30 CFR 57.6100 - Separation of stored explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall not be stored in the same magazine with other explosive material. (b) When stored in the same magazine, blasting agents shall be separated from explosives, safety fuse, and detonating cord to prevent...
Ramírez, Alvaro; García-Torrent, Javier; Aguado, Pedro J
2009-08-30
There are always risks associated with silos when the stored material has been characterized as prone to self-ignition or explosion. Further research focused on the characterization of agricultural materials stored in silos is needed due to the lack of data found in the literature. The aim of this study was to determine the ignitability and explosive parameters of several agricultural products commonly stored in silos in order to assess the risk of ignition and dust explosion. Minimum Ignition Temperature, with dust forming a cloud and deposited in a layer, Lower Explosive Limit, Minimum Ignition Energy, Maximum Explosion Pressure and Maximum Explosion Pressure Rise were determined for seven agricultural materials: icing sugar, maize, wheat and barley grain dust, alfalfa, bread-making wheat and soybean dust. Following characterization, these were found to be prone to producing self-ignition when stored in silos under certain conditions.
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...
Code of Federal Regulations, 2012 CFR
2012-10-01
... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...
Code of Federal Regulations, 2014 CFR
2014-10-01
... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...
Code of Federal Regulations, 2013 CFR
2013-10-01
... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...
Code of Federal Regulations, 2011 CFR
2011-10-01
... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...
Code of Federal Regulations, 2010 CFR
2010-10-01
... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...
46 CFR 194.05-3 - Chemical stores.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Chemical stores. 194.05-3 Section 194.05-3 Shipping..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Stowage and Marking § 194.05-3 Chemical stores. (a) Chemical stores are those chemicals which possess one or more of the following properties and...
46 CFR 194.05-3 - Chemical stores.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Chemical stores. 194.05-3 Section 194.05-3 Shipping..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Stowage and Marking § 194.05-3 Chemical stores. (a) Chemical stores are those chemicals which possess one or more of the following properties and...
46 CFR 194.05-3 - Chemical stores.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Chemical stores. 194.05-3 Section 194.05-3 Shipping..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Stowage and Marking § 194.05-3 Chemical stores. (a) Chemical stores are those chemicals which possess one or more of the following properties and...
46 CFR 194.05-3 - Chemical stores.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Chemical stores. 194.05-3 Section 194.05-3 Shipping..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Stowage and Marking § 194.05-3 Chemical stores. (a) Chemical stores are those chemicals which possess one or more of the following properties and...
46 CFR 194.05-3 - Chemical stores.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Chemical stores. 194.05-3 Section 194.05-3 Shipping..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Stowage and Marking § 194.05-3 Chemical stores. (a) Chemical stores are those chemicals which possess one or more of the following properties and...
Direct Quantum Mechanical Simulations of Shocked Energetic Materials
2008-12-01
dynamics (QMD) simulations of shocked pentaerythritol tetranitrate (PETN), a conventional high explosive , and the polymeric cubic gauche phase of...nitrogen (cg-N), proposed as an environmentally acceptable energetic alternative to conventional explosive formulations. These simulations, made...stored structural potential energy can be liberated quickly enough, it is possible that explosion can occur with energies several orders of magnitude
27 CFR 555.213 - Quantity and storage restrictions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... excess of 20 million are not to be stored in one magazine unless approved by the Director. (b) Detonators are not to be stored in the same magazine with other explosive materials, except under the following circumstances: (1) In a type 4 magazine, detonators that will not mass detonate may be stored with electric...
77 FR 32136 - Agency Information Collection Activities:
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... Fire Safety Authority of Storage of Explosive Materials. (3) Agency form number, if any, and the... safety of emergency response personnel responding to fires at sites where explosives are stored. The information is provided both orally and in writing to the authority having jurisdiction for fire safety in the...
49 CFR 174.102 - Forbidden mixed loading and storage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...
49 CFR 174.102 - Forbidden mixed loading and storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...
49 CFR 174.102 - Forbidden mixed loading and storage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...
49 CFR 174.102 - Forbidden mixed loading and storage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...
49 CFR 174.102 - Forbidden mixed loading and storage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...
Explosive desorption of icy grain mantles in dense clouds
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Greenberg, J. M.
1991-01-01
The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.
