular. The MapReduce paradigm is now quite popular for large scale data analysis, in spite of the major inefficiencies associated with it.
NASA Astrophysics Data System (ADS)
Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming
2017-06-01
Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.
NASA Technical Reports Server (NTRS)
1976-01-01
The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Paula D.; Rudeen, David Keith
2015-07-01
The United States Strategic Petroleum Reserve (SPR) maintains an underground storage system consisting of caverns that were leached or solution mined in four salt domes located near the Gulf of Mexico in Texas and Louisiana. The SPR comprises more than 60 active caverns containing approximately 700 million barrels of crude oil. Sandia National Labo- ratories (SNL) is the geotechnical advisor to the SPR. As the most pressing need at the inception of the SPR was to create and fill storage volume with oil, the decision was made to leach the caverns and fill them simultaneously (leach-fill). Therefore, A.J. Russo developedmore » SANSMIC in the early 1980s which allows for a transient oil-brine interface (OBI) making it possible to model leach-fill and withdrawal operations. As the majority of caverns are currently filled to storage capacity, the primary uses of SANSMIC at this time are related to the effects of small and large withdrawals, expansion of existing caverns, and projecting future pillar to diameter ratios. SANSMIC was identified by SNL as a priority candidate for qualification. This report continues the quality assurance (QA) process by documenting the "as built" mathematical and numerical models that comprise this document. The pro- gram flow is outlined and the models are discussed in detail. Code features that were added later or were not documented previously have been expounded. No changes in the code's physics have occurred since the original documentation (Russo, 1981, 1983) although recent experiments may yield improvements to the temperature and plume methods in the future.« less
2015-12-01
This page intentionally left blank.) ERDC/CERL TR-15-37, Vol. II Fort Eustis, Building 1605 593 FORT EUSTIS...Warehouse Supply & Equipment Base - General Purpose Warehouse - Building 1605 STATUS Usable ARCHITECT/BUILDER Unknown DATE OF CONSTRUCTION 1955 DATE...Building 1605 is located in the 1600 Area with three other similar warehouse/storage buildings (1607, 1608, and 1610). The buildings are located
Clinical photography in dermatology using smartphones: An overview
Ashique, K. T.; Kaliyadan, Feroze; Aurangabadkar, Sanjeev J.
2015-01-01
The smartphone is one of the biggest revolutions in the era of information technology. Its built in camera offers several advantages. Dermatologists, who handle a specialty that is inherently visual, are most benefited by this handy technology. Here in this article, we attempt to provide an overview of smartphone photography in clinical dermatology in order to help the dermatologist to get the best out of the available camera for clinical imaging and storage PMID:26009708
ELISA - an electrostatic storage ring for low-energy ions
NASA Astrophysics Data System (ADS)
Pape Moeller, Soeren
1997-05-01
The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.
Built-In Diagnostics (BID) Of Equipment/Systems
NASA Technical Reports Server (NTRS)
Granieri, Michael N.; Giordano, John P.; Nolan, Mary E.
1995-01-01
Diagnostician(TM)-on-Chip (DOC) technology identifies faults and commands systems reconfiguration. Smart microcontrollers operating in conjunction with other system-control circuits, command self-correcting system/equipment actions in real time. DOC microcontroller generates commands for associated built-in test equipment to stimulate unit of equipment diagnosed, collects and processes response data obtained by built-in test equipment, and performs diagnostic reasoning on response data, using diagnostic knowledge base derived from design data.
A Lightweight, High-performance I/O Management Package for Data-intensive Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Wang
2007-07-17
File storage systems are playing an increasingly important role in high-performance computing as the performance gap between CPU and disk increases. It could take a long time to develop an entire system from scratch. Solutions will have to be built as extensions to existing systems. If new portable, customized software components are plugged into these systems, better sustained high I/O performance and higher scalability will be achieved, and the development cycle of next-generation of parallel file systems will be shortened. The overall research objective of this ECPI development plan aims to develop a lightweight, customized, high-performance I/O management package namedmore » LightI/O to extend and leverage current parallel file systems used by DOE. During this period, We have developed a novel component in LightI/O and prototype them into PVFS2, and evaluate the resultant prototype—extended PVFS2 system on data-intensive applications. The preliminary results indicate the extended PVFS2 delivers better performance and reliability to users. A strong collaborative effort between the PI at the University of Nebraska Lincoln and the DOE collaborators—Drs Rob Ross and Rajeev Thakur at Argonne National Laboratory who are leading the PVFS2 group makes the project more promising.« less
NASA Astrophysics Data System (ADS)
Lu, Meilian; Yang, Dong; Zhou, Xing
2013-03-01
Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.
Storage systems for solar thermal power
NASA Technical Reports Server (NTRS)
Calogeras, J. E.; Gordon, L. H.
1978-01-01
The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.
High Density Digital Data Storage System
NASA Technical Reports Server (NTRS)
Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.
1991-01-01
The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.
NASA Astrophysics Data System (ADS)
Wu, Xiaofang; Jiang, Liushi
2011-02-01
Usually in the traditional science and technology information system, the only text and table form are used to manage the data, and the mathematic statistics method is applied to analyze the data. It lacks for the spatial analysis and management of data. Therefore, GIS technology is introduced to visualize and analyze the information data on science and technology industry. Firstly, by using the developed platform-microsoft visual studio 2005 and ArcGIS Engine, the information visualization system on science and technology industry based on GIS is built up, which implements various functions, such as data storage and management, inquiry, statistics, chart analysis, thematic map representation. It can show the change of science and technology information from the space and time axis intuitively. Then, the data of science and technology in Guangdong province are taken as experimental data and are applied to the system. And by considering the factors of humanities, geography and economics so on, the situation and change tendency of science and technology information of different regions are analyzed and researched, and the corresponding suggestion and method are brought forward in order to provide the auxiliary support for development of science and technology industry in Guangdong province.
