Sample records for storage systems including

  1. Stand-alone digital data storage control system including user control interface

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)

    1994-01-01

    A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.

  2. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOEpatents

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  3. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  4. Archive Storage Media Alternatives.

    ERIC Educational Resources Information Center

    Ranade, Sanjay

    1990-01-01

    Reviews requirements for a data archive system and describes storage media alternatives that are currently available. Topics discussed include data storage; data distribution; hierarchical storage architecture, including inline storage, online storage, nearline storage, and offline storage; magnetic disks; optical disks; conventional magnetic…

  5. Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)

    1991-01-01

    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  6. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  7. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  8. Cooling of superconducting devices by liquid storage and refrigeration unit

    DOEpatents

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  9. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  10. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  11. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 3

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.

  12. Development of a system for off-peak electrical energy use by air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Russell, L. D.

    1980-05-01

    Investigation and evaluation of several alternatives for load management for the TVA system are described. Specific data for the TVA system load characteristics were studied to determine the typical peak and off peak periods for the system. The alternative systems investigated for load management included gaseous energy storage, phase change materials energy storage, zeolite energy storage, variable speed controllers for compressors, and weather sensitive controllers. After investigating these alternatives, system design criteria were established; then, the gaseous and PCM energy storage systems were analyzed. The system design criteria include economic assessment of all alternatives. Handbook data were developed for economic assessment. A liquid/PCM energy storage system was judged feasible.

  13. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  14. Energy Storage Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    technologies. Key Infrastructure Energy storage system inverter, energy storage system simulators, research Plug-In Vehicles/Mobile Storage The plug-in vehicles/mobile storage hub includes connections for small integration. Key Infrastructure Ample house power, REDB access, charging stations, easy vehicle parking access

  15. The Third NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in October 1993. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems involved. Discussion topics include the necessary use of computers in the solution of today's infinitely complex problems, the need for greatly increased storage densities in both optical and magnetic recording media, currently popular storage media and magnetic media storage risk factors, data archiving standards including a talk on the current status of the IEEE Storage Systems Reference Model (RM). Additional topics addressed System performance, data storage system concepts, communications technologies, data distribution systems, data compression, and error detection and correction.

  16. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  17. Motivation and Design of the Sirocco Storage System Version 1.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Matthew Leon; Ward, H. Lee; Danielson, Geoffrey Charles

    Sirocco is a massively parallel, high performance storage system for the exascale era. It emphasizes client-to-client coordination, low server-side coupling, and free data movement to improve resilience and performance. Its architecture is inspired by peer-to-peer and victim- cache architectures. By leveraging these ideas, Sirocco natively supports several media types, including RAM, flash, disk, and archival storage, with automatic migration between levels. Sirocco also includes storage interfaces and support that are more advanced than typical block storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with the same interface. It also provides several levels of transactional data updatesmore » within a single storage command, including full ACID-compliant updates. This transaction support extends to updating several objects within a single transaction. Further support is provided for con- currency control, enabling greater performance for workloads while providing safe concurrent modification. By pioneering these and other technologies and techniques in the storage system, Sirocco is poised to fulfill a need for a massively scalable, write-optimized storage system for exascale systems. This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/ sirocco .« less

  18. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  19. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... final rule that would have revised its spent fuel storage regulations to include Amendment No. 3 to... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel...

  20. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  1. Online mass storage system detailed requirements document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.

  2. Goddard Conference on Mass Storage Systems and Technologies, Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  3. Thermal Storage Applications Workshop. Volume 2: Contributed Papers

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.

  4. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... amend its spent fuel storage cask regulations by revising the Transnuclear, Inc. (TN) NUHOMS[supreg] HD System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to...

  5. ERDA's Chemical Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  6. 75 FR 49813 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1, Confirmation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Storage Casks: MAGNASTOR System, Revision 1, Confirmation of Effective Date AGENCY: Nuclear Regulatory... spent fuel storage regulations at 10 CFR 72.214 to revise the MAGNASTOR System listing to include...

  7. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  8. Development of a phase-change thermal storage system using modified anhydrous sodium hydroxide for solar electric power generation

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.; Rowny, P. E.

    1978-01-01

    A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed.

  9. Improvements in magnetic bearing performance for flywheel energy storage

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Anand, Davinder K.; Kirk, James A.; Calomeris, Anthony J.; Romero, Robert L.

    1988-01-01

    The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.

  10. Heating and cooling system for an on-board gas adsorbent storage vessel

    DOEpatents

    Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio

    2017-06-20

    In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.

  11. Optical Disks Compete with Videotape and Magnetic Storage Media: Part I.

    ERIC Educational Resources Information Center

    Urrows, Henry; Urrows, Elizabeth

    1988-01-01

    Describes the latest technology in videotape cassette systems and other magnetic storage devices and their possible effects on optical data disks. Highlights include Honeywell's Very Large Data Store (VLDS); Exabyte's tape cartridge storage system; standards for tape drives; and Masstor System's videotape cartridge system. (LRW)

  12. Thermal Storage Applications Workshop. Volume 1: Plenary Session Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The importance of the development of inexpensive and efficient thermal and thermochemical energy storage technology to the solar power program is discussed in a summary of workship discussions held to exchange information and plan for future systems. Topics covered include storage in central power applications such as the 10 MW-e demonstration pilot receiver to be constructed in Barstow, California; storage for small dispersed systems, and problems associated with the development of storage systems for solar power plants interfacing with utility systems.

  13. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drost, Kevin; Jovanovic, Goran; Paul, Brian

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  14. High temperature thermal energy storage in moving sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  15. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unitmore » and the photovoltaic energy source.« less

  16. Solar applications of thermal energy storage. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.; Taylor, L.; DeVries, J.

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  17. Borazine-boron nitride hybrid hydrogen storage system

    DOEpatents

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  18. Internally insulated thermal storage system development program

    NASA Technical Reports Server (NTRS)

    Scott, O. L.

    1980-01-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  19. Internally insulated thermal storage system development program

    NASA Astrophysics Data System (ADS)

    Scott, O. L.

    1980-03-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  20. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  1. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    DOEpatents

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  2. Telemetry data storage systems technology for the Space Station Freedom era

    NASA Technical Reports Server (NTRS)

    Dalton, John T.

    1989-01-01

    This paper examines the requirements and functions of the telemetry-data recording and storage systems, and the data-storage-system technology projected for the Space Station, with particular attention given to the Space Optical Disk Recorder, an on-board storage subsystem based on 160 gigabit erasable optical disk units each capable of operating at 300 M bits per second. Consideration is also given to storage systems for ground transport recording, which include systems for data capture, buffering, processing, and delivery on the ground. These can be categorized as the first in-first out storage, the fast random-access storage, and the slow access with staging. Based on projected mission manifests and data rates, the worst case requirements were developed for these three storage architecture functions. The results of the analysis are presented.

  3. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  4. Data systems and computer science space data systems: Onboard memory and storage

    NASA Technical Reports Server (NTRS)

    Shull, Tom

    1991-01-01

    The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.

  5. 49 CFR 242.205 - Identification of certified persons and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adequate to ensure the integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or the list; (2) The program and data storage system must be protected... system employed by the railroad for data storage permits reasonable access and retrieval of the...

  6. 49 CFR 242.205 - Identification of certified persons and recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... adequate to ensure the integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or the list; (2) The program and data storage system must be protected... system employed by the railroad for data storage permits reasonable access and retrieval of the...

  7. 49 CFR 242.205 - Identification of certified persons and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adequate to ensure the integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or the list; (2) The program and data storage system must be protected... system employed by the railroad for data storage permits reasonable access and retrieval of the...

  8. Goddard Conference on Mass Storage Systems and Technologies, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  9. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  10. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  11. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M.; Wagner, John C.

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. Themore » system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.« less

  12. 41 CFR 302-9.10 - For what POV emergency storage expenses will my agency pay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 9-ALLOWANCES... expenses, including but not limited to readying the POV for storage, transportation to point of storage, storage, readying the POV for use after storage, and transportation from the point of storage. Insurance...

  13. Onboard power line conditioning system for an electric or hybrid vehicle

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  14. Redox Bulk Energy Storage System Study, Volume 1

    NASA Technical Reports Server (NTRS)

    Ciprios, G.; Erskine, W., Jr.; Grimes, P. G.

    1977-01-01

    Opportunities were found for electrochemical energy storage devices in the U.S. electric utility industry. Application requirements for these devices were defined, including techno-economic factors. A new device, the Redox storage battery was analyzed. The Redox battery features a decoupling of energy storage and power conversion functions. General computer methods were developed to simulate Redox system operations. These studies showed that the Redox system is potentially attractive if certain performance goals can be achieved. Pathways for reducing the cost of the Redox system were identified.

  15. Energy storage considerations for a robotic Mars surface sampler

    NASA Technical Reports Server (NTRS)

    O'Donnell, P. M.; Cataldo, R. L.; Gonzalez-Sanabria, O. D.

    1988-01-01

    The characteristics of various energy storage systems (including Ni-Cd, Ni-H2, Ag-Zn, Li-XS, Na-S, PbSO4, and regenerative fuel cell systems) considered for a robotic Mars surface sampler are reviewed. It is concluded that the bipolar nickel-hydrogen battery and the sodium-sulfur battery are both viable candidates as storage systems for the rover's Radioisotope Thermoelectric Generator. For a photovoltaic storage system, the regenerative fuel cell and the bipolar nickel-hydrogen battery are the primary candidates.

  16. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  17. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  18. Tenth Goddard Conference on Mass Storage Systems and Technologies in Cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    2002-01-01

    This document contains copies of those technical papers received in time for publication prior to the Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and management of large volumes of data. The Conference encourages all interested organizations to discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, storage networking with emphasis on IP storage, performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular magnetic recording, object based storage, storage virtualization and IP storage.

  19. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    NASA Astrophysics Data System (ADS)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  20. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel inmore » dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.« less

  1. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  2. Electric System Flexibility and Storage | Energy Analysis | NREL

    Science.gov Websites

    . Featured Studies India Renewable Integration Study Grid Flexibility and Storage Required To Achieve Very demand-in Texas. Key findings from this study include: A highly flexible system with must-run baseload . Publications Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage

  3. Optical Disk Technology and Information.

    ERIC Educational Resources Information Center

    Goldstein, Charles M.

    1982-01-01

    Provides basic information on videodisks and potential applications, including inexpensive online storage, random access graphics to complement online information systems, hybrid network architectures, office automation systems, and archival storage. (JN)

  4. Solar thermal power storage applications lead laboratory overview

    NASA Technical Reports Server (NTRS)

    Radosevich, L. G.

    1980-01-01

    The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.

  5. 48 CFR 52.236-10 - Operations and Storage Areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Operations and Storage....236-10 Operations and Storage Areas. As prescribed in 36.510, insert the following clause: Operations and Storage Areas (APR 1984) (a) The Contractor shall confine all operations (including storage of...

  6. 48 CFR 52.236-10 - Operations and Storage Areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Operations and Storage....236-10 Operations and Storage Areas. As prescribed in 36.510, insert the following clause: Operations and Storage Areas (APR 1984) (a) The Contractor shall confine all operations (including storage of...

  7. 48 CFR 52.236-10 - Operations and Storage Areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Operations and Storage....236-10 Operations and Storage Areas. As prescribed in 36.510, insert the following clause: Operations and Storage Areas (APR 1984) (a) The Contractor shall confine all operations (including storage of...

  8. 48 CFR 52.236-10 - Operations and Storage Areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Operations and Storage....236-10 Operations and Storage Areas. As prescribed in 36.510, insert the following clause: Operations and Storage Areas (APR 1984) (a) The Contractor shall confine all operations (including storage of...

  9. 48 CFR 52.236-10 - Operations and Storage Areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Operations and Storage....236-10 Operations and Storage Areas. As prescribed in 36.510, insert the following clause: Operations and Storage Areas (APR 1984) (a) The Contractor shall confine all operations (including storage of...

  10. Paging memory from random access memory to backing storage in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E

    2013-05-21

    Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.

  11. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  12. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motyka, T.

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from Februarymore » 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and evaluation of system configurations, including material packaging and balance-of-plant components, and conceptual design validation. Phase 3 includes fabrication and testing of the selected prototype storage system(s) for model validation and performance evaluation against the DOE targets. A DOE decision was needed for the HSECoE to advance to each phase and work on some classes of storage materials were recommended not to continue.« less

  13. Optimal read/write memory system components

    NASA Technical Reports Server (NTRS)

    Kozma, A.; Vander Lugt, A.; Klinger, D.

    1972-01-01

    Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer.

  14. Research on crude oil storage and transportation based on optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Xuhua

    2018-04-01

    At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.

  15. Use of HSM with Relational Databases

    NASA Technical Reports Server (NTRS)

    Breeden, Randall; Burgess, John; Higdon, Dan

    1996-01-01

    Hierarchical storage management (HSM) systems have evolved to become a critical component of large information storage operations. They are built on the concept of using a hierarchy of storage technologies to provide a balance in performance and cost. In general, they migrate data from expensive high performance storage to inexpensive low performance storage based on frequency of use. The predominant usage characteristic is that frequency of use is reduced with age and in most cases quite rapidly. The result is that HSM provides an economical means for managing and storing massive volumes of data. Inherent in HSM systems is system managed storage, where the system performs most of the work with minimum operations personnel involvement. This automation is generally extended to include: backup and recovery, data duplexing to provide high availability, and catastrophic recovery through use of off-site storage.

  16. Shared Storage Usage Policy | High-Performance Computing | NREL

    Science.gov Websites

    Shared Storage Usage Policy Shared Storage Usage Policy To use NREL's high-performance computing (HPC) systems, you must abide by the Shared Storage Usage Policy. /projects NREL HPC allocations include storage space in the /projects filesystem. However, /projects is a shared resource and project

  17. A Method of Dynamic Extended Reactive Power Optimization in Distribution Network Containing Photovoltaic-Storage System

    NASA Astrophysics Data System (ADS)

    Wang, Wu; Huang, Wei; Zhang, Yongjun

    2018-03-01

    The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.

  18. Energy storage cell impedance measuring apparatus, methods and related systems

    DOEpatents

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  19. Research and implementation on improving I/O performance of streaming media storage system

    NASA Astrophysics Data System (ADS)

    Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song

    2008-12-01

    In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.

  20. LOGISTIC MANAGEMENT INFORMATION SYSTEM - MANUAL DATA STORAGE AND RETRIEVAL SYSTEM.

    DTIC Science & Technology

    Logistics Management Information System . The procedures are applicable to manual storage and retrieval of all data used in the Logistics Management ... Information System (LMIS) and include the following: (1) Action Officer data source file. (2) Action Officer presentation format file. (3) LMI Coordination

  1. Optimal Sizing Tool for Battery Storage in Grid Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-24

    The battery storage sizing tool developed at Pacific Northwest National Laboratory can be used to evaluate economic performance and determine the optimal size of battery storage in different use cases considering multiple power system applications. The considered use cases include i) utility owned battery storage, and ii) battery storage behind customer meter. The power system applications from energy storage include energy arbitrage, balancing services, T&D deferral, outage mitigation, demand charge reduction etc. Most of existing solutions consider only one or two grid services simultaneously, such as balancing service and energy arbitrage. ES-select developed by Sandia and KEMA is able tomore » consider multiple grid services but it stacks the grid services based on priorities instead of co-optimization. This tool is the first one that provides a co-optimization for systematic and local grid services.« less

  2. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  3. Optical mass memory system (AMM-13). AMM-13 system segment specification

    NASA Technical Reports Server (NTRS)

    Bailey, G. A.

    1980-01-01

    The performance, design, development, and test requirements for an optical mass data storage and retrieval system prototype (AMM-13) are established. This system interfaces to other system segments of the NASA End-to-End Data System via the Data Base Management System segment and is designed to have a storage capacity of 10 to the 13th power bits (10 to the 12th power bits on line). The major functions of the system include control, input and output, recording of ingested data, fiche processing/replication and storage and retrieval.

  4. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  5. Design, construction, testing and evaluation of a residential ice storage air conditioning system

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Ritz, T. A.

    1982-12-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures which would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.

  6. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  7. Jefferson Lab Mass Storage and File Replication Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Bird; Ying Chen; Bryan Hess

    Jefferson Lab has implemented a scalable, distributed, high performance mass storage system - JASMine. The system is entirely implemented in Java, provides access to robotic tape storage and includes disk cache and stage manager components. The disk manager subsystem may be used independently to manage stand-alone disk pools. The system includes a scheduler to provide policy-based access to the storage systems. Security is provided by pluggable authentication modules and is implemented at the network socket level. The tape and disk cache systems have well defined interfaces in order to provide integration with grid-based services. The system is in production andmore » being used to archive 1 TB per day from the experiments, and currently moves over 2 TB per day total. This paper will describe the architecture of JASMine; discuss the rationale for building the system, and present a transparent 3rd party file replication service to move data to collaborating institutes using JASMine, XM L, and servlet technology interfacing to grid-based file transfer mechanisms.« less

  8. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  9. Hydrogen Fire in a Storage Vessel

    NASA Technical Reports Server (NTRS)

    Hester, Zena M.

    2010-01-01

    On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor hazardous systems for proper configuration (i.e., a daily/weekly/monthly check sheet to verify critical purges are active).

  10. Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures

    NASA Astrophysics Data System (ADS)

    Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.

    2016-12-01

    Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.

  11. A system approach to archival storage

    NASA Technical Reports Server (NTRS)

    Corcoran, John W.

    1991-01-01

    The introduction and viewgraphs of a discussion on a system approach to archival storage presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. The use of D-2 iron particles for archival storage is discussed along with how acceleration factors relating short-term tests to archival life times can be justified. Ampex Recording Systems is transferring D-2 video technology to data storage applications, and encountering concerns about corrosion. To protect the D-2 standard, Battelle tests were done on all four tapes in the Class 2 environment. Error rates were measured before and after the test on both exposed and control groups.

  12. Improved control strategy for wind-powered refrigerated storage of apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, J.D.C.; Vaughan, D.H.

    1981-01-01

    A refrigerated apple storage facility was constructed at the VPI and SU Horticultural Research Farm in Blacksburg, Virginia and began operation in March 1978. The system included a 10-kW electric wind generator, electrical battery storage, thermal (ice) storage, and auxiliary power. The need for an improved control system for the VPI and SU system was determined from tests on the individual components and in situ performance tests. The results of these tests formed the basis for an improved control strategy to improve the utilization of available wind energy and reduce the need for auxiliary power while maintaining an adequate applemore » storage environment.« less

  13. Holographic data storage crystals for LDEF (A0044)

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Gaylord, T. K.

    1984-01-01

    Electro-optic holographic recording systems were developed. The spaceworthiness of electro-optic crystals for use in ultrahigh capacity space data storage and retrieval systems are examined. The crystals for this experiment are included with the various electro-optical components of LDEF experiment. The effects of long-duration exposure on active optical system components is investigated. The concept of data storage in an optical-phase holographic memory is illustrated.

