Sample records for storage system study

  1. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  2. The state of energy storage in electric utility systems and its effect on renewable energy resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, N S

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed themore » cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.« less

  3. Capacity value of energy storage considering control strategies.

    PubMed

    Shi, Nian; Luo, Yi

    2017-01-01

    In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given.

  4. Capacity value of energy storage considering control strategies

    PubMed Central

    Luo, Yi

    2017-01-01

    In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given. PMID:28558027

  5. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    DOE PAGES

    Han, Yafeng; Shen, Bo; Hu, Huajin; ...

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme andmore » the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.« less

  6. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  7. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  8. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  9. Redox Bulk Energy Storage System Study, Volume 1

    NASA Technical Reports Server (NTRS)

    Ciprios, G.; Erskine, W., Jr.; Grimes, P. G.

    1977-01-01

    Opportunities were found for electrochemical energy storage devices in the U.S. electric utility industry. Application requirements for these devices were defined, including techno-economic factors. A new device, the Redox storage battery was analyzed. The Redox battery features a decoupling of energy storage and power conversion functions. General computer methods were developed to simulate Redox system operations. These studies showed that the Redox system is potentially attractive if certain performance goals can be achieved. Pathways for reducing the cost of the Redox system were identified.

  10. Electric System Flexibility and Storage | Energy Analysis | NREL

    Science.gov Websites

    . Featured Studies India Renewable Integration Study Grid Flexibility and Storage Required To Achieve Very demand-in Texas. Key findings from this study include: A highly flexible system with must-run baseload . Publications Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage

  11. Simulation and optimization study of a solar seasonal storage district heating system: the Fox River Valley case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, A.I.; Sillman, S.; Baylin, F.

    1983-05-01

    A central solar-heating plant with seasonal heat storage in a deep underground aquifer is designed by means of a solar-seasonal-storage-system simulation code based on the Solar Energy Research Institute (SERI) code for Solar Annual Storage Simulation (SASS). This Solar Seasonal Storage Plant is designed to supply close to 100% of the annual heating and domestic-hot-water (DHW) load of a hypothetical new community, the Fox River Valley Project, for a location in Madison, Wisconsin. Some analyses are also carried out for Boston, Massachusetts and Copenhagen, Denmark, as an indication of weather and insolation effects. Analyses are conducted for five different typesmore » of solar collectors, and for an alternate system utilizing seasonal storage in a large water tank. Predicted seasonal performance and system and storage costs are calculated. To provide some validation of the SASS results, a simulation of the solar system with seasonal storage in a large water tank is also carried out with a modified version of the Swedish Solar Seasonal Storage Code MINSUN.« less

  12. Trade-off study of data storage technologies

    NASA Technical Reports Server (NTRS)

    Kadyszewski, R. V.

    1977-01-01

    The need to store and retrieve large quantities of data at modest cost has generated the need for an economical, compact, archival mass storage system. Very significant improvements in the state-of-the-art of mass storage systems have been accomplished through the development of a number of magnetic, electro-optical, and other related devices. This study was conducted in order to do a trade-off between these data storage devices and the related technologies in order to determine an optimum approach for an archival mass data storage system based upon a comparison of the projected capabilities and characteristics of these devices to yield operational systems in the early 1980's.

  13. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  14. Generation system impacts of storage heating and storage water heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gellings, C.W.; Quade, A.W.; Stovall, J.P.

    Thermal energy storage systems offer the electric utility a means to change customer energy use patterns. At present, however, the costs and benefit to both the customers and utility are uncertain. As part of a nationwide demonstration program Public Service Electric and Gas Company installed storage space heating and water heating appliances in residential homes. Both the test homes and similiar homes using conventional space and water heating appliances were monitored, allowing for detailed comparisons between the two systems. The purpose of this paper is to detail the methodology used and the results of studies completed on the generation systemmore » impacts of storage space and water heating systems. Other electric system impacts involving service entrance size, metering, secondary distribution and primary distribution were detailed in two previous IEEE Papers. This paper is organized into three main sections. The first gives background data on PSEandG and their experience in a nationwide thermal storage demonstration project. The second section details results of the demonstration project and studies that have been performed on the impacts of thermal storage equipment. The last section reports on the conclusions arrived at concerning the impacts of thermal storage on generation. The study was conducted in early 1982 using available data at that time, while PSEandG system plans have changed since then, the conclusions are pertinent and valuable to those contemplating inpacts of thermal energy storage.« less

  15. Extravehicular mobility unit subcritical liquid oxygen storage and supply system

    NASA Technical Reports Server (NTRS)

    Anderson, John; Martin, Timothy; Hodgson, ED

    1992-01-01

    The storage of life support oxygen in the Extravehicular Mobility Unit in the liquid state offers some advantages over the current method of storing the oxygen as a high pressure gas. Storage volume is reduced because of the increased density associated with liquid. The lower storage and operating pressures also reduce the potential for leakage or bursting of the storage tank. The potential for combustion resulting from adiabatic combustion of the gas within lines and components is substantially reduced. Design constraints on components are also relaxed due to the lower system pressures. A design study was performed to determine the requirements for a liquid storage system and prepare a conceptual design. The study involved four tasks. The first was to identify system operating requirements that influence or direct the design of the system. The second was to define candidate storage system concepts that could possibly satisfy the requirements. An evaluation and comparison of the candidate concepts was conducted in the third task. The fourth task was devoted to preparing a conceptual design of the recommended storage system and to evaluate concerns with integration of the concept into the EMU. The results are presented.

  16. Cost and performance of thermal storage concepts in solar thermal systems, Phase 2-liquid metal receivers

    NASA Astrophysics Data System (ADS)

    McKenzie, A. W.

    Cost and performance of various thermal storage concepts in a liquid metal receiver solar thermal power system application have been evaluated. The objectives of this study are to provide consistently calculated cost and performance data for thermal storage concepts integrated into solar thermal systems. Five alternative storage concepts are evaluated for a 100-MW(e) liquid metal-cooled receiver solar thermal power system for 1, 6, and 15 hours of storage: sodium 2-tank (reference system), molten draw salt 2-tank, sand moving bed, air/rock, and latent heat (phase change) with tube-intensive heat exchange (HX). The results indicate that the all sodium 2-tank thermal storage concept is not cost-effective for storage in excess of 3 or 4 hours; the molten draw salt 2-tank storage concept provides significant cost savings over the reference sodium 2-tank concept; and the air/rock storage concept with pressurized sodium buffer tanks provides the lowest evaluated cost of all storage concepts considered above 6 hours of storage.

  17. Commercial Impact and Optimum Capacity Determination of Pumped Storage Hydro Plant for a Practical Power System

    NASA Astrophysics Data System (ADS)

    Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.

    2013-06-01

    This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.

  18. Development of a system for off-peak electrical energy use by air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Russell, L. D.

    1980-05-01

    Investigation and evaluation of several alternatives for load management for the TVA system are described. Specific data for the TVA system load characteristics were studied to determine the typical peak and off peak periods for the system. The alternative systems investigated for load management included gaseous energy storage, phase change materials energy storage, zeolite energy storage, variable speed controllers for compressors, and weather sensitive controllers. After investigating these alternatives, system design criteria were established; then, the gaseous and PCM energy storage systems were analyzed. The system design criteria include economic assessment of all alternatives. Handbook data were developed for economic assessment. A liquid/PCM energy storage system was judged feasible.

  19. NV Energy Electricity Storage Valuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp ratemore » resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.« less

  20. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Das, Trishna

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24more » bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.« less

  1. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  2. Solar applications of thermal energy storage. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.; Taylor, L.; DeVries, J.

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  3. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-12-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  4. Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System

    DOE PAGES

    Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias

    2018-01-03

    While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less

  5. Carbon Dioxide Emissions Effects of Grid-Scale Electricity Storage in a Decarbonizing Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias

    While grid-scale electricity storage (hereafter 'storage') could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO 2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO 2 emissions, we quantify the effect of storage on operational CO 2 emissions as a power system decarbonizes under a moderate and strong CO 2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO 2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. Wemore » conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO 2 emissions with and without storage. We find that storage would increase CO 2 emissions in the current ERCOT system, but would decrease CO 2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO 2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO 2 emissions.« less

  6. Applications of thermal energy storage in the cement industry

    NASA Technical Reports Server (NTRS)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  7. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  8. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  9. Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system

    NASA Astrophysics Data System (ADS)

    Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias

    2018-01-01

    While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.

  10. Redundancy Maintenance and Garbage Collection Strategies in Peer-to-Peer Storage Systems

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Datta, Anwitaman

    Maintaining redundancy in P2P storage systems is essential for reliability guarantees. Numerous P2P storage system maintenance algorithms have been proposed in the last years, each supposedly improving upon the previous approaches. We perform a systematic comparative study of the various strategies taking also into account the influence of different garbage collection mechanisms, an issue not studied so far. Our experiments show that while some strategies generally perform better than some others, there is no universally best strategy, and their relative superiority depends on various other design choices as well as the specific evaluation criterion. Our results can be used by P2P storage systems designers to make prudent design decisions, and our exploration of the various evaluation metrics also provides a more comprehensive framework to compare algorithms for P2P storage systems. While there are numerous network simulators specifically developed even to simulate peer-to-peer networks, there existed no P2P storage simulators - a byproduct of this work is a generic modular P2P storage system simulator which we provide as open-source. Different redundancy, maintenance, placement, garbage-collection policies, churn scenarios can be easily integrated to the simulator to try out new schemes in future, and provides a common framework to compare (future) p2p storage systems designs - something which has not been possible so far.

  11. Performance Study of Salt Cavern Air Storage Based Non-Supplementary Fired Compressed Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai

    2017-10-01

    Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.

  12. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants: Report Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  13. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  14. Research and implementation on improving I/O performance of streaming media storage system

    NASA Astrophysics Data System (ADS)

    Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song

    2008-12-01

    In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.

  15. Understanding I/O workload characteristics of a Peta-scale storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjae; Gunasekaran, Raghul

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization,more » and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.« less

  16. Battery energy storage market feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as amore » means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  17. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ben; Li, Peiwen; Chan, Cholik

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  18. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE PAGES

    Xu, Ben; Li, Peiwen; Chan, Cholik; ...

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  19. Developing a cost effective rock bed thermal energy storage system: Design and modelling

    NASA Astrophysics Data System (ADS)

    Laubscher, Hendrik Frederik; von Backström, Theodor Willem; Dinter, Frank

    2017-06-01

    Thermal energy storage is an integral part of the drive for low cost of concentrated solar power (CSP). Storage of thermal energy enables CSP plants to provide base load power. Alternative, cheaper concepts for storing thermal energy have been conceptually proposed in previous studies. Using rocks as a storage medium and air as a heat transfer fluid, the proposed concept offers the potential of lower cost storage because of the abundance and affordability of rocks. A packed rock bed thermal energy storage (TES) concept is investigated and a design for an experimental rig is done. This paper describes the design and modelling of an experimental test facility for a cost effective packed rock bed thermal energy storage system. Cost effective, simplified designs for the different subsystems of an experimental setup are developed based on the availability of materials and equipment. Modelling of this design to predict the thermal performance of the TES system is covered in this study. If the concept under consideration proves to be successful, a design that is scalable and commercially viable can be proposed for further development of an industrial thermal energy storage system.

  20. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  1. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  2. LVFS: A Big Data File Storage Bridge for the HPC Community

    NASA Astrophysics Data System (ADS)

    Golpayegani, N.; Halem, M.; Mauoka, E.; Fonseca, L. F.

    2015-12-01

    Merging Big Data capabilities into High Performance Computing architecture starts at the file storage level. Heterogeneous storage systems are emerging which offer enhanced features for dealing with Big Data such as the IBM GPFS storage system's integration into Hadoop Map-Reduce. Taking advantage of these capabilities requires file storage systems to be adaptive and accommodate these new storage technologies. We present the extension of the Lightweight Virtual File System (LVFS) currently running as the production system for the MODIS Level 1 and Atmosphere Archive and Distribution System (LAADS) to incorporate a flexible plugin architecture which allows easy integration of new HPC hardware and/or software storage technologies without disrupting workflows, system architectures and only minimal impact on existing tools. We consider two essential aspects provided by the LVFS plugin architecture needed for the future HPC community. First, it allows for the seamless integration of new and emerging hardware technologies which are significantly different than existing technologies such as Segate's Kinetic disks and Intel's 3DXPoint non-volatile storage. Second is the transparent and instantaneous conversion between new software technologies and various file formats. With most current storage system a switch in file format would require costly reprocessing and nearly doubling of storage requirements. We will install LVFS on UMBC's IBM iDataPlex cluster with a heterogeneous storage architecture utilizing local, remote, and Seagate Kinetic storage as a case study. LVFS merges different kinds of storage architectures to show users a uniform layout and, therefore, prevent any disruption in workflows, architecture design, or tool usage. We will show how LVFS will convert HDF data produced by applying machine learning algorithms to Xco2 Level 2 data from the OCO-2 satellite to produce CO2 surface fluxes into GeoTIFF for visualization.

  3. STREET SURFACE STORAGE FOR CONTROL OF COMBINED SEWER SURCHARGE

    EPA Science Inventory

    One type of Best Management Practices (BMPs) available is the use of street storage systems to prevent combined sewer surcharging and to mitigate basement flooding. A case study approach, based primarily on two largely implemented street storage systems, will be used to explain ...

  4. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  5. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  6. A numerical model for thermal energy storage systems utilising encapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Jacob, Rhys; Saman, Wasim; Bruno, Frank

    2016-05-01

    In an effort to reduce the cost of thermal energy storage for concentrated solar power plants, a thermocline storage concept was investigated. Two systems were investigated being a sensible-only and an encapsulated phase change system. Both systems have the potential to reduce the storage tank volume and/or reduce the cost of the filler material, thereby reducing the cost of the system when compared to current two-tank molten salt systems. The objective of the current paper is to create a numerical model capable of designing and simulating the aforementioned thermocline storage concepts in the open source programming language known as Python. The results of the current study are compared to previous numerical results and are found to be in good agreement.

  7. Alternative energy sources IV; Proceedings of the Fourth Miami International Conference, Miami Beach, FL, December 14-16, 1981. Volume 1 - Solar Collectors Storage

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    1982-10-01

    Aspects of solar measurements, solar collectors, selective coatings, thermal storage, phase change storage, and heat exchangers are discussed. The analysis and testing of flat-plate solar collectors are addressed. The development and uses of plastic collectors, a solar water heating system, solar energy collecting oil barrels, a glass collector panel, and a two-phase thermosyphon system are considered. Studies of stratification in thermal storage, of packed bed and fluidized bed systems, and of thermal storage in solar towers, in wall passive systems, and in reversible chemical reactions are reported. Phase change storage by direct contact processes and in residential solar space heating and cooling is examined, as are new materials and surface characteristics for solar heat storage. The use of R-11 and Freon-113 in heat exchange is discussed. No individual items are abstracted in this volume

  8. Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials

    NASA Astrophysics Data System (ADS)

    Kanimozhi, B., Dr.; Harish, Kasilanka; Sai Tarun, Bellamkonda; Saty Sainath Reddy, Pogaku; Sai Sujeeth, Padakandla

    2017-05-01

    The objective of the study is to investigate the thermal characteristics of charging and discharge processes of fabricated thermal energy storage system using Phase change materials. Experiments were performed with phase change materials in which a storage tank have designed and developed to enhance the heat transfer rate from the solar tank to the PCM storage tank. The enhancement of heat transfer can be done by using a number of copper tubes in the fabricated storage tank. This storage tank can hold or conserve heat energy for a much longer time than the conventional water storage system. Performance evaluations of experimental results during charging and discharging processes of paraffin wax have discussed. In which heat absorption and heat rejection have been calculated with various flow rate.

  9. Could Blobs Fuel Storage-Based Convergence between HPC and Big Data?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matri, Pierre; Alforov, Yevhen; Brandon, Alvaro

    The increasingly growing data sets processed on HPC platforms raise major challenges for the underlying storage layer. A promising alternative to POSIX-IO- compliant file systems are simpler blobs (binary large objects), or object storage systems. Such systems offer lower overhead and better performance at the cost of largely unused features such as file hierarchies or permissions. Similarly, blobs are increasingly considered for replacing distributed file systems for big data analytics or as a base for storage abstractions such as key-value stores or time-series databases. This growing interest in such object storage on HPC and big data platforms raises the question:more » Are blobs the right level of abstraction to enable storage-based convergence between HPC and Big Data? In this paper we study the impact of blob-based storage for real-world applications on HPC and cloud environments. The results show that blobbased storage convergence is possible, leading to a significant performance improvement on both platforms« less

  10. Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki

    Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.

  11. Battery energy storage market feasibility study -- Expanded report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and asmore » a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  12. Systems analysis techniques for annual cycle thermal energy storage solar systems

    NASA Astrophysics Data System (ADS)

    Baylin, F.

    1980-07-01

    Community-scale annual cycle thermal energy storage solar systems are options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently used to examine the economic trade-off between collector field area and storage capacity. Programs directed toward developing other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.

  13. Thermodynamic Performance and Cost Optimization of a Novel Hybrid Thermal-Compressed Air Energy Storage System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz

    Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less

  14. Influence of storage time on vitrified human cleavage-stage embryos froze in open system.

    PubMed

    Li, Wei; Zhao, Wanqiu; Xue, Xia; Zhang, Silin; Zhang, Xin; Shi, Juanzi

    2017-02-01

    During in vitro fertilization, rapid growth of vitrification and liquid nitrogen storage of embryos have been well characterized. However, the effect of storage time on vitrified cleavage-stage embryos in an open system is poorly understood. To investigate the influence of storage time on the survival and pregnancy outcomes of vitrified human cleavage-stage embryos froze and stored in an open system. A retrospective study of 786 vitrified-warmed cycles of 735 patients was performed from January 2013 to October 2013. The cycles were divided into five groups according to storage time: 1-3 months, 4-6 months, 7-12 months, 13-24 and 25-60 months. The clinical outcomes of cycles with different storage time were analyzed. There were no significant differences of the survival rate, clinical pregnancy outcomes, birth rate, gestational weeks and singleton birthweights at various storage times. For vitrified embryos froze and stored in an open system, the storage time would not influence the survival rate and pregnancy outcomes by storage time up to 5 years.

  15. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  16. Comprehensive monitoring for heterogeneous geographically distributed storage

    DOE PAGES

    Ratnikova, Natalia; Karavakis, E.; Lammel, S.; ...

    2015-12-23

    Storage capacity at CMS Tier-1 and Tier-2 sites reached over 100 Petabytes in 2014, and will be substantially increased during Run 2 data taking. The allocation of storage for the individual users analysis data, which is not accounted as a centrally managed storage space, will be increased to up to 40%. For comprehensive tracking and monitoring of the storage utilization across all participating sites, CMS developed a space monitoring system, which provides a central view of the geographically dispersed heterogeneous storage systems. The first prototype was deployed at pilot sites in summer 2014, and has been substantially reworked since then.more » In this study, we discuss the functionality and our experience of system deployment and operation on the full CMS scale.« less

  17. Shuttle cryogenic supply system optimization study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Technical information on different cryogenic supply systems is presented for selecting representative designs. Parametric data and sensitivity studies, and an evaluation of related technology status are included. An integrated mathematical model for hardware program support was developed. The life support system, power generation, and propellant supply are considered. The major study conclusions are the following: Optimum integrated systems tend towards maximizing liquid storage. Vacuum jacketing of tanks is a major effect on integrated systems. Subcritical storage advantages over supercritical storage decrease as the quantity of propellant or reactant decreases. Shuttle duty cycles are not severe. The operational mode has a significant effect on reliability. Components are available for most subsystem applications. Subsystems and components require a minimum amount of technology development.

  18. Balancing autonomy and utilization of solar power and battery storage for demand based microgrids

    NASA Astrophysics Data System (ADS)

    Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  19. Can storage reduce electricity consumption? A general equation for the grid-wide efficiency impact of using cooling thermal energy storage for load shifting

    NASA Astrophysics Data System (ADS)

    Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.

    2018-02-01

    This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.

  20. Storage system architectures and their characteristics

    NASA Technical Reports Server (NTRS)

    Sarandrea, Bryan M.

    1993-01-01

    Not all users storage requirements call for 20 MBS data transfer rates, multi-tier file or data migration schemes, or even automated retrieval of data. The number of available storage solutions reflects the broad range of user requirements. It is foolish to think that any one solution can address the complete range of requirements. For users with simple off-line storage requirements, the cost and complexity of high end solutions would provide no advantage over a more simple solution. The correct answer is to match the requirements of a particular storage need to the various attributes of the available solutions. The goal of this paper is to introduce basic concepts of archiving and storage management in combination with the most common architectures and to provide some insight into how these concepts and architectures address various storage problems. The intent is to provide potential consumers of storage technology with a framework within which to begin the hunt for a solution which meets their particular needs. This paper is not intended to be an exhaustive study or to address all possible solutions or new technologies, but is intended to be a more practical treatment of todays storage system alternatives. Since most commercial storage systems today are built on Open Systems concepts, the majority of these solutions are hosted on the UNIX operating system. For this reason, some of the architectural issues discussed focus around specific UNIX architectural concepts. However, most of the architectures are operating system independent and the conclusions are applicable to such architectures on any operating system.

  1. A general model for techno-economic analysis of CSP plants with thermochemical energy storage systems

    NASA Astrophysics Data System (ADS)

    Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.

    2017-06-01

    Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.

  2. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    NASA Astrophysics Data System (ADS)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  3. A modeling of dynamic storage assignment for order picking in beverage warehousing with Drive-in Rack system

    NASA Astrophysics Data System (ADS)

    Hadi, M. Z.; Djatna, T.; Sugiarto

    2018-04-01

    This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.

  4. Gas chromatographic column for the storage of sample profiles

    NASA Technical Reports Server (NTRS)

    Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.

    1994-01-01

    The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.

  5. Data Resilience in the dCache Storage System

    DOE PAGES

    Rossi, A. L.; Adeyemi, F.; Ashish, A.; ...

    2017-11-23

    In this study we discuss design, implementation considerations, and performance of a new Resilience Service in the dCache storage system responsible for file availability and durability functionality.

  6. An analysis of image storage systems for scalable training of deep neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Young, Steven R; Patton, Robert M

    This study presents a principled empirical evaluation of image storage systems for training deep neural networks. We employ the Caffe deep learning framework to train neural network models for three different data sets, MNIST, CIFAR-10, and ImageNet. While training the models, we evaluate five different options to retrieve training image data: (1) PNG-formatted image files on local file system; (2) pushing pixel arrays from image files into a single HDF5 file on local file system; (3) in-memory arrays to hold the pixel arrays in Python and C++; (4) loading the training data into LevelDB, a log-structured merge tree based key-valuemore » storage; and (5) loading the training data into LMDB, a B+tree based key-value storage. The experimental results quantitatively highlight the disadvantage of using normal image files on local file systems to train deep neural networks and demonstrate reliable performance with key-value storage based storage systems. When training a model on the ImageNet dataset, the image file option was more than 17 times slower than the key-value storage option. Along with measurements on training time, this study provides in-depth analysis on the cause of performance advantages/disadvantages of each back-end to train deep neural networks. We envision the provided measurements and analysis will shed light on the optimal way to architect systems for training neural networks in a scalable manner.« less

  7. Mass storage systems for data transport in the early space station era 1992-1998

    NASA Technical Reports Server (NTRS)

    Carper, Richard (Editor); Dalton, John (Editor); Healey, Mike (Editor); Kempster, Linda (Editor); Martin, John (Editor); Mccaleb, Fred (Editor); Sobieski, Stanley (Editor); Sos, John (Editor)

    1987-01-01

    NASA's Space Station Program will provide a vehicle to deploy an unprecedented number of data producing experiments and operational devices. Peak down link data rates are expected to be in the 500 megabit per second range and the daily data volume could reach 2.4 terabytes. Such startling requirements inspired an internal NASA study to determine if economically viable data storage solutions are likely to be available to support the Ground Data Transport segment of the NASA data system. To derive the requirements for data storage subsystems, several alternative data transport architectures were identified with different degrees of decentralization. Data storage operations at each subsystem were categorized based on access time and retrieval functions, and reduced to the following types of subsystems: First in First out (FIFO) storage, fast random access storage, and slow access with staging. The study showed that industry funded magnetic and optical storage technology has a reasonable probability of meeting these requirements. There are, however, system level issues that need to be addressed in the near term.

  8. A Study of NetCDF as an Approach for High Performance Medical Image Storage

    NASA Astrophysics Data System (ADS)

    Magnus, Marcone; Coelho Prado, Thiago; von Wangenhein, Aldo; de Macedo, Douglas D. J.; Dantas, M. A. R.