Automated reuseable components system study results
NASA Technical Reports Server (NTRS)
Gilroy, Kathy
1989-01-01
The Automated Reusable Components System (ARCS) was developed under a Phase 1 Small Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of the ARCS program were: (1) to investigate issues associated with automated reuse of software components, identify alternative approaches, and select promising technologies, and (2) to develop tools that support component classification and retrieval. The approach followed was to research emerging techniques and experimental applications associated with reusable software libraries, to investigate the more mature information retrieval technologies for applicability, and to investigate the applicability of specialized technologies to improve the effectiveness of a reusable component library. Various classification schemes and retrieval techniques were identified and evaluated for potential application in an automated library system for reusable components. Strategies for library organization and management, component submittal and storage, and component search and retrieval were developed. A prototype ARCS was built to demonstrate the feasibility of automating the reuse process. The prototype was created using a subset of the classification and retrieval techniques that were investigated. The demonstration system was exercised and evaluated using reusable Ada components selected from the public domain. A requirements specification for a production-quality ARCS was also developed.
NASA Technical Reports Server (NTRS)
Johnson, Charles S.
1986-01-01
The embedded systems running real-time applications, for which Ada was designed, require their own mechanisms for the management of dynamically allocated storage. There is a need for packages which manage their own internalo structures to control their deallocation as well, due to the performance implications of garbage collection by the KAPSE. This places a requirement upon the design of generic packages which manage generically structured private types built-up from application-defined input types. These kinds of generic packages should figure greatly in the development of lower-level software such as operating systems, schedulers, controllers, and device driver; and will manage structures such as queues, stacks, link-lists, files, and binary multary (hierarchical) trees. Controlled to prevent inadvertent de-designation of dynamic elements, which is implicit in the assignment operation A study was made of the use of limited private type, in solving the problems of controlling the accumulation of anonymous, detached objects in running systems. The use of deallocator prodecures for run-down of application-defined input types during deallocation operations during satellites.
Large Prefabricated Concrete Panels Collective Dwellings from the 1970s: Context and Improvements
NASA Astrophysics Data System (ADS)
Muntean, Daniel M.; Ungureanu, Viorel; Petran, Ioan; Georgescu, Mircea
2017-10-01
The period between 1960s and 1970s had a significant impact in Romania on the urban development of major cities. Because the vast expansion of the industry, the urban population has massively increased, due the large number of workers coming from the rural areas. This intense process has led to a shortage of homes on the housing market. In order to rapidly build new homes, standard residential project types were erected using large prefabricated concrete panels. By using repetitive patterns, such buildings were built in a short amount of time through the entire country. Nowadays, these buildings represent 1.8% of the built environment and accommodate more than half of a city’s population. Even though these units have reached only half their intended life span, they fail to satisfy present living standards and consume huge amounts of energy for heating, cooling, ventilation and lighting. Due to the fact that these building are based on standardised projects and were built in such a large scale, the creation of a system that brings them to current standards will not only benefit the building but also it will significantly improve the quality of life within. With the transition of the existing power grids to a “smart grid” such units can become micro power plants in future electricity networks thus contributing to micro-generation and energy storage. If one is to consider the EU 20-20-20 commitments, to find ideas for alternative and innovative strategies for further improving these building through locally adapted measures can be seen as one of the most addressed issues of today. This research offers a possible retrofitting scenario of these buildings towards a sustainable future. The building envelope is upgraded using a modular insulation system with integrated solar cells. Renewable energy systems for cooling and ventilation are integrated in order to provide flexibility of the indoor climate. Due to their small floor area, the space within the apartments is redesigned for a more efficient use of space and an improved natural lighting. Active core modules are placed on top of the unused attics and a solar panel array is introduced. Furthermore accessibility issues are addressed by facilitating access for disabled people and implementing an elevator system that currently these building do not have.
1998-10-03
KENNEDY SPACE CENTER, FLA. -- As the bucket operator (left) lowers them into the open payload bay of the orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (second from left) and James H. Newman (second from right) do a sharp-edge inspection. At their right is Wayne Wedlake, with United Space Alliance at Johnson Space Center. Below them is the Orbiter Docking System, the remote manipulator system arm and a tunnel into the payload bay. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability
Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng
2016-05-16
A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model.
Pulse Code Modulation (PCM) data storage and analysis using a microcomputer
NASA Technical Reports Server (NTRS)
Massey, D. E.
1986-01-01
The current widespread use of microcomputers has led to the creation of some very low-cost instrumentation. A Pulse Code Modulation (PCM) storage device/data analyzer -- a peripheral plug-in board especially constructed to enable a personal computer to store and analyze data from a PCM source -- was designed and built for use on the NASA Sounding Rocket Program for PMC encoder configuration and testing. This board and custom-written software turns a computer into a snapshot PCM decommutator which will accept and store many hundreds or thousands of PCM telemetry data frames, then sift through them repeatedly. These data can be converted to any number base and displayed, examined for any bit dropouts or changes (in particular, words or frames), graphically plotted, or statistically analyzed.
A panoramic view of the Space Station Processing Facility with Unity connecting module
NASA Technical Reports Server (NTRS)
1998-01-01
In this panoramic view of the Space Station Processing Facility (SSPF) can be seen (left to right) Unity connecting module, the Rack Insertion Device and the first Multi-Purpose Launch Module, the Leonardo. Windows at the right above Leonardo allow visitors on tour to watch the activities in the SSPF. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station. The Italian-built MPLM, scheduled to be launched on STS-100 on Dec. 2, 1999, will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station.
Joyanes-Aguilar, Luis; Castaño, Néstor J; Osorio, José H
2015-10-01
Objective To present a simulation model that establishes the economic impact to the health care system produced by the diagnostic evolution of patients suffering from arterial hypertension. Methodology The information used corresponds to that available in Individual Health Records (RIPs, in Spanish). A statistical characterization was carried out and a model for matrix storage in MATLAB was proposed. Data mining was used to create predictors. Finally, a simulation environment was built to determine the economic cost of diagnostic evolution. Results 5.7 % of the population progresses from the diagnosis, and the cost overrun associated with it is 43.2 %. Conclusions Results shows the applicability and possibility of focussing research on establishing diagnosis relationships using all the information reported in the RIPS in order to create econometric indicators that can determine which diagnostic evolutions are most relevant to budget allocation.