Code of Federal Regulations, 2010 CFR
2010-04-01
...” and “Regular Program”, shall follow the definitions contained in FEMA regulations at 44 CFR 59.1. (b...: (A) Produce, use or store highly volatile, flammable, explosive, toxic or water-reactive materials...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... authorities for over-the-road use. Facilities other than magazines used to store blasting agents shall contain... appropriate warning signs that indicate the contents and are visible from each approach. ...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... authorities for over-the-road use. Facilities other than magazines used to store blasting agents shall contain... appropriate warning signs that indicate the contents and are visible from each approach. ...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... authorities for over-the-road use. Facilities other than magazines used to store blasting agents shall contain... appropriate warning signs that indicate the contents and are visible from each approach. ...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... local authorities for over-the-road use. Facilities other than magazines used to store blasting agents... or other appropriate warning signs that indicate the contents and are visible from each approach. ...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... local authorities for over-the-road use. Facilities other than magazines used to store blasting agents... or other appropriate warning signs that indicate the contents and are visible from each approach. ...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... local authorities for over-the-road use. Facilities other than magazines used to store blasting agents... or other appropriate warning signs that indicate the contents and are visible from each approach. ...
Ultra-Fine Highly Energetic Core-Shell Nanoparticles with Triggerable Protective Coatings
2013-02-01
volume ratios and strong electronic coupling, which offers higher stored energy densities and decreased warhead size. Current technologies produce nano...aluminum (Al) – the most attractive high-energetic candidate for the use in explosives because of its density and high relative heat of oxide...major breakthrough in the area of explosive materials. II. Project Objectives The overall objective of this research program was to develop a new
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... X O O X O Organic peroxides 5.2 X X X X O X O Poisonous liquids PG I Zone A 6.1 X X O X O X X X X X... fertilizer may be loaded or stored with Division 1.1 (explosive) or Division 1.5 materials. (6) When the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 3 2012-07-01 2012-07-01 false Occupations in or about plants or establishments... § 570.51 Occupations in or about plants or establishments manufacturing or storing explosives or... occupations in or about plants or establishments manufacturing or storing explosives or articles containing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 3 2013-07-01 2013-07-01 false Occupations in or about plants or establishments... § 570.51 Occupations in or about plants or establishments manufacturing or storing explosives or... occupations in or about plants or establishments manufacturing or storing explosives or articles containing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 3 2014-07-01 2014-07-01 false Occupations in or about plants or establishments... § 570.51 Occupations in or about plants or establishments manufacturing or storing explosives or... occupations in or about plants or establishments manufacturing or storing explosives or articles containing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Occupations in or about plants or establishments... § 570.51 Occupations in or about plants or establishments manufacturing or storing explosives or... occupations in or about plants or establishments manufacturing or storing explosives or articles containing...
NASA Astrophysics Data System (ADS)
Bazanov, A. A.; Ivanovskii, A. V.; Panov, A. I.; Samodolov, A. V.; Sokolov, S. S.; Shaidullin, V. Sh.
2017-06-01
We report on the results of the computer simulation of the operation of magnetodynamic break switches used as the second stage of current pulse formation in magnetic explosion generators. The simulation was carried out under the conditions when the magnetic field energy density on the surface of the switching conductor as a function of the current through it was close to but still did not exceed the critical value typical of the beginning of electric explosion. In the computational model, we used the parameters of experimentally tested sample of a coil magnetic explosion generator that can store energy of up to 2.7 MJ in the inductive storage circuit and equipped with a primary explosion stage of the current pulse formation. It has been shown that the choice of the switching conductor material, as well as its elastoplastic properties, considerably affects the breaker speed. Comparative results of computer simulation for copper and aluminum have been considered.
30 CFR 57.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...
30 CFR 57.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...
30 CFR 57.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...
30 CFR 57.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...
30 CFR 57.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other combustibles shall not be stored or allowed to accumulate within 50 feet of...
Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials
ERIC Educational Resources Information Center
Piekiel, Nicholas William
2012-01-01
Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…
Code of Federal Regulations, 2010 CFR
2010-10-01
... includes those wetlands areas separated from their natural supply of water as a result of activities such... use, including, but not limited to, water and related land resources, planning, regulating and... which produce, use or store highly volatile, flammable, explosive, toxic or water-reactive materials; (b...
