Sample records for store soil samples

  1. The use of Vacutainer tubes for collection of soil samples for helium analysis

    USGS Publications Warehouse

    Hinkle, Margaret E.; Kilburn, James E.

    1979-01-01

    Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.

  2. Microphysical, microchemical, and adhesive properties of lunar material. III - Gas interaction with lunar material.

    NASA Technical Reports Server (NTRS)

    Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.

    1972-01-01

    Gas adsorption measurements on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples, show that the cosmic ray track and solar wind damaged surface of lunar soil is very reactive. Room temperature monolayer adsorption of N2 by the Apollo 12 sample at 0.0001 atm was observed. Gas evolution of Apollo 14 lunar soil at liquid nitrogen temperature during adsorption/desorption cycling is probably due to cosmic ray track stored energy release accompanied by solar gas release from depths of 100-200 nm.

  3. DITT: a computer program for Data Interpretation for Torsional Tests

    USGS Publications Warehouse

    Chen, Albert T.F.

    1979-01-01

    Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.

  4. Mercury in the Soil of Two Contrasting Watersheds in the Eastern United States

    PubMed Central

    Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.

    2014-01-01

    Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p<0.001), but a linear relation at Fishing Brook was weak (r2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks. PMID:24551042

  5. Mercury in the soil of two contrasting watersheds in the eastern United States

    USGS Publications Warehouse

    Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.

    2014-01-01

    Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.

  6. Effect of soil and water environment on typeability of PowerPlex Y (Promega) in selected tissue samples.

    PubMed

    Niemcunowicz-Janica, Anna; Pepinski, Witold; Janica, Jacek Robert; Skawronska, Malgorzata; Janica, Jerzy; Koc-Zorawska, Ewa; Stolyszewski, Ireneusz

    2007-01-01

    In cases of decomposed bodies Y chromosomal STR markers may be useful in identification of a male relative. The authors assessed typeability PowerPlex Y (Promega) loci in tissue material stored in water and soil environment. Tissue material was collected during autopsies of five persons aged 20-30 years with time of death determined within the limit of 14 hours. Heart muscle, liver and lung specimens were stored in pond water, sea water, sand and peat soil. DNA was extracted by organic method from tissue samples collected in 7-day intervals. Liver specimens were typeable in all PowerPlex Y loci within 100 days of storage in pond water with gradual decline at DYS392 in sea water. Heart muscle specimens stored in pond water exhibited allelic loss at DYS19, DYS385, DYS389II and DYS392, while all loci were typeable in sea water stored samples. For lung specimens allelic loss was noted throughout the profile. Storage of liver specimens in peat soil for more than 14 days resulted in allelic drop-out, and after 21 days no profiles were typeable. Heart muscle specimens were typeable in all PowerPlex Y systems after 35-day storage in sand, while allelic drop-out and subsequent lack of profiles were noted after 14 and 35 days respectively. Lung specimens stored in garden soil exhibited allelic drop-out and subsequent lack of profiles after 7 and 21 days, respectively. All PowerPlex Y loci were typeable in the latter material in sand up to day 35 with gradual decline of longer amplicons (DYS19, DYS385, DYS389II and DYS392).

  7. Carbon Storage in US Wetlands. | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. We provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales and describe how soil carbon stocks vary by anthropogenic disturbance to the wetland. To estimate the quantity and distribution of carbon stocks in wetlands of the conterminous US, we used data gathered in the field as part of the 2011 National Wetland Condition Assessment (NWCA) conducted by USEPA. During the growing season, field crews collected soil samples by horizon from 120-cm deep soil pits at 967 randomly selected wetland sites. Soil samples were analyzed for bulk density and organic carbon. We applied site carbon stock averages by soil depth back to the national population of wetlands and to several subpopulations, including five geographic areas and anthropogenic disturbance level. Disturbance levels were categorized by the NWCA as least, intermediately, or most disturbed using a priori defined physical, chemical, and biological indicators that were observable at the time of the site visit.Results/Conclusions We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US, with the greatest soil ca

  8. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil

    NASA Technical Reports Server (NTRS)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.

    1975-01-01

    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  9. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  10. Modern Timber Harvesting Practices Have Little Short-Term Effect on Soil Carbon Stores in Industrial Forests of Western Oregon and Washington, U.S.A.

    NASA Astrophysics Data System (ADS)

    Holub, S. M.; Hatten, J. A.

    2017-12-01

    Soil carbon represents a large, but slowly changing pool of carbon in forests and understanding its response to forest management, including harvesting, is critical for determining overall stand/landscape carbon balance. Past studies have observed mixed effects of harvesting on soil carbon possibly due, in part, to imprecise sampling methods and high variability within soils. Weyerhaeuser Company has led a major effort to examine the effect of conventional timber harvesting on long-term soil carbon stores in western Oregon and Washington Douglas-fir forests using a highly-replicated longitudinal study design that enables precise estimation of variability found in these systems. In 2010, we randomly selected nine harvest units from Weyerhaeuser's 2012 harvest plan. At each non-harvested unit, a uniform, non-rocky area of about 3-6 hectares was selected for the study. Pre-harvest soil samples were collected at 300 sample points from each unit on a fixed square grid, targeting an intensity that would allow detection of >5% change in soil carbon stores. We measured soil carbon concentration and soil bulk density in depth increments to 1 m to allow for the calculation of total soil carbon per hectare. Other ecosystem pools of carbon, such as trees and downed wood, also have been measured to complete the whole-site carbon budget. All units were harvested from late 2011 through mid-year 2012. In 2015, 3-3.5 years post-harvest, we resampled the same areas in an identical manner as the pre-harvest collection to evaluate changes in soil carbon following harvest. Across all sites combined, we estimated a +2% change (-2% to +6%, 95% confidence interval) in mineral soil carbon following harvest, which is consistent with small-to-no change. Individual sites varied in direction of response; only one site showed evidence of a slight decrease in soil carbon, while two sites showed slight gains. These early results indicate that Weyerhaeuser's conventional timber harvesting methods in the Pacific Northwest do not cause substantial short-term losses in soil carbon. Continued monitoring is necessary, however, to document the longer-term trajectory of soil carbon levels through stand development.

  11. Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh.

    PubMed

    Ercumen, Ayse; Pickering, Amy J; Kwong, Laura H; Arnold, Benjamin F; Parvez, Sarker Masud; Alam, Mahfuja; Sen, Debashis; Islam, Sharmin; Kullmann, Craig; Chase, Claire; Ahmed, Rokeya; Unicomb, Leanne; Luby, Stephen P; Colford, John M

    2017-08-01

    Fecal-oral pathogens are transmitted through complex, environmentally mediated pathways. Sanitation interventions that isolate human feces from the environment may reduce transmission but have shown limited impact on environmental contamination. We conducted a study in rural Bangladesh to (1) quantify domestic fecal contamination in settings with high on-site sanitation coverage; (2) determine how domestic animals affect fecal contamination; and (3) assess how each environmental pathway affects others. We collected water, hand rinse, food, soil, and fly samples from 608 households. We analyzed samples with IDEXX Quantitray for the most probable number (MPN) of E. coli. We detected E. coli in source water (25%), stored water (77%), child hands (43%), food (58%), flies (50%), ponds (97%), and soil (95%). Soil had >120 000 mean MPN E. coli per gram. In compounds with vs without animals, E. coli was higher by 0.54 log 10 in soil, 0.40 log 10 in stored water and 0.61 log 10 in food (p < 0.05). E. coli in stored water and food increased with increasing E. coli in soil, ponds, source water and hands. We provide empirical evidence of fecal transmission in the domestic environment despite on-site sanitation. Animal feces contribute to fecal contamination, and fecal indicator bacteria do not strictly indicate human fecal contamination when animals are present.

  12. Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh

    PubMed Central

    2017-01-01

    Fecal-oral pathogens are transmitted through complex, environmentally mediated pathways. Sanitation interventions that isolate human feces from the environment may reduce transmission but have shown limited impact on environmental contamination. We conducted a study in rural Bangladesh to (1) quantify domestic fecal contamination in settings with high on-site sanitation coverage; (2) determine how domestic animals affect fecal contamination; and (3) assess how each environmental pathway affects others. We collected water, hand rinse, food, soil, and fly samples from 608 households. We analyzed samples with IDEXX Quantitray for the most probable number (MPN) of E. coli. We detected E. coli in source water (25%), stored water (77%), child hands (43%), food (58%), flies (50%), ponds (97%), and soil (95%). Soil had >120 000 mean MPN E. coli per gram. In compounds with vs without animals, E. coli was higher by 0.54 log10 in soil, 0.40 log10 in stored water and 0.61 log10 in food (p < 0.05). E. coli in stored water and food increased with increasing E. coli in soil, ponds, source water and hands. We provide empirical evidence of fecal transmission in the domestic environment despite on-site sanitation. Animal feces contribute to fecal contamination, and fecal indicator bacteria do not strictly indicate human fecal contamination when animals are present. PMID:28686435

  13. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.

  14. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  15. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  16. Frozen peatlands: carbon store and the climate change

    NASA Astrophysics Data System (ADS)

    Ogneva, Olga; Matyshak, George; Tarkhov, Matvey

    2017-04-01

    Peatlands soils in the northern permafrost region store approximately 40% of total Earth's soils carbon. These soils develop under the influence of cryogenic processes especially such as freeze-thaw and cryoturbations. Climate change predictions suggest that the frequency of soil freeze-thaw cycles (FTCs) will increase in cool temperate and other high-latitude regions. This trend may cause a response in organic matter decomposition rate - that will result in significant changes of greenhouse gases emission (CO2, CH4). For further predictions improvement of soils response to global climate changes it is necessary to estimate the impact of FTCs in permafrost soils on organic matter decomposition. We investigated the effects of FTCs on microbial biomass, basal respiration, metabolic quotient and dissolved organic matter (DOM) content (carbon - DOC and nitrogen - DON) in frozen peatlands soils by laboratory modelling experiment. Frozen peatlands from the north of Western Siberia in Nadym area (N65°19', E72°53'), in a zone of discontinuous permafrost were studied. The soil cover of these formations is represented by a complex of Typic Histoturbels (Turbic Cryosol) and Typic Historthels (Cryic Histosols). Peat profiles of both soil types were divided into horizons due to decomposition degree (from 15 to 55-60%), age (from 1000 to 5700 yrs) and botanic composition (oligotrophic, mesotrophic, eutrophic). During the experiment, first group of samples of peat horizons (field moisture content) were subjected for 10 times to 3-day FTCs at the temperature of -10 and +4 ° C. In the second group of peat samples were incubated at +4 ° C (with no freeze-thaw). It was established that all studied microbial properties were inversely proportional with decomposition degree of peat, except metabolic quotient. Our results illustrate that microbial activity, estimated by BR, shows resistance to FTCs and doesn't significantly differ after FTCs an average. Microbial biomass (carbon and nitrogen) as well as BR doesn't differ too. The most intensive response to FTCs shows DOM content value which was 1.5 times higher on average in samples after FTCs in comparison with control samples. We suppose that increase of FTCs frequency in soil will result in significant acceleration mineralization of peat. Because these processes exert disruptive effects on soil organic matter, provide converting carbon from pool into forms available for microbial communities, thus involving stored carbon into the carbon turnover.

  17. The preservation of microbial DNA in archived soils of various genetic types.

    PubMed

    Ivanova, Ekaterina A; Korvigo, Ilia O; Aparin, Boris F; Chirak, Evgenii L; Pershina, Elizaveta V; Romaschenko, Nikolay S; Provorov, Nikolai A; Andronov, Evgeny E

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70-90 years) and modern soils of two different genetic types-chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies.

  18. The preservation of microbial DNA in archived soils of various genetic types

    PubMed Central

    Korvigo, Ilia O.; Aparin, Boris F.; Chirak, Evgenii L.; Pershina, Elizaveta V.; Romaschenko, Nikolay S.; Provorov, Nikolai A.; Andronov, Evgeny E.

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70–90 years) and modern soils of two different genetic types–chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies. PMID:28339464

  19. Estimating carbon and nitrogen pools in a forest soil: Influence of soil bulk density methods and rock content

    Treesearch

    Martin F. Jurgensen; Deborah S. Page-Dumroese; Robert E. Brown; Joanne M. Tirocke; Chris A. Miller; James B. Pickens; Min Wang

    2017-01-01

    Soils with high rock content are common in many US forests, and contain large amounts of stored C. Accurate measurements of soil bulk density and rock content are critical for calculating and assessing changes in both C and nutrient pool size, but bulk density sampling methods have limitations and sources of variability. Therefore, we evaluated the use of small-...

  20. Permafrost stores a globally significant amount of mercury

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Schuster, P. F.; Antweiler, R.; Aiken, G.; DeWild, J.; Gryziec, J. D.; Gusmeroli, A.; Hugelius, G.; Jafarov, E.; Krabbenhoft, D. P.; Liu, L.; Herman-Mercer, N. M.; Mu, C.; Roth, D. A.; Schaefer, T.; Striegl, R. G.; Wickland, K.; Zhang, T.

    2017-12-01

    Changing climate in northern regions is causing permafrost to thaw with major implications for the cycling of mercury in arctic and subarctic ecosystems. Permafrost occurs in nearly one quarter of the Earth's Northern Hemisphere. We measured total soil mercury concentration in 588 samples from 13 soil permafrost cores from the interior and the North Slope of Alaska. The median concentration was 47.7±23.4 ng Hg g soil-1 and the median ratio of Hg to carbon was 1.56±0.86 µg Hg g C-1. We estimate Alaskan permafrost stores 56±32 kilotons of mercury and the entire northern hemisphere permafrost land mass stores 773±441 kilotons of mercury. This increases estimates of mercury stored in soils by 60%, making permafrost the second largest reservoir of mercury on the planet. Climate projections indicate extensive permafrost thawing, releasing mercury into the environment through a variety of mechanisms, for example, terrestrial transport via dissolved organic carbon (DOC), gaseous elemental mercury (GEM) evasion, forest fires, atmospheric mixing processes with ozone, and Springtime atmospheric Hg depletion after the polar sunrise. These findings have major implications for terrestrial and aquatic life, the world's fisheries, and ultimately human health.

  1. Long-term survival of Cryptococcus neoformans and Cryptococcus gattii in stored environmental samples from Colombia.

    PubMed

    Escandón, Patricia; Castañeda, Elizabeth

    2015-01-01

    Both Cryptococcus neoformans and Cryptococcus gattii have been isolated from a variety of environmental sources in Colombia. To determine the viability of C. neoformans/C. gattii isolates in stored soil samples, filtrates and bird droppings from which these yeasts were previously recovered. A total of 964 samples collected between 2003 and 2009, and kept at room temperature were processed. From them, 653 samples were from trees decaying wood, 274 from soil filtrates and 37 from bird droppings. When C. neoformans or C. gattii were recovered, the molecular type of each isolate was established by PCR fingerprinting using the single primer (GTG)5. Among the processed samples, 161 isolates were recovered. From those, 81 (50.3%) corresponded to C. gattii recovered from decaying wood of Eucalyptus spp., Corymbia ficifolia, Terminalia catappa and Ficus spp. trees, and 80 (49.7%) corresponded to C. neoformans recovered from Ficus spp. and eucalyptus trees, as well as from bird droppings. The most prevalent molecular type among the C. gattii and C. neoformans isolates was VGII and VNI, respectively. The re-isolation of C. neoformans/C. gattii from 10-year stored samples suggests that these yeasts are able to keep viable in naturally colonized samples. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. BOREAS TE-2 NSA Soil Lab Data

    NASA Technical Reports Server (NTRS)

    Veldhuis, Hugo; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    This data set contains the major soil properties of soil samples collected in 1994 at the tower flux sites in the Northern Study Area (NSA). The soil samples were collected by Hugo Veldhuis and his staff from the University of Manitoba. The mineral soil samples were largely analyzed by Barry Goetz, under the supervision of Dr. Harold Rostad at the University of Saskatchewan. The organic soil samples were largely analyzed by Peter Haluschak, under the supervision of Hugo Veldhuis at the Centre for Land and Biological Resources Research in Winnipeg, Manitoba. During the course of field investigation and mapping, selected surface and subsurface soil samples were collected for laboratory analysis. These samples were used as benchmark references for specific soil attributes in general soil characterization. Detailed soil sampling, description, and laboratory analysis were performed on selected modal soils to provide examples of common soil physical and chemical characteristics in the study area. The soil properties that were determined include soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus: particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. These data are stored in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Response of selected microoganisms to experimental planetary environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1975-01-01

    A microbial population profile of mixed Cape Canaveral soil samples is presented. During this investigation a few organisms were isolated which exhibit the ability to grow at 3 C, 32 C, and 55 C. Growth curves are shown for three of these isolates, one of which grows extremely well at all three temperatures. Also included are studies dealing with growth of soil populations at zero and subzero temperatures. Results indicate growth at 0 C and -5 C, but not at 15 C or -65 C. The effect of storage temperature on dry soil is presented, and results show that psychrophilic populations decrease when soil is stored at room temperature, but do not decrease when soil is stored at -65 C. Results of an experiment with the simulated Martian environment are presented and indicate that nonsporeforming rods, sporeforming rods, and cocci can reproduce in the simulated environment when nutrients and moisture are supplied. The sporeforming rods are the predominant suvivors when dry soil is subjected to this environment.

  4. Stability of mercury concentration measurements in archived soil and peat samples

    USGS Publications Warehouse

    Navrátil, Tomáš; Burns, Douglas; Nováková, Tereza; Kaňa, Jiří; Rohovec, Jan; Roll, Michal; Ettler, Vojtěch

    2018-01-01

    Archived soil samples can provide important information on the history of environmental contamination and by comparison with recently collected samples, temporal trends can be inferred. Little previous work has addressed whether mercury (Hg) concentrations in soil samples are stable with long-term storage under standard laboratory conditions. In this study, we have re-analyzed using cold vapor atomic adsorption spectroscopy a set of archived soil samples that ranged from relatively pristine mountainous sites to a polluted site near a non-ferrous metal smelter with a wide range of Hg concentrations (6 - 6485 µg kg-1). Samples included organic and mineral soils and peats with a carbon content that ranged from 0.2 to 47.7%. Soil samples were stored in polyethylene bags or bottles and held in laboratory rooms where temperature was not kept to a constant value. Mercury concentrations in four subsets of samples were originally measured in 2000, 2005, 2006 and 2007, and re-analyzed in 2017, i.e. after 17, 12, 11 and 10 years of storage. Statistical analyses of either separated or lumped data yielded no significant differences between the original and current Hg concentrations. Based on these analyses, we show that archived soil and peat samples can be used to evaluate historical soil mercury contamination.

  5. BOREAS TGB-12 Isotropic Carbon Dioxide Data over the NSA

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Hall, Forrest G. (Editor); Sundquist, Eric; Winston, Greg; Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. This data set contains information on the carbon isotopic content of carbon dioxide sampled from soils in the NSA-OBS, NSA-YJP, and NSA-OJP sites. Data were collected from 14-Nov-1993 to 10-Oct-1996. The data are stored in tabular ASCII files.

  6. Changes in the enzymatic activity of soil samples upon their storage

    NASA Astrophysics Data System (ADS)

    Dadenko, E. V.; Kazeev, K. Sh.; Kolesnikov, S. I.; Val'Kov, V. F.

    2009-12-01

    The influence of the duration and conditions of storage of soil samples on the activity of soil enzymes (catalase, β-fructofuranosidase, and dehydrogenase) was studied for the main soils of southern Russia (different subtypes of chernozems, chestnut soils, brown forest soils, gray forest soils, solonetzes, and solonchaks). The following soil storage conditions were tested: (1) the air-dry state at room temperature, (2) the airdry state at a low positive (in a refrigerator, +4°C) temperature, (3) naturally moist samples at a low positive temperature, and (4) naturally moist samples at a negative (in a freezer, -5°C) temperature. It was found that the sample storing caused significant changes in the enzymatic activities, which depended on the soil type, the land use, the type of enzyme, and the duration and conditions of the sample storage. In the course of the storage, the changes in the enzymatic activity had a nonlinear character. The maximum changes were observed in the initial period (up to 12 weeks). Then, a very gradual decrease in the activity of the studied enzymes was observed. Upon the long-term (>12 weeks) storage under the different conditions, the difference in the activities of the soil enzymes became less pronounced. The storage of soil samples in the air-dried state at room temperature can be recommended for mass investigations.

  7. BOREAS TE-1 SSA Soil Lab Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Nerbas, Tim; Anderson, Darwin

    2000-01-01

    This data set was collected by TE-1 to provide a set of soil properties for BOREAS investigators in the SSA. The soil samples were collected at sets of soil pits in 1993 and 1994. Each set of soil pits was in the vicinity of one of the five flux towers in the BOREAS SSA. The collected soil samples were sent to a lab, where the major soil properties were determined. These properties include, but are not limited to, soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus; particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. The data are stored in tabular ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. How Trees Interact with Their Hydrologic Environment: a Stable Isotope Study

    NASA Astrophysics Data System (ADS)

    Gierke, C.; Newton, T.

    2012-12-01

    The Sacramento Mountains of southeast New Mexico serve as the primary recharge area to adjacent regional aquifers, including the Roswell Artesian Basin, the Tularosa Basin and the Salt Basin. Under pressures of population growth and climate change, land and water managers are interested in identifying land management and forest restoration methods that may increase local and regional groundwater recharge in the high mountains. The Sacramento Mountain Watershed Study is designed to assess the effects of tree thinning in mountain watersheds as an effective method of increasing groundwater recharge. The project employs a soil water balance to quantify the partitioning of local precipitation before and after tree thinning. This study was designed to determine the role that trees play in the hydrologic cycle by using the stable isotopes of oxygen and hydrogen to identify tree water sources. The study is being conducted in a 1st order watershed with no perennial outflow stream where vegetation is dominated by Douglas Fir (Pseudotsuga Menziesii). Ridges are capped with San Andres Limestone while lower slopes and the valley bottom are underlain by the Yeso Formation which is composed of sandstones, mudstones and interbedded carbonate layers. The area has thin soils covering shallow fractured bedrock or epikarst features. Some of the fractures within the epikarst zone provide direct conduits to the larger groundwater system while others are isolated rendering the reservoir inactive. From March 2011 to February 2012, we collected soil and twig samples from which water was extracted by cryogenic vacuum distillation. Soil water was also sampled with passive capillary samplers (PCAPS). The isotopic composition of bulk soil water appears to be controlled by evaporation of snowmelt stored within the soil matrix. The isotopic composition of soil water sampled by wick samplers reflects mixing of non-evaporated rainfall with evaporated bulk soil water. As the monsoon season progressed and cumulative rainfall increased, the isotopic composition of mobile soil water evolved towards that of local precipitation. The isotopic composition of twig water samples resembled that of bulk soil water from March and July 2011. In August, September and into November, twig water isotope values appeared to have both bulk soil water and mobile soil water contributions. The conceptual model that we have developed to explain this phenomenon relies on different infiltration mechanisms for snowmelt and monsoon precipitation which determine where water is stored. Snowmelt infiltrates soil and is stored in shallow soils where trees can easily access it. Short duration, high intensity monsoon rains in the late summer exceed infiltration capacity, exploit preferential flow paths and quickly flush through profiles to recharge groundwater and shallow epikarst reservoirs in the underlying bedrock. As epikarst storage increases, a secondary root system is able to begin exploiting the newly available source in the epikarst feature. The contribution of this secondary source manifests in tree water as an integrated mixture of bulk soil water and mobile soil water. Continued use into November of these two water sources by certain trees while others returned to bulk soil water usage suggests spatial variation in epikarst storage and drainage.

  9. The distribution of mercury in a forest floor transect across the central United States

    Treesearch

    Charles H. (Hobie) Perry; Michael C. Amacher; William Cannon; Randall K. Kolka; Laurel Woodruff

    2009-01-01

    Mercury (Hg) stored in soil organic matter may be released when the forest floor is consumed by fire. Our objective is to document the spatial distribution of forest floor Hg for a transect crossing the central United States. Samples collected by the Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis Soil Quality Indicator were tested...

  10. High-resolution mapping and spatial variability of soil organic carbon storage of permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Siewert, Matthias; Hugelius, Gustaf

    2017-04-01

    Permafrost-affected soils store large amounts of soil organic carbon (SOC). Mapping of this SOC provides a first order spatial input variable for research that relates carbon stored in permafrost regions to carbon cycle dynamics. High-resolution satellite imagery is becoming increasingly available even in circum-polar regions. The presented research highlights findings of high-resolution mapping efforts of SOC from five study areas in the northern circum-polar permafrost region. These study areas are located in Siberia (Kytalyk, Spasskaya Pad /Neleger, Lena delta), Northern Sweden (Abisko) and Northwestern Canada (Herschel Island). Our high spatial resolution analyses show how geomorphology has a strong influence on the distribution of SOC. This is organized at different spatial scales. Periglacial landforms and processes dictate local scale SOC distribution due to patterned ground. Such landforms are non-sorted circles and ice-wedge polygons of different age and scale. Palsas and peat plateaus are formed and can cover larger areas in Sub-Arctic environments. Study areas that have not been affected by Pleistocene glaciation feature ice-rich Yedoma sediments that dominate the local relief through thermokarst formation and create landscape scale macro environments that dictate the distribution of SOC. A general trend indicates higher SOC storage in Arctic tundra soils compared to forested Boreal or Sub-Arctic taiga soils. Yet, due to the shallower active layer depth in the Arctic, much of the SOC may be permanently frozen and thus not be available to ecosystem processes. Significantly more SOC is stored in soils compared to vegetation, indicating that vegetation growth and incorporation of the carbon into the plant phytomass alone will not be able to offset SOC released from permafrost. This contribution also addresses advances in thematic mapping methods and digital soil mapping of SOC in permafrost terrain. In particular machine-learning methods, such as support vector machines, artificial neural networks and random forests show promising results as a toolbox for mapping permafrost-affected soils. Yet, these new methods do not decrease our dependency from soil pedon data from the field. In contrary, soil pedon data represents an urgent research priority. Statistical analyses are provided as an indication for best practice of soil pedon sampling for the quantification and the model representation of SOC stored in permafrost-affected soils.

  11. BOREAS TE-1 SSA-Fen Soil Profile Nutrient Data

    NASA Technical Reports Server (NTRS)

    Papagno, Andrea; Anderson, Darwin; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall traniect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains soil profile measurements of various nutrients at the SSA-Fen site. The data were collected from 23-May to 21-Oct- 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites

    NASA Technical Reports Server (NTRS)

    Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.

  13. Microbial community structure and diversity in a municipal solid waste landfill.

    PubMed

    Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui

    2017-08-01

    Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of tree line advance on carbon storage in NW Alaska

    USGS Publications Warehouse

    Wilmking, M.; Harden, J.; Tape, K.

    2006-01-01

    We investigated the size, distribution, and temporal dynamics of ecosystem carbon (C) pools in an area of recent tree line advance, northwest Alaska. Repeat aerial photographs show forest cover increased ???10% in our study area since 1949. We sampled C pools of four principal ecosystem types, tussock tundra, shrub tundra, woodland, and forest, all located on a 600-800 year old river terrace. Significant differences between ecosystem C pools, both above ground and below ground existed. Tundra sites store >22.2 kg C/m2, shrub tundra sites and woodland sites store 9.7 kg C/m2 and 14.3 kg C/m2, respectively, and forest sites store 14.4 kg C/m2. Landscape variation of total ecosystem C was primarily due to organic soil C and was secondarily due to C stored in trees. Soil C/N profiles of shrub tundra sites and woodland sites showed similarities with forest site soils at surface and tundra site soils at depth. We hypothesize that tundra systems transformed to forest systems in this area under a progression of permafrost degradation and enhanced drainage. On the basis of C pool estimates for the different ecosystem types, conversion of tundra sites to forest may have resulted in a net loss of > 7.8 kg C/m2, since aboveground C gains were more than offset by belowground C losses to decomposition in the tundra sites. Tree line advance therefore might not increase C storage in high-latitude ecosystems and thus might not, as previously suggested, act as a negative feedback to warming. Key to this hypothesis and to its projection to future climate response is the fate of soil carbon upon warming and permafrost drainage. Copyright 2006 by the American Geophysical Union.

  15. Soiled-bedding Sentinel Detection of Murine Norovirus 4

    PubMed Central

    Manuel, Christopher A; Hsu, Charlie C; Riley, Lela K; Livingston, Robert S

    2008-01-01

    According to serologic surveys, murine norovirus (MNV) is the most prevalent viral pathogen infecting mice used in biomedical research. However, the use of sentinel mice to detect MNV-infected mouse populations has not been evaluated thoroughly. To this end, an experimental method of soiled bedding transfer was created to mimic a quarterly sentinel monitoring program. Soiled bedding (15 or 30 cm3) from ICR mice experimentally infected with MNV4 was transferred weekly to cages of pair-housed 4-wk-old ICR mice. After 12 wk, both mice in 80% (4 of 5) of cages receiving either 15 or 30 cm3 of soiled bedding were seropositive for MNV and were shedding virus in feces. To evaluate the stability of MNV RNA in mouse feces, fecal pellets from MNV-infected sentinel mice were stored at room temperature for as long as 14 d. After storage, all fecal samples tested positive for MNV by RT-PCR. To determine whether fecal samples could be pooled for MNV detection, 1 MNV-positive fecal pellet was combined with either 9 or 19 MNV-negative fecal pellets. All pooled fecal samples were positive for MNV by RT-PCR at both dilutions. These data indicate that although MNV-infected mouse populations can be detected by exposing sentinel mice to MNV-contaminated bedding, detection failures can occur. In addition, there was high agreement in the MNV infection status of cohoused sentinel mice. These data also demonstrate that MNV is readily detectable in pooled fecal samples and in mouse feces stored at room temperature for 2 wk. PMID:18459710

  16. The rapid measurement of soil carbon stock using near-infrared technology

    NASA Astrophysics Data System (ADS)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  17. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    PubMed Central

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  18. NH4NO3 extractable trace element contents of soil samples prepared for proficiency testing--a stability study.

    PubMed

    Traub, H; Scharf, H

    2001-06-01

    In view of its intended use as a sample for proficiency testing or as a reference material the stability of the extractable trace element contents of a soil from an irrigation field was tested using the extraction with 1 mol/L ammonium nitrate solution according to DIN 19730. Therefore, changes of the extractability of sterilized and non sterilized soil samples stored at different temperatures were evaluated over a period of 18 months. Sets of bottles were kept at -20 degrees C, +4 degrees C, about +20 degrees C and +40 degrees C, respectively. The NH4NO3 extractable contents of Cd, Cr, Cu, Ni, Pb and Zn were determined immediately after bottling and then after 3, 6, 12 and 18 months with ICP-AES or ETAAS. Appropriate storage conditions are of utmost importance to prevent deterioration of soil samples prepared for the determination of NH4NO3 extractable trace element contents. Temperatures above +20 degrees C must be avoided. The observed changes in the extractability of the metals (especially for Cr and Cu) most likely could be related to thermal degradation of the organic matter of the soil. There is no need to sterilize dry soil samples, because microbiological activity in soils with a low moisture content appears to be negligible with regard to trace element mobilization.

  19. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees

    PubMed Central

    Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.

    2015-01-01

    Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675

  20. BOREAS TE-1 CH4 Flux Data Over The SSA-OA

    NASA Technical Reports Server (NTRS)

    Anderson, Darwin; Papagno, Andrea; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains methane flux and soil profile methane concentration values from the SSA-OA site. The data were collected from 29-May to 17-Sep-1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    PubMed

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  2. Characteristics of organic matter fractions separated by wet-sieving and differences in density from five soils of different pedogenesis under mature beech forest.

    NASA Astrophysics Data System (ADS)

    Vormstein, Svendja; Kaiser, Michael; Ludwig, Bernard

    2017-04-01

    Forest top- and subsoil account for approximately 70 % of the organic C (OC) globally stored in soil reasoning their large importance for terrestrial ecosystem services such as the mitigation of climate change. In contrast to forest topsoil, there is much less information about the decomposition and stabilization of organic matter (OM) in subsoil. Therefore, we sampled the pedogenetic horizons of five soils under mature beech forest developed on different parent material (i.e. Tertiary Sand, Loess, Basalt, Lime Stone, Red Sandstone) down to the bedrock. The bulk soil samples were characterized for texture, oxalate and dithionite soluble Fe and Al, pH, OC, microbial biomass C and basal respiration (cumulative CO2 emission after 7 and 14 days). Furthermore, we analyzed aggregate size fractions separated by wet-sieving (i.e. >1000 µm, 1000-250 µm, 250-53 µm, <53 µm) and density fractions separated using NaPT (i.e. light, occluded light, and heavy fraction) from the soil horizon specific samples. The OC of the topsoil (Ah horizon) on Lime Stone and Red Sandstone was predominately stored in the larger macro-aggregates (>1000 µm). In contrast, the major part of the topsoil OC on Basalt and Tertiary Sand was found in the smaller macro-aggregates (1000-250 µm). For the topsoil samples, we found that the basal respiration as well as the microbial biomass C were positively correlated (p ≤0.05) with the OC amounts associated with the free and occluded light fraction and with the macro-aggregates (1000-250 µm) and micro-aggregates (250-53 µm) suggesting these fractions to store the major part of the easily decomposable OM. The OC amount associated with the heavy fraction and the fraction <53 µm was correlated with the contents of oxalate and dithionite soluble Fe and Al suggesting interactions between organic compounds and Fe- and Al-oxides to be highly important for the OM stabilization in forest topsoil. In the subsoil (horizons below the Ah), the contribution of the OC associated with the aggregate size fractions <250 µm to the OC stored in the subsoil increased with depth. The OC contents associated with the free and occluded light as well as the heavy fraction and with the aggregate size fractions >53 µm were positively correlated with basal respiration and the microbial biomass C. This suggests, in contrast to the topsoil, the easily decomposable OM to be distributed more homogeneously among fractions. Only the OC content of the <53 µm fraction showed positive correlations to soil mineral characteristics such as the contents of clay oxalate and dithionite soluble Fe or Al and no relationship to the basal respiration and microbial biomass C. This indicates the OM associated with this fraction to be most diagnostic for the amount of OC stabilized against microbial decay in the subsoil and interactions between OM and oxides as well as layer silicates to be relevant stabilization mechanisms. The results point toward similar OM stabilization mechanisms in the analysed forest top- and subsoils but revealed differences in the distribution of easily decomposable OM within the soil matrix.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B.B.; Ripp, J.; Sims, R.C.

    The Electric Power Research Institute (EPRI) is studying the environmental impact of preservatives associated with in-service utility poles. As part of this endeavor, two EPRI contractors, META Environmental, Inc. (META) and Atlantic Environmental Services, Inc. (Atlantic), have collected soil samples from around wood utility poles nationwide, for various chemical and physical analyses. This report covers the results for 107 pole sites in the US. These pole sites included a range of preservative types, soil types, wood types, pole sizes, and in-service ages. The poles in this study were preserved with one of two types of preservative: pentachlorophenol (PCP) or creosote.more » Approximately 40 to 50 soil samples were collected from each wood pole site in this study. The soil samples collected from the pole sites were analyzed for chlorinated phenols and total petroleum hydrocarbons (TPH) if the pole was preserved with PCP, or for polycyclic aromatic hydrocarbons (PAHs) if the pole was preserved with creosote. The soil samples were also analyzed for physical/chemical parameters, such as pH, total organic carbon (TOC), and cationic exchange capacity (CEC). Additional samples were used in studies to determine biological degradation rates, and soil-water distribution and retardation coefficients of PCP in site soils. Methods of analysis followed standard EPA and ASTM methods, with some modifications in the chemical analyses to enable the efficient processing of many samples with sufficiently low detection limits for this study. All chemical, physical, and site-specific data were stored in a relational computer database.« less

  4. Geochemical baseline studies of soil in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  5. Carbon Content of Managed Grasslands Under Mediterranean Climate and Implications for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Owen, J. J.; Silver, W. L.

    2012-12-01

    Grasslands cover approximately 25% of the terrestrial land surface and typically have considerable carbon (C) storage potential in soils. Human activities have the potential to release or increase C stored in grassland soils. In California, where half the land area is comprised of grasslands, soil C content spans almost an order of magnitude and is not well correlated with climate. The role of management practices in these patterns has not been previously explored. We measured soil C pools and soil physical characteristics at 10 grazed grassland sites in Marin and Sonoma counties in California. At each site, 2 to 3 fields with similar soil units but under different management practices (including manure amendment, tilling, irrigation, and seeding) were sampled at intervals to 50 cm-depth. Soil C varied by a factor of 2 and manure additions tended to increase soil C content by 3 to 15%. Manure additions did not always increase soil C, however. Grazed but otherwise undisturbed conservation land at one site had higher soil C than the adjacent manured fields. This was likely due to the presence of tall grasses and scattered shrubs on the conservation land versus the ryegrass, orchard grass, and clover seeded on the other fields. Variations were greater between sites than between fields at the same site. Soil C percentage decreased with depth but typically more than half of the total soil C content was located below 10-cm-depth, as observed elsewhere in California. We found that California grasslands perform an important ecosystem service by storing C in soil. Management through manure addition can increase that storage, the amount of which primarily depends on climate and soil texture.

  6. Soil organic carbon quality in forested mineral wetlands at different mean annual temperature.

    Treesearch

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka; Carl C. Trettin

    2009-01-01

    Forested mineral soil wetlands (FMSW) store large stocks of soil organic carbon (SOC), but little is known on: (i) whether the quality of SOC stored in these soils (proportion of active versus more resistant SOC compounds) differs from SOC in upland soils; (ii) how the quality of SOC in FMSW varies with mean annual temperature (MAT); and (iii) whether SOC decomposition...

  7. Using Mid Infrared Spectroscopy to Predict the Decomposability of Soil Organic Matter Stored in Arctic Tundra Soils

    USDA-ARS?s Scientific Manuscript database

    The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better unde...

  8. Dioxin reservoirs in southern Viet Nam--a legacy of Agent Orange.

    PubMed

    Dwernychuk, L Wayne; Cau, Hoang Dinh; Hatfield, Christopher T; Boivin, Thomas G; Hung, Tran Manh; Dung, Phung Tri; Thai, Nguyen Dinh

    2002-04-01

    In the isolated Aluoi Valley of central Viet Nam, very high levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were measured in soil, fish fat, duck fat, pooled human blood and breast milk samples collected from A So village between 1996 and 1999. The village was situated on a former military base occupied by US Special Forces between 1963 and 1966. TCDD was a contaminant of the herbicide "Agent Orange", aerially sprayed in the valley between 1965 and 1970, and stored at the A So base. Measured levels were lower near the sites of two other former US bases in the valley which had been occupied for shorter periods of time. In areas where Agent Orange had been applied by low-flying aircraft, levels of TCDD in soil, food and human samples were elevated, but lower than those near the three former US bases. We confirm the apparent food chain transfer of TCDD from contaminated soil to cultured fish pond sediments to fish and duck tissues, then to humans as measured in whole blood and breast milk. We theorize that the Aluoi Valley is a microcosm of southern Viet Nam, where numerous reservoirs of TCDD exist in the soil of former military installations south of the former demilitarized zone. Large quantities of Agent Orange were stored at many sites, used in ground and aerial applications, and spilled. TCDD, through various forms of soil disturbance, can be mobilized from these reservoirs after decades below the surface, and subsequently, introduced into the human food chain.

  9. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    NASA Astrophysics Data System (ADS)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.

  10. Soil processes at Emerald Lake Watershed. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, L.J.; Brown, A.D.; Lueking, M.A.

    1987-04-20

    The objectives of the Soils Processes research at Emerald Lake Watershed (ELW) were to assess physical, chemical and biological processes contributing to the production or consumption of acidity in soils and to assess the net effect of soil processes on surface-water quality in an alpine watershed. Most of the N and S in ELW soils is stored in organic forms. Most of the soil P is present in nearly insoluble mineral forms. The ELW soils can adsorb only small quantities of sulfate, thus their capacity for buffering acid additions by sulfate adsorption is low. Concentrations of Al, Ca, Mg, K,more » and Na in both soil solution and stream samples reflected patterns of mineral weathering in the watershed. Summer CO/sub 2/ concentrations in the soils were high enough to increase soil solution acidity and influence the speciation of dissolved elements. The overall chemistry of stream waters reflects the mineral composition of soils and rocks at ELW.« less

  11. Physicochemical properties of soils in the sago palm (Metroxylon spp.) growing area of Surat Thani province Thailand

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Sparrow, E. B.; Fochesatto, G. J.

    2016-12-01

    Sago palm is one of the most important plants for sustainable agriculture and rural development in tropical swampy and peaty soils. Where no major crops can grow without drainage or soil improvement. It stores large quantities of starch which can be further processed into various basic raw materials for food, animal feed, industrial uses and alternative energy. This study aims to investigate the physicochemical properties of soil across the sago palm growing areas at Surat Thani province Thailand, where major of sago palms growth naturally exists. The soil samples from three districts Khiri Rat Nikhom (KR; 9 sampling sites), Kanchanadit (KD; 5 sampling sites), and Khian Sa (KS; 2 sampling sites) were studied and compared at 0-15 cm depth during March to June 2016. Observations indicated that the physicochemical properties of soil varied in each growing area. Soil bulk densities averages were lower in KD (0.52 g cm-3) than those in KR (0.58 g cm-3) and KS (0.57 g cm-3). Soil texture around KD and KS were dominated by silty loam. While in KR soil texture was dominated by sandy loam. The average soil conductivity in KS (5.68 mS m-1) was higher than KR (2.62 mS m-1) and KD (1.65 mS m-1). Furthermore, we found the sago palms grow well in a range of soil pH from 5.52 to 7.15, average soil pH: KS (6.8) and KD (6.96), while acid in KR (5.84). We also discuss the conservation activities to adequately protect sago palm, most of which are significantly threatened by habitat destruction and unsustainable harvesting.

  12. Soil Carbon in North American, Arctic, and Boreal Regions

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Bailey, V. L.; Schuur, E.; McGuire, D.; Romanovsky, V. E.

    2017-12-01

    Globally, soils contain more than 3 times as much as C as the atmosphere and >4 times more C than the world's biota, therefore even small changes in soil C stocks could lead to large changes in the atmospheric concentration of CO2. Since SOCCR-1, improvements have been made in quantifying stocks and uncertainties in stocks of soil C to a depth of 1 m across North America. Estimates for soil carbon stocks in the US (CONUS + Alaska) range from 151 - 162 Pg C, based on extensive sampling and analysis. Estimates for Canada average about 262 Pg C, but sampling is not as extensive. Soil C for Mexico is calculated as 18 Pg C, but there is a great deal of uncertainty surrounding this value. These soil carbon stocks are sensitive to agricultural management, land use and land cover change, and development and loss of C-rich soils such as wetlands. Climate change is a significant threat although may be partially mitigated by increased plant production. Carbon stored in permafrost zone circumpolar soils is equal to 1330-1580 Pg C, almost twice that contained in the atmosphere and about order of magnitude greater than carbon contained in plant biomass, woody debris, and litter in the boreal and tundra biomes combined. Surface air temperature change is amplified in high latitude regions such that Arctic temperature rise is about 2.5 times faster than for the globe as a whole, and thus 5 - 15% of this carbon is considered vulnerable to release to the atmosphere by the year 2100 following the current trajectory of global and Arctic warming. This amount is likely to be up to an order of magnitude larger loss than the increase in carbon stored in plant biomass under the same changing conditions. Models of soil organic matter dynamics have been greatly improved in the last decade by including greater process-level understanding of factors that affect soil C stabilization and destabilization, yet structural features of many models are still limited in representing Arctic and boreal zone processes.

  13. What the soil reveals: potential total ecosystem C stores of the Pacific Northwest region, USA.

    Treesearch

    Peter S. Homann; Mark Harmon; Suzanne Remillard; Erica A.H. Smithwick

    2005-01-01

    How much organic C can a region naturally store in its ecosystems? How can this be determined, when land management has altered the vegetation of the landscape substantially? The answers may lie in the soil: this study synthesized the spatial distribution of soil properties derived from the state soils geographic database with empirical measurements of old-growth...

  14. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.

    2000-09-01

    f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficialmore » use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity.« less

  15. Survival of rhizobia in two soils as influenced by storage conditions.

    PubMed

    Martyniuk, Stefan; Oroń, Jadwiga

    2008-01-01

    Two soils were kept moist at 4 degrees C, -20 degrees C or air-dried at 20-22 degrees C and after one week, one month, two months and six months of storage at these conditions changes in soil populations of Rhizobium leguminosarum bv. trifolii (Rlt) and Rhizobium leguminosarum bv. viciae (Rlv) were examined. In one air-dried soil (from Grab6w) markedly lower numbers of both Rlt and Rlv., as compared to the refrigerated or frozen samples, were found already after 1 week of storage. In the case of the second soil (from Osiny) air-drying significantly reduced numbers of the rhizobia after 2 and 6 months of storage. The soil from Osiny contained higher amounts of C org, total N and clay than the Grabów soil. Both soils stored moist in a refrigerator (4 degrees C) or frozen (-20 degrees C) retained similar populations of the examined rhizobia throughout the entire storage period, indicating that soil freezing is not detrimental for the examined rhizobia.

  16. BOREAS TE-1 CO2 and CH4 Flux Data Over the SSA-OBS Site

    NASA Technical Reports Server (NTRS)

    Anderson, Darwin; Papagno, Andrea; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains carbon dioxide and methane flux values from the SSA-OBS site. The data were collected from 09-Jun to 04-Sep-1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  17. Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment

    Treesearch

    Mark B. Green; Bethany K. Laursen; John L. Campbell; Kevin J. McGuire; Eric P. Kelsey

    2015-01-01

    Stable water isotopes provide a means of tracing many hydrologic processes, including poorly understood dynamics like soil water interactions with the atmosphere. We present a four-year dataset of biweekly water isotope samples from eight fluxes and stores in a headwater catchment at the Hubbard Brook Experimental Forest, New Hampshire, USA. We use Dansgaard's...

  18. Germination and Seed Bank Studies of Macbridea alba (Lamiaceae), a Federally Theatened Plant

    Treesearch

    Dana Madsen Schulze; John L. Walker; Timothy P. Spira

    2002-01-01

    Macbridea alba (Lamiaceae) is a Federally threatened plant endemic to Florida. Seedlings are rarely observed in natural populations, but seed production has been documented. We assessed the germinability of dry-stored seeds and of experimentally buried seeds, and sampled soil to detect a persistent seed bank.More than 20% of recorded seeds...

  19. Concentration and age of DOC transported from thawing permafrost soils into Arctic headwater streams

    NASA Astrophysics Data System (ADS)

    Romano, E. L.; Wickland, K.; Ebert, C.; Schuur, E.

    2017-12-01

    As Arctic permafrost stability decreases due to global climate change, hydrologic dynamics in catchments underlain by permafrost are expected to shift. The thickness of seasonally thawed surface soils is an important driver of the extent to which carbon (C) that was previously stored as frozen soil organic carbon (SOC) will be transported laterally as dissolved organic carbon (DOC). The concentration and radiocarbon (14C) age of newly thawed DOC that moves downslope through tundra soils and is delivered to headwater streams is an important indicator of changing C dynamics. Understanding the timing and quantity of C loss in this form is imperative for greenhouse gas emission and soil C stock estimates, as well as predicting the impact of permafrost thaw on aquatic ecosystems. In this study we examined the relationship between DOC concentrations, 14C-DOC, and active layer thickness (ALT) in thawing soils over time. Water samples were collected once in July 2016 and weekly in 2017 from late May to late August from wells within a long-term tundra soil warming experiment (n=36), located in a discontinuous permafrost zone in Interior Alaska. Preliminary data from 2016 shows average maximum ALT at wells within the warming treatment of 68.9 cm, while wells from control averaged 86.6 cm. 2016 water sample data from wells within the warming treatment showed higher mean DOC concentrations (103.1 ± 32.5 mg/L) and older 14C-DOC values (-28.7 ± 21.1 ‰) than samples from the control (44.5 ± 3.0 mg/L and 11.3 ± 8.6 ‰). To assess inter-annual changes in DOC delivery to local headwater streams, DOC concentration and 14C-DOC were also measured on water samples taken in late summer of 2007, 2008, and 2016 from streams within the watershed surrounding the experimental sites. Weekly sampling in 2017 allowed analysis of seasonal patterns of DOC concentration for that year. Values increased slightly over time at some stream sites (ranging from 4-33 mg/L in 2012 to 2-80 mg/L in 2016). Seasonal and inter-annual permafrost thaw appears to drive the release of previously stored old C in the form of DOC, which increases downslope mobility. In-situ terrestrial greenhouse gas emission estimates may therefore underestimate C losses, especially when precipitation is high or early in the season when spring snowmelt and shallow ALT promote lateral transport of DOC.

  20. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are found, while a change in aboveground vegetation type can have large effects on SOC accumulation. Moreover, as these marsh soils have been dated before, the observed depth patterns in SOC can be linked to historical changes (e.g. changes in vegetation). A calibrated model simulating sediment deposition in these marshes is coupled to a two-pool OC model to study the effect of sediment deposition rate on the fate of SOC, with most input information being collected at the field sites. This allows us to calculate the residence time of OC in these tidal marsh soils, a measure that is very uncertain, also for other ecosystems. The part concerning modelling is however still under progress at the moment of writing. This study shows to which extent OC stocks and dynamics of tidal marsh soils along a temperate estuary are controlled by 1) the amount and quality of OC input and 2) the contribution from different sources of OC, and uses these finding to construct a 1D model to simulate these dynamics through time.

  1. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    NASA Astrophysics Data System (ADS)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  2. Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a -20°C stored moss sample.

    PubMed

    Kagoshima, H; Kito, K; Aizu, T; Shin-i, T; Kanda, H; Kobayashi, S; Toyoda, A; Fujiyama, A; Kohara, Y; Convey, P; Niki, H

    2012-01-01

    It is not clear for how long Antarctic soil nematodes might tolerate freezing. Samples of the Antarctic moss, Bryum argenteum, were collected on 1 October 1983 at Langhovde, Soya coast, eastern Antarctica and were stored at -20°C. After 25.5 years of storage, living nematodes were recovered from the samples and were identified as Plectus murrayi by morphological examination and nucleotide sequencing of ribosomal RNA loci. The nematodes can grow and reproduce in a water agar plate with bacteria (mainly Pseudomonas sp.) cultured from the moss extract. They showed freezing tolerance at -20°C and -80°C and their survival rate after exposure to -20°C, but not -80°C, was increased if they were initially frozen slowly at a high sub-zero temperature. They also showed some ability to tolerate desiccation stress.

  3. Long-lasting stability of vaccinia virus (orthopoxvirus) in food and environmental samples.

    PubMed

    Essbauer, S; Meyer, H; Porsch-Ozcürümez, M; Pfeffer, M

    2007-01-01

    Poxviruses are known to remain infectious in the scabs of patients for months to years. The aim of this study was to investigate viral stability in storm water, food or gauze spiked with vaccinia virus strain Munich 1 (VACV M1). Storm water, storm water supplemented with either fetal calf serum (FCS) or potting soil was stored at two different temperatures (refrigerator, room temperature; 4 degrees C/25 degrees C). In addition, we analysed the viability of VACV M1 on the surface of bread, salad, sausages and gauze bandages stored at 4 degrees C. Samples were titrated in MA 104 cells and the presence of viral DNA was demonstrated by orthopoxvirus-specific PCRs. After 2 weeks, reisolation of VACV M1 from all kinds of food, bandage and water samples except for storm water supplemented with potting soil was possible. Viral DNA was detected in almost all samples by PCR. Prolonged experiments with VACV M1-spiked storm water and storm water supplemented with FCS revealed that samples kept at 4.5 degrees C are infectious for up to 166 days. Our data demonstrate that VACV M1 has a longlasting stability in water and food. The results obtained during this study should be taken into account for risk assessment calculations for poxvirus transmission. Implying that variola virus and vaccinia virus behave in a similar way, our data call for sophisticated countermeasures in cases of a variola release in biological warfare.

  4. Carbon Storage in US Wetlands.

    EPA Science Inventory

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. ...

  5. Organic Carbon and Nitrogen Storages of Soils Overlying Yedoma Deposits in the Lena River Delta

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Sebastian; Kutzbach, Lars; Desiatkin, Aleksei; Pfeiffer, Eva-Maria

    2016-04-01

    The Lena River Delta (LRD) is located in northeast Siberia and extends over a soil covered area of around 21,500 km2. LRD likely stores more than half of the entire soil organic carbon (SOC) mass stored in deltas affected by permafrost. LRD consists of several geomorphic units. Recent studies showed that the spatially dominating Holocene units of the LRD (61 % of the area) store around 240 Tg of SOC and 12 Tg of nitrogen (N) within the first meter of ground. These units are a river terrace dominated by wet sedge polygons and the active floodplains. About 50 % of these reported storages are located in the perennially frozen ground below 50 cm depth and are excluded from intense biogeochemical exchange with the atmosphere today. However, these storages are likely to be mineralised in near future due to the projected temperature increases in this region. A substantial part of the LRD (1,712 km2) belongs to the so-called Yedoma Region, which formed during the Late Pleistocene. This oldest unit of the LRD is characterised by extensive plains incised by thermo-erosional valleys and large thermokarst depressions. Such depressions are called Alases and cover around 20 % of the area. Yedoma deposits in the LDR are known to store high amounts of SOC. However, within the LRD no detailed spatial studies on SOC and N in the soils overlying Yedoma and thermokarst depressions were carried out so far. We present here our "investigation in progress" on soils in these landscape units of the LRD. Our first estimates, based on 69 pedons sampled in 2008, show that the mean SOC stocks for the upper 30 cm of soils on both units were estimated at 13.0 kg m2 ± 4.8 kg m2 on the Yedoma surfaces and at 13.1 kg m2 ± 3.8 kg m2 in the Alases. The stocks of N were estimated at 0.69 kg m2 ± 0.25 kg m2and at 0.70 kg m2 ± 0.18 kg m2 on the Yedoma surfaces and in the Alases, respectively. The estimated SOC and N pools for the depth of 30 cm within the investigated part of the LRD add to 20.9 Tg and 1.1 Tg, respectively. The Yedoma surfaces (1,313 km2) store 17.1 ± 6.3 Tg SOC and 0.9 ± 0.3 Tg N, whereas the Alases (287 km2) store 3.8 ± 1.1 Tg SOC and 0.2 ± 0.05 Tg N within the investigated depth of 30 cm. Further analyses of the soil core material collected in 2013 will provide SOC and N pool estimates for a depth of 100 cm including both, the seasonally active layer and the perennially frozen ground. With continuing advanced analyses of an available digital elevation model, slopes will be designated with their extents and inclinations since the planar extents of slopes derived from satellite imagery do not correspond to the actual slope soil surface area, which is vital for spatial SOC and N storage calculations as well as trace gas release estimates. The actual soil surface area of slopes will be calculated prior to result extrapolations.

  6. Organic Carbon Deposits of Soils Overlying the Ice Complex in the Lena River Delta

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Sebastian; Pfeiffer, Eva-Maria; Kutzbach, Lars; Desiatkin, Aleksei

    2017-04-01

    The Lena River Delta (LRD) is located in northeast Siberia and extends over a soil covered area of around 21,500 km2. LRD likely stores more than half of the entire soil organic carbon (SOC) mass stored in deltas affected by permafrost. LRD consists of several geomorphic units. Recent studies showed that the spatially dominating Holocene units of the LRD (61 % of the area) store around 240 Tg of SOC and 12 Tg of nitrogen (N) within the first meter of ground. These units are a river terrace dominated by wet sedge polygons and the active floodplains. About 50 % of these reported storages are located in the perennially frozen ground below 50 cm depth and are excluded from intense biogeochemical exchange with the atmosphere today. However, these storages are likely to be mineralized in near future due to the projected temperature increases in this region. A substantial part of the LRD (1,712 km2) belongs to the so-called Ice Complex (Yedoma) Region, which formed during the Late Pleistocene. This oldest unit of the LRD is characterized by extensive plains incised by thermo-erosional valleys and large thermokarst depressions. Such depressions are called Alases and cover around 20 % of the area. Ice Complex deposits in the LDR are known to store high amounts of SOC. However, within the LRD no detailed spatial studies on SOC and N in the soils overlying Ice Complex and thermokarst depressions were carried out so far. We present here our "investigation in progress" on soils in these landscape units of the LRD. Our first estimates, based on 69 pedons sampled in 2008, show that the mean SOC stocks for the upper 30 cm of soils on both units were estimated at 13.0 kg m2 ± 4.8 kg m2 on the Ice Complex surfaces and at 13.1 kg m2 ± 3.8 kg m2 in the Alases. The stocks of N were estimated at 0.69 kg m2 ± 0.25 kg m2 and at 0.70 kg m2 ± 0.18 kg m2 on the Ice Complex surfaces and in the Alases, respectively. The estimated SOC and N pools for the depth of 30 cm within the investigated part of the LRD add to 20.9 Tg and 1.1 Tg, respectively. The Ice Complex surfaces (1,313 km2) store 17.1 ± 6.3 Tg SOC and 0.9 ± 0.3 Tg N, whereas the Alases (287 km2) store 3.8 ± 1.1 Tg SOC and 0.2 ± 0.05 Tg N within the investigated depth of 30 cm. Further analyses of the soil core material collected in 2015 will provide SOC and N pool estimates for a depth of 100 cm including both, the seasonally active layer and the perennially frozen ground. With continuing advanced analyses of an available digital elevation model, slopes will be designated with their extents and inclinations since the planar extents of slopes derived from satellite imagery do not correspond to the actual slope soil surface area, which is vital for spatial SOC and N storage calculations as well as trace gas release estimates. The actual soil surface area of slopes will be calculated prior to result extrapolations.