    2012-02-01

    The spread of telemedicine systems increases every day. The systems and PACS based on DICOM images has become common. This rise reflects the need to develop new storage systems, more efficient and with lower computational costs. With this in mind, this article discusses a study for application in NetCDF data format as the basic platform for storage of DICOM images. The study case comparison adopts an ordinary database, the HDF5 and the NetCDF to storage the medical images. Empirical results, using a real set of images, indicate that the time to retrieve images from the NetCDF for large scale images has a higher latency compared to the other two methods. In addition, the latency is proportional to the file size, which represents a drawback to a telemedicine system that is characterized by a large amount of large image files.

  9. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  10. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  11. Li-Decorated β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study.

    PubMed

    Liu, Tingting; Chen, Yuhong; Wang, Haifeng; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-12-07

    The hydrogen storage properties of pristine β 12 -borophene and Li-decorated β 12 -borophene are systemically investigated by means of first-principles calculations based on density functional theory. The adsorption sites, adsorption energies, electronic structures, and hydrogen storage performance of pristine β 12 -borophene/H₂ and Li- β 12 -borophene/H₂ systems are discussed in detail. The results show that H₂ is dissociated into Two H atoms that are then chemisorbed on β 12 -borophene via strong covalent bonds. Then, we use Li atom to improve the hydrogen storage performance and modify the hydrogen storage capacity of β 12 -borophene. Our numerical calculation shows that Li- β 12 -borophene system can adsorb up to 7 H₂ molecules; while 2Li- β 12 -borophene system can adsorb up to 14 H₂ molecules and the hydrogen storage capacity up to 10.85 wt %.

  12. A dynamic programming approach to estimate the capacity value of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul

    2013-09-17

    Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less

  13. Twelve Principles for Green Energy Storage in Grid Applications.

    PubMed

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  14. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  15. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  16. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  17. Joint Planning Of Energy Storage and Transmission Considering Wind-Storage Combined System and Demand Side Response

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.

    2017-12-01

    In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.

  18. How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany

    DOE PAGES

    Cebulla, Felix; Haas, Jannik; Eichman, Josh; ...

    2018-02-03

    Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less

  19. How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebulla, Felix; Haas, Jannik; Eichman, Josh

    Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less

  20. Systems biology of stored blood cells: can it help to extend the expiration date?

    PubMed

    Paglia, Giuseppe; Palsson, Bernhard Ø; Sigurjonsson, Olafur E

    2012-12-05

    With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms through quantitative measurements and data integration in mathematical models. The biological knowledge for a target organism can be translated in a mathematical format and used to compute physiological properties. The use of systems biology represents a concrete solution in the study of blood cell storage lesions, and it may open up new avenues towards developing better storage methods and better storage media, thereby extending the storage period of blood components. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  2. Shuttle orbiter storage locker system: A study

    NASA Technical Reports Server (NTRS)

    Butler, D. R.; Schowalter, D. T.; Weil, D. C.

    1973-01-01

    Study has been made to assure maximum utility of storage space and crew member facilities in planned space shuttle orbiter. Techniques discussed in this study should be of interest to designers of storage facilities in which space is at premium and vibration is severe. Manufacturers of boats, campers, house trailers, and aircraft could benefit from it.

  3. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  4. Electrochemical Energy Storage for an Orbiting Space Station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.

  5. Demand Response and Energy Storage Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less

  6. Demand Response and Energy Storage Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ookie; Cheung, Kerry

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less

  7. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  8. Fourth NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1994-01-01

    This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994.

  9. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    PubMed Central

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations. The Total Groundwater Stress (TGS) ratio, defined as the ratio of total storage to the groundwater depletion rate, is used to explore the timescales to depletion in the world's largest aquifer systems and associated groundwater buffer capacity. We find that the current state of knowledge of large‐scale groundwater storage has uncertainty ranges across orders of magnitude that severely limit the characterization of resilience in the study aquifers. Additionally, we show that groundwater availability, traditionally defined as recharge and redefined in this study as total storage, can alter the systems that are considered to be stressed versus unstressed. We find that remote sensing observations from NASA's Gravity Recovery and Climate Experiment can assist in providing such information at the scale of a whole aquifer. For example, we demonstrate that a groundwater depletion rate in the Northwest Sahara Aquifer System of 2.69 ± 0.8 km3/yr would result in the aquifer being depleted to 90% of its total storage in as few as 50 years given an initial storage estimate of 70 km3. PMID:26900184

  10. In-space inertial energy storage design

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Evans, H. E.

    1981-01-01

    Flywheel energy storage is a means of significantly improving the performance of space power systems. Two study contracts have been completed to investigate the merits of a magnetically suspended, ironless armature, ring rotor 'Mechanical Capacitor' design. The design of a suitable energy storage system is evaluated, taking into account baseline requirements, the motor generator, details regarding the suspension design, power conditioning, the rotor, and an example design. It appears on the basis of this evaluation that the inertial (flywheel) energy storage design is feasible.

  11. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less

  12. Low-cost high performance distributed data storage for multi-channel observations

    NASA Astrophysics Data System (ADS)

    Liu, Ying-bo; Wang, Feng; Deng, Hui; Ji, Kai-fan; Dai, Wei; Wei, Shou-lin; Liang, Bo; Zhang, Xiao-li

    2015-10-01

    The New Vacuum Solar Telescope (NVST) is a 1-m solar telescope that aims to observe the fine structures in both the photosphere and the chromosphere of the Sun. The observational data acquired simultaneously from one channel for the chromosphere and two channels for the photosphere bring great challenges to the data storage of NVST. The multi-channel instruments of NVST, including scientific cameras and multi-band spectrometers, generate at least 3 terabytes data per day and require high access performance while storing massive short-exposure images. It is worth studying and implementing a storage system for NVST which would balance the data availability, access performance and the cost of development. In this paper, we build a distributed data storage system (DDSS) for NVST and then deeply evaluate the availability of real-time data storage on a distributed computing environment. The experimental results show that two factors, i.e., the number of concurrent read/write and the file size, are critically important for improving the performance of data access on a distributed environment. Referring to these two factors, three strategies for storing FITS files are presented and implemented to ensure the access performance of the DDSS under conditions of multi-host write and read simultaneously. The real applications of the DDSS proves that the system is capable of meeting the requirements of NVST real-time high performance observational data storage. Our study on the DDSS is the first attempt for modern astronomical telescope systems to store real-time observational data on a low-cost distributed system. The research results and corresponding techniques of the DDSS provide a new option for designing real-time massive astronomical data storage system and will be a reference for future astronomical data storage.

  13. Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales.

    PubMed

    Chowdhury, Rubel Biswas; Chakraborty, Priyanka

    2016-08-01

    Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.

  14. Role of blooming in determining the storage stability of lipid-based dosage forms.

    PubMed

    Khan, Nurzalina; Craig, Duncan Q M

    2004-12-01

    Gelucire 50/13 alone and solid dispersions in this material containing two model drugs (10% w/w caffeine and paracetamol) have been studied with a view to establishing the mechanism underpinning changes in drug-release characteristics as a function of storage time and temperature. The lipid systems were fabricated into tablets and stored for up to 180 days at temperatures of 20 and 37 degrees C. The dispersions were studied using differential scanning calorimetry (DSC), scanning electron microscopy, and dissolution testing. DSC studies indicated that the Gelucire 50/13 exists in two principal melting forms (melting points 38 and 43 degrees C) that undergo transformation to the higher melting form on storage at 37 degrees C. Scanning electron microscopy studies indicated that the systems exhibit "blooming," with crystal formation on the surface being apparent on storage at both temperatures. The dissolution rate increased on storage, with the effect being particularly marked at higher storage temperatures and for the paracetamol systems. However, whereas these changes corresponded well to those seen for the morphology, the correlation between the changes in dissolution and those of the DSC profiles was poor. The study has suggested a novel explanation for the storage instability of Gelucire 50/13 whereby the change in dissolution is associated not with molecular rearrangement as such but with the gross distribution of the constituent components, this in turn altering the physical integrity of the lipid bases. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Experimental study on latent heat storage characteristics of W/O emulsion -Supercooling rate of dispersed water drops by direct contact heat exchange-

    NASA Astrophysics Data System (ADS)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Horibe, Akihiko; Haruki, Naoto; Inaba, Hideo

    2013-04-01

    Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ˜ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.

  16. The antioxidant system of seminal fluid during in vitro storage of sterlet Acipenser ruthenus sperm.

    PubMed

    Dzyuba, Viktoriya; Cosson, Jacky; Dzyuba, Borys; Yamaner, Gunes; Rodina, Marek; Linhart, Otomar

    2016-04-01

    The role of the seminal fluid antioxidant system in protection against damage to spermatozoa during in vitro sperm storage is unclear. This study investigated the effect of in vitro storage of sterlet Acipenser ruthenus spermatozoa together with seminal fluid for 36 h at 4 °C on spermatozoon motility rate and curvilinear velocity, thiobarbituric acid reactive substance level, and components of enzyme and non-enzyme antioxidant system (superoxide dismutase and catalase activity and uric acid concentration) in seminal fluid. Spermatozoon motility parameters after sperm storage were significantly decreased, while the level of thiobarbituric acid reactive substances, activity of superoxide dismutase and catalase, and uric acid concentration did not change. Our findings suggest that the antioxidant system of sterlet seminal fluid is effective in preventing oxidative stress during short-term sperm storage and prompt future investigations of changes in spermatozoon homeostasis and in spermatozoon plasma membrane structure which are other possible reasons of spermatozoon motility deterioration upon sperm storage.

  17. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    DOE PAGES

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; ...

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less

  18. Collection and dissemination of thermal energy storage system information for the pulp and paper industry

    NASA Technical Reports Server (NTRS)

    Edde, H.

    1981-01-01

    The collection and dissemination of thermal energy storage (TES) system technology for the pulp and paper industry with the intent of reducing fossil fuel usage is discussed. The study plan is described and a description presented of example TES systems.

  19. NREL Testing Erigo's and EaglePicher's Microgrid Energy Storage System |

    Science.gov Websites

    EaglePicher's Microgrid Energy Storage System NREL researchers are testing an energy storage system for a contains three independently controllable energy storage technologies. Photo of energy storage system hardware in a laboratory Photo by Dennis Schroeder Microgrids-and effective storage systems supporting them

  20. Heat-pump cool storage in a clathrate of freon

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  1. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  2. Application of voltage oriented control technique in a fully renewable, wind powered, autonomous system with storage capabilities

    NASA Astrophysics Data System (ADS)

    Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.

    2017-02-01

    The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.

  3. A qualitative content analysis of knowledge storage in nursing education system.

    PubMed

    Karimi Moonaghi, Hossein; Ahanchian, Mohammad Reza; Hassanian, Zahra Marzieh

    2014-10-01

    The need for effective management of intellectual and academic assets is constantly growing. The nursing educational system should be considered as a storage of knowledge since it is deposited in the nursing educational system in the form of intellectual investment. The purpose of the present study was to explore nursing knowledge storage in the nursing educational system. The participants of this study consisted of eight nursing educators and five students. The inductive content analysis method was used in this research. Participants were interviewed through the semi-structured method. Data analysis was done by five stage framework approaches. The trustworthiness of the study was ensured through validity and acceptability criteria. Data analysis showed that nursing educators and students were involve in teaching and learning activities by storing knowledge in subjective and objective forms. Knowledge was gained through the different educational activities of the nursing educators and through contact with their peers. Moreover, the nursing students gained knowledge for better learning and a more knowledgeable and advanced performance with the help of the educators. This study revealed the main components of knowledge storage. An enhanced preservation of explicit knowledge is recommended in the nursing educational system so that in the future, students and educators can easily access the same knowledge from storage sources and not from individuals who might be carrying only a single experience of the subject.

  4. A Qualitative Content Analysis of Knowledge Storage in Nursing Education System

    PubMed Central

    Karimi Moonaghi, Hossein; Ahanchian, Mohammad Reza; Hassanian, Zahra Marzieh

    2014-01-01

    Background: The need for effective management of intellectual and academic assets is constantly growing. The nursing educational system should be considered as a storage of knowledge since it is deposited in the nursing educational system in the form of intellectual investment. Objectives: The purpose of the present study was to explore nursing knowledge storage in the nursing educational system. Materials and Methods: The participants of this study consisted of eight nursing educators and five students. The inductive content analysis method was used in this research. Participants were interviewed through the semi-structured method. Data analysis was done by five stage framework approaches. The trustworthiness of the study was ensured through validity and acceptability criteria. Results: Data analysis showed that nursing educators and students were involve in teaching and learning activities by storing knowledge in subjective and objective forms. Knowledge was gained through the different educational activities of the nursing educators and through contact with their peers. Moreover, the nursing students gained knowledge for better learning and a more knowledgeable and advanced performance with the help of the educators. Conclusions: This study revealed the main components of knowledge storage. An enhanced preservation of explicit knowledge is recommended in the nursing educational system so that in the future, students and educators can easily access the same knowledge from storage sources and not from individuals who might be carrying only a single experience of the subject. PMID:25558388

  5. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  6. Attitudes and opinions of nursing and medical staff regarding the supply and storage of medicinal products before and after the installation of a drawer-based automated stock-control system.

    PubMed

    Ardern-Jones, Joanne; Hughes, Donald K; Rowe, Philip H; Mottram, David R; Green, Christopher F

    2009-04-01

    This study assessed the attitudes of Emergency Department (ED) staff regarding the introduction of an automated stock-control system. The objectives were to determine attitudes to stock control and replenishment, speed of access to the system, ease of use and the potential for future uses of the system. The study was carried out in the Countess of Chester Hospital NHS Foundation Trust (COCH) ED, which is attended by over 65,000 patients each year. All 68 ED staff were sent pre-piloted, semi-structured questionnaires and reminders, before and after automation of medicines stock control. Pre-implementation, 35 staff (66.1% of respondents) reported that problems occurred with access to medicine storage keys 'very frequently' or 'frequently'. Twenty-eight (52.8%) respondents 'agreed' or 'strongly agreed' that medicines were quickly accessed, which rose to 41 (77%) post-automation (P < 0.001). Improvement was reported in stock replenishment and storage of stock injections and oral medicines, but there were mixed opinions regarding storage of bulk fluids and refrigerated items. Twenty-seven (51.9%) staff reported access to the system within 1 min and 17 (32.7%) staff reported access within 1-2 min. The majority of staff found the system 'easy' or 'very easy' to use and there was a non-significant relationship between previous use of information technology and acceptance of the system. From a staff satisfaction perspective, automation improved medicines storage, security and stock control, and addressed the problem of searching for keys to storage areas. Concerns over familiarity with computers, queuing, speed of access and an improved audit trail do not appear to have been issues, when compared with the previous manual storage of medicines.

  7. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    NASA Astrophysics Data System (ADS)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  8. POSIX and Object Distributed Storage Systems Performance Comparison Studies With Real-Life Scenarios in an Experimental Data Taking Context Leveraging OpenStack Swift & Ceph

    NASA Astrophysics Data System (ADS)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing infrastructure has become an intensive dynamic system used for first-hand data collection and analysis resulting in a dense collection of data output. As we have transitioned to our current state, inefficient, limited storage systems have become an impediment to fast feedback to online shift crews. Motivation for a centrally accessible, scalable and redundant distributed storage system had become a necessity in this environment. OpenStack Swift Object Storage and Ceph Object Storage are two eye-opening technologies as community use and development have led to success elsewhere. In this contribution, OpenStack Swift and Ceph have been put to the test with single and parallel I/O tests, emulating real world scenarios for data processing and workflows. The Ceph file system storage, offering a POSIX compliant file system mounted similarly to an NFS share was of particular interest as it aligned with our requirements and was retained as our solution. I/O performance tests were run against the Ceph POSIX file system and have presented surprising results indicating true potential for fast I/O and reliability. STAR'S online compute farm historical use has been for job submission and first hand data analysis. The goal of reusing the online compute farm to maintain a storage cluster and job submission will be an efficient use of the current infrastructure.

  9. Thermal Analysis of of Near-Isothermal Compressed Gas Energy Storage System

    DOE PAGES

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; ...

    2016-01-01

    In this paper, alternative system configurations for a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system, which can store energy via input of electricity and heat and deliver dispatchable electricity, is presented. The proposed system is low-cost and hybridizes compressed air and pumped hydro storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. This study reveals that implementing direct-contact low grade heat exchange via sprayed falling droplets to cool the gas during charging (compression) and warm the gas during discharging (expansion) can be achieved through a secondary recirculating loop of liquid.more » This study shows that if the recirculating liquid loop is pre-conditioned with waste-heat prior to spraying during gas expansion and considering all the round trip conversion losses from standard 120 V 60 HZ electricity input and output with utilization of low grade heat at 90 C the alternative system design leads to a 16% boost in round trip efficiency of the electricity storage to elec = 82% with an energy density of ED = 3.59 MJ/m3.« less

  10. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  11. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  12. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less

  13. Development and evaluation of a low-cost and high-capacity DICOM image data storage system for research.

    PubMed

    Yakami, Masahiro; Ishizu, Koichi; Kubo, Takeshi; Okada, Tomohisa; Togashi, Kaori

    2011-04-01

    Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. "Ordinary" hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.

  14. Stand-alone digital data storage control system including user control interface

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)

    1994-01-01

    A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows themore » relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.« less

  16. Energy Storage Systems: A Manufacturer’s Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallant, Eric

    From a manufacturer’s perspective, Eric Gallant of GS Battery presents a case study of energy storage installations, emphasizing energy storage in terms of its impact on people’s lives, as well as changes in such related areas as evolving codes and standards.

  17. Study to establish cost projections for production of Redox chemicals

    NASA Technical Reports Server (NTRS)

    Walther, J. F.; Greco, C. C.; Rusinko, R. N.; Wadsworth, A. L., III

    1982-01-01

    A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

  18. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Abdoulaye, D.; Koalaga, Z.; Zougmore, F.

    2012-02-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  19. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  20. Thermal Storage Applications Workshop. Volume 2: Contributed Papers

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.

  1. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  2. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  3. Engineering the Implementation of Pumped Hydro Energy Storage in the Arizona Power Grid

    NASA Astrophysics Data System (ADS)

    Dixon, William Jesse J.

    This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies. For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated. The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand. The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions. One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.

  4. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe

    This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.

  5. Economic Analysis Case Studies of Battery Energy Storage with SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. Themore » analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.« less

  6. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    PubMed

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also derives important implications for energy scholars, flywheel practitioners, and policymakers.

  7. Limited Investigation into Regenerative Braking and Energy Storage for Mass Transit Systems

    DOT National Transportation Integrated Search

    1978-03-01

    This study examines the technical and economic aspects of a regenerative braking/flywheel energy storage subway system. In order to define the analytical models accurately, it was necessary to gather data on the trains, rail network, schedules, and a...

  8. An Open-Source Storage Solution for Cryo-Electron Microscopy Samples.

    PubMed

    Ultee, Eveline; Schenkel, Fred; Yang, Wen; Brenzinger, Susanne; Depelteau, Jamie S; Briegel, Ariane

    2018-02-01

    Cryo-electron microscopy (cryo-EM) enables the study of biological structures in situ in great detail and to solve protein structures at Ångstrom level resolution. Due to recent advances in instrumentation and data processing, the field of cryo-EM is a rapidly growing. Access to facilities and national centers that house the state-of-the-art microscopes is limited due to the ever-rising demand, resulting in long wait times between sample preparation and data acquisition. To improve sample storage, we have developed a cryo-storage system with an efficient, high storage capacity that enables sample storage in a highly organized manner. This system is simple to use, cost-effective and easily adaptable for any type of grid storage box and dewar and any size cryo-EM laboratory.

  9. Cavity degradation risk insurance assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, C.; Neill, P.; de Bivort, L.

    1980-01-01

    This study examined the risks and risk management issues involved with the implementation by electric power utilities of compressed air energy storage and underground pumped hydro storage systems. The results are listed in terms of relative risks for the construction and operation of these systems in different geologic deposits, with varying amounts of pressurization, with natural or man-made disasters in the vicinity of the storage equipment, and with different modes of operating the facilities. (LCL)

  10. A Study of Practical Proxy Reencryption with a Keyword Search Scheme considering Cloud Storage Structure

    PubMed Central

    Lee, Im-Yeong

    2014-01-01

    Data outsourcing services have emerged with the increasing use of digital information. They can be used to store data from various devices via networks that are easy to access. Unlike existing removable storage systems, storage outsourcing is available to many users because it has no storage limit and does not require a local storage medium. However, the reliability of storage outsourcing has become an important topic because many users employ it to store large volumes of data. To protect against unethical administrators and attackers, a variety of cryptography systems are used, such as searchable encryption and proxy reencryption. However, existing searchable encryption technology is inconvenient for use in storage outsourcing environments where users upload their data to be shared with others as necessary. In addition, some existing schemes are vulnerable to collusion attacks and have computing cost inefficiencies. In this paper, we analyze existing proxy re-encryption with keyword search. PMID:24693240

  11. A study of practical proxy reencryption with a keyword search scheme considering cloud storage structure.

    PubMed

    Lee, Sun-Ho; Lee, Im-Yeong

    2014-01-01

    Data outsourcing services have emerged with the increasing use of digital information. They can be used to store data from various devices via networks that are easy to access. Unlike existing removable storage systems, storage outsourcing is available to many users because it has no storage limit and does not require a local storage medium. However, the reliability of storage outsourcing has become an important topic because many users employ it to store large volumes of data. To protect against unethical administrators and attackers, a variety of cryptography systems are used, such as searchable encryption and proxy reencryption. However, existing searchable encryption technology is inconvenient for use in storage outsourcing environments where users upload their data to be shared with others as necessary. In addition, some existing schemes are vulnerable to collusion attacks and have computing cost inefficiencies. In this paper, we analyze existing proxy re-encryption with keyword search.

  12. Outlook and Challenges for Hydrogen Storage in Nanoporous Materials

    DOE PAGES

    Broom, D. P.; Webb, C. J.; Hurst, Katherine E.; ...

    2016-02-16

    Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In our article, the current status of the field and future challenges are discussed, ranging from important open fundamental questions, such as the density and volume of the adsorbed phase and its relationship to overall storage capacity, to the development of new functional materials and complete storage system design. With regard to fundamentals, the use of neutron scattering to study adsorbed H 2, suitable adsorption isotherm equations, and the accurate computational modelling and simulation of H 2 adsorption are discussed. We cover new materials andmore » they include flexible metal–organic frameworks, core–shell materials, and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks, the improvement in the thermal conductivity of storage beds, and new storage system concepts and designs.« less

  13. Comparison study of the technical characteristics and financial analysis of electric battery storage systems for residential grid

    NASA Astrophysics Data System (ADS)

    Palivos, Marios; Vokas, Georgios A.; Anastasiadis, Anestis; Papageorgas, Panagiotis; Salame, Chafic

    2018-05-01

    One of the major energy issues of our days is reliable and effective energy generation and supply of electricity grids. In recent years there has been experienced a rapid development and implementation of Renewable Energy Sources (RES) worldwide. On one hand, many Gigawatts of grid-connected renewables are being installed and on the other many Megawatts of hybrid renewable systems for residential use are being installed making use of electric battery systems, in order to cover all daily energy and power needs during. New types of batteries are being developed and many companies have made great progress providing a variety of electricity storage products. The purpose of this research is firstly to highlight the necessity and also the importance of the use of energy storage systems and secondly, through detailed technical and financial simulation analysis using HOMER Pro-optimization software, to compare the technical characteristics and performance of energy storage systems by various leading companies when installed in a residential renewable energy system with a specific load and at the same time to provide the most efficient system economically. Results concerning the operation and the choice of a storage system are derived.

  14. Development of an integrated medical supply information system

    NASA Astrophysics Data System (ADS)

    Xu, Eric; Wermus, Marek; Blythe Bauman, Deborah

    2011-08-01

    The integrated medical supply inventory control system introduced in this study is a hybrid system that is shaped by the nature of medical supply, usage and storage capacity limitations of health care facilities. The system links demand, service provided at the clinic, health care service provider's information, inventory storage data and decision support tools into an integrated information system. ABC analysis method, economic order quantity model, two-bin method and safety stock concept are applied as decision support models to tackle inventory management issues at health care facilities. In the decision support module, each medical item and storage location has been scrutinised to determine the best-fit inventory control policy. The pilot case study demonstrates that the integrated medical supply information system holds several advantages for inventory managers, since it entails benefits of deploying enterprise information systems to manage medical supply and better patient services.