46 CFR 194.15-11 - Flushing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-11 Flushing systems. (a) Working spaces in which chemical stores are used shall be equipped with a fresh water supply shower. (b) There shall be a provision for flushing away chemical spills. ...
46 CFR 194.15-11 - Flushing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-11 Flushing systems. (a) Working spaces in which chemical stores are used shall be equipped with a fresh water supply shower. (b) There shall be a provision for flushing away chemical spills. ...
46 CFR 194.15-11 - Flushing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-11 Flushing systems. (a) Working spaces in which chemical stores are used shall be equipped with a fresh water supply shower. (b) There shall be a provision for flushing away chemical spills. ...
27 CFR 555.204 - Inspection of magazines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Inspection of magazines... of magazines. Any person storing explosive materials shall inspect his magazines at least every seven... been unauthorized entry or attempted entry into the magazines, or unauthorized removal of the contents...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 11988 (43 FR 6030, February 10, 1978) issued by the Water Resources Council; and the terms “criteria...: (A) Produce, use or store highly volatile, flammable, explosive, toxic or water-reactive materials... flow, where the flood hazard is generally the greatest, and where water depths and velocities are the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 11988 (43 FR 6030, February 10, 1978) issued by the Water Resources Council; and the terms “criteria...: (A) Produce, use or store highly volatile, flammable, explosive, toxic or water-reactive materials... flow, where the flood hazard is generally the greatest, and where water depths and velocities are the...
NASA Astrophysics Data System (ADS)
do Carmo, Eduardo; Goncalves Hönnicke, Marcelo
2018-05-01
There are different forms to introduce/illustrate the energy concepts for the basic physics students. The explosive seed dispersal mechanism found in a variety of trees could be one of them. Sibipiruna trees carry out fruits (pods) who show such an explosive mechanism. During the explosion, the pods throw out seeds several meters away. In this manuscript we show simple methodologies to estimate the energy amount stored in the Sibipiruna tree due to such a process. Two different physics approaches were used to carry out this study: by monitoring indoor and in situ the explosive seed dispersal mechanism and by measuring the elastic constant of the pod shell. An energy of the order of kJ was found to be stored in a single tree due to such an explosive mechanism.
X-Ray Fluorescence Spectroscopy for Analysis of Explosive-Related Materials and Unknowns
2017-08-01
locally sourced baking soda) were added for further investigation. 3.2.5 Sample Cups and Film The samples cups used for this work were Chemplex...from Na and Cl; photograph was taken after irradiation, which induced the tan coloring Sodium bicarbonate Generic, store-brand baking soda
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2014 CFR
2014-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2011 CFR
2011-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2013 CFR
2013-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall be made for the containment and removal of chemical spills. (d) Chemical reactions and experiments... EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-1 General. (a) The chemical storerooms shall be considered to be service areas and as such shall be subject to the applicable...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
27 CFR 555.164 - Unlawful storage.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Unlawful storage. 555.164 Section 555.164 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Forfeitures § 555.164 Unlawful storage. Any person who stores any explosive material in a manner not in...
27 CFR 555.29 - Unlawful storage.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Unlawful storage. 555.29 Section 555.29 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Provisions § 555.29 Unlawful storage. No person shall store any explosive materials in a manner not in...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
27 CFR 555.164 - Unlawful storage.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Unlawful storage. 555.164 Section 555.164 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Forfeitures § 555.164 Unlawful storage. Any person who stores any explosive material in a manner not in...
27 CFR 555.29 - Unlawful storage.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Unlawful storage. 555.29 Section 555.29 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Provisions § 555.29 Unlawful storage. No person shall store any explosive materials in a manner not in...
27 CFR 555.164 - Unlawful storage.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Unlawful storage. 555.164 Section 555.164 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Forfeitures § 555.164 Unlawful storage. Any person who stores any explosive material in a manner not in...
27 CFR 555.29 - Unlawful storage.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Unlawful storage. 555.29 Section 555.29 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Provisions § 555.29 Unlawful storage. No person shall store any explosive materials in a manner not in...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
27 CFR 555.29 - Unlawful storage.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Unlawful storage. 555.29 Section 555.29 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Provisions § 555.29 Unlawful storage. No person shall store any explosive materials in a manner not in...