NASA Technical Reports Server (NTRS)
Martin, Carl J., Jr.
1996-01-01
This report describes a structural optimization procedure developed for use with the Engineering Analysis Language (EAL) finite element analysis system. The procedure is written primarily in the EAL command language. Three external processors which are written in FORTRAN generate equivalent stiffnesses and evaluate stress and local buckling constraints for the sections. Several built-up structural sections were coded into the design procedures. These structural sections were selected for use in aircraft design, but are suitable for other applications. Sensitivity calculations use the semi-analytic method, and an extensive effort has been made to increase the execution speed and reduce the storage requirements. There is also an approximate sensitivity update method included which can significantly reduce computational time. The optimization is performed by an implementation of the MINOS V5.4 linear programming routine in a sequential liner programming procedure.
An electron microscope for the aberration-corrected era.
Krivanek, O L; Corbin, G J; Dellby, N; Elston, B F; Keyse, R J; Murfitt, M F; Own, C S; Szilagyi, Z S; Woodruff, J W
2008-02-01
Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.
Troschl, Clemens; Meixner, Katharina; Drosg, Bernhard
2017-01-01
Cyanobacteria, as photoautotrophic organisms, provide the opportunity to convert CO2 to biomass with light as the sole energy source. Like many other prokaryotes, especially under nutrient deprivation, most cyanobacteria are able to produce polyhydroxyalkanoates (PHAs) as intracellular energy and carbon storage compounds. In contrast to heterotrophic PHA producers, photoautotrophic cyanobacteria do not consume sugars and, therefore, do not depend on agricultural crops, which makes them a green alternative production system. This review summarizes the recent advances in cyanobacterial PHA production. Furthermore, this study reports the working experience with different strains and cultivating conditions in a 200 L pilot plant. The tubular photobioreactor was built at the coal power plant in Dürnrohr, Austria in 2013 for direct utilization of flue gases. The main challenges were the selection of robust production strains, process optimization, and automation, as well as the CO2 availability. PMID:28952505
Pelamis: experience from concept to connection.
Yemm, Richard; Pizer, David; Retzler, Chris; Henderson, Ross
2012-01-28
The development of the Pelamis wave energy converter from its conceptual origins to its commercial deployment is reviewed. The early emphasis on designing for survivability and favourable power absorption characteristics focused attention towards a self-referenced articulated line-absorber in an attenuator orientation. A novel joint and control system allow the machine to be actively tuned to provide a resonant response power amplification in small and moderate seas. In severe seas, the machine is left in its default or natural condition, which is benign and non-resonant. Hydraulic rams at the joints provide the primary power take-off with medium-term storage in high-pressure accumulators yielding smooth electricity generation. Land-based modular construction requiring minimal weather windows for rapid offshore installation is an essential engineering feature necessary for viable commercialization. The second-generation Pelamis designs built for E.ON and ScottishPower Renewables are presented, and the scope for further cost reduction and performance enhancements are explained.
Coastal aquifers: Scientific advances in the face of global environmental challenges
NASA Astrophysics Data System (ADS)
Post, Vincent E. A.; Werner, Adrian D.
2017-08-01
Coastal aquifers embody the subsurface transition between terrestrial and marine systems, and form the almost invisible pathway for tremendous volumes of freshwater that flow to the ocean. Changing conditions of the earth's landscapes and oceans can disrupt the fragile natural equilibrium between fresh and saltwater that exists in coastal zones. Among these, over-abstraction of groundwater is considered the leading man-made cause of seawater intrusion. Moreover, many of the world's largest urban settings, where sources of contamination are profuse, have been built over the freshwater in coastal aquifers. Thus, coastal aquifers are important receptors of human impacts to water on Earth (Michael et al., 2017). This Special Issue on 'Investigation and Management of Coastal Aquifers' contains current scientific advances on the topic, dealing with the storage and quality of water, affected by stressors ranging in scale from point source contamination to global climate change.
Almahmoud, Safieh; Vahdati, Nader; Rostron, Paul
2018-01-01
A monitoring solution was developed for detection of material loss in metals such as carbon steel using the force generated by permanent magnets in addition to the optical strain sensing technology. The working principle of the sensing system is related to the change in thickness of a steel plate, which typically occurs due to corrosion. As thickness decreases, the magnetostatic force between the magnet and the steel structure also decreases. This, in turn, affects the strain measured using the optical fiber. The sensor prototype was designed and built after verifying its sensitivity using a numerical model. The prototype was tested on steel plates of different thicknesses to establish the relationship between the metal thickness and measured strain. The results of experiments and numerical models demonstrate a strong relationship between the metal thickness and the measured strain values. PMID:29518006
Towards a Quantum Interface between Diamond Spin Qubits and Phonons in an Optical Trap
NASA Astrophysics Data System (ADS)
Ji, Peng; Momeen, M. Ummal; Hsu, Jen-Feng; D'Urso, Brian; Dutt, Gurudev
2014-05-01
We introduce a method to optically levitate a pre-selected nanodiamond crystal in air or vacuum. The nanodiamond containing nitrogen-vacancy (NV) centers is suspended on a monolayer of graphene transferred onto a patterned substrate. Laser light is focused onto the sample, using a home-built confocal microscope with a high numerical aperture (NA = 0.9) objective, simultaneously burning the graphene and creating a 3D optical trap that captures the falling nano-diamond at the beam waist. The trapped diamond is an ultra-high-Q mechanical oscillator, allowing us to engineer strong linear and quadratic coupling between the spin of the NV center and the phonon mode. The system could result in an ideal quantum interface between a spin qubit and vibrational phonon mode, potentially enabling applications in quantum information processing and sensing the development of quantum information storage and processing.