  14. UFD Storage and Transportation - Transportation Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references suchmore » as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report« less

  15. Eighth Goddard Conference on Mass Storage Systems and Technologies in Cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    2000-01-01

    This document contains copies of those technical papers received in time for publication prior to the Eighth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center March 27-30, 2000. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, new technology with a special emphasis on holographic storage, performance, standards, site reports, vendor solutions. Tutorials will be available on stability of optical media, disk subsystem performance evaluation, I/O and storage tuning, functionality and performance evaluation of file systems for storage area networks.

  16. Economic Analysis Case Studies of Battery Energy Storage with SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. Themore » analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.« less

  17. Modeling of a thermal energy storage system based on coupled metal hydrides (magnesium iron – sodium alanate) for concentrating solar power plants

    DOE PAGES

    d'Entremont, A.; Corgnale, C.; Sulic, M.; ...

    2017-08-31

    Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less

  18. Modeling of a thermal energy storage system based on coupled metal hydrides (magnesium iron – sodium alanate) for concentrating solar power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d'Entremont, A.; Corgnale, C.; Sulic, M.

    Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less

  19. System characterization of a magnetically suspended flywheel

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Dave K.; Plant, David P.

    1988-01-01

    The purpose of flywheel energy storage is to provide a means to save energy during times when the satellite is in sunlight, and then return the energy during the time when the satellite is in darkness. Typically, an energy storage device operates cyclically, where for satellites in Low Earth Orbit (LEO) the typical period is 60 minutes of sunlight followed by 30 minutes of darkness. If a lifetime of 17 years is required the energy storage system must be capable of sustaining approximately 100,000 cycles. The recent developments at the University of Maryland and how these progressions apply to a 500 Watt-hour magnetically suspended flywheel stack energy storage system are covered. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of non-contacting displacement transducers, and performance enhancements of magnetic bearings. The experimental results show that a stack flywheel energy storage system is a feasible technology.

  20. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  1. Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1998-01-01

    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence.

  2. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Das, Trishna

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24more » bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.« less

  3. Thermal Energy Storage: Fourth Annual Review Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.

  4. Thermal management systems and methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  5. Remote hybrid power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barley, C.D.; Winn, C.B.

    1997-12-31

    This paper provides an overview of the emerging technology of remote, stand-alone electrical power systems featuring a renewable source (wind or photovoltaics [PV]) as well as a diesel generator, with or without an energy storage device. Other stand-alone power systems are discussed briefly, mainly to emphasize the domain of hybrid systems. The history of hybrid systems is reviewed, beginning with the first wind/diesel system in the late 1970s. Other topics include issues arising from the characteristics of diesel engine/generator sets; simple vs. complex systems; the various energy storage technologies that have been used or proposed; control strategies; modeling; optimization; andmore » some {open_quotes}nuts & bolts{close_quotes} details. The bibliography includes over 130 references which are cited throughout the topical discussions. It is concluded that the technical feasibility of hybrid systems has been demonstrated through many prototype installations, and that areas for further improvements include higher reliability and more economical energy storage devices. 139 refs., 7 figs., 1 tab.« less

  6. Energy Harvesting Systems and Methods of Assembling Same

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2013-01-01

    A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.

  7. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  8. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  9. 40 CFR 63.447 - Clean condensate alternative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment includes smelt dissolving tanks, lime mud washers and storage tanks, white and mud liquor... tanks, and dreg washers ending with the white liquor storage tanks prior to the digester system, and any... preparation systems, the paper or paperboard machines, and the paper machine white water system, broke...

  10. 40 CFR 63.447 - Clean condensate alternative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment includes smelt dissolving tanks, lime mud washers and storage tanks, white and mud liquor... tanks, and dreg washers ending with the white liquor storage tanks prior to the digester system, and any... preparation systems, the paper or paperboard machines, and the paper machine white water system, broke...

  11. 40 CFR 63.447 - Clean condensate alternative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment includes smelt dissolving tanks, lime mud washers and storage tanks, white and mud liquor... tanks, and dreg washers ending with the white liquor storage tanks prior to the digester system, and any... preparation systems, the paper or paperboard machines, and the paper machine white water system, broke...

  12. 75 FR 25219 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... SYSTEM: Badge and vehicle control records that at a minimum include: Name, Social Security Number (SSN... SYSTEM: 10 U.S.C. 8013, Secretary of the Air Force, Powers and Duties; Department of Defense 5200.08-R... SYSTEM: STORAGE: Electronic storage media. RETRIEVABILITY: Data is retrieved by querying a driver's name...

  13. Integrated waste management system costs in a MPC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supko, E.M.

    1995-12-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.

  14. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    PubMed

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. © The Author(s) 2015.

  15. Seasonal Thermal Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  16. Experimental test of a hot water storage system including a macro-encapsulated phase change material (PCM)

    NASA Astrophysics Data System (ADS)

    Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.

    2017-01-01

    Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.

  17. 75 FR 57841 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective Date AGENCY: Nuclear... include Amendment Number 6 to Certificate of Compliance (CoC) Number 1025. DATES: Effective Date: The... regulations at 10 CFR 72.214 to include Amendment No. 6 to CoC No. 1025. Amendment No. 6 changes the...

  18. Optimal Sizing of a Solar-Plus-Storage System for Utility Bill Savings and Resiliency Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan

    Solar-plus-storage systems can achieve significant utility savings in behind-the-meter deployments in buildings, campuses, or industrial sites. Common applications include demand charge reduction, energy arbitrage, time-shifting of excess photovoltaic (PV) production, and selling ancillary services to the utility grid. These systems can also offer some energy resiliency during grid outages. It is often difficult to quantify the amount of resiliency that these systems can provide, however, and this benefit is often undervalued or omitted during the design process. We propose a method for estimating the resiliency that a solar-plus-storage system can provide at a given location. We then present an optimizationmore » model that can optimally size the system components to minimize the lifecycle cost of electricity to the site, including the costs incurred during grid outages. The results show that including the value of resiliency during the feasibility stage can result in larger systems and increased resiliency.« less

  19. Optimal Sizing of a Solar-Plus-Storage System For Utility Bill Savings and Resiliency Benefits: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan

    Solar-plus-storage systems can achieve significant utility savings in behind-the-meter deployments in buildings, campuses, or industrial sites. Common applications include demand charge reduction, energy arbitrage, time-shifting of excess photovoltaic (PV) production, and selling ancillary services to the utility grid. These systems can also offer some energy resiliency during grid outages. It is often difficult to quantify the amount of resiliency that these systems can provide, however, and this benefit is often undervalued or omitted during the design process. We propose a method for estimating the resiliency that a solar-plus-storage system can provide at a given location. We then present an optimizationmore » model that can optimally size the system components to minimize the lifecycle cost of electricity to the site, including the costs incurred during grid outages. The results show that including the value of resiliency during the feasibility stage can result in larger systems and increased resiliency.« less

  20. 75 FR 74019 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... storage media. Retrievability: Information is retrieved by individual's name, Social Security Number (SSN... ``Records include individual's name, Social Security Number (SSN); employee identification number....'' * * * * * Storage: Delete entry and replace with ``Paper records in file folders and electronic storage media...

  1. Sirocco Storage Server v. pre-alpha 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Matthew L.; Danielson, Geoffrey; Ward, H. Lee

    Sirocco is a parallel storage system under development, designed for write-intensive workloads on large-scale HPC platforms. It implements a keyvalue object store on top of a set of loosely federated storage servers that cooperate to ensure data integrity and performance. It includes support for a range of different types of storage transactions. This software release constitutes a conformant storage server, along with the client-side libraries to access the storage over a network.

  2. Optimal control, investment and utilization schemes for energy storage under uncertainty

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency operations; (ii) optimal market strategy of buy and sell over 24-hour periods; (iii) optimal storage charge and discharge in much shorter time intervals.

  3. Design, construction, testing and evaluation of a residential ice storage air conditioning system. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, J.J.; Ritz, T.A.

    1982-11-01

    The experimental system was used to supply cooling to a single wide trailer and performance data were compared to a conventional air conditioning system of the some capacity. Utility rate information was collected from over one hundred major utility companies and used to evaluate economic comparison of the two systems. The ice storage system utilized reduced rate time periods to accommodate ice while providing continuous cooling to the trailer. The economic evaluation resulted in finding that the ice storage system required over 50% more energy than the conventional system. Although a few of the utility companies offered rate structures whichmore » would result in savings of up to $200 per year, this would not be enough to offset higher initial costs over the life of the storage system. Recommendations include items that would have to be met in order for an ice storage system to be an economically viable alternative to the conventional system.« less

  4. Design and evaluation of a hybrid storage system in HEP environment

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Cheng, Yaodong; Chen, Gang

    2017-10-01

    Nowadays, the High Energy Physics experiments produce a large amount of data. These data are stored in mass storage systems which need to balance the cost, performance and manageability. In this paper, a hybrid storage system including SSDs (Solid-state Drive) and HDDs (Hard Disk Drive) is designed to accelerate data analysis and maintain a low cost. The performance of accessing files is a decisive factor for the HEP computing system. A new deployment model of Hybrid Storage System in High Energy Physics is proposed which is proved to have higher I/O performance. The detailed evaluation methods and the evaluations about SSD/HDD ratio, and the size of the logic block are also given. In all evaluations, sequential-read, sequential-write, random-read and random-write are all tested to get the comprehensive results. The results show the Hybrid Storage System has good performance in some fields such as accessing big files in HEP.

  5. Electron trapping optical data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.

  6. Measurements over distributed high performance computing and storage systems

    NASA Technical Reports Server (NTRS)

    Williams, Elizabeth; Myers, Tom

    1993-01-01

    A strawman proposal is given for a framework for presenting a common set of metrics for supercomputers, workstations, file servers, mass storage systems, and the networks that interconnect them. Production control and database systems are also included. Though other applications and third part software systems are not addressed, it is important to measure them as well.

  7. Methods of forming thermal management systems and thermal management methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  8. Quantifying induced effects of subsurface renewable energy storage

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry of Education and Research (BMBF).

  9. Energy storage systems having an electrode comprising Li.sub.xS.sub.y

    DOEpatents

    Xiao, Jie; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Wang, Wei; Zheng, Jianming; Xu, Wu; Shao, Yuyan; Yang, Zhenguo

    2016-08-02

    Improved lithium-sulfur energy storage systems can utilizes Li.sub.xS.sub.y as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising Li.sub.xS.sub.y. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.

  10. Systems biology of seeds: deciphering the molecular mechanisms of seed storage, dormancy and onset of germination.

    PubMed

    Sreenivasulu, Nese

    2017-05-01

    Seeds are heterogeneous storage reserves with wide array of storage compounds that include various soluble carbohydrates, starch polymer, storage proteins and lipids. These stored reserves comprise 70% of the world's caloric intake in the form of food and animal feed produced through sustainable agriculture, which contributes to food and nutritional security. Seed systems biology remains an enigmatic subject in understanding seed storage processes, maturation and pre-germinative metabolism. The reviews and research articles covered in this special issue of Plant Cell Reports highlight recent advances made in the area of seed biology that cover various systems biology applications such as gene regulatory networks, metabolomics, epigenetics and the role of micro-RNA in seed development.

  11. Fourth NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1994-01-01

    This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994.

  12. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    NASA Astrophysics Data System (ADS)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  13. Applicability of Thermal Storage Systems to Air Force Facilities

    DTIC Science & Technology

    1990-09-01

    Analisis of Region 6 Upper Limit Retrofit Scenario 30% Reduction .... ............. 4.52 4.58 Economic Analysis of Region 7 Upper Limit Retrofit Scenario...or a dynamic-direct contact type. They usually include all the controls, chilling and storage equipment in one self-contained, skid mounted, factory ...SCS technology. One promising trend in reducing system construction costs is the factory -packaged thermal storage cooling unit. As of February 1989

  14. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy

    2016-04-01

    Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.

  15. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  16. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor)

    2010-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  17. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  18. Heat-pump cool storage in a clathrate of freon

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  19. Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt

    NASA Astrophysics Data System (ADS)

    Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.

    2017-01-01

    A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.

  20. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less

  1. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  2. Hybrid Electric Transit Bus

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.

  3. Flywheel energy storage for electromechanical actuation systems

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    1991-01-01

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  4. Flywheel energy storage for electromechanical actuation systems

    NASA Astrophysics Data System (ADS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  5. Expert systems applied to fault isolation and energy storage management, phase 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A user's guide for the Fault Isolation and Energy Storage (FIES) II system is provided. Included are a brief discussion of the background and scope of this project, a discussion of basic and advanced operating installation and problem determination procedures for the FIES II system and information on hardware and software design and implementation. A number of appendices are provided including a detailed specification for the microprocessor software, a detailed description of the expert system rule base and a description and listings of the LISP interface software.

  6. Regenerative fuel cell systems for space station

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Sheibley, D. W.

    1985-01-01

    Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.

  7. Compartmentalized storage tank for electrochemical cell system

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  8. 78 FR 73509 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... entering into CENTCOM's theater of operation. DATES: This proposed action will be effective on January 7... files and Manpower Authorization files, including name; grade/rank; Social Security Number (SSN); DoD ID..., retaining, and disposing of records in the system: Storage: Electronic storage media. Retrievability...

  9. SIMWEST: A simulation model for wind and photovoltaic energy storage systems (CDC user's manual), volume 1

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Esinger, A. W.

    1979-01-01

    Procedures are given for using the SIMWEST program on CDC 6000 series computers. This expanded software package includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic).

  10. 49 CFR 242.203 - Retaining information supporting determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or individual records; (2) The program and data storage system must be protected by a... making the determinations. (b) A railroad shall retain the following information: (1) Relevant data from...

  11. 49 CFR 242.203 - Retaining information supporting determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or individual records; (2) The program and data storage system must be protected by a... making the determinations. (b) A railroad shall retain the following information: (1) Relevant data from...

  12. 49 CFR 242.203 - Retaining information supporting determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... integrity of the electronic data storage system, including the prevention of unauthorized access to the program logic or individual records; (2) The program and data storage system must be protected by a... making the determinations. (b) A railroad shall retain the following information: (1) Relevant data from...

  13. U.S. Army Hybrid Propulsion System R&D Overview ATA/Technology & Maintenance Council 2011 Fall Meeting, Hybrid Powertrain Task Force Session

    DTIC Science & Technology

    2011-09-19

    Integration – Non-Thermal Plasma JP8 reformer & SOFC system – Lithium-Iron Phosphate Battery Technology – Lithium Ion Battery & energy storage systems...regeneration and includes a lithium ion battery energy storage – Export power capabilities meeting mission requirements (5-50 kilowatt [kW]) – Air

  14. Distributed Coordination of Energy Storage with Distributed Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Wu, Di; Stoorvogel, Antonie A.

    2016-07-18

    With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal coordination problem considering constraints at both system and device levels, including power balance constraint, generator output limits, storage energy and power capacity and charging/discharging efficiencies. An algorithm is then proposed to dynamically and automatically coordinate DERs in a distributed manner. With the proposed algorithm, the agent at each DER only maintains a local incremental cost and updates it through information exchange with a fewmore » neighbors, without relying on any central decision maker. Simulation results are used to illustrate and validate the proposed algorithm.« less

  15. Neuroimaging of Lipid Storage Disorders

    ERIC Educational Resources Information Center

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  16. A new tape product for optical data storage

    NASA Technical Reports Server (NTRS)

    Larsen, T. L.; Woodard, F. E.; Pace, S. J.

    1993-01-01

    A new tape product has been developed for optical data storage. Laser data recording is based on hole or pit formation in a low melting metallic alloy system. The media structure, sputter deposition process, and media characteristics, including write sensitivity, error rates, wear resistance, and archival storage are discussed.

  17. STREET STORAGE SYSTEM FOR CONTROL OF COMBINED SEWER SURCHARGE

    EPA Science Inventory

    This manual presents a discussion of the use of on-street storage as an effective means to control stormwater runoff. It focuses on the success achieved by using street storage, in 2 communities in IL and includes a description and evaluation of how this technology solved surchar...

  18. Nuuanu YMCA Honolulu, Hawaii solar-water-heating project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-10-14

    The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. (LEW)« less

  19. Nuuanu YMCA solar water-heating project (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-08-13

    The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. These Drawings accompany report No. DOE/CS/31640-T1. (LEW)« less

  20. Twin-tailed fail-over for fileservers maintaining full performance in the presence of a failure

    DOEpatents

    Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.

    2008-02-12

    A method for maintaining full performance of a file system in the presence of a failure is provided. The file system having N storage devices, where N is an integer greater than zero and N primary file servers where each file server is operatively connected to a corresponding storage device for accessing files therein. The file system further having a secondary file server operatively connected to at least one of the N storage devices. The method including: switching the connection of one of the N storage devices to the secondary file server upon a failure of one of the N primary file servers; and switching the connections of one or more of the remaining storage devices to a primary file server other than the failed file server as necessary so as to prevent a loss in performance and to provide each storage device with an operating file server.

  1. High to ultra-high power electrical energy storage.

    PubMed

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  2. Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  3. Battery energy-storage systems — an emerging market for lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Cole, J. F.

    Although the concept of using batteries for lead levelling and peak shaving has been known for decades, only recently have these systems become commercially viable. Changes in the structure of the electric power supply industry have required these companies to seek more cost-effective ways of meeting the needs of their customers. Through experience gained, primarily in the USA, batteries have been shown to provide multiple benefits to electric utilities. Also, lower maintenance batteries, more reliable electrical systems, and the availability of methods to predict costs and benefits have made battery energy-storage systems more attractive. Technology-transfer efforts in the USA have resulted in a willingness of electric utilities to install a number of these systems for a variety of tasks, including load levelling, peak shaving, frequency regulation and spinning reserve. Additional systems are being planned for several additional locations for similar applications, plus transmission and distribution deferral and enhanced power quality. In the absence of US champions such as the US Department of Energy and the Electric Power Research Institute, ILZRO is attempting to mount a technology-transfer programme to bring the benefits of battery energy-storage to European power suppliers. As a result of these efforts, a study group on battery energy-storage systems has been established with membership primarily in Germany and Austria. Also, a two-day workshop, prepared by the Electric Power Research Institute was held in Dublin. Participants included representatives of several European power suppliers. As a result, ESB National Grid of Ireland has embarked upon a detailed analysis of the costs and benefits of a battery energy-storage system in their network. Plans for the future include continuation of this technology-transfer effort, assistance in the Irish effort, and a possible approach to the European Commission for funding.

  4. Mass Storage and Retrieval at Rome Laboratory

    NASA Technical Reports Server (NTRS)

    Kann, Joshua L.; Canfield, Brady W.; Jamberdino, Albert A.; Clarke, Bernard J.; Daniszewski, Ed; Sunada, Gary

    1996-01-01

    As the speed and power of modern digital computers continues to advance, the demands on secondary mass storage systems grow. In many cases, the limitations of existing mass storage reduce the overall effectiveness of the computing system. Image storage and retrieval is one important area where improved storage technologies are required. Three dimensional optical memories offer the advantage of large data density, on the order of 1 Tb/cm(exp 3), and faster transfer rates because of the parallel nature of optical recording. Such a system allows for the storage of multiple-Gbit sized images, which can be recorded and accessed at reasonable rates. Rome Laboratory is currently investigating several techniques to perform three-dimensional optical storage including holographic recording, two-photon recording, persistent spectral-hole burning, multi-wavelength DNA recording, and the use of bacteriorhodopsin as a recording material. In this paper, the current status of each of these on-going efforts is discussed. In particular, the potential payoffs as well as possible limitations are addressed.