27 CFR 555.164 - Unlawful storage.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Unlawful storage. 555.164 Section 555.164 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Forfeitures § 555.164 Unlawful storage. Any person who stores any explosive material in a manner not in...
27 CFR 555.164 - Unlawful storage.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Unlawful storage. 555.164 Section 555.164 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Forfeitures § 555.164 Unlawful storage. Any person who stores any explosive material in a manner not in...
27 CFR 555.29 - Unlawful storage.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Unlawful storage. 555.29 Section 555.29 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND... Provisions § 555.29 Unlawful storage. No person shall store any explosive materials in a manner not in...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
49 CFR 174.300 - Special handling requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...
49 CFR 174.300 - Special handling requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...
49 CFR 174.300 - Special handling requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...
49 CFR 174.300 - Special handling requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...
49 CFR 174.300 - Special handling requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...
Explosion Welding for Hermetic Containerization
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin; Sanok, Joseph
2003-01-01
A container designed for storing samples of hazardous material features a double wall, part of which is sacrificed during an explosion-welding process in which the container is sealed and transferred to a clean environment. The major advantage of this container sealing process is that once the samples have been sealed inside, the outer wall of what remains of the container is a clean surface that has not come into contact with the environment from which the samples were taken. Thus, there is no need to devise a decontamination process capable of mitigating all hazards that might be posed by unanticipated radioactive, chemical, and/or biological contamination of the outside of the container. The container sealing method was originally intended to be used to return samples from Mars to Earth, but it could also be used to store samples of hazardous materials, without the need to decontaminate its outer surface. The process stages are shown. In its initial double-wall form, the volume between the walls is isolated from the environment; in other words, the outer wall (which is later sacrificed) initially serves to protect the inner container from contamination. The sample is placed inside the container through an opening at one end, then the container is placed into a transfer dock/lid. The surfaces that will be welded together under the explosive have been coated with a soft metallic sacrificial layer. During the explosion, the sacrificial layer is ejected, and the container walls are welded together, creating a strong metallic seal. The inner container is released during the same event and enters the clean environment.
Study of energy partitioning using a set of related explosive formulations
NASA Astrophysics Data System (ADS)
Lieber, Mark; Foster, Joseph C.; Stewart, D. Scott
2012-03-01
Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to high power output during the detonation process. Historically, the explosive design problem has focused on intramolecular energy storage. The molecules of interest are derived via molecular synthesis providing near stoichiometric balance on the physical scale of the molecule. This approach provides prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employ intermolecular ingredients to alter the spatial and temporal distribution of energy release. State of the art continuum methods have been used to study this approach to the materials design. Cheetah has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and kinetic energy in the detonation. The equation of state information from Cheetah has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.
A Study of Energy Partitioning Using A Set of Related Explosive Formulations
NASA Astrophysics Data System (ADS)
Lieber, Mark; Foster, Joseph C., Jr.; Stewart, D. Scott
2011-06-01
Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to kinetic energy during the detonation process. This energy is manifest in the internal thermodynamic energy and the translational flow of the products. Historically, the explosive design problem has focused on intramolecular stoichiometry providing prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employee intermolecular ingredients to alter the spatial and temporal distribution of energy release. CHEETA has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and flow energy in the detonation. The equation of state information from CHEETA has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.
Relocatable explosives storage magazine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liptak, R.E.; Keenan, W.A.
A relocatable storage magazine apparatus for storing and retrieving explosives and ordnance and for partially containing and attenuating the blast, conflagration and flying debris from an accidental explosion is described comprising: (a) a container having an access hole; (b) a debris trap attached to the container, the debris trap communicating with said container via the access hole, said debris trap having vent holes for venting the pressure of an explosion from said debris trap to the atmosphere; (c) means for covering said access hole; (d) means for suspending explosives and ordnance from the covering means; (e) means for entering themore » storage magazine to store and retrieve explosives and ordnance; (f) means for retaining said covering means in a position above the access hole wherein said explosives and ordnance are accessible from the entering means.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... the Storage of Ammonium Nitrate. OSHA subsequently made several minor revisions to the standard (37 FR... explosives; storing ammonium nitrate; and storing small arms ammunition, small arms primers, and small arms... would the proposed rulemaking. III. Authority and Signature David Michaels, PhD MPH, Assistant Secretary...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C.G.; Inoue, N.; Kuno, Y.