  7. Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.

    Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gasmore » flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.« less

  8. Large uncertainty in permafrost carbon stocks due to hillslope soil deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelef, Eitan; Rowland, Joel C.; Wilson, Cathy J.

    Here, northern circumpolar permafrost soils contain more than a third of the global Soil Organic Carbon pool (SOC). The sensitivity of this carbon pool to a changing climate is a primary source of uncertainty in simulationbased climate projections. These projections, however, do not account for the accumulation of soil deposits at the base of hillslopes (hill-toes), and the influence of this accumulation on the distribution, sequestration, and decomposition of SOC in landscapes affected by permafrost. Here we combine topographic models with soil-profile data and topographic analysis to evaluate the quantity and uncertainty of SOC mass stored in perennially frozen hill-toemore » soil deposits. We show that in Alaska this SOC mass introduces an uncertainty that is > 200% than state-wide estimates of SOC stocks (77 PgC), and that a similarly large uncertainty may also pertain at a circumpolar scale. Soil sampling and geophysical-imaging efforts that target hill-toe deposits can help constrain this large uncertainty.« less

  9. Large uncertainty in permafrost carbon stocks due to hillslope soil deposits

    DOE PAGES

    Shelef, Eitan; Rowland, Joel C.; Wilson, Cathy J.; ...

    2017-05-31

    Here, northern circumpolar permafrost soils contain more than a third of the global Soil Organic Carbon pool (SOC). The sensitivity of this carbon pool to a changing climate is a primary source of uncertainty in simulationbased climate projections. These projections, however, do not account for the accumulation of soil deposits at the base of hillslopes (hill-toes), and the influence of this accumulation on the distribution, sequestration, and decomposition of SOC in landscapes affected by permafrost. Here we combine topographic models with soil-profile data and topographic analysis to evaluate the quantity and uncertainty of SOC mass stored in perennially frozen hill-toemore » soil deposits. We show that in Alaska this SOC mass introduces an uncertainty that is > 200% than state-wide estimates of SOC stocks (77 PgC), and that a similarly large uncertainty may also pertain at a circumpolar scale. Soil sampling and geophysical-imaging efforts that target hill-toe deposits can help constrain this large uncertainty.« less

  10. BOREAS TGB-12 Rn-222 Flux Data over the NSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara K.; Trumbore, Susan; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. Sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of carbon in new moss growth could be determined. All the data are used to 1) calculate the inventory of carbon and nitrogen in moss and mineral soil layers at NSA sites, 2) determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data), and 3) link changes in soil respiration rate to shifts in the C-14 content of soil CO2 to determine the average "age" respired CO2. These Rn-222 flux data were collected from 15-Nov-1993 to 16-Aug-1994 over the NSA sites. The data in this data set are stored in tabular ASCII files.

  11. Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany

    NASA Astrophysics Data System (ADS)

    Medinski, T.; Freese, D.

    2012-04-01

    Alley-cropping system is seen as a viable land-use practice for mitigation of greenhouse gas CO2, energy-wood production and soil carbon sequestration. The extent to which carbon is stored in soil varies between ecosystems, and depends on tree species, soil types and on the extent of physical protection of carbon within soil aggregates. This study investigates soil carbon sequestration at alley-cropping systems presented by alleys of fast growing tree species (black locust and poplar) and maize, in Brandenburg, Eastern Germany. Carbon accumulation and turnover are assessed by measuring carbon fractions differing in decomposition rates. For this purpose soil samples were fractionated into labile and recalcitrant soil-size fractions by wet-sieving: macro (>250 µm), micro (53-250 µm) and clay + silt (<53 µm), followed by determination of organic carbon and nitrogen by gas-chromatography. Soil samples were also analysed for the total C&N content, cold-water extractable OC, and microbial C. Litter decomposition was evaluated by litter bags experiment. Soil CO2 flux was measured by LiCor automated device LI-8100A. No differences for the total and stable (clay+silt, <53 µm) carbon fraction were observed between treatment. While cold water-extractable carbon was significantly higher at maize alley compared to black locust alley. This may indicate faster turnover of organic matter at maize alley due to tillage, which influenced greater incorporation of plant residues into the soil, greater soil respiration and microbial activity.

  12. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.

    PubMed

    Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A

    2016-11-01

    Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Some Remarks on Practical Aspects of Laboratory Testing of Deep Soil Mixing Composites Achieved in Organic Soils

    NASA Astrophysics Data System (ADS)

    Kanty, Piotr; Rybak, Jarosław; Stefaniuk, Damian

    2017-10-01

    This paper presents the results of laboratory testing of organic soil-cement samples are presented in the paper. The research program continues previously reported the authors’ experiences with cement-fly ash-soil sample testing. Over 100 of compression and a dozen of tension tests have been carried out altogether. Several samples were waiting for failure test for over one year after they were formed. Several factors, like: the large amount of the tested samples, a long observation time, carrying out the tests in complex cycles of loading and the possibility of registering the loads and deformation in the axial and lateral direction - have made it possible to take into consideration numerous interdependencies, three of which have been presented in this work: the increments of compression strength, the stiffness of soil-cement in relation to strength and the tensile strength. Compressive strength, elastic modulus and tensile resistance of cubic samples were examined. Samples were mixed and stored in the laboratory conditions. Further numerical analysis in the Finite Element Method numerical code Z_Soil, were performed on the basis of laboratory test results. Computations prove that cement-based stabilization of organic soil brings serious risks (in terms of material capacity and stiffness) and Deep Soil Mixing technology should not be recommended for achieving it. The numerical analysis presented in the study below includes only one type of organic and sandy soil and several possible geometric combinations. Despite that, it clearly points to the fact that designing the DSM columns in the organic soil may be linked with a considerable risk and the settlement may reach too high values. During in situ mixing, the organic material surrounded by sand layers surely mixes with one another in certain areas. However, it has not been examined and it is difficult to assume such mixing already at the designing stage. In case of designing the DSM columns which goes through a thin layer of organic soil it is recommended to carry out each time the core drilling which checks the degree of material mixing and their strength.

  14. Fate and transport of plutonium-239 + 240 and Americium-241 in the soil of Rocky Flats, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litaor, M.I.; Barth, G.R.; Zika, E.M.

    1996-07-01

    Actinides contamination of soils around Rocky Flats, CO, resulted from leaking drums of Pu-contaminated oil stored at an outdoor site. The transport of these actinides through the soil to groundwater was studied using an advanced monitoring system (MS). The fully automated, remotely controlled MS gathered real-time data on soil water content, groundwater level, and timing of gravitationally flowing water. Controlled rain simulations coupled with measurements of volume flux and actinide activities provided essential information about the fate and transport of Pu-239 + 240 and Am-241. Volume fluxes at most sampling locations were similar, regardless of the antecedent moisture or themore » duration, frequency, and intensity of the simulated rain. Actinide activities were not correlated with the measured volume flux, or the duration, frequency, and intensity of the simulated rain. Flow was facilitated primarily via macropore channeling. The relatively short residence time precluded a continuous interaction between the soil and the flowing water, which minimized the movement of actinides in the soil. Actinide activities in the interstitial water collected from the upper 20 cm of the soil were significantly higher (P>0.001) than water collected at deeper sampling depths (20-70 cm). Actinide activity in water samples from the deepest sampling depth (40-70 cm) did not exceed 0.4 Bq/L. These results suggest that, under the experimental conditions, the movement of actinides was restricted to the top 20 cm. A transport mechanism involving discrete Pu oxide particles, coupled with macropore channeling is proposed to explain the observed actinide activities in the soil. 31 refs., 6 figs., 7 tabs.« less

  15. Digging a Little Deeper: Microbial Communities, Molecular Composition and Soil Organic Matter Turnover along Tropical Forest Soil Depth Profiles

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.

    2016-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to <0.5% at 140cm depth. High-throughput sequencing highlighted distinct microbial communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these tropical subsoils contain small but metabolically active microbial communities that are highly OM limited and may persist via degradation of recent inputs.

  16. BOREAS TGB-12 Soil Carbon Data over the NSA

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Harden, Jennifer; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. TGB-12 data sets include soil properties at tower and selected auxiliary sites in the BOREAS NSA and data on the seasonal variations in the radiocarbon content of CO2 in the soil atmosphere at NSA tower sites. The sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of C in areas of moss regrowth could be determined. These data are used to calculate the inventory of C and N in moss and mineral soil layers at NSA sites and to determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data). This data set includes physical parameters needed to determine carbon and nitrogen inventory in soils. The data were collected discontinuously from August 1993 to July 1996. The data are stored in tabular ASCII files.

  17. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows the prediction of the potential mechanical behaviour of soil crusts generated during soil drying, from initial saturated soil conditions (e.g. waterlogging conditions).

  18. Utilization of microwave energy for decontamination of oil polluted soils.

    PubMed

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  19. Soil data for a collapse-scar bog chronosequence in Koyukuk Flats National Wildlife Refuge, Alaska, 2008

    USGS Publications Warehouse

    O’Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre

    2012-01-01

    Peatlands in the northern permafrost region store large amounts of organic carbon, most of which is currently stored in frozen peat deposits. Recent warming at high-latitudes has accelerated permafrost thaw in peatlands, which will likely result in the loss of soil organic carbon from previously frozen peat deposits to the atmosphere. Here, we report soil organic carbon inventories, soil physical data, and field descriptions from a collapse-scar bog chronosequence located in a peatland ecosystem at Koyukuk Flats National Wildlife Refuge in Alaska.

  20. BOREAS TGB-12 Rn-222 Activity Data over the NSA

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. Sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of carbon in regrowing mosses could be determined. All the data are used to: (1) calculate the inventory of carbon and nitrogen in moss and mineral soil layers at NSA sites, (2) determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data), and (3) link changes in soil respiration rate to shifts in the C-14 content of soil CO2 to determine the average "age" respired CO2 . These Rn-222 activity data were collected from 15-Nov-1993 to 16-Aug-1994 over the NSA sites. They are useful for determining the rate of gas exchange between soil and the overlying atmosphere. The data in this data set are stored in tabular ASCII files.

  1. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica

    USGS Publications Warehouse

    Simas, F.N.B.; Schaefer, C.E.G.R.; Mendonça, E.S.; Silva, I.R.; Santana, R.M.; Ribeiro, A.S.S.

    2007-01-01

    Recent works show that organic matter accumulation in some soils from coastal Antarctica is higher than previously expected. The objective of the present work was to estimate the organic C stocks for soils from maritime Antarctica. Cryosols from subpolar desert landscapes presented the lowest organic C stocks. Ornithogenic soils are the most important C reservoirs in terrestrial ecosystems in this part of Antarctica. Although these soils correspond to only 2.5 % of the ice-free areas at Admiralty Bay, they contain approximately 20 % of the estimated C stock. Most of the organic C in the studied soils is stored in the active layer but in some cases the C is also stored in the permafrost.

  2. Uncertainty in accounting for carbon accumulation following forest harvesting

    NASA Astrophysics Data System (ADS)

    Lilly, P.; Yanai, R. D.; Arthur, M. A.; Bae, K.; Hamburg, S.; Levine, C. R.; Vadeboncoeur, M. A.

    2014-12-01

    Tree biomass and forest soils are both difficult to quantify with confidence, for different reasons. Forest biomass is estimated non-destructively using allometric equations, often from other sites; these equations are difficult to validate. Forest soils are destructively sampled, resulting in little measurement error at a point, but with large sampling error in heterogeneous soil environments, such as in soils developed on glacial till. In this study, we report C contents of biomass and soil pools in northern hardwood stands in replicate plots within replicate stands in 3 age classes following clearcut harvesting (14-19 yr, 26-29 yr, and > 100 yr) at the Bartlett Experimental Forest, USA. The rate of C accumulation in aboveground biomass was ~3 Mg/ha/yr between the young and mid-aged stands and <1 Mg/ha/yr between the mid-aged and mature stands. We propagated model uncertainty through allometric equations, and found errors ranging from 3-7%, depending on the stand. The variation in biomass among plots within stands (6-19%) was always larger than the allometric uncertainties. Soils were described by quantitative soil pits in three plots per stand, excavated by depth increment to the C horizon. Variation in soil mass among pits within stands averaged 28% (coefficient of variation); variation among stands within an age class ranged from 9-25%. Variation in carbon concentrations averaged 27%, mainly because the depth increments contained varying proportions of genetic horizons, in the upper part of the soil profile. Differences across age classes in soil C were not significant, because of the high variability. Uncertainty analysis can help direct the design of monitoring schemes to achieve the greatest confidence in C stores per unit of sampling effort. In the system we studied, more extensive sampling would be the best approach to reducing uncertainty, as natural spatial variation was higher than model or measurement uncertainties.

  3. Alpine Grassland Soil Organic Carbon Stock and Its Uncertainty in the Three Rivers Source Region of the Tibetan Plateau

    PubMed Central

    Chang, Xiaofeng; Wang, Shiping; Cui, Shujuan; Zhu, Xiaoxue; Luo, Caiyun; Zhang, Zhenhua; Wilkes, Andreas

    2014-01-01

    Alpine grassland of the Tibetan Plateau is an important component of global soil organic carbon (SOC) stocks, but insufficient field observations and large spatial heterogeneity leads to great uncertainty in their estimation. In the Three Rivers Source Region (TRSR), alpine grasslands account for more than 75% of the total area. However, the regional carbon (C) stock estimate and their uncertainty have seldom been tested. Here we quantified the regional SOC stock and its uncertainty using 298 soil profiles surveyed from 35 sites across the TRSR during 2006–2008. We showed that the upper soil (0–30 cm depth) in alpine grasslands of the TRSR stores 2.03 Pg C, with a 95% confidence interval ranging from 1.25 to 2.81 Pg C. Alpine meadow soils comprised 73% (i.e. 1.48 Pg C) of the regional SOC estimate, but had the greatest uncertainty at 51%. The statistical power to detect a deviation of 10% uncertainty in grassland C stock was less than 0.50. The required sample size to detect this deviation at a power of 90% was about 6–7 times more than the number of sample sites surveyed. Comparison of our observed SOC density with the corresponding values from the dataset of Yang et al. indicates that these two datasets are comparable. The combined dataset did not reduce the uncertainty in the estimate of the regional grassland soil C stock. This result could be mainly explained by the underrepresentation of sampling sites in large areas with poor accessibility. Further research to improve the regional SOC stock estimate should optimize sampling strategy by considering the number of samples and their spatial distribution. PMID:24819054

  4. A laboratory procedure for measuring and georeferencing soil colour

    NASA Astrophysics Data System (ADS)

    Marques-Mateu, A.; Balaguer-Puig, M.; Moreno-Ramon, H.; Ibanez-Asensio, S.

    2015-04-01

    Remote sensing and geospatial applications very often require ground truth data to assess outcomes from spatial analyses or environmental models. Those data sets, however, may be difficult to collect in proper format or may even be unavailable. In the particular case of soil colour the collection of reliable ground data can be cumbersome due to measuring methods, colour communication issues, and other practical factors which lead to a lack of standard procedure for soil colour measurement and georeferencing. In this paper we present a laboratory procedure that provides colour coordinates of georeferenced soil samples which become useful in later processing stages of soil mapping and classification from digital images. The procedure requires a laboratory setup consisting of a light booth and a trichromatic colorimeter, together with a computer program that performs colour measurement, storage, and colour space transformation tasks. Measurement tasks are automated by means of specific data logging routines which allow storing recorded colour data in a spatial format. A key feature of the system is the ability of transforming between physically-based colour spaces and the Munsell system which is still the standard in soil science. The working scheme pursues the automation of routine tasks whenever possible and the avoidance of input mistakes by means of a convenient layout of the user interface. The program can readily manage colour and coordinate data sets which eventually allow creating spatial data sets. All the tasks regarding data joining between colorimeter measurements and samples locations are executed by the software in the background, allowing users to concentrate on samples processing. As a result, we obtained a robust and fully functional computer-based procedure which has proven a very useful tool for sample classification or cataloging purposes as well as for integrating soil colour data with other remote sensed and spatial data sets.

  5. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy (kaolinitic) and thus the clay plus silt fraction was the best correlate for SOC but with crystalline iron oxides (dithionite-citrate minus ammonium oxalate - oxalic acid extractable iron) being also correlated to SOC in these soils (R2 = 0.74). Most of SOC in these soils was found on the clay+silt fraction and in stable, clay rich aggregates. However, SOC of high activity clays and other less weathered soils such as Alisols, Cambisols and Plinthosols showed no correlation with particle size or iron oxides, being mostly stabilized by aluminium complexes. We found SOC of these soils to be better explained by a three way interaction among soil pH, carbon quality and dithionite-citrate extractable Al (R2 = 0.85). Consistent with this observation, SOC in the less weathered soils was mostly found in the colloidal fraction (75%). SOC of Podzols and Arenosols on the other hand had only a small but significant influence from their clay plus silt fraction (R2 = 0.31), with particulate organic matter accounting for most of its SOC.

  6. Entomopathogenic nematodes in agricultural areas in Brazil.

    PubMed

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  7. Substantial soil organic carbon retention along floodplains of mountain streams

    NASA Astrophysics Data System (ADS)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p < 0.001) indicates that percentage of silt and clay, sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  8. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    PubMed

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  9. Pesticide storage and release in unsaturated soil in Illinois, USA

    USGS Publications Warehouse

    Roy, W.R.; Krapac, I.G.; Chou, S.-F.J.; Simmons, F.W.

    2001-01-01

    The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1 x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha-1 and 1.3 kg ha-1, respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha-1). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1 x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 ?? L-1. Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 ??g L-1. Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.

  10. Effects of climate and geochemistry on soil organic matter stabilization and greenhouse gas emissions along altitudinal transects in different mountain regions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boudin, Mathieu; Dercon, Gerd; Doetterl, Sebastian; Matulanya, Machibya; Msigwa, Anna; Vermeir, Pieter; Boeckx, Pascal

    2017-04-01

    Terrestrial ecosystems are strongly influenced by climate change and soils are key compartments of the global carbon (C) cycle in terms of their potential to store or release significant amounts of C. This study is part of the interregional IAEA Technical Cooperation Project ``Assessing the Impact of Climate Change and its Effects on Soil and Water Resources in Polar and Mountainous Regions (INT5153)'' aiming to improve the understanding of climate change impacts on soil organic carbon (SOC) in fragile polar and high mountainous ecosystems at local and global scale for their better management and conservation. The project includes 13 benchmark sites situated around the world. Here we present novel data from altitudinal transects of three different mountain regions (Mount Kilimanjaro, Tanzania; Mount Gongga, China; Cordillera Blanca, Peru). All altitudinal transects cover a wide range of natural ecosystems under different climates and soil geochemistry. Bulk soil samples (four field replicates per ecosystem) were subjected to a combination of aggregate and particle-size fractionation followed by organic C, total nitrogen, stable isotope (13C, 15N) and radiocarbon (14C) analyses of all fractions. Bulk soils were further characterized for their geochemistry (Na, K, Ca, Mg, Al, Fe, Mn, Si, P) and incubated for 63 days to assess greenhouse gas emissions (CO2, CH4, NO, N2O). Further, stable C isotopic signature of CO2 was measured to determine the isotopic signature of soil respiration (using Keeling plots) and to estimate potential respiration sources. The following four ecosystems were sampled at an altitudinal transect on the (wet) southern slopes of Mount Kilimanjaro: savannah (920m), lower montane rain forests with angiosperm trees (2020m), upper montane cloud forest with gymnosperm trees (2680m), subalpine heathlands (3660m). Both forests showed highest C contents followed by subalpine and savannah. The largest part of SOC was found in particulate organic matter followed by microaggregates, except for the subalpine ecosystem which had most SOC stored in microaggregates. Silt and clay fractions stored the smallest fraction of SOC for all ecosystems. Cumulative soil CO2 emissions (normalized to SOC, gCO_2-C kgSOC-1) after 63 days of incubation were highest for savannah (15.2 ± 1.4) followed by subalpine (7.9 ± 0.5), upper forest (6.9 ± 1.0) and lower forest (4.8 ± 0.4). CO2 emissions were negatively correlated with soil C contents, showing that soils with lower C contents loose higher relative amounts of their SOC through soil respiration. Keeling plot intercept is a measure for the isotopic signature of respired CO2 and high offsets between Keeling plot intercepts and the isotopic signature of bulk SOC point towards labile (13C-depleted) SOC fractions as respiration sources. Highest offsets (and thus most labile respiration sources) were observed for savannah followed by subalpine, lower forest and upper forest and these were positively correlated with cumulative CO2 emissions, showing that in savannah soils, which have lowest C contents and respire highest amounts of CO2, mainly labile SOC is used as respiration source. Results from the other two altitudinal transects are currently under investigation and will be presented in conjunction with climatic and geochemical data.

  11. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline

    PubMed Central

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-01-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a ‘space-for-time’ approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg) is significantly lower at shrub (2.98 ± 0.48 kg m−2) and forest (2.04 ± 0.25 kg m−2) plots than at heath plots (7.03 ± 0.79 kg m−2). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system. PMID:25367088

  12. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    PubMed

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system. © 2014 John Wiley & Sons Ltd.

  13. Carbon storage in US wetlands

    PubMed Central

    Nahlik, A. M.; Fennessy, M. S.

    2016-01-01

    Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites—indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change. PMID:27958272

  14. Carbon storage in US wetlands

    NASA Astrophysics Data System (ADS)

    Nahlik, A. M.; Fennessy, M. S.

    2016-12-01

    Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites--indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change.

  15. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.

    PubMed

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  16. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    PubMed Central

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce. PMID:24782839

  17. Water balance creates a threshold in soil pH at the global scale.

    PubMed

    Slessarev, E W; Lin, Y; Bingham, N L; Johnson, J E; Dai, Y; Schimel, J P; Chadwick, O A

    2016-11-21

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  18. Water balance creates a threshold in soil pH at the global scale

    NASA Astrophysics Data System (ADS)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  19. Resilience of Invaded Riparian Landscapes: The Potential Role of Soil-Stored Seed Banks

    NASA Astrophysics Data System (ADS)

    Tererai, Farai; Gaertner, Mirijam; Jacobs, Shayne M.; Richardson, David M.

    2015-01-01

    We investigated the potential role of soil-stored seed banks in driving vegetation recovery under varying intensities of invasion by the alien tree Eucalyptus camaldulensis along the Berg River in South Africa's Western Cape Province. We asked: How do richness, diversity, and composition of soil-stored seed banks vary with invasion intensity? What is the difference between the seed banks and above-ground vegetation with respect to species richness, diversity, composition, and structure? To what extent do soil-stored seed banks provide reliable sources for restoring native plant communities? Through a seedling-emergence approach, we compared seedling density, richness, and diversity in plots under varying Eucalyptus cover. Seed bank characteristics were also compared with those of the above-ground vegetation. Except in terms of diversity and density, the richness and composition of native species varied significantly among invasion conditions. Despite the paucity of native tree and shrub species in the seed bank, it was more diverse than extant vegetation. Some species occurred exclusively either in the seed bank or in the above-ground vegetation. Although this ecosystem has been degraded by several agents, including Eucalyptus invasion, soil-stored seed banks still offer modest potential for driving regeneration of native plant communities, but secondary invasions need to be managed carefully. Remnant populations of native plants in the above-ground vegetation remaining after E. camaldulensis clearing provide a more promising propagule source for rapid regeneration. Further work is needed to elucidate possible effects of invasion on successional pathways following E. camaldulensis removal and the effects of hydrochory on seed bank dynamics.

  20. Changes in mineral-associated soil organic carbon pools across a harvested temperate forest chronosequence

    NASA Astrophysics Data System (ADS)

    MacIntyre, S.; Kellman, L. M.; Gabriel, C. E.; Diochon, A.

    2016-12-01

    Due to their substantial pool size, changes in mineral soil carbon (C) stores have the potential to generate significant changes in forest soil C budgets. Harvesting represents a significant land use disturbance that can alter soil organic carbon (SOC) stores, with a number of field studies documenting large losses of SOC following clearcut harvesting. However, little is known about how the distribution of SOC changes amongst mineral-associated pools of differing crystallinity following this disturbance. The objective of this study was to quantify changes in mineral-associated SOC pool sizes through depth and time for podzol soils (mineral soil depths of 0-5, 5-10, 10-15, 15-20, 20-35, and 35-50 cm) of a temperate red spruce harvest chronosequence (representing stand ages of 1yr, 15yr, 45yr, 80yr, and 125+yr) in Nova Scotia, Canada. Samples were subjected to a 4-step sequential chemical dissolution to selectively extract C from mineral pools of increasing crystallinity: soluble minerals (deionized water), organo-metal complexes (Na-pyrophosphate), poorly crystalline minerals (hydroxylamine), and crystalline minerals (Na-dithionite HCl). Carbon concentrations were calculated for the solutions acquired during each stage of the selective dissolution process, providing a time series of changes in mineral-associated C through depth and time following harvesting. A loss of SOC from the organo-metal complexed pool following harvesting was observed, particularly in the deeper mineral soil (20-50cm), with this pool dominating the results. In the soluble and poorly crystalline pools, losses of C were also observed from the deeper mineral soil. Of the 5 sites, the 125+yr age class had the highest concentration of SOC associated with crystalline minerals, with the 0-5cm depth stratum holding a large portion of this C. This study may be useful as a model system for understanding how harvesting disturbance alters mineral pool SOM dynamics in humid temperate forest ecosystems.

  1. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    NASA Astrophysics Data System (ADS)

    Peterson, Fox S.; Lajtha, Kate J.

    2013-07-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil characteristics, and current and historical vegetation composition and structure versus SOM fractions and DOC pools and leaching on a small catchment (WS1) in the H.J. Andrews Experimental Forest, located in the western Cascades Range of Oregon, USA. We predicted that aboveground net primary productivity (ANPP), litter fall, and nitrogen mineralization would be positively correlated with SOM, DOC, and carbon (C) content of the soil based on the principle that increased C inputs cause C stores in and losses from in the soil. We expected that in tandem, certain microtopographical and microclimatic characteristics might be associated with elevated C inputs and correspondingly, soil C stores and losses. We confirmed that on this site, positive relationships exist between ANPP, C inputs (litter fall), and losses (exportable DOC), but we did not find that these relationships between ANPP, inputs, and exports were translated to SOM stores (mg C/g soil), C content of the soil (% C/g soil), or DOC pools (determined with salt and water extractions). We suggest that the biogeochemical processes controlling C storage and lability in soil may relate to longer-term variability in aboveground inputs that result from a heterogeneous and evolving forest stand.

  2. N2O emission from urine in the soil in the beef production in Southeast Brazil: soil moisture content and temperature effects

    NASA Astrophysics Data System (ADS)

    Simões Barneze, Arlete; Mancebo Mazzetto, Andre; Fernandes Zani, Caio; Siqueira Neto, Marcos; Clemente Cerri, Carlos

    2014-05-01

    Pasture expansion in Brazil has shown an increase in 4.5% per year, and a total cattle herd of about 200 millions in 2010. Associated to animal husbandry there are emissions of N2O (nitrous oxide) and other gases to the atmosphere. The liquid manure contributes to emitte 5% of the total N2O emissions. The urea content of cattle urine will readily hydrolyze to form ammonium after deposition to the soil. Nitrous oxide may then be emitted through the microbiological processes of nitrification and denitrification. Important factors can influence on these processes and consequently in nitrous oxide emissions, as soil water content and temperature (Bolan et al., 2004; Luo et al., 2008). The main goal of this research was to determine the soil water content and temperature influence on N2O emissions from urine depositions on the soil. In order to achieve the objective, soil incubation experiment was conducted in laboratory conditions at three levels of water-filled pore space (40%, 60% and 80% WFPS) and two temperatures (25ºC and 35ºC) with and without urine, with five replicates each. The soil used in this study was collected from the 0-10 cm layer of a grassland field in Southeast of Brazil and classified as Nitisols. For each measurement, the Kilner jar was hermetically sealed by replacing the lid and a first gas sample was immediately taken (time-zero, t0 sample) using a syringe and stored in a pre-evacuated gas vial. After 30 minutes the headspace of each jar was sampled again (time-thirty, t_30 sample). The lids were then removed and kept off until the next sampling day. Nitrous oxide concentrations in the sampled air were measured using a SRI Gas Chromatograph (Model 8610C). Gas fluxes were calculated by fitting linear regressions through the data collected at t0 and t_30 and were corrected for temperature and amount of soil incubated. Gas measurements were carried out up to 55 days. To determine the statistical significance, Tukey tests were carried out at 0.05 probability level. Nitrogen mineralization and nitri?cation were higher at the higher temperature and higher soil water content. Significant effects of urine application and moisture were found (P

  3. Root distribution and seasonal water status in weathered granitic bedrock under chaparral

    Treesearch

    P. D. Sternberg; M. A. Anderson; R. C. Graham; J. L. Beyers; K. R. Tice

    1996-01-01

    Soils in mountainous terrain are often thin and unable to store sufficient water to support existing vegetation through dry seasons. This observation has led to speculation about the role of bedrock in supporting plant growth in natural ecosystems, since weathered bedrocks often have appreciable porosity and, like soil, can store and transmit water. This study, within...

  4. Short-temporal variation of soil organic carbon in different land use systems in the Ramsar site 2027 `Presa Manuel Ávila Camacho' Puebla

    NASA Astrophysics Data System (ADS)

    López-Teloxa, L. C.; Cruz-Montalvo, A.; Tamaríz-Flores, J. V.; Pérez-Avilés, R.; Torres, E.; Castelán-Vega, R.

    2017-10-01

    The soil organic carbon (SOC) was determined in 40 sites at two depths (0-10 and 10-20 cm) for different uses of soil during one year (February 2014-February 2015). The total SOC stored in the analysed soil from the Ramsar site was 9{,}67 × 105 t, from which 40% was stored in induced pasture, followed by the red oak forest with shrubbery secondary vegetation, rain-fed agriculture and human settlements (24%, 23%, and 13%, respectively); the last was evaluated to determine how the proximity of the city impacts the SOC. The SOC concentrations present significant differences with respect to soil depth (p=0.0) and land use (p=0.0). The temporal distribution maps showed that SOC did not present significant variations in the short-term. A relation between SOC and bulk density was found (r = -0.654, p=0.00), with respect to other physicochemical properties. Moreover, a significant relation between SOC and stored total nitrogen (r = 0.585; p = 0.00) was found. This work represents the first study that analyses the current condition of the soils in the Ramsar site `Presa Manuel Ávila Camacho'.

  5. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method.

    PubMed

    Campbell, Ellen R; Warsko, Kayla; Davidson, Anna-Marie; Bill Campbell, Wilbur H

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: •Small volumes.•An enzymatic reaction.•Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  6. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    PubMed Central

    Campbell, Ellen R.; Warsko, Kayla; Davidson, Anna-Marie; (Bill) Campbell, Wilbur H.

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: • Small volumes. • An enzymatic reaction. • Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app. PMID:26150991

  7. Geochemical Results of Lysimeter Sampling at the Manning Canyon Repository in the Mercur Mining District, Utah

    USGS Publications Warehouse

    Earle, John; Choate, LaDonna

    2010-01-01

    This report presents chemical characteristics of transient unsaturated-zone water collected by lysimeter from the Manning Canyon repository site in Utah. Data collected by U.S. Geological Survey and U.S. Department of the Interior, Bureau of Land Management scientists under an intragovernmental order comprise the existing body of hydrochemical information on unsaturated-zone conditions at the site and represent the first effort to characterize the chemistry of the soil pore water surrounding the repository. Analyzed samples showed elevated levels of arsenic, barium, chromium, and strontium, which are typical of acidic mine drainage. The range of major-ion concentrations generally showed expected soil values. Although subsequent sampling is necessary to determine long-term effects of the repository, current results provide initial data concerning reactive processes of precipitation on the mine tailings and waste rock stored at the site and provide information on the effectiveness of reclamation operations at the Manning Canyon repository.

  8. Mercury accumulation in the surface layers of mountain soils: a case study from the Karkonosze Mountains, Poland.

    PubMed

    Szopka, Katarzyna; Karczewska, Anna; Kabała, Cezary

    2011-06-01

    The study was aimed to examine total concentrations and pools of Hg in surface layers of soils in the Karkonosze Mountains, dependent on soil properties and site locality. Soil samples were collected from a litter layer and the layers 0-10 cm and 10-20 cm, at 68 sites belonging to the net of a monitoring system, in two separate areas, and in three altitudinal zones: below 900 m, 900-1100 m, and over 1100 m. Air-borne pollution was the major source of mercury in soils. Hg has accumulated mainly in the litter (where its concentrations were the highest), and in the layer 0-10 cm. Hg concentrations in all samples were in the range 0.04-0.97 mg kg(-1), with mean values 0.38, 0.28, and 0.14 mg kg(-1) for litter and the layers 0-10 cm and 10-20 cm, respectively. The highest Hg concentrations in the litter layer were found in the intermediate altitudinal zone, whereas Hg concentrations in the layer 0-10 cm increased with increasing altitude. Soil quality standard for protected areas (0.50 mg kg(-1)) was exceeded in a few sites. The pools of Hg accumulated in soils were in the range: 0.8-84.8 mg m(-2), with a mean value of 16.5 mg m(-2), and they correlated strongly with the pools of stored organic matter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Advanced in-situ measurement of soil carbon content using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    Measurement and mapping of natural and anthropogenic variations in soil carbon stores is a critical component of any soil resource evaluation process. Emerging modalities for soil carbon analysis in the field is the registration of gamma rays from soil under neutron irradiation. The inelastic neutro...

  10. Field testing a mobile inelastic neutron scattering system to measure soil carbon

    USDA-ARS?s Scientific Manuscript database

    Cropping history in conjunction with soil management practices can have a major impact on the amount of organic carbon (C) stored in soil. Current methods of assessing soil C based on soil coring and subsequent processing procedures prior to laboratory analysis are labor intensive and time consuming...

  11. Apparatus for the field determination of concentration of radioactive constituents in a medium

    DOEpatents

    Perkins, R.W.; Schilk, A.J.; Warner, R.A.; Wogman, N.A.

    1995-08-15

    The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples. 14 figs.

  12. Apparatus for the field determination of concentration of radioactive constituents in a medium

    DOEpatents

    Perkins, Richard W.; Schilk, Alan J.; Warner, Ray A.; Wogman, Ned A.

    1995-01-01

    The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples.

  13. Soil CO2 production in upland tundra where permafrost is thawing

    Treesearch

    Hanna Lee; Edward A.G. Schuur; Jason G. Vogel

    2010-01-01

    Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2...

  14. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  15. Cone Penetration Test and Soil Boring at the Bayside Groundwater Project Site in San Lorenzo, Alameda County, California

    USGS Publications Warehouse

    Bennett, Michael J.; Sneed, Michelle; Noce, Thomas E.; Tinsley, John C.

    2009-01-01

    Aquifer-system deformation associated with ground-water-level changes is being investigated cooperatively by the U.S. Geological Survey (USGS) and the East Bay Municipal Utility District (EBMUD) at the Bayside Groundwater Project (BGP) near the modern San Francisco Bay shore in San Lorenzo, California. As a part of this project, EBMUD has proposed an aquifer storage and recovery (ASR) program to store and recover as much as 3.78x104 m3/d of water. Water will be stored in a 30-m sequence of coarse-grained sediment (the 'Deep Aquifer') underlying the east bay alluvium and the adjacent ground-water basin. Storing and recovering water could cause subsidence and uplift at the ASR site and adjacent areas because the land surface will deform as aquifers and confining units elastically expand and contract with ASR cycles. The Deep Aquifer is overlain by more than 150 m of clayey fine-grained sediments and underlain by comparable units. These sediments are similar to the clayey sediments found in the nearby Santa Clara Valley, where inelastic compaction resulted in about 4.3 m of subsidence near San Jose from 1910 to 1995 due to overdraft of the aquifer. The Deep Aquifer is an important regional resource, and EBMUD is required to demonstrate that ASR activities will not affect nearby ground-water management, salinity levels, or cause permanent land subsidence. Subsidence in the east bay area could induce coastal flooding and create difficulty conveying winter storm runoff from urbanized areas. The objective of the cooperative investigation is to monitor and analyze aquifer-system compaction and expansion, as well as consequent land subsidence and uplift resulting from natural causes and any anthropogenic causes related to ground-water development and ASR activities at the BGP. Therefore, soil properties related to compressibility (and the potential for deformation associated with ground-water-level changes) are of the most concern. To achieve this objective, 3 boreholes were drilled at the BGP for the purpose of monitoring pore-fluid pressure changes and aquifer-system deformation. One 308-m deep borehole contains six piezometers, the other two boreholes are 182 and 299 m deep and contain a dual-stage extensometer. To investigate the physical properties of the sediments, two phases of subsurface exploration were conducted. In the first phase, a USGS drilling crew obtained numerous core samples, 5.8 cm in diameter by 1.5 m long. The samples were extracted between July 28, 2006, and August 5, 2006; nine samples were tested for this study at the USGS soils laboratory in Menlo Park, California. Phase two began on June 22, 2006, when a seismic cone penetration test (SCPT) sounding was made to a depth of 32.3 m. Additional field work was completed May 8, 2007, with a hollow-stem auger boring that took continuous 9.8-cm-diameter samples from the depth interval of 6.1 to 10.7 m to supplement poor recovery from the first phase of sampling. These samples were also tested in the soils laboratory at the USGS.

  16. Treatability Study in Support of Intrinsic Remediation for the Hangar 10 Site. Elmendorf Air Force Base, Anchorage, Alaska

    DTIC Science & Technology

    1995-03-01

    Monitoring Well Installation ....................................... 2-8 2.1.3.1 Well Materials Decontamination ..................... 2-9 2.1.3.2 Well...event, with a clean water/phosphate-free detergent mix and a clean water rinse. All well completion materials were factory sealed. All... materials were not stored near or in areas which could be affected by these substances. 2.1.2.3 Drilling and Soil Sampling Drilling was accomplished by using

  17. Fire effects on ponderosa pine soils and their management implications

    Treesearch

    W.W. Covington; S.S. Sackett

    1990-01-01

    Fire in southwestern ponderosa pine induces changes in soil properties including decreasing the amount of nutrients stored in fuels (forest floor, woody litter, and understory vegetation) increasing the amount of nutrients on the soil surface (the "ashbed effect"), and increasing the inorganic nitrogen and moisture content in the mineral soil. Soil...

  18. High fragility of the soil organic C pools in mangrove forests.

    PubMed

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Santiso-Taboada, M J; Meléndez, W; Macías, F

    2017-06-15

    Mangrove forests play an important role in biogeochemical cycle of C, storing large amounts of organic carbon. However, these functions can be controlled by the high spatial heterogeneity of these intertidal environments. In this study were performed an intensive sampling characterizing mangrove soils under different type of vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. The soils were anoxic, with a pH~7; however other soil parameters varied widely (e.g., clay, organic carbon). Dead mangrove area showed a significant lower amounts of total organic carbon (TOC) (6.8±2.2%), in comparison to the well-preserved mangrove of Avicennia or Rhizophora (TOC=17-20%). Our results indicate that 56% of the TOC was lost within a period of 10years and we estimate that 11,219kgm -2 of CO 2 was emitted as a result of the mangrove death. These results represent an average emission rate of 11.2±19.17tCO 2 ha -1 y -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Carbon stock and its responses to climate change in Central Asia.

    PubMed

    Li, Chaofan; Zhang, Chi; Luo, Geping; Chen, Xi; Maisupova, Bagila; Madaminov, Abdullo A; Han, Qifei; Djenbaev, Bekmamat M

    2015-05-01

    Central Asia has a land area of 5.6 × 10(6) km(2) and contains 80-90% of the world's temperate deserts. Yet it is one of the least characterized areas in the estimation of the global carbon (C) stock/balance. This study assessed the sizes and spatiotemporal patterns of C pools in Central Asia using both inventory (based on 353 biomass and 284 soil samples) and process-based modeling approaches. The results showed that the C stock in Central Asia was 31.34-34.16 Pg in the top 1-m soil with another 10.42-11.43 Pg stored in deep soil (1-3 m) of the temperate deserts. They amounted to 18-24% of the global C stock in deserts and dry shrublands. The C stock was comparable to that of the neighboring regions in Eurasia or major drylands around the world (e.g. Australia). However, 90% of Central Asia C pool was stored in soil, and the fraction was much higher than in other regions. Compared to hot deserts of the world, the temperate deserts in Central Asia had relatively high soil organic carbon density. The C stock in Central Asia is under threat from dramatic climate change. During a decadal drought between 1998 and 2008, which was possibly related to protracted La Niña episodes, the dryland lost approximately 0.46 Pg C from 1979 to 2011. The largest C losses were found in northern Kazakhstan, where annual precipitation declined at a rate of 90 mm decade(-1) . The regional C dynamics were mainly determined by changes in the vegetation C pool, and the SOC pool was stable due to the balance between reduced plant-derived C influx and inhibited respiration. © 2015 John Wiley & Sons Ltd.

  20. The influence of soil organic matter chemistry and site/soil properties in predicting the decomposability of tundra soils

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Fan, Z.; Liang, C.; Calderon, F.; Michaelson, G.; Mishra, U.; Ping, C. L.

    2017-12-01

    With the increase in high latitude warming, there is a need to better understand the potential vulnerability of soil organic matter (SOM) stored in Arctic regions. In this study, we used mid infrared spectroscopy (MidIR) to determine the influence of soil chemistry and site properties in the short-term mineralization potential of SOM stored in tundra soils. Soils from the active and permafrost layers were collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska and were incubated for 60 days at a range of temperatures. Site and soil properties including acidic versus non-acidic tundra, lowland versus upland areas, total soil organic carbon (TOC) and total nitrogen (TN) concentrations, 60-day carbon mineralization potential (CMP), MidIR spectra and the chemical composition of the SOM stored in these soils were determined. Partial least squares (PLS) models for CMP versus MidIR spectra were produced upon splitting the dataset into site and soil properties categories. We found that SOM composition determined by MidIR spectroscopy was most effective in predicting CMP for tundra soils and it was most relevant for the active-layer mineral and upper permafrost soil horizons and/or soils with C concentrations of 10% or lower. Analysis of the factor loadings and standardized beta coefficients from the CMP PLS models indicated that spectral bands associated with clay contents, phenolic OH, aliphatic, silicates, carboxylic acids, and polysaccharides were influential for lower TOC soils, but these bands were less important for higher TOC soils. High TOC soils were influenced by a combination of other factors. Our results suggest that different factors affect the short-term CMP of SOM in tundra soils depending on the amount of TOC present. We show MidIR as a powerful tool for quickly and reasonably estimating the short-term CMP of tundra soils. Widespread application of MidIR measurements to already collected and archived tundra region soils could provide a quick and reliable assessment of the CMP of these soils, reduce the need for incubation studies, and contribute to upscaling and model benchmarking of SOM mineralization of tundra soils.

  1. Long term fate of slurry derived nitrogen in soil: a case study with a macro-lysimeter experiment having received high loads of pig slurry (Solepur).

    PubMed

    Peu, P; Birgand, F; Martinez, J

    2007-12-01

    In intensive livestock production areas, land application remains the traditional management of manure and slurries for nutrient recycling. For sustainable agriculture there is fear, however, that this practice may have detrimental effects, particularly on the depletion of Soil Organic Matter associated with pig slurry applications. We investigated the long-term fate of nitrogen in a reconstituted soil having received high doses of pig slurry during 5 years (1991-1995). After 5 years of intensive application rates (nearly 1000 m(3)yr(-1)), the N and C content of the soil profile (0-20 cm) had increased by about 60% and 50%, respectively. These results confirm previous findings although it seems that the particularly high rates of application may explain, in part, the relatively important N incorporation in soil. Pig slurry applications ceased in 1995 and nitrogen content in soil and drainage water have been monitored. Apparent mineralization rates were calculated from the decrease in N content of the soil. This analysis indicated that more than 50% of the added N stored in the soil at the end of the applications would eventually be mineralized, leaving nearly 50% of the stored N to be immobilized in the soil. These results are the first published of their kinds, as most reports never examine the fate of applied pig slurry N after halting applications. In addition the few reports on long-term experiments suggest that Soil Organic Matter following pig slurry applications may be unstable. Our analysis tends to show the contrary. However, this conclusion must be tempered because data on nitrate leachate patterns suggest that soil management such as ploughing and sowing may actually trigger mineralization that could eventually deplete nitrogen stored following applications.

  2. Deep Soil Carbon in the Critical Zone: Amount and Nature of Carbon in Weathered Bedrock, and its Implication for Soil Carbon Inventory

    NASA Astrophysics Data System (ADS)

    Moreland, K. C.; Tian, Z.; Berhe, A. A.; O'Geen, A. T.

    2017-12-01

    Globally, soils store more carbon (C) than the vegetation and the atmosphere combined. Up to 60-80% of the C stored in soils is found in below 30cm soil depth, but there is little data on C storage in weathered bedrock or saprolite. Deep soil organic matter (SOM) can be a mixture of new and old SOM; that is rendered relatively stable due to burial, aggregation, its disconnection from decomposers, and chemical association that organic matter forms with soil minerals. The limited data available on deep SOM dynamics suggests that stock, distribution, and composition of deep SOM are strongly correlated to climate. The overall objective of this research is to investigate how climate regulates OM storage, composition, stability, and stabilization mechanisms. Expecting that the amount of OM stored in deep soil and the stability are a function of soil thickness and availability of weathering products (i.e. reactive minerals), the stock and stability of deep SOM is expected to follow a similar relationship with climate, as does the intensity of weathering. This research is conducted in the NSF funded Southern Sierra Critical Zone Observatories that is located along a climosequence, the western slopes of the Sierra Naevada Mountains of California. Here we will present results derived from characterization of soils and weathered bedrock using elemental and stable isotope elemental analysis, and Fourier Transformed Infrared Spectroscopy to determine OM concentration and functional group level composition of bulk SOM. Our findings show that adding in subsoil and weathered bedrock C stocks increases estimates of soil C stock by 1/3rd to 2/3rd.

  3. Impact of the extreme 2009 wildfire Victoria the wettability of naturally highly water repellent soils

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.

    2010-05-01

    The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually fast-moving fire front and the resultant short fire residence time during this event. Thick ash layers were present at the time of sampling despite some significant earlier pre-sampling rainfall events. This suggests that the wettable ash (up to 15 cm thick) was able to store substantial amounts of water, which would otherwise have formed overland flow moving over the highly water repellent underlying mineral soil. Once this hydrological ‘sponge' is removed, the lack of ground cover is expected to lead to the underlying soil being susceptible to erosion until the ground cover becomes re-established. This ‘erosion window‘ is likely to be relatively brief over much of the burnt area as the vegetation is already showing a comparatively rapid regrowth response. This is supported by initial results from laboratory germination experiments, which showed seedling emergence from even the most severely burnt sites. The factors contributing to the fire impacts determined here are explored in conjunction with predictions for future burn severity under a changing climate. The soil samples collected represent a reference soil sample collection, which are available to the scientific community for further investigation.

  4. Cation exchange in a glacial till drumlin at a road salt storage facility

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Xing, Baoshan; Kallergis, Niki

    2009-05-01

    We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g) 1/2 for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g) 1/2: the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.

  5. Cation exchange in a glacial till drumlin at a road salt storage facility.

    PubMed

    Ostendorf, David W; Xing, Baoshan; Kallergis, Niki

    2009-05-12

    We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g)(1/2) for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g)(1/2): the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.

  6. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs

    USDA-ARS?s Scientific Manuscript database

    Soil carbon (C) pools store about one-third of the total terrestrial organic carbon. Deep soil C pools (below 1 m) are thought to be stable due to their low biodegradability, but little is known about soil microbial processes and carbon dynamics below the soil surface, or how global change might aff...

  7. Influence of management practices on microbial nitrogen cyclers in agricultural soils

    NASA Astrophysics Data System (ADS)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; McMillan, Mary; Pereg, Lily

    2016-04-01

    Agricultural land management has great influences on soil properties, in particular on microbial communities, due to their sensitivity to the perturbations of the soils. This is even more relevant in Mediterranean agricultural areas under semi-arid conditions. The Mediterranean belt is suffering from an intense degradation of its soils due to the millennia of intense land use and due to unsustainable management practices. As a consequence this area is suffering from a depletion of N content. In this work we investigated the effect of several traditional agricultural management practices on specific functional groups related to the nitrogen cycle in the soil. A field experiment was performed with orchard orange trees (citrus sinesis) in Eastern Spain to assess the long-term effects of ploughing with inorganic fertilization (PI) and ecological practices (EP) (chipped pruned branches and weeds as well as manure from sheep and goats) on microbes that can undertake nitrogen fixation and denitrification. Nine samples of soil were taken from every treatment, near the drip irrigation point and in a zone without the influence of drip irrigation (between trees row), and total DNA extracted. DNA samples were stored at minus-20°C to be analysed by qPCR. Microbial populations involved in the N biochemical cycle were analysed by targeted amplification of key functional biomarker genes: the abundance of nifH (nitrogen fixation), nirS, nirK and nosZ (denitrification) detected by quantitative PCR (qPCR) has shown significant differences between treatments with higher abundance of all four genes in soils from ecological agricultural treatments. This may indicate that the ecological treatment created conditions that are more suitable for N cyclers in the soil and a better fertility and quality status of these soils.

  8. Conservation agricultural management to sequester soil organic carbon

    USDA-ARS?s Scientific Manuscript database

    Storing carbon (C) in soil as organic matter is not only a viable strategy to sequester CO2 from the atmosphere, but is vital for improving the quality, fertility, and functioning of soil. This presentation describes relevant management approaches to avoid land degradation and foster soil organic C ...

  9. Tracing C Fluxes From Leaf Litter To Microbial Respired CO2 And Specific Soil Compounds

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Lubritto, C.; D'Onofrio, A.; Gleixner, G.; Terrasi, F.; Cotrufo, F. M.

    2004-12-01

    Despite litter decomposition is one of the major process controlling soil C stores and nutrient cycling, yet C dynamics during litter decay are poorly understood and quantified. Here we report the results of a laboratory experiment where 13C depleted leaf litter was incubated on a 13C enriched soil with the aims to: i) partition the C loss during litter decay into microbial respired-CO2 and C input into the soil; ii) identify the soil compounds where litter derived C is retained; iii) assess whether litter quality is a determinant of both the above processes. Three 13C-depleted leaf litter(delta13C ca. -43), differing in their degradability, were incubated on C4 soil (delta13C ca. -18) under laboratory controlled conditions for 8 months, with litter respiration and delta13C-CO2 being measured at regular intervals. At harvest, Compound Specific Isotope Analyses was performed on soil and litter samples in order to follow the fate of litter-derived C compounds in the various pools of SOMƒn The delta13C of soils carbohydrates, alkanes and Phospho Lipids Fatty Acids (PLFA) were measured, and the mixing model approach used to quantify the contribution of litter derived C to the specific compounds.

  10. Advancement of a soil parameters geodatabase for the modeling assessment of conservation practice outcomes in the United States

    USDA-ARS?s Scientific Manuscript database

    US-ModSoilParms-TEMPLE is a database composed of a set of geographic databases functionally storing soil-spatial units and soil hydraulic, physical, and chemical parameters for three agriculture management simulation models, SWAT, APEX, and ALMANAC. This paper introduces the updated US-ModSoilParms-...

  11. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    NASA Astrophysics Data System (ADS)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties. Bacterial functional potential was inferred using ancestral state reconstruction to approximate functional gene abundance, revealing a decreased abundance of genes required for soil organic matter (SOM) decomposition in the organic layers of the deep snow accumulation zones. These results suggest that predicted climate change scenarios may result in altered soil bacterial community structure and function, and indicate a reduction in decomposition potential, alleviated temperature limitations on extracellular enzymatic efficiency, or both. The fate of stored C in Arctic soils ultimately depends on the balance between these mechanisms.

  12. "Modeled and measured carbon cycling in Mojave Desert soils: toward present and projected greenhouse gas budgets for arid regions

    NASA Astrophysics Data System (ADS)

    Maurer, G. E.; Amundson, R.; Lammers, L. N.; Mills, J.; Oerter, E.

    2017-12-01

    Drylands comprise roughly 35% of the Earth's surface, store globally significant amounts of carbon, and cycle this carbon at rates that vary greatly from year to year. Consequently, drylands are thought to contribute to inter-annual changes in the global atmospheric CO2 budget. Sparse measurements and limited process-based modeling have made quantifying dryland carbon cycling at regional or larger scales a major challenge. We parameterized and ran the DayCent model, an ecosystem model that simulates soil C and N cycling and greenhouse gas (GHG) fluxes, using long-term regional climate, soil, and vegetation data for the Mojave Desert region (southwest USA). DayCent predicted somewhat greater soil organic C than was observed in a database of 186 measured Mojave soil survey samples, but successfully recreated climate-driven patterns in soil carbon storage across the landscape. Modeled soil organic carbon storage increased by between 4.1 and 5.1 kg/m2 per km of elevation gained, while Mojave soil survey data indicated an increase of 4.6 kg/m2. Model predictions of soil CO2 flux were validated and calibrated against field observations from ten Mojave soil gas profile studies sampled intermittently between 1986 and the present. DayCent had a tendency to overestimate soil respiration measured at some sites by up to 600% compared to profile measurements. Modeled soil CO2 fluxes increased by between 1280 and 4141 kg/ha/yr per km of elevation gained.This elevational pattern did not match well with landscape-level changes in observed soil profile CO2 flux data, indicating further calibration of DayCent will be needed to produce regional estimates of GHG flux. This ongoing synthesis of modeling and measurements extends the current knowledge of the Mojave's contribution to the global GHG budget and will provide a basis from which to project future emissions from the Mojave and other dryland regions.

  13. The delineation of DNAPL in a heterogeneous unconsolidated aquifer using a hydro punch sampler and hydrophobic dye testing procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirilli, J.; DeRose, N.

    1995-09-01

    The site is a pharmaceutical facility located in Newark, New Jersey. The facility which has been in operation for approximately 90 years, previously contained a 15,000 gallon underground tank used to store TCE. Upon the tanks removal in the early 1980`s the tank integrity was found to have been compromised. In compliance with the NJDEP Industrial Site Recovery Act, the responsible party was required to locate DNAPL in the aquifer. Due to TCE`s relative density, vertical migration to depths greater than 80 feet has occurred. Lateral migration over distances greater than 500 feet has been documented. Currently, the investigation hasmore » focused on the neighboring cemetery, where approximately 20 deep soil borings have been advanced at selected locations downslope of the TCE source area. The soil borings were drilled by mud rotary methods to a depth that was determined in the field to be proximal to the bottom of the heterogeneous unconsolidated aquifer. Continuous split spoon soil sampling for detailed geologic interpretation and field screening utilizing an organic vapor instrument was performed. The Hydro Punch (HP II) sampler was used in the aqueous sampling model to collect a discrete ground water sample from the interface between the aquifer and the till.« less

  14. Subsurface soil carbon losses offset surface carbon accumulation in abandoned agricultural fields

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Knops, J. M. H.