  15. Benefits of production extension and shifting with thermal storage for a 1MW CSP-ORC plant in Morocco

    NASA Astrophysics Data System (ADS)

    Bennouna, El Ghali; Mimet, Abdelaziz; Frej, Hicham

    2016-05-01

    The importance of thermal storage for commercial CSP (concentrated Solar Power) plants has now become obvious, this regardless of the solar technology used and the power cycle. The availability of a storage system to a plant operator brings a lot of possibilities for production management, cash flow optimization and grid stabilizing. In particular, and depending on plant location and local grid strategy, thermal storage can contribute, when wisely used, to control production and adapt it to the demand and / or power unbalances and varying prices. Storage systems design, sizing and configuration are proper to each power plant, hence systems that are now widely installed within large commercial solar plants are not necessarily suited for small scale decentralized production, and will not have the same effects. In this paper the benefits of thermal storage are studied for a 1MWe CSP plant with an ORC (Organic Rankine Cycle), this plant has many specific features which call for a detail analysis about the appropriate storage design and optimum operating strategies for decentralized solutions.

  16. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  17. Sensitivity of the Gravity Recovery and Climate Experiment (GRACE) to the complexity of aquifer systems for monitoring of groundwater

    NASA Astrophysics Data System (ADS)

    Katpatal, Yashwant B.; Rishma, C.; Singh, Chandan K.

    2018-05-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50-90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.

  18. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  19. Peak reduction for commercial buildings using energy storage

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  20. Temperature dependency of the thermal conductivity of porous heat storage media

    NASA Astrophysics Data System (ADS)

    Hailemariam, Henok; Wuttke, Frank

    2018-04-01

    Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named - Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.

  1. Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Martinez, Edwin; Bonsi, C. K.; Mortley, Desmond G.; Hill, Walter A.; Ogbuehi, Cyriacus R.; Loretan, Phil A.

    1989-01-01

    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated.

  2. Emissions impacts of wind and energy storage in a market environment.

    PubMed

    Sioshansi, Ramteen

    2011-12-15

    This study examines the emissions impacts of adding wind and energy storage to a market-based electric power system. Using Texas as a case study, we demonstrate that market power can greatly effect the emissions benefits of wind, due to most of the coal-fired generation being owned by the two dominant firms. Wind tends to have less emissions benefits when generators exercise market power, since coal-fired generation is withheld from the market and wind displaces natural gas-fired generators. We also show that storage can have greater negative emissions impacts in the presence of wind than if only storage is added to the system. This is due to wind increasing on- and off-peak electricity price differences, which increases the amount that storage and coal-fired generation are used. We demonstrate that this effect is exacerbated by market power.

  3. Multi-views storage model and access methods of conversation history in converged IP messaging system

    NASA Astrophysics Data System (ADS)

    Lu, Meilian; Yang, Dong; Zhou, Xing

    2013-03-01

    Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.

  4. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  5. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  6. Storage and executive processes in the frontal lobes.

    PubMed

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  7. Spatial and temporal modeling of sub- and supercritical thermal energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, LA; Ganapathi, GB; Wirz, RE

    2014-05-01

    This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system that can operate from the two-phase (liquid-vapor) to supercritical regimes for storage fluid temperatures typical of concentrating solar power plants. State-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high capital cost of the salts (International Renewable Energy Agency, 2012). The alternate approach explored here opens up the use of low-cost fluids by considering operation at higher pressures associated with the two-phase and supercritical regimes. The main challenge to such a system is itsmore » high pressures and temperatures which necessitate a relatively high-cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. A thermodynamic model is used to evaluate system performance; in particular it predicts the volume of tank wall material needed to encapsulate the storage fluid. The transient temperature of the tank is observed to remain hottest at the storage tank exit, which is beneficial to system operation. It is also shown that there is an optimum storage fluid loading that generates a given turbine energy output while minimizing the required tank wall material. Overall, this study explores opportunities to further improve current solar thermal technologies. The proposed single-tank system shows promise for decreasing the cost of thermal energy storage. (C) 2014 Elsevier Ltd. All rights reserved.« less

  8. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  9. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  10. Potential for a Danish power system using wind energy generators, solar cells and storage

    NASA Astrophysics Data System (ADS)

    Blegaa, S.; Christiansen, G.

    1981-10-01

    Performance characteristics of a combined solar/wind power system equipped with storage and an unspecified back-up power source are studied on the basis of meteorological data in Denmark from 1959-1972. A model for annual production and storage from wind/solar installations is presented, assuming 12% efficiency for the solar cells and various power coefficients of the windmills, in addition to long and short-term storage. Noting that no correlation between wind and solar energy availability was found, and a constant ratio of 60% wind/40% solar was determined to be the optimum mix for large scale power production without taking into consideration the variations among years. It is concluded that 80-90% of the total Danish electrical load can be covered by solar/wind systems, and 100% may be possible with the addition of pumped hydroelectric storage.

  11. On Information Storage Models.

    ERIC Educational Resources Information Center

    Leimkuhler, Ferdinand F.

    The transfer of information through space and time in communication systems is often accompanied by significant delays which give rise to meaningful storage problems. Mathematical models have been developed for the study of these kinds of problems which are applicable to the design of manual, library-type, or mechanized information storage and…

  12. High-temperature molten salt solar thermal systems

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Leach, J. W.; Stern, G.

    Conceptual designs of a solar thermal central receiver and a thermal storage subsystem were analyzed to estimate thermal losses and to assess the economics of high-temperature applications with molten salt transport fluids. Modifications to a receiver design being developed by the Martin Marietta Corporation were studied to investigate possible means for improving efficiency at high temperatures. Computations were made based on conceptual design of internally insulated high temperature storage tanks to estimate cost and performance. A study of a potential application of the system for thermochemical production of hydrogen indicates that thermal storage at 1100 C will be economically attractive.

  13. Monitoring of carbon monoxide in residences with bulk wood pellet storage in the Northeast United States.

    PubMed

    Rossner, Alan; Jordan, Carolyn E; Wake, Cameron; Soto-Garcia, Lydia

    2017-10-01

    The interest in biomass fuel is continuing to expand globally and in the northeastern United States as wood pellets are becoming a primary source of fuel for residential and small commercial systems. Wood pellets for boilers are often stored in basement storage rooms or large bag-type containers. Due to the enclosed nature of these storage areas, the atmosphere may exhibit increased levels of carbon monoxide. Serious accidents in Europe have been reported over the last decade in which high concentrations of carbon monoxide (CO) have been found in or near bulk pellet storage containers. The aim of this study was to characterize the CO concentrations in areas with indoor storage of bulk wood pellets. Data was obtained over approximately 7 months (December 2013 to June 2014) at 25 sites in New Hampshire and Massachusetts: 16 homes using wood pellet boilers with indoor pellet storage containers greater than or equal to 3 ton capacity; 4 homes with wood pellet heating systems with outdoor pellet storage; 4 homes using other heating fuels; and a university laboratory site. CO monitors were set up in homes to collect concentrations of CO in the immediate vicinity of wood pellet storage containers, and data were then compared to those of homes using fossil fuel systems. The homes monitored in this study provided a diverse set of housing stock spanning two and a half centuries of construction, with homes built from 1774 to 2013, representing a range of air exchange rates. The CO concentration data from each home was averaged hourly and then compared to a threshold of 9 ppm. While concentrations of CO were generally low for the homes studied, the need to properly design storage locations for pellets is and will remain a necessary component of wood pellet heating systems to minimize the risk of CO exposure. This paper is an assessment of carbon monoxide (CO) exposure from bulk wood pellet storage in homes in New Hampshire and Massachusetts. Understanding the CO concentrations in homes allows for better designs for storage bins and ventilation for storage areas. Hence, uniform policies for stored wood pellets in homes, schools, and businesses can be framed to ensure occupant safety. Currently in New York State rebates for the installation of wood pellet boilers are only provided if the bulk pellet storage is outside of the home, yet states such as New Hampshire, Vermont, and Maine currently do not have these restrictions.

  14. Methods to determine transit losses for return flows of transmountain water in Fountain Creek between Colorado Springs and the Arkansas River, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1988-01-01

    Methods were developed by which transit losses could be determined for transmountain return flows in Fountain Creek between Colorado Springs, Colorado, and its confluence with the Arkansas River. The study reach is a complex hydrologic system wherein a substantially variable streamflow interacts with an alluvial aquifer. The study approach included: (1) calibration and verification of a streamflow-routing model that contained a bank-storage-discharge component; (2) use of the model to develop the methods by which transit losses could be calculated; and (3) design of an application method for calculating daily transit loss using the model results. Sources of transit losses that were studied are bank storage, channel storage, and evaporation. Magnitude of bank-storage loss primarily depends on duration of a recovery period during which water lost to bank storage is returned to the stream. Net loss to bank storage can vary from about 50% for a 0-day recovery period to about 2% for a 180-day recovery period. Virtually all water lost to bank storage could be returned to the stream with longer recovery periods. Channel-storage loss was determined to be about 10% of a release quantity. Because the loss on any given day is totally recovered in the form of gains from channel storage on the subsequent day, channel storage is a temporary transit loss. Evaporation loss generally is less than 5% of a given daily transmountain return-flow release, depending on month of year. Evaporation losses are permanently lost from the system. (USGS)

  15. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  16. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  17. Study on parallel and distributed management of RS data based on spatial database

    NASA Astrophysics Data System (ADS)

    Chen, Yingbiao; Qian, Qinglan; Wu, Hongqiao; Liu, Shijin

    2009-10-01

    With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.

  18. Study on parallel and distributed management of RS data based on spatial data base

    NASA Astrophysics Data System (ADS)

    Chen, Yingbiao; Qian, Qinglan; Liu, Shijin

    2006-12-01

    With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.

  19. Optimized efficiency of all-electric ships by dc hybrid power systems

    NASA Astrophysics Data System (ADS)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  20. Soil classification and carbon storage in cacao agroforestry farming systems of Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is...

  1. Using dCache in Archiving Systems oriented to Earth Observation

    NASA Astrophysics Data System (ADS)

    Garcia Gil, I.; Perez Moreno, R.; Perez Navarro, O.; Platania, V.; Ozerov, D.; Leone, R.

    2012-04-01

    The object of LAST activity (Long term data Archive Study on new Technologies) is to perform an independent study on best practices and assessment of different archiving technologies mature for operation in the short and mid-term time frame, or available in the long-term with emphasis on technologies better suited to satisfy the requirements of ESA, LTDP and other European and Canadian EO partners in terms of digital information preservation and data accessibility and exploitation. During the last phase of the project, a testing of several archiving solutions has been performed in order to evaluate their suitability. In particular, dCache, aimed to provide a file system tree view of the data repository exchanging this data with backend (tertiary) Storage Systems as well as space management, pool attraction, dataset replication, hot spot determination and recovery from disk or node failures. Connected to a tertiary storage system, dCache simulates unlimited direct access storage space. Data exchanges to and from the underlying HSM are performed automatically and invisibly to the user Dcache was created to solve the requirements of big computer centers and universities with big amounts of data, putting their efforts together and founding EMI (European Middleware Initiative). At the moment being, Dcache is mature enough to be implemented, being used by several research centers of relevance (e.g. LHC storing up to 50TB/day). This solution has been not used so far in Earth Observation and the results of the study are summarized in this article, focusing on the capacities over a simulated environment to get in line with the ESA requirements for a geographically distributed storage. The challenge of a geographically distributed storage system can be summarized as the way to provide a maximum quality for storage and dissemination services with the minimum cost.

  2. Establishment of key grid-connected performance index system for integrated PV-ES system

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  3. A Study of Solar Thermal Propulsion System Enhancement via Thermal Storage and Thermal-electric Conversion

    DTIC Science & Technology

    2010-03-24

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 24-03-2010 2. REPORT TYPE...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Study of Solar Thermal Propulsion System...explored here are the optimization of thermal storage using a phase change material, design considerations assuming a microsatellite system in low Earth

  4. Storage system software solutions for high-end user needs

    NASA Technical Reports Server (NTRS)

    Hogan, Carole B.

    1992-01-01

    Today's high-end storage user is one that requires rapid access to a reliable terabyte-capacity storage system running in a distributed environment. This paper discusses conventional storage system software and concludes that this software, designed for other purposes, cannot meet high-end storage requirements. The paper also reviews the philosophy and design of evolving storage system software. It concludes that this new software, designed with high-end requirements in mind, provides the potential for solving not only the storage needs of today but those of the foreseeable future as well.

  5. Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment.

    PubMed

    Sun, Jiongming; Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Li, Hongmin; Ma, Chunxia

    2018-06-09

    Benthic Oscillatoria sp. may form dense surface blooms especially under eutrophic and calm conditions, which poses a threat to drinking water safety because it can produce toxic and odorous metabolites. This is the first study to investigate the effect of the conventional coagulant polyaluminium ferric chloride (PAFC) on removal of Oscillatoria sp., and the behavior of Oscillatoria sp. cells in sludges formed from different dosages of PAFC (control, optimum, and overdose system) during storage was also studied. Oscillatoria sp. cells can be removed efficiently by coagulation of PAFC. The adverse environmental stresses of sludge, such as lack of light and anoxic environment, decrease cell viability and induce the increase of superoxide dismutase activity (SOD) and malondialdehyde content (MDA) in Oscillatoria sp. cells during the first 4 days. Because Oscillatoria sp. can adapt to the low-light and hypoxic circumstances in sludge gradually, the cells regrow with prolonged storage time. Compared to planktonic Microcystis aeruginosa and Cylindrospermopsis raciborskii, regrowth of Oscillatoria sp. during storage may present a bigger threat, even though Microcystis aeruginosa and Cylindrospermopsis raciborskii cells will be damaged and release toxic compounds. Growth rates of algae in coagulated systems were lower than that in control system because of the restriction of flocs. It is worth noting that the chlorophyll a level was increased by a factor of 3.5 in the optimal-dose system, and worse, the overdose system increased by a factor of 6 in chlorophyll a after 8 d storage due to the benefit of higher Fe levels. Concentrations of extracellular geosmin and cylindrospermopsin also increased during storage, especially after 4 d, and varied in the following sequence for a given storage duration: control system > overdose system > optimum system. Overall, due to decrease of SOD and MDA in Oscillatoria sp. cells after 4 d storage, algae cells regrew rapidly, especially in overdose system. Hence, sludge should be treated within 4 d and excess PAFC dosing should be avoided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Numerical modeling of underground storage system for natural gas

    NASA Astrophysics Data System (ADS)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  7. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    NASA Technical Reports Server (NTRS)

    Trouong, Long V.; Wolff, Frederic J.; Dravid, Narayan V.; Li, Ponlee

    2000-01-01

    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues.

  8. Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures

    NASA Astrophysics Data System (ADS)

    Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.

    2016-12-01

    Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.

  9. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  10. Stationary flywheel energy storage systems

    NASA Astrophysics Data System (ADS)

    Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.

    1982-07-01

    A study intended to discover industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid were investigated. A possibility for energy storage by flywheels exists where energy otherwise lost can be used effectively as in brake energy storage in vehicles. The future use of flywheels in wind power plants also seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed, for instance, in telecommunication systems.

  11. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  12. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  13. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  14. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOEpatents

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  15. Battery management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  16. Tenth Goddard Conference on Mass Storage Systems and Technologies in Cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    2002-01-01

    This document contains copies of those technical papers received in time for publication prior to the Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and management of large volumes of data. The Conference encourages all interested organizations to discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, storage networking with emphasis on IP storage, performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular magnetic recording, object based storage, storage virtualization and IP storage.

  17. Energy Storage Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    technologies. Key Infrastructure Energy storage system inverter, energy storage system simulators, research Plug-In Vehicles/Mobile Storage The plug-in vehicles/mobile storage hub includes connections for small integration. Key Infrastructure Ample house power, REDB access, charging stations, easy vehicle parking access

  18. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method.

    PubMed

    He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.

  19. Analysis of exergy efficiency of a super-critical compressed carbon dioxide energy-storage system based on the orthogonal method

    PubMed Central

    He, Qing; Liu, Hui; Liu, Wenyi

    2018-01-01

    Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742

  20. NREL Tests Energy Storage System to Fill Renewable Gaps | News | NREL

    Science.gov Websites

    Tests Energy Storage System to Fill Renewable Gaps NREL Tests Energy Storage System to Fill -megawatt energy storage system from Renewable Energy Systems (RES) Americas will assist research that aims to optimize the grid for wind and solar plants. The system arrived at NREL's National Wind Technology

  1. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issuesmore » related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.« less

  2. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  3. The Design of Distributed Micro Grid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  4. Telemetry data storage systems technology for the Space Station Freedom era

    NASA Technical Reports Server (NTRS)

    Dalton, John T.

    1989-01-01

    This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.

  5. GraphStore: A Distributed Graph Storage System for Big Data Networks

    ERIC Educational Resources Information Center

    Martha, VenkataSwamy

    2013-01-01

    Networks, such as social networks, are a universal solution for modeling complex problems in real time, especially in the Big Data community. While previous studies have attempted to enhance network processing algorithms, none have paved a path for the development of a persistent storage system. The proposed solution, GraphStore, provides an…

  6. Βedrock instability of underground storage systems in the Czech Republic, Central Europe

    NASA Astrophysics Data System (ADS)

    Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir

    2016-06-01

    Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.

  7. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  8. Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load

    NASA Astrophysics Data System (ADS)

    Jana, Suman; Biswas, Pabitra Kumar; Das, Upama

    2018-04-01

    The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.

  9. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...

  10. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...

  11. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage systems...

  12. The Global File System

    NASA Technical Reports Server (NTRS)

    Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.

    1996-01-01

    The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.

  13. Benefit/cost framework for evaluating modular energy storage : a study for the DOE energy storage systems program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyer, James M.; Schoenung, Susan M.

    2008-02-01

    The work documented in this report represents another step in the ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Energy Storage Systems (ESS) Program. This study uses updated cost and performance information for modular energy storage (MES) developed for this study to evaluate four prospective value propositions for MES. The four potentially attractive value propositions are defined by a combination of well-known benefits that are associated with electricity generation, delivery, and use. The value propositions evaluated are: (1) transportable MES for electric utilitymore » transmission and distribution (T&D) equipment upgrade deferral and for improving local power quality, each in alternating years, (2) improving local power quality only, in all years, (3) electric utility T&D deferral in year 1, followed by electricity price arbitrage in following years; plus a generation capacity credit in all years, and (4) electric utility end-user cost management during times when peak and critical peak pricing prevail.« less

  14. Online mass storage system detailed requirements document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.

  15. Application of electrochemical energy storage in solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R.; Krauthamer, S.; Frank, H.

    1982-01-01

    This paper assesses the status, cost, and performance of existing electrochemical energy storage systems, and projects the cost, performance, and availability of advanced storage systems for application in terrestrial solar thermal electric generation. A 10 MWe solar plant with five hours of storage is considered and the cost of delivered energy is computed for sixteen different storage systems. The results indicate that the five most attractive electrochemical storage systems use the following battery types: zinc-bromine (Exxon), iron-chromium redox (NASA/Lewis Research Center, LeRC), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (Energy Development Associates, EDA).

  16. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Lipeng; Wang, Feiyi; Oral, H. Sarp

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storagemore » systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results« less

  17. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  18. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  19. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 3

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.

  20. Heat transfer enhancement in triplex-tube latent thermal energy storage system with selected arrangements of fins

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng

    2018-01-01

    The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.

  1. Slotting optimization of automated storage and retrieval system (AS/RS) for efficient delivery of parts in an assembly shop using genetic algorithm: A case Study

    NASA Astrophysics Data System (ADS)

    Yue, L.; Guan, Z.; He, C.; Luo, D.; Saif, U.

    2017-06-01

    In recent years, the competitive pressure on manufacturing companies shifted them from mass production to mass customization to produce large variety of products. It is a great challenge for companies nowadays to produce customized mixed flow mode of production to meet customized demand on time. Due to large variety of products, the storage system to deliver variety of products to production lines influences on the timely production of variety of products, as investigated from by simulation study of an inefficient storage system of a real Company, in the current research. Therefore, current research proposed a slotting optimization model with mixed model sequence to assemble in consideration of the final flow lines to optimize whole automated storage and retrieval system (AS/RS) and distribution system in the case company. Current research is aimed to minimize vertical height of centre of gravity of AS/RS and total time spent for taking the materials out from the AS/RS simultaneously. Genetic algorithm is adopted to solve the proposed problem and computational result shows significant improvement in stability and efficiency of AS/RS as compared to the existing method used in the case company.

  2. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  3. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    1982-01-01

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  4. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  5. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  6. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  7. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  8. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  9. Development of a practical photochemical energy storage system. Quarterly report. [Interconversion between norbornadiene and quadricyclene for thermochemical heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hautala, R.R.; Kutal, C.R.

    1977-06-15

    Research on polymeric organic sensitizers and polymeric inorganic sensitizers for the conversion of norbornadine to quadricyclene and catalysts for the conversion of quadricyclene to norbornadine is described. The interconversion of norbornadine and quadricyclene is studied for its possible use for thermochemical solar energy storage. (WHK)

  10. PLANNING STUDY TO MODEL AND MONITOR COAL PILE RUNOFF. PHASE I

    EPA Science Inventory

    The report describes a planning study for predicting and monitoring the hydrologic and chemical characteristics of effluent streams resulting from precipitation impacting on open storage of coal. It includes: a survey of utilities on storage habits and treatment systems for coal ...

  11. Operational Benefits of Meeting California's Energy Storage Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014more » version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation reserve, as the added storage could provide about 75% of the regulation up requirement for all of California, which would likely greatly reduce regulation prices and potential revenue. The addition of storage in California decreases renewable curtailment, particularly in the 40% RPS case. Following previous analysis, storage has a mixed impact on emissions, generally reducing emissions, but also creating additional incentives for increased emissions from out-of-state coal generations. Overall, storage shows significant system cost savings, but analysis also points to additional challenges associated with full valuation of energy storage, including capturing the operational benefits calculated here, but also recovering additional benefits associated avoided generation, transmission, and distribution capacity, and avoided losses.« less

  12. A class Hierarchical, object-oriented approach to virtual memory management

    NASA Technical Reports Server (NTRS)

    Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.

    1989-01-01

    The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.

  13. 75 FR 27463 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory... fuel storage casks to add revision 1 to the NUHOMS HD spent fuel storage cask system. This action is... Federal Register on May 7, 2010 (75 FR 25120), that proposes to amend the regulations that govern storage...

  14. NASA/IEEE MSST 2004 Twelfth NASA Goddard Conference on Mass Storage Systems and Technologies in cooperation with the Twenty-First IEEE Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    2004-01-01

    MSST2004, the Twelfth NASA Goddard / Twenty-first IEEE Conference on Mass Storage Systems and Technologies has as its focus long-term stewardship of globally-distributed storage. The increasing prevalence of e-anything brought about by widespread use of applications based, among others, on the World Wide Web, has contributed to rapid growth of online data holdings. A study released by the School of Information Management and Systems at the University of California, Berkeley, estimates that over 5 exabytes of data was created in 2002. Almost 99 percent of this information originally appeared on magnetic media. The theme for MSST2004 is therefore both timely and appropriate. There have been many discussions about rapid technological obsolescence, incompatible formats and inadequate attention to the permanent preservation of knowledge committed to digital storage. Tutorial sessions at MSST2004 detail some of these concerns, and steps being taken to alleviate them. Over 30 papers deal with topics as diverse as performance, file systems, and stewardship and preservation. A number of short papers, extemporaneous presentations, and works in progress will detail current and relevant research on the MSST2004 theme.

  15. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  16. Integrated Power and Attitude Control System (IPACS)

    NASA Technical Reports Server (NTRS)

    Michaelis, Theodore D.

    1998-01-01

    Recent advances in materials, circuit integration and power switching have given the concept of dynamic energy and momentum storage important weight size, and operational advantages over the conventional momentum wheel-battery configuration. Simultaneous momentum and energy storage for a three axes stabilized spacecraft can be accomplished with a topology of at least four wheels where energy (a scalar) is stored or retrieved in such a manner as to keep the momentum vector invariant. This study, instead, considers the case of two counter-rotating wheels in one axis to more effectively portray the principles involved. General scalable system design equations are derived which demonstrate the role of momentum storage when combined with energy storage.

  17. Electrochemical energy storage systems for solar thermal applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  18. Research Studies on Advanced Optical Module/Head Designs for Optical Data Storage

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Preprints are presented from the recent 1992 Optical Data Storage meeting in San Jose. The papers are divided into the following topical areas: Magneto-optical media (Modeling/design and fabrication/characterization/testing); Optical heads (holographic optical elements); and Optical heads (integrated optics). Some representative titles are as follow: Diffraction analysis and evaluation of several focus and track error detection schemes for magneto-optical disk systems; Proposal for massively parallel data storage system; Transfer function characteristics of super resolving systems; Modeling and measurement of a micro-optic beam deflector; Oxidation processes in magneto-optic and related materials; and A modal analysis of lamellar diffraction gratings in conical mountings.