2013-07-01
This paper summarizes the results of a joint US-Japan study to establish a mutual understanding, through scientific-based study, of potential approaches to reduce the attractiveness of various nuclear materials for use in a terrorist nuclear explosive device (NED). 4 approaches that can reduce materials attractiveness with a very high degree of effectiveness are: -) diluting HEU with natural or depleted U to an enrichment of less than 10% U-235; -) storing Pu in nuclear fuel that is not man portable and with a dose rate greater or equal to 10 Gy/h at 1 m; -) storing Pu or HEU inmore » heavy items, i.e. not transportable, provided the removal of the Pu or HEU from the item requires a purification/processing capability; and -) converting Pu and HEU to very dilute forms (such as wastes) that, without any security barriers, would require very long acquisition times to acquire a Category I quantity of Pu or of HEU. 2 approaches that can reduce materials attractiveness with a high degree of effectiveness are: -) converting HEU-fueled research reactors into LEU-fueled research reactors or dilute HEU with natural or depleted U to an enrichment of less than 20% U-235; -) converting U/Al reactor fuel into U/Si reactor fuel. Other approaches have been assessed as moderately or totally inefficient to reduce the attractiveness of nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2006-04-24
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2007-10-01
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
Numerical Modeling of Mixing and Venting from Explosions in Bunkers
NASA Astrophysics Data System (ADS)
Liu, Benjamin
2005-07-01
2D and 3D numerical simulations were performed to study the dynamic interaction of explosion products in a concrete bunker with ambient air, stored chemical or biological warfare (CBW) agent simulant, and the surrounding walls and structure. The simulations were carried out with GEODYN, a multi-material, Godunov-based Eulerian code, that employs adaptive mesh refinement and runs efficiently on massively parallel computer platforms. Tabular equations of state were used for all materials with the exception of any high explosives employed, which were characterized with conventional JWL models. An appropriate constitutive model was used to describe the concrete. Interfaces between materials were either tracked with a volume-of-fluid method that used high-order reconstruction to specify the interface location and orientation, or a capturing approach was employed with the assumption of local thermal and mechanical equilibrium. A major focus of the study was to estimate the extent of agent heating that could be obtained prior to venting of the bunker and resultant agent dispersal. Parameters investigated included the bunker construction, agent layout, energy density in the bunker and the yield-to-agent mass ratio. Turbulent mixing was found to be the dominant heat transfer mechanism for heating the agent.
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
40 CFR 264.1200 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Munitions and Explosives Storage § 264.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 264.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and explosives may also be...
30 CFR 77.1301 - Explosives; magazines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... than 6 feet high. (h) Ammonium nitrate-fuel oil blasting agents shall be physically separated from... explosion hazard. (d) Box-type magazines used to store explosives or detonators in work areas shall be...
Limited-life cartridge primers
Makowiecki, Daniel M.; Rosen, Robert S.
1998-01-01
A cartridge primer which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML's would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers.
Limited-life cartridge primers
Makowiecki, Daniel M.; Rosen, Robert S.
2005-04-19
A cartridge primer which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML's would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers.
The Production and Study of Antiprotons and Cold Antihydrogen
2010-11-10
techniques required to produce and store atoms made entirely of anti- matter . Anti- matter provides high-density energy storage that far outstrips even nuclear...materials. Potential applications for anti- matter include rocketry and explosives. In the last grant period, a new positron accumulator was developed...encounter with ordinary matter will cause them to turn all their mass into energy as they annihilate. The scientific goal, which gives this program a
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
Limited-life cartridge primers
Makowiecki, D.M.; Rosen, R.S.
1998-06-30
A cartridge primer is described which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML`s would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers. 10 figs.
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
40 CFR 265.1200 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1200 Applicability. The requirements of this subpart apply to owners or operators who store munitions and explosive hazardous wastes, except as § 265.1 provides otherwise. (NOTE: Depending on explosive hazards, hazardous waste munitions and...