    2017-12-01

    Soil carbon is widely understood to accumulate after agricultural abandonment. However, most of the studies have been focused on shallow depths (10 to 30 cm), and there is a lack of deeper soil carbon data. It was reported that in temperate grasslands, 58% of the soil organic carbon in the first meter was stored between 20 and 100 cm, and organic matter in deeper soil might also be susceptible to agricultural disturbance. We used repeated sampling in 2001 and 2014 to directly measure rates of soil carbon change in both surface and subsurface soil in 21 abandoned agricultural fields at Cedar Creek Ecosystem Science Reserve, MN. Congruent with many other studies, we found carbon accumulated 384.2 C g/m2 in surface soil (0 - 20 cm) over the 13 years. However, we also found carbon pool declined 688.1 C g/m2 in the subsurface soil (40-100 cm), which resulted in a net total loss of soil carbon. We investigated the ecosystem carbon pools and fluxes to explore the mechanisms of the observed soil carbon changes. We found root carbon was not significantly correlated with soil carbon in any of the depth. In situ soil incubation showed nitrogen mineralization rates in subsurface soil are lower than that of surface soil. However, the estimated nitrogen and carbon output through decomposition is higher than inputs from roots, therefore leading to carbon loss in subsurface soil. These results suggest that the decomposition of soil organic matter by microorganisms in subsurface soil is significant, and should be incorporated in ecosystem carbon budget models.

  15. Deep soil dynamics of floodplain carbon in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Steger, Kristin; Kim, Amy T.; Viers, Joshua H.; Fiener, Peter; Smart, David R.

    2017-04-01

    Active floodplains can putatively store large amounts of organic carbon (SOC) in subsoils originating from catchment erosion processes with subsequent floodplain deposition. Changes in catchment land use patterns and river management to optimize agricultural use of the floodplain or to restore the floodplain back to natural systems may alter SOC stocks in these soils. Our study focussed on the assessment of SOC pools associated with alluvial floodplain soils converting from conventional arable use to restored flooding and floodplain vegetation. We evaluated depth-dependent SOC contents using 21 drillings down to 3m and 10 drillings down to 7m along a transect through a floodplain area of the lower Cosumnes River, a non-constrained tributary to the Sacramento - San Joaquin Delta in California. In general, our data underline the importance of carbon stocks in subsoils >1m, which represent up to 19 and 6% of SOC stocks at the different sampling locations accounting for drillings down to 3 and 7m, respectively. All of our sampling sites revealed a SOC-rich buried A horizon between 70 and 130cm with SOC concentrations between 11 and 17g/kg, representative of the functioning floodplain system pre-disturbance. Radiocarbon dating showed that the 14C age in the buried horizon was younger than in the overlaying soils, indicating a substantial sedimentation phase with sediments of low SOC concentrations and higher carbon age. This sedimentation phase was probably associated with the huge upstream sediment production resulting from the hydraulic gold mining at the Cosumnes River starting around 1860. Apart from larger SOC contents in the buried horizon compared to the recent topsoil, its 13C and 15N isotopic signature also differed suggesting a change in long-term input of plant organic matter as well as different fertilization regimes during the agricultural use of the area from approx. 1890 onwards. In summary, deep alluvial soils in floodplains store large amounts of SOC not yet accounted for in global models. Intensive agricultural use of these floodplains often combined with river regulation and embanking of floodplain areas may lead to a slow but continuous release of the buried SOC to the atmosphere. However, restoration of floodplains may promote the stabilization of alluvial SOC in floodplains and hence contribute to more sustainable soils.

  16. Biomarkers as Indicators of Respiration During Laboratory Incubations of Alaskan Arctic Tundra Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Hutchings, J.; Schuur, E.; Bianchi, T. S.; Bracho, R. G.

    2015-12-01

    High latitude permafrost soils are estimated to store 1,330 - 1,580 Pg C, which account for ca. 40% of global soil C and nearly twice that of atmospheric C. Disproportionate heating of high latitude regions during climate warming potentially results in permafrost thaw and degradation of surficial and previously-frozen soil C. Understanding how newly-thawed soils respond to microbial degradation is essential to predicting C emissions from this region. Laboratory incubations have been a key tool in understanding potential respiration rates from high latitude soils. A recent study found that among the common soil measurements, C:N was the best predictor of C losses. Here, we analyzed Alaskan Arctic tundra soils from before and after a nearly 3-year laboratory incubation. Bulk geochemical values as well as the following biomarkers were measured: lignin, amino acids, n-alkanes, and glycerol dialkyl glycerol tetraethers (GDGT). We found that initial C:N did not predict C losses and no significant change in C:N between initial and final samples. The lignin acid to aldehyde (Ad:Al) degradation index showed the same results with a lack of C loss prediction and no significant change during the experiment. However, we did find that C:N and Ad:Al had a significant negative correlation suggesting behavior consistent with expectations. The failure to predict C losses was likely influenced by a number of factors, including the possibility that biomarkers were tracking a smaller fraction of slower cycling components of soil C. To better interpret these results, we also used a hydroxyproline-based amino acid degradation index and n-alkanes to estimate the contribution Sphagnum mosses to soil samples - known to have slower turnover times than vascular plants. Finally, we applied a GDGT soil temperature proxy to estimate the growing season soil temperatures before each incubation, as well as investigating the effects of incubation temperature on the index's temperature estimate.

  17. Carbon Dioxide and Methane Flux Related to Forest Type and Managed and Unmanaged Conditions in the Great Dismal Swamp, USA

    NASA Astrophysics Data System (ADS)

    Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.

    2017-12-01

    The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the direction of groundwater lateral flow. Increasing temperatures and changes in precipitation and soil moisture may impact the carbon storage and health of this ecosystem, although it is already strongly influenced by anthropogenic activities such as past logging and water level management.

  18. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendorf, Scott; Kleber, Markus; Nico, Peter

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration,more » control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place the importance of aggregate-based heterogeneity in microbial redox processes and the resulting lack of oxygen on the rate of carbon mineralization. Collectively, our research shows that anaerobic microsites are prevalent in soils and are important regulators of soil carbon persistence, shifting microbial metabolism to less efficient anaerobic respiration and selectively protecting otherwise bioavailable, reduced organic compounds such as lipids and waxes from decomposition. Further, shifting from anaerobic to aerobic conditions leads to a 10-fold increase in volume-specific mineralization rate, illustrating the sensitivity of anaerobically protected carbon to disturbance. Vulnerability of anaerobically protected carbon to future climate or land use change thus constitutes a yet unrecognized soil carbon-climate feedback that should be incorporated into terrestrial ecosystem models.« less

  19. Meetings: Issues and recent advances in soil respiration

    Treesearch

    K.A. Hibbard; B.E. Law

    2004-01-01

    The terrestrial carbon cycle is intriniscally tied to climate, hydrology, nutrient cycles, and the production of biomass through photosynthesis. Over two-thirds of terrestrial carbon is stored below ground in soils, and a significant amount of atmospheric CO2 is processed by soils every year. Thus, soil respiration is a key process that underlies...

  20. Soil organic matter dynamics on a long chronosequence of landslides in the Outer Western Carpathians

    NASA Astrophysics Data System (ADS)

    Vindušková, Olga; Pánek, Tomáš; Frouz, Jan

    2017-04-01

    Much research over the past years has been focused on possibilities to sequester carbon in soils and thus mitigate the on-going increase of CO2 in the atmosphere (Lal 2004). However, the size of the long-term capacity of soils to store carbon still remains unclear mainly because it is difficult to determine the age of older natural soils (Hassink 1997). The studies addressing long-term soil organic matter dynamics have been carried out in rather extreme climatic and/or parent rock environments such as montane rainforests, volcanic islands, or retreating glaciers (Crews et al., 1995; Crocker and Major, 1955; Walker et al., 2013). Extrapolating findings of such studies to European natural soils is questionable. Moreover, studies addressing soil development on millenial time-scales were restricted to volcanic islands (Crews et al. 1995). Landslides are fast movements of rock or soil along slip surfaces. They are important hazardous phenomena but also offer a unique opportunity to study soil development using the chronosequence approach. Newly exposed rock surfaces are colonized by plants in the process of primary succession. In this study we describe long-term soil carbon, nitrogen and phosphorus dynamics using a chronosequence of 26 landslides ranging in age from 4 to 12 000 years located near the border of Czech Republic and Slovakia. Soil samples were collected at 26 landslides including 4 reactivations and at 22 adjacent undisturbed sites. Total soil organic carbon (C), nitrogen (N), and phosphorus content, pH and electrical conductivity was measured in soil samples. Carbon fractions were measured using the fractionation procedure of Zimmermann et al. (2007). The age of landslides was previously determined by radiocarbon dating (Pánek et al., 2013). Both carbon and nitrogen stocks were found to increase with age especially in the first 100 years both in the mineral soil and in the forest floor. C stock in mineral soil can be described by logarithmic (adj. R2 0.19) or by the Hill equation (adj. R2 0.33). The mean stock for undisturbed soils is 58 t ha-1 which is quite close to the capacity parameter 52 t ha-1 found by fitting the Hill function. The relative contribution of labile C (dissolved organic carbon) to C stock decreases significantly with the age of landslide. In the older landslides, most C is associated with the silt and clay fraction and this contribution increases significantly in the 10-20 cm layer. Total phosphorus showed a significant linear increase (p=0.033) in the first 100 years which may be due to redistribution of P from greater depths, followed by a linear decrease (p=0.037) in the sites older than 100 years probably caused by leaching and loss of P from soil. We conclude that the most intensive soil organic matter accumulation occurs in the first 100 years of soil development. This represents a rather high carbon sequestration rate of about 0.5 t.ha-1.yr-1 during the first 100 years. Soil carbon stock on landslides levels out at around 52 t.ha-1 (although with high variability) and stability of this stored C is intermediate.

  1. A global spectral library to characterize the world's soil

    USDA-ARS?s Scientific Manuscript database

    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about so...

  2. Soil science: Heat-proof carbon compound

    NASA Astrophysics Data System (ADS)

    Prescott, Cindy

    2008-12-01

    Two-thirds of terrestrial carbon is stored as organic matter in soils, but its response to warming has yet to be resolved. A soil warming experiment in a Canadian forest has revealed that the leaf-derived compound cutin is resistant to decomposition under elevated temperatures.

  3. Book review: Principals of soil conservation and management

    USDA-ARS?s Scientific Manuscript database

    Conservation and sustainable management of soil are essential features of humankind’s reverence for Nature. As well they should be, given the essential ecosystem services that soil imparts to our world, such as producing food, moderating climate, storing and cycling water and nutrients, purifying w...

  4. Carbon and 14C distribution in tropical and subtropical agricultural soils

    NASA Astrophysics Data System (ADS)

    Prastowo, Erwin; Grootes, Pieter; Nadeau, Marie

    2016-04-01

    Paddy soil management affects, through the alternating anoxic and oxic conditions it creates, the transport and stabilisation of soil organic matter (SOM). Irrigation water may percolate more organic materials - dissolved (DOM) and colloidal - into the subsoil during anoxic conditions. Yet a developed ploughpan tends to prevent C from going deeper in the subsoil and partly decouple C distribution in top and sub soil. We investigate the influence of different soil type and environment. We observed the C and 14C distribution in paddy and non-paddy soil profiles in three different soil types from four different climatic regions of tropical Indonesia, and subtropical China. Locations were Sukabumi (Andosol, ca. 850 m a.s.l), Bogor (clayey Alisol, ca. 240 m a.s.l), and Ngawi (Vertisol, ca. 70 m a.s.l) in Jawa, Indonesia, and Cixi (Alisol(sandy), ca. 4 - 6 m a.s.l) in Zhejiang Province, China. We compared rice paddies with selected neighbouring non-paddy fields and employed AMS 14C as a tool to study C dynamics from bulk, alkali soluble-humic, and insoluble humin samples, and macrofossils (plant remains, charcoal). Our data suggest that vegetation type determines the quantity and quality of biomass introduced as litter and root material in top and subsoil, and thus contributes to the soil C content and profile, which fits the 14C signal distribution, as well as 13C in Ngawi with C4 sugar cane as upland crop. 14C concentrations for the mobile humic acid fraction were generally higher than for bulk samples from the same depth, except when recent plant and root debris led to high 14C levels in near-surface samples. The difference in sampling, - averaged layer for bulk sample and 1-cm layer thickness for point sample - shows gradients in C and 14C across the layers, which could be a reason for discrepancies between the two. High 14C concentrations - in Andosol Sukabumi up to 111 pMC - exceed the atmospheric 14CO2concentration in the sampling year in 2012 (˜ 103 pMC) and reflect stored organic material from earlier years with a higher atmospheric bomb 14C content. Direct inputs of plant material into the subsoil is indicated by young organic remains with more than 103 pMC below 0.8 m depth. In combination with 13C observation, it is quite obvious that introduction of young C took place in both paddy and non-paddy.

  5. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    PubMed Central

    2011-01-01

    Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338

  6. Measurement of the Isotopic Signature of Soil Carbon Dioxide: Methods Development and Initial Field Results

    NASA Astrophysics Data System (ADS)

    Kayler, Z.; Rugh, W.; Mix, A. C.; Bond, B. J.; Sulzman, E. W.

    2005-12-01

    Soil respiration is a significant component of ecosystem respiration and its isotopic composition is likely to lend insight into ecosystem processes. We have designed probes to determine the isotopic signature of soil-respired CO2 using a two end-member mixing model approach (i.e., Keeling plot). Each probe consists of three 35 ml PVC chambers cased in fiberglass mesh and connected to the soil surface via stainless steel tubing with a septa-lined swagelok fitting. Chambers are vertically connected such that they sample gases at depth intervals centered on 5, 15, and 30 cm. Gases are sampled via a hand vacuum pump equipped with a two-way valve, which allows vials pre-filled with N2 gas in the laboratory to be evacuated and re-filled with only a single septa puncture in the field. Data indicate samples can be stored reliably for up to three days if punctured septa are coated in silicone sealant. To test whether this field sampling method was robust, we constructed a carbon-free sand column out of PVC pipe into which we plumbed a tank of known CO2 concentration and isotopic composition. We have tested the effects of wetting and flow rate on our ability to reproduce tank values. A linear model (geometric mean regression) yielded a more negative isotopic value than the actual gas, but a simple polynomial curve fit the tank value. After laboratory testing, the probes were established in a steep drainage in the H.J. Andrews LTER site in the Cascade Mountains of western Oregon (as part of the Andrews Airshed project). We established a transect of five 10 m2 plots with four soil probes and a companion respiration collar and measured soil CO2 efflux and soil δ13CO2 values biweekly from June-Sept. Results indicate there is a clear difference in isotopic and respiration flux patterns between the north- and south-facing slopes, with the north facing slope exhibiting higher fluxes and more 13C enriched respiration. The temporal pattern of respiration correlates well with decreasing soil moisture over the summer. In addition, flux and isotopic samples collected every 4 hours over a 24 hour period suggested strong diel patterns in both measures, with more enriched δ13C respired from soils in early morning and more δ13C depleted values during the day, suggesting that photosynthetic uptake and CO2 recycling by the aboveground vegetation influence soil-respired CO2 values.

  7. Effect of organic amendments on quality indexes in an italian agricultural soil

    NASA Astrophysics Data System (ADS)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils was stored at 4 °C for biological analyses. On soil samples, organic C, dehydrogenase phosphatase, beta-glucosidase and urease activities as well as microbial biomass C and fungal mycelium were assayed. Results showed that sterilization treatments (solarization+calcium cyanamide) depressed almost all the enzymatic activities studied. By contrast their values were enhanced by the addition of compost combined with Rigen and/or straw. During the time the dehydrogenase activity strongly fell whereas slightly decreases occurred for the activity of phosphatase, beta-glucosidase and urease. Accordingly, a decrease in organic C content was measured. Conversely, arylsulphatase showed an activity increase at the second and third sampling. Microbial biomass C was improved by compost or compost + Rigen addition, in accordance with organic C trend. Normalizing the microbial biomass to the organic C content (microbial quotient) only in one plot a higher and significant value was obtained. Conversely the fungal growth was not influenced by amendment practices, rather in the time it was significantly depressed. Data showed an ameliorant effect of organic amendments, especially when compost was combined with other ones, on chemical, biological and biochemical properties of studied soils. Further investigations related also to crop production should however be carried out to achieve a clearer and comprehensive picture of the relationships between soil quality and soil management practices.

  8. Chemical indicators of cryoturbation and microbial processing throughout an alaskan permafrost soil depth profile

    USDA-ARS?s Scientific Manuscript database

    Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...

  9. Permafrost Stores a Globally Significant Amount of Mercury

    NASA Astrophysics Data System (ADS)

    Schuster, Paul F.; Schaefer, Kevin M.; Aiken, George R.; Antweiler, Ronald C.; Dewild, John F.; Gryziec, Joshua D.; Gusmeroli, Alessio; Hugelius, Gustaf; Jafarov, Elchin; Krabbenhoft, David P.; Liu, Lin; Herman-Mercer, Nicole; Mu, Cuicui; Roth, David A.; Schaefer, Tim; Striegl, Robert G.; Wickland, Kimberly P.; Zhang, Tingjun

    2018-02-01

    Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined with maps of soil carbon. We measured a median STHg of 43 ± 30 ng Hg g soil-1 and a median RHgC of 1.6 ± 0.9 μg Hg g C-1, consistent with published results of STHg for tundra soils and 11,000 measurements from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern Hemisphere permafrost regions contain 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is frozen in permafrost. Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions in the global Hg cycle.

  10. Earth Observation and Geospatial techniques for Soil Salinity and Land Capability Assessment over Sundarban Bay of Bengal Coast, India

    NASA Astrophysics Data System (ADS)

    Das, Sumanta; Choudhury, Malini Roy; Das, Subhasish; Nagarajan, M.

    2016-12-01

    To guarantee food security and job creation of small scale farmers to commercial farmers, unproductive farms in the South 24 PGS, West Bengal need land reform program to be restructured and evaluated for agricultural productivity. This study established a potential role of remote sensing and GIS for identification and mapping of salinity zone and spatial planning of agricultural land over the Basanti and Gosaba Islands(808.314sq. km) of South 24 PGS. District of West Bengal. The primary data i.e. soil pH, Electrical Conductivity (EC) and Sodium Absorption ratio (SAR) were obtained from soil samples of various GCP (Ground Control Points) locations collected at 50 mts. intervals by handheld GPS from 0-100 cm depths. The secondary information is acquired from the remotely sensed satellite data (LANDSAT ETM+) in different time scale and digital elevation model. The collected field samples were tested in the laboratory and were validated with Remote Sensing based digital indices analysisover the temporal satellite data to assess the potential changes due to over salinization. Soil physical properties such as texture, structure, depth and drainage condition is stored as attributes in a geographical soil database and linked with the soil map units. The thematic maps are integrated with climatic and terrain conditions of the area to produce land capability maps for paddy. Finally, The weighted overlay analysis was performed to assign theweights according to the importance of parameters taken into account for salineareaidentification and mapping to segregate higher, moderate, lower salinity zonesover the study area.

  11. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    NASA Astrophysics Data System (ADS)

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  12. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 1

    NASA Astrophysics Data System (ADS)

    Hanck, J. A.; Nekoksa, G.

    1981-08-01

    Data associated with corrosion of concentric neutrals (CN) of direct buried cables from field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are presented. The electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are included. Up to 129 values were determined for each bellhole and stored on cards as a data bank. All values were statistically analyzed and correlated with corrosion found. The severity of corrosion correlated best with CN corrosion potentials, CN resistance measurements, coarseness of backfill, and soil resistivity. The guidelines for installation of cathodic protection on CN cables are to be based upon the evaluation of over 100 experimental cathodic protection systems and upon laboratory testing for protection criteria with and without ac effects.

  13. PNNL Researchers Collect Permafrost Cores in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-23

    Permafrost is ground that is frozen for two or more years. In the Arctic, discontinuous regions of this saturated admixture of soil and rock store a large fraction of the Earth’s carbon – about 1672 petagrams (1672 trillion kilograms). As temperatures increase in the Northern Hemisphere, a lot of that carbon may be released to the atmosphere, making permafrost an important factor to represent accurately in global climate models. At Pacific Northwest National Laboratory, a group led by James C. Stegen periodically extracts permafrost core samples from a site near Fairbanks, Alaska. Back at the lab in southeastern Washington State,more » they study the cores for levels of microbial activity, carbon fluxes, hydrologic patterns, and other factors that reveal the dynamics of this consequential layer of soil and rock.« less

  14. Surface Runoff of Pesticides from a Clay Loam Field in Sweden.

    PubMed

    Larsbo, Mats; Sandin, Maria; Jarvis, Nick; Etana, Ararso; Kreuger, Jenny

    2016-07-01

    Pesticides stored at or close to the soil surface after field application can be mobilized and transported off the field when surface runoff occurs. The objective of our study was to quantify the potential pesticide losses in surface runoff from a conventionally managed agricultural field in a Swedish climate. This was achieved by measuring surface runoff volumes and concentrations in runoff of six spring-applied pesticides and autumn-applied glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Measurements were performed for 3 yr both during the growing seasons and during intervening winter snowmelt periods on a clay loam field close to Uppsala. During growing seasons, surface runoff was generated on only five occasions during one 25-d period in 2012 when the infiltration capacity of the soil may have been reduced by structural degradation due to large cumulative rainfall amounts after harrowing. Concentrations in surface runoff exceeded Swedish water quality standards in all samples during this growing season for diflufenican and pirimicarb. Surface runoff was generated during three snowmelt periods during the winter of 2012-2013. All of the applied pesticides were found in snowmelt samples despite incorporation of residues by autumn plowing, degradation, and leaching into the soil profile during the period between spraying and sampling. Concentrations of glyphosate ranged from 0.12 to 7.4 μg L, and concentrations of AMPA ranged from 0 to 2.7 μg L. Our results indicate that temporal changes in hydraulic properties during the growing season and when the soil freezes during winter affect pesticide losses through surface runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Stability of Bradyrhizobium japonicum Inoculants after Introduction into Soil

    PubMed Central

    Brunel, Brigitte; Cleyet-Marel, Jean-Claude; Normand, Philippe; Bardin, Rene

    1988-01-01

    Bradyrhizobium japonicum USDA 125-Sp, USDA 138, and USDA 138-Sm had been used as inoculants for soybean (Glycine max (L.) Merr.) in soils previously free of B. japonicum. At 8 to 13 years after their release, these strains were reisolated from soil samples. A total of 115 isolates were obtained through nodules, and seven colonies were obtained directly by a serological method. The stability of the inoculants was confirmed by comparing the reisolated cultures with their respective parental strains which had been preserved by being lyophilized or stored on a yeast extract-mannitol agar slant at 4°C. Comparisons were made on morphological and serological characters, carbon compound utilization (8 tested), intrinsic antibiotic resistance (9 tested), and enzymatic activity (19 tested). Mucous and nonmucous isolates of serogroup 125 were analyzed for symbiotic effectiveness and restriction fragment hybridization with a DNA probe. Our data suggest that the B. japonicum inoculants have survived for up to 13 years in the soils without significant mutation except for two reisolates with a slightly increased kanamycin resistance level. Images PMID:16347768

  16. Near-Surface Profiles of Water Stable Isotope Components and Indicated Transitional History of Ice-Wedge Polygons Near Barrow

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.

    2017-12-01

    Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.

  17. Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz

    2016-09-01

    A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored for much longer than event water (average water age is 16 years). Tracing stable water isotopes through the water cycle in combination with our hydrological model was valuable for determining interactions between different water cycle components and unravelling age dynamics within the study area. This knowledge can further improve catchment-specific process understanding of developed, human-impacted landscapes.

  18. Short Term Soil Respiration Response to Fire in a Semi-arid Ecosystem

    NASA Astrophysics Data System (ADS)

    Rozin, A. G.

    2015-12-01

    In the Intermountain West (USA), fire is an important driver of carbon cycling in the environment. Increasing frequency and severity of fires, either through management actions or wildfires, is expected with changing climates in the Western United States. When burning is used as a management tool, it may be beneficial and control the growth of nuisance vegetation, promote the regeneration of grasses and forage species, and reduce hazardous fuel loads to minimize the risk of future wildfires. However, high intensity wildfires often have a negative effect, resulting in a loss of carbon storage and a shift of vegetation communities. This delays recovery of the ecosystem for years or decades and alters the historic fire regime. A 2000 acre prescribed burn in the Reynolds Creek Critical Zone Observatory provided the opportunity to quantify pre and post-burn soil carbon stores and soil carbon losses by heterotrophic respiration. Pre and post-burn soil samples were collected for physical and biogeochemical characterization to quantify substrate availability and possible limitations for heterotrophic respiration. CO2 fluxes were continuously monitored in situ before and immediately after the fire to understand the short-term response of soil respiration to varying burn severities.

  19. Estimating Carbon Stocks Along Depressional Wetlands Using Ground Penetrating Radar (GPR) in the Disney Wilderness Preserve (Orlando, Florida)

    NASA Astrophysics Data System (ADS)

    McClellan, M. D.; Comas, X.; Wright, W. J.; Mount, G. J.

    2014-12-01

    Peat soils store a large fraction of the global carbon (C) in soil. It is estimated that 95% of carbon in peatlands is stored in the peat soil, while less than 5% occurs in the vegetation. The majority of studies related to C stocks in peatlands have taken place in northern latitudes leaving the tropical and subtropical latitudes clearly understudied. In this study we use a combination of indirect non-invasive geophysical methods (mainly ground penetrating radar, GPR) as well as direct measurements (direct coring) to calculate total C stocks within subtropical depressional wetlands in the Disney Wilderness Preserve (DWP, Orlando, FL). A set of three-dimensional (3D) GPR surveys were used to detect variability of the peat layer thickness and the underlying peat-sand mix layer across several depressional wetlands. Direct samples collected at selected locations were used to confirm depth of each interface and to estimate C content in the laboratory. Layer thickness estimated from GPR and direct C content were used to estimate total peat volume and C content for the entire depressional wetland. Through the use of aerial photos a relationship between surface area along the depressional wetlands and total peat thickness (and thus C content) was established for the depressions surveyed and applied throughout the entire preserve. This work shows the importance of depressional wetlands as critical contributors of the C budget at the DWP.

  20. Soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Trumbore, Susan; Barbosa de Camargo, Plínio

    The amount of organic carbon (C) stored in the upper meter of mineral soils in the Amazon Basin (˜40 Pg C) represents ˜3% of the estimated global store of soil carbon. Adding surface detrital C stocks and soil carbon deeper than 1 m can as much as quadruple this estimate. The potential for Amazon soil carbon to respond to changes in land use, climate, or atmospheric composition depends on the form and dynamics of soil carbon. Much (˜30% in the top ˜10 cm but >85% in soils to 1 m depth) of the carbon in mineral soils of the Oxisols and Ultisols that are the predominant soil types in the Amazon Basin is in forms that are strongly stabilized, with mean ages of centuries to thousands of years. Measurable changes in soil C stocks that accompany land use/land cover change occur in the upper meter of soil, although the presence of deep roots in forests systems drives an active C cycle at depths >1 m. Credible estimates of the potential for changes in Amazon soil C stocks with future land use and climate change are much smaller than predictions of aboveground biomass change. Soil organic matter influences fertility and other key soil properties, and thus is important independent of its role in the global C cycle. Most work on C dynamics is limited to upland soils, and more is needed to investigate C dynamics in poorly drained soils. Work is also needed to relate cycles of C with water, N, P, and other elements.

  1. Predicting Potential C Mineralization of Tundra Soils Using Spectroscopy Techniques

    USDA-ARS?s Scientific Manuscript database

    The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better unde...

  2. BOREAS TF-1 SSA-OA Soil Characteristics Data

    NASA Technical Reports Server (NTRS)

    Black, T. Andrew; Chen, Z; Nesic, Z.; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TF-1 team collected several data sets in support of its efforts to characterize and interpret soil information at the SSA-OA tower site in 1994 as part of BOREAS. Data sets collected include soil respiration, temperature, moisture, and gravimetric data. The data are stored in tabular ASCII format.

  3. Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Lawrence, C. R.

    2017-12-01

    Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.

  4. Metagenome sequencing of the microbial community of two Brazilian anthropogenic Amazon dark earth sites, Brazil.

    PubMed

    Lemos, Leandro Nascimento; de Souza, Rosineide Cardoso; de Souza Cannavan, Fabiana; Patricio, André; Pylro, Victor Satler; Hanada, Rogério Eiji; Mui, Tsai Siu

    2016-12-01

    The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.

  5. Cyclic Sediment Trading Between Channel and River Bed Sediments

    NASA Astrophysics Data System (ADS)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (<10 μm), silts (10-63 μm), and fine sands (63-212 μm). The contribution of the initial soil/rock type sources to river bed and alluvial sediments at each sampling site was identical for all three different size fractions, but varied along the stream. Combining these findings it is concluded that proximal alluvial stores dominated the supply of sediment to the river at each location, with this being particularly evident at the catchment outlet. Identical contribution of rock type sources to both river bed and alluvial pockets together with the dominant erosion being from channel banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  6. Screening of pesticide residues in soil and water samples from agricultural settings

    PubMed Central

    Akogbéto, Martin C; Djouaka, Rousseau F; Kindé-Gazard, Dorothée A

    2006-01-01

    Background The role of agricultural practices in the selection of insecticide resistance in malaria vectors has so far been hypothesized without clear evidence. Many mosquito species, Anopheles gambiae in particular, lay their eggs in breeding sites located around agricultural settings. There is a probability that, as a result of farming activities, insecticide residues may be found in soil and water, where they exercise a selection pressure on the larval stage of various populations of mosquitoes. To confirm this hypothesis, a study was conducted in the Republic of Benin to assess the environmental hazards which can be generated from massive use of pesticides in agricultural settings. Methods Lacking an HPLC machine for direct quantification of insecticide residues in samples, this investigation was performed using indirect bioassays focussed on the study of factors inhibiting the normal growth of mosquito larvae in breeding sites. The speed of development was monitored as well as the yield of rearing An. gambiae larvae in breeding sites reconstituted with water and soil samples collected in agricultural areas known to be under pesticide pressure. Two strains of An. gambiae were used in this indirect bioassay: the pyrethroid-susceptible Kisumu strain and the resistant Ladji strain. The key approach in this methodology is based on comparison of the growth of larvae in test and in control breeding sites, the test samples having been collected from two vegetable farms. Results Results obtained clearly show the presence of inhibiting factors on test samples. A normal growth of larvae was observed in control samples. In breeding sites simulated by using a few grams of soil samples from the two vegetable farms under constant insecticide treatments (test samples), a poor hatching rate of Anopheles eggs coupled with a retarded growth of larvae and a low yield of adult mosquitoes from hatched eggs, was noticed. Conclusion Toxic factors inhibiting the hatching of anopheles eggs and the growth of larvae are probably pesticide residues from agricultural practices. Samples used during this indirect assay have been stored in the laboratory and will be analysed with HPLC techniques to confirm hypothesis of this study and to identify the various end products found in soil and water samples from agricultural settings under pesticide pressure. PMID:16563153

  7. Recovery of soil organic matter on reclaimed and unreclaimed oil and gas wellpads in the Sagebrush Steppe of the western U.S.

    USDA-ARS?s Scientific Manuscript database

    Worldwide, dryland soils store 10-15% of all the soil organic matter (SOM) to 1m. Drylands are increasingly threatened by agriculture, overgrazing, mining, and energy development. To prevent loss of carbon from these soils, it is important to understand, first, how disturbances impact SOM and second...

  8. Forest soil carbon is threatened by intensive biomass harvesting.

    PubMed

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  9. Carbon turnover in topsoil and subsoil: The microbial response to root litter additions and different environmental conditions in a reciprocal soil translocation experiment

    NASA Astrophysics Data System (ADS)

    Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen

    2017-04-01

    At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples with root addition had generally higher microbial abundances than those with no root addition. Here, especially fungi benefited from the additional carbon source with highly increased abundances in all incorporation depths. Also the altered environmental conditions in the different incorporation depths significantly influenced the different microbial groups. The steepest decrease with depth was detected in fungal abundance, while bacteria were less affected and increased in relative abundance in soil samples incorporated into subsoil layers. The highest seasonal variability in microbial abundance, however, was determined in 5 cm incorporation depth demonstrating the higher amplitude in micro-climatic and micro-environmental conditions in this near-surface soil habitat. In summary, this experiment demonstrated that carbon quality and quantity are the main factors restricting fungal abundance in deeper soil layers, while bacterial decomposer communities are adapted to a wider range of habitat conditions.

  10. New Magnetic and Geochemical Results on Topsoils of the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Martínez-Pichar, E.; Soler-Arechalde, A. M.; Morton, O.; Hernandez, E.; Lozano-Santa-Cruz, R.; Gonzalez, G.; Beramendi, L.; Urrutia-Fucugauchi, J. H.

    2008-05-01

    The Metropolitan Area of Mexico city is a region well known for intense industrial and commercial activity. The potential sources of the heavy metal pollutants are assumed to be petroleum processing, production of iron material, manufacturing, coal combustion, commercial and automobile exhaust. New samples were collected from industrial, roadside, residential and public parks in the urban areas around the city and added to two previous field campaigns (2003 and 2005). Localities selected for the study represent, presumably, different heavy metal pollution levels and sources. At each sampling point, the top 2 cm layer of the soil profile was collected with a stainless steel trowel and stored in a plastic bag. The elements Fe, Cu and Zn concentrations were determined by EDXRF (Philips PW1400 apparatus) on bulk- sample pressed, boric-acid backed pellets. Metal concentrations of Pb, Ni, Cr, and V were analyzed by ICP-MS with a VG Elemental PQ3 instrument. Magnetic mineralogy in bulk soil samples was investigated by low-field susceptibility using a Kappabridge KLY2. Remanent magnetizations (ARM and IRM) and Hysteresis loops of micro samples had been carried out at room temperature. Bivariate analysis on different ratios of magnetic parameters was employed to characterize the pollution sources.

  11. Phytoforensics, dendrochemistry, and phytoscreening: New green tools for delineating contaminants from past and present

    USGS Publications Warehouse

    Burken, J.G.; Vroblesky, D.A.; Balouet, J.-C.

    2011-01-01

    As plants evolved to be extremely proficient in mass transfer with their surroundings and survive as earth's dominant biomass, they also accumulate and store some contaminants from surroundings, acting as passive samplers. Novel applications and analytical methods have been utilized to gain information about a wide range of contaminants in the biosphere soil, water, and air, with information available on both past (dendrochemistry) and present (phytoscreening). Collectively these sampling approaches provide rapid, cheap, ecologically friendly, and overall "green" tools termed "Phytoforensics". ?? 2011 American Chemical Society.

  12. [On the importance of the steam trap to the efficient sterilization of solutions in stored blood bottles by saturated steam under pressure (author's transl)].

    PubMed

    Schreiber, M; Göbel, M

    1979-01-01

    Biological tests with soil samples were performed to fix the sterilization time for a new steam sterilizer. These tests yielded repeatedly positive spore findings despite modifications of the conditions of sterilization. Having excluded a series of possible sources of trouble, the authors stated that the quality of the steam was the assignable cause. After restoration of the functionality of the steam traps, the biological tests yielded negative results also under normal conditions of sterilization.

  13. Using Mid Infrared Spectroscopy to Predict the Decomposability of Soil Organic Matter Stored in Arctic Tundra Soils

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Fan, Z.; Jastrow, J. D.; Liang, C.; Calderon, F.; Michaelson, G.; Ping, C. L.; Mishra, U.; Hofmann, S. M.

    2016-12-01

    The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better understand the amount and potential susceptibility to mineralization of the carbon stored in the soils of this region. Studies have suggested that soil C:N ratio or other indicators based on the molecular composition of soil organic matter could be good predictors of potential decomposability. In this study, we investigated the capability of Fourier-transform mid infrared spectroscopy (MidIR) spectroscopy to predict the evolution of carbon dioxide (CO2) produced by Arctic tundra soils during a 60-day laboratory incubation. Soils collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska were separated into active-layer organic, active-layer mineral, and upper permafrost and incubated at 1, 4, 8 and 16 °C. Carbon dioxide production was measured throughout the incubations. Total soil organic carbon (SOC) and total nitrogen (TN) concentrations, salt (0.5 M K2SO4) extractable organic matter (SEOM), and MidIR spectra of the soils were measured before and after incubation. Multivariate partial least squares (PLS) modeling was used to predict cumulative CO2 production, decay rates, and the other measurements. MidIR reliably estimated SOC and TN and SEOM concentrations. The MidIR prediction models of CO2 production were very good for active-layer mineral and upper permafrost soils and good for the active-layer organic soils. SEOM was also a very good predictor of CO2 produced during the incubations. Analysis of the standardized beta coefficients from the PLS models of CO2 production for the three soil layers indicated a small number (9) of influential spectral bands. Of these, bands associated with O-H and N-H stretch, carbonates, and ester C-O appeared to be most important for predicting CO2 production for both active-layer mineral and upper permafrost soils. Further analysis of these influential bands and their relationships to SEOM in soil will be explored. Our results show that the MidIR spectra contains valuable information that can be related to decomposability of soils.

  14. Influence of calcium carbonate and charcoal application on aggregation processes and organic matter retention at the silt-size scale

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, Asmeret; Kaiser, Michael; Ghezzehei, Teamrat; Myrold, David; Kleber, Markus

    2013-04-01

    The effectiveness of charcoal and calcium carbonate applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition is still largely unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-53 µm) are of particularly large importance because they store up to 60% of soil organic carbon with mean residence times between 70 and 400 years. The objectives are i) to analyze the ability of CaCO3 and/or charcoal application to increase the amount of silt-sized aggregates and associated OM, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation processes, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (HR, clay: 40%, sand: 57%, OM: 3%) and low reactive soils (LR, clay: 10%, sand: 89%, OM: 1%) and mixed them with charcoal (CC, 1%) and/or calcium carbonate (Ca, 0.2%). The samples were adjusted to a water potential of 0.3 bar and sub samples were incubated with microbial inoculum (MO). After a 16-weeks aggregation experiment, size fractions were separated by wet-sieving and sedimentation. Since we did not use mineral compounds in the artificial mixtures within the size range of 2 to 53 µm, we consider material recovered in this fraction as silt-sized aggregates, which was confirmed by SEM analyses. For the LR mixtures, we detected increasing N concentrations within the 2-53 µm fractions of the charcoal amended samples (CC, CC+Ca, and CC+Ca+MO) as compared to the Control sample with the strongest effect for the CC+Ca+MO sample. This indicates an association of N-containing microbial derived OM with silt-sized aggregates. For the charcoal amended LR and HR mixtures, the C concentrations of the 2-53 µm fractions are larger than those of the respective fractions of the Control samples but the effect is several times stronger for the LR mixtures. The C concentrations of the 2-53 µm fractions relative to the total C amount of the LR and HR mixtures are between 30 and 50%. The charcoal amended samples show generally larger relative C amounts associated with the 2-53 µm fractions than the Control samples. Benefits for aggregate formation and OM storage were larger for sand (LR) than for clay soil (HR). The gained data are similar to respective data for natural soils. Consequently, the suggested microcosm experiments are suitable to analyze mechanisms within soil aggregation processes.

  15. The influence of land-use and land-management on Soil Organic Carbon concentrations: Limitations of making predictions using only soil order data

    NASA Astrophysics Data System (ADS)

    Bell, M. J.; Worrall, F.

    2009-04-01

    In light of recent concern over the extent of global warming and the role of soil carbon as a potential store of atmospheric carbon, there is increasing demand for regions to estimate their current soil organic carbon (SOC) stocks with the greatest possible accuracy. Several previous attempts at calculating SOC baselines at global, national or regional scale have used mean values for soil orders and multiplied these values by the mapped areas of the soils they represent. Other methods have approached the task from a land cover point of view, making estimates using only land-use, or soil order/land-use combinations and others have included variables such as altitude, climate and soil texture. This study aimed to assess the major controls on SOC concentrations (%SOC) at the National Trust Wallington estate in Northumberland, NE England (area = 55km2) where an extensive soil sampling campaign was used to test what level of accuracy could be achieved in modelling the %SOC values on the Estate. Mapped %SOC values were compared to the values predicted from The National Soils Resources Institute (NSRI) representative soil profile data for major soil group, soil series and land-use corrected soil series values, as well as land-use/major soil group combinations from the Countryside Survey database. The results of this study can be summarised as follows: When only soil series or land-use were used as predictors only 48% and 44% of the variation in the dataset were explained. When soil series/land-use combinations were used explanatory power increased to 57% both altitude and soil pH are major controls on %SOC and including these variables gave an improvement to 59% A further improvement from 59% to 66% in the ability to predict %SOC levels at point locations when farm tenancy was included indicates that differences in land-management practices between farm tenancies explained more of the variation than either soil series or land-use in %SOC. Further work will involve a verification site in another area of the UK where the results of this sampling campaign will be used to confirm the greater predictive value of using land-use and management information in combination with soil series in correctly identifying %SOC at specific locations.

  16. Pesticide uptake in potatoes: model and field experiments.

    PubMed

    Juraske, Ronnie; Vivas, Carmen S Mosquera; Velásquez, Alexander Erazo; Santos, Glenda García; Moreno, Mónica B Berdugo; Gomez, Jaime Diaz; Binder, Claudia R; Hellweg, Stefanie; Dallos, Jairo A Guerrero

    2011-01-15

    A dynamic model for uptake of pesticides in potatoes is presented and evaluated with measurements performed within a field trial in the region of Boyacá, Colombia. The model takes into account the time between pesticide applications and harvest, the time between harvest and consumption, the amount of spray deposition on soil surface, mobility and degradation of pesticide in soil, diffusive uptake and persistence due to crop growth and metabolism in plant material, and loss due to food processing. Food processing steps included were cleaning, washing, storing, and cooking. Pesticide concentrations were measured periodically in soil and potato samples from the beginning of tuber formation until harvest. The model was able to predict the magnitude and temporal profile of the experimentally derived pesticide concentrations well, with all measurements falling within the 90% confidence interval. The fraction of chlorpyrifos applied on the field during plant cultivation that eventually is ingested by the consumer is on average 10(-4)-10(-7), depending on the time between pesticide application and ingestion and the processing step considered.

  17. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    NASA Astrophysics Data System (ADS)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root-free soil changes rapidly during incubation and even CO2 sampled very soon after excavation is unlikely to give an accurate estimate of the heterotrophic isotope end-member, to solve this we applied non-linear regressions to the change in δ13CO2 with time to derive the heterotrophic end-member in undisturbed soil.

  18. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred.

  19. Effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Lai, Yen-Jen

    2017-04-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Reforestation is one of the best solutions to mitigate warming gases release and to store in soil. Typhoon is one of the most hazards to disturb forest ecosystem and change carbon cycle. Typhoon disturbance is also affect soil carbon cycle such as soil respiration, carbon storage. Therefore, the objective of this study is to clarify the effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan. Fourteen broadleaved tree species were planted in 2002-2005. Twelves continuous soil respiration chambers was divided two treatments (trench and non-trench) and observed since 2011 to 2014. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Forest biometric such as tree high, DBH, litterfall was measured in 2011-2014. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Soil respiration was related with season variation in research site. Soil temperature showed significantly exponential related with soil respiration in research site (p<0.001).However, soil respiration showed significantly negative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.

  20. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco.

    PubMed

    El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul

    2017-10-01

    This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (I geo ) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, I geo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition

    NASA Astrophysics Data System (ADS)

    Li, H.; Ziolkowski, L. A.

    2015-12-01

    Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.

  2. Effects of Enhanced Thaw Depth on the Composition of Arctic Soil Organic Matter Leachate

    NASA Astrophysics Data System (ADS)

    Hutchings, J.; Zhang, X.; Bianchi, T. S.; Schuur, E.; Arellano, A. R.; Liu, Y.

    2016-12-01

    Pan-Arctic permafrost is increasingly susceptible to thaw due to the disproportionally high rate of temperature change in high latitudes. These soils contain a globally significant quantity of organic carbon that, when thawed, interacts with the modern carbon cycle. Current research has focused on atmospheric carbon fluxes and transport by rivers and streams to continental shelves, but has overlooked the lateral flux of carbon within watershed soils, which is the primary link between terrestrial and riverine ecosystems. Understanding the effects of water movement through permafrost soils on dissolved organic carbon is critical to better modelling of lateral carbon fluxes and interpreting the resulting observed riverine carbon fluxes with applications to investigations of the past, present, and future of the pan-Arctic. We conducted a laboratory leaching experiment using active layer soils from the Eight Mile Lake region of interior Alaska. Cores were sampled into surface and deep sections. Surface sections were subjected to a three-stage leaching process using artificial rain, with cores stored frozen overnight between stages (which crudely simulated freeze-thaw mechanisms). Surface leachates were sampled for analysis and the remainder percolated through deep soils using the same three-staged approach. Measurements of surface and deep leachates were selected to characterize transport-related changes to dissolved organic matter and included dissolved organic carbon, fluorescent dissolved organic matter via excitation emission matrices, and molecular composition via Fourier transform ion cyclotron resonance mass spectrometry. Primary findings from the experiment include a net retention of 2.4 to 27% of dissolved organic carbon from surface leachates in deep soils, a net release of fluorescent dissolved organic matter from deep soils that was 43 to 106% greater than surface leachates, increased hydrophobicity during stage three of leaching, and the preferential leaching of lignin- and tannin-like formulas from deep soils, consistent with fluorescence measurements.

  3. The significance of carbon-enriched dust for global carbon accounting

    USDA-ARS?s Scientific Manuscript database

    Soil carbon stores amount to 54% of the terrestrial carbon pool and twice the atmospheric carbon pool, but soil organic carbon (SOC) can be transient. There is an ongoing debate about whether soils are a net source or sink of carbon, and understanding the role of aeolian processes in SOC erosion, tr...

  4. Grazing and tillage effects on soil properties, rain infiltration and sediment transport during fallow

    USDA-ARS?s Scientific Manuscript database

    On the semiarid Southern Great Plains, precipitation and soil water stored during fallow determine dryland production of wheat (Triticum aestivum L.) and grain sorghum [Sorghum bicolor (L.) Moench] grown in the wheat-sorghum-fallow (WSF) rotation. In this three-year rotation, soil water storage is t...

  5. Review of soil organic carbon measurement protocols: A US and Brazil comparison and recommendation

    USDA-ARS?s Scientific Manuscript database

    The global soil carbon pool represents three to four times the amount of carbon stored in the atmosphere and in living biomass. Accurate measurements of changes in soil carbon are important to understand the impacts of current land management and to identify opportunities to enhance carbon sequestra...

  6. Evaluating Metal Probe Meters for Soil Testing.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1992-01-01

    Inexpensive metal probe meters that are sold by garden stores can be evaluated by students for their accuracy in measuring soil pH, moisture, fertility, and salinity. The author concludes that the meters are inaccurate and cannot be calibrated in standard units. However, the student evaluations are useful in learning the methods of soil analysis…

  7. Macronutrients in soils and plants, and their impacts on animal and human health

    USDA-ARS?s Scientific Manuscript database

    Soil supplies an abundance of macronutrients necessary for plants to grow and thrive under a variety of environmental conditions around the world. The capability of soil to store and release these nutrients supports our existence. Scientists from USDA-ARS in Raleigh NC and at the University of Ark...

  8. CLAY MINERALS AND THE ACCUMULATION OF SOIL ORGANIC MATTER IN NORTHWESTERN U.S. FORESTS

    EPA Science Inventory

    Globally soils are an important terrestrial reservoir of carbon, storing approximately 3 times the carbon held in vegetation and 2 times the amount contained in the atmosphere. With the potential for global climate change it is imperative that world soils continue to be a sink f...

  9. Decaying organic materials and soil quality in the Inland Northwest: A management opportunity

    Treesearch

    Alan E. Harvey; Martin F. Jurgensen; Michael J. Larsen; Russell T. Graham

    1987-01-01

    Organic debris, including wood residue, is important to the development and function of. forest soil. Organic matter stores nutrients and moisture plus it provides important habitats for microbes beneficial to tree growth. To protect long-term forest soil productivity, organic horizons and their parent materials should be maintained.

  10. Hydrology of small forest streams in western Oregon.

    Treesearch

    R. Dennis Harr

    1976-01-01

    The hydrology of small forest streams in western Oregon varies by time and space in terms of both streamflow and channel hydraulics. Overland flow rarely occurs on undisturbed soils. Instead, water is transmitted rapidly through soils to stream channels by displacement of stored soil water. Drainage networks expand and contract according to the interaction between...

  11. Fire effects on temperate forest soil C and N storage

    Treesearch

    Lucas E. Nave; Eric D. Vance; Christopher W. Swanston; Peter S. Curtis

    2011-01-01

    Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting...

  12. Contributions of water supply from the weathered bedrock zone to forest soil quality

    Treesearch

    James H. Witty; Robert C. Graham; Kenneth R. Hubbert; James A. Doolittle; Jonathan A. Wald

    2003-01-01

    One measure of forest soil quality is the ability of the soil to support tree growth. In mediterranean-type ecosystems, such as most of California's forests, there is virtually no rainfall during the summer growing season, so trees must rely on water stored within the substrate. Water is the primary limitation to productivity in these forests. Many forest soils in...

  13. 36 CFR 6.2 - Applicability and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consisting of a chemical used as a pesticide, an item used to apply, or a container used to store, a pesticide. (3) Manure and crop residue returned to the soil as a fertilizer or soil conditioner are not...

  14. 36 CFR 6.2 - Applicability and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consisting of a chemical used as a pesticide, an item used to apply, or a container used to store, a pesticide. (3) Manure and crop residue returned to the soil as a fertilizer or soil conditioner are not...

  15. 36 CFR 6.2 - Applicability and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consisting of a chemical used as a pesticide, an item used to apply, or a container used to store, a pesticide. (3) Manure and crop residue returned to the soil as a fertilizer or soil conditioner are not...

  16. 36 CFR 6.2 - Applicability and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consisting of a chemical used as a pesticide, an item used to apply, or a container used to store, a pesticide. (3) Manure and crop residue returned to the soil as a fertilizer or soil conditioner are not...

  17. 36 CFR 6.2 - Applicability and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consisting of a chemical used as a pesticide, an item used to apply, or a container used to store, a pesticide. (3) Manure and crop residue returned to the soil as a fertilizer or soil conditioner are not...

  18. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    PubMed

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  19. Seed reserves diluted during surface soil reclamation in eastern Mojave Desert

    USGS Publications Warehouse

    Scoles-Sciulla, S. J.; DeFalco, L.A.

    2009-01-01

    Surface soil reclamation is used to increase the re-establishment of native vegetation following disturbance through preservation and eventual replacement of the indigenous seed reserves. Employed widely in the mining industry, soil reclamation has had variable success in re-establishing native vegetation in arid and semi-arid regions. We tested whether variable success could be due in part to a decrease of seed reserves during the reclamation process by measuring the change in abundance of germinable seed when surface soil was mechanically collected, stored in a soil pile for 4 months, and reapplied upon completion of a roadway. Overall seed reserve declines amounted to 86% of the original germinable seed in the soil. The greatest decrease in seed reserves occurred during soil collection (79% of original reserves), compared to the storage and reapplication stages. At nearby sites where stored surface soil had been reapplied, no perennial plant cover occurred from 0.5 to 5 years after application and <1% cover after 7 years compared to 5% cover in nearby undisturbed areas. The reduction in abundance of germinable seed during reclamation was primarily due to dilution of seed reserves when deeper soil fractions without seed were mixed with the surface soil during collection. Unless more precise techniques of surface soil collection are utilized, soil reclamation alone as a means for preserving native seed reserves is a method ill-suited for revegetating disturbed soils with a shallow seed bank, such as those found in the Mojave Desert. Copyright ?? Taylor & Francis Group, LLC.

  20. Wildfires caused by self-heating ignition of carbon-rich soil

    NASA Astrophysics Data System (ADS)

    Restuccia, Francesco; Huang, Xinyan; Rein, Guillermo

    2017-04-01

    Carbon-rich soils, like peat, cover more than 3% of the earth's land surface, and store roughly three times more carbon than the earth's plants. Carbon-rich soils are reactive porous materials, prone to smouldering combustion if the inert and moisture content are low enough. An example of carbon-rich soil combustion happens in peatlands, which are prone to wildfires both in boreal and tropical regions and where combustion is a commonly seen phenomena. The experimental work presented here focuses on understanding one of the ways carbon-rich soil can ignite. The ignition phenomenon is known as self-heating, which is due to soil undergoing spontaneous exothermic reactions in the presence of oxygen. In this work we investigate the effect of soil inorganic content by creating under controlled conditions soil samples with inorganic contents ranging from 3% to 86% of dry weight. Combining oven experiments with the Frank-Kamenetskii theory of ignition, the lumped kinetic and thermal parameters are determined. We then use these parameters to upscale the laboratory experiments to soil layers of different depths for a range of ambient temperatures ranging from 0 °C to 40 °C. Experimental results show that self-heating ignition in the different soil layers is possible. The kinetic analysis predicts the critical soil layer thicknesses required for self-ignition. For example, at 40 °C a soil layer of 3% inorganic content can be ignited through self-heating if it is thicker than 8.8 m. This is also the first experimental quantification of soil self-heating showing that indeed it is possible that wildfires are initiated by self-heating of the soil.

  1. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china.

    PubMed

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun

    2013-01-01

    Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.

  2. Constraining soil C cycling with strategic, adaptive action for data and model reporting

    NASA Astrophysics Data System (ADS)

    Harden, J. W.; Swanston, C.; Hugelius, G.

    2015-12-01

    Regional to global carbon assessments include a variety of models, data sets, and conceptual structures. This includes strategies for representing the role and capacity of soils to sequester, release, and store carbon. Traditionally, many soil carbon data sets emerged from agricultural missions focused on mapping and classifying soils to enhance and protect production of food and fiber. More recently, soil carbon assessments have allowed for more strategic measurement to address the functional and spatially explicit role that soils play in land-atmosphere carbon exchange. While soil data sets are increasingly inter-comparable and increasingly sampled to accommodate global assessments, soils remain poorly constrained or understood with regard to their role in spatio-temporal variations in carbon exchange. A more deliberate approach to rapid improvement in our understanding involves a community-based activity than embraces both a nimble data repository and a dynamic structure for prioritization. Data input and output can be transparent and retrievable as data-derived products, while also being subjected to rigorous queries for merging and harmonization into a searchable, comprehensive, transparent database. Meanwhile, adaptive action groups can prioritize data and modeling needs that emerge through workshops, meta-data analyses or model testing. Our continual renewal of priorities should address soil processes, mechanisms, and feedbacks that significantly influence global C budgets and/or significantly impact the needs and services of regional soil resources that are impacted by C management. In order to refine the International Soil Carbon Network, we welcome suggestions for such groups to be led on topics such as but not limited to manipulation experiments, extreme climate events, post-disaster C management, past climate-soil interactions, or water-soil-carbon linkages. We also welcome ideas for a business model that can foster and promote idea and data sharing.

  3. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    PubMed

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in < 0. 25 mm. The content of nitrogen fractions for all aggregate-classes followed in the order of abandoned land < grass land < brush land < brush-arbor land < arbor land in different sample plots. Artificial forest lands had more effects on the improvement of the soil nitrogen than honeysuckle land. In this study it also showed the nitrogen stockpiling quantity of each aggregate-size class was differed in all aggregate-size classes, in which the content of nitrogen fraction in 5-10 mm and 2-5 mm classes of soil aggregate-size were the highest. And it meant that soil nutrient mainly was stored in large size aggregates. Large size aggregates were significant to the storage of soil nutrient. For each class of soil aggregate-size, the contribution of the nitrogen stockpiling quantity of 0. 25-1 mm class to soil net nitrogen mineralization quantity was the biggest, and following >5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  4. My geoscience research and how it matters to you: Corn, climate, and classrooms

    NASA Astrophysics Data System (ADS)

    McGill, B. M.

    2017-12-01

    In a corn field far north of New Orleans, I study how carbon moves between soils, water, and the atmosphere. More specifically, I look at how different farming practices affect carbon dioxide (CO2) emissions from the soil to the atmosphere and carbon storage in the soil and water. This is important because soils store about twice as much carbon as the atmosphere, so we need to understand how human activities, such as agriculture, disrupt or enhance carbon movement and, ultimately, contribute to or mitigate climate change. Carefully accounting for an ecosystem's greenhouse gas balance (emissions vs. storage) helps climate scientists project how future climate change will affect all of us. My research demonstrates that, in some cases, croplands are storing carbon—this finding will improve the accuracy of existing calculations of carbon gains and losses on farms. This could help farmers get credit for storing carbon in a future scenario with a price on carbon, and this could help policy makers design policy that incentivizes best management practices. Furthermore, through this work I have mentored undergraduate students and collaborated with a local high school science teacher and her classroom. This work was conducted at the only NSF-funded Long Term Ecological Research site focused on cropland agriculture, the Kellogg Biological Station LTER at Michigan State University.