Extensive Treatment System For Recycling Water For Flushing Fresh Manure And Recovering Nutrients
NASA Astrophysics Data System (ADS)
Morand, Philippe; Robin, Paul; Escande, Aurélie; Picot, Bernadette; Pourcher, Anne-Marie; Jiangping, Qiu; Yinsheng, Li; Hamon, Gwenn; Amblard, Charlotte; Luth, Fievet, Sébastien; Oudart, Didier; Le Quéré, Camille Pain; Cluzeau, Daniel; Landrain, Brigitte
2010-11-01
From preliminary researches on a pilot scale, a complete demonstration plant was built to treat the effluents of a 30 pregnant sow's piggery. It includes a screen, a vermifilter, a macrophyte lagooning, and a complementary water storage pond; the recycled water is used for flushing, and rainfall is collected to compensate for evapotranspiration. After functioning in 2008 and 2009, it was showed that, during the warm season, the whole plant produced an effluent suitable for flushing, where the concentration decrease was over 70% for the phosphorus and potassium, 95% for the COD and nitrogen, 99.8% for endocrine disruptors (estrogenic activity), and 99.99% for pathogenic micro-organisms. During the cold season, the dilution by the rain water and the treatment effect of the constructed wetlands lead to similar results. Nevertheless, for this season, suitable floating macrophytes that will cover the lagoons remain to be settled.
Development and Application of a Process-based River System Model at a Continental Scale
NASA Astrophysics Data System (ADS)
Kim, S. S. H.; Dutta, D.; Vaze, J.; Hughes, J. D.; Yang, A.; Teng, J.
2014-12-01
Existing global and continental scale river models, mainly designed for integrating with global climate model, are of very course spatial resolutions and they lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing streamflow forecast at fine spatial resolution and water accounts at sub-catchment levels, which are important for water resources planning and management at regional and national scale. A large-scale river system model has been developed and implemented for water accounting in Australia as part of the Water Information Research and Development Alliance between Australia's Bureau of Meteorology (BoM) and CSIRO. The model, developed using node-link architecture, includes all major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. It includes an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. An auto-calibration tool has been built within the modelling system to automatically calibrate the model in large river systems using Shuffled Complex Evolution optimiser and user-defined objective functions. The auto-calibration tool makes the model computationally efficient and practical for large basin applications. The model has been implemented in several large basins in Australia including the Murray-Darling Basin, covering more than 2 million km2. The results of calibration and validation of the model shows highly satisfactory performance. The model has been operalisationalised in BoM for producing various fluxes and stores for national water accounting. This paper introduces this newly developed river system model describing the conceptual hydrological framework, methods used for representing different hydrological processes in the model and the results and evaluation of the model performance. The operational implementation of the model for water accounting is discussed.
NASA Astrophysics Data System (ADS)
Velasco Ávila, Frank; Acero Rivero, Germán Eduardo; Angulo Jaramillo, Rafael
2017-04-01
Aiming to propose a system, in accordance with Best Management Practices (BMP) kind of structures, specifically a standard bioretention system in Bogota city, and in order to apply the inverse solution methodology on Hydrus - 1D, it is mandatory to determine each θ_s; θ_r; α;n and ks parameters in van Genuchten - Mualem function, without considering the hysteresis phenomenon, for a standard bioretention system composing soils, as well as required components and dimensions to implement the bioretention structure in Bogota. First, a bioretention structure general dimensioning was carried out based on current urban landscaping regulations and recommendations given by the sewage - system service provider in Bogota city. Soil composing and design were performed after information gathering and previous investigation on bioretention systems dimensioning from different sources such as manuals. To give an adequate interpretation of the vadose zone, a soil column experimental prototype was built to be able to control and measure the intervening parameters in the subsoil unidimensional flow description, such as capillary pressure, soil water saturation, inflow and outflow. Thirteen sensor - based devices were built to measure the inverse model required parameters. It is important to underline that all the designed instrumentation was based on low cost electronic development. In addition, the whole instrumentation system is controlled by an Arduino Mega PLC and was designed and built as a personal initiative by the author of this work. For signal processing and data capturing, a commercial Lab View version intuitive program was designed, to be able to create a user-friendly interface to make real-time sensor visualisation and control. Finally, all the hydrodynamic characterisation for the studied soils was made through a Hydrus-1D inverse model and laboratory experimenting and obtained results. In addition, several direct models were run in order to determinate both bioretention structures' operation condition retention time and outflow. A storage layer in the base of the structure, which is made up by rocks to settle an appropriate retention volume, was suggested after computing model results. A Hydrus-1D direct model was also made as an application example for an urban zone in Bogota in order to observe the structure's behaviour and the runoff - peak mitigation percentage under normal functioning conditions, using hydrological data from the study region given by the water and sewage - service provider in Bogota city.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sallustio, L.; Quatrini, V.; Geneletti, D., E-mail: davide.geneletti@unitn.it
Highlights: • We tested a new methodology for monitoring land take and its effects on C storage. • The ecological impact of urban growth derives from the previous land use. • C loss increases with the naturalness of the territory. • Different urban assets may imply different forms of land take containment. Land take due to urbanization triggers a series of negative environmental impacts with direct effects on quality of life for people living in cities. Changes in ecosystem services are associated with land take, among which is the immediate C loss due to land use conversion. Land use changemore » monitoring represents the first step in quantifying land take and its drivers and impacts. To this end, we propose an innovative methodology for monitoring land take and its effects on ecosystem services (in particular, C loss) under multi-scale contexts. The devised approach was tested in two areas with similar sizes, but different land take levels during the time-span 1990–2008 in Central Italy (the Province of Rome and the Molise Region). The estimates of total coverage of built up areas were calculated using point sampling. The area of the urban patches including each sampling point classified as built up areas in the year 1990 and/or in the year 2008 is used to estimate total abundance and average area of built up areas. Biophysical and economic values for carbon loss associated with land take were calculated using InVEST. Although land take was 7–8 times higher in the Province of Rome (from 15.1% in 1990 to 20.4% in 2008) than in Molise region, our findings show that its relative impact on C storage is higher in the latter, where the urban growth consistently affects not only croplands but also semi-natural land uses such as grasslands and other wooded lands. The total C loss due to land take has been estimated in 1.6 million Mg C, corresponding to almost 355 million €. Finally, the paper discusses the main characteristics of urban growth and their ecological impact leading to risks and challenges for future urban planning and land use policies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachtel, A. J.; Gillette, M. C.; Clements, E. R.