  19. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    NASA Astrophysics Data System (ADS)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  20. Black start research of the wind and storage system based on the dual master-slave control

    NASA Astrophysics Data System (ADS)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  1. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and storage...

  2. 40 CFR 1066.985 - Fuel storage system leak test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel storage system leak test... Refueling Emission Test Procedures for Motor Vehicles § 1066.985 Fuel storage system leak test procedure. (a... conditions. (3) Leak test equipment must have the ability to pressurize fuel storage systems to at least 4.1...

  3. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and storage...

  4. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and storage...

  5. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and storage...

  6. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cord blood processing system and storage container... Manufacture Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) § 864.9900 Cord blood processing system and storage container. (a) Identification. A cord blood processing system and storage...

  7. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  8. Survey of Mass Storage Systems

    DTIC Science & Technology

    1975-09-01

    software that Pre- cision Instruments can provide. System Name: IBM 3850 Mass Storage System Manufacturer and Location: International Business Machines...34 Datamation, pp. 52-58, October 1973. 15 17. International Business Machines, IBM 3850 Mass Storage System Facts Folder, White Plains, NY, n.d. 18... International Business Machines, Introduction to the IBM 3850 Mass Storage System (MSS), White Plains, NY, n.d. 19. International Business Machines

  9. Test report : Raytheon / KTech RK30 Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flowmore » batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.« less

  10. The Third NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in October 1993. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems involved. Discussion topics include the necessary use of computers in the solution of today's infinitely complex problems, the need for greatly increased storage densities in both optical and magnetic recording media, currently popular storage media and magnetic media storage risk factors, data archiving standards including a talk on the current status of the IEEE Storage Systems Reference Model (RM). Additional topics addressed System performance, data storage system concepts, communications technologies, data distribution systems, data compression, and error detection and correction.

  11. Study of the modifications needed for effective operation NASTRAN on IBM virtual storage computers

    NASA Technical Reports Server (NTRS)

    Mccormick, C. W.; Render, K. H.

    1975-01-01

    The necessary modifications were determined to make NASTRAN operational under virtual storage operating systems (VS1 and VS2). Suggested changes are presented which will make NASTRAN operate more efficiently under these systems. Estimates of the cost and time involved in design, coding, and implementation of all suggested modifications are included.

  12. Control of a Vanadium Redox Battery and supercapacitor using a Three-Level Neutral Point Clamped converter

    NASA Astrophysics Data System (ADS)

    Etxeberria, A.; Vechiu, I.; Baudoin, S.; Camblong, H.; Kreckelbergh, S.

    2014-02-01

    The increasing use of distributed generators, which are mainly based on renewable sources, can create several issues in the operation of the electric grid. The microgrid is being analysed as a solution to the integration in the grid of the renewable sources at a high penetration level in a controlled way. The storage systems play a vital role in order to keep the energy and power balance of the microgrid. Due to the technical limitations of the currently available storage systems, it is necessary to use more than one storage technology to satisfy the requirements of the microgrid application. This work validates in simulations and experimentally the use of a Three-Level Neutral Point Clamped converter to control the power flow of a hybrid storage system formed by a SuperCapacitor and a Vanadium Redox Battery. The operation of the system is validated in two case studies in the experimental platform installed in ESTIA. The experimental results prove the validity of the proposed system as well as the designed control algorithm. The good agreement among experimental and simulation results also validates the simulation model, that can therefore be used to analyse the operation of the system in different case studies.

  13. Assessment of Energy Storage Alternatives in the Puget Sound Energy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balducci, Patrick J.; Jin, Chunlian; Wu, Di

    2013-12-01

    As part of an ongoing study co-funded by the Bonneville Power Administration, under its Technology Innovation Grant Program, and the U.S. Department of Energy, the Pacific Northwest National Laboratory (PNNL) has developed an approach and modeling tool for assessing the net benefits of using energy storage located close to the customer in the distribution grid to manage demand. PNNL in collaboration with PSE and Primus Power has evaluated the net benefits of placing a zinc bromide battery system at two locations in the PSE system (Baker River / Rockport and Bainbridge Island). Energy storage can provide a number of benefitsmore » to the utility through the increased flexibility it provides to the grid system. Applications evaluated in the assessment include capacity value, balancing services, arbitrage, distribution deferral and outage mitigation. This report outlines the methodology developed for this study and Phase I results.« less

  14. C-MOS array design techniques: SUMC multiprocessor system study

    NASA Technical Reports Server (NTRS)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  15. Renewable Energy Systems for Forward Operating Bases: A Simulations-Based Optimization Approach

    DTIC Science & Technology

    2010-08-01

    07. C-8 ENERGY STORAGE MODELS Two types of energy storage were compared in these simulations: lead-acid batteries and molten salt storage...of charge: 80% The initial state of charge used for the molten salt storage system is slightly higher than that used for the lead-acid battery ...cost for lead-acid batteries was assumed to be $630/kWh. MOLTEN SALT STORAGE Domestic installed cost for the molten salt storage system was

  16. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    NASA Astrophysics Data System (ADS)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  17. Long-Term Outcomes of Laser Prostatectomy for Storage Symptoms: Comparison of Serial 5-Year Followup Data between High Performance System Photoselective Vaporization and Holmium Laser Enucleation of the Prostate.

    PubMed

    Cho, Min Chul; Song, Won Hoon; Park, Juhyun; Cho, Sung Yong; Jeong, Hyeon; Oh, Seung-June; Paick, Jae-Seung; Son, Hwancheol

    2018-06-01

    We compared long-term storage symptom outcomes between photoselective laser vaporization of the prostate with a 120 W high performance system and holmium laser enucleation of the prostate. We also determined factors influencing postoperative improvement of storage symptoms in the long term. Included in our study were 266 men, including 165 treated with prostate photoselective laser vaporization using a 120 W high performance system and 101 treated with holmium laser enucleation of the prostate, on whom 60-month followup data were available. Outcomes were assessed serially 6, 12, 24, 36, 48 and 60 months postoperatively using the International Prostate Symptom Score, uroflowmetry and the serum prostate specific antigen level. Postoperative improvement in storage symptoms was defined as a 50% or greater reduction in the subtotal storage symptom score at each followup visit after surgery compared to baseline. Improvements in frequency, urgency, nocturia, subtotal storage symptom scores and the quality of life index were maintained up to 60 months after photoselective laser vaporization or holmium laser enucleation of the prostate. There was no difference in the degree of improvement in storage symptoms or the percent of patients with postoperative improvement in storage symptoms between the 2 groups throughout the long-term followup. However, the holmium laser group showed greater improvement in voiding symptoms and quality of life than the laser vaporization group. On logistic regression analysis a higher baseline subtotal storage symptom score and a higher BOOI (Bladder Outlet Obstruction Index) were the factors influencing the improvement in storage symptoms 5 years after prostate photoselective laser vaporization or holmium laser enucleation. Our serial followup data suggest that storage symptom improvement was maintained throughout the long-term postoperative period for prostate photoselective laser vaporization with a 120 W high performance system and holmium laser enucleation without any difference between the 2 surgeries. Also, more severe storage symptoms at baseline and a more severe BOOI predicted improved storage symptoms in the long term after each surgery. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. High-performance mass storage system for workstations

    NASA Technical Reports Server (NTRS)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).

  19. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ela, E.; Kirby, B.; Botterud, A.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purposemore » some solutions to those problems.« less

  20. A data-management system for detailed areal interpretive data

    USGS Publications Warehouse

    Ferrigno, C.F.

    1986-01-01

    A data storage and retrieval system has been developed to organize and preserve areal interpretive data. This system can be used by any study where there is a need to store areal interpretive data that generally is presented in map form. This system provides the capability to grid areal interpretive data for input to groundwater flow models at any spacing and orientation. The data storage and retrieval system is designed to be used for studies that cover small areas such as counties. The system is built around a hierarchically structured data base consisting of related latitude-longitude blocks. The information in the data base can be stored at different levels of detail, with the finest detail being a block of 6 sec of latitude by 6 sec of longitude (approximately 0.01 sq mi). This system was implemented on a mainframe computer using a hierarchical data base management system. The computer programs are written in Fortran IV and PL/1. The design and capabilities of the data storage and retrieval system, and the computer programs that are used to implement the system are described. Supplemental sections contain the data dictionary, user documentation of the data-system software, changes that would need to be made to use this system for other studies, and information on the computer software tape. (Lantz-PTT)

  1. Monitoring and control requirement definition study for Dispersed Storage and Generation (DSG), volume 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Twenty-four functional requirements were prepared under six categories and serve to indicate how to integrate dispersed storage generation (DSG) systems with the distribution and other portions of the electric utility system. Results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication is required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 KW to 30 MW means that a variety of remote monitoring and control may be required. Increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.

  2. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  3. Beam position monitoring system at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.

    2017-09-01

    The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.

  4. Novel optimization technique of isolated microgrid with hydrogen energy storage.

    PubMed

    Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.

  5. Novel optimization technique of isolated microgrid with hydrogen energy storage

    PubMed Central

    Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433

  6. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence formore » materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.« less

  7. Energy Storage Systems as a Compliment to Wind Power

    NASA Astrophysics Data System (ADS)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  8. Dish Stirling High Performance Thermal Storage FY14Q4 Quad Chart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, Charles E.

    2014-10-01

    The goals of this project are to demonstrate the feasibility of significant thermal storage for dish stirling systems to leverage their existing high performance to greater capacity; demonstrate key components of a latent storage and transport system enabling on-dish storage with low energy losses; and provide a technology path to a 25kW e system with 6 hours of storage.

  9. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... final rule that would have revised its spent fuel storage regulations to include Amendment No. 3 to... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel...

  10. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  11. Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)

    1991-01-01

    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  12. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  13. Valuing the Resilience Provided by Solar and Battery Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce A; Mullendore, Seth; Laws, Nicholas D

    This paper explores the impact of valuing resilience on the economics of photovoltaics (PV) and storage systems for commercial buildings. The analysis presented here illustrates that accounting for the cost of grid power outages can change the breakeven point for PV and storage system investment, and increase the size of systems designed to deliver the greatest economic benefit over time. In other words, valuing resilience can make PV and storage systems economical in cases where they would not be otherwise. As storage costs decrease, and outages occur more frequently, PV and storage are likely to play a larger role inmore » building design and management considerations.« less

  14. Limited energy study. Thermal storage at Central Chilled Water Plant, Fort Leonard Wood, Missouri. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-31

    The Scope of Work called for the study of the economic feasibility of providing a cold thermal storage system at the central chiller plant serving the Fort Leonard Wood 600 Area in order to reduce electrical demand charges. In the Entry Interview, Mr. Doug Cage requested that the analysis include the potential for expansion of such a system to serve the 700 and 800 Areas as well. It was agreed that this would be done if the analysis indicated that a cold thermal storage system would be economically feasible for Area 600. The 600 Area study area is comprised ofmore » two different build types, mess halls and barracks. The mess halls are all essentially identical with the exception that site orientation varies by building. The same is true for the barracks buildings. A baseline case was calculated under the basis that the future chilled water plant for the area under analysis would be served by a centrifugal chiller. This was done because there is no existing baseline condition against which thermal storage systems may be compared. The existing chiller serves Area 600 plus a portion of Area 700. In addition, its age is such that it is reasonable to expect that it will be replaced in the near future.« less

  15. Onboard power line conditioning system for an electric or hybrid vehicle

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  16. Comparison of Models of Stress Relaxation in Failure Analysis for Connectors under Long-term Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Yilin; Wan, Mengru

    2018-03-01

    Reliability requirements of the system equipment under long-term storage are put forward especially for the military products, so that the connectors in the equipment also need long-term storage life correspondingly. In this paper, the effects of stress relaxation of the elastic components on electrical contact of the connectors in long-term storage process were studied from the failure mechanism and degradation models. A wire spring connector was taken as an example to discuss the life prediction method for electrical contacts of the connectors based on stress relaxation degradation under long -term storage.

  17. Thermal Storage Applications Workshop. Volume 1: Plenary Session Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The importance of the development of inexpensive and efficient thermal and thermochemical energy storage technology to the solar power program is discussed in a summary of workship discussions held to exchange information and plan for future systems. Topics covered include storage in central power applications such as the 10 MW-e demonstration pilot receiver to be constructed in Barstow, California; storage for small dispersed systems, and problems associated with the development of storage systems for solar power plants interfacing with utility systems.

  18. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drost, Kevin; Jovanovic, Goran; Paul, Brian

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  19. Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway

    NASA Astrophysics Data System (ADS)

    Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi

    The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.

  20. Experimental and numerical investigation of a scalable modular geothermal heat storage system

    NASA Astrophysics Data System (ADS)

    Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof

    2017-04-01

    Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days of heat extraction. The experiment was performed for the determination of heat losses during a complete thermal loading and extraction cycle. The storage could be charged with 54 kWh of heat energy during thermal loading. 36 kWh could be regained during the extraction period, which translates to a heat loss of 33% during the 10 days of operation. Heat exchanger fluid flow rates and supply temperature were measured during the experiment and used as input for the 3D finite element model. Numerically simulated temperature distribution in the storage, return temperature and heat balances were compared to the measured data and showed that the 3D model accurately reflects the storage behavior. Also the third experiment, consisting of six days of cyclic operation after five days of continuous thermal loading, a good agreement between observed and modelled heat storage behavior is found. In addition to determining the storage performance during cyclic operation, the experiment will also be used to further validate the numerical model. This abstract will present the laboratory setup as well as the experimental data obtained from the experiment. It will also present the modelling approach chosen for the numerical representation of the experiment and give a comparison between measured and modelled temperatures and heat balances for the modular heat storage system.

  1. Salmonella Typhimurium and Staphylococcus aureus dynamics in/on variable (micro)structures of fish-based model systems at suboptimal temperatures.

    PubMed

    Baka, Maria; Verheyen, Davy; Cornette, Nicolas; Vercruyssen, Stijn; Van Impe, Jan F

    2017-01-02

    The limited knowledge concerning the influence of food (micro)structure on microbial dynamics decreases the accuracy of the developed predictive models, as most studies have mainly been based on experimental data obtained in liquid microbiological media or in/on real foods. The use of model systems has a great potential when studying this complex factor. Apart from the variability in (micro)structural properties, model systems vary in compositional aspects, as a consequence of their (micro)structural variation. In this study, different experimental food model systems, with compositional and physicochemical properties similar to fish patés, are developed to study the influence of food (micro)structure on microbial dynamics. The microbiological safety of fish products is of major importance given the numerous cases of salmonellosis and infections attributed to staphylococcus toxins. The model systems understudy represent food (micro)structures of liquids, aqueous gels, emulsions and gelled emulsions. The growth/inactivation dynamics and a modelling approach of combined growth and inactivation of Salmonella Typhimurium and Staphylococcus aureus, related to fish products, are investigated in/on these model systems at temperatures relevant to fish products' common storage (4°C) and to abuse storage temperatures (8 and 12°C). ComBase (http://www.combase.cc/) predictions compared with the maximum specific growth rate (μ max ) values estimated by the Baranyi and Roberts model in the current study indicated that the (micro)structure influences the microbial dynamics. Overall, ComBase overestimated microbial growth at the same pH, a w and storage temperature. Finally, the storage temperature had also an influence on how much each model system affected the microbial dynamics. Copyright © 2016. Published by Elsevier B.V.

  2. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  3. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  4. Design of an ammonia closed-loop storage system in a CSP power plant with a power tower cavity receiver

    NASA Astrophysics Data System (ADS)

    Abdiwe, Ramadan; Haider, Markus

    2017-06-01

    In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.

  5. The development of a residential heating and cooling system using NASA derived technology

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.

    1972-01-01

    A study to determine the technical and economic feasibility of a solar-powered space heating, air-conditioning, and hot water heating system for residential applications is presented. The basic system utilizes a flat-plate solar collector to process incident solar radiation, a thermal energy storage system to store the collected energy for use during night and heavily overcast periods, and an absorption cycle heat pump for actually heating and cooling the residence. In addition, heat from the energy storage system is used to provide domestic hot water. The analyses of the three major components of the system (the solar collector, the energy storage system, and the heat pump package) are discussed and results are presented. The total system analysis is discussed in detail, including the technical performance of the solar-powered system and a cost comparison between the solar-powered system and a conventional system. The projected applicability of the system to different regions of the nation is described.

  6. The Impact Of Optical Storage Technology On Image Processing Systems

    NASA Astrophysics Data System (ADS)

    Garges, Daniel T.; Durbin, Gerald T.

    1984-09-01

    The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.

  7. Research on Battery Energy Storage System Based on User Side

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  8. Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems at temperatures of 90 to 100C

    NASA Astrophysics Data System (ADS)

    Allen, J. W.; Schertz, W. W.; Wantroba, A. S.

    1987-03-01

    This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the Sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42 deg with respect to the horizon (to match the 42 deg N latitude at ANL). All four collector systems started each day with their storage temperatures at 90 C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy.

  9. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less

  10. Performance assessment of the PNM Prosperity electricity storage project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shiftingmore » system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.« less

  11. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  12. On-Chip Fluorescence Switching System for Constructing a Rewritable Random Access Data Storage Device.

    PubMed

    Nguyen, Hoang Hiep; Park, Jeho; Hwang, Seungwoo; Kwon, Oh Seok; Lee, Chang-Soo; Shin, Yong-Beom; Ha, Tai Hwan; Kim, Moonil

    2018-01-10

    We report the development of on-chip fluorescence switching system based on DNA strand displacement and DNA hybridization for the construction of a rewritable and randomly accessible data storage device. In this study, the feasibility and potential effectiveness of our proposed system was evaluated with a series of wet experiments involving 40 bits (5 bytes) of data encoding a 5-charactered text (KRIBB). Also, a flexible data rewriting function was achieved by converting fluorescence signals between "ON" and "OFF" through DNA strand displacement and hybridization events. In addition, the proposed system was successfully validated on a microfluidic chip which could further facilitate the encoding and decoding process of data. To the best of our knowledge, this is the first report on the use of DNA hybridization and DNA strand displacement in the field of data storage devices. Taken together, our results demonstrated that DNA-based fluorescence switching could be applicable to construct a rewritable and randomly accessible data storage device through controllable DNA manipulations.

  13. Workload Characterization of a Leadership Class Storage Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjae; Gunasekaran, Raghul; Shipman, Galen M

    2010-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the scientific workloads of the world s fastest HPC (High Performance Computing) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). Spider provides an aggregate bandwidth of over 240 GB/s with over 10 petabytes of RAID 6 formatted capacity. OLCFs flagship petascale simulation platform, Jaguar, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize themore » system utilization, the demands of reads and writes, idle time, and the distribution of read requests to write requests for the storage system observed over a period of 6 months. From this study we develop synthesized workloads and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution.« less

  14. High-performance metadata indexing and search in petascale data storage systems

    NASA Astrophysics Data System (ADS)

    Leung, A. W.; Shao, M.; Bisson, T.; Pasupathy, S.; Miller, E. L.

    2008-07-01

    Large-scale storage systems used for scientific applications can store petabytes of data and billions of files, making the organization and management of data in these systems a difficult, time-consuming task. The ability to search file metadata in a storage system can address this problem by allowing scientists to quickly navigate experiment data and code while allowing storage administrators to gather the information they need to properly manage the system. In this paper, we present Spyglass, a file metadata search system that achieves scalability by exploiting storage system properties, providing the scalability that existing file metadata search tools lack. In doing so, Spyglass can achieve search performance up to several thousand times faster than existing database solutions. We show that Spyglass enables important functionality that can aid data management for scientists and storage administrators.

  15. Conceptual design of thermal energy storage systems for near term electric utility applications. Volume 1: Screening of concepts

    NASA Technical Reports Server (NTRS)

    Hausz, W.; Berkowitz, B. J.; Hare, R. C.

    1978-01-01

    Over forty thermal energy storage (TES) concepts gathered from the literature and personal contacts were studied for their suitability for the electric utility application of storing energy off-peak discharge during peak hours. Twelve selections were derived from the concepts for screening; they used as storage media high temperature water (HTW), hot oil, molten salts, and packed beds of solids such as rock. HTW required pressure containment by prestressed cast-iron or concrete vessels, or lined underground cavities. Both steam generation from storage and feedwater heating from storage were studied. Four choices were made for further study during the project. Economic comparison by electric utility standard cost practices, and near-term availability (low technical risk) were principal criteria but suitability for utility use, conservation potential, and environmental hazards were considered.

  16. Methods and devices for determining quality of services of storage systems

    DOEpatents

    Seelam, Seetharami R [Yorktown Heights, NY; Teller, Patricia J [Las Cruces, NM

    2012-01-17

    Methods and systems for allowing access to computer storage systems. Multiple requests from multiple applications can be received and processed efficiently to allow traffic from multiple customers to access the storage system concurrently.

  17. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    NASA Astrophysics Data System (ADS)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  18. Random-access technique for modular bathymetry data storage in a continental shelf wave refraction program

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1974-01-01

    A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.

  19. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaji, K.; Zhang, J.; Horie, H.

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugeesmore » with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.« less

  20. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  1. Numerical analysis of magnetic field in superconducting magnetic energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanamaru, Y.; Amemiya, Y.

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES formore » reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.« less

  2. Research on Multi - Person Parallel Modeling Method Based on Integrated Model Persistent Storage

    NASA Astrophysics Data System (ADS)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying

    2018-03-01

    This paper mainly studies the multi-person parallel modeling method based on the integrated model persistence storage. The integrated model refers to a set of MDDT modeling graphics system, which can carry out multi-angle, multi-level and multi-stage description of aerospace general embedded software. Persistent storage refers to converting the data model in memory into a storage model and converting the storage model into a data model in memory, where the data model refers to the object model and the storage model is a binary stream. And multi-person parallel modeling refers to the need for multi-person collaboration, the role of separation, and even real-time remote synchronization modeling.

  3. Eighth Goddard Conference on Mass Storage Systems and Technologies in Cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    2000-01-01

    This document contains copies of those technical papers received in time for publication prior to the Eighth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center March 27-30, 2000. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, new technology with a special emphasis on holographic storage, performance, standards, site reports, vendor solutions. Tutorials will be available on stability of optical media, disk subsystem performance evaluation, I/O and storage tuning, functionality and performance evaluation of file systems for storage area networks.

  4. Numerical model for the thermal behavior of thermocline storage tanks

    NASA Astrophysics Data System (ADS)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2018-03-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  5. Experimental and theoretical studies of the effect of temperature on supercritical CO2 adsorption on illite

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Zhang, Y.; Prasad, M.

    2016-12-01

    Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental results.

  6. Design Considerations of a Solid State Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz

    2016-11-01

    With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).

  7. An Aquifer Thermal Energy Storage (ATES) System for Continuous and Sustainable Cold Supply in Oman

    NASA Astrophysics Data System (ADS)

    Winterleitner, G.; Schütz, F.; Huenges, E.

    2016-12-01

    The aim of the GeoSolCool research programme between the German Research Centre for Geoscience (GFZ) and The Research Council of Oman (TRC) is the development of an innovative and sustainable cooling system in combination with an aquifer thermal energy storage system in northern Oman. An integral part of this project is the design of a subsurface aquifer reservoir system for storage of thermal energy through hot water injection. An accurate characterisation of potential storage horizons is thus essential to ensure optimal efficiency of the cooling system. The study area, 40 km west of Muscat is characterised by a thick Cenozoic mixed carbonate-siliciclastic sedimentary succession, containing at least 3 aquifer horizons. We used a multidisciplinary approach for the initial ATES development phase, including geological fieldwork dovetailed with remote sensing analyses, thin-section analyses, geological modelling and reservoir fluid flow forecasting. First results indicate two potential storage horizons: (1) a Miocene-aged clastic-dominated alluvial fan system and (2) an Eocene carbonate sequence. The alluvial fan system is a more than 300 m thick, coarse clastic (mainly gravels and sandstones) succession of coalesced individual fans. Thin-section analyses showed that hydraulic parameters are favourable for the gravel and sandstone intervals but reservoir architecture is complex due to multiple generations of interconnecting fans with highly heterogeneous facies distributions. The Eocene carbonates were deposited in a carbonate ramp setting, strongly influenced by currents and storm events. Individual facies belts extend over kilometres and thus horizontal reservoir connectivity is expected to be good with minor facies variability. Thin-section analyses showed that especially the fossil-rich sections show good storage qualities. Fluid flow forecasting indicate that both potential horizons have good to very good storage characteristics. However, intense diagenetic overprint of the succession and a complex reservoir architecture of the Miocene clastics might pose challenges for the ATES implementation. In order to decide which storage horizon will be developed as an ATES system, drilling of an exploration well and subsequent well-logging and hydraulic testing is underway.