  5. Chamber-Based Estimates of Methane Production in Coastal Estuarine Systems in Southern California

    NASA Astrophysics Data System (ADS)

    Brigham, B.; Lipson, D.; Lai, C.

    2008-12-01

    Wetland systems are believed to produce between 100 - 231 Tg CH4 yr-1 which is roughly 20% of global methane emissions. The uncertainty in methane emissions models stem from the lack of detailed information about methane gas production within regional wetland systems. The aim of this study is to report the range of methane fluxes observed along salinity gradients at two San Diego coastal wetland systems, the Tijuana Estuary (Tijuana River National Estuarine Research Reserve) and the Peñasquitos Lagoon (Torrey Pines State Park Reserve). Soil water samples are used to elucidate factors responsible for the observed variation in methane fluxes. Air samples were subsequently collected from the headspace of a static soil chamber and stored in pre- evacuated vials. Methane concentrations were analyzed within hours after collection by gas chromatography in the laboratory. The chemical and physical properties of the soil, including salinity, pH, redox potential and temperature are measured with a hand-held probe nearby soil collars. The biological properties of the soil, including dissolved organic carbon, nitrate, and ammonia levels are measured from soil water samples in the laboratory. We find that saline sites under direct tidal influence produced methane fluxes ranging from -3.10 to 9.10 (mean 2.18) mg CH4 m-2 day-1. We also find that brackish sites (0.6 to 3.2 ppt in salinity) with fresh water input from residential runoff at the Peñasquitos Lagoon produced methane fluxes ranging from 0.53 to 192.10 (mean 33.34) mg CH4 m-2 day-1. Sampling was done over the course of 5 weeks during August-September of 2008. We hypothesize that the contrasting methane fluxes found between the saline and the brackish sites is due primarily to the different salinity, and in turn sulfate levels found at the two sites. The reduction of sulfate to produce energy is more energetically favorable than the reduction of carbon dioxide to produce methane. Thus the presence of sulfate may act as a methanogensis inhibitor resulting in higher methane flux in low salinity conditions such as those found at the brackish sites.

  6. Development of a low cost and low power consumption system for monitoring CO_{2} soil concentration in volcanic areas.

    NASA Astrophysics Data System (ADS)

    Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza

    2017-04-01

    Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.

  7. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands

    Treesearch

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes; Weinlang Lu

    2004-01-01

    Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2...

  8. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Treesearch

    G. Brett Runion; John R. Butnor; S. A. Prior; R. J. Mitchell; H. H. Rogers

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf...

  9. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Treesearch

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  10. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes

    USDA-ARS?s Scientific Manuscript database

    Assimilation of remotely sensed soil moisture data (SM-DA) to correct soil water stores of rainfall-runoff models has shown skill in improving streamflow prediction. In the case of large and sparsely monitored catchments, SM-DA is a particularly attractive tool.Within this context, we assimilate act...

  11. Alteration of Chemical Composition of Soil-leached Dissolved Organic Matter under Cryogenic Cycles

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Bianchi, T. S.; Schuur, E.

    2016-02-01

    Arctic permafrost thawing has drawn great attention because of the large amount of organic carbon (OC) storage in Arctic soils that are susceptible to increasing global temperatures. Due to microbial activities, some of the OC pool is converted in part to greenhouse gases, like CH4 and CO2 gas, which can result in a positive feedback on global warming. In Artic soils, a portion of OC can be mobilized by precipitation, drainage, and groundwater circulation which can in some cases be transported to rivers and eventually the coastal margins. To determine some of the mechanisms associated with the mobilization of OC from soils to aquatic ecosystems, we conducted a series of laboratory soil leaching experiments. Surface soil samples collected from Healy, Alaska were eluted with artificial rain at a constant rate. Leachates were collected over time and analyzed for dissolved organic carbon (DOC) concentrations. Concentrations began from 387-705 mg/L and then dropped to asymptote states to 25-219 mg/L. High-resolution spectroscopy was used to characterize colored dissolved organic matter (CDOM) and CDOM fluorescence intensity also dropped with time. Fluorescence maximum intensity (Fmax) for peak C ranged from 0.7-4.2 RU, with Exmax/Emmax = 310/450 nm. Fmax for peak T ranged from 0.5-3.2 RU, with Exmax/Emmax = 275/325 nm. Peak C: peak T values indicated preferential leaching of humic-like components over protein-like components. After reaching asymptotic levels, samples were stored frozen and then thawed to study the cryogenic impact on OC composition. CDOM intensity and DOC concentration increased after the freeze-thaw cycle. It was likely that cryogenic processes promoted the breakdown of OC and the releases of more DOC from soils. PARAFAC of CDOM excitation and emission matrices (EEMs) will be used to analyze CDOM composition of the soil leachates.

  12. Settling Velocity Specific SOC Distribution along Hillslopes - A field investigation in Denmark

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Hu, Y.

    2015-12-01

    The net effects of soil erosion by water, as a sink or source of atmospheric CO2, are decisively affected by the spatial re-distribution and stability of eroded soil organic carbon (SOC). The deposition position of eroded SOC, into terrestrial or aquatic systems, is actually decided by the transport distances of soil fractions where the SOC is stored. In theory, the transport distances of aggregated soil fractions are related to their settling velocities under given layer conditions. Yet, little field investigation has been conducted to examine the actual movement of eroded soil fractions along hillslopes, let alone the re-distribution pattern of functional SOC fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events from different topographic positions along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples from difference topographic positions along the slope were fractionated into five settling classes using a settling tube apparatus. The SOC content, 13C signature, and C:N ratios of all settling fractions were measured. Our results show that: 1) the spatial distribution of soil settling classes along the slope clearly shows a coarsening effect at the deposition area immediately below the eroding slope, followed by a fining trend on the deposition area at the slope tail. This proves the validity of the conceptual model in Starr et al. 2000 to predict SOC redistribution patterns along eroding hillslopes. 2) The isotopically enriched 13C on the slope back suggests greater decomposition rates possibly experienced by eroded SOC during transport, while the pronounced respiration rates at the slope tail indicate a great potential of CO2 emissions after deposition. Overall, our results illustrate that immediate deposition of fast settling soil fractions, and the thus induced preferential deposition of SOC at foot slope and potential CO2 emissions during transport, must be appropriately accounted for in current soil carbon balances. To achieve this, a SOC erodibility parameter based on the actual settling velocity distribution of eroded fractions (aggregated or not aggregated) is urgently needed to better parameterize soil erosion models with respect to SOC spatial redistribution.

  13. A novel method for soil aggregate stability measurement by laser granulometry with sonication

    NASA Astrophysics Data System (ADS)

    Rawlins, B. G.; Lark, R. M.; Wragg, J.

    2012-04-01

    Regulatory authorities need to establish rapid, cost-effective methods to measure soil physical indicators - such as aggregate stability - which can be applied to large numbers of soil samples to detect changes of soil quality through monitoring. Limitations of sieve-based methods to measure the stability of soil macro-aggregates include: i) the mass of stable aggregates is measured, only for a few, discrete sieve/size fractions, ii) no account is taken of the fundamental particle size distribution of the sub-sampled material, and iii) they are labour intensive. These limitations could be overcome by measurements with a Laser Granulometer (LG) instrument, but this technology has not been widely applied to the quantification of aggregate stability of soils. We present a novel method to quantify macro-aggregate (1-2 mm) stability. We measure the difference between the mean weight diameter (MWD; μm) of aggregates that are stable in circulating water of low ionic strength, and the MWD of the fundamental particles of the soil to which these aggregates are reduced by sonication. The suspension is circulated rapidly through a LG analytical cell from a connected vessel for ten seconds; during this period hydrodynamic forces associated with the circulating water lead to the destruction of unstable aggregates. The MWD of stable aggregates is then measured by LG. In the next step, the aggregates - which are kept in the vessel at a minimal water circulation speed - are subject to sonication (18W for ten minutes) so the vast majority of the sample is broken down into its fundamental particles. The suspension is then recirculated rapidly through the LG and the MWD measured again. We refer to the difference between these two measurements as disaggregation reduction (DR) - the reduction in MWD on disaggregation by sonication. Soil types with more stable aggregates have larger values of DR. The stable aggregates - which are resistant to both slaking and mechanical breakdown by the hydrodynamic forces during circulation - are disrupted only by sonication. We used this method to compare macro-aggregate (1-2 mm) stability of air-dried agricultural topsoils under conventional tillage developed from two contrasting parent material types and compared the results with an alternative sieve-based technique. The first soil from the Midlands of England (developed from sedimentary mudstone; mean soil organic carbon (SOC) 2.5%) contained a substantially larger amount of illite/smectite (I/S) minerals compared to the second from the Wensum catchment in eastern England (developed from sands and glacial deposits; mean SOC=1.7%). The latter soils are prone to large erosive losses of fine sediment. Both sets of samples had been stored air-dried for 6 months prior to aggregate analyses. The mean values of DR (n=10 repeated subsample analyses) for the Midlands soil was 178μm; mean DR (n=10 repeat subsample analyses) for the Wensum soil was 30μm. The large difference in DR is most likely due to differences in soil mineralogy. The coefficient of variation of mean DR for duplicate analyses of sub-samples from the two topsoil types is around 10%. The majority of this variation is likely to be related to the difference in composition of the sub-samples. A standard, aggregated material could be included in further analyses to determine the relative magnitude of sub-sampling and analytical variance for this measurement technique. We then used the technique to investigate whether - as previously observed - variations (range 1000 - 4000 mg kg-1) in the quantity of amorphous (oxalate extractable) iron oxyhydroxides in a variety of soil samples (n=30) from the Wensum area (range SOC 1 - 2%) could account for differences in aggregate stability of these samples.

  14. Distribution of ancient carbon in buried soils in an eroding loess landscape

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.

    2017-12-01

    Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.

  15. Environmental impact of fertilizer industries evaluated by PIXE

    NASA Astrophysics Data System (ADS)

    Martín, J. E.; Bolívar, J. P.; Respaldiza, M. A.; García-Tenorio, R.; da Silva, M. F.

    1995-12-01

    In this paper the environmental impact of several phosphogypsum piles sited in the southwest of Spain is studied using multielemental analysis by PIXE of 12 salt marsh and soil samples collected in their surroundings. The piles are used to store the main by-product formed in the production of phosphoric acid and phosphate fertilizers. The samples collected were bombarded with 2.5 MeV protons from the 3 MV Van de Graaff accelerator in the ITN at Sacavèm (Portugal), and 20 elements from Al to Pb were detected. The results obtained reinforce previous radioanalytical determinations concerning the significant radioactive contamination pathways (leaching or/and dissolution of elements by water from the piles) and the negligible pathways (atmospheric and direct aquatic transport).

  16. Dynamics of Soil Organic Carbon and Aggregate Stability with Grazing Exclusion in the Inner Mongolian Grasslands

    PubMed Central

    Wen, Ding; He, Nianpeng; Zhang, Jinjing

    2016-01-01

    Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250–2000 μm], microaggregates [53–250 μm], and mineral fraction [< 53 μm]) at 0–20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China. PMID:26751370

  17. Dynamics of Soil Organic Carbon and Aggregate Stability with Grazing Exclusion in the Inner Mongolian Grasslands.

    PubMed

    Wen, Ding; He, Nianpeng; Zhang, Jinjing

    2016-01-01

    Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250-2000 μm], microaggregates [53-250 μm], and mineral fraction [< 53 μm]) at 0-20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China.

  18. Analysis of poly-beta-hydroxybutyrate in environmental samples by GC-MS/MS.

    PubMed

    Elhottová, D; Tríska, J; Petersen, S O; Santrůcková, H

    2000-05-01

    Application of gas chromatography-mass spectrometry (GC-MS) can significantly improve trace analyses of compounds in complex matrices from natural environments compared to gas chromatography only. A GC-MS/MS technique for determination of poly-beta-hydroxybutyrate (PHB), a bacterial storage compound, has been developed and used for analysis of two soils stored for up to 319 d, fresh samples of sewage sludge, as well as a pure culture of Bacillus megaterium. Specific derivatization of beta-hydroxybutyrate (3-OH C4:0) PHB monomer units by N-tert-butyl-dimethylsilyl-N-methyltrifluoracetamide (MTBSTFA) improved chromatographic and mass spectrometric properties of the analyte. The diagnostic fragmentation scheme of the derivates tert-butyldimethylsilyl ester and ether of beta-hydroxybutyric acid (MTBSTFA-HB) essential for the PHB identification was shown. The ion trap MS was used, therefore the scan gave the best sensitivity and with MS/MS the noise decreased, so the S/N was better and also with second fragmentation the amount of ions increased compared to SIM. The detection limit for MTBSTFA-HB by GC-MS/MS was about 10(-13) g microL(-1) of injected volume, while by GC (FID) and GC-MS (scan) it was around 10(-10) g microL(-1) of injected volume. Sensitivity of GC-MS/MS measurements of PHB in arable soil and activated sludge samples was down to 10 pg of PHB g(-1) dry matter. Comparison of MTBSTFA-HB detection in natural soil sample by GC (FID), GC-MS (scan) and by GC-MS/MS demonstrated potentials and limitations of the individual measurement techniques.

  19. Impact of downslope soil transport on carbon storage and fate in permafrost dominated landscapes

    NASA Astrophysics Data System (ADS)

    Shelef, E.; Rowland, J. C.; Wilson, C. J.; Altmann, G.; Hilley, G. E.

    2014-12-01

    A large fraction of high latitude permafrost-dominated landscapes are covered by soil mantled hillslopes. In these landscapes, soil organic carbon (SOC) accumulates and is lost through lateral transport processes. At present, these processes are not included in regional or global landsurface climate models. We present preliminary results of a soil transport and storage model over a permafrost dominated hillslope. In this model soil carbon is transported downslope within a mobile layer that thaws every summer. The model tracks soil transport and its subsequent storage at the hillslope's base. In a scenario where a carbon poor subsurface is blanketed by a carbon-rich surface layer, the progressive downslope soil transport can result in net carbon sequestration. This sequestration occurs because SOC is carried from the hilllsope's near-surface layer, where it is produced by plants and is capable of decomposing, into depositional sites at the hillslope's base where it is stored in frozen deposits such that it's decomposition rate is effectively zero. We use the model to evaluate the quantities of carbon stored in depositional settings during the Holocene, and to predict changes in sequestration rate in response to thaw depth thickening expected to occur within the next century due to climate-change. At the Holocene time scale, we show that a large amount of SOC is likely stored in depositional sites that comprise only a small fraction of arctic landscapes. The convergent topography of these sites makes them susceptible to fluvial erosion and suggests that increased fluvial incision in response to climate-change-induced thawing has the potential to release significant amounts of carbon to the river system, and potentially to the atmosphere. At the time scale of the next century, increased thaw depth may increase soil-transport rates on hillslopes and therefore increase SOC sequestration rates at a magnitude that may partly compensate for the carbon release expected from permafrost thawing. Model guided field data collection is essential to reduce the uncertainty of these estimates.

  20. Analysis of water application efficiency and emission uniformity of drip irrigation systems based on space-time analysis of soil moisture patterns in soils

    NASA Astrophysics Data System (ADS)

    Shabeeb, Ahmeed; Taha, Uday; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    In order to evaluate how efficiently and uniformly drip irrigation systems can deliver water to emitters distributed around a field, we need some methods for measuring/calculating water application efficiency (WAE) and emission uniformity (EU). In general, the calculation of the WAE and of other efficiency indices requires the measurement of the water stored in the root zone. Measuring water storage in soils allows directly saying how much water a given location of the field retains having received a given amount of irrigation water. And yet, due to the difficulties of measuring water content variability under an irrigation system at field scale, it is quite common using EU as a proxy indicator of the irrigation performance. This implicitly means assuming that the uniformity of water application is immediately reflected in an uniformity of water stored in the root zone. In other words, that if a site receive more water it will store more water. Nevertheless, due to the heterogeneity of soil hydrological properties the same EU may correspond to very different distributions of water stored in the soil root zone. 1) In the case of isolated drippers, the storages measured in the soil root zone layer shortly after an irrigation event may be or not different from the water height applied at the surface depending on the vertical/horizontal development of the wetted bulbs. Specifically, in the case of dominant horizontal spreading the water storage is expected to reflect the distribution of water applied at the surface. To the contrary, in the case of relatively significant vertical spreading, deep percolation fluxes (fluxes leaving the root zone) may well induce water storages in the root zone significantly different from the water applied at the surface. 2) The drippers and laterals are close enough that the wetted bulbs below adjacent drippers may interact. In this case, lateral fluxes in the soil may well induce water storages in the root zone which may be significantly uncorrelated with the uniformity of the water applied at the surface. In both the cases, the size of lateral fluxes compared to the vertical ones throughout the rooting zone depends, besides the soil hydraulic properties, on the amount of water delivered to the soil. Larger water applications produce greater spreading, but in both the horizontal and vertical directions. Increased vertical spreading may be undesirable because water moving below the active root zone can result in wasted water, loss of nutrients, and groundwater pollution.

  1. An instrument design and sample strategy for measuring soil respiration in the coastal temperate rain forest

    NASA Astrophysics Data System (ADS)

    Nay, S. M.; D'Amore, D. V.

    2009-12-01

    The coastal temperate rainforest (CTR) along the northwest coast of North America is a large and complex mosaic of forests and wetlands located on an undulating terrain ranging from sea level to thousands of meters in elevation. This biome stores a dynamic portion of the total carbon stock of North America. The fate of the terrestrial carbon stock is of concern due to the potential for mobilization and export of this store to both the atmosphere as carbon respiration flux and ocean as dissolved organic and inorganic carbon flux. Soil respiration is the largest export vector in the system and must be accurately measured to gain any comprehensive understanding of how carbon moves though this system. Suitable monitoring tools capable of measuring carbon fluxes at small spatial scales are essential for our understanding of carbon dynamics at larger spatial scales within this complex assemblage of ecosystems. We have adapted instrumentation and developed a sampling strategy for optimizing replication of soil respiration measurements to quantify differences among spatially complex landscape units of the CTR. We start with the design of the instrument to ease the technological, ergonomic and financial barriers that technicians encounter in monitoring the efflux of CO2 from the soil. Our sampling strategy optimizes the physical efforts of the field work and manages for the high variation of flux measurements encountered in this difficult environment of rough terrain, dense vegetation and wet climate. Our soil respirometer incorporates an infra-red gas analyzer (LiCor Inc. LI-820) and an 8300 cm3 soil respiration chamber; the device is durable, lightweight, easy to operate and can be built for under $5000 per unit. The modest unit price allows for a multiple unit fleet to be deployed and operated in an intensive field monitoring campaign. We use a large 346 cm2 collar to accommodate as much micro spatial variation as feasible and to facilitate repeated measures for tracking temporal trends. Our collar design minimizes root interference yet provides a highly stable platform for coupling with the respirometer. Meso-scale variability characterized by large down woody debris, wind throw pits and mounds and surface roots is negotiated with by a hexagonal array of seven collars at two meter spacing (sample pod). Landscape scale variability is managed through stratification and replication amongst ecosystem types arrayed across a hydrologic gradient from bogs to forested wetlands to upland forests. Our strategy has allowed us to gather data sets consisting of approximately 1800 total observations with approximately 600 measurements per replication per year. Mean coefficients of variation (CV) at the collar (micro-scale) were approximately 0.67. The pod level mean CV was reduced to approximately 0.29 at the pod (meso-scale). The CV at the vegetation strata were 0.43, 0.18 and 0.21 for bog, forested wetland and upland forest respectively. With temperature and hydrological data we are able to measure and model carbon dynamics in this large and complex environment. The analysis of variability at the three spatial scales has confirmed that our approach is capturing and constraining the variability.

  2. Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China

    PubMed Central

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun

    2013-01-01

    Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408

  3. Distribution, Transport, and Accumulation of Pyrogenic Black Carbon in Post-Wildfire Watersheds

    NASA Astrophysics Data System (ADS)

    Galanter, A.; Cadol, D. D.; Frey, B.; Lohse, K. A.

    2014-12-01

    Large, high severity wildfires greatly alter forest structure, water quality, and soil development/erosion. With increased frequency of such wildfires also follows heavy post-wildfire debris flows and flooding which deliver high loads of sediment and pyrogenic black carbon (PyC) to downstream waterways. The accumulation of PyC is a multi-faceted and dynamic issue in the critical zone. Generated by incomplete combustion of organic matter, PyC (in the form of soot and char) impacts turbidity, biological and chemical oxygen demand, and pH. In addition, PyC has the potential to sequester contaminants and can store carbon over short and long timescales. The impacts of two recent wildfires in Northern New Mexico are studied with the goal of understanding the fluxes and residence times of PyC in post-wildfire, mountainous watersheds. Employing burn severity maps and geospatial data, we selected three sites to collect soil and water samples to characterize PyC: a control, an area impacted by a large, severe burn (2011), and an area impacted by a smaller, less severe burn (2013). By collaborating with researchers at the Jemez Critical Zone Observatory, soil samples are being analyzed and will provide pre-wildfire PyC concentrations for the 2013 burn area. In this study, PyC is treated as both a particulate and a solute that is transported throughout the watershed as well as degraded in soils, surface water and groundwater. We used two black carbon quantification methods: the chemo-thermal oxidation (CTO-375) method to distinguish between soil soot and char, and the benzene polycarboxylic acids (BPCA) method to quantify the total concentrations of PyC in soil and water samples. Preliminary soil data from the CTO-375 method show comparable soot concentrations in the control, 2011, and 2013 burn indicating that the soot is more recalcitrant than char and remains in the watershed long after a wildfire. This data also suggests that the fluxes of black carbon over short time scales are composed mainly of char.

  4. The Influence of Land-Use Change on Soil and Dissolved Organic Matter Age, Lability, and Chemical Characteristics in Brazilian Oxisols

    NASA Astrophysics Data System (ADS)

    James, J. N.; Harrison, R. B.; Gross, C. D.; Dwivedi, P.; Myers, T.; Butman, D. E.

    2017-12-01

    Recent advances in freshwater research indicate that the age of carbon exported from major rivers globally increases with greater human disturbance in the watershed. This implies that human land-use can release old, previously mineral-associated C into solution with subsequent export to groundwater and ultimately freshwater systems where terrestrial organic matter is either mineralized to CO2, stored in aquatic sediments, or exported to the ocean. It is important to understand the mechanisms that cause the release of mineral-bound soil organic matter (SOM) into solution in response to human disturbance and land-use change. To better characterize the response of the total soil organic matter (SOM) pool to disturbance, this study examines the interactions between dissolved and bulk soil pools in response to conversion of Brazilian Cerrado (savannah forest) to Eucalyptus plantations. Water-extractable organic matter (WEOM) was obtained from soil samples down to 150 cm at 4 sites in Sao Paulo State, Brazil. These WEOM samples were characterized using fluorescence and NMR spectroscopy, incubated to assess biolability, and carbon-dated. Simultaneously, bulk mineral soil samples were analyzed for microbial biomass, carbon content and age, and characterized using Fourier Transform Infrared Spectroscopy. FTIR spectra of SOM were obtained by washing subsamples with sodium hypochlorite and subtracting the subsequent mineral matrix spectra from bulk soil spectra. Preliminary results show that microbial biomass decreases much more quickly with depth than WEOM, suggesting that C released into solution from deeper horizons may be less likely to be intercepted, and thus preferentially leached to groundwater. Native Cerrado forests had substantially more roots compared to Eucalyptus, and also released substantially larger quantities of WEOM from their O horizons. Furthermore, the age of WEOM released under Eucalyptus forest was more similar in age to bulk SOM, while Cerrado forest WEOM was substantially younger than the bulk SOM. Processes operating at the interface between solid and liquid, terrestrial and aquatic are a key unknown in the global carbon cycle. This research permits a unique snapshot into the relationship between DOM and SOM and the response of these pools to forest conversion and management in Brazil.

  5. Total Storage and Landscape Partitioning of Soil Organic Carbon and Phytomass Carbon in Siberia

    NASA Astrophysics Data System (ADS)

    Siewert, M. B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Hugelius, G.

    2014-12-01

    We present results of detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) from two study sites in Siberia. The study sites in the Tundra (Kytalyk) and the Taiga (Spasskaya Pad) reflect two contrasting environments in the continuous permafrost zone. In total 57 individual field sites (24 and 33 per study site respectively) have have been sampled for SOC and PC along transects cutting across different land covers. In Kytalyk the sampling depth for the soil pedons was 1 m depth. In Spasskaya Pad where the active layer was significantly deeper, we aimed for 2 m depth or tried to include at least the top of the permafrost. Here the average depth of soil profiles was 152 cm. PC was sampled from 1x1 m ground coverage plots. In Spasskaya Pad tree phytomass was also estimated on a 5x5 m plot. The SOC storage was calculated separately for the intervals 0-30 cm, 30-100 cm and 100-200 cm (the latter only for Spasskaya Pad), as well as for organic layer vs. mineral soil, active layer vs. permafrost and for cryoturbated soil horizons. Landscape partitioning was performed by thematic up-scaling using a vegetation based land cover classification of very high resolution (2x2 m) satellite imagery. Non-Metric Multidimensional Scaling (NMDS) was used to explore the relationship of SOC with PC and different soil and permafrost related variables. The results show that the different land cover classes can be considered distinct storages of SOC, but that PC is not significantly related to total SOC storage. At both study sites the 30-100 cm SOC storage is more important for the total SOC storage than the 0-30 cm interval, and large portions of the total SOC are stored in the permafrost. The largest contribution comes from wetland pedons, but highly cryoturbated individual non-wetland pedons can match these. In Kytalyk the landscape partitioning of SOC mostly follows large scale geomorphological features, while in Spasskaya pad forest type also has a large influence.

  6. Non-labile Soil Nitrogen Retention beneath Three Tree Species in a Tropical Plantation

    Treesearch

    Jason P. Kaye; Dan Binkley; Xiaoming Zou

    2002-01-01

    Soil organic matter is the largest sink for N additions to forests. Species composition may affect soilNretention by altering the amount or proportion of added N stored in non-labile organic pools. We measured 15N tracer retention in labile and non-labile pools of surface (0–20 cm) mineral soils, 7 yr after the tracer was applied to a 9 yr-old Puerto Rican tree...

  7. Soil physical, chemical and gas-flux characterization from Picea mariana stands near Erickson Creek, Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.

    2011-01-01

    Fire is a particularly important control on the carbon (C) balance of the boreal forest, and fire-return intervals and fire severity appear to have increased since the late 1900s in North America. In addition to the immediate release of stored C to the atmosphere through organic-matter combustion, fire also modifies soil conditions, possibly affecting C exchange between terrestrial and atmospheric pools for decades after the burn. The effects of fire on ecosystem C dynamics vary across the landscape, with topographic position and soil drainage functioning as important controls. The data reported here contributed to a larger U.S. Geological Survey (USGS) study, published in the journal Ecosystems by O'Donnell and others (2009). To evaluate the effects of fire and drainage on ecosystem C dynamics, we selected sample sites within the 2003 Erickson Creek fire scar to measure CO2 fluxes and soil C inventories in burned and unburned (control) sites in both upland and lowland black spruce (Picea mariana) forests. The results of this study suggested that although fire can create soil climate conditions which are more conducive to rapid decomposition, rates of C release from soils may be constrained after fire by changes in moisture and (or) substrate quality that impede rates of decomposition. Here, we report detailed site information, methodology, and data (in spreadsheet files) from that study.

  8. Principles of water capture, evaporation, and soil water retention

    USDA-ARS?s Scientific Manuscript database

    Successful dryland crop production in semiarid environments is dependent upon efficient storage of precipitation and use of stored soil water supplies. The objectives of this presentation are to: 1. Summarize information regarding the effects of time of year; environmental parameters; residue orient...

  9. CalNail : a design tool for soil nail projects using field case histories.

    DOT National Transportation Integrated Search

    2006-06-01

    Currently, geotechnical staff within Caltrans do not have ready access to detailed information on : previously designed soil nail walls. Much of this information is kept by individual designers, or stored in : paper format, with no organized method o...

  10. THE ALTERNATIVE COVERS ASSESSMENT PROGRAM (ACAP)

    EPA Science Inventory

    Alternative covers attempt to achieve equivalent performance to conventional impermeable covers through an action that has been described as 'sponge and pump'. In this type of cover system, the soil and plants absorb moisture from precipitation, store it in the plant and soil str...

  11. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls

    Treesearch

    Kimberly P. Wickland; Jason C. Neff

    2007-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how...

  12. Carbon loss from an unprecedented Arctic tundra wildfire

    Treesearch

    Michelle C. Mack; M. Syndonia Bret-Harte; Teresa N. Hollingsworth; Randi R. Jandt; Edward A.G. Schuur; Gaius R. Shaver; David L. Verbyla

    2011-01-01

    Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the...

  13. Impacts of wildfire severity on hydraulic conductivity in forest, woodland, and grassland soils (Chapter 7)

    Treesearch

    Daniel G. Neary

    2011-01-01

    Forest, woodland, and grassland watersheds throughout the world are major sources of high quality water for human use because of the nature of these soils to infiltrate, store, and transmit most precipitation instead of quickly routing it to surface runoff. This characteristic of these wildland soils is due to normally high infiltration rates, porosities, and hydraulic...

  14. Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw

    Treesearch

    Caitlin E. Hicks Pries; Edward A.G. Schuur; K. Grace Crummer

    2012-01-01

    Permafrost soils are a significant global store of carbon (C) with the potential to become a large C source to the atmosphere. Climate change is causing permafrost to thaw, which can affect primary production and decomposition, therefore affecting ecosystem C balance. We modeled decadal and millennial soil C inputs, decomposition constants, and C accumulation rates by...

  15. Stronger warming effects on microbial abundances in colder regions

    DOE PAGES

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; ...

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  16. Stronger warming effects on microbial abundances in colder regions

    PubMed Central

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-01-01

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our findings therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions. PMID:26658882

  17. Storage/Turnover Rate of Inorganic Carbon and Its Dissolvable Part in the Profile of Saline/Alkaline Soils

    PubMed Central

    Wang, Yugang; Wang, Zhongyuan; Li, Yan

    2013-01-01

    Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m-2 yr-1 and 1.34 to 5.33 g C m-2 yr-1 respectively for saline soil, and from 1.43 to 4.9 g C m-2 yr-1 and 0.79 to 1.27 g C m-2 yr-1respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile. PMID:24312399

  18. Soil organic carbon and nitrogen pools drive soil C-CO2 emissions from selected soils in Maritime Antarctica.

    PubMed

    Pires, C V; Schaefer, C E R G; Hashigushi, A K; Thomazini, A; Filho, E I F; Mendonça, E S

    2017-10-15

    The ongoing trend of increasing air temperatures will potentially affect soil organic matter (SOM) turnover and soil C-CO 2 emissions in terrestrial ecosystems of Maritime Antarctica. The effects of SOM quality on this process remain little explored. We evaluated (i) the quantity and quality of soil organic matter and (ii) the potential of C release through CO 2 emissions in lab conditions in different soil types from Maritime Antarctica. Soil samples (0-10 and 10-20cm) were collected in Keller Peninsula and the vicinity of Arctowski station, to determine the quantity and quality of organic matter and the potential to emit CO 2 under different temperature scenarios (2, 5, 8 and 11°C) in lab. Soil organic matter mineralization is low, especially in soils with low organic C and N contents. Recalcitrant C form is predominant, especially in the passive pool, which is correlated with humic substances. Ornithogenic soils had greater C and N contents (reaching to 43.15gkg -1 and 5.22gkg -1 for total organic carbon and nitrogen, respectively). C and N were more present in the humic acid fraction. Lowest C mineralization was recorded from shallow soils on basaltic/andesites. C mineralization rates at 2°C were significant lower than at higher temperatures. Ornithogenic soils presented the lowest values of C-CO 2 mineralized by g of C. On the other hand, shallow soils on basaltic/andesites were the most sensitive sites to emit C-CO 2 by g of C. With permafrost degradation, soils on basaltic/andesites and sulfates are expected to release more C-CO 2 than ornithogenic soils. With greater clay contents, more protection was afforded to soil organic matter, with lower microbial activity and mineralization. The trend of soil temperature increases will favor C-CO 2 emissions, especially in the reduced pool of C stored and protected on permafrost, or in occasional Histosols. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond energy (Pb; input energy used in aggregate breakdown) can be calculated by the following equation: ΣPi - Ph = Pb The novel technique was tested by comparing the bond energies measured from a series of soil aggregates sampled from different land management histories, to the samples corresponding stability measurement obtained from standard modern stability tests. The effectiveness of the heavy liquid as a suspension (as opposed to water) was evaluated by comparing the bond energies of samples measured in both suspensions. Our results determine i) how disruptive water is in aggregate stability tests, ii) how accurate and representative standard aggregate stability tests are, and iii) how bond strength varies depending on land use. Keywords: Aggregate; Bond; Fragmentation; Soil; Sonication; Stability References: Zhu, Z. L., Minasny, B. & Field D. J. 2009. Measurement of aggregate bond energy using ultrasonic dispersion. European Journal of Soil Science, 60, 695-705

  20. First post-fire flush in a Mediterranean temporary stream: source ascription in bed sediments

    NASA Astrophysics Data System (ADS)

    Estrany Bertos, Joan; García-Comendador, Julián; Fortesa, Josep; Calsamiglia, Aleix; Garcias, Francesca

    2017-04-01

    First flushes can be of great importance for suspended-sediment transport in fluvial systems of drylands, being temporary streams a characteristic feature of Mediterranean basins. After a wildfire, storm flows may enhance runoff delivery to channels and then increasing the first-flush effect. 137Cs and 210Pbex were used as tracers for recognizing the first post-fire flush effect in the source ascription of bed sediments temporarily stored in a Mediterranean temporary stream severely affected by a wildfire. Thirty potential sediment source samples were collected along the main stem of a catchment located in Mallorca (Spain) during a field campaign developed some weeks after the wildfire. The sample collection was designed considering the wildfire affection, and also distinguishing between soil surface and channel bank. To quantify the relative source contribution to the bed sediment temporarily stored, five sediment samples -deposited during the first storm occurred three months after the wildfire- were collected into the bed stream of the main channel. The 137Cs and 210Pbex concentrations were measured by gamma spectrometry. Then, a linear mixing model was used to establish the relative contribution of each source type to the bed sediments discerning between the most upstream and the downstream parts of the catchment. Post-fire first-flush effect was generated by a torrential event with a suspended-sediment concentration peak ca. 33,618 mg L-1, although transmission losses under a very low runoff coefficient (1%) promoted sediment deposition. Significant differences were observed in fallout radionuclide concentrations between burned surface soil and channel bank samples (p < 0.05), as well as between burned and unburned sources at the downstream part of the catchment (p < 0.01). The radioactivity concentrations in bed sediments samples were statistically similar (p > 0.05). Source ascription in bed sediments in the middle stream shows that 67% was generated in burned hillslopes, reaching 75% in the downstream part because downstream propagation of the sediment derived from the burned area. Bed sediments were mostly generated in burned hillslopes because of the fire effects on soils and sediment availability, high intensity rainfall and limited contribution of channel banks that are fixed by dry-stone walls. This hydro-sedimentary response indicates an association between driven sediment transport factors and sediment availability, generating an effective slope-to-channel sediment connectivity. Long-term sediment sources monitoring will elucidate if the most effective period of the window of disturbance at catchment scale is further extended (i.e., ≈5 years).

  1. Evaluating the effectiveness of mulch application to store carbon belowground: Short-term effects of mulch application on soluble soil and microbial C and N in agricultural soils with low and high organic matter

    NASA Astrophysics Data System (ADS)

    Chen, Janet; Heiling, Maria; Resch, Christian; Gruber, Roman; Dercon, Gerd

    2017-04-01

    Agricultural soils have the potential to contain a large pool of carbon and, depending on the farming techniques applied, can either effectively store carbon belowground, or further release carbon, in the form of CO2, into the atmosphere. Farming techniques, such as mulch application, are frequently proposed to increase carbon content belowground and improve soil quality and can be used in efforts to reduce greenhouse gas levels, such as in the "4 per 1000" Initiative. To test the effectiveness of mulch application to store carbon belowground in the short term and improve soil nutrient quality, we maintained agricultural soils with low and high organic carbon content (disturbed top soil from local Cambisols and Chernozems) in greenhouse mesocosms (70 cm deep with a radius of 25 cm) with controlled moisture for 4 years. Over the 4 years, maize and soybean were grown yearly in rotation and mulch was removed or applied to soils once plant material was harvested at 2 ton/ha dry matter. In addition, soil disturbance was kept to a minimum, with only surface disturbance of a few centimeters to keep soil free from weeds. After 4 years, we measured effects of mulch application on soluble soil and microbial carbon and nitrogen in the mesocosms and compared effects of mulch application versus no mulch on soils from 0-5 cm and 5-15 cm with low and high organic matter. We predicted that mulch would increase soil carbon and nitrogen content and mulch application would have a greater effect on soils with low organic matter than soils with high organic matter. In soils with low organic carbon content and larger predicted potential to increase soil carbon, mulch application did not increase soluble soil or microbial carbon or nitrogen compared to the treatments without mulch application. However, mulch application significantly increased the δ13C of both microbial and soluble soil carbon in these soils by 1 ‰ each, indicating a shift in belowground processes, such as increased decomposition coupled with increased carbon inputs. In soils with more organic content and lower potential to increase soil carbon, mulch application decreased microbial carbon by 0.01 mg C g soil-1 and increased soluble soil nitrogen by 0.01 mg N g soil-1. Soluble soil carbon also decreased by 0.04 mg C g soil-1 and microbial nitrogen increased with mulch application by 0.006 mg N g soil-1, but only in 5-15 cm soil. Mulch application only decreased δ13C of soluble soil carbon by 1.5 ‰, likely indicating a decrease in decomposition. Contrary to our initial predictions, mulch did not increase soil carbon content and only increased nitrogen content in soils that already had relatively higher organic matter content. These results suggest that mulch application (with only soil surface disturbance) may not play a significant role in increasing soil carbon content and overall soil quality, at least in a short 4-year term.

  2. Role of CaCO3 and Charcoal Application on Organic Matter Retention in Silt-sized Aggregates

    NASA Astrophysics Data System (ADS)

    Berhe, A. A.; Kaiser, M.; Ghezzehei, T.; Myrold, D.; Kleber, M.

    2011-12-01

    The effectiveness of charcoal and calcium carbonate (CaCO3) applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition under differing soil mineralogical and microbiological conditions are still unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-50 μm) are of particularly large importance because they store up to 60% of soil organic carbon and with mean residence times between 70 and 400 years. The objectives of this study are i) to analyze the ability of soil amendments (CaCO3, charcoal and their combined application) to increase the amount of silt-sized aggregates and associated organic matter, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation process, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (clay: 40%, sand: 57%, SOM: 3%) and low reactive soils (clay: 10%, sand: 89%, SOM: 1%) and mixed them with charcoal (1%) and/or CaCO3 (0.2%). The samples were adjusted to a water potential of 0.3 bar using a nutrient solution and sub samples were incubated with microbial innoculum. After four months, silt-sized aggregates are separated by a combination of wet-sieving and sedimentation. We hypothesize that the relative increase in amount of silt-sized aggregates and associated OM is larger for less reactive soils than for high reactive soils because of a relative larger increase in binding agents by addition of charcoal and/or CaCO3 in less reactive soils. The effect of charcoal and/or CaCO3 application on the amount of silt-sized aggregates and associated OM is expected to increases with an increase in microbial activity. Between different treatments, we expect the incubated 'charcoal+CaCO3' combination to have the largest effect on silt-size scale aggregation processes because the amount of microbial derived cementing agents, charcoal derived functional groups containing OM, and Ca2+ ions are enhanced at the same time.

  3. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter.

    PubMed

    Craig, Matthew E; Turner, Benjamin L; Liang, Chao; Clay, Keith; Johnson, Daniel J; Phillips, Richard P

    2018-03-24

    Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long-term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM-dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition-e.g. most AM-dominated forests-enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM-dominance in three temperate forests. By focusing on sites where AM- and ECM-plants co-occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM-dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM. © 2018 John Wiley & Sons Ltd.

  4. Health assessment for Pasley Solvents and Chemical, Garden City, New York, Region 2. CERCLIS No. NYD991292004. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-06-01

    The Pasley Solvents and Chemicals site, a National Priorities List site, is located in the Town of Hempstead, immediately east of the Village of Garden City in Nassau County, New York. Between 1969 and 1982, Pasley operated a chemical distribution facility on the lot, occasionally storing waste chemicals. Prior to this, Commander Oil used the site for gasoline storage and fuel oil distribution. The Nassau County Health Department (NCHD) investigated the site in 1981 and found the on-site soil and ground water to be contaminated with organic solvents and petroleum products. On-site sampling by NCHD and the owner has revealedmore » organic chemicals and petroleum products in both soil and ground water. Six chlorinated solvents and four aromatic compounds are in ground water above the part per million. The site is a potential threat to public health.« less

  5. Changes in Soil Carbon Storage in Industrial Forests of Western Oregon and Washington Following Modern Timber Harvesting Practices

    NASA Astrophysics Data System (ADS)

    Holub, S. M.; Hatten, J. A.

    2016-12-01

    Carbon in forest soils is often overlooked because it is less conspicuous than the live trees, downed wood, and forest floor layer that are easily visible when walking through a forest. However, the amount of carbon in forest soils to one meter depth is generally one to two times the amount of carbon we see above ground in mature forests, making soils an important carbon storage pool in forest ecosystems. Given the large quantity of carbon stored in soil, there is some concern that disturbances to forest ecosystems could push some soils out of steady state and lead to a release of carbon from the soil, potentially contributing to the already large amount of greenhouse gas emissions from the burning of fossil fuels for energy. This has implications for the carbon neutrality of timberlands. Thus, careful investigation of the carbon cycle in forest soils is a key component in deciphering the gains and losses of carbon from forests, and ultimately understanding the effects of forest soils on the global carbon cycle. The study objective was to measure pre-harvest soil carbon stores to 1 m depth with enough precision to detect a small change upon resampling post-harvest. The 9 sites examined ranged from 100 to 400 Mg C / ha before harvest with minimum detectible differences around 5%. Three and a half years post-harvest the average of all 9 sites showed a very modest increase in mineral soil carbon as a result of modern timber harvest. Mineral soil carbon did not change significantly at 6 of the 9 sites, individually (range -2% to +5%), while two sites gained soil carbon (+6% and +11%) and soil carbon decreased at one site (-6%).

  6. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss

    Treesearch

    Jonathan A. O' Donnell; Jennifer W. Harden; A. David McGuire; Mikhail Z. Kanevskiy; M. Torre Jorgenson; Xiaomei Xu

    2010-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how...

  7. Non-labile Soil 15Nitrogen Retention beneath Three Tree Species in a Tropical Plantation

    Treesearch

    Jason P. Kaye; Dan Binkley; Xiaoming Zou

    2002-01-01

    Soil organic matter is the largest sink for N additions to forests.Species composition may affect soilNretention by altering the amount or proportion of added N stored in non-labile organic pools. We measured 15N tracer retention in labile and non-labile pools of surface (0–20 cm) mineral soils, 7 yr after the tracer was applied to a 9 yr-old Puerto Rican tree...

  8. The response of soil CO2 fluxes to progressively excluding vertebrate and invertebrate herbivores depends on ecosystem type

    Treesearch

    Anita C. Risch; Alan G. Haynes; Matt D. Busse; Flurin Filli; Martin Schütz

    2013-01-01

    Grasslands support large populations of herbivores and store up to 30% of the world’s soil carbon (C). Thus, herbivores likely play an important role in the global C cycle. However, most studies on how herbivory impacts the largest source of C released from grassland soils—soil carbon dioxide (CO2) emissions—only considered the role of large...

  9. Significance of exchanging SSURGO and STATSGO data when modeling hydrology in diverse physiographic terranes

    USGS Publications Warehouse

    Williamson, Tanja N.; Taylor, Charles J.; Newson, Jeremy K.

    2013-01-01

    The Water Availability Tool for Environmental Resources (WATER) is a TOPMODEL-based hydrologic model that depends on spatially accurate soils data to function in diverse terranes. In Kentucky, this includes mountainous regions, karstic plateau, and alluvial plains. Soils data are critical because they quantify the space to store water, as well as how water moves through the soil to the stream during storm events. We compared how the model performs using two different sources of soils data--Soil Survey Geographic Database (SSURGO) and State Soil Geographic Database laboratory data (STATSGO)--for 21 basins ranging in size from 17 to 1564 km2. Model results were consistently better when SSURGO data were used, likely due to the higher field capacity, porosity, and available-water holding capacity, which cause the model to store more soil-water in the landscape and improve streamflow estimates for both low- and high-flow conditions. In addition, there were significant differences in the conductivity multiplier and scaling parameter values that describe how water moves vertically and laterally, respectively, as quantified by TOPMODEL. We also evaluated whether partitioning areas that drain to streams via sinkholes in karstic basins as separate hydrologic modeling units (HMUs) improved model performance. There were significant differences between HMUs in properties that control soil-water storage in the model, although the effect of partitioning these HMUs on streamflow simulation was inconclusive.

  10. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the greatest impact on aboveground plant carbon stocks. Aboveground plants in control plots amounted to 8652 g m-2C, of which 93 % was stored in trees, while carbon storage in the most frequently burned sites was only 509 g m-2C. Shrub carbon varied barely between fire frequencies, corroborating the high resilience of resprouting shrub species to fire recurrence. The most striking result was the immense decrease in Aleppo pine carbon stock which varied between 7770 g m-2in control plots and 25.6 g m-2in 3-fires plots. Differences between control and burned plots are principally explained by the age of the plots. The decrease in Aleppo pine carbon stock within burned plots was not associated with a growth reduction, but was due to a decrease in stem density. The results indeed indicate that the recruitment of Aleppo pine on more frequently burned plots is obstructed due to cumulative effects of short fire return-intervals (

  11. Soil moisture depletion in three lodgepole pine stands in northeastern Oregon.

    Treesearch

    Daniel M. Bishop

    1961-01-01

    A 1-year study in the Blue Mountains of northeastern Oregon indicates that substantial amounts of soil moisture are consumed during the growing season in lodgepole pine stands. Dual purposes of the study were to estimate the quantities of water that can be stored in basalt-pumice soils typical of the Blue Mountains, and to determine the rate and amount of moisture...

  12. A mycological investigation of phane, an edible caterpillar of an emperor moth, Imbrasia belina.

    PubMed

    Simpanya, M F; Allotey, J; Mpuchane, S F

    2000-01-01

    Phane worm (an edible larval stage of the emperor moth Imbrasia belina Westwood) is an important food source, and its harvesting is an economic activity in rural Botswana. When the larva is feeding on leaves and later during processing, phane gets contaminated with fungi from the leaves and soil. We examined 73 jars, each containing approximately 608 g (+/-0.25 g) of processed phane stored under laboratory conditions (temperature range 20 to 24 degrees C and 50 to 80% relative humidity) and combined intestinal contents of five phane squeezed into each of 74 Duran bottles for fungi. Ninety seven percent of 74 samples of intestinal contents and 57.5% of 73 laboratory-stored phane were positive for either molds and/or yeasts. Yeast population in intestinal contents ranged from 2 x 10(1) CFU/g to 5 x 10(3) CFU/g, whereas molds ranged from 1 x 10(1) CFU/g to 2 x 10(2) CFU/g. Laboratory-stored phane had a mold population of 1 x 10(2) CFU/g to 6 x 10(5) CFU/g. Species of Chaetomium 13.8%, Aspergillus 12.4%, Fusarium 5.5%, and Mucor racemosus 4.1% were the most prevalent in intestinal contents of phane, whereas Aspergillus 42.1%, Penicillium 33.9%, and Mucorales 5.7% were predominant in laboratory-stored phane. The important mycotoxigenic fungi A. flavus, A. parasiticus, A. ochraceus, P. aurantiogriseum, P. citrinum, and P. verrucosum were isolated mainly from the laboratory-stored phane. The genera isolated from both intestinal phane contents and laboratory-stored phane were Alternaria, Aspergillus, Chaetomium, Drechslera, Fusarium, Mucor, Phoma, and Penicillium, suggesting recontamination of phane during drying and storage.

  13. SAPWOOD MOISTURE IN DOUGLAS-FIR BOLES AND SEASONAL CHANGES IN SOIL WATER

    EPA Science Inventory

    Large conifers, such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. Menziesii), purportedly draw on water stored in their boles during periods of summer drought. The relation of seasonal changes in soil moisture to sapwood water content was evaluated in four forest st...

  14. Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: effects of grazing exclusion.

    PubMed

    Lu, Xuyang; Yan, Yan; Sun, Jian; Zhang, Xiaoke; Chen, Youchao; Wang, Xiaodan; Cheng, Genwei

    2015-10-01

    In recent decades, alpine grasslands have been seriously degraded on the Tibetan Plateau and grazing exclusion by fencing has been widely adopted to restore degraded grasslands since 2004. To elucidate how alpine grasslands carbon (C), nitrogen (N), and phosphorus (P) storage responds to this management strategy, three types of alpine grassland in nine counties in Tibet were selected to investigate C, N, and P storage in the environment by comparing free grazing (FG) and grazing exclusion (GE) treatments, which had run for 6-8 years. The results revealed that there were no significant differences in total ecosystem C, N, and P storage, as well as the C, N, and P stored in both total biomass and soil (0-30 cm) fractions between FG and GE grasslands. However, precipitation played a key role in controlling C, N, and P storage and distribution. With grazing exclusion, C and N stored in aboveground biomass significantly increased by 5.7 g m(-2) and 0.1 g m(-2), respectively, whereas the C and P stored in the soil surface layer (0-15 cm) significantly decreased by 862.9 g m(-2) and 13.6 g m(-2), respectively. Furthermore, the storage of the aboveground biomass C, N, and P was positively correlated with vegetation cover and negatively correlated with the biodiversity index, including Pielou evenness index, Shannon-Wiener diversity index, and Simpson dominance index. The storage of soil surface layer C, N, and P was positively correlated with soil silt content and negatively correlated with soil sand content. Our results demonstrated that grazing exclusion had no impact on total C, N, and P storage, as well as C, N, and P in both total biomass and soil (0-30 cm) fractions in the alpine grassland ecosystem. However, grazing exclusion could result in increased aboveground biomass C and N pools and decreased soil surface layer (0-15 cm) C and P pools.

  15. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    PubMed

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.

  16. Let's Break It Down; a Study of Organic Decompostion in Clay Soil

    NASA Astrophysics Data System (ADS)

    Weiss, E.

    2017-12-01

    Things that can affect decomposition are the decomposers in the soil, temperature, and water or moisture. My secondary research also showed that PH and chemical composition of the soil affect the rate of decomposition. Cold or freezing temperatures can help preserve organic material in soil because it freezes the soil and moisture, making it too dense for the organic decomposers to break down the organic matter. Soil also can be preserved by drying out and being stored at 4º Celsius (or 39º Fahrenheit) for 28 days. However, soil can degrade slowly in these conditions because it is not frozen and can be oxidized.

  17. Headcut Erosion in Wyoming's Sweetwater Subbasin.

    PubMed

    Cox, Samuel E; Booth, D Terrance; Likins, John C

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m-the generally available standard resolution for land management-and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m(-1) channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions.

  18. Burning transformations: Fire history effects on organic matter processing from hillslopes to streams

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Gilbertson, A.; Maxwell, K.

    2017-12-01

    Disturbance strongly regulates material and energy flows, changing ecosystem pattern and process. An increase in the size and severity of fire, particularly in the Intermountain West, over the last several decades is expected to continue due to a warming climate. Predicting how fire will alter the net ecosystem carbon balance requires us to understand how carbon is stored, processed, and transferred. Here we present results from paired watersheds focused on five 2002 severe fires in Colorado to examine how organic matter is processed along the hillslope and within the stream. Comparing soil samples and water extractable organic matter (WEOM) between burned and unburned sites illustrates the impact of fire: burned soils have 50% organic matter (OM) content as unburned soils, regardless of geomorphic position. While a smaller pool, soil OM (SOM) in burned sites is more susceptible to microbial degradation (p<0.001 for 4 of 6 sites), especially in systems with slower vegetative recovery. This is explained, in part, to the water extractable organic matter (WEOM) from unburned soils having a higher C:N than burned sites (p<0.02). This shift in SOM quality is likely due to differing OM inputs (e.g. grasses and forbes vs. trees in burned vs. unburned sites). Comparing results from intact soil column experiments to soil extractions and stream samples, suggests that the majority of this soil derived WEOM does not make it to the stream, potentially getting sorbed deeper in the mineral rich, organic poor, portion of the soil. Interestingly, the systematic shifts in OM amounts and quality (as measured by SUVA, E2:E3, and fluorescence) within the terrestrial system in response to fire, are not seen in stream exports. As such, while there are significant relationships (p<0.05) between stream DOM quality, DOM bioavailability, and stream metabolism, burned watersheds are not exporting DOM that is more bioavailable. In addition, despite different terrestrial OM pools, burned and unburned watersheds export statistically similar amounts of DOM per unit area, suggesting that a larger fraction of OM is transferred from the terrestrial to aquatic ecosystem within fire affected landscapes.

  19. As above, so below? How the interplay between overstory species and edaphic factors influences the magnitude and mechanisms of belowground carbon cycles.

    NASA Astrophysics Data System (ADS)

    Desie, Ellen; Vancampenhout, Karen; Buelens, Jeroen; Verstraeten, Gorik; Verheyen, Kris; Heyens, Kathleen; Muys, Bart

    2017-04-01

    The choice of overstory species in relation to soil properties is one of the most important management decisions in forestry, especially when deciduous or mixed stands are replaced by coniferous monocultures. When assessed in relation to climate change, conversion effects are mainly studied in terms of total carbon stocks. These are generally considered to evolve linearly, according to similar stabilization processes across ecosystems. Here we show that the belowground carbon cycle is subject to ecosystem-specific stable process domains. The process domains are separated by steep thresholds, or even tipping points, where a small increase in environmental forcing can cause a drastic change in the way the ecosystem processes carbon. These effects are demonstrated in detail for the old-growth forest complex of the Gaume in Belgium. This forest spans a lithological gradient and mixed-species stands occur next to stands recently converted to Norway spruce (Picea abies) monocultures, creating a setting of paired plots that allow to address the magnitude of management choices relative to intrinsic natural potential. Vegetation descriptions, litter samples and soil samples at different depths were compared for above- and belowground functional biodiversity, litter layer characteristics, soil properties, nutrient status, bioturbation, soil carbon stocks and soil carbon functional pools. Results show that in soils with limited remaining buffer capacity, overstory-induced acidification under spruce causes a shift to an acid aluminum buffered environment, with a collapse in variability of abiotic and biotic soil properties. This entails a shift in soil fauna and depth relations, with a clear decoupling of the litter layer from the topsoil and the subsoil in terms of biological communities, carbon input and stochastic constraints. Finally, this study indicates that although spruce conversion increases the total soil carbon stocks, this extra carbon is stored in more labile carbon pools. Sustainable management strategies should therefore recognize the importance of aboveground species diversity and identity, and the corresponding litter characteristics for driving carbon cycles, especially in systems near a pedological threshold.

  20. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global carbon cycle.

  1. Soil tension mediates isotope fractionation during soil water evaporation

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have implications for plant water uptake studies since plant root water uptake imparts tension to extract water from the soil matrix. Since this is the same physical force as soil water potential, root water uptake at high soil water potential might cause fractionation of soil water. Our work is ongoing to examine these knock-on effects.

  2. Afforestation effects on soil carbon storage in the United States: a synthesis

    Treesearch

    L.E. Nave; C.W. Swanston; U. Mishra; K.J. Nadelhoffer

    2013-01-01

    Afforestation (tree establishment on nonforested land) is a management option for increasing terrestrial C sequestration and mitigating rising atmospheric carbon dioxide because, compared to nonforested land uses, afforestation increases C storage in aboveground pools. However, because terrestrial ecosystems typically store most of their C in soils, afforestation...

  3. Initial response of the nitrogen cycle to soil warming in Northern Minnesota peatlands

    EPA Science Inventory

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce a...

  4. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through additional plant biomass (agroforestry, hedges and cover crops) resulted in higher additional C storage rates, while the reduction of soil organic matter mineralisation through reduced tillage seemed less effective. When applied to the French agricultural sector, excluding areas with soils with major technical constraints or negative environmental consequences (e.g. poorly aerated soils with high N2O emissions), the measures considered here allowed to increase French soil C stocks by 0 to more than 1 Tg C y-1. However, our estimates are associated with high uncertainties, due to the high variability in soil C storage associated with pedo-climatic conditions and cropping systems, and on the very few studies available for some practices such as agroforestry under temperate conditions.