  5. 75 FR 70294 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Corporation Including Express Employment Professionals. 74,111 Alstom Transportation, Hornell, NY May 14, 2009... Serv., Server Systems, IC1, Storage, Backup. 74,316A International Business Cambridge, MA......... June 10, 2009. Machines (IBM), Global Tech Serv., Server Systems, IC1, Storage, Backup. 74,316B...

  6. Automated cassette-to-cassette substrate handling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and amore » processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.« less

  7. System and method for programmable bank selection for banked memory subsystems

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  8. Determination of Duty Cycle for Energy Storage Systems in a Renewables (Solar) Firming Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenwald, David A.; Ellison, James

    2016-04-01

    This report supplements the document, “Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems,” issued in a revised version in April 2016, which will include the renewables (solar) firming application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a renewables (solar) firming application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol.

  9. 77 FR 66885 - Submission of OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... media, including microfilm, microfiche, or any similar medium, or (ii) electronic storage media, including any digital storage medium or system that meets the terms of rule 31a-2(f). The fund, or person... Copies Available From: Securities and Exchange Commission, Office of Investor Education and Advocacy...

  10. NV Energy Electricity Storage Valuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp ratemore » resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.« less

  11. CASKS (Computer Analysis of Storage casKS): A microcomputer based analysis system for storage cask design review. User`s manual to Version 1b (including program reference)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.F.; Gerhard, M.A.; Trummer, D.J.

    CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user`s manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers withmore » a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.« less

  12. An expanded system simulation model for solar energy storage (technical report), volume 1

    NASA Technical Reports Server (NTRS)

    Warren, A. W.

    1979-01-01

    The simulation model for wind energy storage (SIMWEST) program now includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) and is available for the UNIVAC 1100 series and the CDC 6000 series computers. The level of detail is consistent with a role of evaluating the economic feasibility as well as the general performance of wind and/or photovoltaic energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind and/or photovoltaic source/storage/application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/0, the integration of system dynamics, and the iteration for conveyance of variables.

  13. An Energy Storage Assessment: Using Optimal Control Strategies to Capture Multiple Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.

    2015-09-01

    This paper presents a methodology for evaluating benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. In the proposed method, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This methodology is used to assess energy storage alternatives in Puget Sound Energy System. Different battery storage candidates are simulated for a period of one year to assess different value streams and overall benefits, as partmore » of a financial feasibility evaluation of battery storage projects.« less

  14. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less

  15. Long-Term Outcomes of Laser Prostatectomy for Storage Symptoms: Comparison of Serial 5-Year Followup Data between High Performance System Photoselective Vaporization and Holmium Laser Enucleation of the Prostate.

    PubMed

    Cho, Min Chul; Song, Won Hoon; Park, Juhyun; Cho, Sung Yong; Jeong, Hyeon; Oh, Seung-June; Paick, Jae-Seung; Son, Hwancheol

    2018-06-01

    We compared long-term storage symptom outcomes between photoselective laser vaporization of the prostate with a 120 W high performance system and holmium laser enucleation of the prostate. We also determined factors influencing postoperative improvement of storage symptoms in the long term. Included in our study were 266 men, including 165 treated with prostate photoselective laser vaporization using a 120 W high performance system and 101 treated with holmium laser enucleation of the prostate, on whom 60-month followup data were available. Outcomes were assessed serially 6, 12, 24, 36, 48 and 60 months postoperatively using the International Prostate Symptom Score, uroflowmetry and the serum prostate specific antigen level. Postoperative improvement in storage symptoms was defined as a 50% or greater reduction in the subtotal storage symptom score at each followup visit after surgery compared to baseline. Improvements in frequency, urgency, nocturia, subtotal storage symptom scores and the quality of life index were maintained up to 60 months after photoselective laser vaporization or holmium laser enucleation of the prostate. There was no difference in the degree of improvement in storage symptoms or the percent of patients with postoperative improvement in storage symptoms between the 2 groups throughout the long-term followup. However, the holmium laser group showed greater improvement in voiding symptoms and quality of life than the laser vaporization group. On logistic regression analysis a higher baseline subtotal storage symptom score and a higher BOOI (Bladder Outlet Obstruction Index) were the factors influencing the improvement in storage symptoms 5 years after prostate photoselective laser vaporization or holmium laser enucleation. Our serial followup data suggest that storage symptom improvement was maintained throughout the long-term postoperative period for prostate photoselective laser vaporization with a 120 W high performance system and holmium laser enucleation without any difference between the 2 surgeries. Also, more severe storage symptoms at baseline and a more severe BOOI predicted improved storage symptoms in the long term after each surgery. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  17. Thermal storage for electric utilities

    NASA Technical Reports Server (NTRS)

    Swet, C. J.; Masica, W. J.

    1977-01-01

    Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.

  18. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Oscar

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  19. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  20. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  1. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence formore » materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.« less

  2. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  3. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  4. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Astrophysics Data System (ADS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-06-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  5. Optical storage media data integrity studies

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1994-01-01

    Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.

  6. A simulation model for wind energy storage systems. Volume 2: Operation manual

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Edsinger, R. W.; Burroughs, J. D.

    1977-01-01

    A comprehensive computer program (SIMWEST) developed for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic) is described. Features of the program include: a precompiler which generates computer models (in FORTRAN) of complex wind source/storage/application systems, from user specifications using the respective library components; a program which provides the techno-economic system analysis with the respective I/O the integration of system dynamics, and the iteration for conveyance of variables; and capability to evaluate economic feasibility as well as general performance of wind energy systems. The SIMWEST operation manual is presented and the usage of the SIMWEST program and the design of the library components are described. A number of example simulations intended to familiarize the user with the program's operation is given along with a listing of each SIMWEST library subroutine.

  7. Hybrid robust predictive optimization method of power system dispatch

    DOEpatents

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  8. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less

  9. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Steven T., E-mail: sanderson@usgs.gov

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less

  10. Cost implications of uncertainty in CO2 storage resource estimates: A review

    USGS Publications Warehouse

    Anderson, Steven T.

    2017-01-01

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.

  11. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  12. Integrated Micro-Power System (IMPS) Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilt, David; Hepp, Aloysius; Moran, Matt; Jenkins, Phillip; Scheiman, David; Raffaelle, Ryne

    2003-01-01

    Glenn Research Center (GRC) has a long history of energy related technology developments for large space related power systems, including photovoltaics, thermo-mechanical energy conversion, electrochemical energy storage. mechanical energy storage, power management and distribution and power system design. Recently, many of these technologies have begun to be adapted for small, distributed power system applications or Integrated Micro-Power Systems (IMPS). This paper will describe the IMPS component and system demonstration efforts to date.

  13. Waste heat recovery system including a mechanism for collection, detection and removal of non-condensable gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Timothy C.; Zigan, James A.

    2017-06-20

    The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.

  14. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  15. 75 FR 47536 - Foreign-Trade Zone 202-Los Angeles, CA; Application for Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Angeles: Proposed Site 25 (665.5 acres)--to include the jet fuel storage and distribution system located... would be as follows: the Los Angeles International Airport jet-fuel storage tanks and delivery system... LAXFUEL Corporation and will be used to provide jet fuel to airlines serving the Los Angeles International...

  16. Outlook and Challenges for Hydrogen Storage in Nanoporous Materials

    DOE PAGES

    Broom, D. P.; Webb, C. J.; Hurst, Katherine E.; ...

    2016-02-16

    Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In our article, the current status of the field and future challenges are discussed, ranging from important open fundamental questions, such as the density and volume of the adsorbed phase and its relationship to overall storage capacity, to the development of new functional materials and complete storage system design. With regard to fundamentals, the use of neutron scattering to study adsorbed H 2, suitable adsorption isotherm equations, and the accurate computational modelling and simulation of H 2 adsorption are discussed. We cover new materials andmore » they include flexible metal–organic frameworks, core–shell materials, and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks, the improvement in the thermal conductivity of storage beds, and new storage system concepts and designs.« less

  17. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Dean, William G (Inventor); Owen, James W. (Inventor)

    1988-01-01

    This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

  18. Hot conditioning equipment conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hotmore » Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.« less

  19. Chemical Effects during Storage of Frozen Foods.

    ERIC Educational Resources Information Center

    Powrie, W. D.

    1984-01-01

    Discusses (1) characteristics, interrelationships, and distribution of food constituents (including water) in unfrozen food systems; (2) the freezing process; and (3) chemical changes in food during frozen storage. Protein alterations and lipid oxidation are emphasized. (JN)

  20. Current state of the mass storage system reference model

    NASA Technical Reports Server (NTRS)

    Coyne, Robert

    1993-01-01

    IEEE SSSWG was chartered in May 1990 to abstract the hardware and software components of existing and emerging storage systems and to define the software interfaces between these components. The immediate goal is the decomposition of a storage system into interoperable functional modules which vendors can offer as separate commercial products. The ultimate goal is to develop interoperable standards which define the software interfaces, and in the distributed case, the associated protocols to each of the architectural modules in the model. The topics are presented in viewgraph form and include the following: IEEE SSSWG organization; IEEE SSSWG subcommittees & chairs; IEEE standards activity board; layered view of the reference model; layered access to storage services; IEEE SSSWG emphasis; and features for MSSRM version 5.

  1. Reusable module for the storage, transportation, and supply of multiple propellants in a space environment

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D. (Inventor); Mankins, John C. (Inventor)

    2004-01-01

    A space module has an outer structure designed for traveling in space, a docking mechanism for facilitating a docking operation therewith in space, a first storage system storing a first propellant that burns as a result of a chemical reaction therein, a second storage system storing a second propellant that burns as a result of electrical energy being added thereto, and a bi-directional transfer interface coupled to each of the first and second storage systems to transfer the first and second propellants into and out thereof. The space module can be part of a propellant supply architecture that includes at least two of the space modules placed in an orbit in space.

  2. Ground Optical Lightning Detector (GOLD)

    NASA Technical Reports Server (NTRS)

    Jackson, John, Jr.; Simmons, David

    1990-01-01

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  3. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    PubMed

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  4. Shuttle cryogenic supply system optimization study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Technical information on different cryogenic supply systems is presented for selecting representative designs. Parametric data and sensitivity studies, and an evaluation of related technology status are included. An integrated mathematical model for hardware program support was developed. The life support system, power generation, and propellant supply are considered. The major study conclusions are the following: Optimum integrated systems tend towards maximizing liquid storage. Vacuum jacketing of tanks is a major effect on integrated systems. Subcritical storage advantages over supercritical storage decrease as the quantity of propellant or reactant decreases. Shuttle duty cycles are not severe. The operational mode has a significant effect on reliability. Components are available for most subsystem applications. Subsystems and components require a minimum amount of technology development.

  5. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  6. Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.

  7. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    NASA Technical Reports Server (NTRS)

    Trouong, Long V.; Wolff, Frederic J.; Dravid, Narayan V.; Li, Ponlee

    2000-01-01

    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues.

  8. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide backgroundmore » and manual for this evaluation tool.« less

  9. Demand Response and Energy Storage Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less

  10. Demand Response and Energy Storage Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ookie; Cheung, Kerry

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less

  11. Technology for organization of the onboard system for processing and storage of ERS data for ultrasmall spacecraft

    NASA Astrophysics Data System (ADS)

    Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.

    2017-10-01

    Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.

  12. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Crawford, Alasdair J.; Fuller, Jason

    This Protocol provides a set of “best practices” for characterizing energy storage systems (ESSs) and measuring and reporting their performance. It serves as a basis for assessing how an ESS will perform with respect to key performance attributes relevant to different applications. It is intended to provide a valid and accurate basis for the comparison of different ESSs. By achieving the stated purpose, the Protocol will enable more informed decision-making in the selection of ESSs for various stationary applications. The Protocol identifies general information and technical specifications relevant in describing an ESS and also defines a set of test, measurement,more » and evaluation criteria with which to express the performance of ESSs that are intended for energy-intensive and/or power-intensive stationary applications. An ESS includes a storage device, battery management system, and any power conversion systems installed with the storage device. The Protocol is agnostic with respect to the storage technology and the size and rating of the ESS. The Protocol does not apply to single-use storage devices and storage devices that are not coupled with power conversion systems, nor does it address safety, security, or operations and maintenance of ESSs, or provide any pass/fail criteria.« less

  13. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  14. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  15. System and method for determining an ammonia generation rate in a three-way catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min; Perry, Kevin L; Kim, Chang H

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  16. Saying goodbye to optical storage technology.

    PubMed

    McLendon, Kelly; Babbitt, Cliff

    2002-08-01

    The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.

  17. The reliability of wind power systems in the UK

    NASA Astrophysics Data System (ADS)

    Newton, K.

    A methodology has been developed to evaluate the performance of geographically distributed wind power systems. Results are presented for three widely separated sites based on measured meteorological data obtained over a 17-yr period. The effects of including energy storage were investigated and 150-hr storage found to be a good compromise between store capacity and system performance. When used to provide space heating, the system could have reduced the 17-yr peak demand from conventional sources (smoothed by the storage and geographical separation of sites) by an amount comparable to the mean output of the wind-system, whether or not turbines at the three sites were interconnected by the National Grid. In contrast, the fuel saving capability of the system was found to be comparatively insensitive either to storage period or geographical separation of sites; the system would have been capable of providing up to 90 percent of the total requirement. Results are also given for individual sites to indicate the possible performance of district heating schemes or domestic systems.

  18. Initial guidelines and estimates for a power system with inertial (flywheel) energy storage

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1980-01-01

    The starting point for the assessment of a spacecraft power system utilizing inertial (flywheel) energy storage. Both general and specific guidelines are defined for the assessment of a modular flywheel system, operationally similar to but with significantly greater capability than the multimission modular spacecraft (MMS) power system. Goals for the flywheel system are defined in terms of efficiently train estimates and mass estimates for the system components. The inertial storage power system uses a 5 kw-hr flywheel storage component at 50 percent depth of discharge (DOD). It is capable of supporting an average load of 3 kw, including a peak load of 7.5 kw for 10 percent of the duty cycle, in low earth orbit operation. The specific power goal for the system is 10 w/kg, consisting of a 56w/kg (end of life) solar array, a 21.7 w-hr/kg (at 50 percent DOD) flywheel, and 43 w/kg power processing (conditioning, control and distribution).

  19. Battery energy storage market feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as amore » means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  20. Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants

    DOE PAGES

    d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce; ...

    2018-01-11

    Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less

  1. Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce

    Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less

  2. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  3. Evaluation of the wind pumped hydropower storage integrated flood mitigation system

    NASA Astrophysics Data System (ADS)

    Safi, Aishah; Basrawi, Firdaus

    2018-04-01

    As Wind Pumped Hydropower Storage (WPHS) need high cost to construct, it is important to study their impacts on economic and environmental aspects. Thus, this research aims to evaluate their economic and environmental performances. First, Hybrid Optimization Model for Electric Renewable (HOMER) was used to simulate power generation system with and without the flood reservoir. Next, the total amount of emitted air pollutant was used to evaluate the environmental impacts. It was found the wind-diesel with reservoir storage system (A-III) will have much lower NPC than other systems that do not include reservoir for flood mitigation when the cost of flood losses are included in the total Net Present Cost (NPC). The NPC for system A-III was RM 1.52 million and for diesel standalone system (A-I) is RM 10.8 million when the cost of flood losses are included in the total NPC. Between both energy systems, the amount of pollutants emitted by the A-III system was only 408 kg-CO2/year which is much less than the A-I system which is 99, 754 kg of carbon dioxide per year. To conclude, the WPHS integrated with flood mitigation system seems promising in the aspects of economic and environment.

  4. Hybrid Power Management (HPM)

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2007-01-01

    The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.

  5. Energizing the future: New battery technology a reality today

    NASA Astrophysics Data System (ADS)

    Chase, Henry; Bitterly, Jack; Federici, Al

    1997-04-01

    The U.S. Flywheel Systems' flywheel energy storage system could be the answer to a critical question: How do we replace conventional chemical batteries with a more-efficient system that lasts longer and is non-polluting? The new product, which has a virtually unlimited life expectancy, has a storage capacity four times greater per pound than conventional chemical batteries. USFS designed and built each component of the system—from the specially wound carbon fiber wheel, the magnetic bearing, the motor/generator, and the electronic control. The flywheel is designed to spin at speeds up to 100,000 rpm and deliver about 50 horsepower using a proprietary high-speed, high-power-density motor/generator that is the size of a typical coffee mug. Some of the important markets and applications for the flywheel storage system include electric vehicles, back-up power supply, peak power smoothing, satellite energy storage systems, and locomotive power.

  6. Self-learning control system for plug-in hybrid vehicles

    DOEpatents

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  7. Mechanism of supporting sub-communicator collectives with O(64) counters as opposed to one counter for each sub-communicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sameer; Mamidala, Amith R.; Ratterman, Joseph D.

    A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a bather algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal tomore » the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.« less

  8. Mechanism of supporting sub-communicator collectives with o(64) counters as opposed to one counter for each sub-communicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blocksome, Michael; Kumar, Sameer; Mamidala, Amith R.

    A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a barrier algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal tomore » the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.« less

  9. Mechanism of supporting sub-communicator collectives with O(64) counters as opposed to one counter for each sub-communicator

    DOEpatents

    Kumar, Sameer; Mamidala, Amith R.; Ratterman, Joseph D.; Blocksome, Michael; Miller, Douglas

    2013-09-03

    A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a bather algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal to the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.

  10. Environmental Standards for Storage of Books and Manuscripts

    ERIC Educational Resources Information Center

    Banks, Paul N.

    1974-01-01

    Deals with those factors included in building planning that can influence preservation, deterioration, or destruction of books--temperature, humidity, light, air cleanness, ventilation, exhibition, shelving and transportation, storage of microfilm, disaster control, and monitoring systems. (CH)

  11. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  12. High temperature sensible heat storage options

    NASA Astrophysics Data System (ADS)

    Wang, K. Y.; Kreith, F.; West, R. E.; Lynn, P.

    1984-11-01

    Design options and operation criteria for sensible heat molten salt storage with internal insulation are presented. Raft thermocline, two-tank, and two-media thermocline systems are the concepts discussed. Regenerative cooling, bottom insulation, and thermocline stability are considered in the thermal analysis. A brief discussion of the technical risks of each tank system is included. Cost estimations are also provided.

  13. Study of the modifications needed for effective operation NASTRAN on IBM virtual storage computers

    NASA Technical Reports Server (NTRS)

    Mccormick, C. W.; Render, K. H.