A novel home-built system for imaging cold atom samples is presented using a readily available astronomy camera which has the requisite sensitivity but no timing-control. We integrate the camera with LabVIEW achieving fast, low-jitter imaging with a convenient user-defined interface. We show that our system takes precisely timed millisecond exposures and offers significant improvements in terms of system jitter and readout time over previously reported home-built systems. Our system rivals current commercial “black box” systems in performance and user-friendliness.
An approach to built-in test for shipboard machinery systems
NASA Astrophysics Data System (ADS)
Hegner, H. R.
This paper presents an approach for incorporating built-in test (BIT) into shipboard machinery systems. BIT, as used herein, denotes both built-in test and on-line monitoring. Since sensors are a key element to a successful machinery monitoring system, an assessment of shipboard sensors is included in the paper. Specific design examples are also presented for a marine diesel engine, gas turbine engine, and air conditioning plant.
Storage system software solutions for high-end user needs
NASA Technical Reports Server (NTRS)
Hogan, Carole B.
1992-01-01
Today's high-end storage user is one that requires rapid access to a reliable terabyte-capacity storage system running in a distributed environment. This paper discusses conventional storage system software and concludes that this software, designed for other purposes, cannot meet high-end storage requirements. The paper also reviews the philosophy and design of evolving storage system software. It concludes that this new software, designed with high-end requirements in mind, provides the potential for solving not only the storage needs of today but those of the foreseeable future as well.
Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture
NASA Technical Reports Server (NTRS)
Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan
2014-01-01
With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!
Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.
2016-12-01
Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.
Thermal energy storage evaluation and life testing
NASA Astrophysics Data System (ADS)
Richter, R.
1983-01-01
Two thermal energy storage (TES) units which were built under a previous contract were tested with a Hi-Cap Vuilleumier cryogenic cooler in the facility of the Hughes Aircraft Corporation. The objective of the program was the evaluation of the behavior of the TES units as well as the determination of the temperature history of the three cold stages of the Vuilleumier cryogenic cooler during cyclic charging and discharging of the TES units. The test results have confirmed that thermal energy storage can provide the necessary thermal power to the hot cylinders of the Vuilleumier cryogenic cooler at the required operating temperatures. Thereby the continuous cooling capability of the cooler during an eclipse when no electrical power is available is being assured. The cold stage temperature amplitudes during a complete charge discharge cycle of the TES units were only about 10% of the amplitudes which were observed when the Hi-Cap Vuilleumier cryogenic cooler was operating without thermal energy storage backup in a simulated orbit of 54 minutes sun exposure and 18 minutes eclipse time. The themal conductivity of the molten thermal energy storage salt was apparently only a fraction of the thermal conductivity which had been assumed for the prediction of the upper heater temperatures. A redesign of the heater temperatures below 1480 degrees F which is now required for full charging of the TES units within 54 minutes with the present heater design.
NASA Astrophysics Data System (ADS)
McKenzie, A. W.
Cost and performance of various thermal storage concepts in a liquid metal receiver solar thermal power system application have been evaluated. The objectives of this study are to provide consistently calculated cost and performance data for thermal storage concepts integrated into solar thermal systems. Five alternative storage concepts are evaluated for a 100-MW(e) liquid metal-cooled receiver solar thermal power system for 1, 6, and 15 hours of storage: sodium 2-tank (reference system), molten draw salt 2-tank, sand moving bed, air/rock, and latent heat (phase change) with tube-intensive heat exchange (HX). The results indicate that the all sodium 2-tank thermal storage concept is not cost-effective for storage in excess of 3 or 4 hours; the molten draw salt 2-tank storage concept provides significant cost savings over the reference sodium 2-tank concept; and the air/rock storage concept with pressurized sodium buffer tanks provides the lowest evaluated cost of all storage concepts considered above 6 hours of storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...
Subcontracted activities related to TES for building heating and cooling
NASA Technical Reports Server (NTRS)
Martin, J.
1980-01-01
The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.
Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
2018-01-03
While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less
Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less
Terrestrial Energy Storage SPS Systems
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.
1998-01-01
Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.
Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R
2014-11-18
An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
2010-05-18
ISS023-E-047527 (18 May 2010) --- In the grasp of the station?s robotic Canadarm2, the Russian-built Mini-Research Module 1 (MRM-1) is attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB) of the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia. Rassvet will be used for cargo storage and will provide an additional docking port to the station.
Dynamic Response Analysis of an Icosahedron Shaped Lighter Than Air Vehicle
2015-03-26
Montgolfier brothers successfully achieved flight using a hot - air balloon . While this was not the first time a LTAV had been imagined, it was the...first time one had been successfully built and flown [3]. Hot - air balloons are able to stay afloat in the atmosphere by displacing a volume of air ...These possibilities have already been exploited by LTAVs using a lifting gas (hydrogen, helium, hot air ), but those vehicles require storage for the gas
Earth Observations taken by the Expedition 17 Crew
2008-10-01
ISS017-E-018075 (1 Oct. 2008) --- The Pueblo Chemical Depot in Colorado is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. This view illustrates the unusual man-made landscape of the Pueblo Chemical Depot located near the city of Pueblo, Colorado. The Depot was built during World War II by the U.S. Army to house and ship ammunition needed for war efforts, and this role transitioned to missile repair and maintenance during the Cold War with the Soviet Union. The current use of the Depot is to house chemical munitions, but changes are underway by the U.S. Army Chemical Materials Agency to destroy these munitions and make the site environmentally safe for reuse -- while also protecting the surrounding local environment. The stippled landscape pattern visible from low Earth orbit is due to hundreds of concrete and earth-covered storage "igloos" that form ordered rows across the site (top). It is within these igloos that chemical munitions and other materials are stored. Larger, white roofed maintenance buildings once used for munitions storage were built with separate compartments to minimize potential damage from explosions. Other features visible in this detailed image include linear roadway (light tan) and rail (dark brown) lines, black irregular surface impoundments of water, and various rectangular office and industrial buildings at lower left.
NASA Astrophysics Data System (ADS)
van Leeuwen, Charlotte; Meijer, Harro A. J.