  5. Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan.

    PubMed

    Chen, Chiou-Pin; Juang, Kai-Wei; Cheng, Chih-Hsin; Pai, Chuang-Wen

    2016-12-01

    Soil organic carbon (SOC) stocks can be altered through reforestation and cropping. We estimated the effects of land use on SOC stocks after natural deciduous forests replaced by crops and coniferous plantations by examining the vertical distribution of SOC stocks at different depth intervals in an adjacent Oolong tea (Camellia sinensis L.) plantation, Moso bamboo (Phyllostachys pubescens) forest, Japanese cedar (Cryptomeria japonica) forest, and Taiwania (Taiwania cryptomerioides) forest in central Taiwan. The main soil characteristics, soil nitrogen (N) content, and soil carbon to nitrogen (C/N) ratio were also determined. Different land uses resulted in significantly higher bulk density, lower cation exchange capacity, SOC, soil N, soil C/N ratio, and SOC stocks in croplands compared to forestlands. Due to the long-term application of chemical fertilizers, a significantly lower soil pH was found in the tea plantation. Croplands had a lower soil C/N ratio because of less C input into the soil and a higher mineralization rate of organic carbon during cultivation. Similar SOC stocks were found in Taiwania and Japanese cedar forests (148.5 and 151.8 Mg C ha -1 , respectively), while the tea plantation had comparable SOC stocks to the bamboo forest (101.8 and 100.5 Mg C ha -1 , respectively). Over 40% of SOC stocks was stored in croplands and over 56% was stored in forestland within the upper 10 cm of soil. Coniferous plantations can contribute to a higher SOC stock than croplands, and a significant difference can be found in the top 0-5 cm of soil.

  6. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    PubMed

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  7. The diversity of methoxyphenols released by pyrolysis-gas chromatography as predictor of soil carbon storage.

    PubMed

    Jiménez-González, Marco A; Álvarez, Ana M; Carral, Pilar; González-Vila, Francisco J; Almendros, Gonzalo

    2017-07-28

    The variable extent to which environmental factors are involved in soil carbon storage is currently a subject of controversy. In fact, justifying why some soils accumulate more organic matter than others is not trivial. Some abiotic factors such as organo-mineral associations have classically been invoked as the main drivers for soil C stabilization. However, in this research indirect evidences based on correlations between soil C storage and compositional descriptors of the soil organic matter are presented. It is assumed that the intrinsic structure of soil organic matter should have a bearing in the soil carbon storage. This is examined here by focusing on the methoxyphenols released by direct pyrolysis from a wide variety of topsoil samples from continental Mediterranean ecosystems from Spain with different properties and carbon content. Methoxyphenols are typical signature compounds presumptively informing on the occurrence and degree of alteration of lignin in soils. The methoxyphenol assemblages (12 major guaiacyl- and syringyl-type compounds) were analyzed by pyrolysis-gas chromatography-mass spectrometry. The Shannon-Wiener diversity index was chosen to describe the complexity of this phenolic signature. A series of exploratory statistical analyses (simple regression, partial least squares regression, multidimensional scaling) were applied to analyze the relationships existing between chemical and spectroscopic characteristics and the carbon content in the soils. These treatments coincided in pointing out that significant correlations exist between the progressive molecular diversity of the methoxyphenol assemblages and the concentration of organic carbon stored in the corresponding soils. This potential of the diversity in the phenolic signature as a surrogate index of the carbon storage in soils is tentatively interpreted as the accumulation of plant macromolecules altered into microbially reworked structures not readily recognized by soil enzymes. From a quantitative viewpoint, the partial least squares regression models exclusively based on total abundances of the 12 major methoxyphenols were especially successful in forecasting soil carbon storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Multi-scale heterogeneity in the temporal origin of water taken up by trees water uptake inferred using stable isotopes

    NASA Astrophysics Data System (ADS)

    Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.

    2017-12-01

    Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.

  9. Permafrost stores a globally significant amount of mercury

    USGS Publications Warehouse

    Schuster, Paul F.; Schaefer, Kevin; Aiken, George R.; Antweiler, Ronald C.; DeWild, John F.; Gryziec, Joshua D.; Gusmeroli, Alessio; Hugelius, Gustaf; Jafarov, Elchin E.; Krabbenhoft, David P.; Liu, Lin; Herman-Mercer, Nicole M.; Mu, Cuicui; Roth, David A.; Schaefer, Tim; Striegl, Robert G.; Wickland, Kimberly P.; Zhang, Tingjun

    2018-01-01

    Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined with maps of soil carbon. We measured a median STHg of 43 ± 30 ng Hg g soil−1 and a median RHgC of 1.6 ± 0.9 μg Hg g C−1, consistent with published results of STHg for tundra soils and 11,000 measurements from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern Hemisphere permafrost regions contain 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is frozen in permafrost. Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions in the global Hg cycle.

  10. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.E.

    1997-12-31

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands ofmore » perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.« less

  11. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest

    Treesearch

    Leslie A. Boby; Edward A.G. Schuur; Michelle C. Mack; David Verbyla; Jill F. Johnstone

    2010-01-01

    The boreal region stores a large proportion of the world's terrestrial carbon (C) and is subject to high-intensity, stand-replacing wildfires that release C and nitrogen (N) stored in biomass and soils through combustion. While severity and extent of fires drives overall emissions, methods for accurately estimating fire severity are poorly tested in this unique...

  12. Estimation of the ICBM/2 Organic Matter Simulation Model parameters for biogas digestate mineralisaion in soil using Near Infrared Data.

    NASA Astrophysics Data System (ADS)

    Cabassi, Giovanni; Cavalli, Daniele; Borrelli, Lamberto; Degano, Luigi; Marino Gallina, Pietro

    2014-05-01

    The use of simulation models to study the turnover of soil organic matter (SOM) can support experimental data interpretation and the optimization of manure management. Icbm/2 (Katter, 2001) is a SOM simulation model that describes the turnover of SOM with three pools : one for old humified SOM (CO) and two for added manure, CL ( labile "young" C) and CS (stable "young" C). C outflows from CL and CR to be humified (h) and lost as CO2-C (1-h). All pools decay with firs-order kinetics with parameter kYL, kYR and kO (fig. 1).With this model of SOM turnover, during manure decomposition into the soil, only the evolved CO2 can be easily measured. Near infrared spectroscopy has been proved to be a useful technique for soil C evaluation. Since different soil C pools are expected to have different chemical composition, it was proven that NIR can be used as a cheap technique to develop calibration models to estimate the amount of C belonging to different pools). The aim of this work was compare the calibration of ICBM/2 using C respiration data or optimal NIR prediction of CO and CL pools. A total of six laboratory treatments were established using the same soil corresponding to the application of five fertilisers and a control treatment: 1) control without N fertilisation; 2) ammonium sulphate; 3) anaerobically digested dairy cow slurry (Digested slurry); 4-5) the liquid (Liquid fraction) and solid (Solid fraction) fractions after mechanical separation of Digested slurry; and 6) anaerobically stored dairy cow slurry (Stored slurry). The "nursery" method was used with 12 sampling dates. NIR analysis were performed on the air dried grounded soils. Spectra were collected using an FT-NIR Spectrometer. Parameters calibration was done separately for each soil using the downhill simplex method. For each manure, a C partitioning factor (Fi) was optimised. In each optimization step respiration measured data or NIR estimates CL and CO were used as imput for minimisation objective function. At the end the algorithm found those parameters that gave the lowest averaged RMSE between errors in the estimation of respired C. The model parameter extimations obtained using C respiration data and NIR predictions were comparable indicating a general ability of the NIR method to estimate model parameters together with a good prediction of C mineralisation.

  13. Characterization of climate- and human-induced slope, soil and grassland dynamics in Bavarian landscapes under climate change

    NASA Astrophysics Data System (ADS)

    Waltl, Peter; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    Since the Neolithic Revolution the intensification of agriculture has been causing increased erosion in Bavarian landscapes. The correlated sediments often induce the formation of new colluvial and alluvial soils (WRB: Regic Anthrosol and Fluvisol i.a.). The soils themselves are able to absorb, bind, and store considerable amounts of C- and N-compounds. Therefore, they are important reactors regarding climate-relevant greenhouse-gas balances in the atmosphere. Learning about the exact spatial extent and thickness of these soils in representative landscapes, but also about their geneses and processes is essential. It allows for a detailed quantification and understanding of the current and potential properties and characteristics of these soils in their role of greenhouse-gas reactors. Two research locations were elected as representative Bavarian landscapes composed of different lithology and pedo-chemical environments (limestone versus crystalline setting): Rottenbuch is situated at the Ammer River in the Upper Bavarian pre-alpine forelands (Lkr. Weilheim-Schongau). The Otterbach Creek lies at the southwestern foothills of the Bavarian Forest at the Donaurandbruch tectonic line next to Donaustauf (Lkr. Regensburg). Detailed information on the soil horizons and layers within these research areas are accumulated by sounding or burrowing soil profiles and subsequently analyzing the soil samples in the lab. Geophysical methods, such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT), and ground penetrating radar (GPR), allow for the extension of this point-source information into three dimensions. By repeatedly and regularly applying these methods, also temporal changes such as soil hydrology or freeze and thaw cycles can be monitored and their influence on fluxes and exchanges can be taken into account.

  14. (14)C, delta(13)C and total C content in soils around a Brazilian PWR nuclear power plant.

    PubMed

    Dias, Cíntia Melazo; Telles, Everaldo C; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; da Silveira Corrêa, Rosangela; Skog, Göran

    2009-04-01

    Nuclear power plants release (14)C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of (14)C in soils taken within 1km from a Brazilian nuclear power plant with soils taken within a reference area located 50km away from the reactor site. Analyses of total carbon, delta(13)C and (137)Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The (137)Cs data show that the soils from the base of hills are probably allocthonous. The (14)C measurements showed that there is no accumulation due to the operation of the nuclear facility, although excess (14)C was found in the litter taken in the area close to power plant. This indicates that the anthropogenic signal observed in the litter fall has not been transferred yet to the soil. This study is part of an extensive research programme in which other samples including air, vegetation and gaseous effluents (taken in the vent stack of the Brazilian nuclear power reactors Angra I and II) were also analyzed. The present paper aimed to evaluate how (14)C emissions from the nuclear power plant are transferred and stored by soils present in the surroundings of the reactor site. This is the first study concerning anthropogenic (14)C in soils in Brazil.

  15. Soil Organic Carbon and Below Ground Biomass: Development of New GLOBE Special Measurements

    NASA Technical Reports Server (NTRS)

    Levine, Elissa; Haskett, Jonathan

    1999-01-01

    A scientific consensus is building that changes in the atmospheric concentrations of radiatively active gases are changing the climate (IPCC, 1990). One of these gases CO2 has been increasing in concentration due to additions from anthropogenic sources that are primarily industrial and land use related. The soil contains a very large pool of carbon, estimated at 1550 Gt (Lal 1995) which is larger than the atmospheric and biosphere pools of carbon combined (Greenland, 1995). The flux between the soil and the atmosphere is very large, 60 Pg C/yr (Lal 1997), and is especially important because the soil can act as either a source or a sink for carbon. On any given landscape, as much as 50% of the biomass that provides the major source of carbon can be below ground. In addition, the movement of carbon in and out of the soil is mediated by the living organisms. At present, there is no widespread sampling of soil biomass in any consistent or coordinated manner. Current large scale estimates of soil carbon are limited by the number and widely dispersed nature of the data points available. A measurement of the amount of carbon in the soil would supplement existing carbon data bases as well as provide a benchmark that can be used to determine whether the soil is storing carbon or releasing it to the atmosphere. Information on the below ground biomass would be a valuable addition to our understanding of net primary productivity and standing biomass. The addition of these as special measurements within GLOBE would be unique in terms of areal extent and continuity, and make a real contribution to scientific understanding of carbon dynamics.

  16. Increased precipitation accelerates soil organic matter turnover associated with microbial community composition in topsoil of alpine grassland on the eastern Tibetan Plateau.

    PubMed

    Han, Conghai; Wang, Zongli; Si, Guicai; Lei, Tianzhu; Yuan, Yanli; Zhang, Gengxin

    2017-10-01

    Large quantities of carbon are stored in alpine grassland of the Tibetan Plateau, which is extremely sensitive to climate change. However, it remains unclear whether soil organic matter (SOM) in different layers responds to climate change analogously, and whether microbial communities play vital roles in SOM turnover of topsoil. In this study we measured and collected SOM turnover by the 14 C method in alpine grassland to test climatic effects on SOM turnover in soil profiles. Edaphic properties and microbial communities in the northwestern Qinghai Lake were investigated to explore microbial influence on SOM turnover. SOM turnover in surface soil (0-10 cm) was more sensitive to precipitation than that in subsurface layers (10-40 cm). Precipitation also imposed stronger effects on the composition of microbial communities in the surface layer than that in deeper soil. At the 5-10 cm depth, the SOM turnover rate was positively associated with the bacteria/fungi biomass ratio and the relative abundance of Acidobacteria, both of which are related to precipitation. Partial correlation analysis suggested that increased precipitation could accelerate the SOM turnover rate in topsoil by structuring soil microbial communities. Conversely, carbon stored in deep soil would be barely affected by climate change. Our results provide valuable insights into the dynamics and storage of SOM in alpine grasslands under future climate scenarios.

  17. Effects of Storage Temperature and Extraction Procedure on Recovery of Plant-parasitic Nematodes from Field Soils

    PubMed Central

    Barker, K. R.; Nusbaum, C. J.; Nelson, L. A.

    1969-01-01

    Storage of nematodes in soil at -15 C for 1 to 16 weeks greatly increased nematode recovery by a sugar-flotation-sieving procedure. One week of exposure to -15 C killed all nematodes except Pratylenchus zeae and Tylenchorhynchus claytoni which were recoverable in decreasing numbers up to 10 weeks by the Baermann funnel method. Optimum storage temperature for survival of most nematode species was 13 C. The numbers of Meloidogyne incognita, T. claytoni, Belonolaimus Iongicaudatus, and P. zeae recoverable by either extraction method remained constant or increased when stored at 13-24 C for 16 weeks. This was also true for Helicotylenchtts dihystera and Xiphinema americanum extracted by the Baermann funnel technique, whereas the numbers retrieved by the sugar-flotation-sieving method decreased slightly. All species except T. claytoni decreased appreciably in soil stored at 36 C. PMID:19325684

  18. Changes in sub-soil river water quality upon its open storage-a case study.

    PubMed

    Mohanty, A K; Satpathy, K K; Prasad, M V R

    2017-08-01

    A study was carried out to investigate the changes in the physicochemical and biological properties of sub-soil river water upon its storage in a man-made reservoir. Palar sub-soil and reservoir water samples were collated fortnightly for a period of 5 years (2010-2014). The open reservoir is used as a reliable raw water source for condenser cooling systems and for the demineralizing (DM) plant input of Fast Breeder Test Reactor (FBTR), Madras Atomic Power Station (MAPS), and other laboratories at Kalpakkam, southeast coast of India. Relatively high nutrient concentration was observed in the Palar sub-soil water, and a significant reduction in average concentration (μmol l -1 ) of phosphate (Palar 1.92; open reservoir 1.54) and nitrate (Palar 9.78; open reservoir 5.67) was observed from Palar to open reservoir. Substantial increase in pH (Palar 8.05; open reservoir 8.45), dissolved oxygen (mg l -1 ) (Palar 6.07; open reservoir 8.47), and chlorophyll-a (mg m -3 ) (Palar 1.66; open reservoir 8.43) values were noticed from the Palar sub-soil water to open reservoir water. It is concluded that sub-soil water with higher nutrient concentrations when stored openly, exposing to the sun, resulted in growth of plants, planktonic, and macrophytes, which led to substantial deterioration in water quality from its utility point of view as a condenser cooling medium and raw water input for DM plant.

  19. Soil data from fire and permafrost-thaw chronosequences in upland Picea mariana stands near Hess Creek and Tok, interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre; Kanevskiy, Mikhail; Xu, Xiaomei

    2013-01-01

    Soils of the Northern Circumpolar Permafrost region harbor 1,672 petagrams (Pg) (1 Pg = 1,000,000,000 kilograms) of organic carbon (OC), nearly 50 percent of the global belowground OC pool (Tarnocai and others, 2009). Of that soil OC, nearly 88 percent is presently stored in perennially frozen ground. Recent climate warming at northern latitudes has resulted in warming and thawing of permafrost in many regions (Osterkamp, 2007), which might mobilize OC stocks from associated soil reservoirs via decomposition, leaching, or erosion. Warming also has increased the magnitude and severity of wildfires in the boreal region (Turetsky and others, 2011), which might exacerbate rates of permafrost degradation relative to warming alone. Given the size and vulnerability of the soil OC pool in permafrost soils, permafrost thaw will likely function as a strong positive feedback to the climate system (Koven and others, 2011; Schaefer and others, 2011). In this report, we report soil OC inventories from two upland fire chronosequences located near Hess Creek and Tok in Interior Alaska. We sampled organic and mineral soils in the top 2 meters (m) across a range of stand ages to evaluate the effects of wildfire and permafrost thaw on soil C dynamics. These data were used to parameterize a simple process-based fire-permafrost-carbon model, which is described in detail by O’Donnell and others (2011a, b). Model simulations examine long-term changes in soil OC storage in response to fire, permafrost thaw, and climate change. These data also have been used in other papers, including Harden and others (2012), which examines C recovery post-fire, and Johnson and others (2011), which synthesizes data within the Alaska Soil Carbon Database. Findings from these studies highlight the importance of climate and disturbance (wildfire, permafrost thaw) on soil C storage, and loss of soil C from high-latitude ecosystems.

  20. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland.

    PubMed

    Gruba, Piotr; Socha, Jarosław; Błońska, Ewa; Lasota, Jarosław

    2015-07-15

    In this study we investigated the effect of fine (ϕ<0.05mm) fraction, i.e., silt+clay (FF) content in soils, site moisture, metal (Al and Fe) of soil organic matter (SOM) and forest species composition on the spatial distribution of carbon (C) pools in forest soils at the landscape scale. We established 275 plots in regular 200×200m grid in a forested area of 14.4km(2). Fieldwork included soil sampling of the organic horizon, mineral topsoil and subsoil down to 40cm deep. We analysed the vertical and horizontal distribution of soil organic carbon (SOC) stocks, as well as the quantity of physically separated fractions including the free light (fLF), occluded light (oLF) and mineral associated fractions (MAF) in the mineral topsoil (A, AE) horizons. Distribution of C in soils was predominantly affected by the variation in the FF content. In soils richer in the FF more SOC was accumulated in mineral horizons and less in the organic horizons. Accumulation of SOC in mineral soil was also positively affected by the degree of saturation of SOM with Al and Fe. The increasing share of beech influenced the distribution of C stock in soil profiles by reducing the depth of O horizon and increasing C stored in mineral soil. The content of FF was positively correlated with the content of C in MAF and fLF fractions. The content of oLF and MAF fractions was also positively influenced by a higher degree of metal saturation, particularly Al. Our results confirmed that Al plays an important role in the stabilization of SOM inside aggregates (CoLF) and as in CMAF fractions. We also found a significant, positive effect of beech on the CfLF and fir on the CoLF content. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The Importance of CO2 Utilizing Chemolithoautotrophic Microorganisms for Carbon Sequestration and Isotope Signatures of SOM in Tropical Rainforest Soils

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Behrendt, T.; Quesada, B.; Yanez Serrano, A. M.; Trumbore, S.

    2015-12-01

    Soil organic matter (SOM) is a major compartment of the tropical carbon cycle with up to 26 % of global carbon stocks stored in tropical soils. Understanding factors and processes driving SOM dynamics under changing climate conditions is crucial for predicting the role of tropical forest ecosystems to act as a carbon sink or source. Soil microorganisms are major drivers of the belowground carbon cycle by releasing CO2 by soil respiration but also by stabilizing and storing SOM, as indicated by recent research. Our investigations focus on chemolithoautotrophic microorganisms, a group that relies on CO2 as their carbon source. Chemolithoautotrophic microorganisms have been shown to be highly abundant in soils, whereas their role in SOM sequestration is still poorly understood. In tropical soils, the activity of chemolithoautotropic microbes might be important for generating and stabilizing carbon, especially in the deeper soil, which is rich in CO2 and reduced energy sources like Fe2+. They further might impact carbon isotope signatures (13C and 14C) of SOM, because of enzymatic fractionation during carboxylation and the use of carbon, which has a distinct isotopic composition than other carbon sources at the same depth. In order to study the activity of chemolithoautotropic microbes and their importance for SOM, we conducted isotope and isotope-labelling studies, gas measurements as well as molecular analyses at soils from the Atto site from 0 to 1 meter depth. These soils are classified as Ferralsols and Alisols and represent the most abundant soil types in the Amazon. With this we will be able to gain knowledge about the function and identity of an important group of microorganisms and their contribution to crucial biogeochemical cycles in the world`s most important ecosystem.

  2. Addressing the Old Water Paradox using tritium

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Morgenstern, Uwe

    2017-04-01

    The paradox that much of the water that contributes to streams during high flow events appears to be derived from relatively old stores in catchments has been of interest to hydrogeologists for several decades. It is a common observation that stream chemistry varies less than would be expected if simple dilution of groundwater inflows by event water occurred during storm events. However, it is not clear to what extent this observation reflects displacement of water from the soils or the regolith vs. enhanced discharge of older groundwater into the stream. Here we use tritium in conjunction with major ion and stable isotope tracers to assess the sources of water in high flow events in streams in southeast Australia. The concentrations of most of the major ions and EC values either remained relatively constant during the high flow events or displayed non-systematic variations with respect to flow. Oxygen isotopes do vary systematically during the events, but the magnitude of the variation is <1‰.. By contrast, there is a notable systematic increase in the nitrate concentrations and a decrease in silica concentrations during the events. Tritium activities increased from 1.4 to 1.5 TU to up to 2.4 TU close to the peak in streamflow and then decline over several days to pre-high flow levels. The peak tritium activities in the stream are lower than the tritium activity of the rainfall that generated the high flow events (2.7 to 2.8 TU) but within the range of tritium activities commonly recorded in soil water in southeast Australia (2.0 to 2.6 TU). The combined geochemical data imply that there is significant input from water stores other than groundwater during the high flow events. This is most likely to include a significant component of water displaced from the soils or regolith that typically has a residence time of 1 to 5 years. The major ion geochemistry of this water, especially its nitrate concentrations, is distinct from both groundwater and rainfall reflecting biogeochemical reactions in the soil zone/regolith. More generally, this study illustrates that since catchments contain multiple stores of water, including intermediate stores such as soil water, interflow, and water in the regolith, a multi-tracer approach is required to apportion the contribution of water from these stores during high flow events. Most of the major ions and EC were not useful in determining the changing water stores and the variation in stable isotopes was minor. Tritium provides the opportunity to directly assess how the average residence time of water varies across the flow event and through this address some aspects of the old water paradox.

  3. Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico.

    PubMed

    Lüneberg, Kathia; Schneider, Dominik; Siebe, Christina; Daniel, Rolf

    2018-01-23

    Dryland agriculture nourishes one third of global population, although crop irrigation is often mandatory. As freshwater sources are scarce, treated and untreated wastewater is increasingly used for irrigation. Here, we investigated how the transformation of semiarid shrubland into rainfed farming or irrigated agriculture with freshwater, dam-stored or untreated wastewater affects the total (DNA-based) and active (RNA-based) soil bacterial community composition, diversity, and functionality. To do this we collected soil samples during the dry and rainy seasons and isolated DNA and RNA. Soil moisture, sodium content and pH were the strongest drivers of the bacterial community composition. We found lineage-specific adaptations to drought and sodium content in specific land use systems. Predicted functionality profiles revealed gene abundances involved in nitrogen, carbon and phosphorous cycles differed among land use systems and season. Freshwater irrigated bacterial community is taxonomically and functionally susceptible to seasonal environmental changes, while wastewater irrigated ones are taxonomically susceptible but functionally resistant to them. Additionally, we identified potentially harmful human and phytopathogens. The analyses of 16 S rRNA genes, its transcripts and deduced functional profiles provided extensive understanding of the short-term and long-term responses of bacterial communities associated to land use, seasonality, and water quality used for irrigation in drylands.

  4. BOREAS Soils Data over the SSA in Raster Format and AEAC Projection

    NASA Technical Reports Server (NTRS)

    Knapp, David; Rostad, Harold; Hall, Forrest G. (Editor)

    2000-01-01

    This data set consists of GIS layers that describe the soils of the BOREAS SSA. The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size in the AEAC projection. These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.

  5. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    NASA Astrophysics Data System (ADS)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  6. Assessing the Impact of Land Management on Organic Matter Composition in Peat Soils

    NASA Astrophysics Data System (ADS)

    Savage, A.; Holden, J.; Wainwright, J.

    2010-05-01

    Peatlands are seen as important stores of terrestrial carbon, accounting for up to one-third of global soil carbon stocks. In some cases peatlands are shown to be emitters of carbon, in other cases carbon sinks depending on the site conditions and nature of degradation. However, carbon budget calculations carried out to date have a number of uncertainties associated with them and the composition of the carbon is generally not considered when determining carbon budgets. Carbon cycling in peat is driven by four key factors (Laiho, 2006):, environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Land management is also recognised as an additional driver, but the impacts of many types of management are poorly understood. Among the four drivers listed by Laiho (2006) substrate quality is seen as the most significant. To date, little work has been carried out to characterise the quality of organic matter in peat soils; rather crude estimates have been made as to the quantity of carbon that is stored in peatlands, yet without understanding the composition of the peat, limitations are imposed on calculations of rates of carbon loss from peatlands. This work seeks to examine how variations in the chemical composition of organic matter in peat varies with land use. The method published by Wieder and Starr (1998) was followed to determine eight fractions: soluble fats and waxes, hot water soluble, hollocellulose, cellulose, soluble phenolics, acid insoluble carbohydrates, water soluble carbohydrates and lignin. Samples were taken from burnt, grazed, drained, afforested and undisturbed sites at the Moor House UNESCO Biosphere Reserve in Northern England. The method was used to identify if differences were present in the recalcitrance of the peat and linked to gaseous carbon emissions data collected during fortnightly monitoring. R. Laiho (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels Soil Biology & Biochemistry, 38, 2011-2024. R.K. Wieder & S.T. Starr (1998) Quantitative determination of organic fractions in highly organic, Sphagnum peat soils Communications in Soil Science and Plant Analysis, 29, 847-857.

  7. Elucidating the fate, transport and processes controlling carbon on the landscape: Biogeochemistry tools for the 21st century

    NASA Astrophysics Data System (ADS)

    McFarlane, K. J.; Keiluweit, M.; Nico, P. S.; Ognibene, T.; Mayali, X.; Nuccio, E.; Weber, P. K.; Pett-Ridge, J.; Guilderson, T. P.

    2013-12-01

    Globally, more carbon is stored belowground as soil organic matter than in terrestrial vegetation and the atmosphere combined. A critical scientific question is how soils serve as sources and sinks for atmospheric carbon dioxide (CO2) and how these sinks will evolve with expected changes in atmospheric CO2 concentrations, climate, and land-use. Carbon initially enters belowground soil pools as plant detritus, roots, and root exudates. Once in the soil, this organic matter serves as a substrate for decomposer organisms including soil animals, bacteria, and fungi. Most of this carbon is consumed and respired as CO2, but some is converted to microbial biomass and byproducts, which may leave the soil as dissolved organic carbon, be used as a substrate by other microbes, or be stabilized within the soil mineral matrix. Mechanisms that result in the stabilization of soils include: climate stabilization, physical protection within aggregates and organo-mineral complexes, and protection of potential substrates due to physiochemical barriers. These processes, which span broad temporal and spatial scales, are poorly constrained in many dynamic land surface models. At LLNL, we have developed a suite of analytical tools that allow us to follow the movement of carbon at the cell to landscape scale, including: ';Chip-SIP', ';STXM-SIMS', and new sample interfaces for accelerator mass spectrometry (AMS). Experiments, field-based and in vivo, allow us to further the mechanistic understanding of factors that control the fate, transport, and sequestration potential of belowground carbon. The Chip-SIP approach allows us to interrogate which microbial species in a complex community incorporate specific substrates (e.g. cellulose) in order to understand the production of biofuels and better elucidate energy and carbon transfers in wetlands and soils. To disentangle the complex interactions at soil-microbial-film-mineral interfaces with minimal disruption we are using a combination of high-resolution microspectroscopy (STXM-NEXAFS), electron microscopy (SEM), and nano-scale imaging mass spectrometry (nanoSIMS) collectively known as STXM-SIMS. This approach allows us to track labeled litter, exudates and microbial necromass onto microaggregate surfaces and elucidate how organic matter source and environmental conditions influences the physical and molecular fate of soil organic matter. Isotopic characterization (14C, 13C, 2H) of CH4, CO2, dissolved organic carbon (DOC) and physical sources of carbon provide the mechanistic fingerprints of the biogeochemical pathways that cycle carbon through the landscape. Building on our expertise in accelerator mass spectrometry (AMS), we are developing methods for 'direct injection' of CO2 for AMS-14C analyses. Our initial focus has been on a liquid-sample (HPLC) sample interface. The ability to handle liquid samples and continuous flows of liquid will enable more widespread and routine use of AMS in biological and environmental applications. Applied examples of these novel techniques, addressing critical questions in the biogeosciences, will be presented.

  8. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  9. Comparison of model microbial allocation parameters in soils of varying texture

    NASA Astrophysics Data System (ADS)

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation and carbon stabilization could improve model representations of C cycling across a range of soil types.

  10. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallenstein, Matthew

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, butmore » will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.« less

  11. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

    USDA-ARS?s Scientific Manuscript database

    Biochar is a charcoal-like material produced by the thermochemical pyrolysis of biomass materials. It is being considered as a potentially significant means of storing carbon for long periods to mitigate greenhouse gases. Much of the interest comes from studies of Amazonian soils that appear to have...

  12. Initial Response of the Nitrogen Cycle to Soil Warming and Elevated CO2 in Northern Minnesota Peatlands

    EPA Science Inventory

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce an...

  13. Factors affecting ground-water quality in Oakland County, Michigan

    USGS Publications Warehouse

    ,

    2004-01-01

    Ground water is water stored in pores within soil and rock beneath the land surface. When these pores are connected so that water can be transmitted to wells or springs, these bodies of soil and rock are termed aquifers, from two Greek words meaning “water” and “to bear.” 

  14. VERTICAL STRATIFICATION OF SOIL WATER STORAGE AND RELEASE DYNAMICS IN PACIFIC NORTHWEST CONIFEROUS FORESTS

    EPA Science Inventory

    abstract for journal article We characterized vertical variation in the seasonal depletion of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root up...

  15. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    Treesearch

    H. Genet; A. D. McGuire; K. Barrett.; A. Breen; E. S. Euskirchen; J. F. Johnstone; E. S. Kasischke; A. M. Melvin; A. Bennett; M. C. Mack; T. S. Rupp; A. E. G. Schuur; M. R. M. R. Turetsky; F. Yuan

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw,...

  16. Ecosystem carbon loss with woody plant invasion of grasslands.

    PubMed

    Jackson, Robert B; Banner, Jay L; Jobbágy, Esteban G; Pockman, William T; Wall, Diana H

    2002-08-08

    The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink. Here we investigate woody plant invasion along a precipitation gradient (200 to 1,100 mm yr(-1)) by comparing carbon and nitrogen budgets and soil delta(13)C profiles between six pairs of adjacent grasslands, in which one of each pair was invaded by woody species 30 to 100 years ago. We found a clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation, with drier sites gaining, and wetter sites losing, soil organic carbon. Losses of soil organic carbon at the wetter sites were substantial enough to offset increases in plant biomass carbon, suggesting that current land-based assessments may overestimate carbon sinks. Assessments relying on carbon stored from woody plant invasions to balance emissions may therefore be incorrect.

  17. Cleaning Puparia for Forensic Analysis.

    PubMed

    Higley, Leon G; Brosius, Tierney R; Reinhard, Karl J; Carter, David

    2016-09-01

    We tested procedures for removing adipocere from insect samples to allow identification. An acceptable procedure was determined: (i) Samples were sorted in petri dishes with 75% alcohol to remove any larvae, adult insects, or other soft-bodied material. (ii) Samples of up to 24 puparia were placed in a vial with 15 mL of 95% acetone, capped, and vortexed for a total of 30-90 sec in 10- to 15-sec bursts. This step removed large masses of adipocere or soil from specimen. (iii) Specimens were removed from acetone and placed in a vial of 15 mL of 2% potassium hydroxide (KOH) and vortexed in 10- to 15-sec bursts until all puparia appeared clean (with our samples this required a total of 60-120 sec). (iv) Specimens were removed from the 2% KOH, placed in 75% ethanol, and examined microscopically. (v) Material was stored in 75% ethanol for identification and long-term preservation. © 2016 American Academy of Forensic Sciences.

  18. Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James

    2014-05-01

    A large number of studies predict changing organic matter (OM) dynamics in arctic soils due to global warming. In contrast to rather slowly altering bulk soil properties, single soil organic matter (SOM) fractions can provide a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. By the study of the chemical composition of such distinctive SOM fractions using nuclear magnetic resonance spectroscopy (NMR) together with radiocarbon analyses it is possible to evaluate the stability of the major OM pools. Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. For a soil core of a young and an ancient drained thaw lake basin we also analyzed the 14C content. For the studied soils we can show that up to over 25 kg OC per square meter are stored mostly as labile, easily degradable organic matter rich in carbohydrates. In contrast only 10 kg OC per square meter were sequestered as presumably more stable mineral associated OC dominated by aliphatic compounds. Comparable to soils of temperate regions, we found small POM (< 20 µm) occluded in aggregated soil structures which differed in the chemical composition from larger organic particles. This was clearly shown by increased amounts of aliphatic C in these small POM fractions. As revealed by 13C CPMAS NMR, with advancing soil age increasing aliphaticity was also detected in occluded small POM fractions. By 14C dating we could show the stabilization of younger more labile OM at greater depth in buried O horizons. Additionally the study of the microscale elemental distributions, using nano-scale secondary ion mass spectrometry (NanoSIMS) showed the initial formation of aggregates and organo-mineral interfaces in the studied permafrost soils.

  19. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    PubMed

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. © 2014 John Wiley & Sons Ltd.

  20. Hydropedological interpretation of arid soilscapes, South Africa

    NASA Astrophysics Data System (ADS)

    Tinnefeld, Martin; Van Tol, Jacobus; Le Roux, Pieter

    2017-04-01

    Hydropedological investigations in arid regions are scarce due to the low the low contribution of these areas to water resources. Infrequent rainfall and few flow events also complicates measurements hydrological studies. Hydropedological studies, relating soil morphological properties and their spatial distribution to hydrological response, have been studied in detail in semi-arid, temperate, and sub-humid regions. In this paper, we investigated the relation between soil morphological properties and selected hydrological properties of soils in an arid landscape. We also studied the spatial distribution of the morphological properties to conceptualise the hydrological behaviour of different soilscapes in the area. A total of 806 soil profiles, covering an area of 4836 ha in the Northern Cape Province of South Africa were described and classified. The geology is dominated by Dwyka tillite overlain by aeolian sands with scattered Dolerite buttes. Thirteen modal profiles, representing the dominant soils types were selected, sampled at horizon level, and analysed for pH, CEC, iron, manganese, carbonate content. In situ measurements of saturated and near saturated (tension) hydraulic conductivity (Ks) were conducted to determine the water conducting macroporosity (WCM). Undisturbed cores were collected on which water retention characteristics were determined under laboratory conditions. Results indicate that dry soil colour, degree of structure development and the presence, absence, and abundance of carbonates as well as the degree of precipitation, are important indicators of hydrological response. For example; grey soils typically have lower Ks with higher storage capacity than soils dominated by red colours, whereas abundant carbonate precipitations in the soil matrix have lower WCM due to clogging of macropores. The dominant soil distribution pattern indicates that rapid vertical flow, through and out of the pedon, might contribute to recharge of an accumulative soil lateral flow at soil/rock interface on upper and midslope positions. Abundant carbonate precipitations decrease in consistency to valley bottom positions, indicating that this area serves as a periodic store of water during and after rain events.

  1. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  2. Response of organic matter quality in permafrost soils to warming

    NASA Astrophysics Data System (ADS)

    Plaza, C.; Pegoraro, E.; Schuur, E.

    2016-12-01

    Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  3. Soil carbon storages and erosional exports along a forested denudation gradient in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Wang, X.; Mudd, S. M.; Weinman, B.; Gutknecht, J.; Gabet, E. J.

    2017-12-01

    Eroding uplands not only provide physically mixed soil zones where OC and minerals actively interact but also are the significant sources of suspended sediments and organic carbon (OC) to rivers. Here our goal is to quantify the extents that erosion affects soils' capacities to store OC in different degrees of mineral-association and to facilitate the exports of minerals that might capture OC on their reactive surfaces. We examined a tributary basin to the Middle Folk Feather River in California, where knickpoint migration has created a series of hillslopes with erosion rates varying from 35 to 250 mm kyr-1. Other than erosion rates, the studied hillslopes within the tributary basin shared similar environmental factors. Soil samples were collected from select hillslopes that differ in their relative positions to knikpoints and were subject to size and density fractionation. Despite the substantial difference in erosion rates, concentrations of particulate OC (POC) and mineral-associated OC (MOC) and soil thickness varied little. Instead, considerable increase in coarse rock contents positively associated with erosion rate was responsible for the reduction of soil OC inventories by 37% with increasing erosion rate. In contrast to consistent MOC concentrations across the erosion gradient, clay contents in soils are negatively correlated with erosion rates. This seemingly contradictory result, however, is consistent with BET mineral specific surface area that remains insensitive to erosion rates. OC coverage on mineral surface was found to be less than < 50%, indicating that eroded minerals would have a significant, and currently unknown, capacity to adsorb additional OC during their transport to sediment sinks. This study thus reveals that mineral weathering acts as an important filter through which erosion affects the soil carbon cycle.

  4. Changes in the microbial community during bioremediation of gasoline-contaminated soil.

    PubMed

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério

    We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Impact of land use change on soil organic matter dynamics in subalpine grassland

    NASA Astrophysics Data System (ADS)

    Meyer, Stefanie; Leifeld, Jens; Bahn, Michael; Fuhrer, Jürg

    2010-05-01

    Information regarding the response of soil organic matter (SOM) in soils to past and expected future land use changes in the European Alps is scarce. Understanding this response requires knowledge of size and residence times of SOM fractions with distinct stabilities. In order to quantify differences between types of land use in the amount, distribution and turnover rates of soil organic carbon (SOC) in subalpine grassland soils, we used soil aggregate and SOM density fractionation in combination with 14C dating. Samples were taken along gradients of different types of land use from meadow (M) to pasture (P) and to abandoned grassland (A) in the Stubai Valley and in the Matsch Valley. Sampling sites in both areas were located at equal altitude (1880 m and 1820 m, respectively) with the same parent material and soil type, but the Matsch Valley receives 400-500 mm less annual rainfall. SOC stocks in the top 10 cm were 2.47 ± 0.32 (M), 2.75 ± 0.32 (P), and 2.50 ± 0.31 kg C/m2 (A) in the Stubai Valley and 2.25 ± 0.14 (M), 3.45 ± 0.22 (P), 3.16 ± 0.27 kg C/m2(A) in the Matsch Valley. Three aggregate size classes were separated by wet sieving: 2 mm. The light floating fraction (wPOM, ρ >1 g/cm3) was included in the analysis. Free (f-) and occluded particulate organic matter (oPOM) were isolated from each aggregate size class (ρ >1.6 g/cm3). At both locations, more than 80% of SOC was stored in small (0.25-2 mm) and large (>2 mm) macroaggregates, but no trend in relation to the different types of land use could be detected. The fraction of C in fPOM and in oPOM in all aggregate size classes was highest for soil from abandoned grasslands. The bulk soil of the abandoned site in the Stubai Valley showed a significantly higher share of fPOM-C and oPOM-C and a higher amount of wPOM-C as compared to the soil from managed grassland, whereas in the Matsch Valley pasture soil had a significantly higher wPOM-C content. At both sites, 13C natural abundance analyses revealed a gradient in 13C between density fractions. wPOM was particularly useful to reveal differences between sampling sites. Radiocarbon values emphasized the importance of this fraction for the calculation of the turnover of bulk soil C. wPOM turned out to be the most active fraction turning over in 2-4 years. Bulk SOC turnover time was approximately 46 years for pasture soil and 78 years for meadow soil. In conclusion, density fractionation produced homogenous fractions allowing detection of differences between different land use types. However, C distribution among aggregates did not systematically differ.

  6. Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna

    2017-04-01

    Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks, indicating high SOC turnover. High turnover are explained by high nutrients inputs and little capacity of Oxisols to physically protect SOC. In conclusion, conversion of savanna to oil palm plantations results in a gain in ecosystem C storage as long as the cultivation lasts. Negative impacts on soil fertility are limited because savanna soils have low initial soil fertility. With more than 7 million ha of well-drained natural savanna grasslands, the Llanos could play a significant role in oil palm development. Nonetheless, a complete assessment of environmental impacts including biodiversity or water consumption is still necessary for the assessment on sustainability of the conversion of savanna to oil palm plantations.

  7. Influence of site and soil properties on the DRIFT spectra of northern cold-region soils [Influence of site and soil properties on the mid-infrared spectra of northern cold-region soils

    DOE PAGES

    Matamala, Roser; Calderon, Francisco J.; Jastrow, Julie D.; ...

    2017-06-05

    Here, we investigated the influence of site characteristics and soil properties on the chemical composition of organic matter in soils collected from a latitudinal transect across Alaska through analysis of diffuse reflectance Fourier transform mid infrared (MidIR) spectra of bulk soils. The study included 119 soil samples collected from 28 sites including tundra, boreal forest, and grassland ecosystems. Organic, mineral, and cryoturbated soil horizons, both seasonally and perennially frozen, from a variety of depths and edaphic conditions were examined. The amount and chemical composition of organic matter as well as site and soil properties exerted a strong influence on themore » MidIR spectra. The spectra were highly sensitive to the extent of organic matter decomposition, enabling the ordination of Oi, Oe and Oa organic horizons. Differences in absorbance intensity for several spectral bands indicated that Oi horizons contained greater abundance of relatively fresh residues, phenolic-OH compounds, aliphatic compounds (waxes, lipids and fats), and carbohydrates. In contrast, Oa horizons had a greater presence of amide groups (possibly from microbial residues), aromatics, C=C bonds, carboxylates and carboxylic acids. Another significant factor differentiating these horizons was the incorporation of clays and silicates into the decomposing organic matter of Oa horizons. Calculated height peak ratios showed a clear trend to greater decomposition among Oi, Oe and Oa. The MidIR spectra were related to many site/soil attributes including land cover type, parent material, and associated factors, such as permafrost presence/absence, soil drainage, horizon depth, bulk density, cation exchange capacity, and pH. Single MidIR spectral bands were identified that might be used in future studies to quickly estimate the organic and inorganic carbon, total nitrogen, and carbon:nitrogen ratios of soils from northern latitudes. Lastly, our results demonstrate that the information contained in MidIR spectra of bulk soil integrates the quantity and chemical composition of soil organic matter with soil forming factors and highlights the potential for using this information to assess the degradation state of organic matter stored in northern cold-region soils.« less

  8. Influence of site and soil properties on the DRIFT spectra of northern cold-region soils [Influence of site and soil properties on the mid-infrared spectra of northern cold-region soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser; Calderon, Francisco J.; Jastrow, Julie D.

    Here, we investigated the influence of site characteristics and soil properties on the chemical composition of organic matter in soils collected from a latitudinal transect across Alaska through analysis of diffuse reflectance Fourier transform mid infrared (MidIR) spectra of bulk soils. The study included 119 soil samples collected from 28 sites including tundra, boreal forest, and grassland ecosystems. Organic, mineral, and cryoturbated soil horizons, both seasonally and perennially frozen, from a variety of depths and edaphic conditions were examined. The amount and chemical composition of organic matter as well as site and soil properties exerted a strong influence on themore » MidIR spectra. The spectra were highly sensitive to the extent of organic matter decomposition, enabling the ordination of Oi, Oe and Oa organic horizons. Differences in absorbance intensity for several spectral bands indicated that Oi horizons contained greater abundance of relatively fresh residues, phenolic-OH compounds, aliphatic compounds (waxes, lipids and fats), and carbohydrates. In contrast, Oa horizons had a greater presence of amide groups (possibly from microbial residues), aromatics, C=C bonds, carboxylates and carboxylic acids. Another significant factor differentiating these horizons was the incorporation of clays and silicates into the decomposing organic matter of Oa horizons. Calculated height peak ratios showed a clear trend to greater decomposition among Oi, Oe and Oa. The MidIR spectra were related to many site/soil attributes including land cover type, parent material, and associated factors, such as permafrost presence/absence, soil drainage, horizon depth, bulk density, cation exchange capacity, and pH. Single MidIR spectral bands were identified that might be used in future studies to quickly estimate the organic and inorganic carbon, total nitrogen, and carbon:nitrogen ratios of soils from northern latitudes. Lastly, our results demonstrate that the information contained in MidIR spectra of bulk soil integrates the quantity and chemical composition of soil organic matter with soil forming factors and highlights the potential for using this information to assess the degradation state of organic matter stored in northern cold-region soils.« less

  9. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps

    DOE PAGES

    Hugelius, Gustaf; Strauss, J.; Zubrzycki, S.; ...

    2014-12-01

    Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for sediments deeper than 3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared tomore » previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3 m depth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 12 and 472 ± 27 Pg for the 0–0.3 and 0–1 m soil depths, respectively (±95% confidence intervals). Storage of SOC in 0–3 m of soils is estimated to 1035 ± 150 Pg. Of this, 34 ± 16 Pg C is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3 m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 ± 52 Pg. In the Yedoma region, estimated SOC stocks below 3 m depth are 181 ± 54 Pg, of which 74 ± 20 Pg is stored in intact Yedoma (late Pleistocene ice- and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is ∼1300 Pg with an uncertainty range of ∼1100 to 1500 Pg. Of this, ∼500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while ∼800 Pg is perennially frozen. In conclusion, this represents a substantial ∼300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.« less

  10. Influence of Vegetations' Metabolites on the Composition and Functioning of Soil Microbial Complex

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail

    2013-04-01

    Microbiota is one of the major factors of soils fertility. It transforms organic substances in soil and, therefore, serves as the main component in the cycles of carbon and nitrogen. Microbial communities (MC) are characterized as highly diverse and extremely complex structures. This allows them to adapt to any affection and provide all the necessary biospheric functions. Hence, the study of their functional diversity and adaptivity of microbiota provides the key to the understanding of the ecosystems' functioning and their adaptivity to the human impact. The formation of MC at the initial stage is regulated by the fluxes of substrates and biologically active substances (BAS), which vary greatly in soils under different vegetations. These fluxes are presented by: low molecular weights organic substances (LMWOS), which can be directly included in metabolism of microbes; polymers, that can be decomposed to LMWOS by exoenzymes; and more complex compounds, having different "drug effects" (e.g. different types of phenolic acids) and regulating growth and enzymatic properties of microbiota. Therefore, the main hypothesis of the research was formulated as follows: penetration of different types of substrates and BAS into soil leads to the emergence of MC varying in enzymatic properties and structure. As a soil matrix we used the soil from the untreated variant of the lysimeter model experiment taking place in the faculty of Soil Science of the MSU for over the last 40 years. It was sieved with a 2mm sieves, humidified and incubated at 25C during one week. Subsequently, the samples were air-dried with occasional stirring for one more week. Thereafter, aliquots of the prepared soil were taken for the different experimental variants. The samples were rewetted with solutions of various substrates (glucose, cellulose, starch, etc.) and thoroughly mixed. The control variant was established with addition of deionised water. The samples were incubated at the 25C. During the incubation the rate of mineralisation of organic substances was assessed with CO2 measurements. In 5, 10 and 21 days of incubation the enzymatic properties of the formed MC were studied by the hydrolysis of fluorogenic substrates. The influence of BAS on enzymatic properties of MC were researched by addition of different concentrations of phenolic acids (e.g. salicylic, vanillic, benzoic, etc.) to the samples from various substrates treatments. The acute toxicity of BAS was studied with bacterial luminescent test. After the last measurement, the isolations of microorganisms on elective nutrient medias were made. The dominant microorganisms were collected to the library for further identification and physiological tests. MeOH-chloroform extraction of phospholipids were performed with the remaining samples. Finally, they were stored for subsequent FAME identifications. The obtained data prove that penetration of various substrates into the soil determines the formation of MC different in structure and properties. It was found, that EC50 of the most studied phenolic acids are similar to naturally occurring concentrations. This means that they can be the real drivers of forming endemical MC under various vegetations along with the plant-specific fluxes of nutrients.

  11. Modeling Responses of Dryland Spring Triticale, Proso Millet and Foxtail Millet to Initial Soil Water in the High Plains

    USDA-ARS?s Scientific Manuscript database

    Dryland farming strategies in the High Plains must make efficient use of limited and variable precipitation and stored water in the soil profile for stable and sustainable farm productivity. Current research efforts focus on replacing summer fallow in the region with more profitable and environmenta...

  12. Impacts of natural disturbance on soil carbon dynamics in forest ecosystems

    Treesearch

    Steven T. Overby; Stephen C. Hart; Daniel G. Neary

    2002-01-01

    Forest soils are entities within themselves, self-organized and highly resilient over time. The transfer of energy bound in carbon (C) molecules drives the organization and functions of this biological system (Fisher and Binkley, 2000; Paul and Clark, 1996). Photosynthetic organisms reduce atmospheric C and store energy from solar radiation in the formation of complex...

  13. 40 CFR 265.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stored or treated, and corrosion protection so that it will not collapse, rupture, or fail. The owner or... tank system is or will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...

  14. 40 CFR 264.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... structural strength, compatibility with the waste(s) to be stored or treated, and corrosion protection to... component of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...

  15. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems.

    PubMed

    Baskaran, Preetisri; Hyvönen, Riitta; Berglund, S Linnea; Clemmensen, Karina E; Ågren, Göran I; Lindahl, Björn D; Manzoni, Stefano

    2017-02-01

    Tree growth in boreal forests is limited by nitrogen (N) availability. Most boreal forest trees form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve the uptake of inorganic N and also have the capacity to decompose soil organic matter (SOM) and to mobilize organic N ('ECM decomposition'). To study the effects of 'ECM decomposition' on ecosystem carbon (C) and N balances, we performed a sensitivity analysis on a model of C and N flows between plants, SOM, saprotrophs, ECM fungi, and inorganic N stores. The analysis indicates that C and N balances were sensitive to model parameters regulating ECM biomass and decomposition. Under low N availability, the optimal C allocation to ECM fungi, above which the symbiosis switches from mutualism to parasitism, increases with increasing relative involvement of ECM fungi in SOM decomposition. Under low N conditions, increased ECM organic N mining promotes tree growth but decreases soil C storage, leading to a negative correlation between C stores above- and below-ground. The interplay between plant production and soil C storage is sensitive to the partitioning of decomposition between ECM fungi and saprotrophs. Better understanding of interactions between functional guilds of soil fungi may significantly improve predictions of ecosystem responses to environmental change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.

    2018-01-01

    Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.

  17. Fate of pesticides added to the soil in northeast of Santa Fe Province, Argentina.

    NASA Astrophysics Data System (ADS)

    Vidal, Claudia; Aparicio, Virginia; De Geronimo, Eduardo; Costa, Jose Luis

    2017-04-01

    The use of pesticides in crop production has increased in the Northeast Santa Fe Province. This region has predominance of argiudolls, hapludalf and natracualf soils, with silt loam texture and 1.5 % of organic matter content. The main crops are sunflower, maize, cotton and sorghum. There are also extensive livestock production systems. The objective of this work was to study the presence and environmental fate of pesticides used in the agricultural systems of the Northeast Santa Fe Province. Different environmental matrices (soil, surface water and sediment) were sampled during the 2014-2015 cropping season in an area of about 180,000 ha of the "Arroyo el Rey" basin. Soil samples were collected at 0-5 cm depth in sunflower, sorghum, soybean and cotton cultivated fields. A total of 12 field plots were sampled, with glyphosate application and without glyphosate application. Water samples were collected at three locations: upper basin, medium basin, and lower basin in polypropylene bottles and stored at -20 °C until analysis. Glyphosate and AMPA was extracted from filtered water samples with a buffer solution (100 mM Na2B4O7•10H2O/100 mM K3PO4, pH=9) and derivatized with 9-fluorenylmethylchloroformate (1 mg mL-1 in acetonitrile). Afterwards samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). A multi-residue determination of pesticides other than glyphosate and AMPA was used to detect pesticides in soil, water and sediment. Hydroxy atrazine (Atz-OH) (a degradation product of atrazine) and AMPA (a degradation product of glyphosate) were founded in the 100% of the soil samples. Below 70% of occurrence frequency were detected molecules such as Imidaclopyr (63%), Glyphosate (63%), Diethyltuolamide (61%), Atrazine (22%), Fluorocloridone (13%), Imazethapyr and Acetochlor To 1%). In water samples taken during 2014 the pesticides that exceeded the threshold of 0.1 μg.L-1 per molecule (European Economic Community) were AMPA (range: 0.7-0.3 μg.L-1), Atrazine (range : 0,201-0,1 μg.L-1), Atz-OH (range: 0.1598-0.135 μg.L-1). Also in some cases, the 0.5 μg.L-1 value (maximum for sum of EEC molecules) was exceeded, with ranges from 0.845 to 0.104 μg.L-1. In the water taken during 2015 the concentrations of AMPA and Glyphosate were greater than in 2014 (ranges: 6,6-0,5 μg.L-1 and 4.5-0,2 μg.L-1, respectively). This preliminary information indicates the need to study processes such as retention, degradation and vertical transport of pesticides to understand the mechanisms by which they are present in the different environmental matrices. In addition, it is important to reduce the input of pesticides added to the environment to produce grains and fibers in this region.

  18. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    NASA Astrophysics Data System (ADS)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Adrian Municipal Well Field is listed on the National Priorities List. Adrian is located in Nobles County which is in southwestern Minnesota. In September 1983, 1,2-dichloroethane (1,2-DCA), a volatile organic compound (VOC), was detected in Municipal Wells 3 and 4. Subsequent sampling in January 1984 indicated increased levels of VOC contamination in Wells 3 and 4. In these sampling events, a number of VOCs were detected. Source identification has also focused on a number of underground storage tanks (USTs) used to store gasoline and fuel oil. Twelve contaminants have been identified in ground water from the surficial aquifer. Subsurfacemore » soil contamination has also been detected. A Soil Organic Vapor survey measured both total ionizable hydrocarbons and the gasoline constituents benzene, toluene, and total xylenes at 2-3 feet feet above the water table. Because of the high concentrations of gasoline contaminants in the soil and ground water at the site, there exists the potential for combustion or explosion if gasoline vapors migrate from these media into nearby businesses or homes. Several of the USTs contained or did contain fuel oil. Fuel oil contains semi-volatile constituents (e.g., polynuclear aromatic hydrocarbons, etc.) not found in gasoline. Based on the available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ground water, and potentially surface water, air, and biota.« less

  20. Salmonella survival in manure-treated soils during simulated seasonal temperature exposure.

    PubMed

    Holley, Richard A; Arrus, Katia M; Ominski, Kimberly H; Tenuta, Mario; Blank, Gregory

    2006-01-01

    Addition of animal manure to soil can provide opportunity for Salmonella contamination of soil, water, and food. This study examined how exposure of hog manure-treated loamy sand and clay soils to different simulated seasonal temperature sequences influenced the length of Salmonella survival. A six-strain cocktail of Salmonella serovars (Agona, Hadar, Heidelberg, Montevideo, Oranienburg, and Typhimurium) was added to yield 5 log cfu/g directly to about 5 kg of the two soils and moisture adjusted to 60 or 80% of field capacity (FC). Similarly, the Salmonella cocktail was mixed with fresh manure slurry from a hog nursery barn and the latter added to the two soils at 25 g/kg to achieve 5 log cfu/g Salmonella. Manure was mixed either throughout the soil or with the top kilogram of soil and the entire soil volume was adjusted to 60 or 80% FC. Soil treatments were stored 180 d at temperature sequences representing winter to summer (-18, 4, 10, 25 degrees C), spring to summer (4, 10, 25, 30 degrees C), or summer to winter (25, 10, 4, -18 degrees C) seasonal periods with each temperature step lasting 45 d. Samples for Salmonella recovery by direct plating or enrichment were taken at 0, 7, and 15 d post-inoculation and thereafter at 15-d intervals to 180 d. Salmonella numbers decreased during application to soil and the largest decreases occurred within the first week. Higher soil moisture, manure addition, and storage in the clay soil increased Salmonella survival. Salmonella survived longest (> or = 180 d) in both soils during summer-winter exposure but was not isolated after 160 d from loamy sand soil exposed to other seasonal treatments. For all but one treatment decimal reduction time (DRT45d) values calculated from the first 45 d after application were < or = 30 d and suggested that a 30-d delay between field application of manure in the spring or fall and use of the land would provide reasonable assurance that crop and animal contamination by Salmonella would be minimized.