    1975-01-01

    The necessary modifications were determined to make NASTRAN operational under virtual storage operating systems (VS1 and VS2). Suggested changes are presented which will make NASTRAN operate more efficiently under these systems. Estimates of the cost and time involved in design, coding, and implementation of all suggested modifications are included.

  14. Toward Scalable Benchmarks for Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Miller, Ethan L.

    1996-01-01

    This paper presents guidelines for the design of a mass storage system benchmark suite, along with preliminary suggestions for programs to be included. The benchmarks will measure both peak and sustained performance of the system as well as predicting both short- and long-term behavior. These benchmarks should be both portable and scalable so they may be used on storage systems from tens of gigabytes to petabytes or more. By developing a standard set of benchmarks that reflect real user workload, we hope to encourage system designers and users to publish performance figures that can be compared with those of other systems. This will allow users to choose the system that best meets their needs and give designers a tool with which they can measure the performance effects of improvements to their systems.

  15. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  16. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  17. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  18. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...

  19. High Efficiency and Low Cost Thermal Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Comparedmore » to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less

  20. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  1. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  2. Inherently safe passive gas monitoring system

    DOEpatents

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  3. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  4. Building an organic block storage service at CERN with Ceph

    NASA Astrophysics Data System (ADS)

    van der Ster, Daniel; Wiebalck, Arne

    2014-06-01

    Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an "organic" storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.

  5. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less

  6. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  7. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  8. PACS storage technology update: holographic storage.

    PubMed

    Colang, John E; Johnston, James N

    2006-01-01

    This paper focuses on the emerging technology of holographic storage and its effect on picture archiving and communication systems (PACS). A review of the emerging technology is presented, which includes a high level description of holographic drives and the associated substrate media, the laser and optical technology, and the spatial light modulator. The potential advantages and disadvantages of holographic drive and storage technology are evaluated. PACS administrators face myriad complex and expensive storage solutions and selecting an appropriate system is time-consuming and costly. Storage technology may become obsolete quickly because of the exponential nature of the advances in digital storage media. Holographic storage may turn out to be a low cost, high speed, high volume storage solution of the future; however, data is inconclusive at this early stage of the technology lifecycle. Despite the current lack of quantitative data to support the hypothesis that holographic technology will have a significant effect on PACS and standards of practice, it seems likely from the current information that holographic technology will generate significant efficiencies. This paper assumes the reader has a fundamental understanding of PACS technology.

  9. Beam diagnostics at high-intensity storage rings

    NASA Astrophysics Data System (ADS)

    Plum, Mike

    1994-10-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  10. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies.. Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  11. Organizing and Typing Persistent Objects Within an Object-Oriented Framework

    NASA Technical Reports Server (NTRS)

    Madany, Peter W.; Campbell, Roy H.

    1991-01-01

    Conventional operating systems provide little or no direct support for the services required for an efficient persistent object system implementation. We have built a persistent object scheme using a customization and extension of an object-oriented operating system called Choices. Choices includes a framework for the storage of persistent data that is suited to the construction of both conventional file system and persistent object system. In this paper we describe three areas in which persistent object support differs from file system support: storage organization, storage management, and typing. Persistent object systems must support various sizes of objects efficiently. Customizable containers, which are themselves persistent objects and can be nested, support a wide range of object sizes in Choices. Collections of persistent objects that are accessed as an aggregate and collections of light-weight persistent objects can be clustered in containers that are nested within containers for larger objects. Automated garbage collection schemes are added to storage management and have a major impact on persistent object applications. The Choices persistent object store provides extensible sets of persistent object types. The store contains not only the data for persistent objects but also the names of the classes to which they belong and the code for the operation of the classes. Besides presenting persistent object storage organization, storage management, and typing, this paper discusses how persistent objects are named and used within the Choices persistent data/file system framework.

  12. Study to establish cost projections for production of Redox chemicals

    NASA Technical Reports Server (NTRS)

    Walther, J. F.; Greco, C. C.; Rusinko, R. N.; Wadsworth, A. L., III

    1982-01-01

    A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

  13. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1991-01-01

    A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.

  14. Optimized efficiency of all-electric ships by dc hybrid power systems

    NASA Astrophysics Data System (ADS)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  15. Capacity Expansion Modeling for Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    2017-04-03

    The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.

  16. Federated data storage system prototype for LHC experiments and data intensive science

    NASA Astrophysics Data System (ADS)

    Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Ryabinkin, E.; Zarochentsev, A.

    2017-10-01

    Rapid increase of data volume from the experiments running at the Large Hadron Collider (LHC) prompted physics computing community to evaluate new data handling and processing solutions. Russian grid sites and universities’ clusters scattered over a large area aim at the task of uniting their resources for future productive work, at the same time giving an opportunity to support large physics collaborations. In our project we address the fundamental problem of designing a computing architecture to integrate distributed storage resources for LHC experiments and other data-intensive science applications and to provide access to data from heterogeneous computing facilities. Studies include development and implementation of federated data storage prototype for Worldwide LHC Computing Grid (WLCG) centres of different levels and University clusters within one National Cloud. The prototype is based on computing resources located in Moscow, Dubna, Saint Petersburg, Gatchina and Geneva. This project intends to implement a federated distributed storage for all kind of operations such as read/write/transfer and access via WAN from Grid centres, university clusters, supercomputers, academic and commercial clouds. The efficiency and performance of the system are demonstrated using synthetic and experiment-specific tests including real data processing and analysis workflows from ATLAS and ALICE experiments, as well as compute-intensive bioinformatics applications (PALEOMIX) running on supercomputers. We present topology and architecture of the designed system, report performance and statistics for different access patterns and show how federated data storage can be used efficiently by physicists and biologists. We also describe how sharing data on a widely distributed storage system can lead to a new computing model and reformations of computing style, for instance how bioinformatics program running on supercomputers can read/write data from the federated storage.

  17. Battery energy storage market feasibility study -- Expanded report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and asmore » a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less

  18. Hybrid energy storage systems utilizing redox active organic compounds

    DOEpatents

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  19. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    NASA Astrophysics Data System (ADS)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  20. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  1. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOEpatents

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  2. Integral collector storage system with heat exchange apparatus

    DOEpatents

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  3. 41 CFR 302-7.19 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 302-7.19 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS...

  4. Facing the Limitations of Electronic Document Handling.

    ERIC Educational Resources Information Center

    Moralee, Dennis

    1985-01-01

    This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)

  5. System and Method for Providing a Climate Data Persistence Service

    NASA Technical Reports Server (NTRS)

    Schnase, John L. (Inventor); Ripley, III, William David (Inventor); Duffy, Daniel Q. (Inventor); Thompson, John H. (Inventor); Strong, Savannah L. (Inventor); McInerney, Mark (Inventor); Sinno, Scott (Inventor); Tamkin, Glenn S. (Inventor); Nadeau, Denis (Inventor)

    2018-01-01

    A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases.

  6. Fixed-base flywheel storage systems for electric-utility applications: An assessment of economic viability and R and D priorities

    NASA Astrophysics Data System (ADS)

    Olszewski, M.; Steele, R. S.

    1983-02-01

    Electric utility side meter storage options were assessed for the daily 2 h peaking spike application. The storage options considered included compressed air, batteries, and flywheels. The potential role for flywheels in this application was assessed and research and development (R and D) priorities were established for fixed base flywheel systems. Results of the worth cost analysis indicate that where geologic conditions are favorable, compressed air energy storage (CAES) is a strong competitor against combustion turbines. Existing battery and flywheel systems rated about equal, both being, at best, marginally uncompetitive with turbines. Advanced batteries, if existing cost and performance goals are met, could be competitive with CAES. A three task R and D effort for flywheel development appears warranted. The first task, directed at reducing fabrication coss and increasing performance of a chopped fiber, F-glass, solid disk concept, could produce a competitive flywheel system.

  7. Using semantic data modeling techniques to organize an object-oriented database for extending the mass storage model

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik

    1991-01-01

    A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.

  8. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE PAGES

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    2018-02-26

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  9. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  10. Supercapacitor to Provide Ancillary Services: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Luo, Yusheng

    Supercapacitor technology has reached a level of maturity as a viable energy storage option available to support a modern electric power system grid; however, its application is still limited because of its energy capacity and the cost of the commercial product. In this paper, we demonstrate transient models of supercapacitor energy storage plants operating in coordination with run-of-the-river (ROR), doubly-fed induction generator hydropower plants (HPP) using a system control concept and architecture developed. A detailed transient model of a supercapacitor energy storage device is coupled with the grid via a three-phase inverter/rectifier and bidirectional DC-DC converter. In addition, we usemore » a version of a 14-bus IEEE test case that includes the models of the supercapacitor energy storage device, ROR HPPs, and synchronous condensers that use the rotating synchronous generators of retired coal-powered plants. The purpose of the synchronous condensers is to enhance the system stability by providing voltage and reactive power control, provide power system oscillations damping, and maintain system inertia at secure levels. The control layer provides coordinated, decentralized operation of distributed ROR HPPs and energy storage as aggregate support to power system operations.« less

  11. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  12. Study of Disinfectant Penetration in a Drinking Water Storage Tank Sediment Using Microelectrodes- Indianapolis

    EPA Science Inventory

    Sediment accumulation in water storage facilities causes water quality degradation issues, including enhanced biological growth and more rapid disinfectant decay. For chloramine systems, sediment may harbor nitrifying bacteria, feeding on ammonia from monochloramine decay and dem...

  13. The Impact of Implementing a Demand Forecasting System into a Low-Income Country’s Supply Chain

    PubMed Central

    Mueller, Leslie E.; Haidari, Leila A.; Wateska, Angela R.; Phillips, Roslyn J.; Schmitz, Michelle M.; Connor, Diana L.; Norman, Bryan A.; Brown, Shawn T.; Welling, Joel S.; Lee, Bruce Y.

    2016-01-01

    OBJECTIVE To evaluate the potential impact and value of applications (e.g., ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country’s vaccine supply chain with different levels of population change to urban areas. MATERIALS AND METHODS Using our software, HERMES, we generated a detailed discrete event simulation model of Niger’s entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. RESULTS Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. DISCUSSION The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. CONCLUSION Demand forecasting systems have the potential to greatly improve vaccine demand fulfillment, and decrease logistics cost/dose when implemented with storage and transportation increases direct vaccines. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. PMID:27219341

  14. The impact of implementing a demand forecasting system into a low-income country's supply chain.

    PubMed

    Mueller, Leslie E; Haidari, Leila A; Wateska, Angela R; Phillips, Roslyn J; Schmitz, Michelle M; Connor, Diana L; Norman, Bryan A; Brown, Shawn T; Welling, Joel S; Lee, Bruce Y

    2016-07-12

    To evaluate the potential impact and value of applications (e.g. adjusting ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country's vaccine supply chain with different levels of population change to urban areas. Using our software, HERMES, we generated a detailed discrete event simulation model of Niger's entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. Demand forecasting systems have the potential to greatly improve vaccine demand fulfilment, and decrease logistics cost/dose when implemented with storage and transportation increases. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Architecture and method for a burst buffer using flash technology

    DOEpatents

    Tzelnic, Percy; Faibish, Sorin; Gupta, Uday K.; Bent, John; Grider, Gary Alan; Chen, Hsing-bung

    2016-03-15

    A parallel supercomputing cluster includes compute nodes interconnected in a mesh of data links for executing an MPI job, and solid-state storage nodes each linked to a respective group of the compute nodes for receiving checkpoint data from the respective compute nodes, and magnetic disk storage linked to each of the solid-state storage nodes for asynchronous migration of the checkpoint data from the solid-state storage nodes to the magnetic disk storage. Each solid-state storage node presents a file system interface to the MPI job, and multiple MPI processes of the MPI job write the checkpoint data to a shared file in the solid-state storage in a strided fashion, and the solid-state storage node asynchronously migrates the checkpoint data from the shared file in the solid-state storage to the magnetic disk storage and writes the checkpoint data to the magnetic disk storage in a sequential fashion.

  16. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issuesmore » related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.« less

  17. Moore's law realities for recording systems and memory storage components: HDD, tape, NAND, and optical

    NASA Astrophysics Data System (ADS)

    Fontana, Robert E.; Decad, Gary M.

    2018-05-01

    This paper describes trends in the storage technologies associated with Linear Tape Open (LTO) Tape cartridges, hard disk drives (HDD), and NAND Flash based storage devices including solid-state drives (SSD). This technology discussion centers on the relationship between cost/bit and bit density and, specifically on how the Moore's Law perception that areal density doubling and cost/bit halving every two years is no longer being achieved for storage based components. This observation and a Moore's Law Discussion are demonstrated with data from 9-year storage technology trends, assembled from publically available industry reporting sources.

  18. Solar heating and cooling diode module

    DOEpatents

    Maloney, Timothy J.

    1986-01-01

    A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

  19. Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2009-01-01

    Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.

  20. Recent Progress on Integrated Energy Conversion and Storage Systems.

    PubMed

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  1. Recent Progress on Integrated Energy Conversion and Storage Systems

    PubMed Central

    Luo, Bin; Ye, Delai

    2017-01-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673

  2. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  3. Flywheel-Based Fast Charging Station - FFCS for Electric Vehicles and Public Transportation

    NASA Astrophysics Data System (ADS)

    Gabbar, Hossam A.; Othman, Ahmed M.

    2017-08-01

    This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”

  4. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  5. Advanced Pumped Storage Hydropower and Ancillary Services Provision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Mohanpurkar, Manish

    This paper presents a high-level overview of the capability of advanced pumped storage hydropower to provide ancillary services including frequency regulation and oscillation damping. Type 3 and Type 4 generators are discussed. The examples given are for a small power system that uses a diesel generator as the main generator and a very large system that uses a gas turbine as the main generator.

  6. Safe arming system for two-explosive munitions

    DOEpatents

    Jaroska, Miles F.; Niven, William A.; Morrison, Jasper J.

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  7. Bio-Nanobattery Development and Characterization

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, Peter T.; Park, Yeonjoon; Elliott, James R.

    2005-01-01

    A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery development, and selection of ferritin core materials to allow the broadest range of applications. The potential applications for the distributed power system include autonomously-operating intelligent chips, flexible thin-film electronic circuits, nanoelectromechanical systems (NEMS), ultra-high density data storage devices, nanoelectromagnetics, quantum electronic devices, biochips, nanorobots for medical applications and mechanical nano-fabrication, etc.

  8. Evaluation of in-situ thermal energy storage for lunar based solar dynamic systems

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1991-01-01

    A practical lunar based thermal energy storage system, based on locally available materials, could significantly reduce transportation requirements and associated costs of a continuous, solar derived power system. The concept reported here is based on a unique, in-situ approach to thermal energy storage. The proposed design is examined to assess the problems of start-up and the requirements for attainment of stable operation. The design remains, at this stage, partially conceptional in nature, but certain aspects of the design, bearing directly on feasibility, are examined in some detail. Specifically included is an engineering evaluation of the projected thermal performance of this system. Both steady state and start-up power requirements are evaluated and the associated thermal losses are evaluated as a basis for establishing potential system performance.

  9. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  10. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  11. Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.

    PubMed

    Li, Feng; Zhou, Zhen

    2018-02-01

    High-efficiency energy storage technologies and devices have received considerable attention due to their ever-increasing demand. Na-related energy storage systems, sodium ion batteries (SIBs) and sodium ion capacitors (SICs), are regarded as promising candidates for large-scale energy storage because of the abundant sources and low cost of sodium. In the last decade, many efforts, including structural and compositional optimization, effective modification of available materials, and design and exploration of new materials, have been made to promote the development of Na-related energy storage systems. In this Review, the latest developments of micro/nanostructured electrode materials for advanced SIBs and SICs, especially the rational design of unique composites with high thermodynamic stabilities and fast kinetics during charge/discharge, are summarized. In addition to the recent achievements, the remaining challenges with respect to fundamental investigations and commercialized applications are discussed in detail. Finally, the prospects of sodium-based energy storage systems are also described. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  13. Composition and Realization of Source-to-Sink High-Performance Flows: File Systems, Storage, Hosts, LAN and WAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase Qishi

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. To support such capabilities, significant progress has been made in various components including the deployment of 100 Gbps networks with future 1 Tbps bandwidth, increases in end-host capabilities with multiple cores and buses, capacity improvements in large disk arrays, and deployment of parallel file systems such as Lustre and GPFS. High-performance source-to-sink datamore » flows must be composed of these component systems, which requires significant optimizations of the storage-to-host data and execution paths to match the edge and long-haul network connections. In particular, end systems are currently supported by 10-40 Gbps Network Interface Cards (NIC) and 8-32 Gbps storage Host Channel Adapters (HCAs), which carry the individual flows that collectively must reach network speeds of 100 Gbps and higher. Indeed, such data flows must be synthesized using multicore, multibus hosts connected to high-performance storage systems on one side and to the network on the other side. Current experimental results show that the constituent flows must be optimally composed and preserved from storage systems, across the hosts and the networks with minimal interference. Furthermore, such a capability must be made available transparently to the science users without placing undue demands on them to account for the details of underlying systems and networks. And, this task is expected to become even more complex in the future due to the increasing sophistication of hosts, storage systems, and networks that constitute the high-performance flows. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align and transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections. These solutions will be tested using (1) 100 Gbps connection(s) between Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) with storage systems supported by Lustre and GPFS file systems with an asymmetric connection to University of Memphis (UM); (2) ORNL testbed with multicore and multibus hosts, switches with OpenFlow capabilities, and network emulators; and (3) 100 Gbps connections from ESnet and their Openflow testbed, and other experimental connections. This proposal brings together the expertise and facilities of the two national laboratories, ORNL and ANL, and UM. It also represents a collaboration between DOE and the Department of Defense (DOD) projects at ORNL by sharing technical expertise and personnel costs, and leveraging the existing DOD Extreme Scale Systems Center (ESSC) facilities at ORNL.« less

  14. Quarantine document system indexing procedure

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Quarantine Document System (QDS) is described including the indexing procedures and thesaurus of indexing terms. The QDS consists of these functional elements: acquisition, cataloging, indexing, storage, and retrieval. A complete listing of the collection, and the thesaurus are included.

  15. Single bi-temperature thermal storage tank for application in solar thermal plant

    DOEpatents

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  16. PLANNING STUDY TO MODEL AND MONITOR COAL PILE RUNOFF. PHASE I

    EPA Science Inventory

    The report describes a planning study for predicting and monitoring the hydrologic and chemical characteristics of effluent streams resulting from precipitation impacting on open storage of coal. It includes: a survey of utilities on storage habits and treatment systems for coal ...