  8. Progress in energy generation for Canadian remote sites

    NASA Astrophysics Data System (ADS)

    Saad, Y.; Younes, R.; Abboudi, S.; Ilinca, A.; Nohra, C.

    2016-07-01

    Many remote areas around the world are isolated, for various reasons, from electricity networks. They are usually supplied with electricity through diesel generators. The cost of operation and transportation of diesel fuel in addition to its price have led to the procurement of a more efficient and environmentally greener method of supply. Various studies have shown that a wind-diesel hybrid system with compressed air storage (WDCAS) seems to be one of the best solutions, and presents itself as an optimal configuration for the electrification of isolated sites. This system allows significant fuel savings to be made because the stored compressed air is used to supercharge the engine. In order to optimize system performance and minimize fuel consumption, installation of a system for recovering and storing the heat of compression (TES) seems necessary. In addition, the use of hydro-pneumatic energy storage systems that use the same machine as the hydraulic pump and turbine allow us to store energy in tight spaces and, if possible, contribute to power generation. The scrupulous study of this technical approach will be the focus of our research which will validate (or not) the use of such a system for the regulation of frequency of electrical networks. In this article we will skim through the main research that recently examined the wind-diesel hybrid system which addressed topics such as adiabatic compression and hydro-pneumatic storage. Instead, we will offer (based on existing studies) a new ACP-WDCAS (wind-diesel hybrid system with adiabatic air compression and storage at constant pressure), which combines these three concepts in one system for the optimization of wind-diesel hybrid system.

  9. Compendium of Authenticated Systems and Logistics Terms, Definitions and Acronyms

    DTIC Science & Technology

    1981-04-01

    assigned for storage operations, within OTHER NON WAREHOUSE SPACE a structure designed for other than storage Space being used for storage within any...opposed to Any work done in order to correct rejected work. administrative), design (engineering design and (AFLCM1 74-2) drafting), experimental test...study. (principal or designated representative) authorized practices, methodology , or procedures involved in to request, receive, store, and account

  10. Field testing of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.; Allen, R. D.

    1984-03-01

    Results of field and laboratory studies of aquifer thermal energy storage (ATES) indicate both the problems and promise of the concept. Geohydrothermal modeling and field testing demonstrated the ability to recover substantial quantities of aquifer stored energy. However, the local hydrologic conditions play an important role in determining the recovery temperature and storage efficiency. Geochemistry is also an important factor, particularly for higher temperature ATES systems.

  11. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    1989-01-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  12. Evaluation of thermal energy storage for the proposed Twin Cities District Heating system. [using cogeneration heat production and aquifiers for heat storage

    NASA Technical Reports Server (NTRS)

    Meyer, C. F.

    1980-01-01

    The technical and economic feasibility of incorporating thermal energy storage components into the proposed Twin Cities District heating project was evaluated. The technical status of the project is reviewed and conceptual designs of district heating systems with and without thermal energy storage were compared in terms of estimated capital requirements, fuel consumption, delivered energy cost, and environmental aspects. The thermal energy storage system is based on cogeneration and the storage of heat in aquifers.

  13. Mass Storage Systems.

    ERIC Educational Resources Information Center

    Ranade, Sanjay; Schraeder, Jeff

    1991-01-01

    Presents an overview of the mass storage market and discusses mass storage systems as part of computer networks. Systems for personal computers, workstations, minicomputers, and mainframe computers are described; file servers are explained; system integration issues are raised; and future possibilities are suggested. (LRW)

  14. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... amend its spent fuel storage cask regulations by revising the Transnuclear, Inc. (TN) NUHOMS[supreg] HD System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to...

  15. Data on conceptual design of cryogenic energy storage system combined with liquefied natural gas regasification process.

    PubMed

    Lee, Inkyu; Park, Jinwoo; Moon, Il

    2017-12-01

    This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.

  16. Embedded system of image storage based on fiber channel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  17. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  18. Sizing and economic analysis of stand alone photovoltaic system with hydrogen storage

    NASA Astrophysics Data System (ADS)

    Nordin, N. D.; Rahman, H. A.

    2017-11-01

    This paper proposes a design steps in sizing of standalone photovoltaic system with hydrogen storage using intuitive method. The main advantage of this method is it uses a direct mathematical approach to find system’s size based on daily load consumption and average irradiation data. The keys of system design are to satisfy a pre-determined load requirement and maintain hydrogen storage’s state of charge during low solar irradiation period. To test the effectiveness of the proposed method, a case study is conducted using Kuala Lumpur’s generated meteorological data and rural area’s typical daily load profile of 2.215 kWh. In addition, an economic analysis is performed to appraise the proposed system feasibility. The finding shows that the levelized cost of energy for proposed system is RM 1.98 kWh. However, based on sizing results obtained using a published method with AGM battery as back-up supply, the system cost is lower and more economically viable. The feasibility of PV system with hydrogen storage can be improved if the efficiency of hydrogen storage technologies significantly increases in the future. Hence, a sensitivity analysis is performed to verify the effect of electrolyzer and fuel cell efficiencies towards levelized cost of energy. Efficiencies of electrolyzer and fuel cell available in current market are validated using laboratory’s experimental data. This finding is needed to envisage the applicability of photovoltaic system with hydrogen storage as a future power supply source in Malaysia.

  19. Goddard Conference on Mass Storage Systems and Technologies, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  20. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    EPA Science Inventory

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  1. Design and Analysis of a Flexible, Reliable Deep Space Life Support System

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2012-01-01

    This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.

  2. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE PAGES

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.; ...

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  3. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  4. An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2003-07-01

    Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied.

  5. Aquifer storage and recovery: recent hydrogeological advances and system performance.

    PubMed

    Maliva, Robert G; Guo, Weixing; Missimer, Thomas M

    2006-12-01

    Aquifer storage and recovery (ASR) is part of the solution to the global problem of managing water resources to meet existing and future freshwater demands. However, the metaphoric "ASR bubble" has been burst with the realization that ASR systems are more physically and chemically complex than the general conceptualization. Aquifer heterogeneity and fluid-rock interactions can greatly affect ASR system performance. The results of modeling studies and field experiences indicate that more sophisticated data collection and solute-transport modeling are required to predict how stored water will migrate in heterogeneous aquifers and how fluid-rock interactions will affect the quality of stored water. It has been well-demonstrated, by historic experience, that ASR systems can provide very large volumes of storage at a lesser cost than other options. The challenges moving forward are to improve the success rate of ASR systems, optimize system performance, and set expectations appropriately.

  6. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    NASA Astrophysics Data System (ADS)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  7. Degradation of Multimode Adhesive System Bond Strength to Artificial Caries-Affected Dentin Due to Water Storage.

    PubMed

    Follak, A C; Miotti, L L; Lenzi, T L; Rocha, R O; Soares, F Z

    The purpose of this study was to evaluate the influence of water storage on bond strength of multimode adhesive systems to artificially induced caries-affected dentin. One hundred twelve sound bovine incisors were randomly assigned to 16 groups (n=7) according to the dentin condition (sound; SND, artificially induced caries-affected dentin; CAD, cariogenic challenge by pH cycling for 14 days); the adhesive system (SU, Scotchbond Universal Adhesive; AB, All-Bond Universal; PB, Prime & Bond Elect; SB, Adper Single Bond 2; and CS, Clearfil SE Bond), and the etching strategy (etch-and-rinse and self-etch). All adhesive systems were applied under manufacturer's instructions to flat dentin surfaces, and a composite block was built up on each dentin surface. After 24 hours of water storage, the specimens were sectioned into stick-shaped specimens (0.8 mm 2 ) and submitted to a microtensile test immediately (24 hours) or after six months of water storage. Bond strength data (MPa) were analyzed using three-way repeated-measures analysis of variance and post hoc Tukey test (α=5%), considering each substrate separately (SND and CAD). The etching strategy did not influence the bond strength of multimode adhesives, irrespective of the dentin condition. Water storage only reduced significantly the bond strength to CAD. The degradation of bond strength due to water storage was more pronounced in CAD, regardless of the etching strategy.

  8. Research on crude oil storage and transportation based on optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Xuhua

    2018-04-01

    At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.

  9. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work,more » we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage technologies with lower energy capacities are deployed to support solar deployment, and higher energy capacity technologies support wind. Finally, we identify potential future research and areas of improvement to build on this initial analysis.« less

  10. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  11. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  12. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  13. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  14. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  15. Storage assignment optimization in a multi-tier shuttle warehousing system

    NASA Astrophysics Data System (ADS)

    Wang, Yanyan; Mou, Shandong; Wu, Yaohua

    2016-03-01

    The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP), which has been widely applied in the conventional automated storage and retrieval system(AS/RS). However, the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP. In this study, a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period (SWP) and lift idle period (LIP) during transaction cycle time. A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation. The decomposition method is applied to analyze the interactions among outbound task time, SWP, and LIP. The ant colony clustering algorithm is designed to determine storage partitions using clustering items. In addition, goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane. This combination is derived based on the analysis results of the queuing network model and on three basic principles. The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry. The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.

  16. Small-Signal Analysis of Autonomous Hybrid Distributed Generation Systems in Presence of Ultracapacitor and Tie-Line Operation

    NASA Astrophysics Data System (ADS)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2010-07-01

    This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI), ie integral square error (ISE). Both qualitative and quantitative analysis reflects the improvements of the deviation in frequency profiles in the presence of the ultracapacitors (UC) as compared to other energy storage elements.

  17. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenkman, Benjamin L.

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  18. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  19. System-level modeling for economic evaluation of geological CO2storage in gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan

    2006-03-02

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociatedmore » economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.« less

  20. Research on an IP disaster recovery storage system

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  1. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    NASA Astrophysics Data System (ADS)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  2. Rethinking key–value store for parallel I/O optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kougkas, Anthony; Eslami, Hassan; Sun, Xian-He

    2015-01-26

    Key-value stores are being widely used as the storage system for large-scale internet services and cloud storage systems. However, they are rarely used in HPC systems, where parallel file systems are the dominant storage solution. In this study, we examine the architecture differences and performance characteristics of parallel file systems and key-value stores. We propose using key-value stores to optimize overall Input/Output (I/O) performance, especially for workloads that parallel file systems cannot handle well, such as the cases with intense data synchronization or heavy metadata operations. We conducted experiments with several synthetic benchmarks, an I/O benchmark, and a real application.more » We modeled the performance of these two systems using collected data from our experiments, and we provide a predictive method to identify which system offers better I/O performance given a specific workload. The results show that we can optimize the I/O performance in HPC systems by utilizing key-value stores.« less

  3. Design and demonstration of a storage-assisted air conditioning system

    NASA Astrophysics Data System (ADS)

    Rizzuto, J. E.

    1981-03-01

    The system is a peak-shaving system designed to provide a levelized air conditioning load. The system also requires minimum air conditioner and thermal storage capacity. The storage-assisted air conditioning system uses a Glauber's salt-based phase change material in sausage like containers called CHUBS. The CHUBS are two (2) inches in diameter and 20 inches long. They are stacked in modules of 64 CHUBS which are appropriately spaced and oriented in the storage system so that air may pass perpendicular to the long axis of the CHUBS. The phase change material, has a thermal storage capacity in the range of 45 to 50 Btu/lb and a transition temperature of approximately 55 F.

  4. Improvements in magnetic bearing performance for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Anand, Davinder K.; Kirk, James A.; Calomeris, Anthony J.; Romero, Robert L.

    1988-01-01

    The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.

  5. 75 FR 27401 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Storage Casks: NUHOMS[reg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory Commission. ACTION... HD spent fuel storage cask system. This action is necessary to correctly specify the effective date... on May 6, 2010 (75 FR 24786), that amends the regulations that govern storage of spent nuclear fuel...

  6. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at part load operation. The study highlighted the need for optimum system sizing for GEHP/HVAC systems to meet the building load to obtain better performance in buildings. The second part of this study focusses on using chilled water or ice as thermal energy storage for shifting the air conditioning load from peak to off-peak in a commercial building. Thermal energy storage can play a very important role in providing demand-side management for diversifying the utility demand from buildings. Model of a large commercial office building is developed with thermal storage for cooling for peak power shifting. Three variations of the model were developed and analyzed for their performance with 1) ice storage, 2) chilled water storage with mixed storage tank and 3) chilled water storage with stratified tank, using EnergyPlus 8.5 software developed by the US Department of Energy. Operation strategy with tactical control to incorporate peak power schedule was developed using energy management system (EMS). The modeled HVAC system was optimized for minimum cost with the optimal storage capacity and chiller size using JEPlus. Based on the simulation, an optimal storage capacity of 40-45 GJ was estimated for the large office building model along with 40% smaller chiller capacity resulting in higher chiller part-load performance. Additionally, the auxiliary system like pump and condenser were also optimized to smaller capacities and thus resulting in less power demand during operation. The overall annual saving potential was found in the range of 7-10% for cooling electricity use resulting in 10-17% reduction in costs to the consumer. A possible annual peak shifting of 25-78% was found from the simulation results after comparing with the reference models. Adopting TES in commercial buildings and achieving 25% peak shifting could result in a reduction in peak summer demand of 1398 MW in Tampa.

  7. The architecture of the High Performance Storage System (HPSS)

    NASA Technical Reports Server (NTRS)

    Teaff, Danny; Watson, Dick; Coyne, Bob

    1994-01-01

    The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements or large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.

  8. Performance data for a desuperheater integrated to a thermal energy storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.H.W.; Jones, J.W.

    1995-11-01

    Desuperheaters are heat exchangers that recover heat from the compressor discharge gas to heat domestic hot water. The objective of this project was to conduct performance tests for a desuperheater in the cooling and heating modes of a thermal energy storage system so as to form a data base on the steady state performance of a residential desuperheater unit. The desuperheater integrated to a thermal energy storage system was installed in the Dual-Air Loop Test Facility at The Center for Energy Studies, the University of Texas at Austin. The major components of the system consist of the refrigerant compressor, domesticmore » hot water (DHW) desuperheater, thermal storage tank with evaporator/condenser coil, outdoor air coil, DHW storage tank, DHW circulating pump, space conditioning water circulation pump, and indoor heat exchanger. Although measurements were made to quantity space heating, space cooling, and domestic water heating, this paper only emphasizes the desuperheater performance of the unit. Experiments were conducted to study the effects of various outdoor temperature and entering water temperature on the performance of the desuperheater/TES system. In the cooling and heating modes, the desuperheater captured 5 to 18 percent and 8 to 17 percent, respectively, of the heat that would be normally rejected through the air coil condenser. At higher outdoor temperature, the desuperheater captured more heat. it was also noted that the heating and cooling COPs decreased with entering water temperature. The information generated in the experimental efforts could be used to form a data base on the steady state performance of a residential desuperheater unit.« less

  9. Archive Storage Media Alternatives.

    ERIC Educational Resources Information Center

    Ranade, Sanjay

    1990-01-01

    Reviews requirements for a data archive system and describes storage media alternatives that are currently available. Topics discussed include data storage; data distribution; hierarchical storage architecture, including inline storage, online storage, nearline storage, and offline storage; magnetic disks; optical disks; conventional magnetic…

  10. Solar applications analysis for energy storage

    NASA Technical Reports Server (NTRS)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  11. 48 CFR 245.612 - Removal and storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Removal and storage. 245.612 Section 245.612 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... Contractor Inventory 245.612 Removal and storage. ...

  12. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.

    PubMed

    Hittinger, Eric; Azevedo, Inês M L

    2017-11-07

    The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO 2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy required to offset the CO 2 emissions resulting from operation of new energy storage. We find that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.

  13. Fraction-storage unit for drug-identification system

    NASA Technical Reports Server (NTRS)

    Campen, C. F.; Stuart, J. L.

    1976-01-01

    Device, connecting outputs of all gas chromatographs to single, relatively inexpensive IR spectrometer, reduces costs of system. Storage unit provides buffer storage of samples until infrared spectrometer is ready to accept them. Storage unit can be used to separate overlapping peaks.

  14. Motivation and Design of the Sirocco Storage System Version 1.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Matthew Leon; Ward, H. Lee; Danielson, Geoffrey Charles

    Sirocco is a massively parallel, high performance storage system for the exascale era. It emphasizes client-to-client coordination, low server-side coupling, and free data movement to improve resilience and performance. Its architecture is inspired by peer-to-peer and victim- cache architectures. By leveraging these ideas, Sirocco natively supports several media types, including RAM, flash, disk, and archival storage, with automatic migration between levels. Sirocco also includes storage interfaces and support that are more advanced than typical block storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with the same interface. It also provides several levels of transactional data updatesmore » within a single storage command, including full ACID-compliant updates. This transaction support extends to updating several objects within a single transaction. Further support is provided for con- currency control, enabling greater performance for workloads while providing safe concurrent modification. By pioneering these and other technologies and techniques in the storage system, Sirocco is poised to fulfill a need for a massively scalable, write-optimized storage system for exascale systems. This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/ sirocco .« less

  15. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    PubMed

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  16. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  17. Study of Disinfectant Penetration in a Drinking Water Storage Tank Sediment Using Microelectrodes- Indianapolis

    EPA Science Inventory

    Sediment accumulation in water storage facilities causes water quality degradation issues, including enhanced biological growth and more rapid disinfectant decay. For chloramine systems, sediment may harbor nitrifying bacteria, feeding on ammonia from monochloramine decay and dem...

  18. SCALE-MODEL STUDIES OF MIXING IN DRINKING WATER STORAGE TANKS

    EPA Science Inventory

    Storage tanks and reservoirs are commonly used in drinking water distribution systems to equalize pumping requirements and operating pressures, and to provide emergency water for fire-fighting and pumping outages. Poor mixing in these structures can create pockets of older water...

  19. Effect of a commercial housing system on egg quality during extended storage.

    PubMed

    Jones, D R; Karcher, D M; Abdo, Z

    2014-05-01

    Egg producers in the United States are utilizing a variety of commercial egg production systems to provide consumer choice and meet legislative requirements. Consumer egg grades in the United States were developed for conventional cage production, and it is unclear what effect alternative production systems might have on egg quality during retail and consumer home storage. The current study was undertaken to determine what changes in egg quality characteristics occur during extended cold storage for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs. During 12 wk of cold storage, egg weight, albumen height, Haugh unit, static compression shell strength, vitelline membrane strength and deformation, yolk index, shell dynamic stiffness, and whole egg total solids were monitored. Overall, aviary and enriched eggs were significantly (P < 0.05) heavier than conventional cage. Albumen height and Haugh unit (P < 0.05) were significantly greater for conventional cage than enriched eggs. Static compression shell strength was greatest (P < 0.05) for enriched eggs compared with aviary. No overall housing system effects for yolk measurements, shell dynamic stiffness, or whole egg total solids were observed. Albumen height, Haugh unit, and yolk quality measurements were all greatest at 0 and lowest at 12 wk of storage (P < 0.05). The rate of quality change among the housing systems for each measured attribute at 4, 6, and 12 wk was determined. Other than differences in the change of egg weight at 4 wk, no significant differences in the rate of quality decline were found among the housing systems. The results of the current study indicate that current US egg quality standards should effectively define quality for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs.

  20. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  1. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    NASA Astrophysics Data System (ADS)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  2. Use of HSM with Relational Databases

    NASA Technical Reports Server (NTRS)

    Breeden, Randall; Burgess, John; Higdon, Dan

    1996-01-01

    Hierarchical storage management (HSM) systems have evolved to become a critical component of large information storage operations. They are built on the concept of using a hierarchy of storage technologies to provide a balance in performance and cost. In general, they migrate data from expensive high performance storage to inexpensive low performance storage based on frequency of use. The predominant usage characteristic is that frequency of use is reduced with age and in most cases quite rapidly. The result is that HSM provides an economical means for managing and storing massive volumes of data. Inherent in HSM systems is system managed storage, where the system performs most of the work with minimum operations personnel involvement. This automation is generally extended to include: backup and recovery, data duplexing to provide high availability, and catastrophic recovery through use of off-site storage.

  3. Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Menasce, Daniel A.; Pentakalos, Odysseas I.

    1995-01-01

    Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.

  4. Seasonal thermal energy storage

    NASA Astrophysics Data System (ADS)

    Minor, J. E.

    1980-03-01

    The Seasonal Thermal Energy Storage (STES) Program demonstrates the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The STES Program utilizes ground water systems (aquifers) for thermal energy storage. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities.

  5. Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries

    NASA Astrophysics Data System (ADS)

    Poulain, Angélique; de Dreuzy, Jean-Raynald; Goderniaux, Pascal

    2018-04-01

    Pump storage hydroelectricity is an efficient way to temporarily store energy. This technique requires to store temporarily a large volume of water in an upper reservoir, and to release it through turbines to the lower reservoir, to produce electricity. Recently, the idea of using old flooded quarries as a lower reservoir has been evoked. However, these flooded quarries are generally connected to unconfined aquifers. Consequently, pumping or injecting large volumes of water, within short time intervals, will have an impact on the adjacent aquifers. Conversely, water exchanges between the quarry and the aquifer may also influence the water level fluctuations in the lower reservoir. Using numerical modelling, this study investigates the interactions between generic flooded open pit quarries and adjacent unconfined aquifers, during various pump-storage cyclic stresses. The propagation of sinusoidal stresses in the adjacent porous media and the amplitude of water level fluctuations in the quarry are studied. Homogeneous rock media and the presence of fractures in the vicinity of the quarry are considered. Results show that hydrological quarry - rock interactions must be considered with caution, when implementing pump - storage systems. For rock media characterized by high hydraulic conductivity and porosity values, water volumes exchanges during cycles may affect significantly the amplitude of the water level fluctuations in the quarry, and as a consequence, the instantaneous electricity production. Regarding the impact of the pump - storage cyclic stresses on the surrounding environment, the distance of influence is potentially high under specific conditions, and is enhanced with the occurrence of rock heterogeneities, such as fractures. The impact around the quarry used as a lower reservoir thus appears as an important constraining factor regarding the feasibility of pump - storage systems, to be assessed carefully if groundwater level fluctuations around the quarry are expected to bring up adverse effects. Results highlight opportunities and challenges to be faced, to implement pump - storage hydroelectricity systems in old flooded open pit quarries.

  6. Techno-economic performance evaluation of solar tower plants with integrated multi-layered PCM thermocline thermal energy storage - A comparative study to conventional two-tank storage systems

    NASA Astrophysics Data System (ADS)

    Guedéz, Rafael; Ferruzza, Davide; Arnaudo, Monica; Rodríguez, Ivette; Perez-Segarra, Carlos D.; Hassar, Zhor; Laumert, Björn

    2016-05-01

    Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher investment costs and difficulties during the operation of the variable volume tanks. Instead, another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost up to 30% and maintain high efficiencies. This paper analyses a multi-layered solid PCM storage tank concept for solar tower applications, and describes a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. A detail model of the tank has been developed and introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme.

  7. Capital cost expenditure of high temperature latent and sensible thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Jacob, Rhys; Saman, Wasim; Bruno, Frank

    2017-06-01

    In the following study cost estimates have been undertaken for an encapsulated phase change material (EPCM) packed bed, a packed bed thermocline and a traditional two-tank molten salt system. The effect of various heat transfer fluids (air and molten salt), system configuration (cascade vs one PCM, and direct vs indirect) and temperature difference (ΔT = 100-500 °C) on the cost estimate of the system was also investigated. Lastly, the storage system boundary was expanded to include heat exchangers, pumps and fans, and heat tracing so that a thorough cost comparison could be undertaken. The results presented in this paper provide a methodology to quickly compare various systems and configurations while providing design limits for the studied technologies.

  8. Engineering model system study for a regenerative fuel cell: Study report

    NASA Technical Reports Server (NTRS)

    Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.

    1984-01-01

    Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.

  9. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    PubMed

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  10. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  11. Fuzzy-driven energy storage system for mitigating voltage unbalance factor on distribution network with photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat

    2017-04-01

    The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.

  12. Design of redundant array of independent DVD libraries based on iSCSI

    NASA Astrophysics Data System (ADS)

    Chen, Yupeng; Pan, Longfa

    2003-04-01

    This paper presents a new approach to realize the redundant array of independent DVD libraries (RAID-LoIP) by using the iSCSI technology and traditional RAID algorithms. Our design reaches the high performance of optical storage system with following features: large storage size, highly accessing rate, random access, long distance of DVD libraries, block I/O storage, long storage life. Our RAID-LoIP system can be a good solution for broadcasting media asset storage system.