  1. Investigation of soil properties for identifying recharge characteristics in the Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Banks, M. L.; Ndunguru, G. G.; Adisa, S. J.; Lee, J.; Adegoke, J. O.; Goni, I. B.; Grindley, J.; Mulugeta, V.

    2009-12-01

    Lake Chad was once labeled as one of the largest fresh water lakes in the world, providing water and livelihood to over 20 million people. The lake is shared by six different countries; Chad Nigeria, Niger, Cameroon, Central African Republic, and Sudan. Since the 1970 to date, a significant decrease in the size of the lake has been observed with the use of satellite imagery. This shrinking of the lake has been blamed on global warming, population increase and poor water management by the agriculture industry for farming purpose for both plants and animals. While these can be all valid reasons for the decrease of Lake Chad, we see the need to examine environmental and hydrological evidence around the Lake Chad basin. This study was carried out from upper stream to lower stream leading from Kano to the Damatru region which is one of several water bodies that supply Lake Chad. Over seventy six sites were sampled for soil texture, bulk density and other physical properties to investigate recharge capacity of the basin especially along the stream. Soils were collected using a soil core and properly stored at 4 degrees Celsius. Soils were weighed and put to dry at 105 degrees for twenty four hours. Dry weight was recorded and bulk density was calculated. The wet sieve method was used to determine the particle size analysis. Soils were weighed to 10 grams and hydrogen peroxide added to separate particles. Samples were washed with water and put to dry overnight. Soils were reweighed and sieved to separate as course sand, fine sand and silt and clay. The data revealed that in the upstream, coarse sand continuously decreased while silt and clay continuously increased down toward the lake. At mid stream silt and clay had significantly higher values when compared to coarse sand and fine sand. In the lower stream, bulk density clearly decreased compared to the upper and mid streams. Correlations will be carried out to investigate the particle size analysis and bulk density with recharge capacity of the lake Chad Basin.

  2. Measuring Soil Moisture using the Signal Strength of Buried Bluetooth Devices.

    NASA Astrophysics Data System (ADS)

    Hut, R.; Campbell, C. S.

    2015-12-01

    A low power bluetooth Low Energy (BLE) device is burried 20cm into the soil and a smartphone is placed on top of the soil to test if bluetooth signal strength can be related to soil moisture. The smartphone continuesly records and stores bluetooth signal strength of the device. The soil is artifcially wetted and drained. Results show a relation between BLE signal strength and soil moisture that could be used to measure soil moisture using these off-the-shelf consumer electronics. This opens the possibily to develop sensors that can be buried into the soil, possibly below the plow-line. These sensors can measure local parameters such as electric conductivity, ph, pressure, etc. Readings would be uploaded to a device on the surface using BLE. The signal strength of this BLE would be an (additional) measurement of soil moisture.

  3. Effects of a layer of vegetative ash layer on wettable and water repellent soil hydrology

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Doerr, Stefan H.; Cerdà, Artemi; Mataix-Solera, Jorge

    2010-05-01

    Following a wildfire, a layer of vegetative ash often covers the ground until it is dissolved or redistributed by wind and water erosion. Much of the existing literature suggests that the ash layer temporally reduces infiltration by clogging soil pores or by forming a surface crust (Mallik et al., 1984; Onda et al., 2008). However, an increasing number of field-based studies have found that, at least in the short term, ash increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà and Doerr, 2008; Woods and Balfour, 2008). On the other hand, after a fire the soil may have produced, enhanced or reduced its water repellency (Doerr et al., 2000). Very few studies have been taken into account the interaction of the ash and the repellent soil. The layer of ash may have similar role as a litter layer in delaying runoff and reducing erosion by storing water. In order to examine this interaction, it was been made a series of experiments using a laboratory rainfall simulation. It has been assessed the effects of an ash layer i) on a wettable and water repellent soil (WDPT > 7200s), ii) with different ash thicknesses (bare soil and 5 mm, 15 mm and 30 mm of ash), iii) preceding and following the first rain after a fire when the ground is still wetted and after being partially dried. Three replicates were done, being a total of 40 simulations. The ash used was collected from a Wildfire in Teruel (Spain) during summer of 2009. The simulations were conducted in metal boxes of 30x30 cm and filled with 3 cm of soil. The slope of the box was set at 10° (17%) and the intensity applied was 78-84 mm h-1during 40 minutes. The splash detachment was determined also using four splash cups. Overland flow and subsurface drainage was collected at 1-minute intervals and the former stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. Each sample was examined at the end in terms of water repellency, infiltration pattern and ash incorporation into the soil. The results show that when ash covers the wettable soil, runoff occur for a short period of time in the middle of the event. It occurred latter on time but larger in quantity as the ash thickness increases (from 0% to 2% of runoff coefficient) and at the same time drainage is reduced (from 57 to 24%). This suggests that the ash layer became saturated and produce runoff until the water is able to drain into the soil. Oppositely, in water repellent soil as ash thickness increases both runoff is reduced (from 78% to 26%) and drainage is increased (from 0 to 16%). That fact indicates a modification in the hydraulic conductivity of the repellent soil due to the pressure of the ash layer. Splash and erosion rates are bigger in water repellent soils yet erosion rates never exceed 2.5 g m-2 h-1. The fact of wetting increases the runoff and drainage rates in wettable but reduce them in the water repellent soil. An irregular infiltration pattern is observed afterwards. After drying the soil, the increase in runoff indicates a crust formation. Moreover, in water repellent soils part of the repellency is reestablished. These findings demonstrate that the interaction of the soil-ash layer should be considered and better studied in the immediate hydrological response after wildfire due to its particular behavior. References Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74: 256-263. Doerr, S.H., Shakesby, R.A. and Walsh, R.P.D., 2000. Soil Water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51: 33-65. Mallik, A.U., Gimingham, C.H. and Rahman, A.A., 1984. Ecological effects of heater burning. I. Water infiltration, moisture retention and porosity of surface soil. Journal of Ecology, 72: 767-776. Onda, Y., Dietrich, W.E. and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72: 13-20. Woods, S.W. and Balfour, V., 2008. The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire, 17(5): 535-548.

  4. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to more actively cycling pools needed to increase in order to fit the model to the measured Δ14C data as productivity of the trial increased. In model formulations with a non-cycling passive pool (i.e. Rothamsted Carbon Model, Jenkinson 1990), the best fit solution for the 14C age of the passive pool decreased from > 2000 years in the WF trial to < 100 years in the Pa trial. The modeling analysis suggests that decay constants are not constant and that there are important feedbacks between C input rate and the turnover rate of SOC. References: Fallon S et al. (2010) The next chapter in radiocarbon dating at the Australian National University: Status report on the single stage AMS. Nuclear Instruments and Methods in Physics Research: Section B, 268: 298-901. Grace PR et al. (1995) Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia. Australian Journal of Experimental Agriculture 35: 857-864. Janzen HH (2006) The soil carbon dilemma: Shall we hoard it or use it? Soil Biology and Biochemistry 38:419-424. Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philosophical transactions of the Royal Society, Series B 329: 361-368

  5. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    PubMed

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Case studies: Soil mapping using multiple methods

    NASA Astrophysics Data System (ADS)

    Petersen, Hauke; Wunderlich, Tina; Hagrey, Said A. Al; Rabbel, Wolfgang; Stümpel, Harald

    2010-05-01

    Soil is a non-renewable resource with fundamental functions like filtering (e.g. water), storing (e.g. carbon), transforming (e.g. nutrients) and buffering (e.g. contamination). Degradation of soils is meanwhile not only to scientists a well known fact, also decision makers in politics have accepted this as a serious problem for several environmental aspects. National and international authorities have already worked out preservation and restoration strategies for soil degradation, though it is still work of active research how to put these strategies into real practice. But common to all strategies the description of soil state and dynamics is required as a base step. This includes collecting information from soils with methods ranging from direct soil sampling to remote applications. In an intermediate scale mobile geophysical methods are applied with the advantage of fast working progress but disadvantage of site specific calibration and interpretation issues. In the framework of the iSOIL project we present here some case studies for soil mapping performed using multiple geophysical methods. We will present examples of combined field measurements with EMI-, GPR-, magnetic and gammaspectrometric techniques carried out with the mobile multi-sensor-system of Kiel University (GER). Depending on soil type and actual environmental conditions, different methods show a different quality of information. With application of diverse methods we want to figure out, which methods or combination of methods will give the most reliable information concerning soil state and properties. To investigate the influence of varying material we performed mapping campaigns on field sites with sandy, loamy and loessy soils. Classification of measured or derived attributes show not only the lateral variability but also gives hints to a variation in the vertical distribution of soil material. For all soils of course soil water content can be a critical factor concerning a succesful application of geophysical methods, e.g. GPR on wet loessy soils will result in a high attenuation of signals. Furthermore, with this knowledge we support the development of geophysical pedo-transfer-functions, i.e. the link between geophysical to soil parameters, which is active researched in another work package of the iSOIL project. Acknowledgement: iSOIL-Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  7. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    NASA Astrophysics Data System (ADS)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  8. Is sperm cryopreservation at -150 degree C a feasible alternative?

    PubMed

    Medrano, A; Cabrera, F; González, F; Batista, M; Gracia, A

    2002-01-01

    A series of experiments was carried out to validate a -150 degree C ultra-low temperature freezer for its possible use to properly freeze and store semen. In the first part, crude sample handling was simulated to see whether temperature of stored samples was maintained within a safe range; also, the freezing point and latent heat of fusion plateau of a semen extender were monitored. In the second part, buck semen was (i) frozen in liquid nitrogen and stored in the ultra-low freezer, (ii) frozen and stored in the ultra-low freezer, and (iii) frozen and stored in liquid nitrogen, to compare sperm cryosurvival between freezing methods. Both, frequent removal of samples and long opening of the freezer door did not negatively affect stored sample temperature; latent heat of fusion plateau was 5 minutes long. Semen stored either at -150 degree C or at -196 degree C cryosurvived similarly after 2 days and after 2 months of cryopreservation.

  9. Evaluation of soil carbon pools after the addition of prunings in subtropical orchards placed in terraces

    NASA Astrophysics Data System (ADS)

    Márquez San Emeterio, Layla; Martín Reyes, Marino Pedro; Ortiz Bernad, Irene; Fernández Ondoño, Emilia; Sierra Aragón, Manuel

    2017-04-01

    The amount of carbon that can be stored in a soil depends on many factors, such as the type of soil, the chemical composition of plant rests and the climate, and is also highly affected by land use and soil management. Agricultural ecosystems are proved to absorb a large amount of CO2 from the atmosphere through several sustainable management practices. In addition, organic materials such as leaves, grass, prunings, etc., comprise a significant type of agricultural practices as a result of waste recycling. The aim of this research was to evaluate the effects of the addition of different organic prunings on the potential for carbon sequestration in agricultural soils placed in terraces. Three subtropical orchards were sampled in Almuñécar (Granada, S Spain): mango (Mangifera indica L.), avocado (Persea americana Mill.) and cherimoya (Annonacherimola Mill.). The predominant climate is Subtropical Mediterranean and the soil is an Eutric Anthrosol. The experimental design consisted in the application of prunings from avocado, cherimoya and mango trees, placed on the surface soil underneath their correspondent trees, as well as garden prunings from the green areas surrounding the town center on the surface soils under the three orchard trees. Control experiences without the addition of prunings were also evaluated. These experiences were followed for three years. Soil samples were taken at4 cm depth. They were dried for 3-4 days and then sieved (<2 mm).Total soil organic C, water-soluble soil organic C, mineral-associated organic C and non-oxidable C were analyzed and expressed as carbon pools (Mg C ha-1for total soil organic C, or Kg C ha-1for the others). The results showed an increase of all organic carbon pools in all pruning treatments compared to the control experiences. Differences in total organic carbon pool were statistically significant between soils under avocado prunings and their control soil, and between soils under garden prunings with cherimoya and their control soil. Regarding the water-soluble soil organic carbon, low differences were shown. Differences in mineral-associated and non-oxidable organic carbon fractions were also statistically significant between soils under avocado prunings and their control soil, and between soils under garden prunings with cherimoya and their control soil. No significant differences in any organic carbon pool were founded for the soils under mango. The climate in this area enhances mineralization processes of organic matter. Thus, both in mango soils under mango and garden prunings the organic carbon does not significantly increase compared to the control soil. In avocado soils under avocado prunings humification of organic matter predominates, probably due to differences in the biochemical structure of the prunings. Finally, organic carbon contents in soils under garden prunings compared to their respective control soils only increase in cherimoya orchard. Our findings suggest that the addition of prunings and other organic debris may be a very useful practice for increasing the content of organic matter within the surface soil layer. Acknowledgements Authors thank the financial support of this work to the Spanish Ministry of Economy and Competitiveness (Project CGL-2013-46665-R) and the European Regional Development Fund (ERDF).

  10. Changes in SOC stocks and fractions after natural afforestation of alpine grasslands

    NASA Astrophysics Data System (ADS)

    Guidi, Claudia; Rodeghiero, Mirco; Vesterdal, Lars; Gianelle, Damiano

    2013-04-01

    Land use changes are considered one of the major driving forces of global carbon fluxes and can induce significant alterations of soil organic carbon stocks. In the European Alps, the dominant form of land use change is represented by the abandonment of marginal mountain grasslands and their invasion by tree species, i.e. a transition from grassland to forest. While an increase in live and dead aboveground biomass is commonly reported, the impact on soil organic carbon (SOC) is still unclear. The main objective of the current study was to quantify the effect of abandonment and forest regrowth of mountain grassland on SOC, considering both SOC stocks and its physically separated fractions. The study area is located in a pre-alpine area of the Trentino region (Italy), with an elevation of about 1150 m. We compared four land uses representing a transition from grassland to forest: I) managed grassland; II) grassland abandoned 10 years ago; III) natural afforested grassland abandoned after 1973; IV) reference forest, already present in 1861. The afforested area and the reference forest are both dominated by Norway spruce (Picea abies) and beech (Fagus sylvatica). For each land use intensity three sampling areas were selected. In each area we collected eight soil cores to a depth of 30 cm, dividing the soil core in 4 depth increments. To assess changes in SOC stocks, we measured bulk density, stoniness, root biomass and organic carbon content. Mineral SOC stocks were calculated using both an equivalent depth and an equivalent mass approach. Changes in SOC fractions were assessed using aggregate size fractionation (Cambardella and Elliott, 1993) and size-density fractionation procedures. Preliminary results show higher soil C concentrations in forest sites compared to grassland. This can be attributed to higher C inputs and lower mineralization rates due to a higher degree of soil aggregation and protection of soil organic matter, but also to the higher stoniness registered in forest sites which can lead to a concentration of C inputs in a smaller volume of soil. If C stocks are computed using an equivalent soil depth approach, mineral SOC stocks are lower in forest land uses compared to grassland while no significant difference emerges if an equivalent soil mass approach is used. The aggregate size fractionation highlighted an increase in C stored in large macroaggregates following afforestation and a decrease in silt and clay size fraction (<53 μm). The strongest change shown through the size-density fractionation procedure is a three-fold increase in C stored in free organic matter (POM) from grassland to forest. Intriguingly, we found a decreasing trend in the microaggregate (53-250 μm) fraction as well as for the mineral-associated heavy fraction following afforestation, suggesting a decrease in the more stable SOC fraction, while the labile fractions increased.

  11. Seed banks in desert grasslands and implications for management with an application to education and outreach

    NASA Astrophysics Data System (ADS)

    Ortiz-Barney, Elena

    Large areas of desert grasslands in the southwestern United States have been converted to shrublands through mismanagement. Land managers are interested in the potential for restoring these areas to grasslands. One possible source of new individuals of desirable grasses is the soil seed bank. This study was designed to investigate the quantity and spatial distribution of seeds in the soil seed bank and to estimate the possible effects of fire on the seed bank. To investigate the seed bank, soil samples were collected from sites with different vegetative cover representing a range of grassland conditions. At each site samples were collected from 3 microsites (under grasses, under shrubs, and interspaces) and separated into 3 depths (litter, 0--2 cm and 2--5 cm). Samples were grown in a growth chamber and plants were identified after emergence and flowering. To investigate the effects of prescribed burns on the seed bank, soil and surface temperatures during burns were measured at each microsite. Also, the heat tolerance of seeds of 8 species of perennial grasses was assessed by quantifying germination rates across a temperature gradient. Eleven species of perennial grasses germinated from soil and litter samples. Only 5 were abundant: the exotics Eragrostis curvula and E. Lehmanniana, and the natives E. intermedia, Lycurus setosus and Sporobolus cryptandrus. Most seed, as well as highest species richness, occurred in the litter layer and under shrubs. Temperatures during prescribed burns were highest in these same microsites, reaching averages between 100° and 250° Celsius (C). None of the species tolerated temperatures above 100°C. The implication of these results is that most grass seed reserves are stored in microsites that are likely to experience temperatures above their heat tolerance. Land managers should take this into account as a possible risk associated with using prescribed burns as part of their restoration efforts. As an application of this work to education and outreach, a lesson plan on teaching plant community succession concepts is included. The lesson consists of a board game in which each student plays the role of an imaginary plant species. They explore the dynamics of the imaginary plant community as the species respond to disturbance events and to each other. Also included are the results of an evaluation on the effectiveness of the game as a teaching tool.

  12. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    NASA Astrophysics Data System (ADS)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation of Kobresia ecosystems. Considering only the nitrogen uptake of AGB hardly any differences appeared between the six injection depths. Nevertheless, it could be shown, that 50.4 % percent of total variance of AGB nitrogen uptake could be explained by combining root density and root activity. Concluding, from the upper root mat horizons highest amounts of nitrogen were taken up by plants, because root densities are correspondingly high. However, in deeper root mat layers the root activity increases and accordingly plays a key role for plant nitrogen supply in this depth. Underlying causes for increasing root activities may be better soil moisture conditions, lower variation of soil temperature and/or a higher access to plant available nitrogen in deeper soil layers.Please fill in your abstract text.

  13. Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile

    Treesearch

    L.M. Egerton-Warburton; R.C. Graham; K.R. Hubbert

    2003-01-01

    We documented the spatial distribution, abundance and molecular diversity of mycorrhizal hyphae and physical and chemical properties of soil-weathered bedrock in a chaparral community that experiences seasonal drought. Because plants in this community were known to rely on bedrock-stored water during the summer, the data were used to evaluate the potential role of...

  14. Quantification of net annual C input in terrestrial ecosystems of the Italian Peninsula under different land-uses

    USDA-ARS?s Scientific Manuscript database

    Soil organic matter (SOM) is a very important compartment of the biosphere: it represents the largest dynamic carbon (C) pool where the C is stored for the longest time period. Root inputs, as exudates and root slush, represent a major, where not the largest, annual contribution to soil C input. Roo...

  15. Belowground carbon dynamics in lohlolly pine (Pinus taeda) immediately following diammonium phosphate fertilization

    Treesearch

    Christopher M. Gough; John R. Seiler

    2004-01-01

    Forest soils store an immense quantity of labile carbon (C) and a may be large potential sink for atmospheric C. Forest management practices such as fertilization may enhance overall C storage in soils, yet changes in physiological processes following nutrient amendments have not been widely investigated. We intensively monitored below-ground C dynamics for nearly 200...

  16. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Treesearch

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  17. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Treesearch

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  18. Soil Organic Matter to Soil Organic Carbon ratios in recovered mountain peatlands using Vis-Nir spectroscopy approach.

    NASA Astrophysics Data System (ADS)

    Fernandez, Susana del Carmen; Valderrabano, Jesus; Peon, Juan Jose; Bueno, Alvaro

    2015-04-01

    The present research is part of a Life Project title "Inland Wetlands North of the Iberian Peninsula: Management and restoration of wetlands and hygrophilous environments" TREMEDAL (LIFE 11/ENV/ES/707) in which 25 wetland sites distributed by Galicia, Asturias, Castilla and León, País Vasco and Navarra were selected to be protected, restore or improve their conservation status and store seeds of bog plant species in the gene bank of Atlantic Botanic Garden of Gijon City, Spain. In Cantabrian Mountain Range two Poldjes (Glacio-Karstic depressions) site in Picos de Europa National Park were selected to develop an experimental action in the framework of the Life project. The selected sites harboring the most biodiverse peatland plant communities in the Cantabrian Mountain Range thus are in danger of extinction due to overgrazing. The action proposes the exclusion of livestock and wild herbivores in 5 parcels in order to contrast the differences in evolution of plant communities, hydrology and soil organic matter between grazed and non-grazed areas; and to determine future management measures that can reconcile traditional livestock raising with a better conservation of peatlands. The peatland are Vega of Liordes (Castilla-Leon) at an average altitude of 1868 m and filled mainly by clayed ferruginous sediments and Vega of Comella (Principality of Asturias) at an average altitude of 850 m and filled by at least 49 m of glacial and lacustrine sediments and 8 m of necromass from peatland vegetation. The soils developed are histosols under seasonal hydric regime in which the phreatic level suffers fluctuations over 30 cm along the year. At the time 0 (time fences were) 45 samples of the upper 15 cm of the histosols inside and outside the fences were taken. At the time 1 ( one year later) were re-sampled. Total organic carbon (TOC), Oxidizable Organic Carbon (OC), Carbonates presence and pH were analysis by chemical procedures. Also the Vis-Nir spectral analysis of the samples was taken. The PCA (Principal Component Analysis) to spectra by soil population was performed in order to recognise the molecular composition of the soil carbon of the peatlands inside and outside the fences and the changes suffered with the transformation of the soil environment by the lack of herbivores pressure. At the time 0 there are not carbonates in the soil samples analysed, also not differences in pH; TOC and OC inside or outside the fences area found. Nevertheless in Liordes pH values reaches 7. 48 and in Comella not surpasses 5.0. Respect Soil Organic Carbon Liordes has a maximum of 48.4 g of TOC and 42.8 g of OC/Kg and Comella 59.2g of TOC and 47.1g/ Kg. There is not too much difference between TOC and SOC amounts highlighting the fact that most of the organic matter in soils correspond to poorly evolve organic matter. The Nir spectra (350-2500nm) reveal the presence of cellulose amorphous and carbohydrates (peaks at ~1500 and ~2000 nm) as the main components of these soils.

  19. The origin of amino acids in lunar regolith samples

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the amino acids in these samples. However, the presence of the non-proteinogenic amino acids such as AIB and β-ABA suggests the possibility of some contribution from exogenous sources. We did not observe a correlation of amino acid content with proximity to the Apollo 17 lunar module, implying that lunar module exhaust was not a primary source of amino acid precursors. Solar-wind-implanted precursors such as HCN also appear to be at most a minor contributor, given a lack of correlation between amino acid content and soil maturity (as measured by Is/FeO ratio) and the differences between the δ13C values of the amino acids and the solar wind.

  20. Stabilization of soils contaminated with explosives and metals from the ammunition demolition activity area and miscellaneous sites at the Umatilla Depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lear, P.R.; Gemarr, D.

    1997-12-31

    The US Army Umatilla Depot (UMD) was established as an ordnance depot in 1941 to store, preserve, and perform minor maintenance on conventional and chemical munitions. From the 1940`s until the present, UMD operated periodically at the 32 miscellaneous sites identified as OU-5. OU-4 consists of twenty sites within the Ammunition Demolition Activity Area. Typical activities conducted at these sites consisted of operations to burn, detonate, and otherwise dispose of ordnance, munitions casings, and other solids wastes. Five sites were selected for remedial action. The remediation contaminants of concern for the sites encompassed both metallic and non-metallic elements and bothmore » inorganic and organic compounds. The remedial action selected for the contaminated soil at these sites was stabilization/solidification (S/S). The site remediation activities for the five sites were performed by OHM Remediation Services Corp. (OHM) under the supervision of the US Army Corps of Engineers (USACE) Seattle District. The remedial action included treatability mix design testing, mobilization and field setup, soil excavation and processing, and S/S treatment. Stabilized soil samples were collected as grab samples from the pugmill discharge conveyor at a rate of every 75 tons of soil feed, corresponding to an individual production lot. None of the 437 production lots failed to meet the UCS requirement of 50 psi, however, 31 (7%) of the 437 lots failed for either TCLP-leachable metals or explosives. With one exception, all production lots which failed were due to exceedances of the TCLP-leachable explosives requirements. Of these 30 lots, 22 lots were from the OU-5 metals sites and were not expected to contain significant amounts of explosives. The areas in the landfill corresponding to these lots were excavated and the material reprocessed.« less

  1. Soil Organic Carbon Storage in Five Different Arctic Permafrost Environments

    NASA Astrophysics Data System (ADS)

    Fuchs, M.; Grosse, G.; Jones, B. M.; Maximov, G.; Strauss, J.

    2016-12-01

    Arctic river deltas and ice-rich permafrost regions are highly dynamic environments which will be strongly affected by future climate change. Rapid thaw of permafrost (thermokarst and thermo-erosion) may cause significant mobilization of organic carbon, which is assumed to be stored in large amounts in Arctic river deltas and ice-rich permafrost. This study presents and compares new data on organic carbon storage in thermokarst landforms and Arctic river delta deposits for the first two meters of soils for five different study areas in Alaska and Siberia. The sites include the Ikpikpuk river delta (North Alaska), Fish Creek river delta (North Alaska), Teshekpuk Lake Special Area (North Alaska), Sobo-Sise Island (Lena river delta, Northeast Siberia), and Bykovsky Peninsula (Northeast Siberia). Samples were taken with a SIPRE auger along transects covering the main geomorphological landscape units in the study regions. Our results show a high variability in soil organic carbon storage among the different study sites. The studied profiles in the Teshekpuk Lake Special Area - dominated by drained thermokarst lake basins - contained significantly more carbon than the other areas. The Teshekpuk Lake Special Area contains 44 ± 9 kg C m-2 (0-100 cm, mean value of profiles ± Std dev) compared to 20 ± 7 kg C m-2 kg for Sobo-Sise Island - a Yedoma dominated island intersected by thaw lake basins and 24 ± 6 kg C m-2 for the deltaic dominated areas (Fish Creek and Ikpikpuk). However, especially for the Ikpikpuk river delta, a significant amount of carbon (25 ± 9 kg C m-2) is stored in the second meter of soil (100-200cm). This study shows the importance of including deltaic and thermokarst-affected landscapes as considerable carbon pools, but indicates that these areas are heterogeneous in terms of organic carbon storage and cannot be generalized. As a next step, the site-level carbon stocks will be upscaled to the landscape level using remote sensing-based land cover classifications to calculate the carbon storage potential for Arctic deltas and larger thermokarst regions, to estimate mobilization potentials from thermokarst and thermo-erosion, and to provide input data for future permafrost carbon feedback models.

  2. BOREAS TF-4 CO2 and CH4 Soil Profile Data from the SSA

    NASA Technical Reports Server (NTRS)

    Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-4) team measured distributions of carbon dioxide (CO2) and methane (CH4) concentrations for the upper 5 m of soil and unsaturated zone at the mature stand, upper 6 m at the 20-year-old stand, and the upper 1 m at the 8-year-old stand and clear cut area at the BOREAS Southern Study Area (SSA) during August 1993 to March 1995. Particle size and carbon content of the unsaturated deposits, precipitation, soil temperature and moisture, carbon and oxygen isotopes of soil CO2, and soil water chemistry are also presented. The data are stored in tabular ASCII files.

  3. Small food stores and availability of nutritious foods: a comparison of database and in-store measures, Northern California, 2009.

    PubMed

    Kersten, Ellen; Laraia, Barbara; Kelly, Maggi; Adler, Nancy; Yen, Irene H

    2012-01-01

    Small food stores are prevalent in urban neighborhoods, but the availability of nutritious food at such stores is not well known. The objective of this study was to determine whether data from 3 sources would yield a single, homogenous, healthful food store category that can be used to accurately characterize community nutrition environments for public health research. We conducted in-store surveys in 2009 on store type and the availability of nutritious food in a sample of nonchain food stores (n = 102) in 6 predominantly urban counties in Northern California (Alameda, Contra Costa, Marin, Sacramento, San Francisco, and Santa Clara). We compared survey results with commercial database information and neighborhood sociodemographic data by using independent sample t tests and classification and regression trees. Sampled small food stores yielded a heterogeneous group of stores in terms of store type and nutritious food options. Most stores were identified as convenience (54%) or specialty stores (22%); others were small grocery stores (19%) and large grocery stores (5%). Convenience and specialty stores were smaller and carried fewer nutritious and fresh food items. The availability of nutritious food and produce was better in stores in neighborhoods that had a higher percentage of white residents and a lower population density but did not differ significantly by neighborhood income. Commercial databases alone may not adequately categorize small food stores and the availability of nutritious foods. Alternative measures are needed to more accurately inform research and policies that seek to address disparities in diet-related health conditions.

  4. Small Food Stores and Availability of Nutritious Foods: A Comparison of Database and In-Store Measures, Northern California, 2009

    PubMed Central

    Laraia, Barbara; Kelly, Maggi; Adler, Nancy; Yen, Irene H.

    2012-01-01

    Introduction Small food stores are prevalent in urban neighborhoods, but the availability of nutritious food at such stores is not well known. The objective of this study was to determine whether data from 3 sources would yield a single, homogenous, healthful food store category that can be used to accurately characterize community nutrition environments for public health research. Methods We conducted in-store surveys in 2009 on store type and the availability of nutritious food in a sample of nonchain food stores (n = 102) in 6 predominantly urban counties in Northern California (Alameda, Contra Costa, Marin, Sacramento, San Francisco, and Santa Clara). We compared survey results with commercial database information and neighborhood sociodemographic data by using independent sample t tests and classification and regression trees. Results Sampled small food stores yielded a heterogeneous group of stores in terms of store type and nutritious food options. Most stores were identified as convenience (54%) or specialty stores (22%); others were small grocery stores (19%) and large grocery stores (5%). Convenience and specialty stores were smaller and carried fewer nutritious and fresh food items. The availability of nutritious food and produce was better in stores in neighborhoods that had a higher percentage of white residents and a lower population density but did not differ significantly by neighborhood income. Conclusion Commercial databases alone may not adequately categorize small food stores and the availability of nutritious foods. Alternative measures are needed to more accurately inform research and policies that seek to address disparities in diet-related health conditions. PMID:22789445

  5. Carbon sequestration in two alpine soils on the Tibetan Plateau.

    PubMed

    Tian, Yu-Qiang; Xu, Xing-Liang; Song, Ming-Hua; Zhou, Cai-Ping; Gao, Qiong; Ouyang, Hua

    2009-09-01

    Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon-14 radioactive label provided by thermonuclear weapon tests (known as bomb-(14)C). Soil organic matter was physically separated into light and heavy fractions. The concentration spike of bomb-(14)C occurred at a soil depth of 4 cm in both the forest soil and the alpine meadow soil. Based on the depth of the bomb-(14)C spike, the carbon sequestration rate was determined to be 38.5 g C/m(2) per year for the forest soil and 27.1 g C/m(2) per year for the alpine meadow soil. Considering that more than 60% of soil organic carbon (SOC) is stored in the heavy fraction and the large area of alpine forests and meadows on the Tibetan Plateau, these alpine ecosystems might partially contribute to "the missing carbon sink".

  6. Manganese Driven Carbon Oxidation along Oxic-Anoxic Interfaces in Forest Soils

    NASA Astrophysics Data System (ADS)

    Jones, M. E.; Keiluweit, M.

    2017-12-01

    Soils are the largest and most dynamic terrestrial carbon pool, storing a total of 3000 Pg of C - more than the atmosphere and biosphere combined. Because microbial oxidation determines the proportion of carbon that is either stored in the soil or emitted as climate active CO2, its rate directly impacts the global carbon cycle. Recently, a strong correlation between oxidation rates and manganese (Mn) content has been observed in forest soils globally, leading researchers conclude that Mn "is the single main factor governing" the oxidation of plant-derived particulate organic carbon (POC). Many soils are characterized by steep oxygen gradients, forming oxic-anoxic transitions that enable rapid redox cycling of Mn. Oxic-anoxic interfaces have been shown to promote fungal Mn oxidation and the formation of ligand-stabilized Mn(III), which ranks second only to superoxide as the most powerful oxidizing agent in the environment. Here we examined fungal Mn(III) formation along redox gradients in forest soils and their impact on POC oxidation rates. In both field and laboratory settings, oxic-anoxic transition zones showed the greatest Mn(III) concentrations, along with enhanced fungal growth, oxidative potential, production of soluble oxidation products, and CO2 production. Additional electrochemical and X-ray (micro)spectroscopic analyses indicated that oxic-anoxic interfaces represent ideal niches for fungal Mn(III) formation, owing to the ready supply of Mn(II), ligands and O2. Combined, our results suggest that POC oxidation relies on fungal Mn cycling across oxic-anoxic interfaces to produce Mn(III) based oxidants. Because predicted changes in the frequency and timing of precipitation dramatically alter soil moisture regimes in forest soils, understanding the mechanistic link between Mn cycling and carbon oxidation along oxic-anoxic interfaces is becoming increasingly important.

  7. Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Megonigal, P.; Mueller, P.; Jensen, K.

    2014-12-01

    Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.

  8. NASA's Mars 2020 Rover Artist's Concept #2

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying a Mars rock outrcrop. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22105

  9. NASA's Mars 2020 Rover Artist's Concept #4

    NASA Image and Video Library

    2017-11-17

    This artist's concept depicts NASA's Mars 2020 rover exploring Mars. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22107

  10. NASA's Mars 2020 Rover Artist's Concept #7

    NASA Image and Video Library

    2017-11-17

    NASA's Mars 2020 rover looks at the horizon in this artist's concept. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22110

  11. NASA's Mars 2020 Rover Artist's Concept #1 (Updated)

    NASA Image and Video Library

    2017-11-17

    This artist's concept depicts NASA's Mars 2020 rover exploring Mars. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22111

  12. NASA's Mars 2020 Rover Artist's Concept #5

    NASA Image and Video Library

    2017-11-17

    This artist's concept shows a close-up of NASA's Mars 2020 rover studying an outcrop. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22108

  13. NASA's Mars 2020 Rover Artist's Concept #3

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying rocks with its robotic arm. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22106

  14. NASA's Mars 2020 Rover Artist's Concept #6

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying its surroundings. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22109

  15. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  16. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  17. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  18. Is it acceptable to use coagulation plasma samples stored at room temperature and 4°C for 24 hours for additional prothrombin time, activated partial thromboplastin time, fibrinogen, antithrombin, and D-dimer testing?

    PubMed

    Rimac, V; Coen Herak, D

    2017-10-01

    Coagulation laboratories are faced on daily basis with requests for additional testing in already analyzed fresh plasma samples. This prompted us to examine whether plasma samples stored at room temperature (RT), and 4°C for 24 hours can be accepted for additional prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen (Fbg), antithrombin (AT), and D-dimer testing. We measured PT, aPTT, Fbg in 50 and AT in 30 plasma samples with normal and pathological values, within 4 hours of blood collection (baseline results) and after 24-hours storage at RT (primary tubes), and 4°C (aliquots). D-dimer stability was investigated in 20 samples stored in primary tubes at 4°C. No statistically significant difference between baseline results and results in samples stored at RT and 4°C was observed for PT (P=.938), aPTT (P=.186), Fbg (P=.962), AT (P=.713), and D-dimers (P=.169). The highest median percentage changes were found for aPTT, being more pronounced for samples stored at 4°C (13.0%) than at RT (8.7%). Plasma samples stored both at RT and 4°C for 24 hours are acceptable for additional PT, Fbg, and AT testing. Plasma samples stored 24 hours in primary tubes at 4°C are suitable for D-dimer testing. © 2017 John Wiley & Sons Ltd.

  19. Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.

    PubMed

    Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

    2013-06-01

    Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and δ(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation. © 2013 Blackwell Publishing Ltd.

  20. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  1. Cariogenic potential of stored human milk--an in-vitro study.

    PubMed

    Hegde, Amitha M; Vikyath, Rani

    2007-01-01

    Human milk samples collected from ten lactating mothers in the K. S. Hegde Medical Hospital, Mangalore were divided into five different parts and stored at different temperatures for varying durations. The pH, buffer capacity and growth of Streptococcus mutans were assessed in each of these samples. There was a fall in pH of human milk stored at various temperatures. The buffer capacity of human milk increased with duration of storage. There was an increase in Streptococcus colony count in stored human milk proportional to the duration of storage and it increased more rapidly in case of milk stored at higher temperatures (0 degrees C - 4 degrees C) compared to the milk stored in the freezer (-19 degrees C). Milk samples stored at room temperature for 6 hours and in the freezer at -19 degrees C for 2 weeks were found to be relatively safe.

  2. Application of thermal analysis to measure the spatial heterogeneity of organic matter degradation after wildfire: implications for post-fire rehabilitation treatments

    NASA Astrophysics Data System (ADS)

    Merino, Agustin; Fonturbel, M. Teresa; Vega, Jose A.

    2015-04-01

    Severe wildfires can cause drastic changes in SOM content and quality with important implications for soil conservation and global C balance. Soil heating usually leads to loss of the most labile SOM compounds (e.g. carbohydrates, lipids and peptides) and to generation of aromatic substances. However, these fire-related damages are not uniform over large areas, because of the spatial heterogeneity of different factors such as fire type and environmental conditions. Rapid diagnosis of soil burn severity is required to enable the design of emergency post-fire rehabilitation treatments. The study was conducted in soils from NW Spain, an Atlantic-climate zone that is particularly prone to wildfires. Intact soil cores (forest floor and uppermost mineral soil layer) were taken from a soil developed under granitic rock and subjected to experimental burning (in a bench positioned at the outlet of a wind tunnel). Soil temperature during fire was monitorised and five visual levels of soil burn severity (SBS) were recorded immediately after fire. Solid-state 13C CP-MAS NMR spectroscopy analyses were performed in an Agilent (Varian) VNMRS-500-WB spectrometer. The samples were analyzed by differential scanning calorimetry and thermogravimetry (TGA/DSC, Mettler-Toledo Intl. Inc.). The analyses were performed with 4 mg of samples placed in open aluminium pans under dry air (flow rate, 50 mL-1) and at a scanning rate of 10 °C min-1. The temperature ranged between 50 and 600 °C. In the organic layer, the temperature reached during fire influenced the formation and characteristics of charred material. These materials showed an increasing degree of carbonization/aromatization in relation to the increase of temperature during burning. Burning also led to compounds of higher thermal recalcitrance (increases in T50 values -the temperature at which 50% of the energy stored in SOM is released-). However, values recorded in some samples were lower than those measured in highly polycondensed aromatic compounds. In the mineral soil, large reductions in SOM content were found in both moderate and high SBS (up to 70 %), whereas important effects on SOM quality were only associated with high SBS. NMR analysis revealed these changes as losses of O-alkyl, alkyl and carboxylic structures and increases of the aromatic structures (up to 50 %). In both organic and mineral soils the DSC analysis revealed decreased combustion heat released up to 375 °C, and increased T50. Relationships between thermal properties and chemical-shift regions in the NMR helped provide a better understanding of SOM quality after wildfire. The results also show that thermal analysis can be used as a rapid tool to assess the different degrees of SOM degradation, in areas where the complex heterogeneity of the fire damage requires different emergency post-fire rehabilitation treatments.

  3. 9 CFR 147.22 - Hatching egg sanitation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT PLAN Sanitation... soiled nest eggs may be gently dry cleaned by hand. (c) Hatching eggs should be stored in a designated...

  4. Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed

    NASA Astrophysics Data System (ADS)

    Sabatier, Pierre; Poulenard, Jérôme; Fanget, Bernard; Reyss, Jean-Louis; Develle, Anne-Lise; Wilhelm, Bruno; Ployon, Estelle; Pignol, Cécile; Naffrechoux, Emmanuel; Dorioz, Jean-Marcel; Montuelle, Bernard; Arnaud, Fabien

    2014-11-01

    Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.

  5. Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed

    PubMed Central

    Sabatier, Pierre; Poulenard, Jérôme; Fanget, Bernard; Reyss, Jean-Louis; Develle, Anne-Lise; Wilhelm, Bruno; Ployon, Estelle; Pignol, Cécile; Naffrechoux, Emmanuel; Dorioz, Jean-Marcel; Montuelle, Bernard; Arnaud, Fabien

    2014-01-01

    Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change. PMID:25313074

  6. Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed.

    PubMed

    Sabatier, Pierre; Poulenard, Jérôme; Fanget, Bernard; Reyss, Jean-Louis; Develle, Anne-Lise; Wilhelm, Bruno; Ployon, Estelle; Pignol, Cécile; Naffrechoux, Emmanuel; Dorioz, Jean-Marcel; Montuelle, Bernard; Arnaud, Fabien

    2014-11-04

    Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.

  7. Calibrating a method for simulated long-term ageing of biochar

    NASA Astrophysics Data System (ADS)

    Sohi, Saran; Cross, Andrew

    2013-04-01

    We recently established a procedure that imposes oxidatiave ageing to biochar and charcoal samples over a short time-frame, that provided carbon mass loss in the range projected for wild-fire charcoal in soil over a period of approximately 100 years. The stability of biochar samples in soil (relative to charcoal) range from 45-98% could be determined repeatably with high precision. Initial tests to understand the kinetics of the accelerated ageing method showed progressive increase in surface O concentration when examined by X-ray photoelectron spectroscopy (XPS) that slowly reached equilibrium. These trends resembled patterns observed in climate-for-time studies elsewhere, on centennial time-frame. We have extended this work to a preliminary direct calibration by matching progressive oxidation achieved in the laboratory to the surface composition of charcoal fragments recovered from the environment after periods of hundred to thousands of years. We have also applied artificial ageing to the same sets of naturally pre-aged charcoal fragments, and to recreated fresh charcoal. In this presentation of the first approach to quantifiably relate a laboratory test for biochar carbon stability to field data covering multiple time scales, we report on both the process and the implications for the stability of carbon stored in biochar under different climates and diverse agro-ecosystems.

  8. Survivability of porcine epidemic diarrhea virus (PEDV) in bovine plasma submitted to spray drying processing and held at different time by temperature storage conditions.

    PubMed

    Pujols, Joan; Segalés, Joaquim

    2014-12-05

    Bovine plasma was inoculated with porcine epidemic diarrhea virus (PEDV) at an average final titer of 4.2 log10 TCID50/mL to determine the effect of spray drying on viral inactivation. Using a laboratory scale drier, inoculated plasma was spray dried at 200 °C inlet temperature and either 70 or 80 °C throughout substance. Both liquid and dried samples were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. Results indicated liquid samples contained infective virus, but none of the spray dried samples were infectious. Also, survivability of PEDV inoculated on spray dried bovine plasma (SDBP) and stored at 4, 12 or 22 °C was determined for 7, 14 and 21 days. Commercial SDBP powder was inoculated with PEDV to an average final titer of 2.8 log10 TCID50/g. Five samples per time and temperature conditions were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. The virus was non-infectious for all samples stored at 22 °C at 7, 14 and 21 days. PEDV was infective in 1 out of 5 samples stored at 12 °C at 7 days, but none of the samples stored for 14 and 21 days were infectious in cell culture. For samples stored at 4 °C, 4 out of 5 samples were infectious at 7 days, 1 out of 5 samples were infectious at 14 days, but none were infectious at 21 days. In summary, PEDV was not infectious on cell culture within 7 days when stored at room temperature and within 21 days when stored at refrigerated temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen

    Treesearch

    M.R. Chivers; M.R. Turetsky; J.M. Waddington; J.W. Harden; A.D. McGuire

    2009-01-01

    Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open...

  10. Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland

    Treesearch

    Kimberly P. Wickland; Robert G. Striegl; Jason C. Neff; Torsten Sachs

    2006-01-01

    Permafrost melting is occurring in areas of the boreal forest region where large amounts of carbon (C) are stored in organic soils. We measured soil respiration, net CO2 flux, and net CH4 flux during May-September 2003 and March 2004 in a black spruce lowland in interior Alaska to better understand how permafrost thaw in...

  11. Carbon-mineral interactions along an earthworm ivasion gradient at a sugar maple forest in northern Minnesota

    Treesearch

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen Sebestyen

    2011-01-01

    The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not...

  12. From solid to liquid: assessing the release of organic matter into soil solution in response to land-use conversion in Brazilian Oxisols

    NASA Astrophysics Data System (ADS)

    James, Jason; Gross, Cole; Dwivedi, Pranjal; Bernardi, Rodolpho; Guerrini, Irae; Harrison, Rob; Butman, David

    2017-04-01

    Recent advances in freshwater research indicate that roughly double the quantity of carbon is exported from soils to streams and rivers than was previously estimated, and that the age of carbon exported from major rivers globally increases with greater human disturbance in the watershed. This implies that human land-use can release old, previously mineral-associated C into solution with subsequent export to groundwater and ultimately freshwater systems where terrestrial organic matter is either mineralized to CO2, stored in aquatic sediments, or exported to the ocean. Consequently, it is important to understand the mechanisms that cause the release of SOM that is mineral-bound into solution in response to human disturbance and land-use change. Research methods have been established to examine both the fast turnover, dissolved pool of soil organic matter (SOM), as well as the slow turnover, mineral-associated pool. However, to better characterize the response of the total SOM pool to disturbance, it is necessary to understand the interactions between these functional pools by examining them both simultaneously. This study seeks to examine the interaction between dissolved organic matter (DOM) and bulk SOM throughout the soil profile in response to conversion of Brazilian Cerrado (savannah forest) to Eucalyptus plantation forest on the same soil type. The water-extractable organic matter was obtained from soil samples down to 150 cm, characterized using fluorescence and NMR spectroscopy, and carbon-dated. Simultaneously, bulk mineral soil samples were analyzed for microbial biomass, carbon content and age, and characterized using Fourier Transform Infrared Spectroscopy. SOM spectra were obtained by washing subsamples with sodium hypochlorite and subtracting the subsequent mineral matrix spectra from bulk soil spectra. Preliminary results show that microbial biomass decreases much more quickly with depth than DOM, suggesting that C released into solution from deeper horizons may be less likely to be intercepted, and thus preferentially leached to groundwater. Native Cerrado forests had substantially more roots compared to Eucalyptus, and also released substantially larger quantities of DOM from their O horizons. Processes operating at the interface between solid and liquid, terrestrial and aquatic are a key unknown in the global carbon cycle. This research permits a unique snapshot into the relationship between DOM and SOM and the response of these pools to land-use change in Brazil.

  13. Accounting carbon storage in decaying root systems of harvested forests.

    PubMed

    Wang, G Geoff; Van Lear, David H; Hu, Huifeng; Kapeluck, Peter R

    2012-05-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha(-1)) at the time of harvest, and about 13% (6.1 Mg ha(-1)) of the soil organic carbon 10 years later. Based on the published roundwood output data, we estimated belowground biomass at the time of harvest for loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina. We then calculated C that remained in the decomposing root systems in 2005 using the decay function developed for loblolly pine. Our calculations indicate that the amount of C stored in decaying roots of loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina was 7.1 Tg. Using a simple extrapolation method, we estimated 331.8 Tg C stored in the decomposing roots due to timber harvest from 1995 to 2005 in the conterminous USA. To fully account for the C stored in the decomposing roots of the US forests, future studies need (1) to quantify decay rates of coarse roots for major tree species in different regions, and (2) to develop a methodology that can determine C stock in decomposing roots resulting from natural mortality.

  14. Long-term study of volatile organic compound recovery from ampulated, dry, fortified soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnich, M.M.; Zimmerman, J.H.; Schumacher, B.A.

    1997-01-01

    Our objective was to evaluate the stability and extractability of volatile organic compounds (VOCs) when fortified on dry soils and stored in sealed ampules. Two desiccator-dried soils were fortified with benzene, toluene, ethylbenzene, o-xylene, 1,1,1-trichloroethane (TCA), trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,2,2-tetrachloroethane (TTCA) at 800 ng each VOC/g soil. The fortified soil was portioned into ampules, sealed, and stored in the dark at 25{degrees}C for up to 56 wk. Replicate ampules were analyzed after 2 d and 2,4,8,13,34, and 56 wk by two extraction procedures modified from the US Environmental Protection Agency`s (USEPA`s) low- and high-level purge-and-trap procedures (SW-846 Methodsmore » 5030/8021). The modified procedure (1-h methanol extraction at 25{degree}C prior to purge-and-trap analysis) yielded significantly higher recoveries of all compounds on both soils as compared with the low-level procedure, with the exception of benzene on the Charleston soil. Moreover, when measured by the high-level procedure, concentrations of benzene, toluene, ethylbenzene, and o-xylene (BTEX) remained relatively unchanged during the 56-wk study. Results indicate that the 1-h, 25{degrees}C methanol extraction was sufficient for extraction of the BTEX compounds from these soils. For the chlorinated compounds, regression analysis demonstrated significant trends of changing concentrations over time. Recoveries of TCA decreased at a rate of 3 and 4 ng/g/week and recoveries of TTCA decreased at rates of 8 and 17 ng/g/week on the Hayesville and Charleston soils, respectively. PCE concentrations did not show any significant concentration changes, while TCE concentrations increased at 6 and 7 ng/g/week for the Hayesville and Charleston soils, respectively. 19 refs., 2 figs., 5 tabs.« less

  15. Typeability of PowerPlex Y (Promega) profiles in selected tissue samples incubated in various environments.

    PubMed

    Niemcunowicz-Janica, Anna; Pepiński, Witold; Janica, Jacek Robert; Janica, Jerzy; Skawrońska, Małgorzata; Koc-Zórawska, Ewa

    2007-01-01

    In cases of decomposed bodies, Y chromosomal STR markers may be useful in identification of a male relative. The authors assessed typeability of PowerPlex Y (Promega) loci in post mortem tissue material stored in various environments. Kidney, spleen and pancreas specimens were collected during autopsies of five persons aged 20-30 years, whose time of death was determined within the limit of 14 hours. Tissue material was incubated at 21 degrees C and 4 degrees C in various environmental conditions. DNA was extracted by the organic method from tissue samples collected in 7-day intervals and subsequently typed using the PowerPlexY-STR kit and ABI 310. A fast decrease in the typeability rate was seen in specimens incubated in peat soil and in sand. Kidney tissue samples were typeable in all PowerPlexY-STR loci within 63 days of incubation at 4 degrees C. Faster DNA degradation was recorded in spleen and pancreas specimens. In samples with negative genotyping results, no DNA was found by fluorometric quantitation. Decomposed soft tissues are a potential material for DNA typing.

  16. Carbon input increases microbial nitrogen demand, but not microbial nitrogen mining in boreal forest soils

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias

    2016-04-01

    Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils where C availability was initially low, but this priming effect was not linked to increased gross protein depolymerization rates. Similarly, we found no connection to increased activities of enzymes targeting N-containing polymers such as proteins or chitin. Instead, glucose addition increased the microbial efficiency to use the N already available, as indicated by lower gross N mineralization rates and lower concentrations of inorganic N in the soil. We emphasize that these findings do not generally preclude that higher C availability can induce microbial N mining and thus enhance soil N availability in some soils, but that such an effect cannot be universally assumed. In contrast, the changes in microbial N dynamics observed across our range of boreal forest soils suggest that higher C availability can at least in some soils increase N storage within microbial bio- and necromass, thus reducing N availability for plants, but also constraining soil N losses, e.g., by nitrate leaching and denitrification.

  17. BOREAS Regional Soils Data in Raster Format and AEAC Projection

    NASA Technical Reports Server (NTRS)

    Monette, Bryan; Knapp, David; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor)

    2000-01-01

    This data set was gridded by BOREAS Information System (BORIS) Staff from a vector data set received from the Canadian Soil Information System (CanSIS). The original data came in two parts that covered Saskatchewan and Manitoba. The data were gridded and merged into one data set of 84 files covering the BOREAS region. The data were gridded into the AEAC projection. Because the mapping of the two provinces was done separately in the original vector data, there may be discontinuities in some of the soil layers because of different interpretations of certain soil properties. The data are stored in binary, image format files.

  18. Observations of stem water storage in trees of opposing hydraulic strategies

    DOE PAGES

    Matheny, Ashley M.; Bohrer, Gil; Garrity, Steven R.; ...

    2015-09-29

    Hydraulic capacitance and water storage form a critical buffer against cavitation and loss of conductivity within the xylem system. Withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. Storage quantities differ based on soil water availability, tree size, wood anatomy and density, drought tolerance, and hydraulic strategy (anisohydric or isohydric). However, the majority of studies focus on the measurement of storage in conifers or tropical tree species. We demonstrate a novel methodology using frequency domain reflectometry (FDR) to make continuous, direct measurements of wood water content in two hardwood species inmore » a forest in Michigan. We present results of a two month study comparing the water storage dynamics between a mature red oak and red maple, two species with differing wood densities, hydraulic architecture, and hydraulic strategy. We also include results pertaining to the use of different probe lengths to sample water content only within the active sapwood and over the entire conductive sapwood and the outer portion of heartwood in red oak. Both species studied exhibited diurnal cycles of storage that aligned well with the dynamics of sap flux. Red maple, a diffuse porous, relatively isohydric species showed a strong dependence on stored water during both wet and dry periods. Red oak, a ring porous relatively anisohydric species, was less reliant on storage, and did not demonstrate a dependence on soil water potential. Comparison between long and short FDR probes in the oak revealed that oaks may utilize water stored in the innermost layers of the xylem when soil moisture conditions are limiting. We found the FDR probes to be a reliable, functional means for continuous automated measurement of wood water content in hardwoods at a fast time scale. Application of FDR technology for the measurement of tree water storage will benefit forest ecologists as well as the modeling community as we improve our understanding and simulations of plant hydrodynamic processes on a large scale.« less

  19. Microbial alteration of normal alkane δ13C and δD in sedimentary archives

    NASA Astrophysics Data System (ADS)

    Brittingham, A.; Hren, M. T.; Hartman, G.

    2016-12-01

    Long-carbon chain normal alkanes (e.g. C25-C33) are produced by a wide range of terrestrial plants and commonly preserved in ancient sediments. These serve as a potential paleoclimate proxy because their hydrogen (δD) and carbon (δ13C) isotope values reflect the combined effect of plant-specific species effects and responses to environmental conditions. While these are commonly believed to remain unaltered at low burial temperatures (e.g. <150°C), there is still uncertainty around the role microbes play during the breakdown of these compounds in stored sediment and the potential risk for isotopic alteration. We analyzed two sets of identical samples to assess the role of microbial and other degradation process on the hydrogen and carbon isotope composition of these compounds. The first set of sediment samples were collected in the summer of 2011 from central Armenia, a region with continental climate, and allowed to sit in sealed bags at room temperature for three years. A second and identical set was collected in 2014 and frozen immediately. Stored samples showed high amounts of medium chain length n-alkanes (C19-C26), produced by microorganisms, which were absent from the samples that were collected in 2014 and frozen immediately after sampling. Along with the presence of medium chain length n-alkanes, the average chain length of n-alkanes from C25-C33 decreased significantly in all 2011 samples. Storage of the samples over three years resulted in altered δD and δ13C values of C29 and C31 n-alkanes. While δD values were heavier relative to the control by 4-25‰, δ13C values were mostly lighter (maximum change of -4.2‰ in C29 and -2.9‰ in C31). DNA analysis of the soil showed Rhodococcus and Aeromicrobium, genera that contain multiple coding regions for alkane degrading enzymes CYP153 and AlkB, increased by an order of magnitude during sample storage (from 0.7% to 7.5% of bacteria present). The proliferation of alkane degrading bacteria, combined with the large changes of long-chain n-alkane isotope values, suggest that bacteria may play a larger role than previously expected in altering the measured δD and δ13C values of long-chain n-alkanes during storage. This poses a potentially significant issue for all manner of samples that are not stored frozen, including a variety of sedimentary cores.

  20. Examining the effect of altered redox conditions on deep soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Kellman, L. M.; Ziegler, S. E.