  17. Kodak Optical Disk and Microfilm Technologies Carve Niches in Specific Applications.

    ERIC Educational Resources Information Center

    Gallenberger, John; Batterton, John

    1989-01-01

    Describes the Eastman Kodak Company's microfilm and optical disk technologies and their applications. Topics discussed include WORM technology; retrieval needs and cost effective archival storage needs; engineering applications; jukeboxes; optical storage options; systems for use with mainframes and microcomputers; and possible future…

  18. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  19. Removing Barriers for Effective Deployment of Intermittent Renewable Generation

    NASA Astrophysics Data System (ADS)

    Arabali, Amirsaman

    The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation and congestion costs over a scheduling period. A technical assessment framework is developed to enhance the efficiency of wind integration and evaluate the economics of storage technologies and conventional gas-fired alternatives. The proposed method is used to carry out a cost-benefit analysis for the IEEE 24-bus system and determine the most economical technology. In order to mitigate the financial and technical concerns of renewable energy integration into the power system, a stochastic framework is proposed for transmission grid reinforcement studies in a power system with wind generation. A multi-stage multi-objective transmission network expansion planning (TNEP) methodology is developed which considers the investment cost, absorption of private investment and reliability of the system as the objective functions. A Non-dominated Sorting Genetic Algorithm (NSGA II) optimization approach is used in combination with a probabilistic optimal power flow (POPF) to determine the Pareto optimal solutions considering the power system uncertainties. Using a compromise-solution method, the best final plan is then realized based on the decision maker preferences. The proposed methodology is applied to the IEEE 24-bus Reliability Tests System (RTS) to evaluate the feasibility and practicality of the developed planning strategy.

  20. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    DOEpatents

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  1. REDOX electrochemical energy storage

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1980-01-01

    Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.

  2. Data on conceptual design of cryogenic energy storage system combined with liquefied natural gas regasification process.

    PubMed

    Lee, Inkyu; Park, Jinwoo; Moon, Il

    2017-12-01

    This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.

  3. Metallic phase-change materials for solar dynamic energy storage systems

    NASA Astrophysics Data System (ADS)

    Lauf, R. J.; Hamby, C., Jr.

    1990-12-01

    Solar (thermal) dynamic power systems for satellites require a heat storage system that is capable of operating the engine during eclipse. The conventional approach to this thermal storage problem is to use the latent heat of fluoride salts, which would melt during insolation and freeze during eclipse. Although candidate fluorides have large heats of fusion per unit mass, their poor thermal conductivity limits the rate at which energy can be transferred to and from the storage device. System performance is further limited by the high parasitic mass of the superalloy canisters needed to contain the salt. A new thermal storage system is described in which the phase-change material (PCM) is a metal (typically germanium) contained in modular graphite canisters. These modules exhibit good thermal conductivity and low parasitic mass, and they are physically and chemically stable. Prototype modules have survived over 600 melt/freeze cycles without degradation. Advanced concepts to further improve performance are described. These concepts include the selection of ternary eutectic alloys to provide a wider range of useful melting temperatures and the use of infiltration to control the location of liquid alloy and to compensate for differences in thermal expansion.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Daniel Harvey; Crafts, Chris C.

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehiclemore » applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.« less

  5. Low-cost high performance distributed data storage for multi-channel observations

    NASA Astrophysics Data System (ADS)

    Liu, Ying-bo; Wang, Feng; Deng, Hui; Ji, Kai-fan; Dai, Wei; Wei, Shou-lin; Liang, Bo; Zhang, Xiao-li

    2015-10-01

    The New Vacuum Solar Telescope (NVST) is a 1-m solar telescope that aims to observe the fine structures in both the photosphere and the chromosphere of the Sun. The observational data acquired simultaneously from one channel for the chromosphere and two channels for the photosphere bring great challenges to the data storage of NVST. The multi-channel instruments of NVST, including scientific cameras and multi-band spectrometers, generate at least 3 terabytes data per day and require high access performance while storing massive short-exposure images. It is worth studying and implementing a storage system for NVST which would balance the data availability, access performance and the cost of development. In this paper, we build a distributed data storage system (DDSS) for NVST and then deeply evaluate the availability of real-time data storage on a distributed computing environment. The experimental results show that two factors, i.e., the number of concurrent read/write and the file size, are critically important for improving the performance of data access on a distributed environment. Referring to these two factors, three strategies for storing FITS files are presented and implemented to ensure the access performance of the DDSS under conditions of multi-host write and read simultaneously. The real applications of the DDSS proves that the system is capable of meeting the requirements of NVST real-time high performance observational data storage. Our study on the DDSS is the first attempt for modern astronomical telescope systems to store real-time observational data on a low-cost distributed system. The research results and corresponding techniques of the DDSS provide a new option for designing real-time massive astronomical data storage system and will be a reference for future astronomical data storage.

  6. Renewables cannot be stored economically on a well-run power system

    NASA Astrophysics Data System (ADS)

    Swift-Hook, Donald

    2017-11-01

    Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.

  7. Computer Program and User Documentation Medical Data Update System

    NASA Technical Reports Server (NTRS)

    Anderson, J.

    1971-01-01

    The update system for the NASA medical data minicomputer storage and retrieval system is described. The discussion includes general and technical specifications, a subroutine list, and programming instructions.

  8. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2014-01-01 2014-01-01 false Real property containing underground storage tanks...

  9. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2011-01-01 2011-01-01 false Real property containing underground storage tanks...

  10. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2012-01-01 2012-01-01 false Real property containing underground storage tanks...

  11. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2013-01-01 2013-01-01 false Real property containing underground storage tanks...

  12. Underground Storage Tanks on Indian Lands. Education Moderates an Environmental Threat.

    ERIC Educational Resources Information Center

    Hillger, Robert W.; Small, Matthew C.

    1992-01-01

    Describes problems related to old underground storage tanks (USTs) that may leak toxic contents, focusing on relevance for American Indian reservations. Discusses design, installation, and upgrading of UST systems; federal definitions and regulations; leak detection; legal responsibility; and education for public awareness. Includes Environmental…

  13. Clean Air Program : summary assessment of the safety, health, environmental and system risks of alternative fuel

    DOT National Transportation Integrated Search

    1995-08-01

    This is a handbook of safety, health, and the environmental issues of the production, bulk transport, and bult storage of alternative fuels with emphasis on transport and storage. Fuels included are: 1) compressed natural gas, 2) liquefied natural ga...

  14. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  15. Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage

    PubMed Central

    Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Summary Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems. PMID:26199853

  16. Thermal energy storage - overview and specific insight into nitrate salts for sensible and latent heat storage.

    PubMed

    Pfleger, Nicole; Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.

  17. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  18. Experimental evaluation of thermal energy storage

    NASA Technical Reports Server (NTRS)

    Asbury, J. G.; Hersh, H. N.

    1980-01-01

    The technical performance of commercially available thermal energy storage (TES) residential heating units under severe weather conditions is discussed. The benefits and costs of TES to the user and utility companies were assessed. The TES issues, research and development needs, and barriers to commercialization were identified. The field tests which determined the performance characteristics for the TES are described and the TES systems, which included both ceramic and hydronic systems, are compared.

  19. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology andmore » the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.« less

  20. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies. Volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  1. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe

    This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willoner, T.; Turlington, R.; Koenig, R.

    The U.S. Department of Energy (DOE) (Environmental Management [EM], Office of Packaging and Transportation [EM-45]) Packaging and Certification Program (DOE PCP) has developed a Radio Frequency Identification (RFID) tracking and monitoring system, called ARG-US, for the management of nuclear materials packages during transportation and storage. The performance of the ARG-US RFID equipment and system has been fully tested in two demonstration projects in April 2008 and August 2009. With the strong support of DOE-SR and DOE PCP, a field testing program was completed in Savannah River Site's K-Area Material Storage (KAMS) Facility, an active Category I Plutonium Storage Facility, inmore » 2010. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault for operational testing. This latest version (Mark III) of the Argonne RFID system now has the capability to measure radiation dose and dose rate. This paper will report field testing progress of the ARG-US RFID equipment in KAMS, the operability and reliability trend results associated with the applications of the system, and discuss the potential benefits in enhancing safety, security and materials accountability. The purpose of this Phase II K Area test is to verify the accuracy of the radiation monitoring and proper functionality of the ARG-US RFID equipment and system under a realistic environment in the KAMS facility. Deploying the ARG-US RFID system leads to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including environmental condition monitoring and radiation monitoring. The successful completion of the testing program will provide field data to support a future development and testing. This will increase Operation efficiency and cost effectiveness for vault operation. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault. Deploying the ARG-US RFID system lends to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including radiation and environmental monitoring. The successful completion of the testing program will provide field data to support future development and testing.« less

  3. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.

    PubMed

    Wang, Yonggang; Song, Yanfang; Xia, Yongyao

    2016-10-24

    Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

  4. Towards greener and more sustainable batteries for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  5. In-situ short circuit protection system and method for high-energy electrochemical cells

    DOEpatents

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2000-01-01

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  6. In-situ short-circuit protection system and method for high-energy electrochemical cells

    DOEpatents

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2003-04-15

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  7. A computer system for the storage and retrieval of gravity data, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Godson, Richard H.; Andreasen, Gordon H.

    1974-01-01

    A computer system has been developed for the systematic storage and retrieval of gravity data. All pertinent facts relating to gravity station measurements and computed Bouguer values may be retrieved either by project name or by geographical coordinates. Features of the system include visual display in the form of printer listings of gravity data and printer plots of station locations. The retrieved data format interfaces with the format of GEOPAC, a system of computer programs designed for the analysis of geophysical data.

  8. Grid-Level Application of Electrical Energy Storage: Example Use Cases in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia

    Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.

  9. Welding at the Kennedy Space Center.

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1973-01-01

    Brief description of the nature of the mechanical equipment at a space launch complex from a welding viewpoint. including an identification of the major welding applications used in the construction of this complex. The role played by welding in the ground support equipment is noted, including the welded structures and systems required in the vehicle assembly building, the mobile launchers, transporters, mobile service structure, launch pad and launch site, the propellants system, the pneumatics system, and the environmental control system. The welding processes used at the Kennedy Space Center are reviewed, and a particularly detailed account is given of the design and fabrication of the liquid hydrogen and liquid oxygen storage spheres and piping. Finally, the various methods of testing and inspecting the storage spheres are cited.

  10. The development of a residential heating and cooling system using NASA derived technology

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.

    1972-01-01

    A study to determine the technical and economic feasibility of a solar-powered space heating, air-conditioning, and hot water heating system for residential applications is presented. The basic system utilizes a flat-plate solar collector to process incident solar radiation, a thermal energy storage system to store the collected energy for use during night and heavily overcast periods, and an absorption cycle heat pump for actually heating and cooling the residence. In addition, heat from the energy storage system is used to provide domestic hot water. The analyses of the three major components of the system (the solar collector, the energy storage system, and the heat pump package) are discussed and results are presented. The total system analysis is discussed in detail, including the technical performance of the solar-powered system and a cost comparison between the solar-powered system and a conventional system. The projected applicability of the system to different regions of the nation is described.

  11. Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  12. Storage and executive processes in the frontal lobes.

    PubMed

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  13. Clinical Data Systems to Support Public Health Practice: A National Survey of Software and Storage Systems Among Local Health Departments.

    PubMed

    McCullough, J Mac; Goodin, Kate

    2016-01-01

    Numerous software and data storage systems are employed by local health departments (LHDs) to manage clinical and nonclinical data needs. Leveraging electronic systems may yield improvements in public health practice. However, information is lacking regarding current usage patterns among LHDs. To analyze clinical and nonclinical data storage and software types by LHDs. Data came from the 2015 Informatics Capacity and Needs Assessment Survey, conducted by Georgia Southern University in collaboration with the National Association of County and City Health Officials. A total of 324 LHDs from all 50 states completed the survey (response rate: 50%). Outcome measures included LHD's primary clinical service data system, nonclinical data system(s) used, and plans to adopt electronic clinical data system (if not already in use). Predictors of interest included jurisdiction size and governance type, and other informatics capacities within the LHD. Bivariate analyses were performed using χ and t tests. Up to 38.4% of LHDs reported using an electronic health record (EHR). Usage was common especially among LHDs that provide primary care and/or dental services. LHDs serving smaller populations and those with state-level governance were both less likely to use an EHR. Paper records were a common data storage approach for both clinical data (28.9%) and nonclinical data (59.4%). Among LHDs without an EHR, 84.7% reported implementation plans. Our findings suggest that LHDs are increasingly using EHRs as a clinical data storage solution and that more LHDs are likely to adopt EHRs in the foreseeable future. Yet use of paper records remains common. Correlates of electronic system usage emerged across a range of factors. Program- or system-specific needs may be barriers or facilitators to EHR adoption. Policy makers can tailor resources to address barriers specific to LHD size, governance, service portfolio, existing informatics capabilities, and other pertinent characteristics.

  14. An overview of integrated flywheel technology for aerospace application

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Groom, N. J.

    1985-01-01

    Space missions ranging from small scientific satellites to large manned spacecraft have, for many years, utilized systems of spinning flywheels to maintain vehicle attitude. These systems have included momentum and reaction wheels as well as control moment gyros. Extension of that technology to satisfy the additional tasks associated with energy storage has also been pursued. The combining of control and energy storage features into one system has been examined by NASA for space applications and demonstrated in the laboratory. The impact of technology advances in such areas as composite material rotors, magnetic suspensions, motor/generators, and electronics have prompted a re-evaluation of the viability of the flywheel storage system concept for aerospace applications. This paper summarizes the results of this re-examination and identifies shortfalls in the various technology areas.

  15. An Analysis of the Effect of Surface Heat Exchange on the Thermal Behavior of an Idealized Aquifer Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Güven, O.; Melville, J. G.; Molz, F. J.

    1983-06-01

    Analytical expressions are derived for the temperature distribution and the mean temperature of an idealized aquifer thermal energy storage (ATES) system, taking into account the heat exchange at the ground surface and the finite thickness of the overlying layer above the storage aquifer. The analytical expressions for the mean temperature may be used to obtain rough estimates of first-cycle recovery factors for preliminary evaluations of shallow confined or unconfined ATES systems. The results, which are presented in nondimensional plots, indicate that surface heat exchange may have a significant influence on the thermal behavior of shallow ATES systems. Thus it is suggested that the effects of surface heat exchange should be considered carefully and included in the detailed analyses of such ATES systems.

  16. Opposed Bellows Would Expel Contents Of Tank

    NASA Technical Reports Server (NTRS)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  17. Vehicle electrical system state controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissontz, Jay E.

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches providemore » high voltage switching device protection.« less

  18. High temperature thermal energy storage, including a discussion of TES integrated into power plants

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1978-01-01

    Storage temperatures of 260 C and above are considered. Basic considerations concerning energy thermal storage are discussed, taking into account general aspects of thermal energy storage, thermal energy storage integrated into power plants, thermal storage techniques and technical considerations, and economic considerations. A description of system concepts is provided, giving attention to a survey of proposed concepts, storage in unpressurized fluids, water storage in pressurized containers, the use of an underground lined cavern for water storage, a submerged thin insulated steel shell under the ocean containing pressurized water, gas passage through solid blocks, a rock bed with liquid heat transport fluid, hollow steel ingots, heat storage in concrete or sand, sand in a fluidized bed, sand poured over pipes, a thermal energy storage heat exchanger, pipes or spheres filled with phase change materials (PCM), macroencapsulated PCM with heat pipe concept for transport fluid, solid PCM removed from heat transfer pipes by moving scrapers, and the direct contact between PCM and transport fluid.

  19. Expert study to select indicators of the occurrence of emerging mycotoxin hazards.

    PubMed

    Kandhai, M C; Booij, C J H; Van der Fels-Klerx, H J

    2011-01-01

    This article describes a Delphi-based expert judgment study aimed at the selection of indicators to identify the occurrence of emerging mycotoxin hazards related to Fusarium spp. in wheat supply chains. A panel of 29 experts from 12 European countries followed a holistic approach to evaluate the most important indicators for different chain stages (growth, transport and storage, and processing) and their relative importance. After three e-mailing rounds, the experts reached consensus on the most important indicators for each of the three stages: wheat growth, transport and storage, and processing. For wheat growth, these indicators include: relative humidity/rainfall, crop rotation, temperature, tillage practice, water activity of the kernels, and crop variety/cultivar. For the transport and storage stage, they include water activity in the kernels, relative humidity, ventilation, temperature, storage capacity, and logistics. For wheat processing, indicators include quality data, fraction of the cereal used, water activity in the kernels, quality management and traceability systems, and carryover of contamination. The indicators selected in this study can be used in an identification system for the occurrence of emerging mycotoxin hazards in wheat supply chains. Such a system can be used by risk managers within governmental (related) organizations and/or the food and feed industry in order to react proactively to the occurrence of these emerging mycotoxins. © 2010 Society for Risk Analysis.

  20. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.M.; Guerra, G.; Neider, T.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less

  1. Design description of the Tangaye Village photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Martz, J. E.; Ratajczak, A. F.

    1982-06-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  2. Design description of the Tangaye Village photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Ratajczak, A. F.

    1982-01-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  3. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua; Melaina, Marc

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential tomore » provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that hydrogen technologies, and in particular electrolyzers, can respond fast enough and for sufficient duration to participate in electricity markets. This work recognizes that participation in electricity markets and integration with the gas system can enhance the revenue streams available for hydrogen storage systems and quantifies the economic competitiveness and of these systems. A few of the key results include 1) the most valuable revenue stream for hydrogen systems is to sell the produced hydrogen, 2) participation in both energy and ancillary service markets yields the greatest revenue and 3) electrolyzers acting as demand response devices are particularly favorable.« less

  4. Residential solar-heating system uses pyramidal optics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes reflective panels which optimize annual solar energy collection in attic installation. Subunits include collection, storage, distribution, and 4-mode control systems. Pyramid optical system heats single-family and multi-family dwellings.

  5. Secure key storage and distribution

    DOEpatents

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  6. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.

  7. Documentation for the State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Baker, Kristine M.

    2011-01-01

    Many groundwater-management problems are concerned with the control of one or more variables that reflect the state of a groundwater-flow system or a coupled groundwater/surface-water system. These system state variables include the distribution of heads within an aquifer, streamflow rates within a hydraulically connected stream, and flow rates into or out of aquifer storage. This report documents the new State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005). The new package provides a means to explicitly represent heads, streamflows, and changes in aquifer storage as state variables in a GWM-2005 simulation. The availability of these state variables makes it possible to include system state in the objective function and enhances existing capabilities for constructing constraint sets for a groundwater-management formulation. The new package can be used to address groundwater-management problems such as the determination of withdrawal strategies that meet water-supply demands while simultaneously maximizing heads or streamflows, or minimizing changes in aquifer storage. Four sample problems are provided to demonstrate use of the new package for typical groundwater-management applications.

  8. Hydrogeology and hydrologic conditions of the Northern Atlantic Coastal Plain aquifer System from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.; Finkelstein, Jason S.; McCoy, Kurt J.

    2013-11-14

    Updates to the regional hydrologic budget include revised estimates of aquifer recharge, water use and streamflow data. Inflow to the aquifer system of about 20,000 million gallons per day (Mgal/d) includes 19,600 Mgal/d from recharge from precipitation, 200 Mgal/d of recharge from wastewater via onsite domestic septic systems, and 200 Mgal/d from the release of water from aquifer storage. Outflow from the aquifer system includes groundwater discharge to streams (11,900 Mgal/d), groundwater withdrawals (1,500 Mgal/d), and groundwater discharge to coastal waters (6,600 Mgal/d). A numerical modeling analysis is required to improve this hydrologic budget calculation and to forecast future changes in water levels and aquifer storage caused by groundwater withdrawals, land-use changes, and the effects of climate variability and change.