  13. Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Tom; Nagarajan, Adarsh; Baggu, Murali

    This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.

  14. Robust holographic storage system design.

    PubMed

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  15. Scientific Data Storage for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Readey, J.

    2014-12-01

    Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.

  16. Optical storage media data integrity studies

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1994-01-01

    Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.

  17. Sewage sludge as fertiliser - environmental assessment of storage and land application options.

    PubMed

    Willén, A; Junestedt, C; Rodhe, L; Pell, M; Jönsson, H

    2017-03-01

    Sewage sludge (SS) contains beneficial plant nutrients and organic matter, and therefore application of SS on agricultural land helps close nutrient loops. However, spreading operations are restricted to certain seasons and hence the SS needs to be stored. Storage and land application of SS are both potential sources of greenhouse gases and ammonia, leading to global warming, acidification and eutrophication. Covering the stored SS, treating it with urea and choosing the correct time for land application all have the potential to reduce emissions from the system. Using life cycle assessment (LCA), this study compares storage and land application options of SS in terms of global warming potential (GWP), acidification potential, eutrophication potential and primary energy use. The system with covered storage has the lowest impact of all categories. Systems with autumn application are preferable to spring application for all impact categories but, when nitrate leaching is considered, spring application is preferable in terms of eutrophication and primary energy use and, for some SS treatments, GWP. Ammonia addition reduces nitrous oxide and ammonia emissions during storage, but increases these emissions after land application. Storage duration has a large impact on GWP, while amount of chemical nitrogen fertiliser substituted has a large impact on primary energy use.

  18. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.

    PubMed

    Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme

    2017-12-01

    Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.

  19. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  20. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Treesearch

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  1. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with a storage tank equipped with radial fins of rectangular profile

    NASA Astrophysics Data System (ADS)

    Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe

    2013-01-01

    The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using the package Fluent 6.3. Based on the good agreement between the numerical results and the experimental data of Chaouachi and Gabsi (Renew Energy Revue 9(2):75-82, 2006), an attempt to improve this solar system operating was made by equipping the storage tank with radial fins of rectangular profile. A second 3D CFD model was developed and a series of numerical simulations were conducted for various SWH designs which differ in the depth of this extended surface for heat exchange. As the modified surface presents a higher characteristic length for convective heat transfer from the storage tank to the water, the fins equipped storage tank based SWH is determined to have a higher water temperature and a reduced thermal losses coefficient during the day-time period. Regarding the night operating of this water heater, the results suggest that the modified system presents higher thermal losses.

  2. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  3. Design, construction, testing and evaluation of a residential ice storage air conditioning system

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Ritz, T. A.

    1982-12-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures which would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.

  4. SIMWEST - A simulation model for wind energy storage systems

    NASA Technical Reports Server (NTRS)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  5. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    NASA Astrophysics Data System (ADS)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.

  6. 75 FR 49813 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1, Confirmation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Storage Casks: MAGNASTOR System, Revision 1, Confirmation of Effective Date AGENCY: Nuclear Regulatory... spent fuel storage regulations at 10 CFR 72.214 to revise the MAGNASTOR System listing to include...

  7. Goddard Conference on Mass Storage Systems and Technologies, Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  8. Effects of the heat transfer fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study

    NASA Astrophysics Data System (ADS)

    Ogoh, Wilson; Groulx, Dominic

    2012-03-01

    A numerical study of the effects of the thermal fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system (LHESS) was conducted. Due to the low thermal conductivity of phase change materials (PCMs) used in LHESS, fins were added to the system to increase the rate of heat transfer and charging. Finite elements were used to implement the developed numerical method needed to study and solve for the phase change heat transfer (melting of PCM) encountered in a LHESS during charging. The effective heat capacity method was applied in order to account for the large amount of latent energy stored during melting of the PCM and the moving interface between the solid and liquid phases. The effects of the heat transfer fluid (HTF) velocity on the melting rate of the PCM were studied for configurations having between 0 and 18 fins. Results show that the overall heat transfer rate to the PCM increases with an increase in the HTF velocity. However, the effect of the HTF velocity was observed to be small in configurations having very few fins, owing to the large residual thermal resistance offered by the PCM. However, the effect of the HTF velocity becomes more pronounced with addition of fins; since the thermal resistance on the PCM side of the LHESS is significantly reduce by the large number of fins in the system.

  9. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  10. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  11. FPGA-based prototype storage system with phase change memory

    NASA Astrophysics Data System (ADS)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  12. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  13. Solar heating system

    DOEpatents

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  14. A system for spacecraft attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Shaughnessy, J. D.

    1974-01-01

    A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.

  15. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    PubMed

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  16. Experimental study on flat plate air solar collector using a thin sand layer

    NASA Astrophysics Data System (ADS)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  17. Data storage systems technology for the Space Station era

    NASA Technical Reports Server (NTRS)

    Dalton, John; Mccaleb, Fred; Sos, John; Chesney, James; Howell, David

    1987-01-01

    The paper presents the results of an internal NASA study to determine if economically feasible data storage solutions are likely to be available to support the ground data transport segment of the Space Station mission. An internal NASA effort to prototype a portion of the required ground data processing system is outlined. It is concluded that the requirements for all ground data storage functions can be met with commercial disk and tape drives assuming conservative technology improvements and that, to meet Space Station data rates with commercial technology, the data will have to be distributed over multiple devices operating in parallel and in a sustained maximum throughput mode.

  18. Hydrological analysis of single and dual storage systems for stormwater harvesting.

    PubMed

    Brodie, I M

    2008-01-01

    As stormwater flows are intermittent, the requirement to store urban runoff is important to the design of a stormwater re-use scheme. In many urban areas, the space available to provide storage is limited and thus the need to optimise the storage volume becomes critical. This paper will highlight the advantages and disadvantages of two different approaches of providing storage: 1) a single shallow storage (0.5 m depth) in which stormwater capture and a balanced release to supply users is provided by the one unit; and 2) a dual system in which the functions of stormwater capture and supply release are provided by two separate deeper storage units (2 m depth). The comparison between the two strategies is supported by water balance modelling assessing the supply reliability and storage volume requirements for both options. Above a critical volumetric capacity, the supply yield of a dual storage system is higher than that from a single storage of equal volume mainly because of a smaller assumed footprint. The single storage exhibited greater evaporation loss and is more susceptible to algae blooms due to long water residence times. Results of the comparison provide guidance to the design of more efficient storages associated with stormwater harvesting systems. Copyright IWA Publishing 2008.

  19. The effect of storage temperature on the biological activity of extracellular vesicles for the complement system.

    PubMed

    Park, Sang June; Jeon, Hyungtaek; Yoo, Seung-Min; Lee, Myung-Shin

    2018-05-10

    Extracellular vesicles (EVs) are mediators of intercellular communication by transporting cargo containing proteins, lipids, mRNA, and miRNA. There is increasing evidence that EVs have various roles in regulating migration, invasion, stemness, survival, and immune functions. Previously, we have found that EVs from Kaposi's sarcoma-associated herpesvirus (KSHV)-infected human endothelial cells have the potential to activate the complement system. Although many studies have shown that the physical properties of EVs can be changed by their storage condition, there have been few studies for the stability of biological activity of EVs in various storage conditions. In this study, we investigated various conditions to identify the best conditions to store EVs with functional stability for 25 d. Furthermore, the correlation between the function and other characteristics of EVs, including the expression of EV markers, size distribution, and particle number, were also analyzed. Our results demonstrated that storage temperature is an important factor to maintain the activity of EVs and would be useful information for basic research and clinical application using EVs.

  20. Optical Disks Compete with Videotape and Magnetic Storage Media: Part I.

    ERIC Educational Resources Information Center

    Urrows, Henry; Urrows, Elizabeth

    1988-01-01

    Describes the latest technology in videotape cassette systems and other magnetic storage devices and their possible effects on optical data disks. Highlights include Honeywell's Very Large Data Store (VLDS); Exabyte's tape cartridge storage system; standards for tape drives; and Masstor System's videotape cartridge system. (LRW)

  1. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  2. Technology for national asset storage systems

    NASA Technical Reports Server (NTRS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  3. Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1998-01-01

    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence.

  4. Bonding durability of dual-curing composite core material with different self-etching adhesive systems in a model complete vertical root fracture reconstruction.

    PubMed

    Waidyasekera, Kanchana; Nikaido, Toru; Weerasinghe, Dinesh; Nurrohman, Hamid; Tagami, Junji

    2012-04-01

    This study evaluated a dual-curing composite along with different dentin adhesive systems for 1 year under water storage, as a new bonding method of root fragments in complete vertical root fracture. Bovine root fragments were bonded with the dual-curing resin composite Clearfil DC Core Automix (DCA) and one of three adhesive systems: two-step self-etching adhesive Clearfil SE Bond (SE), one-step self-etching adhesive Tokuyama Bond Force (BF), one-step dual-curing self-etching adhesive Clearfil DC Bond (DC). Microtensile bond strength (µTBS)/ultimate tensile bond strength (UTS), FE-SEM ultramorphology of fracture modes, and adhesive dentin interface were observed after water storage for periods of up to one year. The data were analyzed with two-way ANOVA. µTBS was influenced by "dentin adhesive system" (F = 324.455, p < 0.001) and "length of water storage" (F = 8.470, p < 0.001). SE yielded significantly higher µTBS, regardless of storage period (p < 0.05) and maintained the initial µTBS without a significant change after 1 year of water storage (p > 0.05). From 24 h to 1 month, BF showed significantly higher bond strength than DC. UTS of DCA was influenced only by the curing mode of the material (F = 5.051, p = 0.027), but not by the length of water storage (F = 0.053, p > 0.05). Two-step self-etching adhesive systems and dual-curing composite core material can be considered as a suitable bonding method for complete root fractures.

  5. Techno-economic assessment of the need for bulk energy storage in low-carbon electricity systems with a focus on compressed air storage (CAES)

    NASA Astrophysics Data System (ADS)

    Safaei Mohamadabadi, Hossein

    Increasing electrification of the economy while decarbonizing the electricity supply is among the most effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity sector. Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This thesis evaluates the performance of BES systems - especially compressed air energy storage (CAES) technology - for integration of wind energy from engineering and economic aspects. Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high roundtrip storage efficiencies ( 80% and 70%) compared to conventional CAES ( 50%). Using hydrogen to fuel CAES plants - instead of natural gas - yields a low overall efficiency ( 35%), despite its negligible GHG emissions. The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. space heating) can enhance both the economic and emissions performance of compressed air storage plants. A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km away from the air storage site). A green-field simulation finds that reducing the capital cost of BES - even drastically below current levels - does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait for availability of cheap BES systems to cost-effectively decarbonize the grid. The prospects of A-CAES seem to be stronger compared to other BES systems due to its low energy-specific capital cost.

  6. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  7. High performance network and channel-based storage

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.

    1991-01-01

    In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.

  8. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  9. DICOM implementation on online tape library storage system

    NASA Astrophysics Data System (ADS)

    Komo, Darmadi; Dai, Hailei L.; Elghammer, David; Levine, Betty A.; Mun, Seong K.

    1998-07-01

    The main purpose of this project is to implement a Digital Image and Communications (DICOM) compliant online tape library system over the Internet. Once finished, the system will be used to store medical exams generated from U.S. ARMY Mobile ARMY Surgical Hospital (MASH) in Tuzla, Bosnia. A modified UC Davis implementation of DICOM storage class is used for this project. DICOM storage class user and provider are implemented as the system's interface to the Internet. The DICOM software provides flexible configuration options such as types of modalities and trusted remote DICOM hosts. Metadata is extracted from each exam and indexed in a relational database for query and retrieve purposes. The medical images are stored inside the Wolfcreek-9360 tape library system from StorageTek Corporation. The tape library system has nearline access to more than 1000 tapes. Each tape has a capacity of 800 megabytes making the total nearline tape access of around 1 terabyte. The tape library uses the Application Storage Manager (ASM) which provides cost-effective file management, storage, archival, and retrieval services. ASM automatically and transparently copies files from expensive magnetic disk to less expensive nearline tape library, and restores the files back when they are needed. The ASM also provides a crash recovery tool, which enable an entire file system restore in a short time. A graphical user interface (GUI) function is used to view the contents of the storage systems. This GUI also allows user to retrieve the stored exams and send the exams to anywhere on the Internet using DICOM protocols. With the integration of different components of the system, we have implemented a high capacity online tape library storage system that is flexible and easy to use. Using tape as an alternative storage media as opposed to the magnetic disk has the great potential of cost savings in terms of dollars per megabyte of storage. As this system matures, the Hospital Information Systems/Radiology Information Systems (HIS/RIS) or other components can be developed potentially as interfaces to the outside world thus widen the usage of the tape library system.

  10. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial.

    PubMed

    Ardehali, Abbas; Esmailian, Fardad; Deng, Mario; Soltesz, Edward; Hsich, Eileen; Naka, Yoshifumi; Mancini, Donna; Camacho, Margarita; Zucker, Mark; Leprince, Pascal; Padera, Robert; Kobashigawa, Jon

    2015-06-27

    The Organ Care System is the only clinical platform for ex-vivo perfusion of human donor hearts. The system preserves the donor heart in a warm beating state during transport from the donor hospital to the recipient hospital. We aimed to assess the clinical outcomes of the Organ Care System compared with standard cold storage of human donor hearts for transplantation. We did this prospective, open-label, multicentre, randomised non-inferiority trial at ten heart-transplant centres in the USA and Europe. Eligible heart-transplant candidates (aged >18 years) were randomly assigned (1:1) to receive donor hearts preserved with either the Organ Care System or standard cold storage. Participants, investigators, and medical staff were not masked to group assignment. The primary endpoint was 30 day patient and graft survival, with a 10% non-inferiority margin. We did analyses in the intention-to-treat, as-treated, and per-protocol populations. This trial is registered with ClinicalTrials.gov, number NCT00855712. Between June 29, 2010, and Sept 16, 2013, we randomly assigned 130 patients to the Organ Care System group (n=67) or the standard cold storage group (n=63). 30 day patient and graft survival rates were 94% (n=63) in the Organ Care System group and 97% (n=61) in the standard cold storage group (difference 2·8%, one-sided 95% upper confidence bound 8·8; p=0·45). Eight (13%) patients in the Organ Care System group and nine (14%) patients in the standard cold storage group had cardiac-related serious adverse events. Heart transplantation using donor hearts adequately preserved with the Organ Care System or with standard cold storage yield similar short-term clinical outcomes. The metabolic assessment capability of the Organ Care System needs further study. TransMedics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory... storage regulations by revising the Holtec International HI-STORM 100 Cask System listing within the...

  12. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending its spent fuel storage regulations by revising the NAC International, Inc. (NAC) Modular Advanced Generation Nuclear All-purpose Storage...

  13. Long-Term file activity patterns in a UNIX workstation environment

    NASA Technical Reports Server (NTRS)

    Gibson, Timothy J.; Miller, Ethan L.

    1998-01-01

    As mass storage technology becomes more affordable for sites smaller than supercomputer centers, understanding their file access patterns becomes crucial for developing systems to store rarely used data on tertiary storage devices such as tapes and optical disks. This paper presents a new way to collect and analyze file system statistics for UNIX-based file systems. The collection system runs in user-space and requires no modification of the operating system kernel. The statistics package provides details about file system operations at the file level: creations, deletions, modifications, etc. The paper analyzes four months of file system activity on a university file system. The results confirm previously published results gathered from supercomputer file systems, but differ in several important areas. Files in this study were considerably smaller than those at supercomputer centers, and they were accessed less frequently. Additionally, the long-term creation rate on workstation file systems is sufficiently low so that all data more than a day old could be cheaply saved on a mass storage device, allowing the integration of time travel into every file system.

  14. Entropy, pricing and productivity of pumped-storage

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Tyralis, Hristos; Tzouka, Katerina

    2016-04-01

    Pumped-storage constitutes today a mature method of bulk electricity storage in the form of hydropower. This bulk electricity storability upgrades the economic value of hydropower as it may mitigate -or even neutralize- stochastic effects deriving from various geophysical and socioeconomic factors, which produce numerous load balance inefficiencies due to increased uncertainty. Pumped-storage further holds a key role for unifying intermittent renewable (i.e. wind, solar) units with controllable non-renewable (i.e. nuclear, coal) fuel electricity generation plants into integrated energy systems. We develop a set of indicators for the measurement of performance of pumped-storage, in terms of the latter's energy and financial contribution to the energy system. More specifically, we use the concept of entropy in order to examine: (1) the statistical features -and correlations- of the energy system's intermittent components and (2) the statistical features of electricity demand prediction deviations. In this way, the macroeconomics of pumped-storage emerges naturally from its statistical features (Karakatsanis et al. 2014). In addition, these findings are combined to actual daily loads. Hence, not only the amount of energy harvested from the pumped-storage component is expected to be important, but the harvesting time as well, as the intraday price of electricity varies significantly. Additionally, the structure of the pumped-storage market proves to be a significant factor as well for the system's energy and financial performance (Paine et al. 2014). According to the above, we aim at postulating a set of general rules on the productivity of pumped-storage for (integrated) energy systems. Keywords: pumped-storage, storability, economic value of hydropower, stochastic effects, uncertainty, energy systems, entropy, intraday electricity price, productivity References 1. Karakatsanis, Georgios et al. (2014), Entropy, pricing and macroeconomics of pumped-storage systems, Vienna, Austria, April 27 - May 2 2014, "The Face of the Earth - Process and Form", European Geophysical Union General Assembly 2. Paine, Nathan et al. (2014), Why market rules matter: Optimizing pumped hydroelectric storage when compensation rules differ, Energy Economics 46, 10-19

  15. Characterization of proacrosin/acrosin system after liquid storage and cryopreservation of turkey semen (Meleagris gallopavo).

    PubMed

    Słowińska, M; Liszewska, E; Dietrich, G J; Ciereszko, A

    2012-09-15

    This study was designed to identify the effect of liquid storage at 4 °C for 48 h and cryopreservation on the proacrosin/acrosin system of turkey spermatozoa. Anti-acrosin I antibodies were produced and used to demonstrate Western blot analysis profile of the proacrosin/acrosin system of sperm and seminal plasma and possible changes in the proacrosin/acrosin system of turkey sperm stored for 2.5, 24, and 48 h or cryopreserved. At the same time acrosin-like activity was examined by the measurement of amidase activity of sperm extracts, sperm suspension, and seminal plasma of turkey semen. A computer-assisted sperm analysis system was used to monitor the sperm motility characteristics of turkey sperm stored for 48 h or cryopreserved. Different profiles of the sperm proacrosin/acrosin system were observed regarding the presence or absence of inhibitors (p-nitrophenyl-p'-guanidine benzoate [NPGB] and Kazal family inhibitor) during the extraction process. When NPGB was present three main bands were observed with the molecular weight ranging from 66 to 35 kDa. Bands corresponding to acrosin I and II were not observed. In sperm extract without NPGB, three or four bands were observed with the molecular weight ranging from 41 to 30 kDa. The bands corresponding to acrosin I and II were observed. During liquid storage a decrease in sperm motility and an increase in sperm-extracted amidase activity were observed. After 24 and 48 h of storage, extracted amidase activity was higher than at 2.5 h by 24% and 31%, respectively. However, no changes in the Western blot analysis profiles of sperm extract and seminal plasma were visible during liquid storage. After cryopreservation a decrease in sperm motility and all sperm motility parameters were observed. In contrast to liquid storage, cryopreservation did not increase extracted amidase activity. However, changes in Western blot analysis profiles were visible in sperm extract and seminal plasma after cryopreservation. After freezing-thawing, additional bands appeared in sperm extract and seminal plasma. These bands were of different molecular weight regarding the presence or absence of NPGB. These data suggest that the mechanism of damage to the proacrosin/acrosin system is different for liquid storage and cryopreservation. Liquid storage seems to increase in the susceptibility of the proacrosin/acrosin system to be activated during extraction. Kazal inhibitors of turkey seminal plasma are involved in the control of proacrosin activation. The disturbances of the proacrosin/acrosin system of turkey spermatozoa can be related to a disturbance in the induction of the acrosome reaction. Our results may be important for a better understanding of the proacrosin/acrosin system of turkey spermatozoa and disturbance to this system during liquid storage and cryopreservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Removing Barriers for Effective Deployment of Intermittent Renewable Generation

    NASA Astrophysics Data System (ADS)

    Arabali, Amirsaman

    The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation and congestion costs over a scheduling period. A technical assessment framework is developed to enhance the efficiency of wind integration and evaluate the economics of storage technologies and conventional gas-fired alternatives. The proposed method is used to carry out a cost-benefit analysis for the IEEE 24-bus system and determine the most economical technology. In order to mitigate the financial and technical concerns of renewable energy integration into the power system, a stochastic framework is proposed for transmission grid reinforcement studies in a power system with wind generation. A multi-stage multi-objective transmission network expansion planning (TNEP) methodology is developed which considers the investment cost, absorption of private investment and reliability of the system as the objective functions. A Non-dominated Sorting Genetic Algorithm (NSGA II) optimization approach is used in combination with a probabilistic optimal power flow (POPF) to determine the Pareto optimal solutions considering the power system uncertainties. Using a compromise-solution method, the best final plan is then realized based on the decision maker preferences. The proposed methodology is applied to the IEEE 24-bus Reliability Tests System (RTS) to evaluate the feasibility and practicality of the developed planning strategy.

  17. Profitability Analysis of Residential Wind Turbines with Battery Energy Storage

    NASA Astrophysics Data System (ADS)

    She, Ying; Erdem, Ergin; Shi, Jing

    Residential wind turbines are often accompanied by an energy storage system for the off-the-grid users, instead of the on-the-grid users, to reduce the risk of black-out. In this paper, we argue that residential wind turbines with battery energy storage could actually be beneficial to the on-the-grid users as well in terms of monetary gain from differential pricing for buying electricity from the grid and the ability to sell electricity back to the grid. We develop a mixed-integer linear programming model to maximize the profit of a residential wind turbine system while meeting the daily household electricity consumption. A case study is designed to investigate the effects of differential pricing schemes and sell-back schemes on the economic output of a 2-kW wind turbine with lithium battery storage. Overall, based on the current settings in California, a residential wind turbine with battery storage carries more economical benefits than the wind turbine alone.

  18. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degreesmore » C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.« less

  19. Dynamic-Type Ice Thermal Storage Systems

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi

    This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.

  20. PLANNING FOR OPTICAL DISK TECHNOLOGY WITH DIGITAL CARTOGRAPHY.

    USGS Publications Warehouse

    Light, Donald L.

    1984-01-01

    Progress in the computer field continues to suggest that the transition from traditional analog mapping systems to digital systems has become a practical possibility. A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980's has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis is placed on determining U. S. Geological Survey mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.

  1. System-level modeling for geological storage of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan

    2006-04-24

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.Themore » objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.« less

  2. Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter

    2004-01-01

    The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.

  3. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.

  4. Storage of Buffy-coat-derived platelets in additive solutions: in vitro effects on platelets prepared by the novel TACSI system and stored in plastic containers with different gas permeability.

    PubMed

    Sandgren, P; Hild, M; Sjödin, A; Gulliksson, H

    2010-11-01

    The novel TACSI system is designed for automated preparation of platelets (PLTs) from pooled buffy coats (BCs). One TACSI device will handle 6 units at the same time. The aim of our in vitro study is to investigate the effects of using this automated equipment with subsequent storage in two different plastic containers and to compare these results with PLTs prepared by the OrbiSac system. Buffy-coat-derived PLTs (n=8) were prepared by using the TACSI system, including storage in polyvinyl chloride (PVC)-based plastic containers with di, n-decyl phthalate (DnDP) (TACSI R) and BTHC (TACSI T)-based plasticizers. As a reference, the OrbiSac System was used to prepare PLTs (n=8) with subsequent storage in a PVC plastic container with a citrate-based plasticizer (BTHC). In total, 16 TACSI and eight reference units, supplied by approximately 30% plasma and 70% SSP+, were analysed for various in vitro variables during the 7-day storage period. No significant difference in PLT counts, LDH, mean platelet volume (MPV) and adenosine triphosphate between the groups was detected. Glucose was lower (P<0·05) and lactate was higher (P<0·05) in TACSI R vs. OrbiSac. With exception of day 7 (P<0·05 TACSI R vs. OrbiSac), HSR reactivity were not different between groups. Extent of shape change was lower and CD62P higher in TACSI T when compared with TACSI R and OrbiSac units (P<0·05). pH was maintained at >6·8 (day 7) and swirling remained at the highest level (score=2) for all units throughout storage. Platelets prepared by the TACSI system with subsequent storage in two different PVC-based plastic containers were equivalent to reference PLTs with regard to in vitro characteristics during 7 days of storage. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  5. Fundamental Study of Energy Storage for Electric Railway Combining Electric Double-layer Capacitors and Battery

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi

    The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regenerative power lapse and so on, have been important issues in DC railway feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. Electric double-layer capacitors (EDLC) can be charged and discharged rapidly in a short time with large power. On the other hand, a battery has a high energy density so that it is proper to be charged and discharged for a long time. Therefore, from a viewpoint of load pattern for electric railway, hybrid energy storage system combining both energy storage media may be effective. This paper introduces two methods for hybrid energy system theoretically, and describes the results of the fundamental tests.