2015-04-01
One of the main issues in carbon capture and storage (CCS) is the possibility of leakage of CO2 from the storage reservoir to the atmosphere, both from a public health and a climate change combat perspective. Detecting these leaks in the atmosphere is difficult due to the rapid mixing of the emitted CO2 with the surrounding air masses and the high natural variability of the atmospheric CO2 concentration. Instead of measuring only the CO2 concentration of the atmosphere, its isotopes or chemical tracers that are released together with the CO2, our method uses O2 measurements in addition to CO2 measurements to detect a leak from a CCS site. CO2 and O2 are coupled in most processes on earth. In photosynthesis, plants take up CO2 and release O2 at the same time. In respiration and fossil fuel burning, O2 is consumed while CO2 is released. In case of a leak from a CCS site, however, there is no relationship between CO2 and O2. A CO2 leak can therefore be distinguished from other sources of CO2 by looking at the atmospheric CO2-O2 ratio. A natural increase of the CO2 concentration is accompanied by a drop in the O2 concentration, while an increase in the CO2 concentration caused by a leak from a CCS site does not have any effect on the O2 concentration. To demonstrate this leak detection strategy we designed and built a transportable CO2 and O2 measurement system, that is capable of measuring the relatively minute (ppm's variations on a 21% concentration) changes in the O2 concentration. The system comprises of three cases that contain the instrumentation and gas handling equipment, the gas cylinders used as reference and calibration gases and a drying system, respectively. Air is pumped to the system from an air inlet that is placed in a small tower in the field. At the conference, we will demonstrate the success of leak detection with our system by showing measurements of several CO2 release experiments, where CO2 was released at a small distance from the air inlet of our instrument.
Recent Activity at the Astronomical Photographic Data Archive
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, M.; Barker, T.
2011-01-01
The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 300 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 100,000 photographic plates and film collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, that were built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. We will present the status of GAMMA II and the recent donations of astronomical plates and current research projects.
Meeting Archival Standards in the Astronomical Photographic Data Archive at PARI
NASA Astrophysics Data System (ADS)
Cline, J. D.; Castelaz, M. W.; Barker, T.; Rottler, L.
2013-01-01
The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 400 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 200,000 photographic plates and films from more than 40 collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. GAMMA II has been rebuilt and we will report on its status as an astrometric measuring instrument.
NASA Astrophysics Data System (ADS)
Fedorov, D.; Miller, R. J.; Kvilekval, K. G.; Doheny, B.; Sampson, S.; Manjunath, B. S.
2016-02-01
Logistical and financial limitations of underwater operations are inherent in marine science, including biodiversity observation. Imagery is a promising way to address these challenges, but the diversity of organisms thwarts simple automated analysis. Recent developments in computer vision methods, such as convolutional neural networks (CNN), are promising for automated classification and detection tasks but are typically very computationally expensive and require extensive training on large datasets. Therefore, managing and connecting distributed computation, large storage and human annotations of diverse marine datasets is crucial for effective application of these methods. BisQue is a cloud-based system for management, annotation, visualization, analysis and data mining of underwater and remote sensing imagery and associated data. Designed to hide the complexity of distributed storage, large computational clusters, diversity of data formats and inhomogeneous computational environments behind a user friendly web-based interface, BisQue is built around an idea of flexible and hierarchical annotations defined by the user. Such textual and graphical annotations can describe captured attributes and the relationships between data elements. Annotations are powerful enough to describe cells in fluorescent 4D images, fish species in underwater videos and kelp beds in aerial imagery. Presently we are developing BisQue-based analysis modules for automated identification of benthic marine organisms. Recent experiments with drop-out and CNN based classification of several thousand annotated underwater images demonstrated an overall accuracy above 70% for the 15 best performing species and above 85% for the top 5 species. Based on these promising results, we have extended bisque with a CNN-based classification system allowing continuous training on user-provided data.
NASA Astrophysics Data System (ADS)
Zhao, F.; Huang, C.; Healey, S. P.; McCarter, J. B.; Garrard, C.; Zhu, Z.
2015-12-01
Natural disturbances and land management directly change C stored in biomass and soil pools, and can have indirect impacts on long-term C balance. The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of different land ownerships within similar environmental settings, making it an ideal site to examine the impacts of management and disturbances on regional carbon dynamics. Recent advances in the remote sensing of vegetation condition and change, along with new techniques linking remote sensing with inventory records, have allowed investigations that are much more tightly constrained to actual landscape environment, instead of hypothetical or generalized conditions. These new capabilities are built into the Forest Carbon Management Framework (ForCaMF), which is being used by the National Forest System to not only model, but to monitor across very specific management units, the impact of different kinds of disturbance on carbon storage. In this study, we used the ForCaMF approach to evaluate carbon effects of natural disturbances (e.g. wildfire) and land management (e.g. harvests) in GYE National Parks, Wilderness Area and National Forests. As might be expected, wildfire has been the dominant disturbance factor in the carbon cycle of GYE's administratively protected areas since the mid-1980s, while harvests have dominated storage trends on the managed land in the region's National Forests. Moving beyond this monitoring result but maintaining the same fidelity to historical vegetation patterns, we are also able to simulate alternative disturbance scenarios to provide landscape-specific insights to forest managers. We can estimate likely carbon storage impacts in GYE protected areas, for example, if more active fire suppression had been pursued since the mid-1980s. Likewise, we can identify differences in current carbon storage on managed lands if high harvest rates during the same period had been moderated. We discuss emerging links between carbon storage and management in GYE, and we consider the potential for expanding this kind of analysis using globally available satellite resources and nationally available inventory data.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
2002-01-01
This document contains copies of those technical papers received in time for publication prior to the Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and management of large volumes of data. The Conference encourages all interested organizations to discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, storage networking with emphasis on IP storage, performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular magnetic recording, object based storage, storage virtualization and IP storage.
Energy Storage Laboratory | Energy Systems Integration Facility | NREL
technologies. Key Infrastructure Energy storage system inverter, energy storage system simulators, research Plug-In Vehicles/Mobile Storage The plug-in vehicles/mobile storage hub includes connections for small integration. Key Infrastructure Ample house power, REDB access, charging stations, easy vehicle parking access
He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.