  9. Software Documentation for the Bartlesville Public Schools: Part One. The Bartlesville System Total Guidance Information Support System.

    ERIC Educational Resources Information Center

    Roberts, Tommy L.; And Others

    The Total Guidance Information Support System (TGISS), is an information storage and retrieval system for counselors. The total TGISS, including hardware and software, extends the counselor's capabilities by providing ready access to student information under secure conditions. The hardware required includes: (1) IBM 360/50 central processing…

  10. Novel Control Strategy for Multiple Run-of-the-River Hydro Power Plants to Provide Grid Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob

    Hydropower plant (HPP) generation comprises a considerable portion of bulk electricity generation and is delivered with a low-carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which include wind and solar. Increasing penetration levels of wind and solar lead to a lower inertia on the electric grid, which poses stability challenges. In recent years, breakthroughs in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments of renewable energy resources on electric grids. If integrated with scalable, multi-time-step energy storage so that the total output can be controlled, multiple run-of-the-river (ROR)more » HPPs can be deployed. Although the size of a single energy storage system is much smaller than that of a typical reservoir, the ratings of storages and multiple ROR HPPs approximately equal the rating of a large, conventional HPP. This paper proposes cohesively managing multiple sets of energy storage systems distributed in different locations. This paper also describes the challenges associated with ROR HPP system architecture and operation.« less

  11. The development of a solar residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  12. Battery Storage Evaluation Tool, version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-02

    The battery storage evaluation tool developed at Pacific Northwest National Laboratory is used to run a one-year simulation to evaluate the benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a lookahead optimization is first formulated and solved to determine the battery base operating point. The minute-by-minute simulation is then performed to simulate the actual battery operation.

  13. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  14. 76 FR 78832 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... outside the home. Household freezers offer storage space only at freezing temperatures. Products with both... systems, including cold storage cases, designed to chill food or keep it at a cold temperature for... Administration NOAEL--no observable adverse effect level NPRM--notice of proposed rulemaking NTTAA--National...

  15. Reflections on CD-ROM: Bridging the Gap between Technology and Purpose.

    ERIC Educational Resources Information Center

    Saviers, Shannon Smith

    1987-01-01

    Provides a technological overview of CD-ROM (Compact Disc-Read Only Memory), an optically-based medium for data storage offering large storage capacity, computer-based delivery system, read-only medium, and economic mass production. CD-ROM database attributes appropriate for information delivery are also reviewed, including large database size,…

  16. Distributed metadata in a high performance computing environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Zhang, Zhenhua

    A computer-executable method, system, and computer program product for managing meta-data in a distributed storage system, wherein the distributed storage system includes one or more burst buffers enabled to operate with a distributed key-value store, the co computer-executable method, system, and computer program product comprising receiving a request for meta-data associated with a block of data stored in a first burst buffer of the one or more burst buffers in the distributed storage system, wherein the meta data is associated with a key-value, determining which of the one or more burst buffers stores the requested metadata, and upon determination thatmore » a first burst buffer of the one or more burst buffers stores the requested metadata, locating the key-value in a portion of the distributed key-value store accessible from the first burst buffer.« less

  17. Power System Concepts for the Lunar Outpost: A Review of the Power Generation, Energy Storage, Power Management and Distribution (PMAD) System Requirements and Potential Technologies for Development of the Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Khan, Z.; Vranis, A.; Zavoico, A.; Freid, S.; Manners, B.

    2006-01-01

    This paper will review potential power system concepts for the development of the lunar outpost including power generation, energy storage, and power management and distribution (PMAD). In particular, the requirements of the initial robotic missions will be discussed and the technologies considered will include cryogenics and regenerative fuel cells (RFC), AC and DC transmission line technology, high voltage and low voltage power transmission, conductor materials of construction and power beaming concepts for transmitting power to difficult to access locations such as at the bottom of craters. Operating conditions, component characteristics, reliability, maintainability, constructability, system safety, technology gaps/risk and adaptability for future lunar missions will be discussed for the technologies considered.

  18. Data Service: Distributed Data Capture and Replication

    NASA Astrophysics Data System (ADS)

    Warner, P. B.; Pietrowicz, S. R.

    2007-10-01

    Data Service is a critical component of the NOAO Data Management and Science Support (DMaSS) Solutions Platform, which is based on a service-oriented architecture, and is to replace the current NOAO Data Transport System. Its responsibilities include capturing data from NOAO and partner telescopes and instruments and replicating the data across multiple (currently six) storage sites. Java 5 was chosen as the implementation language, and Java EE as the underlying enterprise framework. Application metadata persistence is performed using EJB and Hibernate on the JBoss Application Server, with PostgreSQL as the persistence back-end. Although potentially any underlying mass storage system may be used as the Data Service file persistence technology, DTS deployments and Data Service test deployments currently use the Storage Resource Broker from SDSC. This paper presents an overview and high-level design of the Data Service, including aspects of deployment, e.g., for the LSST Data Challenge at the NCSA computing facilities.

  19. Operational Benefits of Meeting California's Energy Storage Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014more » version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation reserve, as the added storage could provide about 75% of the regulation up requirement for all of California, which would likely greatly reduce regulation prices and potential revenue. The addition of storage in California decreases renewable curtailment, particularly in the 40% RPS case. Following previous analysis, storage has a mixed impact on emissions, generally reducing emissions, but also creating additional incentives for increased emissions from out-of-state coal generations. Overall, storage shows significant system cost savings, but analysis also points to additional challenges associated with full valuation of energy storage, including capturing the operational benefits calculated here, but also recovering additional benefits associated avoided generation, transmission, and distribution capacity, and avoided losses.« less

  20. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  1. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  2. Energy Storage System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  3. Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 1: MARS System and Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderberg, J. D.; Woodbury, N. W.

    1974-01-01

    A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics.

  4. Space Station thermal storage/refrigeration system research and development

    NASA Astrophysics Data System (ADS)

    Dean, W. G.; Karu, Z. S.

    1993-02-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a single centralized radiator system. As per the scope of work of this task, the applicability of refrigeration system tailored to meet the specialized requirements of storage of food and biological samples was investigated. The issues addressed were the anticipated power consumption and feasible designs and cycles for meeting specific storage requirements. Further, development issues were assessed related to the operation of vapor compression systems in micro-gravity addressing separation of vapor and liquid phases (via capillary systems).

  5. Space Station thermal storage/refrigeration system research and development

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a single centralized radiator system. As per the scope of work of this task, the applicability of refrigeration system tailored to meet the specialized requirements of storage of food and biological samples was investigated. The issues addressed were the anticipated power consumption and feasible designs and cycles for meeting specific storage requirements. Further, development issues were assessed related to the operation of vapor compression systems in micro-gravity addressing separation of vapor and liquid phases (via capillary systems).

  6. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  7. Development of a Real-Time Hardware-in- the-Loop Power Systems Simulation Platform to Evaluate Commercial Microgrid Controllers

    DTIC Science & Technology

    2016-02-23

    52 A.3 Solar irradiance profile. 53 xi LIST OF TABLES Table Page No. 1 Cable Impedances 14 2 PV Component Specifications 25 3 ESS...of the physical DER devices, including gensets, a battery-based energy storage system with a bidirectional power converter, a solar photovoltaic ( PV ...this was done for the energy storage, solar PV , and breakers.) Implement several relay protection functions to actuate the breakers. Implement various

  8. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  9. Volume serving and media management in a networked, distributed client/server environment

    NASA Technical Reports Server (NTRS)

    Herring, Ralph H.; Tefend, Linda L.

    1993-01-01

    The E-Systems Modular Automated Storage System (EMASS) is a family of hierarchical mass storage systems providing complete storage/'file space' management. The EMASS volume server provides the flexibility to work with different clients (file servers), different platforms, and different archives with a 'mix and match' capability. The EMASS design considers all file management programs as clients of the volume server system. System storage capacities are tailored to customer needs ranging from small data centers to large central libraries serving multiple users simultaneously. All EMASS hardware is commercial off the shelf (COTS), selected to provide the performance and reliability needed in current and future mass storage solutions. All interfaces use standard commercial protocols and networks suitable to service multiple hosts. EMASS is designed to efficiently store and retrieve in excess of 10,000 terabytes of data. Current clients include CRAY's YMP Model E based Data Migration Facility (DMF), IBM's RS/6000 based Unitree, and CONVEX based EMASS File Server software. The VolSer software provides the capability to accept client or graphical user interface (GUI) commands from the operator's console and translate them to the commands needed to control any configured archive. The VolSer system offers advanced features to enhance media handling and particularly media mounting such as: automated media migration, preferred media placement, drive load leveling, registered MediaClass groupings, and drive pooling.

  10. Thermal energy storage for smart grid applications

    NASA Astrophysics Data System (ADS)

    Al-Hallaj, Said; Khateeb, Siddique; Aljehani, Ahmed; Pintar, Mike

    2018-01-01

    Energy consumption for commercial building cooling accounts for 15% of all commercial building's electricity usage [1]. Electric utility companies charge their customers time of use consumption charges (/kWh) and additionally demand usage charges (/kW) to limit peak energy consumption and offset their high operating costs. Thus, there is an economic incentive to reduce both the electricity consumption charges and demand charges by developing new energy efficient technologies. Thermal energy storage (TES) systems using a phase change material (PCM) is one such technology that can reduce demand charges and shift the demand from on-peak to off-peak rates. Ice and chilled water have been used in thermal storage systems for many decades, but they have certain limitations, which include a phase change temperature of 0 degrees Celsius and relatively low thermal conductivity in comparison to other materials, which limit their applications as a storage medium. To overcome these limitations, a novel phase change composite (PCC) TES material was developed that has much higher thermal conductivity that significantly improves the charge / discharge rate and a customizable phase change temperature to allow for better integration with HVAC systems. Compared to ice storage, the PCC TES system is capable of very high heat transfer rate and has lower system and operational costs. Economic analysis was performed to compare the PCC TES system with ice system and favorable economics was proven. A 4.5 kWh PCC TES prototype system was also designed for testing and validation purpose.

  11. Considerations and measurements of latent-heat-storage salts for secondary thermal battery applications

    NASA Astrophysics Data System (ADS)

    Koenig, A. A.; Braithwaite, J. W.; Armijo, J. R.

    1988-05-01

    Given its potential benefits, the practicality of using a latent heat-storage material as the basis for a passive thermal management system is being assessed by Chloride Silent Power Ltd. (CSPL) with technical assistance from Beta Power, Inc. and Sandia National Laboratories (SNL). Based on the experience gained in large-scale solar energy storage programs, fused salts were selected as the primary candidates for the heat-storage material. The initial phase of this assessment was directed to an EV battery being designed at CSPL for the ETX-II program. Specific tasks included the identification and characterization of potential fused salts, a determination of placement options for the salts within the battery, and an assessment of the ultimate benefit to the battery system. The results obtained to date for each of these tasks are presented in this paper.

  12. A Hybrid Multilevel Storage Architecture for Electric Power Dispatching Big Data

    NASA Astrophysics Data System (ADS)

    Yan, Hu; Huang, Bibin; Hong, Bowen; Hu, Jing

    2017-10-01

    Electric power dispatching is the center of the whole power system. In the long run time, the power dispatching center has accumulated a large amount of data. These data are now stored in different power professional systems and form lots of information isolated islands. Integrating these data and do comprehensive analysis can greatly improve the intelligent level of power dispatching. In this paper, a hybrid multilevel storage architecture for electrical power dispatching big data is proposed. It introduces relational database and NoSQL database to establish a power grid panoramic data center, effectively meet power dispatching big data storage needs, including the unified storage of structured and unstructured data fast access of massive real-time data, data version management and so on. It can be solid foundation for follow-up depth analysis of power dispatching big data.

  13. Effective grouping for energy and performance: Construction of adaptive, sustainable, and maintainable data storage

    NASA Astrophysics Data System (ADS)

    Essary, David S.

    The performance gap between processors and storage systems has been increasingly critical over the years. Yet the performance disparity remains, and further, storage energy consumption is rapidly becoming a new critical problem. While smarter caching and predictive techniques do much to alleviate this disparity, the problem persists, and data storage remains a growing contributor to latency and energy consumption. Attempts have been made at data layout maintenance, or intelligent physical placement of data, yet in practice, basic heuristics remain predominant. Problems that early studies sought to solve via layout strategies were proven to be NP-Hard, and data layout maintenance today remains more art than science. With unknown potential and a domain inherently full of uncertainty, layout maintenance persists as an area largely untapped by modern systems. But uncertainty in workloads does not imply randomness; access patterns have exhibited repeatable, stable behavior. Predictive information can be gathered, analyzed, and exploited to improve data layouts. Our goal is a dynamic, robust, sustainable predictive engine, aimed at improving existing layouts by replicating data at the storage device level. We present a comprehensive discussion of the design and construction of such a predictive engine, including workload evaluation, where we present and evaluate classical workloads as well as our own highly detailed traces collected over an extended period. We demonstrate significant gains through an initial static grouping mechanism, and compare against an optimal grouping method of our own construction, and further show significant improvement over competing techniques. We also explore and illustrate the challenges faced when moving from static to dynamic (i.e. online) grouping, and provide motivation and solutions for addressing these challenges. These challenges include metadata storage, appropriate predictive collocation, online performance, and physical placement. We reduced the metadata needed by several orders of magnitude, reducing the required volume from more than 14% of total storage down to less than 1/2%. We also demonstrate how our collocation strategies outperform competing techniques. Finally, we present our complete model and evaluate a prototype implementation against real hardware. This model was demonstrated to be capable of reducing device-level accesses by up to 65%. Keywords: computer systems, collocation, data management, file systems, grouping, metadata, modeling and prediction, operating systems, performance, power, secondary storage.

  14. Library Automation.

    ERIC Educational Resources Information Center

    Husby, Ole

    1990-01-01

    The challenges and potential benefits of automating university libraries are reviewed, with special attention given to cooperative systems. Aspects discussed include database size, the role of the university computer center, storage modes, multi-institutional systems, resource sharing, cooperative system management, networking, and intelligent…

  15. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  16. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  17. Flexible energy-storage devices: design consideration and recent progress.

    PubMed

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Masdar Institute solar platform: A new research facility in the UAE for development of CSP components and thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.

    2016-05-01

    Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.

  19. Data Compression in Full-Text Retrieval Systems.

    ERIC Educational Resources Information Center

    Bell, Timothy C.; And Others

    1993-01-01

    Describes compression methods for components of full-text systems such as text databases on CD-ROM. Topics discussed include storage media; structures for full-text retrieval, including indexes, inverted files, and bitmaps; compression tools; memory requirements during retrieval; and ranking and information retrieval. (Contains 53 references.)…

  20. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    NASA Astrophysics Data System (ADS)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  1. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work,more » we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage technologies with lower energy capacities are deployed to support solar deployment, and higher energy capacity technologies support wind. Finally, we identify potential future research and areas of improvement to build on this initial analysis.« less

  2. Thermal control system and method for a passive solar storage wall

    DOEpatents

    Ortega, Joseph K. E.

    1984-01-01

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  3. Solar Water Heating System for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  4. 15 CFR 786.2 - Recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...

  5. 15 CFR 786.2 - Recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...

  6. 15 CFR 786.2 - Recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...

  7. 15 CFR 786.2 - Recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...

  8. 15 CFR 786.2 - Recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... recognized as complete words or numbers. (iv) The system must preserve the initial image (including both... the system. (3) Requirements applicable to a system based on digital images. For systems based on the storage of digital images, the system must provide accessibility to any digital image in the system. The...

  9. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  10. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  11. Multiple layer optical memory system using second-harmonic-generation readout

    DOEpatents

    Boyd, Gary T.; Shen, Yuen-Ron

    1989-01-01

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  12. An Overview of NASA Efforts on Zero Boiloff Storage of Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Hastings, Leon J.; Plachta, D. W.; Salerno, L.; Kittel, P.; Haynes, Davy (Technical Monitor)

    2001-01-01

    Future mission planning within NASA has increasingly motivated consideration of cryogenic propellant storage durations on the order of years as opposed to a few weeks or months. Furthermore, the advancement of cryocooler and passive insulation technologies in recent years has substantially improved the prospects for zero boiloff storage of cryogenics. Accordingly, a cooperative effort by NASA's Ames Research Center (ARC), Glenn Research Center (GRC), and Marshall Space Flight Center (MSFC) has been implemented to develop and demonstrate "zero boiloff" concepts for in-space storage of cryogenic propellants, particularly liquid hydrogen and oxygen. ARC is leading the development of flight-type cryocoolers, GRC the subsystem development and small scale testing, and MSFC the large scale and integrated system level testing. Thermal and fluid modeling involves a combined effort by the three Centers. Recent accomplishments include: 1) development of "zero boiloff" analytical modeling techniques for sizing the storage tankage, passive insulation, cryocooler, power source mass, and radiators; 2) an early subscale demonstration with liquid hydrogen 3) procurement of a flight-type 10 watt, 95 K pulse tube cryocooler for liquid oxygen storage and 4) assembly of a large-scale test article for an early demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Near term plans include the large-scale integrated system demonstration testing this summer, subsystem testing of the flight-type pulse-tube cryocooler with liquid nitrogen (oxygen simulant), and continued development of a flight-type liquid hydrogen pulse tube cryocooler.

  13. Carbon Storage in Urban Areas in the USA

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Brown, D.; Keoleian, G.

    2007-12-01

    It is widely accepted that human settlements occupy a small proportion of the landmass and therefore play a relatively small role in the dynamics of the global carbon cycle. Most modeling studies focusing on the land carbon cycle use models of varying complexity to estimate carbon fluxes through forests, grasses, and croplands, but completely omit urban areas from their scope. Here, we estimate carbon storage in urban areas within the United States, defined to encompass a range of observed settlement densities, and its changes from 1950 to 2000. We show that this storage is not negligible and has been continuously increasing. We include natural- and human-related components of urban areas in our estimates. The natural component includes carbon storage in urban soil and vegetation. The human related component encompasses carbon stored long term in buildings, furniture, cars, and waste. The study suggests that urban areas should receive continued attention in efforts to accurately account for carbon uptake and storage in terrestrial systems.

  14. Solar power satellite system definition study. Volume 3: Reference system description, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed including the structure, power distribution, thermal control, and energy storage. Space construction and support systems are described including the work support facilities and construction equipment. An assessment of the space transportation system for the satellite and the ground receiving station is presented.