  6. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  7. Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt

    NASA Astrophysics Data System (ADS)

    Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.

    2017-01-01

    A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.

  8. Long-term sera storage does not significantly modify the interpretation of toxoplasmosis serologies.

    PubMed

    Dard, C; Bailly, S; Drouet, T; Fricker-Hidalgo, H; Brenier-Pinchart, M P; Pelloux, H

    2017-03-01

    Serological investigation of Toxoplasma gondii can answer many questions about toxoplasmosis in human pathology. Along these lines, studies on serum storage in biobanks need to be performed especially in terms of determining the impact of storage on relevance of sera analysis after freezing. This study assessed the impact of long-term sera storage on the stability of anti-Toxoplasma immunoglobulins. The stability of anti-Toxoplasma IgG and IgM was studied in 244 and 242 sera respectively, stored at -20°C from one month to ten years. ELISA-immunoassay (Vidas®, bioMérieux) was used for initial and post-storage analyses. Linear models for repeated measures and subgroup analyses were performed to assess the effect of storage duration and sample characteristics on immunoglobulins stability. Until ten years, the variability attributed to storage (maximum 8.07% for IgG, 13.17% for IgM) was below the variations inherent to the serological technique and allowed by quality assurance systems (15%). Subgroup analysis reported no variation attributed to sera storage. Serological interpretation was modified for 3 sera (1.2%) tested for IgM, all stored more than seven years. Anti-Toxoplasma immunoglobulins can reliably be measured for at least up to six years of storage with no modification of interpretation of toxoplasmosis serologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. AdiosStMan: Parallelizing Casacore Table Data System using Adaptive IO System

    NASA Astrophysics Data System (ADS)

    Wang, R.; Harris, C.; Wicenec, A.

    2016-07-01

    In this paper, we investigate the Casacore Table Data System (CTDS) used in the casacore and CASA libraries, and methods to parallelize it. CTDS provides a storage manager plugin mechanism for third-party developers to design and implement their own CTDS storage managers. Having this in mind, we looked into various storage backend techniques that can possibly enable parallel I/O for CTDS by implementing new storage managers. After carrying on benchmarks showing the excellent parallel I/O throughput of the Adaptive IO System (ADIOS), we implemented an ADIOS based parallel CTDS storage manager. We then applied the CASA MSTransform frequency split task to verify the ADIOS Storage Manager. We also ran a series of performance tests to examine the I/O throughput in a massively parallel scenario.

  10. Test report :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage systemmore » that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.« less

  11. In-situ liquid storage capacity measurement of subsurface wastewater absorption system products.

    PubMed

    Quisenberry, Virgil; Brown, Philip; Smith, Bill; Hallahan, Dennis F

    2006-11-01

    A method is presented for measuring the in-situ liquid storage capacity of subsurface wastewater infiltration system (SWIS) products. While these products vary in composition, geometry, and porosity, they all have the same function: to provide a conduit for the flow of effluent from a septic tank to and through a trench so that infiltration into the soil can occur. A functional SWIS must also provide temporary liquid storage. Storage is necessary for periods when discharge from the septic tank exceeds the infiltration rate of the soil. Storage is also important during times when the soil in and around the trench is saturated. Many states now have regulatory requirements pertaining to storage volume, and these requirements commonly establish the traditional gravel-pipe system as the standard for minimally acceptable volume. Raliable comparisons between various alternative products and gravel have been difficult or impossible, because there has been no standard method for measuring storage volume. Some products have been evaluated under realistic field conditions; others have been evaluated under theoretical or ideal conditions. The protocol developed by the study reported here can serve as a common, accurate basis for comparisons. A 3-foot-deep trench was excavated, and the bottom was leveled. Markers (nails or rods) were attached to the products to indicate the invert and full-volume heights. The products were then enclosed in plastic, placed in a trench, and covered with soil. A 4-inch-diameter pipe extended from the product to the surface to allow metered additions of water into the products and precise determinations when the systems had been filled to capacity. Four plastic chambers, three expanded polystyrene (ESP) products, two multipipe arrangements, and a standard gravel-pipe system were evaluated. The standard gravel-pipe system held 10.2 gal/ft Three of the four plastic chambers stored from 100 to 130 percent of what the standard system held. The multipipe systems held 80 and 90 percent of the standard. The ESP bundles held less than 75 percent of the standard, with the most commonly used configuration storing about 60 percent. The rigid products were found to store amounts that agreed with their companies' reported values. The ESP products retained less than company reported values. These differences illustrate the need for a standard protocol for measuring storage volume.

  12. Energy storage considerations for a robotic Mars surface sampler

    NASA Technical Reports Server (NTRS)

    O'Donnell, P. M.; Cataldo, R. L.; Gonzalez-Sanabria, O. D.

    1988-01-01

    The characteristics of various energy storage systems (including Ni-Cd, Ni-H2, Ag-Zn, Li-XS, Na-S, PbSO4, and regenerative fuel cell systems) considered for a robotic Mars surface sampler are reviewed. It is concluded that the bipolar nickel-hydrogen battery and the sodium-sulfur battery are both viable candidates as storage systems for the rover's Radioisotope Thermoelectric Generator. For a photovoltaic storage system, the regenerative fuel cell and the bipolar nickel-hydrogen battery are the primary candidates.

  13. Energy Storage Systems Program Report for FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  14. Improvement in the stability of serum samples stored in an automated refrigerated module.

    PubMed

    Parra-Robert, Marina; Rico-Santana, Naira; Alcaraz-Quiles, José; Sandalinas, Silvia; Fernández, Esther; Falcón, Isabel; Pérez-Riedweg, Margarita; Bedini, Josep Lluís

    2016-12-01

    In clinical laboratories it is necessary to know for how long the analytes are stable in the samples with specific storage conditions. Our laboratory has implemented the new Aptio Automation System (AAS) (Siemens Healthcare Diagnostics) where the analyzed samples are stored in a refrigerated storage module (RSM) after being sealed. The aim of the study was to evaluate the stability of serum samples with the AAS and comparing the results with a previous study using a conventional refrigerated system. Serum samples from a total of 50 patients were collected and for each of them 27 biochemical analytes were analyzed. The samples were divided in 5 sets of 10 samples. Each set was re-analyzed at one of the following times: 24, 48, 72, 96 and 120h. Stability was evaluated according to the Total Limit of Change (TLC) criteria, which combine both analytical and biologic variation. A total of 26 out of 27 analytes were stable at the end of the study according to TLC criteria. Lactate dehydrogenase was not stable at 48h observing a decrease in its concentration until the end of the study. In the previous study (conventional storage system) 9 biochemical analytes were not stable with an increase of their levels due to the evaporation process. The RSM connected to the AAS improves the stability of serum samples. This system avoids the evaporation process due to the sealing of samples and allows better control of the samples during their storage. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. System characterization of a magnetically suspended flywheel

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Dave K.; Plant, David P.

    1988-01-01

    The purpose of flywheel energy storage is to provide a means to save energy during times when the satellite is in sunlight, and then return the energy during the time when the satellite is in darkness. Typically, an energy storage device operates cyclically, where for satellites in Low Earth Orbit (LEO) the typical period is 60 minutes of sunlight followed by 30 minutes of darkness. If a lifetime of 17 years is required the energy storage system must be capable of sustaining approximately 100,000 cycles. The recent developments at the University of Maryland and how these progressions apply to a 500 Watt-hour magnetically suspended flywheel stack energy storage system are covered. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of non-contacting displacement transducers, and performance enhancements of magnetic bearings. The experimental results show that a stack flywheel energy storage system is a feasible technology.

  16. Architecture for removable media USB-ARM

    DOEpatents

    Shue, Craig A.; Lamb, Logan M.; Paul, Nathanael R.

    2015-07-14

    A storage device is coupled to a computing system comprising an operating system and application software. Access to the storage device is blocked by a kernel filter driver, except exclusive access is granted to a first anti-virus engine. The first anti-virus engine is directed to scan the storage device for malicious software and report results. Exclusive access may be granted to one or more other anti-virus engines and they may be directed to scan the storage device and report results. Approval of all or a portion of the information on the storage device is based on the results from the first anti-virus engine and the other anti-virus engines. The storage device is presented to the operating system and access is granted to the approved information. The operating system may be a Microsoft Windows operating system. The kernel filter driver and usage of anti-virus engines may be configurable by a user.

  17. Development of a phase-change thermal storage system using modified anhydrous sodium hydroxide for solar electric power generation

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.; Rowny, P. E.

    1978-01-01

    A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed.

  18. Development of graphite foam infiltrated with MgCl 2 for a latent heat based thermal energy storage (LHTES) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Kim, Taeil; Zhao, Weihuan

    Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermalmore » diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.« less

  19. Study of Aquifer Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Okuyama, Masaaki; Umemiya, Hiromichi; Shibuya, Ikuko; Haga, Eiji

    Yamagata University 'Aquifer Thermal Energy Storage (ATES)' is the experimental system which has been running since 1982. From the results for along terms of experiments, we obtain many important knowledge. This paper presents the accomplishments for 16 years and the characteristics of thermal energy storage in thermal energy storage well. The conclusions show as follows. 1)In recent years, the thermal recovery factor of warm energy storage well becomes almost constant at about 60%. 2) The thermal recovery factor of cool energy storage well increases gradually and becomes at about 15%. 3) Since the ferric colloidal dam is formed in aquifer, thermal recovery factor increase year after year. 4) Back wash can remove clogging for ferric colloidal dam. 5) The apparent thermal diffusivity decrease gradually due to ferric colloidal dam.

  20. Technical and economic evaluation of a Brayton-Rankine combined cycle solar-thermal power plant

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Copeland, R. J.

    1981-05-01

    An assessment of gas-liquid direct-contact heat exchange and of a new storage-coupled system was conducted. Both technical and economic issues are evaluated. Specifically, the storage-coupled combined cycle is compared with a molten salt system. The open Brayton cycle system is used as a topping cycle, and the reject heat powers the molten salt/Rankine system. In this study the molten salt system is left unmodified, the Brayton cycle is integrated on top of a Marietta description of an existing molten salt plant. This compares a nonoptimized combined cycle with an optimized molten salt system.

  1. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardani, Kristen; O'Shaughnessy, Eric; Fu, Ran

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quartermore » of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.« less

  2. NASA Langley Research Center's distributed mass storage system

    NASA Technical Reports Server (NTRS)

    Pao, Juliet Z.; Humes, D. Creig

    1993-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

  3. Modeling and Synthesis Methods for Retrofit Design of Submarine Actuation Systems. Energy Storage for Electric Actuators

    DTIC Science & Technology

    2011-12-15

    for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage, simulation-based design

  4. Cake: Enabling High-level SLOs on Shared Storage Systems

    DTIC Science & Technology

    2012-11-07

    Cake: Enabling High-level SLOs on Shared Storage Systems Andrew Wang Shivaram Venkataraman Sara Alspaugh Randy H. Katz Ion Stoica Electrical...Date) * * * * * * * Professor R. Katz Second Reader (Date) Cake: Enabling High-level SLOs on Shared Storage Systems Andrew Wang, Shivaram Venkataraman ...Report MIT-LCS-TR-667, MIT, Laboratory for Computer Science, 1995. [39] A. Wang, S. Venkataraman , S. Alspaugh, I. Stoica, and R. Katz. Sweet storage SLOs

  5. Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? 

    Treesearch

    M.R. McHale; I.C. Burke; M.A. Lefsky; P.J. Peper; E.G. McPherson

    2009-01-01

    Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban trees. These studies have been limited by a lack of research on urban tree biomass, such that estimates of carbon storage in urban systems have relied upon allometric relationships developed in traditional forests. As urbanization increases globally, it is becoming...

  6. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    PubMed

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification

    NASA Astrophysics Data System (ADS)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  8. Innovative applications of energy storage in a restructured electricity marketplace : Phase III final report : a study for the DOE Energy Storage Systems Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyer, James M.; Erdman, Bill; Iannucci, Joseph J., Jr.

    2005-03-01

    This report describes Phase III of a project entitled Innovative Applications of Energy Storage in a Restructured Electricity Marketplace. For this study, the authors assumed that it is feasible to operate an energy storage plant simultaneously for two primary applications: (1) energy arbitrage, i.e., buy-low-sell-high, and (2) to reduce peak loads in utility ''hot spots'' such that the utility can defer their need to upgrade transmission and distribution (T&D) equipment. The benefits from the arbitrage plus T&D deferral applications were estimated for five cases based on the specific requirements of two large utilities operating in the Eastern U.S. A numbermore » of parameters were estimated for the storage plant ratings required to serve the combined application: power output (capacity) and energy discharge duration (energy storage). In addition to estimating the various financial expenditures and the value of electricity that could be realized in the marketplace, technical characteristics required for grid-connected distributed energy storage used for capacity deferral were also explored.« less

  9. Evaluation of the Huawei UDS cloud storage system for CERN specific data

    NASA Astrophysics Data System (ADS)

    Zotes Resines, M.; Heikkila, S. S.; Duellmann, D.; Adde, G.; Toebbicke, R.; Hughes, J.; Wang, L.

    2014-06-01

    Cloud storage is an emerging architecture aiming to provide increased scalability and access performance, compared to more traditional solutions. CERN is evaluating this promise using Huawei UDS and OpenStack SWIFT storage deployments, focusing on the needs of high-energy physics. Both deployed setups implement S3, one of the protocols that are emerging as a standard in the cloud storage market. A set of client machines is used to generate I/O load patterns to evaluate the storage system performance. The presented read and write test results indicate scalability both in metadata and data perspectives. Futher the Huawei UDS cloud storage is shown to be able to recover from a major failure of losing 16 disks. Both cloud storages are finally demonstrated to function as back-end storage systems to a filesystem, which is used to deliver high energy physics software.

  10. Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.

  11. Federated data storage system prototype for LHC experiments and data intensive science

    NASA Astrophysics Data System (ADS)

    Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Ryabinkin, E.; Zarochentsev, A.

    2017-10-01

    Rapid increase of data volume from the experiments running at the Large Hadron Collider (LHC) prompted physics computing community to evaluate new data handling and processing solutions. Russian grid sites and universities’ clusters scattered over a large area aim at the task of uniting their resources for future productive work, at the same time giving an opportunity to support large physics collaborations. In our project we address the fundamental problem of designing a computing architecture to integrate distributed storage resources for LHC experiments and other data-intensive science applications and to provide access to data from heterogeneous computing facilities. Studies include development and implementation of federated data storage prototype for Worldwide LHC Computing Grid (WLCG) centres of different levels and University clusters within one National Cloud. The prototype is based on computing resources located in Moscow, Dubna, Saint Petersburg, Gatchina and Geneva. This project intends to implement a federated distributed storage for all kind of operations such as read/write/transfer and access via WAN from Grid centres, university clusters, supercomputers, academic and commercial clouds. The efficiency and performance of the system are demonstrated using synthetic and experiment-specific tests including real data processing and analysis workflows from ATLAS and ALICE experiments, as well as compute-intensive bioinformatics applications (PALEOMIX) running on supercomputers. We present topology and architecture of the designed system, report performance and statistics for different access patterns and show how federated data storage can be used efficiently by physicists and biologists. We also describe how sharing data on a widely distributed storage system can lead to a new computing model and reformations of computing style, for instance how bioinformatics program running on supercomputers can read/write data from the federated storage.

  12. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    NASA Astrophysics Data System (ADS)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in selected distributary commands combined with longitudinal studies based on available long- term data from the full command. The reliability and duration of flows and/or storages represent a constraint to effective integration of aquaculture within the case-study sys- tems. Although fish production is non-consumptive and can be seen as a complemen- tary use of irrigation water, the challenge is to devise operating procedures that will 1 guarantee reliability and duration of flows and/or storages for fish production without increasing total water-use within the system. This is a particular problem during the rainy season when irrigation demand fluctuates widely and rapidly. The problem is ex- acerbated by deficient information systems, which constrain the scope for responsive management in these extensive canal systems. 2

  13. Heat storage with an incongruently melting salt hydrate as storage medium based on the extra water principle

    NASA Astrophysics Data System (ADS)

    Furbo, S.

    1980-12-01

    The extra water principle, a heat of fusion storage method, is described. The extra water principle uses an inorganic, incongruently melting salt hydrate as a reliable and stable storage medium in an inexpensive way. Different heat storages using the extra water principle are described. The advantages of using a heat fusion storage unit based on Na2S2O(3).5H2O and the extra water principle instead of a traditional hot water tank in small solar heating systems for domestic hot water supply are shown. In small solar heating systems the heat fusion storage supplies all the wanted hot water in the summer during longer periods than an ordinary hot water storage. It is concluded that the heat of fusion storage is favourable in domestic hot water supply systems with an auxiliary energy source which during the summer have a large energy consumption compared with the energy demands for the hot water supply.

  14. Prospects for hydrogen storage in graphene.

    PubMed

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-07

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.

  15. Energy storage as heat-of-fusion in containerized salts. Report on energy storage boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-06-01

    This report is concerned with energy storage based on heat-of-fusion in containerized salt. The 'energy storage boiler tank' uses evaporation and condensation of a heat transfer fluid to provide heat transfer into and out of stacked cans of salt. The 'energy storage superheater tank' uses a network of alkali metal heat pipes to distribute heat throughout a building filled with salt cans. It uses a radiation to transfer energy to and from stacked cans of salt. The paper summarizes the rationale for energy storage in containerized salt, it discusses salt availability, salt processing, container requirements, can technology and heat transfer fluid degradation problems. These discussions lead to estimates of energy storage system costs. The Naval Research Laboratory is building a 2 MWht proof-of-concept energy storage boiler tank. Laboratory investigations studying the compatibility of the heat transfer fluid with the molten storage salt are described, along with measurements of temperature drops associated with the energy input process. An assessment of the current status of the energy storage boiler tank is presented.

  16. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 3: (Assessment of technical and cost characteristics of candidate IUS energy storage devices)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Six energy storage technologies (inertial, superconducting magnetic, electrochemical, chemical, compressed air, and thermal) were assessed and evaluated for specific applicability to the IUS. To provide a perspective for the individual storage technologies, a brief outline of the general nature of energy storage and its significance to the user is presented.

  17. Parametric study of rock pile thermal storage for solar heating and cooling phase 1

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1977-01-01

    The test data and an analysis were presented, of heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans as the energy storage medium. An attempt was made to optimize can size, can arrangement, and bed flow rates by experimental and analytical means. Liquid filled cans, as storage media, utilize benefits of both solids like rocks, and liquids like water. It was found that this combination of solid and liquid media shows unique heat transfer and heat content characteristics and is well suited for use with solar air systems for space and hot water heating. An extensive parametric study was made of heat transfer characteristics of rocks, of other solids, and of solid containers filled with liquids.

  18. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    NASA Astrophysics Data System (ADS)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16 channels with 240MB/s network throughput.When it is integrated,sharing system can provide 1020MB/s write speed simultaneously.When the master storage server fails, the backup storage server takes over the normal service.The literacy of client will not be affected,in which switching time is less than 5s.The design and integrated storage system meet users requirements. Anyway, all-fiber way is too expensive in SAN; SCSI hard disk transfer rate may still be the bottleneck in the development of the entire storage system. Stornext can provide users with efficient sharing, management, automatic archiving of large numbers of files and hardware solutions. It occupies a leading position in big data management. Storage is the most popular sharing shareware, and there are drawbacks in Stornext: Firstly, Stornext software is expensive, in which charge by the sites. When the network scale is large, the purchase cost will be very high. Secondly, the parameters of Stornext software are more demands on the skills of technical staff. If there is a problem, it is difficult to exclude.

  19. Perspectives on energy storage wheels for space station application

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1984-01-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  20. Pricing and Application of Electric Storage

    NASA Astrophysics Data System (ADS)

    Zhao, Jialin

    Electric storage provides a vehicle to store power for future use. It contributes to the grids in multiple aspects. For instance, electric storage is a more effective approach to provide electricity ancillary services than conventional methods. Additionally, electric storage, especially fast-responding units, allows owners to implement high-frequency power transactions in settings such as the 5-min real-time trading market. Such high-frequency power trades were limited in the past. However, as technology advances, the power markets have evolved. For instance, the California Independent System Operator now supports the 5-min real-time trading and the hourly day-ahead ancillary services bidding. Existing valuation models of electric storage were not designed to accommodate these recent market developments. To fill this gap, I focus on the fast-responding grid-level electric storage that provides both the real-time trading and the day-ahead ancillary services bidding. To evaluate such an asset, I propose a Monte Carlo Simulation-based valuation model. The foundation of my model is simulations of power prices. This study develops a new simulation model of electric prices. It is worth noting that, unlike existing models, my proposed simulation model captures the dependency of the real-time markets on the day-ahead markets. Upon such simulations, this study investigates the pricing and the application of electric storage at a 5-min granularity. Essentially, my model is a Dynamic Programming system with both endogenous variables (i.e., the State-of-Charge of electric storage) and exogenous variables (i.e., power prices). My first numerical example is the valuation of a fictitious 4MWh battery. Similarly, my second example evaluates the application of two units of 2MWh batteries. By comparing these two experiments, I investigate the issues related to battery configurations, such as the impacts of splitting storage capability on the valuation of electric storage.

  1. Design, construction, testing and evaluation of a residential ice storage air conditioning system. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, J.J.; Ritz, T.A.

    1982-11-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures whichmore » would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.« less

  2. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  3. The Evolution of Root Zone Storage Capacity after Land Use Change

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Wagener, Thorsten; Savenije, Hubert H. G.; Hrachowitz, Markus

    2016-04-01

    Root zone storage capacity forms a crucial parameter in ecosystem functioning as it is the key parameter that determines the partitioning between runoff and transpiration. There is increasing evidence from several case studies for specific plants that vegetation adapts to the critical situation of droughts. For example, trees will, on the long term, try to improve their internal hydraulic conductivity after droughts, for example by allocating more biomass for roots. In spite of this understanding, the water storage capacity in the root zone is often treated as constant in hydrological models. In this study, it was hypothesized that root zone storage capacities are altered by deforestation and the regrowth of the ecosystem. Three deforested sub catchments as well as not affected, nearby control catchments of the experimental forests of HJ Andrews and Hubbard Brook were selected for this purpose. Root zone storage capacities were on the one hand estimated by a climate-based approach similar to Gao et al. (2014), making use of simple water balance considerations to determine the evaporative demand of the system. In this way, the maximum deficit between evaporative demand and precipitation allows a robust estimation of the root zone storage capacity. On the other hand, three conceptual hydrological models (FLEX, HYPE, HYMOD) were calibrated in a moving window approach for all catchments. The obtained model parameter values representing the root zone storage capacities of the individual catchments for each moving window period were then compared to the estimates derived from climate data for the same periods. Model- and climate-derived estimates of root zone storage capacities both showed a similar evolution. In the deforested catchments, considerable reductions of the root zone storage capacities, compared to the pre-treatment situation and control catchments, were observed. In addition, the years after forest clearing were characterized by a gradual recovery of the root zone storage capacities, converging to new equilibrium conditions and linked to forest regrowth. Further trend analysis suggested a relatively quick hydrological recovery between 5 and 15 years in the study catchments. The results lend evidence to the role of both, climate and vegetation dynamics for the development of root zone systems and their controlling influence on hydrological response dynamics.

  4. 75 FR 42575 - Electronic Signature and Storage of Form I-9, Employment Eligibility Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Electronic Signature and Storage of Form I-9, Employment Eligibility Verification AGENCY: U.S. Immigration... published an interim final rule to permit electronic signature and storage of the Form I-9. 71 FR 34510..., or a combination of paper and electronic systems; Employers may change electronic storage systems as...

  5. 41 CFR 101-39.305 - Storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...

  6. 41 CFR 101-39.305 - Storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...