    2013-12-01

    Since subsoil horizons contribute significantly to terrestrial carbon (C) budgets, understanding the influence of disturbances such as forest harvesting on subsoil C stability is critical. Clearcut harvesting leads to changes in the soil physico-chemical environment, including altering redox conditions arising from changes in soil hydrology that increase soil saturation, soil temperature, and pH. These physico-chemical changes have the potential to alter the adsorption of soil organic matter (SOM) to minerals, particularly at depth where SOM is primarily associated with mineral phases. The objective of this study was to determine the effect of differing redox states (aerobic vs. anaerobic) and temperature upon SOM stability of forested soils representative of the Acadian Forest Region of Eastern North America. Composite soil samples through depth (0-10, 10-20, 20-35, and 35-50 cm) from a mature red spruce forest (110 years) were incubated under optimum (aerobic) or saturated (anaerobic) conditions for 1 or 4 months at two temperatures (5 and 15 C). Following incubation, soil leachate was analyzed for dissolved organic carbon (DOC), and UV-vis absorbance in order to determine soil C losses and its optical character. Specific UV-vis absorbance SUVA (254 nm) and spectral slope ratios were calculated in order to assess the composition of chromophoric dissolved organic matter (CDOM). Preliminary results from the 1 month incubation indicate that under anaerobic conditions, all depths released DOC with a higher SUVA than under aerobic conditions, with the largest change observed in the 0-10 cm depth increment. Soil incubated at 5 C produced leachate with significantly less DOC and with a lower absorbance compared to 15 C under both redox conditions. These results suggest that both temperature and redox state are important in determining the aromaticity of DOC released from soils. Spectral slope ratios revealed that a greater proportion of CDOM of lower molecular weight (MW) compounds were released from deep mineral podzolic soils when saturated (high SUVA, low spectral slope), while higher MW CDOM were released from shallow soil strata (low SUVA, high spectral slope). This is consistent with research that indicates plant-derived SOM and microbial products each dominate in shallow and deep mineral soils, respectively. These preliminary results suggest that alterations to the redox state of a forested podzolic soil may have the potential to alter the mobilization of SOM, its composition and associated soil carbon stores.

  1. Soil Organic Carbon and Nutrient Dynamics in Reclaimed Appalachian Mine Soil

    NASA Astrophysics Data System (ADS)

    Acton, P.; Fox, J.; Campbell, J. E.; Rowe, H. D.; Jones, A.

    2011-12-01

    Past research has shown that drastically disturbed and degraded soils can offer a high potential for soil organic carbon and aboveground carbon sequestration. Little work has been done on both the functioning of soil carbon accumulation and turnover in reclaimed surface mining soils. Reclamation practices of surface coal mine soils in the Southern Appalachian forest region of the United States emphasizes heavy compaction of surface material to provide slope stability and reduce surface erosion, and topsoil is not typically added. An analysis of the previously collected data has provided a 14 year chronosequence of SOC uptake and development in the soil column and revealed that these soils are sequestering carbon at a rate of 1.3 MgC ha-1 yr-1, which is 1.6 to 3 times less than mining soils reported for other regions. Results of bulk density analysis indicate a contrast between 0 - 10 cm (1.51 g cm-3) and 10 - 50 cm (2.04 g cm-3) depth intervals. Aggregate stability was also quantified as well as dynamic soil texture measurements. With this analysis, it has been established that these soils are well below their potential in terms of the ability to store and cycle carbon and other nutrients as well their ability to sustain a fully-functioning forested ecosystem typical for the region. We are taking an integrated approach that relies on ecological observations for present conditions combined with computational modeling to understand long-term soil organic carbon (SOC) accumulation and turnover in regards to SOC sequestration potential and quantification of specific processes by which these soils develop. A dual-isotope end-member model, utilizing the carbon 13 and nitrogen 15 stable isotopes, is being developed to provide greater input into the mathematical separation of organic carbon derived from new soil inputs and existing coal carbon. Soils from the study sites have been isolated into three distinct size pools, and elemental and isotopic analysis of these samples was performed. These results are being used to calibrate an isotope fractionation model to quantify decomposition rates of various conceptual organic matter pools. The hydrology of the mine soils is being modeled using the SCS curve number method to quantify infiltration rates. An assessment of above and belowground biomass was performed to provide estimates for annual plant production. Soil samples will be analyzed for micronutrient content. The CENTURY soil organic matter model will be utilized to provide a biogeochemical analysis of the plant and soil ecosystem. Simulations will be made under varying climatic and land-use changes. Surface coal mine extraction can act as a disturbance and greatly impacts the terrestrial carbon reservoir through initial removal of aboveground biomass and soil carbon and thereafter mineland reclamation. This research will provide a better understanding of the net impact of surface coal mining on terrestrial carbon, thus accounting for long term C sequestration in the soils and aboveground biomass that might offset drastic carbon disturbance in the initial stage of surface mining.

  2. Project environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1974-01-01

    Microbiological analyses of soil particles allow for the following conclusions: (1) there is a considerable range in the values of aerobic, mesophilic microbial counts associated with different size soil fractions; (2) as soil particle size increases, there is an increase in the mean microbial concentration per particle; (3) plate counts of aerobic, mesophilic organisms in unheated soils yielded a mean concentration of about six organisms per particle for the smallest soil fraction; (4) aerobic, mesophilic counts for sonicated particles heated at 80 C for 20 minutes yielded mean values of about two organisms per particle for the smallest particles; (5) some actinomycetes associated with the soil fractions could survive dry heat treatment at 110 C for one hour; and (6) soil particles stored under ambient laboratory conditions for 2.5 years aerobic, mesophilic plate counts which were comparable or slightly greater than the counts for more recently collected soil.

  3. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  4. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  5. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  6. Quantifying the effects of stream channels on storm water quality in a semi-arid urban environment

    NASA Astrophysics Data System (ADS)

    Gallo, Erika L.; Lohse, Kathleen A.; Brooks, Paul D.; McIntosh, Jennifer C.; Meixner, Thomas; McLain, Jean E. T.

    2012-11-01

    SummaryStormwater drainage systems can have a large effect on urban runoff quality, but it is unclear how ephemeral urban streams alter runoff hydrochemistry. This problem is particularly relevant in semi-arid regions, where urban storm runoff is considered a renewable water resource. Here we address the question: how do stream channels alter urban runoff hydrochemistry? We collected synoptic stormwater samples during three rainfall-runoff events from nine ephemeral streams reaches (three concrete or metal, three grass, three gravel) in Tucson, Arizona. We identified patterns of temporal and spatial (longitudinal) variability in concentrations of conservative (chloride and isotopes of water) and reactive solutes (inorganic-N, soluble reactive phosphorous, sulfate-S, dissolved organic carbon (DOC) and nitrogen, and fecal indicator bacteria). Water isotopes and chloride (Cl) concentrations indicate that solute flushing and evapoconcentration alter temporal patterns in runoff hydrochemistry, but not spatial hydrochemical responses. Solute concentrations and stream channel solute sourcing and retention during runoff were significantly more variable at the grass reaches (CV = 2.3 - 144%) than at the concrete or metal (CV = 1.6 - 107%) or gravel reaches (CV = 1.9 - 60%), which functioned like flow-through systems. Stream channel soil Cl and DOC decreased following a runoff event (Cl: 12.1-7.3 μg g-1 soil; DOC: 87.7-30.1 μg g-1 soil), while soil fecal indicator bacteria counts increased (55-215 CFU g-1 soil). Finding from this study suggest that the characteristics of the ephemeral stream channel substrate control biogeochemical reactions between runoff events, which alter stream channel soil solute stores and the hydrochemistry of subsequent runoff events.

  7. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.

    PubMed

    Allan, J; Ronholm, J; Mykytczuk, N C S; Greer, C W; Onstott, T C; Whyte, L G

    2014-04-01

    Increasing permafrost thaw, driven by climate change, has the potential to result in organic carbon stores being mineralized into carbon dioxide (CO2) and methane (CH4) through microbial activity. This study examines the effect of increasing temperature on community structure and metabolic activity of methanogens from the Canadian High Arctic, in an attempt to predict how warming will affect microbially controlled CH4 soil flux. In situ CO2 and CH4 flux, measured in 2010 and 2011 from ice-wedge polygons, indicate that these soil formations are a net source of CO2 emissions, but a CH4 sink. Permafrost and active layer soil samples were collected at the same sites and incubated under anaerobic conditions at warmer temperatures, with and without substrate amendment. Gas flux was measured regularly and indicated an increase in CH4 flux after extended incubation. Pyrosequencing was used to examine the effects of an extended thaw cycle on methanogen diversity and the results indicate that in situ methanogen diversity, based on the relative abundance of the 16S ribosomal ribonucleic acid (rRNA) gene associated with known methanogens, is higher in the permafrost than in the active layer. Methanogen diversity was also shown to increase in both the active layer and permafrost soil after an extended thaw. This study provides evidence that although High Arctic ice-wedge polygons are currently a sink for CH4, higher arctic temperatures and anaerobic conditions, a possible result of climate change, could result in this soil becoming a source for CH4 gas flux. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Fate and Transport of Pharmaceutical Compounds Applied to Turf-Covered Soil

    NASA Astrophysics Data System (ADS)

    Young, M.; Green, R. L.; Devitt, D.; McCullough, M.; Wright, L.; Vanderford, B. J.; Snyder, S. A.

    2012-12-01

    In arid and semi-arid regions, the use of treated wastewater for landscape irrigation is becoming common practice and a significant asset to conserve potable water supplies. Public interest and lack of field-scale data are leading to a concern that compounds found in reuse water could persist in the environment and contaminate groundwater. As part of a larger study, 2-yr experiments were conducted in CA and NV, where reuse water was the primary source of non-ambient water input. A total of 13 compounds were studied, all originating in irrigation water applied to soil covered in turf or left bare. The target compounds included atenolol, atorvastatin, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, ibuprofen, meprobamate, naproxen, primidone, sulfamethoxazole, triclosan, and trimethoprim. Analytical protocols for all compounds (detection at ng/L range) were established before the study commenced. The goals of the research were to increase available data on the fate and transport of these target compounds in turfgrass/soil systems, and to use these data to assess long-term risk from using water containing these compounds. Experiments conducted at two scales are discussed here: lysimeter-scale and field-scale. At the lysimeter-scale, 24 drainage lysimeters (120 cm thick) were exposed to treated wastewater as an irrigation source. Lysimeters varied by soil type (two types), soil cover (bare- versus turf-covered) and leaching fraction (5% and 25%). Upper and lower boundary conditions were monitored throughout the study. Water samples were collected periodically after water breakthrough. After the study, soil samples were analyzed for compound mass, allowing compound mass balance and removal to be assessed. At the field-scale, passive drain gages (Decagon Devices) were installed in triplicate in fairways at four operational golf courses, one in NV and three in CA, all with histories of using treated wastewater. The gages measure water fluxes through the 60-cm thick column and store water for subsequent sampling and analysis. Irrigation water was sampled and analyzed for input mass. Using output mass, removal efficiencies could also be assessed. Results of the lysimeter study showed that mass fluxes were reduced to less than 1 g/ha/yr for all compounds (sulfamethoxazole was highest at 0.25 g/ha/yr). Solute breakthrough was concentrated during fall and winter periods when turf was overseeded and sites received winter precipitation. Results of the golf course study were similar, showing scalability. We report more than 100 instances of target compounds detected in water that percolated through the turf and upper 60 cm of soil, but with total mass fluxes of <0.1 g/ha throughout the study. Sulfamethoxazole, meprobamate, and carbamazepine were most commonly found in drainage water, but gemfibrozil, diclofenac, naproxen, and triclosan were also found in more than one sample. The results allowed for a preliminary risk assessment to be conducted. Based on our results, restricting the use of recycled water, based solely on the presence of PPCPs should only be considered at sites where soils are extremely sandy and irrigation regimes are not based on an evapotranspiration feedback approach.

  9. ODM2 (Observation Data Model): The EarthChem Use Case

    NASA Astrophysics Data System (ADS)

    Lehnert, Kerstin; Song, Lulin; Hsu, Leslie; Horsburgh, Jeffrey S.; Aufdenkampe, Anthony K.; Mayorga, Emilio; Tarboton, David; Zaslavsky, Ilya

    2014-05-01

    PetDB is an online data system that was created in the late 1990's to serve online a synthesis of published geochemical and petrological data of igneous and metamorphic rocks. PetDB has today reached a volume of 2.5 million analytical values for nearly 70,000 rock samples. PetDB's data model (Lehnert et al., G-Cubed 2000) was designed to store sample-based observational data generated by the analysis of rocks, together with a wide range of metadata documenting provenance of the samples, analytical procedures, data quality, and data source. Attempts to store additional types of geochemical data such as time-series data of seafloor hydrothermal springs and volcanic gases, depth-series data for marine sediments and soils, and mineral or mineral inclusion data revealed the limitations of the schema: the inability to properly record sample hierarchies (for example, a garnet that is included in a diamond that is included in a xenolith that is included in a kimberlite rock sample), inability to properly store time-series data, inability to accommodate classification schemes other than rock lithologies, deficiencies of identifying and documenting datasets that are not part of publications. In order to overcome these deficiencies, PetDB has been developing a new data schema using the ODM2 information model (ODM=Observation Data Model). The development of ODM2 is a collaborative project that leverages the experience of several existing information representations, including PetDB and EarthChem, and the CUAHSI HIS Observations Data Model (ODM), as well as the general specification for encoding observational data called Observations and Measurements (O&M) to develop a uniform information model that seamlessly manages spatially discrete, feature-based earth observations from environmental samples and sample fractions as well as in-situ sensors, and to test its initial implementation in a variety of user scenarios. The O&M model, adopted as an international standard by the Open Geospatial Consortium, and later by ISO, is the foundation of several domain markup languages such as OGC WaterML 2, used for exchanging hydrologic time series. O&M profiles for samples and sample fractions have not been standardized yet, and there is a significant variety in sample data representations used across agencies and academic projects. The intent of the ODM2 project is to create a unified relational representation for different types of spatially discrete observational data, ensuring that the data can be efficiently stored, transferred, catalogued and queried within a variety of earth science applications. We will report on the initial design and implementation of the new model for PetDB, and results of testing the model against a set of common queries. We have explored several aspects of the model, including: semantic consistency, validation and integrity checking, portability and maintainability, query efficiency, and scalability. The sample datasets from PetDB have been loaded in the initial physical implementation for testing. The results of the experiments point to both benefits and challenges of the initial design, and illustrate the key trade-off between the generality of design, ease of interpretation, and query efficiency, especially as the system needs to scale to millions of records.

  10. Effect of Soil Water Potential on Survival of Meloidogyne javanica in Fallow Soil

    PubMed Central

    Towson, A. J.; Apt, W. J.

    1983-01-01

    A natural infestation of Meloidogyne javanica in an aggregated Oxisol declined at an exponential rate when aliquots of the soil were stored for 72 days in polyethylene bags at various soil water potentials (Ψ). Time periods required for reduction in soil infestations by 50% were 2.7, 4.9, 110, 10, and 2.6 days at Ψ of -0.16, -0.30, -1.1, -15, and -92 bars, respectively. In the wetter soils, at Ψ of -0.16, -0.30, and -1.1 bars, the predominant stage recovered was the second-stage larva. In the drier soils, at Ψ of -15 and -92 bars, both eggs and larvae were recovered with neither stage predominating. Incidence of coiled larvae was inversely related to the Ψ value of the soil, a greater incidence occurring in the drier soils. After 15-32 days, percentages of coiled larvae were 13, 27, 55, 65, and 88% in soil at Ψ of -0.17, -0.60, -1.9, -15, and -82 bars, respectively. PMID:19295774

  11. Production of Carbon Occluded in Phytolith Is Season-Dependent in a Bamboo Forest in Subtropical China

    PubMed Central

    Huang, Zhang-Ting; Jiang, Pei-Kun; Chang, Scott Xiaochuan; Zhang, Yan; Ying, Yu-Qi

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is a stable form of C; when PhytOC is returned to the soil through litterfall it is stored in the soil which can be an effective way for long-term C sequestration. However, few estimates on the rate of PhytOC input to the soil are available. To better understand the seasonal dynamics of PhytOC production and the annual rate of stable C sequestration through PhytOC input, we quantified the monthly litterfall, phytolith and PhytOC return to the soil over a year in a typical Lei bamboo (Phyllostachys praecox) forest in subtropical China. The monthly litterfall ranged between 14.81 and 131.18 g m−2, and the phytolith concentration in the monthly litterfall samples ranged between 47.21 and 101.68 g kg−1 of litter mass, with the PhytOC concentration in the phytolith ranged between 29.4 and 44.9 g kg−1 of phytolith, equivalent to 1.8–3.6 g kg−1 of PhytOC in the litterfall (based on litterfall dry mass). The amount of phytolith input to the soil system was 292.21±69.12 (mean±SD) kg ha−1 yr−1, sequestering 41.45±9.32 kg CO2−e ha−1 yr−1 of C in the studied Lei bamboo forest. This rate of C sequestration through the formation of PhytOC found in this study falls within the range of rates for other grass-type species reported in the literature. We conclude that return of C occluded in phytolith to the soil can be a substantial source of stable soil C and finding means to increase PhytOC storage in the soil should be able to play a significant role in mitigating the rapidly increasing atmospheric CO2 concentration. PMID:25188462

  12. Changes in soil organic carbon fractions following remediation of a degraded coastal floodplain wetland

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; McNaughton, Caitlyn; Pearson, Amy

    2017-04-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise, largely due to drainage of floodplains to decrease water levels, to form coastal acid sulfate soils (CASS). Following oxidation, pH of both soil and water decrease, and acidity and mobilisation of trace metals increases to adversely affect vegetation and adjacent aquatic ecosystems. In extreme cases, vegetation death occurs resulting in the formation of scalds, which are large bare patches. Remediation of these degraded coastal soils generally involves neutralisation of acidity via application of lime and the re-introduction of anoxic conditions by raising water levels. Our understanding of the geochemical changes which occur as a result of remediation is relatively well established. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a degraded and scalded coastal floodplain. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m. The particulate organic C fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production.

  13. Floodplain soil organic carbon storage in the central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2017-12-01

    As rivers transport sediment, organic matter, and large wood, they can deposit those materials in their floodplains, storing carbon. One aspect of the carbon cycle that isn't well understood is how much carbon is stored in rivers and floodplains. There may be more carbon in rivers and floodplains than previously thought. This is important for accounting for all aspects of the carbon cycle, which is the movement of carbon among the land, ocean, and atmosphere. We are quantifying that storage in high latitude floodplains through fieldwork along five rivers in the central Yukon River Basin within the Yukon Flats National Wildlife Refuge in interior Alaska. We find that the geomorphic environment and geomorphic characteristics of rivers influence the spatial distribution of carbon on the landscape, and that floodplains may be disproportionally important for carbon storage compared to other areas. Our study area contains discontinuous permafrost, which is soil that is perennially frozen, and is warming quickly due to climate change, as in other high latitude regions. The large amount of carbon stored in the subsurface and in permafrost in the high latitudes highlights the importance of understanding where carbon is stored within rivers and floodplains in these regions and how long that carbon remains in storage. Our research helps inform how river systems influence the carbon cycle in a region undergoing rapid change.

  14. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  15. Recent change of artic tundra ecosystems from a net carbon dioxide sink to a source

    Treesearch

    Walter C. Oechel; Steven J. Hastings; George Vourlitis; Mitchell Jenkins; George Riechers; Nancy Grulke

    1993-01-01

    Arctic tundra has been a net sink for carbon dioxide during historic and recent geological times1-4, and large amounts of carbon are stored in the soils of northern ecosystems. Many regions of the Arctic are warmer now than they have been in the past5-10, and this warming may cause the soil to change from a carbon dioxide...

  16. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Müller, Moritz; Schulin, Rainer; Leifeld, Jens

    2018-02-01

    Organic soils comprise a large yet fragile carbon (C) store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM), typically increasing in the order forest < grassland < cropland. However, there is also large variation in decomposition due to differences in hydrological conditions, climate and specific management. Here we studied the role of SOM composition on peat decomposability in a variety of differently managed drained organic soils. We collected a total of 560 samples from 21 organic cropland, grassland and forest soils in Switzerland, monitored their CO2 emission rates in lab incubation experiments over 6 months at two temperatures (10 and 20 °C) and related them to various soil characteristics, including bulk density, pH, soil organic carbon (SOC) content and elemental ratios (C / N, H / C and O / C). CO2 release ranged from 6 to 195 mg CO2-C g-1 SOC at 10 °C and from 12 to 423 mg g-1 at 20 °C. This variation occurring under controlled conditions suggests that besides soil water regime, weather and management, SOM composition may be an underestimated factor that determines CO2 fluxes measured in field experiments. However, correlations between the investigated chemical SOM characteristics and CO2 emissions were weak. The latter also did not show a dependence on land-use type, although peat under forest was decomposed the least. High CO2 emissions in some topsoils were probably related to the accrual of labile crop residues. A comparison with published CO2 rates from incubated mineral soils indicated no difference in SOM decomposability between these soil classes, suggesting that accumulation of recent, labile plant materials that presumably account for most of the evolved CO2 is not systematically different between mineral and organic soils. In our data set, temperature sensitivity of decomposition (Q10 on average 2.57 ± 0.05) was the same for all land uses but lowest below 60 cm in croplands and grasslands. This, in turn, indicates a relative accumulation of recalcitrant peat in topsoils.

  17. Clay illuviation provides a long-term sink for C sequestration in subsoils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier P. O.; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Simó, Iolanda; Six, Johan; Creamer, Rachel E.

    2017-04-01

    Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.

  18. Predicting Stored Grain Insect Population Densities Using an Electronic Probe Trap

    USDA-ARS?s Scientific Manuscript database

    Manual sampling of insects in stored grain is a laborious and time consuming process. Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector™) has recently been marketed. We field tested...

  19. Soil carbon stocks in response to management changes due to vinasse application in sugarcane production in southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes Zani, Caio; Simoes Barneze, Arlete; Clemente Cerri, Carlos

    2014-05-01

    Brazilian commodities, such as ethanol, are looking for sustainable production to suit the international market demands. Thus, studies about variations in soil carbon (C) stocks on the ethanol production are essential. Researches in relation of land use change are already been developed; however information about management changes on the sugarcane production is needed. According to Six et al. (2004) changing the management to conservationist practices can provide an organic matter accumulation to the soil and in a long-term, can increase the soil C stocks. The vinasse is a waste product of the sugarcane industry fuel which contains potassium and considerable quantities of other mineral nutrients. It is estimated that for each litre of ethanol produced is generated approximately 13 L of vinasse. Nowadays, almost all vinasse is applied to the soil as fertigation (Soares et al., 2009). The aim of this study was to evaluate the changes in soil C stocks after the management change with or without vinasse application into sugarcane production in southeast Brazil. The soil sampling was carried out in a fuel industry located in São Paulo state, on July 2013. This area was always used a conventional management at least 34 years with application of mineral fertilizer. However, in the mid of 1990, one part of this area started to use vinasse as source of potassium in sugarcane production. In view of this, we conducted the experiment in these two areas of conventional management: i) without vinasse and ii) with vinasse application. Soil samples were collected in the nine trenches in each site: three trenches at 1 m soil depth and six mini-trenches up to 0.3 m. Samples were used to calculate the bulk density using the undisturbed method with a steel cylinder. Total C was measured by dry combustion on Carbon Analyzer - LECO® CN 2000®. The results showed that C content was a decrease with an increase soil depth. Soil C stocks for areas without vinasse application and vinasse application at 1 m depth were 117.23 Mg ha-1 and 126.92 Mg ha-1, and at 0.3 m depth we found 50.34 Mg ha-1 and 55.54 Mg ha-1, respectively. It represented an increase 8.3% and 10.3% in soil C stocks in areas with vinasse application at 1 m and 0.3 m soil depth. This information may be used as a basis for public policies decision which dealing of the land use and global warming. The scientific information obtained in this research will be included in carbon footprint calculation of ethanol production and its use as biofuel. References Ellert B.H., Bettany J.R. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 75:529-538. Six J., Ogle S.M., Breidt F.J., Conant R.T., Mosier A.R., Paustian K. 2004. The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Glob. Chang. Biol. 10:155-160. Soares L.H.B., Alves B.J.R., Urquiaga S., Boddey R.M. 2009. Mitigação das emissões de gases efeito estufa pelo uso de etanol da cana-de-açúcar produzido no Brasil. Embrapa Agrobiologia, Seropédica, RJ. 14p. (Circular Técnica, 27).

  20. Soil carbon stocks in Sarawak, Malaysia.

    PubMed

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Returning property to the tax rolls, a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aveggio, J.

    1995-09-01

    A major deterrent to the redevelopment of intercity areas is the high cost associated with mitigating residual soil and groundwater contamination resulting from years of industrial activities. If the properties remain undeveloped, their revenue to the local taxing authority remains at minimal levels. It is not unreasonable to assume that a redeveloped property would increase 10 to 100 times in assessed value. In California, the local taxing authority bases its tax assessment as a percentage of the assessed value. Therefore, it is in the taxing authority`s best interest to encourage and provide incentives for redevelopment. The City of Eureka andmore » Price-Costco combined to remediate a contaminated property, build a Costco store, provide jobs, and return a property to the tax rolls. The effort was accomplished through the negotiation of site specific cleanup levels for petroleum hydrocarbons and remediation of approximately 16,000 tons of soil by thermal desorption. Site specific cleanup levels were established by using a leaching procedure to establish the contaminant concentration in soil that would impact groundwater, and through an economic analysis of cleanup level versus benefit. Petroleum contaminated soil was excavated from 11 sources areas and transported to an on-site thermal desorber for treatment. The soil contained the full spectrum of petroleum hydrocarbons, from gasoline to heavy oils. The thermal desorber was able to consistently treat this wide variety of contamination to nondetectable levels. Following treatment, the soil was backfilled and compacted into the excavations. The entire cleanup was complete in approximately 2 months and was performed concurrently with the construction of the store.« less

  2. How does land use link terrestrial and aquatic carbon in western North America?: Implications from an agricultural case study in central Montana

    NASA Astrophysics Data System (ADS)

    Ewing, S. A.; Sigler, W. A.

    2014-12-01

    The fate of soil organic matter with expanding human land use is of increasing concern for planetary health and ecological sustainability. In North American grasslands, cultivation has commonly resulted in loss of stored soil organic carbon to dissolved phases in groundwater and surface water, as well as to atmospheric CO2 via decomposition. In addition, cultivation has released nutrients stored in organic matter and facilitated water movement through soils to benefit crops, increasing groundwater recharge rates. This has altered groundwater chemistry both by changing biogeochemistry of the terrestrial-aquatic interface and by increasing addition of nutrients, herbicides, and pesticides to these systems. In this presentation, we consider the effects of food production practices on terrestrial-aquatic carbon linkages in former grassland ecosystems of western North America. Our data from an agricultural area in central Montana begin to reveal how elevated nitrate and pesticide levels in groundwater on an isolated landform reflect transformation over the last century of a temperate grassland ecosystem for wheat and cattle production. Rates and pathways of carbon and nitrogen loss are inferred from the concentration and isotopic character of both water and carbon and nitrogen over three years in soils, shallow groundwater, emergent springs and surface waters. In this semi-arid, non-irrigated context, the fate of soil organic matter is linked with redistribution of pedogenic carbonate as well as other soil and rock derived solutes. We consider implications for future trends in dissolved carbon and nitrogen in surface waters in the region.

  3. Characterization of Water and CO2 Adsorption by Stores 3A Desiccant Samples Using Thermal Gravimetric Analysis and Fourier Transform Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIVERA, DION A.; ALAM, M. KATHLEEN; MARTIN, LAURA

    2003-02-01

    Two lots of manufactured Type 3a zeolite samples were compared by TGA/IR analysis. The first lot, obtained from Davidson Chemical, a commercial vendor, was characterized during the previous study cycle for its water and water-plus-CO{sub 2} uptake in order to determine whether CO{sub 2} uptake prevented water adsorption by the zeolite. It was determined that CO{sub 2} did not hamper water adsorption using the Davidson zeolite. CO{sub 2} was found on the zeolite surface at dewpoints below -40 C, however it was found to be reversibly adsorbed. During the course of the previous studies, chemical analyses revealed that the Davidsonmore » 3a zeolite contained calcium in significant quantities, along with the traditional counterions potassium and sodium. Chemical analysis of a Type 3a zeolite sample retrieved from Kansas City (heretofore referred to as the ''Stores 3a'' sample) indicated that the Stores sample was a more traditional Type 3a zeolite, containing no calcium. TGA/IR studies this year focused on obtaining CO{sub 2} and water absorbance data from the Stores 3a zeolite. Within the Stores 3a sample, CO{sub 2} was found to be reversibly absorbed within the sample, but only at and below -60 C with 5% CO{sub 2} loading. The amount of CO{sub 2} observed eluting from the Stores zeolite at this condition was similar to what was observed from the Davidson zeolite sample but with a greater uncertainty in the measured value. The results of the Stores 3a studies are summarized within this report.« less

  4. Climate legacies drive global soil carbon stocks in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Eldridge, David J.; Maestre, Fernando T.; Karunaratne, Senani B.; Trivedi, Pankaj; Reich, Peter B.; Singh, Brajesh K.

    2017-01-01

    Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios. PMID:28439540

  5. Predicting recovery from acid rain using the micro-spatial heterogeneity of soil columns downhill the infiltration zone of beech stemflow: introduction of a hypothesis.

    PubMed

    Berger, Torsten W; Muras, Alexander

    Release of stored sulfur may delay the recovery of soil pH from Acid Rain. It is hypothesized that analyzing the micro-spatial heterogeneity of soil columns downhill of a beech stem enables predictions of soil recovery as a function of historic acid loads and time. We demonstrated in a very simplified approach, how these two different factors may be untangled from each other using synthetic data. Thereafter, we evaluated the stated hypothesis based upon chemical soil data with increasing distance from the stem of beech trees. It is predicted that the top soil will recover from acid deposition, as already recorded in the infiltration zone of stemflow near the base of the stem. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed.

  6. Investing in soils as an infrastructure to maintain and enhance food water and carbon services

    NASA Astrophysics Data System (ADS)

    Davies, Jessica

    2017-04-01

    Soils are a life support system for global society and our planet. In addition to providing the vast majority of our food; soils regulate water quality and quantity reducing the risk of floods, droughts and pollution; and as the largest store of carbon in the earth system they are critical to climate change. By providing these multiple essential services, soils act a natural form of infrastructure that is critical to supporting both rural and urban communities and economies. Can natural infrastructure and natural capital concepts be used to motivate and enable investment and regulation of soils for purposes such as soil carbon sequestration? What scientific knowledge and tools would we need to support soil infrastructure decision making - in policy arenas and elsewhere? This poster will present progress from a new research project supported by the UK research council (EP/N030532/1) that addresses these questions.

  7. A Soil Service Index: Peatland soils as a case study for quantifying the value, vulnerability, and status of soils

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Harden, J. W.; Hugelius, G.

    2017-12-01

    What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis; they also support much biodiversity, including iconic species such as the orangutan in Indonesia and the guanaco in Chile. While these ecosystem services have been recognized in many sectors and a voluntary standard for a peatland carbon market is emerging, peatland services have not been systematically quantified, or accounted for, at the global level.

  8. Carbon Flux and Isotopic Character of Soil and Soil Gas in Stabilized and Active Thaw Slumps in Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Jensen, A.; Crosby, B. T.; Mora, C. I.; Lohse, K. A.

    2012-12-01

    Permafrost soils store nearly half the world's global carbon. Warming of arctic landscape results in permafrost thaw which causes ground subsidence or thermokarst. On hillslopes, these features rapidly and dramatically alter soil structure, temperature, and moisture, as well as the content and quality of soil organic matter. These changes alter both the rate and mechanism of carbon cycling in permafrost soils, making frozen soils available to both anaerobic and aerobic decomposition. In order to improve our predictive capabilities, we use a chronosequence thaw slumps to examine how fluxes from active and stabilized features differ. Our study site is along the Selawik River in northwest Alaska where a retrogressive thaw slump initiated in the spring of 2004. It has grown to a surface area of 50,000 m2. Products of the erosion are stored on the floor of the feature, trapped on a fan or flushed into the Selawik River. North of slump is undisturbed tundra and adjacent to the west is a slump feature that stabilized and is now covered with a second generation of spruce trees. In this 2 year study, we use measurements of CO2 efflux, δC13 in soil profiles and CO2 and CH4 abundance to constrain the response of belowground carbon emissions. We also focused on constraining which environmental factors govern C emissions within each of the above ecosystems. To this end, we measured soil temperature, and moisture, abundance and quality of soil organic carbon (SOC), water content, and bulk carbon compositions. Preliminary data from the summer of 2011 suggest that vegetation composition and soil temperature exert the strong control on CO2 efflux. The floor of the active slump and fan are bare mineral soils and are generally 10 to 15°C warmer than the tundra and stabilized slump. Consistently decreasing δC13 soil gas profiles in the recovered slump confirm that this region is a well-drained soil dominated by C3 vegetation. The δC13 gas profiles for the tundra, active slump floor, and active fan tend to be more variable as a consequence of less consistently structured soils. This could be due to either the predominance of older carbon being recycled within these profiles or a skewed balance between anaerobic vs. aerobic respiration.

  9. Assessing SOC labile fractions through respiration test, density-size fractionation and thermal analysis - A comparison of methods

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Cécillon, Lauric; Chenu, Claire; Baudin, François; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    Soil organic matter (SOM) is the biggest terrestrial carbon reservoir, storing 3 to 4 times more carbon than the atmosphere. However, despite its major importance for climate regulation SOM dynamics remains insufficiently understood. For instance, there is still no widely accepted method to assess SOM lability. Soil respiration tests and particulate organic matter (POM) obtained by different fractionation schemes have been used for decades and are now considered as classical estimates of very labile and labile soil organic carbon (SOC), respectively. But the pertinence of these methods to characterize SOM turnover can be questioned. Moreover, they are very time-consuming and their reproducibility might be an issue. Alternate ways of determining the labile SOC component are thus well-needed. Thermal analyses have been used to characterize SOM among which Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of SOM biogeochemical stability (Gregorich et al., 2015; Barré et al., 2016). Using a large set of samples of French forest soils representing contrasted pedoclimatic conditions, including deep samples (up to 1 m depth), we compared different techniques used for SOM lability assessment. We explored whether results from soil respiration test (10-week laboratory incubations), SOM size-density fractionation and RE6 thermal analysis were comparable and how they were correlated. A set of 222 (respiration test and RE6), 103 (SOM fractionation and RE6) and 93 (respiration test, SOM fractionation and RE6) forest soils samples were respectively analyzed and compared. The comparison of the three methods (n = 93) using a principal component analysis separated samples from the surface (0-10 cm) and deep (40-80 cm) layers, highlighting a clear effect of depth on the short-term persistence of SOC. A correlation analysis demonstrated that, for these samples, the two classical methods of labile SOC determination (respiration and SOM fractionation) were only weakly positively correlated (Spearman's ρ = 0.26, n = 93). Similarly, soil respiration had only a weak negative correlation (Spearman's ρ = -0.24, n = 93; ρ = -0.33, n = 222) with the RE6 parameter T50 CH pyrolysis. This parameter, previously used as an indicator of labile SOC (Gregorich et al., 2015), represents the temperature at which 50% of the OM was pyrolyzed to effluents (mainly hydrocarbons) during the pyrolysis phase of RE6. Conversely, POC content (% of total SOC) showed a higher negative correlation with T50 CH pyrolysis (ρ = -0.66, n = 93; ρ = -0.65, n = 103) and was positively and negatively correlated to the hydrogen index, HI (mg HC/g TOC; ρ = 0.56/0.53) and the oxygen index, OI (mg CO2/g TOC; ρ = -0.63/-0.62) respectively. Our results showed that RE6 results are consistent with respiration and fractionation results: SOC with higher respiration rate and higher POC content burns at a lower temperature. RE6 thermal analysis could therefore be viewed as a useful fast and cost effective alternative to more time-consuming methods used in SOM fractions determination. Barré, P. et al. Biogeochemistry 2016, 1-12, 130. Gregorich, E.G. et al. Soil Biol. Biochem. 2015, 182-191, 91.

  10. Exfiltrometer apparatus and method for measuring unsaturated hydrologic properties in soil

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.; Schafer, Annette L.

    2006-01-17

    Exfiltrometer apparatus includes a container for holding soil. A sample container for holding sample soil is positionable with respect to the container so that the sample soil contained in the sample container is in communication with soil contained in the container. A first tensiometer operatively associated with the sample container senses a surface water potential at about a surface of the sample soil contained in the sample container. A second tensiometer operatively associated with the sample container senses a first subsurface water potential below the surface of the sample soil. A water content sensor operatively associated with the sample container senses a water content in the sample soil. A water supply supplies water to the sample soil. A data logger operatively connected to the first and second tensiometers, and to the water content sensor receives and processes data provided by the first and second tensiometers and by the water content sensor.

  11. The Study Of Soil And Agrochemical Features Of Zonal Soils Of Coal Mining Enterprises In Kemerovo Region

    NASA Astrophysics Data System (ADS)

    Yakovchenko, M. A.; Kosolapova, A. A.; Ermolaev, V. A.

    2017-01-01

    The paper represents the results of the study of soil and agrochemical features of zonal soils: the grain-size composition, the content of humus, phosphorus and potassium, and heavy metals, the reaction of soil solution of the territory of the open-pit coal mine No12 of Kemerovo region in the areas of the working enterprise. The species composition of the lignose and herbaceous vegetation of the undisturbed territories has been studied. It has been revealed that the fertile soil layer of the studied areas of the open-pit coal mine is characterized as fertile but can’t be removed and stored because the surface of the whole area under study is forest-covered very much, rumpled, there are gullies and a lot of wind-fallen trees.

  12. Soils of Agricultural Terraces with Retaining Walls in the Mountains of Dagestan

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Korobov, D. S.; Idrisov, I. A.; Kalinin, P. I.

    2018-01-01

    Soil-archeological studies of agricultural terraces with retaining walls in the area of construction of the Gotsatlinskaya Hydroelectric Power Station in Khunzakh district of the Republic of Dagestan have been performed. The morphogenetic and chemical properties of the anthropogenic soils (Anthrosols) in different parts of the terrace complex are analyzed. It is argued that slope terracing in the mountains ensures the development of thicker soil profiles with pronounced genetic horizons. The soils of agricultural terraces store important information of the paleoenvironmental history and land use. A characteristic feature of the Anthrosols of agricultural terraces is a relatively even distribution of gravelly material of up to 5 cm in diameter in the plow layer. The soils of terraces are characterized by the high variability in their properties within the entire terrace complex and within the particular terraces.

  13. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels

    PubMed Central

    Zhu, Qi; Gooneratne, Ravi; Hussain, Malik Altaf

    2017-01-01

    Listeria monocytogenes, a member of the genus Listeria, is widely distributed in agricultural environments, such as soil, manure and water. This organism is a recognized foodborne pathogenic bacterium that causes many diseases, from mild gastroenteritis to severe blood and/or central nervous system infections, as well as abortion in pregnant women. Generally, processed ready-to-eat and cold-stored meat and dairy products are considered high-risk foods for L. monocytogenes infections that cause human illness (listeriosis). However, recently, several listeriosis outbreaks have been linked to fresh produce contamination around the world. Additionally, many studies have detected L. monocytogenes in fresh produce samples and even in some minimally processed vegetables. Thus L. monocytogenes may contaminate fresh produce if present in the growing environment (soil and water). Prevention of biofilm formation is an important control measure to reduce the prevalence and survival of L. monocytogenes in growing environments and on fresh produce. This article specifically focuses on fresh produce–associated listeriosis outbreaks, prevalence in growing environments, contamination levels of fresh produce, and associated fresh produce safety challenges. PMID:28282938

  14. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more sensitive to nutrient addition, and carbon mineralization in this layer is likely limited by carbon availability. Thus, any changes in environment conditions (global warming, nitrogen deposition, precipitation pattern change etc.) that affect the distribution of fresh carbon in soil profiles could then stimulate the release of deep soil carbon.

  15. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    USGS Publications Warehouse

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and several unidentifiable compounds) could account for approximately 44% of the variation in mineralization across all sites under ideal temperature and moisture conditions. Based on our results, changes in temperature and moisture likely have similar, additive effects on in situ soil organic matter (SOM) decomposition across a wide range of black spruce forest systems, while variations in SOM chemistry can lead to significant differences in decomposition rates within and among forest sites. ?? 2007 Springer Science+Business Media B.V.

  16. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.

    PubMed

    Livesley, S J; Adams, M A; Grierson, P F

    2007-01-01

    Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.

  17. [Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem].

    PubMed

    Ma, Wei-Wei; Wang, Hui; Huang, Rong; Li, Jun-Zhen; Li, De-Yu

    2014-03-01

    The profile distribution and accumulation characteristics of organic carbon of four typical marshes (herbaceous peat, marsh wetland, mountain wetland, subalpine meadow) were studied in Gahai Wetlands of Gannan in July 2011. The results showed that the soil bulk densities of the four typical marshes ranged from 0.22 to 1.29 g x cm(-3). The content of soil organic carbon in the herbaceous peat was higher than in other types, with its average content of organic carbon (286. 80 g x kg(-1)) being about 2.91, 4.99, 7.31 times as much as that of the marsh wetland, mountain wetland and subalpine meadow, respectively. The average organic carbon densities were in order of herbaceous peat > subalpine meadow > marsh wetland > mountain wetland, with the highest in the 0-10 cm layer. The change of organic carbon density along the soil profile was basically in accordance with the organic carbon content in the four typical marshes, but fluctuated with soil depth. There were obviously two carbon storage layers (0-10 and 20-40 cm, respectively) in the four typical marshes. The amounts of organic carbon stored in the 0-60 cm layer of the four typical marshes were 369.46, 278.83, 276.16, 292.23 t x hm(-2), respectively. The total amount of organic carbon stored in the 0-60 cm of the four typical marshes was about 9.50 x 10(6) t.

  18. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics

    USGS Publications Warehouse

    Zhuang, Q.; McGuire, A.D.; Melillo, J.M.; Clein, Joy S.; Dargaville, R.J.; Kicklighter, D.W.; Myneni, Ranga B.; Dong, J.; Romanovsky, V.E.; Harden, J.; Hobbie, J.E.

    2003-01-01

    There is substantial evidence that soil thermal dynamics are changing in terrestrial ecosystems of the Northern Hemisphere and that these dynamics have implications for the exchange of carbon between terrestrial ecosystems and the atmosphere. To date, large-scale biogeochemical models have been slow to incorporate the effects of soil thermal dynamics on processes that affect carbon exchange with the atmosphere. In this study we incorporated a soil thermal module (STM), appropriate to both permafrost and non-permafrost soils, into a large-scale ecosystem model, version 5.0 of the Terrestrial Ecosystem Model (TEM). We then compared observed regional and seasonal patterns of atmospheric CO2 to simulations of carbon dynamics for terrestrial ecosystems north of 30°N between TEM 5.0 and an earlier version of TEM (version 4.2) that lacked a STM. The timing of the draw-down of atmospheric CO2 at the start of the growing season and the degree of draw-down during the growing season were substantially improved by the consideration of soil thermal dynamics. Both versions of TEM indicate that climate variability and change promoted the loss of carbon from temperate ecosystems during the first half of the 20th century, and promoted carbon storage during the second half of the century. The results of the simulations by TEM suggest that land-use change in temperate latitudes (30–60°N) plays a stronger role than climate change in driving trends for increased uptake of carbon in extratropical terrestrial ecosystems (30–90°N) during recent decades. In the 1980s the TEM 5.0 simulation estimated that extratropical terrestrial ecosystems stored 0.55 Pg C yr−1, with 0.24 Pg C yr−1 in North America and 0.31 Pg C yr−1 in northern Eurasia. From 1990 through 1995 the model simulated that these ecosystems stored 0.90 Pg C yr−1, with 0.27 Pg C yr−1 stored in North America and 0.63 Pg C yr−1 stored in northern Eurasia. Thus, in comparison to the 1980s, simulated net carbon storage in the 1990s was enhanced by an additional 0.35 Pg C yr−1 in extratropical terrestrial ecosystems, with most of the additional storage in northern Eurasia. The carbon storage simulated by TEM 5.0 in the 1980s and 1990s was lower than estimates based on other methodologies, including estimates by atmospheric inversion models and remote sensing and inventory analyses. This suggests that other issues besides the role of soil thermal dynamics may be responsible, in part, for the temporal and spatial dynamics of carbon storage of extratropical terrestrial ecosystems. In conclusion, the consideration of soil thermal dynamics and terrestrial cryospheric processes in modeling the global carbon cycle has helped to reduce biases in the simulation of the seasonality of carbon dynamics of extratropical terrestrial ecosystems. This progress should lead to an enhanced ability to clarify the role of other issues that influence carbon dynamics in terrestrial regions that experience seasonal freezing and thawing of soil.

  19. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  20. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  1. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    NASA Astrophysics Data System (ADS)

    Khomo, Lesego; Trumbore, Susan; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    Organic matter-mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40-70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9-47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon-mineral interactions.

  2. Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, W. Joseph; Albright, Dr. Bill; Benson, Dr. Craig

    2014-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasingmore » evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope contour, bringing soil up into the rock riprap layer, and loosening and blending compacted fine soil with coarse sand and gravel layers. Objectives of these manipulations include (1) enhancing root growth, (2) increasing seed-soil contact, (3) catching runoff water for plant germination and growth, (4) increasing soil water storage capacity, and (5) enhancing deep drying by disrupting the capillary barrier at the interface of the bedding and protection layers.« less

  3. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  4. Contemporary Mobilization of Legacy Pb Stores by DOM in a Boreal Peatland.

    PubMed

    Jeremiason, Jeff D; Baumann, Erin I; Sebestyen, Stephen D; Agather, Alison M; Seelen, Emily A; Carlson-Stehlin, Benjamin J; Funke, Meghan M; Cotner, James B

    2018-03-20

    We examined how different landscape areas in a catchment containing a northern ombrotrophic peatland and upland mineral soils responded to dramatic decreases in atmospheric deposition of lead (Pb). Pb concentrations in the outflow stream from the peatland measured from 2009-2015 indicated continued mobilization and export of Pb derived from historic inputs to the bog. In contrast, Pb concentrations in surface peat and runoff from upland mineral soils have declined in response to reductions in atmospheric deposition. Relative to the early 1980s, Pb concentrations in the streamflow decreased only ∼50%, while Pb in surface peat and upland subsurface runoff decreased by more than 90%. Water level fluctuations in the slow-accumulating peat have allowed dissolved organic matter (DOM) to continue mobilizing Pb deposited in the peatland decades earlier. Strong correlations between dissolved organic carbon (DOC) and Pb concentrations in outflow from the peatland and in bog porewaters demonstrate Pb mobility related to DOM production. Peat stores of Pb in 2016 were less than or equal to those reported in the early 1980s despite the dry mass inventory increasing by 60-80%. Much of the loss in Pb stored in peat can be accounted for by stream runoff from the peatland.

  5. Edaphostat: interactive ecological analysis of soil organism occurrences and preferences from the Edaphobase data warehouse

    PubMed Central

    Scholz-Starke, Björn; Burkhardt, Ulrich; Lesch, Stephan; Rick, Sebastian; Russell, David; Roß-Nickoll, Martina; Ottermanns, Richard

    2017-01-01

    Abstract The Edaphostat web application allows interactive and dynamic analyses of soil organism data stored in the Edaphobase data warehouse. It is part of the Edaphobase web application and can be accessed by any modern browser. The tool combines data from different sources (publications, field studies and museum collections) and allows species preferences along various environmental gradients (i.e. C/N ratio and pH) and classification systems (habitat type and soil type) to be analyzed. Database URL: Edaphostat is part of the Edaphobase Web Application available at https://portal.edaphobase.org PMID:29220469

  6. The Fall River Long-Term Site Productivity study in coastal Washington: site characteristics, methods, and biomass and carbon and nitrogen stores before and after harvest.

    Treesearch

    Adrian Ares; Thomas A. Terry; Kathryn B. Piatek; Robert B. Harrison; Richard E. Miller; Barry L. Flaming; ChristopherW Licata; Brian D. Strahm; Constance A. Harrington; Rodney Meade; Harry W. Anderson; Leslie C. Brodie; Joseph M. Kraft

    2007-01-01

    The Fall River research site in coastal Washington is an affiliate installation of the North American Long-Term Soil Productivity (LTSP) network, which constitutes one of the world’s largest coordinated research programs addressing forest management impacts on sustained productivity. Overall goals of the Fall River study are to assess effects of biomass removals, soil...

  7. Sampling stored product insect pests: a comparison of four statistical sampling models for probability of pest detection

    USDA-ARS?s Scientific Manuscript database

    Statistically robust sampling strategies form an integral component of grain storage and handling activities throughout the world. Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult due to species biology and behavioral characteristics. ...

  8. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    NASA Astrophysics Data System (ADS)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  9. Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Lorenz, K.

    2015-12-01

    Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.

  10. Quality changes of chicken meat jerky with different sweeteners during storage.

    PubMed

    Wongwiwat, Pirinya; Wattanachant, Saowakon

    2015-12-01

    Chicken meat jerky with high sugar content is popular intermediate-moisture meat product in Asia. Different types of sugar, sucrose and mixed sugar (sucrose: fructose: sorbitol 70: 15: 15), were evaluated to improve the quality of product. Quality changes of chicken meat jerky stored in vacuum and aerobic (33 and 75 %relative humidity, %RH) conditions were studied for suitable condition to extend shelf-life of product. The samples were determined the physical and chemical characteristics, as well as sensory evaluation during storage at room temperature. The moisture content and water activity (aw) of samples stored in 33 %RH conditions was continuously diminished during storage that related to harder texture and unacceptable quality in sensory evaluation. All samples stored in vacuum and 75 %RH condition demonstrated the lower shear force value than that stored in 33%RH condition (p < 0.05). Samples stored in vacuum condition had the lowest lipid oxidation (p < 0.05.) which corresponding to the highest scores in less rancidity and overall acceptance attributes. All samples stored in vacuum condition also had the highest acceptability in all sensory attributes (taste, rancidity, color and overall acceptance) followed by 75 %RH storage condition (p < 0.05). Samples prepared with mixed sugar could improve color and retard rancidity in chicken jerky meat product. Sample prepared with mixed sugar kept in vacuum condition had the lowest lipid oxidation and highest sensory score in overall acceptance attributes along the extended storage.

  11. The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures.

    PubMed

    Kung, Hsien-Feng; Lee, Yi-Chen; Lin, Chiang-Wei; Huang, Yu-Ru; Cheng, Chao-An; Lin, Chia-Min; Tsai, Yung-Hsiang

    2017-10-01

    The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the histamine related quality of milkfish sticks stored at different temperatures (-20°C, 4°C, 15°C, and 25°C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile basic nitrogen (TVBN), and histamine contents increased as storage time increased when the PEP and VP samples were stored at 25°C. At below 15°C, the APC, TVBN, pH, and histamine levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at -20°C for 2 months were thawed and stored at 25°C, VP retarded the increase of histamine in milkfish sticks as compared to PEP. In summary, this result suggested the milkfish sticks packed with VP and stored below 4°C could prevent deterioration of product quality and extend shelf-life. Copyright © 2017. Published by Elsevier B.V.

  12. Evaluation of Two Matrices for Long-Term, Ambient Storage of Bacterial DNA.

    PubMed

    Miernyk, Karen M; DeByle, Carolynn K; Rudolph, Karen M

    2017-12-01

    Culture-independent molecular analyses allow researchers to identify diverse microorganisms. This approach requires microbiological DNA repositories. The standard for DNA storage is liquid nitrogen or ultralow freezers. These use large amounts of space, are costly to operate, and could fail. Room temperature DNA storage is a viable alternative. In this study, we investigated storage of bacterial DNA using two ambient storage matrices, Biomatrica DNAstable ® Plus and GenTegra ® DNA. We created crude and clean DNA extracts from five Streptococcus pneumoniae isolates. Extracts were stored at -30°C (our usual DNA storage temperature), 25°C (within the range of temperatures recommended for the products), and 50°C (to simulate longer storage time). Samples were stored at -30°C with no product and dried at 25°C and 50°C with no product, in Biomatrica DNAstable Plus or GenTegra DNA. We analyzed the samples after 0, 1, 2, 4, 8, 16, 32, and 64 weeks using the Nanodrop 1000 to determine the amount of DNA in each aliquot and by real-time PCR for the S. pneumoniae genes lytA and psaA. Using a 50°C storage temperature, we simulated 362 weeks of 25°C storage. The average amount of DNA in aliquots stored with a stabilizing matrix was 103%-116% of the original amount added to the tubes. This is similar to samples stored at -30°C (average 102%-121%). With one exception, samples stored with a stabilizing matrix had no change in lytA or psaA cycle threshold (Ct) value over time (Ct range ≤2.9), similar to samples stored at -30°C (Ct range ≤3.0). Samples stored at 25°C with no stabilizing matrix had Ct ranges of 2.2-5.1. DNAstable Plus and GenTegra DNA can protect dried bacterial DNA samples stored at room temperature with similar effectiveness as at -30°C. It is not effective to store bacterial DNA at room temperature without a stabilizing matrix.

  13. 43 CFR 3262.11 - What environmental requirements must I meet when drilling a well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... quality of surface and subsurface water, air, natural resources, wildlife, soil, vegetation, and natural... degradation of the lands. (b) You must remove or, with BLM's approval, properly store all equipment and...

  14. Permafrost slowly exhales methane

    NASA Astrophysics Data System (ADS)

    Herndon, Elizabeth M.

    2018-04-01

    Permafrost soils store vast quantities of organic matter that are vulnerable to decomposition under a warming climate. Recent research finds that methane release from thawing permafrost may outpace carbon dioxide as a major contributor to global warming over the next century.

  15. Microbial respiration and DOC composition in leachates from Holocene and Pleistocene soils from the Kolyma River basin in Eastern Siberia

    NASA Astrophysics Data System (ADS)

    Lewis, K.; Schade, J. D.; Sobczak, W. V.; Holmes, R. M.; Zimov, N.; Bulygina, E. B.; Chandra, S.; Bunn, A. G.; Russell-Roy, L.; Seybold, E. C.

    2010-12-01

    Permafrost is generally considered a long-term sink for carbon that remains locked away from the global carbon cycle. Anthropogenic climate change is likely to lead to thawing of permafrost and deepening of the soil active layer. Consequently, this carbon sink may become unlocked and available for bacterial decomposition, returning stored carbon to the active carbon cycle, with potentially severe consequences for atmospheric CO2 concentrations. The Kolyma watershed, in the Eastern Siberian Arctic, is underlain by continuous permafrost, often referred to as Yedoma, which provides a unique environment to study potential consequences of permafrost thaw for carbon dynamics in aquatic and terrestrial ecosystems. In order to predict the potential consequences of a major carbon input from thawing permafrost, we assessed the relative bioavailabilty of soil carbon by measuring rates of microbial consumption and changes in DOM composition in soil leachates. At two spatially distinct sample sites, soil was collected throughout the profile from the active layer and from permafrost, including soils from both Holocene and Pleistocene-era permafrost. To evaluate the rates of carbon processing and potential linkages to N and P cycles, we conducted a series of bottle experiments in which we measured biological oxygen demand as a proxy for carbon processing and assessed changes in the composition of dissolved organic carbon using spectral analyses. Experiments were conducted on leachate collected from each soil type. Each experiment included treatments in which leachates were enriched with nitrogen and phosphorus to determine whether carbon processing in soils was nutrient limited. We found substantial variation in oxygen consumption, with Yedoma soils generally exhibiting higher rates than Holocene soils, suggesting higher concentrations of labile carbon. We found no evidence of nutrient limitation of carbon processing in any soil leachates. Spectral slope analysis suggests that carbon processing increased the proportion of heavy aromatic carbon compounds in all but one soil type, suggesting that small molecular weight compounds are consumed first. The exception was the most active Yedoma soil, which showed the opposite effect, indicating an increase in the proportion of small molecules due to the presence of a different, and perhaps more digestible, form of carbon. These results suggest strong spatial variation in the amount and form of available carbon, as well as qualitative differences in the dynamics of carbon processing.

  16. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium-Contaminated Soil Remediation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson-Nichols, M.J.