  15. The Biogas/Biofertilizer Business Handbook. Third Edition. Appropriate Technologies for Development. Reprint R-48.

    ERIC Educational Resources Information Center

    Arnott, Michael

    This book describes one approach to building and operating biogas systems. The biogas systems include raw material preparation, digesters, separate gas storage tanks, use of the gas to run engines, and the use of the sludge as fertilizer. Chapters included are: (1) "Introduction"; (2) "Biogas Systems are Small Factories"; (3)…

  16. High Density Data Storage, the SONY Data DiscMan Electronic Book, and the Unfolding Multi-Media Revolution.

    ERIC Educational Resources Information Center

    Kountz, John

    1991-01-01

    Description of high density data storage (HDDS) devices focuses on CD-ROMs and explores their impact on libraries, publishing, education, and library communications. Highlights include costs; technical standards; reading devices; authoring systems; robotics; the influence of new technology on the role of libraries; and royalty and copyright issues…

  17. NREL Testing Erigo's and EaglePicher's Microgrid Energy Storage System |

    Science.gov Websites

    EaglePicher's Microgrid Energy Storage System NREL researchers are testing an energy storage system for a contains three independently controllable energy storage technologies. Photo of energy storage system hardware in a laboratory Photo by Dennis Schroeder Microgrids-and effective storage systems supporting them

  18. Microcomputers in Libraries: The Quiet Revolution.

    ERIC Educational Resources Information Center

    Boss, Richard

    1985-01-01

    This article defines three separate categories of microcomputers--personal, desk-top, multi-user devices--and relates storage capabilities (expandability, floppy disks) to library applications. Highlghts include de facto standards, operating systems, database management systems, applications software, circulation control systems, dumb and…

  19. Intelligent Information Systems.

    ERIC Educational Resources Information Center

    Zabezhailo, M. I.; Finn, V. K.

    1996-01-01

    An Intelligent Information System (IIS) uses data warehouse technology to facilitate the cycle of data and knowledge processing, including input, standardization, storage, representation, retrieval, calculation, and delivery. This article provides an overview of IIS products and artificial intelligence systems, illustrates examples of IIS…

  20. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  1. System-level modeling for economic evaluation of geological CO2storage in gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan

    2006-03-02

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociatedmore » economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.« less

  2. Implementation of system intelligence in a 3-tier telemedicine/PACS hierarchical storage management system

    NASA Astrophysics Data System (ADS)

    Chao, Woodrew; Ho, Bruce K. T.; Chao, John T.; Sadri, Reza M.; Huang, Lu J.; Taira, Ricky K.

    1995-05-01

    Our tele-medicine/PACS archive system is based on a three-tier distributed hierarchical architecture, including magnetic disk farms, optical jukebox, and tape jukebox sub-systems. The hierarchical storage management (HSM) architecture, built around a low cost high performance platform [personal computers (PC) and Microsoft Windows NT], presents a very scaleable and distributed solution ideal for meeting the needs of client/server environments such as tele-medicine, tele-radiology, and PACS. These image based systems typically require storage capacities mirroring those of film based technology (multi-terabyte with 10+ years storage) and patient data retrieval times at near on-line performance as demanded by radiologists. With the scaleable architecture, storage requirements can be easily configured to meet the needs of the small clinic (multi-gigabyte) to those of a major hospital (multi-terabyte). The patient data retrieval performance requirement was achieved by employing system intelligence to manage migration and caching of archived data. Relevant information from HIS/RIS triggers prefetching of data whenever possible based on simple rules. System intelligence embedded in the migration manger allows the clustering of patient data onto a single tape during data migration from optical to tape medium. Clustering of patient data on the same tape eliminates multiple tape loading and associated seek time during patient data retrieval. Optimal tape performance can then be achieved by utilizing the tape drives high performance data streaming capabilities thereby reducing typical data retrieval delays associated with streaming tape devices.

  3. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  4. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.

  5. An Aquifer Thermal Energy Storage (ATES) System for Continuous and Sustainable Cold Supply in Oman

    NASA Astrophysics Data System (ADS)

    Winterleitner, G.; Schütz, F.; Huenges, E.

    2016-12-01

    The aim of the GeoSolCool research programme between the German Research Centre for Geoscience (GFZ) and The Research Council of Oman (TRC) is the development of an innovative and sustainable cooling system in combination with an aquifer thermal energy storage system in northern Oman. An integral part of this project is the design of a subsurface aquifer reservoir system for storage of thermal energy through hot water injection. An accurate characterisation of potential storage horizons is thus essential to ensure optimal efficiency of the cooling system. The study area, 40 km west of Muscat is characterised by a thick Cenozoic mixed carbonate-siliciclastic sedimentary succession, containing at least 3 aquifer horizons. We used a multidisciplinary approach for the initial ATES development phase, including geological fieldwork dovetailed with remote sensing analyses, thin-section analyses, geological modelling and reservoir fluid flow forecasting. First results indicate two potential storage horizons: (1) a Miocene-aged clastic-dominated alluvial fan system and (2) an Eocene carbonate sequence. The alluvial fan system is a more than 300 m thick, coarse clastic (mainly gravels and sandstones) succession of coalesced individual fans. Thin-section analyses showed that hydraulic parameters are favourable for the gravel and sandstone intervals but reservoir architecture is complex due to multiple generations of interconnecting fans with highly heterogeneous facies distributions. The Eocene carbonates were deposited in a carbonate ramp setting, strongly influenced by currents and storm events. Individual facies belts extend over kilometres and thus horizontal reservoir connectivity is expected to be good with minor facies variability. Thin-section analyses showed that especially the fossil-rich sections show good storage qualities. Fluid flow forecasting indicate that both potential horizons have good to very good storage characteristics. However, intense diagenetic overprint of the succession and a complex reservoir architecture of the Miocene clastics might pose challenges for the ATES implementation. In order to decide which storage horizon will be developed as an ATES system, drilling of an exploration well and subsequent well-logging and hydraulic testing is underway.

  6. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  7. [The present status and development of thermal control system of spacesuits for extravehicular activity].

    PubMed

    Zhao, C Y; Sun, J B; Yuan, X G

    1999-04-01

    With the extension of extravehicular activity (EVA) duration, the need for more effective thermal control of EVA spacesuits is required. The specific schemes investigated in heat sink system for EVA are discussed, including radiator, ice storage, metal hydride heat pump, phase-change storage/radiator and sublimator. The importance and requirements of automatic thermal control for EVA are also discussed. Existed automatic thermal control for EVA are reviewed. Prospects of further developments of thermal control of spacesuits for EVA are proposed.

  8. Set processing in a network environment. [data bases and magnetic disks and tapes

    NASA Technical Reports Server (NTRS)

    Hardgrave, W. T.

    1975-01-01

    A combination of a local network, a mass storage system, and an autonomous set processor serving as a data/storage management machine is described. Its characteristics include: content-accessible data bases usable from all connected devices; efficient storage/access of large data bases; simple and direct programming with data manipulation and storage management handled by the set processor; simple data base design and entry from source representation to set processor representation with no predefinition necessary; capability available for user sort/order specification; significant reduction in tape/disk pack storage and mounts; flexible environment that allows upgrading hardware/software configuration without causing major interruptions in service; minimal traffic on data communications network; and improved central memory usage on large processors.

  9. Study on parallel and distributed management of RS data based on spatial database

    NASA Astrophysics Data System (ADS)

    Chen, Yingbiao; Qian, Qinglan; Wu, Hongqiao; Liu, Shijin

    2009-10-01

    With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.

  10. Study on parallel and distributed management of RS data based on spatial data base

    NASA Astrophysics Data System (ADS)

    Chen, Yingbiao; Qian, Qinglan; Liu, Shijin

    2006-12-01

    With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.

  11. The mass storage testing laboratory at GSFC

    NASA Technical Reports Server (NTRS)

    Venkataraman, Ravi; Williams, Joel; Michaud, David; Gu, Heng; Kalluri, Atri; Hariharan, P. C.; Kobler, Ben; Behnke, Jeanne; Peavey, Bernard

    1998-01-01

    Industry-wide benchmarks exist for measuring the performance of processors (SPECmarks), and of database systems (Transaction Processing Council). Despite storage having become the dominant item in computing and IT (Information Technology) budgets, no such common benchmark is available in the mass storage field. Vendors and consultants provide services and tools for capacity planning and sizing, but these do not account for the complete set of metrics needed in today's archives. The availability of automated tape libraries, high-capacity RAID systems, and high- bandwidth interconnectivity between processor and peripherals has led to demands for services which traditional file systems cannot provide. File Storage and Management Systems (FSMS), which began to be marketed in the late 80's, have helped to some extent with large tape libraries, but their use has introduced additional parameters affecting performance. The aim of the Mass Storage Test Laboratory (MSTL) at Goddard Space Flight Center is to develop a test suite that includes not only a comprehensive check list to document a mass storage environment but also benchmark code. Benchmark code is being tested which will provide measurements for both baseline systems, i.e. applications interacting with peripherals through the operating system services, and for combinations involving an FSMS. The benchmarks are written in C, and are easily portable. They are initially being aimed at the UNIX Open Systems world. Measurements are being made using a Sun Ultra 170 Sparc with 256MB memory running Solaris 2.5.1 with the following configuration: 4mm tape stacker on SCSI 2 Fast/Wide; 4GB disk device on SCSI 2 Fast/Wide; and Sony Petaserve on Fast/Wide differential SCSI 2.

  12. Assessment of Energy Storage Alternatives in the Puget Sound Energy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balducci, Patrick J.; Jin, Chunlian; Wu, Di

    2013-12-01

    As part of an ongoing study co-funded by the Bonneville Power Administration, under its Technology Innovation Grant Program, and the U.S. Department of Energy, the Pacific Northwest National Laboratory (PNNL) has developed an approach and modeling tool for assessing the net benefits of using energy storage located close to the customer in the distribution grid to manage demand. PNNL in collaboration with PSE and Primus Power has evaluated the net benefits of placing a zinc bromide battery system at two locations in the PSE system (Baker River / Rockport and Bainbridge Island). Energy storage can provide a number of benefitsmore » to the utility through the increased flexibility it provides to the grid system. Applications evaluated in the assessment include capacity value, balancing services, arbitrage, distribution deferral and outage mitigation. This report outlines the methodology developed for this study and Phase I results.« less

  13. Modeling nurses' attitude toward using automated unit-based medication storage and distribution systems: an extension of the technology acceptance model.

    PubMed

    Escobar-Rodríguez, Tomás; Romero-Alonso, María Mercedes

    2013-05-01

    This article analyzes the attitude of nurses toward the use of automated unit-based medication storage and distribution systems and identifies influencing factors. Understanding these factors provides an opportunity to explore actions that might be taken to boost adoption by potential users. The theoretical grounding for this research is the Technology Acceptance Model. The Technology Acceptance Model specifies the causal relationships between perceived usefulness, perceived ease of use, attitude toward using, and actual usage behavior. The research model has six constructs, and nine hypotheses were generated from connections between these six constructs. These constructs include perceived risks, experience level, and training. The findings indicate that these three external variables are related to the perceived ease of use and perceived usefulness of automated unit-based medication storage and distribution systems, and therefore, they have a significant influence on attitude toward the use of these systems.

  14. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  15. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  16. A Framework for Evaluating Economic Impacts of Rooftop PV Systems with or without Energy Storage on Thai Distribution Utilities and Ratepayers

    NASA Astrophysics Data System (ADS)

    Chaianong, A.; Bangviwat, A.; Menke, C.

    2017-07-01

    Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.

  17. Dynamic analysis of a photovoltaic power system with battery storage capability

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  18. Non-volatile memory for checkpoint storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumrich, Matthias A.; Chen, Dong; Cipolla, Thomas M.

    A system, method and computer program product for supporting system initiated checkpoints in high performance parallel computing systems and storing of checkpoint data to a non-volatile memory storage device. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity. In one embodiment, themore » non-volatile memory is a pluggable flash memory card.« less

  19. Final prototype of magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    1991-01-01

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  20. The NASA Redox Storage System Development project, 1980

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.

  1. Storage, retrieval, and analysis of ST data

    NASA Technical Reports Server (NTRS)

    Albrecht, R.

    1984-01-01

    Space Telescope can generate multidimensional image data, very similar in nature to data produced with microdensitometers. An overview is presented of the ST science ground system between carrying out the observations and the interactive analysis of preprocessed data. The ground system elements used in data archival and retrieval are described and operational procedures are discussed. Emphasis is given to aspects of the ground system that are relevant to the science user and to general principles of system software development in a production environment. While the system being developed uses relatively conservative concepts for the launch baseline, concepts were developed to enhance the ground system. This includes networking, remote access, and the utilization of alternate data storage technologies.

  2. Final prototype of magnetically suspended flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  3. The NASA Redox Storage System Development project, 1980

    NASA Astrophysics Data System (ADS)

    1982-12-01

    The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.

  4. An Optimizing Compiler for Petascale I/O on Leadership Class Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok; Kandemir, Mahmut

    In high-performance computing systems, parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final report summarizesmore » the major achievements of the project and also points out promising future directions.« less

  5. Site 300 City Water Master Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jeff

    Lawrence Livermore National Laboratory (LLNL), a scientific research facility, operates an experimental test site known as Site 300. The site is located in a remote area of southeastern Alameda County, California, and consists of about 100 facilities spread across 7,000-acres. The Site 300 water system includes groundwater wells and a system of storage tanks, booster pumps, and underground piping to distribute water to buildings and significant areas throughout the site. Site 300, which is classified as a non-transient non-community (NTNC) water system, serves approximately 110 employees through 109 service connections. The distribution system includes approximately 76,500-feet of water mains varyingmore » from 4- to 10-inches in diameter, mostly asbestos cement (AC) pipe, and eleven water storage tanks. The water system is divided into four pressure zones fed by three booster pump stations to tanks in each zone.« less

  6. The SERI solar energy storage program

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  7. Pausing and activating thread state upon pin assertion by external logic monitoring polling loop exit time condition

    DOEpatents

    Chen, Dong; Giampapa, Mark; Heidelberger, Philip; Ohmacht, Martin; Satterfield, David L; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

    2013-05-21

    A system and method for enhancing performance of a computer which includes a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program are executed by a processer. The processor processes instructions from the program. A wait state in the processor waits for receiving specified data. A thread in the processor has a pause state wherein the processor waits for specified data. A pin in the processor initiates a return to an active state from the pause state for the thread. A logic circuit is external to the processor, and the logic circuit is configured to detect a specified condition. The pin initiates a return to the active state of the thread when the specified condition is detected using the logic circuit.

  8. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  9. Dryden Flight Research Center Chemical Pharmacy Program

    NASA Technical Reports Server (NTRS)

    Davis, Bette

    1997-01-01

    The Dryden Flight Research Center (DFRC) Chemical Pharmacy "Crib" is a chemical sharing system which loans chemicals to users, rather than issuing them or having each individual organization or group purchasing the chemicals. This cooperative system of sharing chemicals eliminates multiple ownership of the same chemicals and also eliminates stockpiles. Chemical management duties are eliminated for each of the participating organizations. The chemical storage issues, hazards and responsibilities are eliminated. The system also ensures safe storage of chemicals and proper disposal practices. The purpose of this program is to reduce the total releases and transfers of toxic chemicals. The initial cost of the program to DFRC was $585,000. A savings of $69,000 per year has been estimated for the Center. This savings includes the reduced costs in purchasing, disposal and chemical inventory/storage responsibilities. DFRC has chemicals stored in 47 buildings and at 289 locations. When the program is fully implemented throughout the Center, there will be three chemical locations at this facility. The benefits of this program are the elimination of chemical management duties; elimination of the hazard associated with chemical storage; elimination of stockpiles; assurance of safe storage; assurance of proper disposal practices; assurance of a safer workplace; and more accurate emissions reports.

  10. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    DOE PAGES

    Abdollahy, Shahin; Lavrova, Olga; Mammoli, Andrea

    2014-01-01

    A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building.more » Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.« less

  11. ICI optical data storage tape

    NASA Technical Reports Server (NTRS)

    Mclean, Robert A.; Duffy, Joseph F.

    1991-01-01

    Optical data storage tape is now a commercial reality. The world's first successful development of a digital optical tape system is complete. This is based on the Creo 1003 optical tape recorder with ICI 1012 write-once optical tape media. Several other optical tape drive development programs are underway, including one using the IBM 3480 style cartridge at LaserTape Systems. In order to understand the significance and potential of this step change in recording technology, it is useful to review the historical progress of optical storage. This has been slow to encroach on magnetic storage, and has not made any serious dent on the world's mountains of paper and microfilm. Some of the reasons for this are the long time needed for applications developers, systems integrators, and end users to take advantage of the potential storage capacity; access time and data transfer rate have traditionally been too slow for high-performance applications; and optical disk media has been expensive compared with magnetic tape. ICI's strategy in response to these concerns was to concentrate its efforts on flexible optical media; in particular optical tape. The manufacturing achievements, media characteristics, and media lifetime of optical media are discussed.

  12. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil, Abbas A.; Huff, Georgianne; Currier, Aileen B.

    2016-09-01

    The Electricity Storage Handbook (Handbook) is a how-to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluations of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspective. This Handbook, jointlymore » sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess.« less

  13. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  14. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  15. Solar-heating and cooling system design package

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

  16. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  17. Considerations and measurements of latent-heat-storage salts for secondary thermal battery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, A.A.; Braithwaite, J.W.; Armijo, J.R.

    Given its potential benefits, the practicality of using a latent heat-storage material as the basis for a passive thermal management system is being assessed by Chloride Silent Power Ltd. (CSPL) with technical assistance from Beta Power, Inc. and Sandia National Laboratories (SNL). Based on the experience gained in large-scale solar energy storage programs, fused salts were selected as the primary candidates for the heat-storage material. The initial phase of this assessment was directed to an EV battery being designed at CSPL for the ETX-II program. Specific tasks included the identification and characterization of potential fused salts, a determination of placementmore » options for the salts within the battery, and an assessment of the ultimate benefit to the battery system. The results obtained to date for each of these tasks are presented in this paper.« less

  18. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  19. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  20. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.

    1992-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  1. New Products.

    ERIC Educational Resources Information Center

    TechTrends, 1992

    1992-01-01

    Reviews new educational technology products, including a microcomputer-based tutoring system, laser barcode reader, video/data projectors, CD-ROM for notebook computers, a system to increase a printer's power, data cartridge storage shell, knowledge-based decision tool, video illustrator, interactive videodiscs, surge protectors, scanner system,…

  2. Solar-heating and hot water system--St. Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Sunlight supplies about half heat energy needs of small office. System includes six tilt-adjustable commercial collectors and 1,000 gallon energy storage tank. Report contains description of system and components, drawings and photographs, manufacturer's data, and related material.

  3. Improvement and scale-up of the NASA Redox storage system

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Thaller, L. H.

    1980-01-01

    A preprototype full-function 1.0 kW Redox system (2 kW peak) with 11 kW storage capacity has been built and integrated with the NASA/DOE photovoltaic test facility. The system includes four substacks of 39 cells each (1/3 sq ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Technological advances in membrane and electrodes and results of multicell stack tests are reviewed.

  4. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  5. Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program

    NASA Astrophysics Data System (ADS)

    Cady, E. C.

    1997-01-01

    The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First, an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined, a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions, based on the results of the engineering characterization tests, will be used to correlate the results of the 30 day mission simulation.