He, Qing; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742
NREL Tests Energy Storage System to Fill Renewable Gaps | News | NREL
Tests Energy Storage System to Fill Renewable Gaps NREL Tests Energy Storage System to Fill -megawatt energy storage system from Renewable Energy Systems (RES) Americas will assist research that aims to optimize the grid for wind and solar plants. The system arrived at NREL's National Wind Technology
The Design of Distributed Micro Grid Energy Storage System
NASA Astrophysics Data System (ADS)
Liang, Ya-feng; Wang, Yan-ping
2018-03-01
Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.
Telemetry data storage systems technology for the Space Station Freedom era
NASA Technical Reports Server (NTRS)
Dalton, John T.
1989-01-01
This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filhol, J. M.; Couprie, M. E.; Level, M. P.
SOLEIL is a third generation Synchrotron radiation Source, under construction in France at St Aubin, near Paris. The Storage Ring consists in a 357 m circumference ring, with 16 cells and 24 straight sections (4x12m, 12x7m, 8x3.6m), out of which up to 21 will house insertion devices. The optics, with distributed dispersion, features a low 3.7 nm.rad emittance at the 2.75 GeV operating energy, so as to provide high brilliance, from the VUV up to the hard X ray domain. In order to provide a long lifetime, and beam position stabilities in the micron range, significant attention was paid atmore » each design stage (optics, magnets, beam position monitors, vacuum and RF systems,..), including the design of the building and infrastructure, the construction of which is now complete. This resulted in some unprecedented approaches such as the intensive use of NEG coating Aluminium vessels, or the development of a dedicated superconducting RF cavity and of 190 kW solid state RF amplifiers. The construction, started in 2002, is now completed. The injector system (100 MeV Linac) and the 3 Hz full energy Booster synchrotron have reached nominal operating conditions by fall 2005. The installation of the Storage Ring was just completed and its commissioning started in May 2006. First 9 turns in the ring were achieved on May the 14th, and visible synchrotron radiation was also observed on a CCD camera. Innovative insertion devices were designed and built so as to provide the best possible performances in an energy range as large as 5 eV to 20 keV. These are helical electromagnetic devices with 640 mm and 256 mm periods, APPLE II type undulators with 80 mm period, and in-vacuum hybrid undulators with 20 mm period. Two infra-red beamlines providing both edge and constant dipole field emission are also under construction and a superconducting wiggler is currently being designed in order to provide high flux in the 10 to 50 keV range. A first set of 10 beamlines (out of 24 included in the project) is being built and will be tested from summer 2006 onwards, with the aim of starting Users operation by the beginning of 2007.« less
Status of the Commissioning of SOLEIL
NASA Astrophysics Data System (ADS)
Filhol, J. M.; Couprie, M. E.; Level, M. P.; Besson, J. C.; Brunelle, P.; Denard, J. C.; Godefroy, J. M.; Herbeaux, C.; Lebasque, P.; Le Roux, V.; Lestrade, A.; Loulergue, A.; Marchand, P.; Nadji, A.; Nadolski, L.; Nagaoka, R.; Pottin, B.; Tordeux, M. A.
2007-01-01
SOLEIL is a third generation Synchrotron radiation Source, under construction in France at St Aubin, near Paris. The Storage Ring consists in a 357 m circumference ring, with 16 cells and 24 straight sections (4×12m, 12×7m, 8×3.6m), out of which up to 21 will house insertion devices. The optics, with distributed dispersion, features a low 3.7 nm.rad emittance at the 2.75 GeV operating energy, so as to provide high brilliance, from the VUV up to the hard X ray domain. In order to provide a long lifetime, and beam position stabilities in the micron range, significant attention was paid at each design stage (optics, magnets, beam position monitors, vacuum and RF systems,..), including the design of the building and infrastructure, the construction of which is now complete. This resulted in some unprecedented approaches such as the intensive use of NEG coating Aluminium vessels, or the development of a dedicated superconducting RF cavity and of 190 kW solid state RF amplifiers. The construction, started in 2002, is now completed. The injector system (100 MeV Linac) and the 3 Hz full energy Booster synchrotron have reached nominal operating conditions by fall 2005. The installation of the Storage Ring was just completed and its commissioning started in May 2006. First 9 turns in the ring were achieved on May the 14th, and visible synchrotron radiation was also observed on a CCD camera. Innovative insertion devices were designed and built so as to provide the best possible performances in an energy range as large as 5 eV to 20 keV. These are helical electromagnetic devices with 640 mm and 256 mm periods, APPLE II type undulators with 80 mm period, and in-vacuum hybrid undulators with 20 mm period. Two infra-red beamlines providing both edge and constant dipole field emission are also under construction and a superconducting wiggler is currently being designed in order to provide high flux in the 10 to 50 keV range. A first set of 10 beamlines (out of 24 included in the project) is being built and will be tested from summer 2006 onwards, with the aim of starting Users operation by the beginning of 2007.
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
Application of the FADS system on the Re-entry Module
NASA Astrophysics Data System (ADS)
Zhen, Huang
2016-07-01
The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.
49 CFR 173.311 - Metal hydride storage systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...
49 CFR 173.311 - Metal hydride storage systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...
49 CFR 173.311 - Metal hydride storage systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...
NASA Technical Reports Server (NTRS)
Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.
1996-01-01
The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.
Online mass storage system detailed requirements document
NASA Technical Reports Server (NTRS)
1976-01-01
The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.
Chemical hydrogen storage material property guidelines for automotive applications
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.
Application of electrochemical energy storage in solar thermal electric generation systems
NASA Technical Reports Server (NTRS)
Das, R.; Krauthamer, S.; Frank, H.
1982-01-01
This paper assesses the status, cost, and performance of existing electrochemical energy storage systems, and projects the cost, performance, and availability of advanced storage systems for application in terrestrial solar thermal electric generation. A 10 MWe solar plant with five hours of storage is considered and the cost of delivered energy is computed for sixteen different storage systems. The results indicate that the five most attractive electrochemical storage systems use the following battery types: zinc-bromine (Exxon), iron-chromium redox (NASA/Lewis Research Center, LeRC), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (Energy Development Associates, EDA).