    2000-12-07

    The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use onmore » Johnston Island. The clean storage pile currently consists of approximately 120,000 m{sup 3} of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain with 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity. In previous IV tasks, ORNL has (1) evaluated and tested the soil sorter system software and hardware and (2) evaluated the quality control (QC) program used at the soil sorter plant. The IV has found that the soil sorter decontamination was effective and significantly reduced plutonium contamination in the soil processed at the JA site. The Field Command Defense Threat Reduction Agency currently plans to re-use soil from the clean pile as a cover to remaining contamination in portions of the radiological control area. Therefore, ORNL was requested to provide an IV. The survey team collected samples from 103 random locations within the top 4 ft of the clean storage pile. The samples were analyzed in the on-site radioanalytical counting laboratory with an American Nuclear Systems (ANS) field instrument used for the detection of low-energy radiation. Nine results exceeded the JA soil screening guideline for distributed contamination of 13.5 pCi/g for total TRUs, ranging from 13.7 to 125.9 pCi/g. Because of these results, the goal of showing with 95% confidence that 97% of the processed soil is less than or equal to 13.5 pCi/g-TRU activity cannot be met. The value of 13.5 pCi/g represents the 88th percentile rather than the 95th percentile in a nonparametric one-sided upper 90% confidence limit. Therefore, at the 95% confidence level, 88% of the clean pile is projected to be below the 13.5-pCi/g goal. The Multi-Agency Radiation Survey and Site Investigation Manual recommends use of a nonparametric statistical ''Sign Test'' to demonstrate compliance with release criteria for TRU. Although this survey was not designed to use the sign test, the data herein would demonstrate that the median (50%) of the clean storage pile is below the l3.5-pCi/g derived concentration guideline level. In other words, with the caveat that additional investigation of elevated concentrations was not performed, the data pass the sign test at the 13.5-pCi/g level. Additionally, the lateral extent of the pile was gridded, and 10% of the grid blocks was scanned with field instruments for the detection of low-energy radiation coupled to ratemeter/scalers to screen for the presence of hot particles. No hot particles were detected in the top 1 cm of the grid blocks surveyed.« less

  17. Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30 years

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; McBratney, Alex B.; Hong, Suk Young; Sulaeman, Yiyi; Kim, Myung Sook; Zhang, Yong Seon; Kim, Yi Hyun; Han, Kyung Hwa

    2012-09-01

    The soil system represents the dominant terrestrial reservoir of carbon in the biosphere. Deforestation, poor land management, and excessive cropping lead to a decrease in soil carbon stocks, but intensive cropping can reverse this trend. We discuss long-term soil organic carbon data from two major rice-growing areas: Java (Indonesia) and South Korea. Soil organic carbon content in the top 15 cm for both countries has increased in recent decades. In South Korea, the top 15 cm of soils store about 31 Tg (1012 g) of carbon (C) with a sequestration rate of 0.3 Tg C per year. In Java, the agricultural topsoils accumulated more than 1.7 Tg C per year over the period 1990-2010. We attribute the increase in measured SOC mainly to increases in above- and below- ground biomass due to fertilization. Good agronomic practices can maintain and increase soil carbon, which ensures soil security to produce food and fiber.

  18. Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.

    2017-12-01

    Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.

  19. Visualizing Soil Landscapes on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Schulze, Darrell; Lindbo, David

    2016-04-01

    The Integrating Spatial Educational Experiences (Isee) project utilizes the most detailed US soil survey data to create thematic maps of soil properties that are then combined with a highly optimized hillshade basemap for display. The Isee app, currently available for the iPad platform from the Apple App Store, allows the cached maps to be zoomed and panned quickly to any location down to a scale of 1:18,000. Maps currently available for the states of Indiana, Illinois, Kentucky, Ohio, Texas, West Virginia, and Wisconsin include, Dominant Soil Parent Materials, Natural Soil Drainage Classes, Limiting Layers, Surface Soil Colors, and Acid Subsoils. Other thematic maps will be added in the future. The ability to zoom, pan, and change maps quickly allows the user to see and understand soil landscape relationships that are not often apparent using static maps, while the ability to access the maps conveniently in the field allows the user to see how soil landscape features on the maps appear in the field.

  20. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    PubMed

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change. © 2012 Blackwell Publishing Ltd.

  1. Agricultural practices that store organic carbon in soils: is it only a matter of inputs ?

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Cardinael, Rémi; Autret, Bénédicte; Chevallier, Tiphaine; Girardin, Cyril; Mary, Bruno

    2016-04-01

    Increasing the world soils carbon stocks by a factor of 4 per mil annually would compensate the annual net increase of CO2 concentration in the atmosphere. This statement is the core of an initiative launched by the French government at the recent COP21, followed by many countries and international bodies, which attracts political attention to the storage potential of C in soils. Compared to forest and pasture soils, agricultural soils have a higher C storage potential, because they are often characterized by low C contents, and increasing their C content is associated with benefits in terms of soil properties and ecosystem services. Here we quantified, under temperate conditions, the additional C storage related to the implementation of two set of practices that are recognized to be in the framework of agroecology: conservation tillage on the one hand and agroforestry on the other hand. These studies were based on long-term experiments, a 16-years comparison on cropping systems on luvisols in the Paris area and a 18-year-old silvoarable agroforestry trial, on fluvisols in southern France, the main crops being cereals in both cases. C stocks were measured on an equivalent soil mass basis. Both systems allowed for a net storage of C in soils, which are, for the equivalent of the 0-30 cm tilled layer, of 0.55 ± 0.16 t ha- 1 yr- 1 for conservation agriculture (i.e. no tillage with permanent soil coverage with an associated plant, fescue or alfalfa) and of 0.25 ± 0.03 t ha-1 yr-1 for the agroforestry system. These results are in line with estimates proposed in a recent French national assessment concerning the potential of agricultural practices to reduce greenhouse gas emissions. Compared to recent literature, they further show that practices that increase C inputs to soil through additional biomass production would be more effective to store C in soil (tree rows, cover crops in conservation agriculture) than practices, such as no-tillage, that are assumed to reduce soil organic matter mineralisation rates. This questions our understanding of the stabilization processes of organic matter in soils and especially that of physical protection. The conditions and scale, both spatial and temporal, of physical protection of organic matter are discussed in light of recent literature.

  2. Assessing the spatial impact of climate on wheat productivity and the potential value of climate forecasts at a regional level

    NASA Astrophysics Data System (ADS)

    Wang, Enli; Xu, J.; Jiang, Q.; Austin, J.

    2009-03-01

    Quantification of the spatial impact of climate on crop productivity and the potential value of seasonal climate forecasts can effectively assist the strategic planning of crop layout and help to understand to what extent climate risk can be managed through responsive management strategies at a regional level. A simulation study was carried out to assess the climate impact on the performance of a dryland wheat-fallow system and the potential value of seasonal climate forecasts in nitrogen management in the Murray-Darling Basin (MDB) of Australia. Daily climate data (1889-2002) from 57 stations were used with the agricultural systems simulator (APSIM) to simulate wheat productivity and nitrogen requirement as affected by climate. On a good soil, simulated grain yield ranged from <2 t/ha in west inland to >7 t/ha in the east border regions. Optimal nitrogen rates ranged from <60 kgN/ha/yr to >200 kgN/ha/yr. Simulated gross margin was in the range of -20/ha to 700/ha, increasing eastwards. Wheat yield was closely related to rainfall in the growing season and the stored soil moisture at sowing time. The impact of stored soil moisture increased from southwest to northeast. Simulated annual deep drainage ranged from zero in western inland to >200 mm in the east. Nitrogen management, optimised based on ‘perfect’ knowledge of daily weather in the coming season, could add value of 26˜79/ha compared to management optimised based on historical climate, with the maximum occurring in central to western part of MDB. It would also reduce the nitrogen application by 5˜25 kgN/ha in the main cropping areas. Comparison of simulation results with the current land use mapping in MDB revealed that the western boundary of the current cropping zone approximated the isolines of 160 mm of growing season rainfall, 2.5t/ha of wheat grain yield, and 150/ha of gross margin in QLD and NSW. In VIC and SA, the 160-mm isohyets corresponded relatively lower simulated yield due to less stored soil water. Impacts of other factors like soil types were also discussed.

  3. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used. Additionally, neutron transport modeling, using the extended version of the Monte Carlo N-Particle Transport Code, was conducted. The responses of the reference condition, different amounts of biomass, soil moisture and canopy interception on the cosmic-ray neutron intensity were simulated and compared to the measurements.

  4. [Influencing factors of soil organic carbon in deeper soil layers at a small watershed on tableland region of the Loess Plateau, China].

    PubMed

    Che, Sheng-guo; Guo, Sheng-li

    2010-05-01

    Analyzing and estimating soil organic carbon (SOC) storage and changes in deep layers under different land uses and landforms may play a pivotal role in comprehending the balance and cycle mechanisms of C cycling, and comprehending the capacity of C sequestration in the terrestrial ecosystem. The study mainly emphasized on effects of landforms and land uses on vertical distribution characteristic of SOC sampled to a depth of 200 cm at the Wangdonggou watershed on the tableland region of Loess Plateau, China. For the top soil of 0-20 cm, the order of SOC contents was gully (10.0 g x kg(-1)) > tableland (7.8 g x kg(-1)) and slopeland (8.2 g x kg(-1)). For the subsoil, SOC in tableland was higher than that in gully and slopeland. For slopeland and gully, SOC decreased with increasing depth, while for tableland, SOC decreased initially, then increased, lastly decreased. Meanwhile, for tableland, the order of SOC appeared approximately manmade grassland > cropland > orchard with the effecting depth of land uses for 40 cm, and for slopeland the order was native grassland (4.3 g x kg(-1)) > manmade woodland (3.8 g x kg(-1)) > manmade grassland (3.3 g x kg(-1)) > orchard (3.3 g x kg(-1)) with the depth for 100 cm, while for gully, there was no significantly difference (p > 0.05) among different land uses. SOC storage in the profile of 20-200 cm accounted for 67.6% sampled to a depth of 100 cm, while for 100-200cm, SOC storage accounted 37.3% in 0-200 cm equaled to 63.8% of the SOC storage in 0-100 cm. The results revealed that landforms and land uses highly significantly (p < 0.05) affected the vertical distribution of SOC at a small watershed scale and considerable amounts of C were stored at deeper depths.

  5. Flow Cytometric Human Leukocyte Antigen-B27 Typing with Stored Samples for Batch Testing

    PubMed Central

    Seo, Bo Young

    2013-01-01

    Background Flow cytometry (FC) HLA-B27 typing is still used extensively for the diagnosis of spondyloarthropathies. If patient blood samples are stored for a prolonged duration, this testing can be performed in a batch manner, and in-house cellular controls could easily be procured. In this study, we investigated various methods of storing patient blood samples. Methods We compared four storage methods: three methods of analyzing lymphocytes (whole blood stored at room temperature, frozen mononuclear cells, and frozen white blood cells [WBCs] after lysing red blood cells [RBCs]), and one method using frozen platelets (FPLT). We used three ratios associated with mean fluorescence intensities (MFI) for HLAB27 assignment: the B27 MFI ratio (sample/control) for HLA-B27 fluorescein-5-isothiocyanate (FITC); the B7 MFI ratio for HLA-B7 phycoerythrin (PE); and the ratio of these two ratios, B7/B27 ratio. Results Comparing the B27 MFI ratios of each storage method for the HLA-B27+ samples and the B7/B27 ratios for the HLA-B7+ samples revealed that FPLT was the best of the four methods. FPLT had a sensitivity of 100% and a specificity of 99.3% for HLA-B27 assignment in DNA-typed samples (N=164) when the two criteria, namely, B27 MFI ratio >4.0 and B7/B27 ratio <1.5, were used. Conclusions The FPLT method was found to offer a simple, economical, and accurate method of FC HLA-B27 typing by using stored patient samples. If stored samples are used, this method has the potential to replace the standard FC typing method when used in combination with a complementary DNA-based method. PMID:23667843

  6. Effects of processing delay, temperature, and transport tube type on results of quantitative bacterial culture of canine urine.

    PubMed

    Patterson, Carly A; Bishop, Micah A; Pack, Julie D; Cook, Audrey K; Lawhon, Sara D

    2016-01-15

    To determine the impact of processing delay, temperature, and transport tube type on results of quantitative bacterial culture (QBC) of canine urine. Diagnostic test evaluation. 60 mL of pooled urine from 4 dogs, divided into six 10-mL aliquots. Urine aliquots were spiked with bacteria from 1 of 6 independent Escherichia coli cultures to achieve a target bacterial concentration of 10(5) CFUs/mL. One milliliter from each aliquot was transferred into 5 silicone-coated clot tubes (SCTs) and 5 urine transport tubes (UTTs). Samples were stored at 4°C (39°F) and 25°C (77°F) for 0, 8, and 24 hours, and then standard QBCs were performed. Median bacterial concentration for urine samples stored in a UTT for 24 hours at 4°C was lower than that for samples stored in an SCT under the same conditions. Conversely, a substantial decrease in median bacterial concentration was identified for samples stored for 24 hours in an SCT at 25°C, compared with the median concentration for samples stored in a UTT under the same conditions. Median bacterial concentration in samples stored in an SCT at 25°C for 24 hours (275 CFUs/mL) was less than the cutoff typically used to define clinically important bacteriuria by use of urine samples obtained via cystocentesis (ie, > 1,000 CFUs/mL). Canine urine samples submitted for immediate QBC should be transported in plain sterile tubes such as SCTs. When prolonged (24-hour) storage at room temperature is anticipated, urine samples should be transported in UTTs.

  7. 2,3-Diphosphoglycerate Concentrations in Autologous Salvaged Versus Stored Red Blood Cells and in Surgical Patients After Transfusion.

    PubMed

    Scott, Andrew V; Nagababu, Enika; Johnson, Daniel J; Kebaish, Khaled M; Lipsitz, Joshua A; Dwyer, Ian M; Zuckerberg, Gabriel S; Barodka, Viachaslau M; Berkowitz, Dan E; Frank, Steven M

    2016-03-01

    Stored red blood cells (RBCs) are deficient in 2,3-diphosphoglycerate (2,3-DPG), but it is unclear how autologous salvaged blood (ASB) compares with stored blood and how rapidly 2,3-DPG levels return to normal after transfusion. Therefore, we compared levels of 2,3-DPG in stored versus ASB RBCs and in patients' blood after transfusion. Twenty-four patients undergoing multilevel spine fusion surgery were enrolled. We measured 2,3-DPG and the oxyhemoglobin dissociation curve (P50) in samples taken from the ASB and stored blood bags before transfusion and in blood samples drawn from patients before and after transfusion. The mean storage duration for stored RBCs was 24 ± 8 days. Compared with fresh RBCs, stored RBCs had decreased 2,3-DPG levels (by approximately 90%; P < 0.0001) and a decreased P50 (by approximately 30%; P < 0.0001). However, ASB RBCs did not exhibit these changes. The mean 2,3-DPG concentration decreased by approximately 20% (P < 0.05) in postoperative blood sampled from patients who received 1 to 3 stored RBC units and by approximately 30% (P < 0.01) in those who received ≥4 stored RBC units. 2,3-DPG was unchanged in patients who received no stored blood or ASB alone. After surgery, 2,3-DPG levels recovered gradually over 3 postoperative days in patients who received stored RBCs. Stored RBCs, but not ASB RBCs, have decreased levels of 2,3-DPG and a left-shift in the oxyhemoglobin dissociation curve. Postoperatively, 2,3-DPG levels remain below preoperative baseline levels for up to 3 postoperative days in patients who receive stored RBCs but are unchanged in those who receive only ASB RBCs.

  8. 2,3-Diphosphoglycerate Concentrations in Autologous Salvaged Versus Stored Red Blood Cells and in Surgical Patients After Transfusion

    PubMed Central

    Scott, Andrew V.; Nagababu, Enika; Johnson, Daniel J.; Kebaish, Khaled M.; Lipsitz, Joshua A.; Dwyer, Ian M.; Zuckerberg, Gabriel S.; Barodka, Viachaslau M.; Berkowitz, Dan E.; Frank, Steven M.

    2016-01-01

    Background Stored red blood cells (RBCs) are deficient in 2,3-diphosphoglycerate (2,3-DPG), but it is unclear how autologous salvaged blood (ASB) compares to stored blood, and how rapidly 2,3-DPG levels return to normal after transfusion. Therefore, we compared levels of 2,3-DPG in stored versus ASB RBCs, and in patients’ blood following transfusion. Methods Twenty-four patients undergoing multilevel spine fusion surgery were enrolled. We measured 2,3-DPG and the oxyhemoglobin dissociation curve (P50) in samples taken from the ASB and stored blood-bags before transfusion, and in blood samples drawn from patients before and after transfusion. Results The mean storage duration for stored RBCs was 24 ± 8 days. Compared with fresh RBCs, stored RBCs had decreased 2,3-DPG levels (by ≈ 90%; P<0.0001), and a decreased P50 (by ≈ 30%; P<0.0001). However, ASB RBCs did not exhibit these changes. The mean 2,3-DPG concentration decreased by ≈ 20% (P<0.05) in postoperative blood sampled from patients who received 1 – 3 stored RBC units, and by ≈ 30% (P<0.01) in those who received ≥4 stored RBC units. 2,3-DPG was unchanged in patients who received no stored blood or ASB alone. After surgery, 2,3-DPG levels recovered gradually over three postoperative days in patients who received stored RBCs. Conclusions Stored RBCs, but not ASB RBCs, have decreased levels of 2,3-DPG and a left shift in the oxyhemoglobin dissociation curve. Postoperatively, 2,3-DPG levels remain below preoperative baseline levels for up to three postoperative days in patients who receive stored RBCs, but are unchanged in those who receive only ASB RBCs. PMID:26891388

  9. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE PAGES

    Drewniak, B. A.; Mishra, U.; Song, J.; ...

    2014-09-22

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO 2, depending on land management practices. The Community Land Model (CLM) provides a useful tool to explore how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continentalmore » United States over approximately a 170 year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual plots growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  10. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions

    PubMed Central

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-01-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098

  11. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions.

    PubMed

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-02-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. "pre-event" water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as "isostats," not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Hillslope connectivity is controlled by small storage changes in soil unitsDifferent catchment source waters mix in large riparian wetland storageIsotopes show riparian wetlands set the catchment transit time distribution.

  12. Modeling the impact of agricultural land use and management on US carbon budgets

    DOE PAGES

    Drewniak, B. A.; Mishra, U.; Song, J.; ...

    2015-04-09

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO₂, depending on land management practices. The Community Land Model (CLM) provides a useful tool for exploring how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental Unitedmore » States over approximately a 170-year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot) growing maize and soybean lost up to 65% of the carbon stored compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5 and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.« less

  13. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    NASA Astrophysics Data System (ADS)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal dynamics of CO2 production are the same for both soils and associated with seasonal changes in climatic parameters (temperature and moisture). CO2 efflux in the annual cycle correlates well with the soil temperature at a depth of 10 cm (r2 = 0.7). In the dry summer months, efflux largely depends on soil moisture. Soil CO2 efflux decreased by 1.5 - 2 times during the dry season.

  14. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    USGS Publications Warehouse

    Baughman, Carson; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  15. Runoff Generation Mechanisms and Mean Transit Time in a High-Elevation Tropical Ecosystem

    NASA Astrophysics Data System (ADS)

    Mosquera, G.

    2015-12-01

    Understanding runoff generation processes in tropical mountainous regions remains poorly understood, particularly in ecosystems above the tree line. Here, we provide insights on the process dominating the ecohydrology of the tropical alpine biome (i.e., páramo) of the Zhurucay River Ecohydrological Observatory. The study site is located in south Ecuador between 3400-3900 m in elevation. We used a nested monitoring system with eight catchments (20-753 ha) to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water at low tension were collected for three years (May 2011-May2014) and analyzed for water stable isotopes. We conducted an isotopic characterization of rainfall, streamflow, and soil waters to investigate runoff generation. These data were also integrated into a lumped model to estimate the mean transit time (MTT) and to investigate landscape features that control its variability. The isotopic characterization evidenced that the water stored in the shallow organic horizon of the Histosol soils (Andean wetlands) located near the streams is the major contributor of water to the streams year-round, whereas the water draining through the hillslope soils, the Andosols, regulates discharge by recharging the wetlands at the valley bottoms. The MTT evaluation indicated relatively short MTTs (0.15-0.73 yr) linked to short subsurface flow paths of water. We also found evidence for topographic controls on the MTT variability. These results reveal that: 1) the ecohydrology of this ecosystem is dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Andean wetlands and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.

  16. Near-surface soil carbon, carbon/nitrogen ratio,and tree species are tightly linked across northeastern United States watersheds

    Treesearch

    Donald S. Ross; Scott W. Bailey; Gregory B. Lawrence; James B. Shanley; Guinevere Fredriksen; Austin E. Jamison; Patricia A. Brousseau

    2011-01-01

    Forest soils hold large stores of carbon, with the highest concentrations in the surface horizons. In these horizons, both the total C mass and the C/N ratio may respond more rapidly to changes in tree species than lower horizons. We measured C and C/N ratios in the Oa or A horizon from 12 watersheds at 8 established forested research sites in the northeastern United...

  17. Adaptive Caching Concept

    NASA Image and Video Library

    2015-06-10

    This diagram, superimposed on a photo of Martian landscape, illustrates a concept called "adaptive caching," which is in development for NASA's 2020 Mars rover mission. In addition to the investigations that the Mars 2020 rover will conduct on Mars, the rover will collect carefully selected samples of Mars rock and soil and cache them to be available for possible return to Earth if a Mars sample-return mission is scheduled and flown. Each sample will be stored in a sealed tube. Adaptive caching would result in a set of samples, up to the maximum number of tubes carried on the rover, being placed on the surface at the discretion of the mission operators. The tubes holding the collected samples would not go into a surrounding container. In this illustration, green dots indicate "regions of interest," where samples might be collected. The green diamond indicates one region of interest serving as the depot for the cache. The green X at upper right represents the landing site. The solid black line indicates the rover's route during its prime mission, and the dashed black line indicates its route during an extension of the mission. The base image is a portion of the "Everest Panorama" taken by the panoramic camera on NASA's Mars Exploration Rover Spirit at the top of Husband Hill in 2005. http://photojournal.jpl.nasa.gov/catalog/PIA19150

  18. Carbon storage in US wetlands | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This Nature Communications article is a product of legacy work that contributes to Safe and Sustainable Water Resources research on technical support and research on the enhancement of Office of Water’s National Aquatic Resource Surveys (NARS) (SSWR 3.01A). The research is also potentially relevant to SHC and ACE research program questions. The research was conducted under USEPA cooperative agreement number 83422601 with Michigan State University in association with Kenyon College. USEPA 2011 National Wetland Condition Assessment data used for this research are publically available from https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys. ***This is article is clearing for completion ONLY*** The research and conclusions in this article highlight the role of wetland soils in storing carbon and the implications of disturbance to wetlands for climate change. Specifically, we provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales using field data from the 2011 National Wetland Condition Assessment (NWCA). This research also describes how soil carbon stocks vary by wetland type and soil depth, and by anthropogenic disturbance to the wetland. We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fol

  19. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

    PubMed

    Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D

    2015-03-01

    Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  20. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for carbon stocks in mangroves and salt marshes, likely due to Tampa Bay's location near the northern limit of mangrove habitat, recent habitat conversion from salt marshes to mangroves, young age of the restored wetlands, and proximity to intense coastal development. Vulnerability of these blue carbon habitats to climate change and sea-level rise will also be discussed.

  1. Soil Organic Matter Responses to Chronic Nitrogen Additions in a Temperate Forest (Invited)

    NASA Astrophysics Data System (ADS)

    Frey, S. D.; Nadelhoffer, K.; Bowden, R.; Brzostek, E. R.; Caldwell, B. A.; Crow, S. E.; Finzi, A. C.; Goodale, C. L.; Grandy, S.; Lajtha, K.; Ollinger, S. V.; Plante, A. F.

    2010-12-01

    The Chronic Nitrogen Addition Experiment at Harvard Forest in central Massacusetts, USA was established in 1988 to investigate the effects of increasing anthropogenic atmospheric N deposition on forests in the eastern United States. Located in an old red pine plantation and a mixed hardwood forest, the treated plots have received 50 and 150 kg N/ha/yr, as ammonium sulfate, in six equal monthly applications during the growing season each year since the start of the experiment. Additionally, the control and low N treatments were given a single pulse label of 15N-nitrate or 15N-ammonium in 1991 and 1992. Regular measurements have been made over the past 20 years to assess woody biomass production and mortality, foliar chemistry, litter fall, and soil N dynamics. Less frequent measurements of soil C pools, soil respiration, fine root dynamics, and microbial biomass and community structure have been made. For the 20th anniversary, an intensive sampling campaign was carried out in fall 2008 with a focus on evaluating how the long-term N additions have impacted ecosystem C storage and N dynamics. Our primary objective was to assess the amount of C and N stored in wood, foliage, litter, roots, and soil (to a depth of ~50 cm). We also wanted to examine the fate of N by comparing patterns of 15N recovery to those observed previously. An additional objective was to further examine how chronic N additions impact microbial biomass, activity and community structure. Results indicate that chronic N additions over the past 20 years have increased forest floor mass and soil organic matter across the soil profile; decreased microbial biomass, especially the fungal component; and altered microbial community composition (i.e., significantly lower fungal:bacterial biomass ratios in the N amended plots). N15 tracer recoveries in soils and forest floors were much higher than in tree biomass, ranging from 49 to 101% of additions across forest types and N addition rates. Stoichiometric analyses of these recoveries suggest that N additions are contributing to soil C accumulation to a greater extent than to biomass accumulation in these forests.

  2. Microbial Community Dynamics from Permafrost Across the Pleistocene-Holocene Boundary and Response to Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Hammad, A.; Mahony, M.; Froese, D. G.; Lanoil, B. D.

    2014-12-01

    Earth is currently undergoing rapid warming similar to that observed about 10,000 years ago at the end of the Pleistocene. We know a considerable amount about the adaptations and extinctions of mammals and plants at the Pleistocene/Holocene (P/H) boundary, but relatively little about changes at the microbial level. Due to permafrost soils' freezing anoxic conditions, they act as microbial diversity archives allowing us to determine how microbial communities adapted to the abrupt warming at the end of P. Since microbial community composition only helps differentiate viable and extant microorganisms in frozen permafrost, microbial activity in thawing permafrost must be investigated to provide a clear understanding of microbial response to climate change. Current increased temperatures will result in warming and potential thaw of permafrost and release of stored organic carbon, freeing it for microbial utilization; turning permafrost into a carbon source. Studying permafrost viable microbial communities' diversity and activity will provide a better understanding of how these microorganisms respond to soil edaphic variability due to climate change across the P/H boundary, providing insight into the changes that the soil community is currently undergoing in this modern era of rapid climate change. Modern soil, H and P permafrost cores were collected from Lucky Lady II site outside Dawson City, Yukon. 16S rRNA high throughput sequencing of permafrost DNA showed the same trends for total and viable community richness and diversity with both decreasing with permafrost depth and only the richness increasing in mid and early P. The modern, H and P soils had 50.9, 33.9, and 27.3% unique viable species and only 14% of the total number of viable species were shared by all soils. Gas flux measurements of thawed permafrost showed metabolic activity in modern and permafrost soils, aerobic CH­­4 consumption in modern, some H and P soils, and anaerobic CH­­4 production in one H sample. Soil chemistry analysis showed that older permafrost, P, had higher pH, lower total nitrogen, ammonium, and organic carbon than younger permafrost, H.

  3. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  4. The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes

    NASA Astrophysics Data System (ADS)

    Kulawardhana, Ranjani W.; Feagin, Rusty A.; Popescu, Sorin C.; Boutton, Thomas W.; Yeager, Kevin M.; Bianchi, Thomas S.

    2015-03-01

    Spartina alterniflora salt marshes are among the most productive ecosystems on earth, and represent a substantial global carbon sink. Understanding the spatial heterogeneity in the distribution of both above- and below-ground carbon in these wetland ecosystems is especially important considering their potential in carbon sequestration projects, as well as for conservation efforts in the context of a changing climate and rising sea-level. Through the use of extensive field sampling and remote sensing data (Light Detection and Ranging - LiDAR, and aerial images), we sought to map and explain how vegetation biomass and soil carbon are related to elevation and relative sea-level change in a S. alterniflora dominated salt marsh on Galveston Island, Texas. The specific objectives of this study were to: 1) understand the relationship between elevation and the distribution of salt marsh vegetation percent cover, plant height, plant density, above-and below-ground biomass, and carbon, and 2) evaluate the temporal changes in relative sea-level history, vegetation transitions, and resulting changes in the patterns of soil carbon distribution. Our results indicated a clear zonation of terrain and vegetation characteristics (i.e., height, cover and biomass). In the soil profile, carbon concentrations and bulk densities showed significant and abrupt change at a depth of ∼10-15 cm. This apparent transition in the soil characteristics coincided temporally with a transformation of the land cover, as driven by a rapid increase in relative sea-level around this time at the sample locations. The amounts of soil carbon stored in recently established S. alterniflora intertidal marshes were significantly lower than those that have remained in situ for a longer period of time. Thus, in order to quantify and predict carbon in coastal wetlands, and also to understand the heterogeneity in the spatial distribution of carbon stocks, it is essential to understand not only the elevation, the relative sea-level rise rate, and the vertical accretion rate - but also the history of land cover change and vegetation transition.

  5. Impact of managed moorland burning on DOC concentrations in soil solutions and stream waters

    NASA Astrophysics Data System (ADS)

    Palmer, Sheila; Wearing, Catherine; Johnson, Kerrylyn; Holden, Joseph; Brown, Lee

    2013-04-01

    In the UK uplands, prescribed burning of moorland vegetation is a common practice to maintain suitable habitats for game birds. Many of these landscapes are in catchments covered by significant deposits of blanket peat (typically one metre or more in depth). There is growing interest in the effect of land management on the stability of these peatland carbon stores, and their contribution to dissolved and particulate organic carbon in surface waters (DOC and POC, respectively) and subsequent effects on stream biogeochemistry and ecology. Yet there are surprisingly few published catchment-scale studies on the effect of moorland burning on DOC and POC. As part of the EMBER project, stream chemistry data were collected approximately monthly in ten upland blanket peat catchments in the UK, five of which acted as controls and were not subject to burning. The other five catchments were subject to a history of prescribed burning, typically in small patches (300-900 m2) in rotations of 8-25 years. Soil solution DOC was also monitored at four depths at two intensively studied sites (one regularly burned and one control). At the two intensive sites, soil solution DOC was considerably higher at the burned site, particularly in surface solutions where concentrations in excess of 100 mg/L were recorded on several occasions (median 37 mg/L over 18 months). The high soil solution DOC concentrations at the burned site occurred in the most recently burned plots (less than 2 years prior to start of sampling) and the lowest DOC concentrations were observed in plots burned 15-25 years previously. On average, median stream DOC and POC concentrations were approximately 43% and 35% higher respectively in burned catchments relative to control catchments. All streams exhibited peak DOC in late summer/early autumn with higher peak DOC concentrations in burned catchments (20-66 mg/L) compared to control catchments (18-54 mg/L). During winter months, DOC concentrations were low in control catchments (typically less than 15 mg/L) but were highly variable in burned catchments (9-40 mg/L), implying some instability of peat carbon stores and/or fluctuation in source. The results offer strong evidence for an impact of burning on the delivery of DOC to streams, possibly through increased surface run-off from bare or partially vegetated patches.

  6. CanSIS Regional Soils Data in Vector Format

    NASA Technical Reports Server (NTRS)

    Monette, Bryan; Knapp, David; Hall, Forrest G. (Editor)

    2000-01-01

    This data set is the original vector data set received from Canada Soil Information System (CanSIS). The data include the provinces of Saskatchewan and Manitoba. Attribute tables provide the various soil data for the polygons; there is one attribute table for Saskatchewan and one for Manitoba. The data are stored in ARC/INFO export format files. Based on agreements made with Agriculture Canada, these data are available only to individuals and groups that have an official relationship with the BOREAS project. These data are not included on the BOReal Ecosystem-Atmosphere Study (BOREAS) CD-ROM set. A raster version of this data set titled 'BOREAS Regional Soils Data in Raster Format and AEAC Projection' is publicly available and is included on the BOREAS CD-ROM set.

  7. Do European Standard Disinfectant tests truly simulate in-use microbial and organic soiling conditions on food preparation surfaces?

    PubMed

    Meyer, B; Morin, V N; Rödger, H-J; Holah, J; Bird, C

    2010-04-01

    The results from European standard disinfectant tests are used as one basis to approve the use of disinfectants in Europe. The design of these laboratory-based tests should thus simulate as closely as possible the practical conditions and challenges that the disinfectants would encounter in use. No evidence is available that the organic and microbial loading in these tests simulates actual levels in the food service sector. Total organic carbon (TOC) and total viable count (TVC) were determined on 17 visibly clean and 45 visibly dirty surfaces in two restaurants and the food preparation surfaces of a large retail store. These values were compared to reference values recovered from surfaces soiled with the organic and microbial loading, following the standard conditions of the European Surface Test for bactericidal efficacy, EN 13697. The TOC reference values for clean and dirty conditions were higher than the data from practice, but cannot be regarded as statistical outliers. This was considered as a conservative assessment; however, as additional nine TOC samples from visibly dirty surfaces were discarded from the analysis, as their loading made them impossible to process. Similarly, the recovery of test organisms from surfaces contaminated according to EN 13697 was higher than the TVC from visibly dirty surfaces in practice; though they could not be regarded as statistical outliers of the whole data field. No correlation was found between TVC and TOC in the sampled data, which re-emphasizes the potential presence of micro-organisms on visibly clean surfaces and thus the need for the same degree of disinfection as visibly dirty surfaces. The organic soil and the microbial burden used in EN disinfectant standards represent a realistic worst-case scenario for disinfectants used in the food service and food-processing areas.

  8. Short communication: Effect of storage temperature on the solubility of milk protein concentrate 80 (MPC80) treated with NaCl or KCl.

    PubMed

    Sikand, V; Tong, P S; Walker, J; Wang, T; Rodriguez-Saona, L E

    2016-03-01

    A previous study in our laboratory showed that addition of 150 mM NaCl or KCl into diafiltration water improved the solubility of freshly made milk protein concentrate 80 (MPC80). In the present study, the objectives were (1) to evaluate the solubility of NaCl- or KCl-treated MPC80 samples kept at varying temperatures and then stored for extensive periods at room temperature (21 °C ± 1 °C); and (2) to determine if MPC80 samples stored at different temperatures and protein conformation can be grouped or categorized together. Freshly manufactured MPC80 samples were untreated (control), processed with NaCl, or processed with KCl. One set of sample bags was stored at 4 °C; second and third sets of bags were kept at 25 °C and 55 °C for 1 mo (31 d) and then transferred to room temperature (21 °C ± 1 °C) storage conditions for 1 yr (365 d). Samples were tested for nitrogen solubility index (NSI) and for protein changes by Fourier-transform infrared (FTIR) spectroscopy. Analysis of variance results for NSI showed 2 significantly different groupings of MPC80 samples. The more soluble group contained samples treated with NaCl or KCl and stored at either 4 °C or 25 °C. These samples had mean NSI >97.5%. The less soluble groups contained all control samples, regardless of storage temperature, and NaCl- or KCl-treated samples stored at 55 °C. These samples had mean NSI from 39.5 to 58%. Within each of these groups (more soluble and less soluble), no significant differences in solubility were detected. Pattern recognition analysis by soft independent modeling of class analogy (SIMCA) was used to assess protein changes during storage by monitoring the amide I and amide II (1,700(-1) to 1,300 cm(-1)) regions. Dominant bands were observed at 1,385 cm(-1) for control, 1,551 cm(-1) for KCl-treated samples, and 1,694 cm(-1) for NaCl-treated samples. Moreover, SIMCA clustered the MPC80 samples stored at 4 °C separately from samples stored at 25 °C and 55 °C. This study demonstrates that (1) the addition of NaCl or KCl during MPC80 manufacture reduces the deleterious changes in solubility upon prolonged storage at 4 °C or 25 °C, and (2) the solubility of samples stored at 55 °C is poor irrespective of salt treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Energy: the Sun and economics. [Adverse effects of commercial fertilizer overuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, A.H.

    The Second Law of Thermodynamics is used to explain the scattering and dispersement of energy in the universe and the reordering of this energy through photosynthesis and the food chain. Plants are able to store energy in concentrated forms. Some of this stored energy is further concentrated when the plants are eaten by animals and some is scattered as waste. The accumulated soil and humus is considered an energy ''savings account'' along with fossil fuels. Using the bank account analogy, the earth can be said to be going bankrupt if it is consuming more energy than it is receiving. Themore » overuse of fossil fuels is more readily grasped than the idea that we are using up our humus. Farmers, who use fertilizers to replace the humus used up by growing plants, have shifted from the use of manure and natural humus to chemical fertilizers and pesticides (by-products of fossil fuels). This trend has left the soil humus-poor and the balance of nature disturbed. As the soil is depleted, food quality deteriorates in spite of increased fertilizers. More-efficient use of sewage as a fertilizer is recommended to reverse this process. (DCK)« less

  10. Analyzing legacy U.S. Geological Survey geochemical databases using GIS: applications for a national mineral resource assessment

    USGS Publications Warehouse

    Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew

    2012-01-01

    This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.

  11. Isotopic characterization as a screening tool in authentication of organic produce commercially available in western North America.

    PubMed

    Verenitch, Sergei; Mazumder, Asit

    2015-01-01

    The use of nitrogen stable isotopes to discriminate between conventionally and organically grown crops has been further developed in this study. Soil and irrigation water from different regions, as well as nitrogen fertilizers used, have been examined in detail to determine their effects on nitrogen isotope composition of spinach, lettuce, broccoli and tomatoes. Over 1000 samples of various types of organically and conventionally grown produce of known origin, along with the samples of nitrogen fertilizers used for their growth, have been analysed in order to assemble the datasets of crop/fertilizer correlations. The results demonstrate that the developed approach can be used as a valuable component in the verification of agricultural practices for more than 25 different types of commercially grown green produce, either organic or conventional. Over a period of two years, various organic and non-organic greens, from different stores in Seattle (WA, USA) and Victoria (BC, Canada), were collected and analysed using this methodology with the objective of determining any pattern of misrepresentation.

  12. Factors influencing the rates, processes and magnitude of accumulation of carbon in desert soils

    NASA Technical Reports Server (NTRS)

    Mcfadden, Leslie D.

    1994-01-01

    This report summarizes research funded through NASA's Soil Landscape Climate Program which includes studies of the systematics of carbon storage and flux in the terrestrial environment, specifically terrestrial soils. Efforts focussed on the nature of carbon behavior in arid environments, where the majority of the carbon is present as inorganic carbon stored as pedogenic carbonate in desert calcic soils. Studies were supported of soils in two areas of western North America's major deserts: the Mojave Desert and the Chihuahuan Desert. Part 1 of this report summarizes the results of research conducted in the area of the Providence Mountains, California in the eastern Mojave Desert. Part 2 of this report summarizes the results of research in the Sevilleta Wildlife Refuge in central New Mexico, one of the sites of the UMN Biology Department's Long Term Ecological Research.

  13. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges

    USGS Publications Warehouse

    Mishra, U.; Jastrow, J.D.; Matamala, R.; Hugelius, G.; Koven, C.D.; Harden, Jennifer W.; Ping, S.L.; Michaelson, G.J.; Fan, Z.; Miller, R.M.; McGuire, A.D.; Tarnocai, C.; Kuhry, P.; Riley, W.J.; Schaefer, K.; Schuur, E.A.G.; Jorgenson, M.T.; Hinzman, L.D.

    2013-01-01

    The vast amount of organic carbon (OC) stored in soils of the northern circumpolar permafrost region is a potentially vulnerable component of the global carbon cycle. However, estimates of the quantity, decomposability, and combustibility of OC contained in permafrost-region soils remain highly uncertain, thereby limiting our ability to predict the release of greenhouse gases due to permafrost thawing. Substantial differences exist between empirical and modeling estimates of the quantity and distribution of permafrost-region soil OC, which contribute to large uncertainties in predictions of carbon–climate feedbacks under future warming. Here, we identify research challenges that constrain current assessments of the distribution and potential decomposability of soil OC stocks in the northern permafrost region and suggest priorities for future empirical and modeling studies to address these challenges.

  14. Effect of land use change on the carbon cycle in Amazon soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  15. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska

    USGS Publications Warehouse

    Neff, J.C.; Harden, J.W.; Gleixner, G.

    2005-01-01

    Boreal ecosystems contain a substantial fraction of the earth's soil carbon stores and are prone to frequent and severe wildfires. In this study, we examine changes in element and organic matter stocks due to a 1999 wildfire in Alaska. One year after the wildfire, burned soils contained between 1071 and 1420 g/m2 less carbon than unburned soils. Burned soils had lower nitrogen than unburned soils, higher calcium, and nearly unchanged potassium, magnesium, and phosphorus stocks. Burned surface soils tended to have higher concentrations of noncombustible elements such as calcium, potassium, magnesium, and phosphorus compared with unburned soils. Combustion losses of carbon were mostly limited to surface dead moss and fibric horizons, with no change in the underlying mineral horizons. Burning caused significant changes in soil organic matter structure, with a 12% higher ratio of carbon to combustible organic matter in surface burned horizons compared with unburned horizons. Pyrolysis gas chromatography - mass spectroscopy also shows preferential volatilization of polysaccharide-derived organic matter and enrichment of lignin-and lipid-derived compounds in surface soils. The chemistry of deeper soil layers in burned and unburned sites was similar, suggesting that immediate fire impacts were restricted to the surface soil horizon. ?? 2005 NRC.

  16. Boron in Pariette Wetland Sediments, Aquatic Vegetation & Benthic Organisms

    NASA Astrophysics Data System (ADS)

    Vasudeva, P.; Jones, C. P.; Powelson, D.; Jacobson, A. R.

    2015-12-01

    The Pariette Wetlands are comprised of 20 ponds located in Utah's Uintah Basin. Boron concentration in the Pariette Wetlands have been observed to exceed the total maximum daily limit of 750 µg L-1. Considering water flow in and out of the wetlands, boron is accumulating within the wetlands where it is sorbed to sediments and bioconcentrated by wetland plant and macro invertebrates. Since boron is an avian teratogen, an estimate of boron ingestion exposure is warranted. Samples from 3 of the 23 Pariette Wetland ponds with one pond near the inlet, one near the outlet, and one in the middle were collected. Five sampling points were designated along a 100 m transect of each pond. At each sampling point duplicate (or triplicate) samples of water, sediments, benthic organisms and wetland vegetation were collected. The sediments were collected with a KB-corer and divided at depths of 0-2 cm, 2-7 cm, and 7+ cm from the sediment surface. Sample splits were sent to the USU Bug lab for identification of invertebrate species. Whenever this transect was not intercepting vegetation, 2-3 additional sample sites were identified at the pond within stands of representative vegetation where bird nests are located. The plant parts used for boron analyses will include seeds, shoot and roots of vascular plants, as well as algae or duckweeds skimmed from the surface. Samples were processed within 2 days of collection. Water samples filtered through a 0.45 μ membrane filter were analyzed for DOC, pH and ECe. The dried and washed vegetation samples were ground and stored. The benthic organisms and macro invertebrates were netted at the water surface. The dried samples were weighed, ground and stored. Samples were weighed, oven dried and reweighed. For plant and macro-invertebrate samples, a nitric and hydrogen peroxide digestion procedure is used to dissolve environmentally available elements. The Hot Water extraction and DTPA-Sorbitol extraction were compared to estimate wetland plant available boron in the sediments. Boron in water, soil/sediment extracts and digested plant materials was analyzed by Azomethine-H colorimetric method. Additional Sample Characterization Analyses were conducted to interpret results and explain differences in the fate of boron among the sample sites.

  17. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    PubMed

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  18. Reforestation Effects on Carbon Stocks in the Northeast USA: Interactions among Earthworms, Land-Use History and Soil Properties

    NASA Astrophysics Data System (ADS)

    Ross, D. S.; Görres, J. H.; Knowles, M.; Cogbill, C. V.

    2017-12-01

    Reforestation has occurred in many areas of the northeastern USA that were cleared for agriculture in the 1700s and 1800s. Net gains in carbon have occurred but these gains may be affected by earthworm invasions. All earthworm species common to New England were introduced from either Europe or, more recently, Asia. We have been monitoring 18 managed forest stands in Vermont to be able to determine long-term changes in carbon stores. In addition to measuring carbon with depth into the C horizon, we have documented land use history dating back to colonial times, determined earthworm species and density, measured tree species and site metrics, and measured a suite of soil chemical parameters. We also determined carbon distribution in soil microaggregates in a subset of sites. Prior land use in the 18 monitored plots included cultivation, pasture, farm woodlot and possibly iron mining. Higher earthworm species diversity correlated with reduced forest floor depth, higher mineral soil carbon, and greater stability (microaggregate-protected) of that carbon. Sites with the highest worm density and species richness had a history of more intense agricultural land use (although not all former agricultural sites had earthworms). There were also positive interactions between exchangeable calcium pools and earthworm density, and between elevation and carbon in the forest floor. With only 18 sites, it is difficult to establish statistically robust relationships. The effect of reforestation on present-day carbon stores appears to be a complex interaction of land-use history, site location, earthworm history and soil chemistry.

  19. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    NASA Astrophysics Data System (ADS)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  20. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2017-12-09

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  1. 142 E Ontario, October 2014, Lindsay Light Radiological Survey

    EPA Pesticide Factsheets

    During removal of granite tiles at the store front it was discovered that an existing foundation was present and appeared to be adequate to support the planned renovations. No disturbance of fill soil beneath the sidewalk area was necessary.

  2. Environmental Assessment for the Construction and Operation of a New Shoppette/Gas Station, Class Six Store, and Name-Brand Fast Food Store at Joint Base Andrews Camp Springs, Prince George’s County, Maryland

    DTIC Science & Technology

    2010-02-01

    approximately 3.0-acre site. The facility would include retail gasoline sales through the installation of three 20,000-gallon double -walled tanks; 16 multi...construction activities; soil erosion control methods and best management practices would reduce potential for effects; additional impervious surfaces...through the installation of three 20,000-gallon, double -walled tanks; 16 multi- product dispensers with 32 fuel dispenser nozzles; a canopy roofing

  3. Mobility of arsenic and its compounds in soil and soil solution: the effect of soil pretreatment and extraction methods.

    PubMed

    Száková, J; Tlustos, P; Goessler, W; Frková, Z; Najmanová, J

    2009-12-30

    The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of arsenic and its compounds was tested. In the first part, five extraction procedures were compared with following order of extractable arsenic portions: 2M HNO(3)>0.43 M CH(3)COOH>or=0.05 M EDTA>or=Mehlich III (0.2M CH(3)COOH+0.25 M NH(4)NO(3)+0.013 M HNO(3)+0.015 M NH(4)F+0.001 M EDTA) extraction>water). Additionally, two methods of soil solution sampling were compared, centrifugation of saturated soil and the use of suction cups. The results showed that different sample pretreatments including soil solution sampling could lead to different absolute values of mobile arsenic content in soils. However, the interpretation of the data can lead to similar conclusions as apparent from the comparison of the soil solution sampling methods (r=0.79). For determination of arsenic compounds mild extraction procedures (0.05 M (NH(4))(2)SO(4), 0.01 M CaCl(2), and water) and soil solution sampling using suction cups were compared. Regarding the real soil conditions the extraction of fresh samples and/or in situ collection of soil solution are preferred among the sample pretreatments and/or soil extraction procedures. However, chemical stabilization of the solutions should be allowed and included in the analytical procedures for determination of individual arsenic compounds.

  4. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes, closing soil gas pathways etc.). In the case of H2O exchange rate, values increased with increasing soil water contents (up to 0.15-0.20 cm3/cm3) and then remained approximately constant. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  5. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  6. Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

    PubMed

    Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia

    2007-11-08

    The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.

  7. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    USGS Publications Warehouse

    Khomo, Lesego; Trumbore, Susan E.; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    Organic matter–mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40–70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9–47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon–mineral interactions.

  8. BOREAS TF-4 CO2 and CH4 Chamber Flux Data from the SSA

    NASA Technical Reports Server (NTRS)

    Anderson, Dean; Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-4 team measured fluxes of CO2 and CH4 across the soil-air interface in four ages of jack pine forest at the BOREAS SSA during August 1993 to March 1995. Gross and net flux of CO2 and flux of CH4 between soil and air are presented for 24 chamber sites in mature jack pine forest, 20-year-old, 4-year-old, and clear cut areas. The data are stored in tabular ASCII files.

  9. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  10. Climate effect on soil enzyme activities and dissolved organic carbon in mountain calcareous soils: a soil-transplant experiment

    NASA Astrophysics Data System (ADS)

    Puissant, Jérémy; Cécillon, Lauric; Mills, Robert T. E.; Gavazov, Konstantin; Robroek, Bjorn J. M.; Spiegelberger, Thomas; Buttler, Alexandre; Brun, Jean-Jacques

    2013-04-01

    Mountain soils store huge amounts of carbon as soil organic matter (SOM) which may be highly vulnerable to the strong climate changes that mountain areas currently experience worldwide. Climate modifications are expected to impact microbial activity which could change the rate of SOM decomposition/accumulation, thereby questioning the net C source/sink character of mountain soils. To simulate future climate change expected in the 21st century in the calcareous pre-Alps, 15 blocks (30 cm deep) of undisturbed soil were taken from a mountain pasture located at 1400 m a.s.l. (Marchairuz, Jura, Switzerland) and transplanted into lysimeters at the same site (control) and at two other sites located at 1000 m a.s.l. and 600 m a.s.l. (5 replicates per site). This transplantation experiment which started in 2009 simulates a climate warming with a temperature increase of 4° C and a decreased humidity of 40 % at the lowest site. In this study, we used soil extracellular enzyme activities (EEA) as functional indicators of SOM decomposition to evaluate the effect of climate change on microbial activity and SOM dynamics along the seasons. Dissolved organic carbon (DOC) was also measured to quantify the assimilable carbon for microorganism. In autumn 2012, a first sampling step out of four (winter, spring and summer 2013) has been realized. We extracted 15 cm deep soil cores from each transplant (x15) and measured (i) DOC and (ii) the activities of nine different enzymes. Enzymes were chosen to represent the degradation of the most common classes of biogeochemical compounds in SOM. β-glucosidase, β-D-cellubiosidase, β-Xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, lipase, phenoloxidase respectively represented the degradation of sugar, cellulose, hemicellulose, chitin, protein, lipid and lignin. Moreover, the fluorescein diacetate (FDA) hydrolysis was used to provide an estimate of global microbial activity and phosphatase was used to estimate phosphorus mineralization. The autumn results showed no differences for global microbial activity along the climate gradient (0.37 nKatal g-1 dry soil), no differences and a very low activity for leucine aminopeptidase and β-glucosidase and β-Xylosidase (about 0.09 nKatal g-1 dry soil) and no differences for cellulose, chitin and phosphorus mineralization. Conversely, we measured a greater activity at the highest elevation site for lipase and phenoloxydase (ANOVA test, p

  11. Edaphic controls on soil organic carbon stocks in restored grasslands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Jastrow, Julie D.; Grimley, David A.

    Cultivation of undisturbed soils dramatically depletes organic carbon stocks at shallow depths, releasing a substantial quantity of stored carbon to the atmosphere. Restoration of native ecosystems can help degraded soils rebuild a portion of the depleted soil organic matter. However, the rate and magnitude of soil carbon accrual can be highly variable from site to site. Thus, a better understanding of the mechanisms controlling soil organic carbon stocks is necessary to improve predictions of soil carbon recovery. We measured soil organic carbon stocks and a suite of edaphic factors in the upper 10 cm of a series of restored tallgrassmore » prairies representing a range of drainage conditions. Our findings suggest that factors related to soil organic matter stabilization mechanisms (texture, polyvalent cations) were key predictors of soil organic carbon, along with variables that influence plant and microbial biomass (available phosphorus, pH) and soil moisture. Exchangeable soil calcium was the strongest single predictor, explaining 74% of the variation in soil organic carbon, followed by clay content,which explained 52% of the variation. Our results demonstrate that the cumulative effects of even relatively small differences in these edaphic properties can have a large impact on soil carbon stocks when integrated over several decades.« less

  12. Cryopreservation of human blood for alkaline and Fpg-modified comet assay.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2016-01-01

    The Comet assay is a reproducible and sensitive assay for the detection of DNA damage in eukaryotic cells and tissues. Incorporation of lesion specific, oxidative DNA damage repair enzymes (for example, Fpg, OGG1 and EndoIII) in the standard alkaline Comet assay procedure allows for the detection and measurement of oxidative DNA damage. The Comet assay using white blood cells (WBC) has proven useful in monitoring DNA damage from environmental agents in humans. However, it is often impractical to performance Comet assay immediately after blood sampling. Thus, storage of blood sample is required. In this study, we developed and tested a simple storage method for very small amount of whole blood for standard and Fpg-modified modified Comet assay. Whole blood was stored in RPMI 1640 media containing 10% FBS, 10% DMSO and 1 mM deferoxamine at a sample to media ratio of 1:50. Samples were stored at -20 °C and -80 °C for 1, 7, 14 and 28 days. Isolated lymphocytes from the same subjects were also stored under the same conditions for comparison. Direct DNA strand breakage and oxidative DNA damage in WBC and lymphocytes were analyzed using standard and Fpg-modified alkaline Comet assay and compared with freshly analyzed samples. No significant changes in either direct DNA strand breakage or oxidative DNA damage was seen in WBC and lymphocytes stored at -20 °C for 1 and 7 days compared to fresh samples. However, significant increases in both direct and oxidative DNA damage were seen in samples stored at -20 °C for 14 and 28 days. No changes in direct and oxidative DNA damage were observed in WBC and lymphocytes stored at -80 °C for up to 28 days. These results identified the proper storage conditions for storing whole blood or isolated lymphocytes to evaluate direct and oxidative DNA damage using standard and Fpg-modified alkaline Comet assay.

  13. Hydrologically mediated iron reduction/oxidation fluctuations and dissolved organic carbon exports in tidal wetlands

    NASA Astrophysics Data System (ADS)

    Guimond, J. A.; Seyfferth, A.; Michael, H. A.

    2017-12-01

    Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox cycles, then hydrologic oscillations can be tied to DOC dynamics and predicted with hydrologic models. By elucidating the mechanisms driving the mobilization of DOC, we can begin to better understand, quantify, and forecast coastal carbon dynamics.

  14. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  15. Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)

    DOE Data Explorer

    Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1986-01-01

    This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.

  16. GRACE storage-runoff hystereses reveal the dynamics of regional watersheds

    EPA Science Inventory

    Watersheds function as integrated systems where climate and geology govern the movement of water. In situ instrumentation can provide local-scale insights into the non-linear relationship between streamflow and water stored in a watershed as snow, soil moisture, and groundwater. ...

  17. Optimizing eastern gamagrass forage harvests using growing degree days

    USDA-ARS?s Scientific Manuscript database

    Tripsacum dactyloides (L.) L., commonly known as eastern gamagrass is useful for grazing, stored forage, soil amelioration and conservation, and potentially as a biofuel feedstock. Our goal was to calculate accumulated growing degree days (GDD) from existing datasets collected for eastern gamagrass...

  18. Future trends and needs in stored product entomology-pest management

    USDA-ARS?s Scientific Manuscript database

    Insect pest management in stored products, and in particular the concept of integrated pest management (IPM), has different meanings depending on one's viewpoint of IPM. One of the difficulties in stored products is adequately sampling large bulk bins or silos of raw stored grain or large milling an...

  19. Effect of Air and Vacuum Storage on the Tensile Properties of X-Ray Exposed Aluminized-FEP

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Gummow, Jonathan D.

    2000-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), a common spacecraft thermal control material, from the exterior layer of the Hubble Space Telescope (HST) has become embrittled and suffers from extensive cracking. Teflon samples retrieved during Hubble servicing missions and from the Long Duration Exposure Facility (LDEF) indicate that there may be continued degradation in tensile properties over time. An investigation has been conducted to evaluate the effect of air and vacuum storage on the mechanical properties of x-ray exposed FEP. Aluminized-FEP (Al-FEP) tensile samples were irradiated with 15.3 kV Cu x-rays and stored in air or under vacuum for various time periods. Tensile data indicate that samples stored in air display larger decreases in tensile properties than for samples stored under vacuum. Air-stored samples developed a hazy appearance, which corresponded to a roughening of the aluminized surface. Optical property changes were also characterized. These findings indicate that air exposure plays a role in the degradation of irradiated FEP, therefore proper sample handling and storage is necessary with materials retrieved from space.

  20. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID:25360132

Top