  6. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    NASA Astrophysics Data System (ADS)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management decisions. A systematic uncertainty quantification approach can been used to understand how uncertain parameters associated with different subsystems (e.g., reservoir permeability, wellbore cement permeability, wellbore density, etc.) impact the overall site performance predictions.

  7. Baseline Testing of the Hybrid Electric Transit Bus

    NASA Technical Reports Server (NTRS)

    Brown, Jeffrey C.; Eichenberg, Dennis J.; Thompson, William K.

    1999-01-01

    A government, industry and academic cooperative has developed a Hybrid Electric Transit Bus (HETB). Goals of the program include doubling the fuel economy of city transit buses currently in service, and reducing emissions to one-tenth of EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors for the energy storage system and the planned use of a natural gas fueled turbogenerator, to be developed from a small jet engine. At over 17000 kg gross weight, this is the largest vehicle to use ultra-capacitor energy storage. A description of the HETB, the results of performance testing, and future vehicle development plans are the subject of this report.

  8. Dreamweaver and Flash: Strategies for Updating Communication Systems Instruction

    ERIC Educational Resources Information Center

    Hill, Roger B.

    2004-01-01

    The rate of innovation and change impacting technology education communication systems instruction has been vigorous for longer than most people can remember. Trends have included analog systems being replaced by digital systems, integration of networks and system devices, computerization, optical storage, and wireless transmission of data. The…

  9. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system by chassis testing a vehicle equipped with the advanced system and an equivalent conventional vehicle, or by testing the hybrid systems and the equivalent non-hybrid systems as described in § 1037.550... include regenerative braking (or the equivalent) and energy storage systems, fuel cell vehicles, and...

  10. Long-range, low-cost electric vehicles enabled by robust energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ping; Ross, Russel; Newman, Aron

    2015-09-18

    ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less

  11. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    NASA Technical Reports Server (NTRS)

    Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  12. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  13. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  14. System-level modeling for geological storage of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan

    2006-04-24

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.Themore » objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.« less

  15. 77 FR 38051 - Jones Canyon Hydro, LLC; Notice of Application for Amendment of Preliminary Permit Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... proposed reservoirs from 6,225 feet to 7,330 feet; and (7) change the name of the project from ``Jones Canyon Pumped Storage Project'' to ``Oregon Winds Pumped Storage''. FERC Contact: Jennifer Harper, 202..., using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must include your name...

  16. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  17. Development of Proposed Standards for Testing Solar Collectors and Thermal Storage Devices. NBS Technical Note 899.

    ERIC Educational Resources Information Center

    Hill, James E.; And Others

    A study has been made at the National Bureau of Standards of the different techniques that are or could be used for testing solar collectors and thermal storage devices that are used in solar heating and cooling systems. This report reviews the various testing methods and outlines a recommended test procedure, including apparatus and…

  18. Data collection with the ACTS propagation terminal

    NASA Technical Reports Server (NTRS)

    Remaklus, Will

    1993-01-01

    Viewgraphs on data collection with the ACTS propagation terminal are included. Topics covered include: DACS system overview; DACS board; APT data collection computer; APT software downloading; data storage for APT; and ACTS propagation experiment data flow.

  19. Distributed Storage Healthcare — The Basis of a Planet-Wide Public Health Care Network

    PubMed Central

    Kakouros, Nikolaos

    2013-01-01

    Background: As health providers move towards higher levels of information technology (IT) integration, they become increasingly dependent on the availability of the electronic health record (EHR). Current solutions of individually managed storage by each healthcare provider focus on efforts to ensure data security, availability and redundancy. Such models, however, scale poorly to a future of a planet-wide public health-care network (PWPHN). Our aim was to review the research literature on distributed storage systems and propose methods that may aid the implementation of a PWPHN. Methods: A systematic review was carried out of the research dealing with distributed storage systems and EHR. A literature search was conducted on five electronic databases: Pubmed/Medline, Cinalh, EMBASE, Web of Science (ISI) and Google Scholar and then expanded to include non-authoritative sources. Results: The English National Health Service Spine represents the most established country-wide PHN but is limited in deployment and remains underused. Other, literature identified and established distributed EHR attempts are more limited in scope. We discuss the currently available distributed file storage solutions and propose a schema of how one of these technologies can be used to deploy a distributed storage of EHR with benefits in terms of enhanced fault tolerance and global availability within the PWPHN. We conclude that a PWPHN distributed health care record storage system is technically feasible over current Internet infrastructure. Nonetheless, the socioeconomic viability of PWPHN implementations remains to be determined. PMID:23459171

  20. A high-speed, large-capacity, 'jukebox' optical disk system

    NASA Technical Reports Server (NTRS)

    Ammon, G. J.; Calabria, J. A.; Thomas, D. T.

    1985-01-01

    Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.

  1. Enhanced distributed energy resource system

    DOEpatents

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  2. Document Indexing for Image-Based Optical Information Systems.

    ERIC Educational Resources Information Center

    Thiel, Thomas J.; And Others

    1991-01-01

    Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…

  3. The Bartlesville System; TGISS Software Documentation.

    ERIC Educational Resources Information Center

    Roberts, Tommy L.; And Others

    TGISS (Total Guidance Information Support System) is an information storage and retrieval system specifically designed to meet the needs and requirements of a counselor in the Bartlesville Public School environment. The system, which is a combination of man/machine capabilities, includes the hardware and software necessary to extend the…

  4. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Yang, Rui; Hodge, Brian S

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to powermore » system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.« less

  5. Design of an ammonia closed-loop storage system in a CSP power plant with a power tower cavity receiver

    NASA Astrophysics Data System (ADS)

    Abdiwe, Ramadan; Haider, Markus

    2017-06-01

    In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.

  6. Benefit assessment of solar-augmented natural gas systems

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  7. Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.

  8. Public storage for the Open Science Grid

    NASA Astrophysics Data System (ADS)

    Levshina, T.; Guru, A.

    2014-06-01

    The Open Science Grid infrastructure doesn't provide efficient means to manage public storage offered by participating sites. A Virtual Organization that relies on opportunistic storage has difficulties finding appropriate storage, verifying its availability, and monitoring its utilization. The involvement of the production manager, site administrators and VO support personnel is required to allocate or rescind storage space. One of the main requirements for Public Storage implementation is that it should use SRM or GridFTP protocols to access the Storage Elements provided by the OSG Sites and not put any additional burden on sites. By policy, no new services related to Public Storage can be installed and run on OSG sites. Opportunistic users also have difficulties in accessing the OSG Storage Elements during the execution of jobs. A typical users' data management workflow includes pre-staging common data on sites before a job's execution, then storing for a subsequent download to a local institution the output data produced by a job on a worker node. When the amount of data is significant, the only means to temporarily store the data is to upload it to one of the Storage Elements. In order to do that, a user's job should be aware of the storage location, availability, and free space. After a successful data upload, users must somehow keep track of the data's location for future access. In this presentation we propose solutions for storage management and data handling issues in the OSG. We are investigating the feasibility of using the integrated Rule-Oriented Data System developed at RENCI as a front-end service to the OSG SEs. The current architecture, state of deployment and performance test results will be discussed. We will also provide examples of current usage of the system by beta-users.

  9. Educational outreach at the NSF Engineering Research Center for Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Williams, James E., Jr.

    1996-07-01

    An aspect of the National Science Foundation Engineering Research Center in Data Storage Systems (DSSC) program that is valued by our sponsors is the way we use our different educational programs to impact the data storage industry in a positive fashion. The most common way to teach data storage materials is in classes that are offered as part of the Carnegie Mellon curriculum. Another way the DSSC attempts to educate students is through outreach programs such as the NSF Research Experiences for Undergraduates and Young Scholars programs, both of which have been very successful and place emphasis and including women, under represented minorities and disable d students. The Center has also established cooperative outreach partnerships which serve to both educate students and benefit the industry. One example is the cooperative program we have had with the Magnetics Technology Centre at the National University of Singapore to help strengthen their research and educational efforts to benefit U.S. data storage companies with plants in Singapore. In addition, the Center has started a program that will help train outstanding students from technical institutes to increase their value as technicians to the data storage industry when they graduate.

  10. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE PAGES

    Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...

    2016-12-23

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  11. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Borui; Gao, Dian-ce; Xiao, Fu

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  12. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  13. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    NASA Astrophysics Data System (ADS)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module, for the thermoelectric cooling unit, for the PCM thermal storage unit, and for the outdoor air-water heat exchanger. When modeling PCM thermal storage unit, the enthalpy method has been adopted. Since natural convection has been observed in experiments playing a key effect on heat transfer in PCM, a staged effective thermal conductivity (ke) concept and modified Rayleigh (Ra) number formula have been developed to better capture natural convection's variable effects during the PCM charging process. Therefore, a modeling-based design procedure for thermoelectric cooling system integrating with PCM has been proposed. A case study has been completed for a model office room to demonstrate the qualitative and quantitative evaluations to the major system components. Results of this research can be extended to other applications in relevant areas. For instance, the proposed PCM thermal storage unit can be applied to integration with water-cooled conventional air-conditioning devices. Instead of using water cooling, a case study of using the proposed PCM unit for a water-cooled air-conditioner shows a COP increase of more than 25.6%.

  14. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.

    PubMed

    Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-01-01

    One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  16. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE PAGES

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...

    2018-01-11

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  17. Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracey, William; Bondre, Jayant; Shelton, Catherine

    2013-07-01

    The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In Januarymore » 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to evaluate the solutions, and the alternative solutions. The complexity of the project is increasing with time (more fuel assemblies, new storage systems, deteriorating logistics infrastructure at some sites, etc.) but with the uncertainty on the final disposal path, flexibility and simplicity will be critical. (authors)« less

  18. Ultra-Capacitor Energy Storage in a Large Hybrid Electric Bus

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1997-01-01

    The power requirements for inner city transit buses are characterized by power peaks about an order of magnitude larger than the average power usage of the vehicle. For these vehicles, hybrid power trains can offer significantly improved fuel economy and exhaust emissions. A critical design challenge, however, has been developing the energy storage and power management system to respond to these rapid power variations. Most hybrid vehicles today use chemical energy storage batteries to supplement the power from the fuel burning generator unit. Chemical storage batteries however, present several difficulties in power management and control. These difficulties include (1) inadequate life, (2) limited current delivery as well as absorption during regenerative braking, (3) inaccurate measurement of state of charge, and (4) stored energy safety issues. Recent advances in ultra-capacitor technology create an opportunity to address these concerns. The NASA Lewis Research Center, in cooperation with industry and academia, has developed an advanced hybrid electric transit bus using ultra-capacitors as the primary energy storage system. At over 15,000-kg gross weight, this is the largest vehicle of its kind ever built using this advanced energy storage technology. Results of analyses show that the vehicle will match the performance of an equivalent conventionally powered vehicle over typical inner city drive cycles. This paper describes the overall power system architecture, the evolution of the control strategy, and analysis of power flow and vehicle performance.

  19. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  20. 18 CFR 806.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... water supply. A system, including facilities for collection, treatment, storage and distribution, that... extraction of gaseous hydrocarbons from low permeability geologic formations utilizing enhanced drilling...

  1. 18 CFR 806.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... water supply. A system, including facilities for collection, treatment, storage and distribution, that... extraction of gaseous hydrocarbons from low permeability geologic formations utilizing enhanced drilling...

  2. 18 CFR 806.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... water supply. A system, including facilities for collection, treatment, storage and distribution, that... extraction of gaseous hydrocarbons from low permeability geologic formations utilizing enhanced drilling...

  3. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  4. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil, Abbas Ali; Huff, Georgianne; Currier, Aileen B.

    2015-02-01

    The Electricity Storage Handbook (Handbook) is a how - to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluation s of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspectivemore » . This Handbook, jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess. This Handbook is best viewed online.« less

  5. Optimizing the Use of Storage Systems Provided by Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Gallagher, J. H.; Potter, N.; Byrne, D. A.; Ogata, J.; Relph, J.

    2013-12-01

    Cloud computing systems present a set of features that include familiar computing resources (albeit augmented to support dynamic scaling of processing power) bundled with a mix of conventional and unconventional storage systems. The linux base on which many Cloud environments (e.g., Amazon) are based make it tempting to assume that any Unix software will run efficiently in this environment efficiently without change. OPeNDAP and NODC collaborated on a short project to explore how the S3 and Glacier storage systems provided by the Amazon Cloud Computing infrastructure could be used with a data server developed primarily to access data stored in a traditional Unix file system. Our work used the Amazon cloud system, but we strived for designs that could be adapted easily to other systems like OpenStack. Lastly, we evaluated different architectures from a computer security perspective. We found that there are considerable issues associated with treating S3 as if it is a traditional file system, even though doing so is conceptually simple. These issues include performance penalties because using a software tool that emulates a traditional file system to store data in S3 performs poorly when compared to a storing data directly in S3. We also found there are important benefits beyond performance to ensuring that data written to S3 can directly accessed without relying on a specific software tool. To provide a hierarchical organization to the data stored in S3, we wrote 'catalog' files, using XML. These catalog files map discrete files to S3 access keys. Like a traditional file system's directories, the catalogs can also contain references to other catalogs, providing a simple but effective hierarchy overlaid on top of S3's flat storage space. An added benefit to these catalogs is that they can be viewed in a web browser; our storage scheme provides both efficient access for the data server and access via a web browser. We also looked at the Glacier storage system and found that the system's response characteristics are very different from a traditional file system or database; it behaves like a near-line storage system. To be used by a traditional data server, the underlying access protocol must support asynchronous accesses. This is because the Glacier system takes a minimum of four hours to deliver any data object, so systems built with the expectation of instant access (i.e., most web systems) must be fundamentally changed to use Glacier. Part of a related project has been to develop an asynchronous access mode for OPeNDAP, and we have developed a design using that new addition to the DAP protocol with Glacier as a near-line mass store. In summary, we found that both S3 and Glacier require special treatment to be effectively used by a data server. It is important to add (new) interfaces to data servers that enable them to use these storage devices through their native interfaces. We also found that our designs could easily map to a cloud environment based on OpenStack. Lastly, we noted that while these designs invited more liberal use of remote references for data objects, that can expose software to new security risks.

  6. Capital cost expenditure of high temperature latent and sensible thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Jacob, Rhys; Saman, Wasim; Bruno, Frank

    2017-06-01

    In the following study cost estimates have been undertaken for an encapsulated phase change material (EPCM) packed bed, a packed bed thermocline and a traditional two-tank molten salt system. The effect of various heat transfer fluids (air and molten salt), system configuration (cascade vs one PCM, and direct vs indirect) and temperature difference (ΔT = 100-500 °C) on the cost estimate of the system was also investigated. Lastly, the storage system boundary was expanded to include heat exchangers, pumps and fans, and heat tracing so that a thorough cost comparison could be undertaken. The results presented in this paper provide a methodology to quickly compare various systems and configurations while providing design limits for the studied technologies.

  7. 40 CFR 141.801 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...

  8. 40 CFR 141.801 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...

  9. 40 CFR 141.801 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...

  10. 40 CFR 141.801 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...

  11. 40 CFR 141.801 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...

  12. Installation package for Hyde Memorial Observatory, Lincoln, Nebraska

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information for a solar heating system installed in Hyde Memorial Observatory at Lincoln, Nebraska is presented. This package included a system operation and maintenance manual, hardware brochures, schematics, system operating modes, and drawings. This prototype solar heating system consisted of the following subsystems: solar collector, control, and storage.

  13. Choosing an Optical Disc System: A Guide for Users and Resellers.

    ERIC Educational Resources Information Center

    Vane-Tempest, Stewart

    1995-01-01

    Presents a guide for selecting an optional disc system. Highlights include storage hierarchy; standards; data life cycles; security; implementing an optical jukebox system; optimizing the system; performance; quality and reliability; software; cost of online versus near-line; and growing opportunities. Sidebars provide additional information on…

  14. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    ERIC Educational Resources Information Center

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  15. Knowledge Gateways: The Building Blocks.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.; And Others

    1988-01-01

    Discusses the need for knowledge gateway systems to provide access to scattered information and the use of technologies in gateway building, including artificial intelligence and expert systems, networking, online retrieval systems, optical storage, and natural language processing. The status of four existing gateways is described. (20 references)…

  16. Lunar South Pole Illumination: Review, Reassessment, and Power System Implications

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2007-01-01

    This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage.

  17. Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al.,more » 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.« less

  18. Portable and Error-Free DNA-Based Data Storage.

    PubMed

    Yazdi, S M Hossein Tabatabaei; Gabrys, Ryan; Milenkovic, Olgica

    2017-07-10

    DNA-based data storage is an emerging nonvolatile memory technology of potentially unprecedented density, durability, and replication efficiency. The basic system implementation steps include synthesizing DNA strings that contain user information and subsequently retrieving them via high-throughput sequencing technologies. Existing architectures enable reading and writing but do not offer random-access and error-free data recovery from low-cost, portable devices, which is crucial for making the storage technology competitive with classical recorders. Here we show for the first time that a portable, random-access platform may be implemented in practice using nanopore sequencers. The novelty of our approach is to design an integrated processing pipeline that encodes data to avoid costly synthesis and sequencing errors, enables random access through addressing, and leverages efficient portable sequencing via new iterative alignment and deletion error-correcting codes. Our work represents the only known random access DNA-based data storage system that uses error-prone nanopore sequencers, while still producing error-free readouts with the highest reported information rate/density. As such, it represents a crucial step towards practical employment of DNA molecules as storage media.

  19. Methods to determine transit losses for return flows of transmountain water in Fountain Creek between Colorado Springs and the Arkansas River, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1988-01-01

    Methods were developed by which transit losses could be determined for transmountain return flows in Fountain Creek between Colorado Springs, Colorado, and its confluence with the Arkansas River. The study reach is a complex hydrologic system wherein a substantially variable streamflow interacts with an alluvial aquifer. The study approach included: (1) calibration and verification of a streamflow-routing model that contained a bank-storage-discharge component; (2) use of the model to develop the methods by which transit losses could be calculated; and (3) design of an application method for calculating daily transit loss using the model results. Sources of transit losses that were studied are bank storage, channel storage, and evaporation. Magnitude of bank-storage loss primarily depends on duration of a recovery period during which water lost to bank storage is returned to the stream. Net loss to bank storage can vary from about 50% for a 0-day recovery period to about 2% for a 180-day recovery period. Virtually all water lost to bank storage could be returned to the stream with longer recovery periods. Channel-storage loss was determined to be about 10% of a release quantity. Because the loss on any given day is totally recovered in the form of gains from channel storage on the subsequent day, channel storage is a temporary transit loss. Evaporation loss generally is less than 5% of a given daily transmountain return-flow release, depending on month of year. Evaporation losses are permanently lost from the system. (USGS)

  20. Engineering the Implementation of Pumped Hydro Energy Storage in the Arizona Power Grid

    NASA Astrophysics Data System (ADS)

    Dixon, William Jesse J.

    This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies. For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated. The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand. The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions. One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.

Top