Capacity value of energy storage considering control strategies.
Shi, Nian; Luo, Yi
2017-01-01
In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given.
Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system
NASA Astrophysics Data System (ADS)
Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias
2018-01-01
While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.
P43-S Computational Biology Applications Suite for High-Performance Computing (BioHPC.net)
Pillardy, J.
2007-01-01
One of the challenges of high-performance computing (HPC) is user accessibility. At the Cornell University Computational Biology Service Unit, which is also a Microsoft HPC institute, we have developed a computational biology application suite that allows researchers from biological laboratories to submit their jobs to the parallel cluster through an easy-to-use Web interface. Through this system, we are providing users with popular bioinformatics tools including BLAST, HMMER, InterproScan, and MrBayes. The system is flexible and can be easily customized to include other software. It is also scalable; the installation on our servers currently processes approximately 8500 job submissions per year, many of them requiring massively parallel computations. It also has a built-in user management system, which can limit software and/or database access to specified users. TAIR, the major database of the plant model organism Arabidopsis, and SGN, the international tomato genome database, are both using our system for storage and data analysis. The system consists of a Web server running the interface (ASP.NET C#), Microsoft SQL server (ADO.NET), compute cluster running Microsoft Windows, ftp server, and file server. Users can interact with their jobs and data via a Web browser, ftp, or e-mail. The interface is accessible at http://cbsuapps.tc.cornell.edu/.
Experimental Data for Two Different Alternator Configurations in a Solar Brayton Power System
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Shaltens, Richard K.; Espinosa, William D.
1997-01-01
A solar dynamic (SD) space power system has been under test at the NASA Lewis Research Center since 1994. The SD Ground Test Demonstration (GTD) system includes a solar concentrator, heat receiver with thermal energy storage, Brayton power conversion unit, and radiator installed in a thermal-vacuum chamber with a solar simulator. The Brayton unit has been operated with two different turboalternator compressor (TAC) assemblies, one which included a Rice Lundell alternator and another which incorporated a permanent magnet (PM) alternator. The Rice alternator was part of the mini-Brayton rotating unit, designed and built during the 1970's and refurbished for the GTD. The PM TAC was a development unit from the Joint US/Russian SD Flight Project. This paper highlights the operational differences (and similarities) between the Rice and PM TAC configurations including a comparative evaluation of startup characteristics and operating performance. The two alternator configurations were tested under similar thermal conditions, as an interchangeable component within the SD system. The electrical characteristics of the two units, however, dictated the use of significantly different power conditioning and control strategies. The electrical control architectures are described and compared. Test data are presented on TAC startup and system operating performance for both configurations.
Mission Operations Planning and Scheduling System (MOPSS)
NASA Technical Reports Server (NTRS)
Wood, Terri; Hempel, Paul
2011-01-01
MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.
NASA Astrophysics Data System (ADS)
Takashima, Ichiro; Kajiwara, Riichi; Murano, Kiyo; Iijima, Toshio; Morinaka, Yasuhiro; Komobuchi, Hiroyoshi
2001-04-01
We have designed and built a high-speed CCD imaging system for monitoring neural activity in an exposed animal cortex stained with a voltage-sensitive dye. Two types of custom-made CCD sensors were developed for this system. The type I chip has a resolution of 2664 (H) X 1200 (V) pixels and a wide imaging area of 28.1 X 13.8 mm, while the type II chip has 1776 X 1626 pixels and an active imaging area of 20.4 X 18.7 mm. The CCD arrays were constructed with multiple output amplifiers in order to accelerate the readout rate. The two chips were divided into either 24 (I) or 16 (II) distinct areas that were driven in parallel. The parallel CCD outputs were digitized by 12-bit A/D converters and then stored in the frame memory. The frame memory was constructed with synchronous DRAM modules, which provided a capacity of 128 MB per channel. On-chip and on-memory binning methods were incorporated into the system, e.g., this enabled us to capture 444 X 200 pixel-images for periods of 36 seconds at a rate of 500 frames/second. This system was successfully used to visualize neural activity in the cortices of rats, guinea pigs, and monkeys.
NASA Astrophysics Data System (ADS)
Seitz, M.; Hübner, S.; Johnson, M.
2016-05-01
Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.
An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.
2015-07-01
Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.
Strabo: An App and Database for Structural Geology and Tectonics Data
NASA Astrophysics Data System (ADS)
Newman, J.; Williams, R. T.; Tikoff, B.; Walker, J. D.; Good, J.; Michels, Z. D.; Ash, J.
2016-12-01
Strabo is a data system designed to facilitate digital storage and sharing of structural geology and tectonics data. The data system allows researchers to store and share field and laboratory data as well as construct new multi-disciplinary data sets. Strabo is built on graph database technology, as opposed to a relational database, which provides the flexibility to define relationships between objects of any type. This framework allows observations to be linked in a complex and hierarchical manner that is not possible in traditional database topologies. Thus, the advantage of the Strabo data structure is the ability of graph databases to link objects in both numerous and complex ways, in a manner that more accurately reflects the realities of the collecting and organizing of geological data sets. The data system is accessible via a mobile interface (iOS and Android devices) that allows these data to be stored, visualized, and shared during primary collection in the field or the laboratory. The Strabo Data System is underlain by the concept of a "Spot," which we define as any observation that characterizes a specific area. This can be anything from a strike and dip measurement of bedding to cross-cutting relationships between faults in complex dissected terrains. Each of these spots can then contain other Spots and/or measurements (e.g., lithology, slickenlines, displacement magnitude.) Hence, the Spot concept is applicable to all relationships and observation sets. Strabo is therefore capable of quantifying and digitally storing large spatial variations and complex geometries of naturally deformed rocks within hierarchically related maps and images. These approaches provide an observational fidelity comparable to a traditional field book, but with the added benefits of digital data storage, processing, and ease of sharing. This approach allows Strabo to integrate seamlessly into the workflow of most geologists. Future efforts will focus on extending Strabo to other sub-disciplines as well as developing a desktop system for the enhanced collection and organization of microstructural data.
Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems
NASA Astrophysics Data System (ADS)
Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.
Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.