  7. 41 CFR 101-39.305 - Storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...

  8. 41 CFR 101-39.305 - Storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...

  9. 41 CFR 101-39.305 - Storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Storage. 101-39.305... MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.305 Storage... which provide protection from pilferage or damage. In the interest of economy, no cost storage shall be...

  10. Energy Management and Optimization Methods for Grid Energy Storage Systems

    DOE PAGES

    Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.; ...

    2017-08-24

    Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less

  11. Energy Management and Optimization Methods for Grid Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.

    Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less

  12. Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.J.; Stewart, D.L.

    1988-03-01

    The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology maymore » have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.« less

  13. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.

    2015-12-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.

  14. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  15. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less

  16. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  17. Conversion of Mass Storage Hierarchy in an IBM Computer Network

    DTIC Science & Technology

    1989-03-01

    storage devices GUIDE IBM users’ group for DOS operating systems IBM International Business Machines IBM 370/145 CPU introduced in 1970 IBM 370/168 CPU...February 12, 1985, Information Systems Group, International Business Machines Corporation. "IBM 3090 Processor Complex" and 񓼪 Mass Storage System...34 Mainframe Journal, pp. 15-26, 64-65, Dallas, Texas, September-October 1987. 3. International Business Machines Corporation, Introduction to IBM 3S80 Storage

  18. Notes on a storage manager for the Clouds kernel

    NASA Technical Reports Server (NTRS)

    Pitts, David V.; Spafford, Eugene H.

    1986-01-01

    The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.

  19. Iron uptake and storage in the HAB dinoflagellate Lingulodinium polyedrum.

    PubMed

    Yarimizu, Kyoko; Cruz-López, Ricardo; Auerbach, Hendrik; Heimann, Larissa; Schünemann, Volker; Carrano, Carl J

    2017-12-01

    The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: Strategy I involves the induction of an Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the harmful algal bloom dinoflagellate Lingulodinium polyedrum. L. polyedrum is an armored dinoflagellate with a mixotrophic lifestyle and one of the most common bloom species on Southern California coast widely noted for its bioluminescent properties and as a producer of yessotoxins. Short term radio-iron uptake studies indicate that iron is taken up by L. polyedrum in a time dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Of the various iron sources tested vibrioferrin, a photoactive and relatively weak siderophore produced by potentially mutualistic Marinobacter bacterial species, was the most efficient. Other more stable and non-photoactive siderophores such as ferrioxamine E were ineffective. Several pieces of data including long term exposure to 57 Fe using Mössbauer spectroscopy suggest that L. polyedrum does not possess an iron storage system but rather presumably relies on an efficient iron uptake system, perhaps mediated by mutualistic interactions with bacteria.

  20. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    The redox flow cell energy storage system being developed by NASA for use in remote power systems and distributed storage installations for electric utilities is presented. The system under consideration is an electrochemical storage device which utilizes the oxidation and reduction of two fully soluble redox couples (acidified chloride solutions of chromium and iron) as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of redox flow cells where the electrochemical reactions take place at porous carbon felt electrodes. Redox equipment has allowed the incorporation of state of charge readout, stack voltage control and system capacity maintenance (rebalance) devices to regulate cells in a stack jointly. A 200 W, 12 V system with a capacity of about 400 Wh has been constructed, and a 2 kW, 10kWh system is planned.

  1. A simulation model for wind energy storage systems. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Edsinger, R. W.; Chan, Y. K.

    1977-01-01

    A comprehensive computer program for the modeling of wind energy and storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) was developed. The level of detail of Simulation Model for Wind Energy Storage (SIMWEST) is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind source storage application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/O, the integration of systems dynamics, and the iteration for conveyance of variables. SIMWEST program, as described, runs on the UNIVAC 1100 series computers.

  2. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  3. High temperature thermal energy storage in moving sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  4. Inertial energy storage for advanced space station applications

    NASA Technical Reports Server (NTRS)

    Van Tassel, K. E.; Simon, W. E.

    1985-01-01

    Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.

  5. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    NASA Astrophysics Data System (ADS)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic absorption chiller model is presented. The transient FORTRAN model is grounded on time-dependent mass, species, and energy conservation equations. Due to the vast computational costs of the high-fidelity model, a low-fidelity absorption chiller model is formulated and calibrated to mimic the behavior of the high-fidelity model. Stratified chilled-water storage tank performance is characterized using Computational Fluid Dynamics (CFD). The geometry employed in the CFD model represents a 5-million-gallon storage tank currently in use at a North Carolina college campus. Simulation results reveal the laminar numerical model most closely aligns with actual tank charging and discharging data. A subsequent parametric study corroborates storage tank behavior documented throughout literature and industry. Two absorption chiller configurations are considered. The first involves bypassing lowpressure steam from the low-pressure turbine to absorption chillers during periods of excess reactor capacity in order to keep reactor power constant. Simulation results show steam conditions downstream of the turbine control valves are a strong function of turbine load, and absorption chiller performance is hindered by reduced turbine impulse pressures at reduced turbine demands. A more suitable configuration entails integrating the absorption chillers into a flash vessel system that is thermally coupled to a sensible heat storage system. The sensible heat storage system is able to maintain reactor thermal output constant at 100% and match turbine output with several different electric demand profiles. High-pressure condensate in the sensible heat storage system is dropped across a let-down orifice and flashed in an ideal separator. Generated steam is sent to a bank of absorption chillers. Simulation results show enough steam is available during periods of reduced turbine demand to power four large absorption chillers to charge a 5-million-gallon stratified chilled-water storage tank, which is used to offset cooling loads in an adjacent facility. The coupled TES systems operating in conjunction with an SMR comprise the foundation of a tightly coupled NHES.

  6. Experimental results from a laboratory-scale molten salt thermocline storage

    NASA Astrophysics Data System (ADS)

    Seubert, Bernhard; Müller, Ralf; Willert, Daniel; Fluri, Thomas

    2017-06-01

    Single-tank storage presents a valid option for cost reduction in thermal energy storage systems. For low-temperature systems with water as storage medium this concept is widely implemented and tested. For high-temperature systems very limited experimental data are publicly available. To improve this situation a molten salt loop for experimental testing of a single-tank storage prototype was designed and built at Fraunhofer ISE. The storage tank has a volume of 0.4 m3 or a maximum capacity of 72 kWhth. The maximum charging and discharging power is 60 kW, however, a bypass flow control system enables to operate the system also at a very low power. The prototype was designed to withstand temperatures up to 550 °C. A cascaded insulation with embedded heating cables can be used to reduce the effect of heat loss on the storage which is susceptible to edge effects due to its small size. During the first tests the operating temperatures were adapted to the conditions in systems with thermal oil as heat transfer fluid and a smaller temperature difference. A good separation between cold and hot fluid was achieved with temperature gradients of 95 K within 16 cm.

  7. Cooling of superconducting devices by liquid storage and refrigeration unit

    DOEpatents

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  8. An ASIC memory buffer controller for a high speed disk system

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Campbell, Steve

    1993-01-01

    The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.

  9. In vivo viability of stored red blood cells derived from riboflavin plus ultraviolet light-treated whole blood.

    PubMed

    Cancelas, Jose A; Rugg, Neeta; Fletcher, Dana; Pratt, P Gayle; Worsham, D Nicole; Dunn, Susan K; Marschner, Susanne; Reddy, Heather L; Goodrich, Raymond P

    2011-07-01

    A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light-treated WB (IMPROVE study). The study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mL(RBC)). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24-hour recovery and survival of RBCs. Eleven subjects completed the in vivo study. No device-related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24-hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t(1/2) was 24 ± 9 days for the combined three groups. Significant correlations between 24-hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO(2) levels were observed. This study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24-hour recovery and t(1/2) survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment. © 2011 American Association of Blood Banks.

  10. Phase change energy storage for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  11. Phase change energy storage for solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Chiaramonte, F. P.; Taylor, J. D.

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  12. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  13. Horticultural, systems-engineering and economic evaluations of short-term plant storage techniques as a labor management tool for vegetable grafting nurseries

    PubMed Central

    Son, Young-Jun; Lewis, Myles; Spalholz, Hans; Tronstad, Russell

    2017-01-01

    This transdisciplinary study has a three-fold systems approach in evaluating a horticultural technology: 1) horticultural evaluations, 2) economic and resource analyses, and 3) systems engineering analyses, using low temperature storage as an example technology. Vegetable grafting is a technique to produce value-added seedlings but requires labor intensive nursery operations. Low temperature storage of seedlings for a short period of time can reduce peak production, but has not been evaluated at the extent demonstrated in this paper. Seedlings of 22 genotypes of Cucurbitaceae (cucurbit family) and Solanaceae (nightshade family) were evaluated for storability under selected temperatures and photosynthetic photon flux. Storability of Cucurbitaceous seedlings varied between 2 to 4 weeks at 12°C and 13 μmol m-2 s-1. Solanaceous seedlings were generally storable for 4 weeks at 12°C and 13 μmol m-2 s-1, but tomato seedlings could be stored for 4 weeks at 10°C and 5 μmol m-2 s-1. Capital and weekly operational costs of a low temperature storage system with a design that meets environmental requirements were estimated as $671 to $708 per m2 footprint and $0.79 to $2.21 per m2 footprint per week, respectively. Electricity costs per plant was less than 0.1 cents for 2 to 4 weeks of storage. Using a schedule-optimization heuristic and a logistics simulator previously developed for grafting nursery operations, six production scenarios consisting of two crops (tomato or watermelon) and three production peak patterns were examined to evaluate the impact of including low temperature storage. While the overall average costs of grafting labor were not significantly different, maximum labor demand and grafting labor cost during the peak production week were reduced by 31% to 50% and 14% to 30% by using storage, respectively. Therefore, low temperature storage can be an effective means to address the issue of labor management in grafting nurseries. PMID:28182757

  14. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales.

    PubMed

    Wendt, Lynn M; Murphy, J Austin; Smith, William A; Robb, Thomas; Reed, David W; Ray, Allison E; Liang, Ling; He, Qian; Sun, Ning; Hoover, Amber N; Nguyen, Quang A

    2018-01-01

    Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in <6% total solid dry matter loss (DML), about five times less than the aerobic storage process and slightly less than half that of the anaerobic modified-Ritter pile method. To further demonstrate the effectiveness of the anaerobic storage, a field demonstration was completed with 272 dry tonnes of corn stover; DML averaged <5% after 6 months. Assessment of sugar release as a result of dilute acid or dilute alkaline pretreatment and subsequent enzymatic hydrolysis suggested that when anaerobic conditions were maintained in storage, sugar release was either similar to or greater than as-harvested material depending on the pretreatment chemistry used. This study demonstrates that wet logistics systems offer practical benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery.

  15. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales

    PubMed Central

    Wendt, Lynn M.; Murphy, J. Austin; Smith, William A.; Robb, Thomas; Reed, David W.; Ray, Allison E.; Liang, Ling; He, Qian; Sun, Ning; Hoover, Amber N.; Nguyen, Quang A.

    2018-01-01

    Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in <6% total solid dry matter loss (DML), about five times less than the aerobic storage process and slightly less than half that of the anaerobic modified-Ritter pile method. To further demonstrate the effectiveness of the anaerobic storage, a field demonstration was completed with 272 dry tonnes of corn stover; DML averaged <5% after 6 months. Assessment of sugar release as a result of dilute acid or dilute alkaline pretreatment and subsequent enzymatic hydrolysis suggested that when anaerobic conditions were maintained in storage, sugar release was either similar to or greater than as-harvested material depending on the pretreatment chemistry used. This study demonstrates that wet logistics systems offer practical benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery. PMID:29632861

  16. Electron trapping optical data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.

  17. A Study of Demand Response Effect of Thermal Storage Air-Conditioning Systems in Consideration of Electricity Market Prices

    NASA Astrophysics Data System (ADS)

    Omagari, Yuko; Sugihara, Hideharu; Tsuji, Kiichiro

    This paper evaluates the economic impact of the introduction of customer-owned Thermal Storage Air-conditioning (TSA) systems, in an electricity market, from the viewpoint of the load service entity. We perform simulations on the condition that several thousand customers install TSA systems and shift peak demand in an electricity market by one percent. Our numerical results indicate that the purchase cost of the LSE was reduced through load management of customers with TSA systems. The introduction of TSA systems also reduced the volatility of market clearing price and reduced the whole-trade cost in an electricity market.

  18. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; mckellar, Michael George; Yoon, Su-Jong

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energymore » storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most efficient idealized energy storage system is the two tank direct molten salt ESS with an Air Brayton combined cycle using LiF-NaF-KF as the molten salt, and the most economical is the same design with KCl MgCl2 as the molten salt. With energy production being a major worldwide industry, understanding the most efficient molten salt ESS boosts development of an effective NHES with cheap, clean, and steady power.« less

  19. The 1980 report on NRL energy storage program

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.; Veith, R. J.

    1981-03-01

    The development of a means for bulk storage of energy in a form capable of providing demand sensitive steam, heat, or cooling is described. Salt eutectic systems availability and costs of salts, progress on the 2 MWht energy storage boiler tank under construction at NRL, and major elements of storage system costs for this 2 MWht tank which employs a heat transfer fluid are discussed. A radiation coupled energy storage tank concept is also discussed.

  20. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  1. Data systems and computer science space data systems: Onboard memory and storage

    NASA Technical Reports Server (NTRS)

    Shull, Tom

    1991-01-01

    The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.

  2. 49 CFR 242.205 - Identification of certified persons and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adequate to ensure the integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or the list; (2) The program and data storage system must be protected... system employed by the railroad for data storage permits reasonable access and retrieval of the...

  3. 49 CFR 242.205 - Identification of certified persons and recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... adequate to ensure the integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or the list; (2) The program and data storage system must be protected... system employed by the railroad for data storage permits reasonable access and retrieval of the...

  4. 49 CFR 242.205 - Identification of certified persons and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adequate to ensure the integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or the list; (2) The program and data storage system must be protected... system employed by the railroad for data storage permits reasonable access and retrieval of the...

  5. The Design and Evolution of Jefferson Lab's Jasmine Mass Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan Hess; M. Andrew Kowalski; Michael Haddox-Schatz

    We describe the Jasmine mass storage system, in operation since 2001. Jasmine has scaled to meet the challenges of grid applications, petabyte class storage, and hundreds of MB/sec throughput using commodity hardware, Java technologies, and a small but focused development team. The evolution of the integrated disk cache system, which provides a managed online subset of the tape contents, is examined in detail. We describe how the storage system has grown to meet the special needs of the batch farm, grid clients, and new performance demands.

  6. Hybrid Hydro Renewable Energy Storage Model

    NASA Astrophysics Data System (ADS)

    Dey, Asit Kr

    2018-01-01

    This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.

  7. Mass storage system reference model, Version 4

    NASA Technical Reports Server (NTRS)

    Coleman, Sam (Editor); Miller, Steve (Editor)

    1993-01-01

    The high-level abstractions that underlie modern storage systems are identified. The information to generate the model was collected from major practitioners who have built and operated large storage facilities, and represents a distillation of the wisdom they have acquired over the years. The model provides a common terminology and set of concepts to allow existing systems to be examined and new systems to be discussed and built. It is intended that the model and the interfaces identified from it will allow and encourage vendors to develop mutually-compatible storage components that can be combined to form integrated storage systems and services. The reference model presents an abstract view of the concepts and organization of storage systems. From this abstraction will come the identification of the interfaces and modules that will be used in IEEE storage system standards. The model is not yet suitable as a standard; it does not contain implementation decisions, such as how abstract objects should be broken up into software modules or how software modules should be mapped to hosts; it does not give policy specifications, such as when files should be migrated; does not describe how the abstract objects should be used or connected; and does not refer to specific hardware components. In particular, it does not fully specify the interfaces.

  8. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less

  9. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  10. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.

    PubMed

    Moiwo, Juana Paul; Lu, Wenxi; Tao, Fulu

    2012-01-01

    Water storage depletion is a worsening hydrological problem that limits agricultural production in especially arid/semi-arid regions across the globe. Quantifying water storage dynamics is critical for developing water resources management strategies that are sustainable and protective of the environment. This study uses GRACE (Gravity Recovery and Climate Experiment), GLDAS (Global Land Data Assimilation System) and measured groundwater data products to quantify water storage in Western Jilin (a proxy for semi-arid wetland ecosystems) for the period from January 2002 to December 2009. Uncertainty/bias analysis shows that the data products have an average error <10% (p < 0.05). Comparisons of the storage variables show favorable agreements at various temporal cycles, with R(2) = 0.92 and RMSE = 7.43 mm at the average seasonal cycle. There is a narrowing soil moisture storage change, a widening groundwater storage loss, and an overall storage depletion of 0.85 mm/month in the region. There is possible soil-pore collapse, and land subsidence due to storage depletion in the study area. Invariably, storage depletion in this semi-arid region could have negative implications for agriculture, valuable/fragile wetland ecosystems and people's livelihoods. For sustainable restoration and preservation of wetland ecosystems in the region, it is critical to develop water resources management strategies that limit groundwater extraction rate to that of recharge rate.

  11. Construction of VLCC marine oil storage cost index system

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Yule; Lu, Jinshu; Wu, Wenfeng; Zhu, Faxin; Chen, Tian; Qin, Beichen

    2018-04-01

    VLCC as the research object, the basic knowledge of VLCC is summarized. According to the phenomenon that VLCC is applied to offshore oil storage gradually, this paper applies the theoretical analysis method to analyze the excess capacity from VLCC, the drop of oil price, the aging VLCC is more suitable for offshore storage The paper analyzes the reason of VLCC offshore oil storage from three aspects, analyzes the cost of VLCC offshore storage from the aspects of manpower cost and shipping cost, and constructs the cost index system of VLCC offshore oil storage.

  12. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    NASA Astrophysics Data System (ADS)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  13. Study of Thermodynamic Vent and Screen Baffle Integration for Orbital Storage and Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1973-01-01

    A comprehensive analytical and experimental program was performed to determine the feasibility of integrating an internal thermodynamic vent system and a full wall-screen liner for the orbital storage and transfer of liquid hydrogen (LH2). Ten screens were selected from a comprehensive screen survey. The experimental study determined the screen bubble point, flow-through pressure loss, and pressure loss along rectangular channels lined with screen on one side, for the 10 screens using LH2 saturated at 34.5 N/cm2 (50 psia). The correlated experimental data were used in an analysis to determine the optimum system characteristics in terms of minimum weight for 6 tanks ranging from 141.6 m3 (5,000 ft3) to 1.416 m3 (50 ft3) for orbital storage times of 30 and 300 days.

  14. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    PubMed

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    NASA Astrophysics Data System (ADS)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module, for the thermoelectric cooling unit, for the PCM thermal storage unit, and for the outdoor air-water heat exchanger. When modeling PCM thermal storage unit, the enthalpy method has been adopted. Since natural convection has been observed in experiments playing a key effect on heat transfer in PCM, a staged effective thermal conductivity (ke) concept and modified Rayleigh (Ra) number formula have been developed to better capture natural convection's variable effects during the PCM charging process. Therefore, a modeling-based design procedure for thermoelectric cooling system integrating with PCM has been proposed. A case study has been completed for a model office room to demonstrate the qualitative and quantitative evaluations to the major system components. Results of this research can be extended to other applications in relevant areas. For instance, the proposed PCM thermal storage unit can be applied to integration with water-cooled conventional air-conditioning devices. Instead of using water cooling, a case study of using the proposed PCM unit for a water-cooled air-conditioner shows a COP increase of more than 25.6%.

  16. Parameter Design and Optimal Control of an Open Core Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Pang, D.; Anand, D. K.; Kirk, J. A.

    1996-01-01

    In low earth orbit (LEO) satellite applications spacecraft power is provided by photovoltaic cells and batteries. To overcome battery shortcomings the University of Maryland, working in cooperation with NASA/GSFC and NASA/LeRC, has developed a magnetically suspended flywheel for energy storage applications. The system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. Successful application of flywheel energy storage requires integration of several technologies, viz. bearings, rotor design, motor/generator, power conditioning, and system control. In this paper we present a parameter design method which has been developed for analyzing the linear SISO model of the magnetic bearing controller for the OCCF. The objective of this continued research is to principally analyze the magnetic bearing system for nonlinear effects in order to increase the region of stability, as determined by high speed and large air gap control. This is achieved by four tasks: (1) physical modeling, design, prototyping, and testing of an improved magnetically suspended flywheel energy storage system, (2) identification of problems that limit performance and their corresponding solutions, (3) development of a design methodology for magnetic bearings, and (4) design of an optimal controller for future high speed applications. Both nonlinear SISO and MIMO models of the magnetic system were built to study limit cycle oscillations and power amplifier saturation phenomenon observed in experiments. The nonlinear models include the inductance of EM coils, the power amplifier saturation, and the physical limitation of the flywheel movement as discussed earlier. The control program EASY5 is used to study the nonlinear SISO and MIMO models. Our results have shown that the characteristics and frequency responses of the magnetic bearing system obtained from modeling are comparable to those obtained experimentally. Although magnetic saturation is shown in the bearings, there are good correlations between the theoretical model and experimental data. Both simulation and experiment confirm large variations of the magnetic bearing characteristics due to air gap growth. Therefore, the gap growth effect should be considered in the magnetic bearing system design. Additionally, the magnetic bearing control system will be compared to other design methods using not only parameter design but H-infinity optimal control and mu synthesis.

  17. Battery energy-storage systems — an emerging market for lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Cole, J. F.

    Although the concept of using batteries for lead levelling and peak shaving has been known for decades, only recently have these systems become commercially viable. Changes in the structure of the electric power supply industry have required these companies to seek more cost-effective ways of meeting the needs of their customers. Through experience gained, primarily in the USA, batteries have been shown to provide multiple benefits to electric utilities. Also, lower maintenance batteries, more reliable electrical systems, and the availability of methods to predict costs and benefits have made battery energy-storage systems more attractive. Technology-transfer efforts in the USA have resulted in a willingness of electric utilities to install a number of these systems for a variety of tasks, including load levelling, peak shaving, frequency regulation and spinning reserve. Additional systems are being planned for several additional locations for similar applications, plus transmission and distribution deferral and enhanced power quality. In the absence of US champions such as the US Department of Energy and the Electric Power Research Institute, ILZRO is attempting to mount a technology-transfer programme to bring the benefits of battery energy-storage to European power suppliers. As a result of these efforts, a study group on battery energy-storage systems has been established with membership primarily in Germany and Austria. Also, a two-day workshop, prepared by the Electric Power Research Institute was held in Dublin. Participants included representatives of several European power suppliers. As a result, ESB National Grid of Ireland has embarked upon a detailed analysis of the costs and benefits of a battery energy-storage system in their network. Plans for the future include continuation of this technology-transfer effort, assistance in the Irish effort, and a possible approach to the European Commission for funding.

  18. Sizing community energy storage systems to reduce transformer overloading with emphasis on plug-in electric vehicle loads

    NASA Astrophysics Data System (ADS)

    Trowler, Derik Wesley

    The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.

  19. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    NASA Astrophysics Data System (ADS)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  20. Optical elements design of optical pick-up with characteristics of read-out spot for high density optical storage

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Ma, Jianshe; Liu, Lin; Pan, Longfa; Zhang, Jianyong; Lu, Junhui

    2005-09-01

    It is well known that the optical pick-up (OPU) plays a very important role in optical storage system. And the quality of OPU can be measured by the characteristics of OPU read-out spot for high density optical storage. Therefore this paper mainly designs an OPU model for high density optical storage to study the characteristics of OPU read-out spot. Firstly it analyses the optical read-out principle in OPU and contrives an optical read-out system based on the hereinbefore theory. In this step it chiefly designs the grating, splitter, collimator lens and objective lens. Secondly based on the aberrations analysis and theory involved by the splitter, the collimator lens and the optical lens, the paper uses the software CODE V to calculate the aberrations and to optimize the optical read-out system. Then the author can receive an ideal OPU read-out spot for high density optical storage and obtain the characteristics of the ideal OPU read-out spot. At the same time this paper analyses some influence factors which can directly affect the characteristics of the OPU read-out spot. Thirdly according to the up data the author practically manufactures a real optical pick-up to validate the hereinbefore designed optical read-out system. And it uses the Optical Spot Analyzer to get the image of the read-out spot. Comparing the ideal image to the actual image of the designed optical read-out system, the author finds out that the upwards analyses and design is suitable for high density storage and can be used in the actual production. And the author also receives the conclusion that the mostly influences on characteristics of OPU read-out spot for high density optical storage factors is not only the process of designing the grating, splitter, collimator lens and objective lens, but also the assembling work precision

Top