Rowell, Frederick; Seviour, John; Lim, Angelina Yimei; Elumbaring-Salazar, Cheryl Grace; Loke, Jason; Ma, Jan
2012-09-10
The ability of two mass spectrometric methods, surface-assisted laser desorption/ionization-time of flight-mass spectrometry (SALDI-TOF-MS) and direct analysis in real time (DART-MS), to detect the presence of seven common explosives (six nitro-organic- and one peroxide-type) in spiked latent fingermarks has been examined. It was found that each explosive could be detected with nanogram sensitivity for marks resulting from direct finger contact with a glass probe by DART-MS or onto stainless steel target plates using SALDI-TOF-MS for marks pre-dusted with one type of commercial black magnetic powder. These explosives also could be detected in latent marks lifted from six common surfaces (paper, plastic bag, metal drinks can, wood laminate, adhesive tape and white ceramic tile) whereas no explosive could be detected in equivalent pre-dusted marks on the surface of a commercial lifting tape by the DART-MS method due to high background interference from the tape material. The presence of TNT and Tetryl could be detected in pre-dusted latent fingermarks on a commercial lifting tape for up to 29 days sealed and stored under ambient conditions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Modeling and Simulation of Explosively Driven Electromechanical Devices
NASA Astrophysics Data System (ADS)
Demmie, Paul N.
2002-07-01
Components that store electrical energy in ferroelectric materials and produce currents when their permittivity is explosively reduced are used in a variety of applications. The modeling and simulation of such devices is a challenging problem since one has to represent the coupled physics of detonation, shock propagation, and electromagnetic field generation. The high fidelity modeling and simulation of complicated electromechanical devices was not feasible prior to having the Accelerated Strategic Computing Initiative (ASCI) computers and the ASCI developed codes at Sandia National Laboratories (SNL). The EMMA computer code is used to model such devices and simulate their operation. In this paper, I discuss the capabilities of the EMMA code for the modeling and simulation of one such electromechanical device, a slim-loop ferroelectric (SFE) firing set.
LLNL Small-Scale Friction sensitivity (BAM) Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.R.; Foltz, M.F.
1996-06-01
Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less
29 CFR 1926.904 - Storage of explosives and blasting agents.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., electric blasting caps, detonating primers, and primed cartridges shall not be stored in the same magazine... feet of explosives and detonator storage magazine. (d) No explosives or blasting agents shall be... least two modes of exit have been provided. (e) Permanent underground storage magazines shall be at...
Alternative disposal options for transuranic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, G.G.
1994-12-31
Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lensmore » around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area.« less
ERIC Educational Resources Information Center
do Carmo, Eduardo; Hönnicke, Marcelo Goncalves
2018-01-01
There are different forms to introduce/illustrate the energy concepts for the basic physics students. The explosive seed dispersal mechanism found in a variety of trees could be one of them. Sibipiruna trees carry out fruits (pods) who show such an explosive mechanism. During the explosion, the pods throw out seeds several meters away. In this…
Atomic hydrogen storage method and apparatus
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1978-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Atomic hydrogen storage method and apparatus
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1980-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Atomic hydrogen storage. [cryotrapping and magnetic field strength
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1980-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
NASA Astrophysics Data System (ADS)
Eilbert, Richard F.; Krug, Kristoph D.
1993-04-01
The Vivid Rapid Explosives Detection Systems is a true dual energy x-ray machine employing precision x-ray data acquisition in combination with unique algorithms and massive computation capability. Data from the system's 960 detectors is digitally stored and processed by powerful supermicro-computers organized as an expandable array of parallel processors. The algorithms operate on the dual energy attenuation image data to recognize and define objects in the milieu of the baggage contents. Each object is then systematically examined for a match to a specific effective atomic number, density, and mass threshold. Material properties are determined by comparing the relative attenuations of the 75 kVp and 150 kVp beams and electronically separating the object from its local background. Other heuristic algorithms search for specific configurations and provide additional information. The machine automatically detects explosive materials and identifies bomb components in luggage with high specificity and throughput, X-ray dose is comparable to that of current airport x-ray machines. The machine is also configured to find heroin, cocaine, and US currency by selecting appropriate settings on-site. Since January 1992, production units have been operationally deployed at U.S. and European airports for improved screening of checked baggage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Employment of Minors Between 16 and 18 Years of Age or Detrimental to Their Health or Well-Being... their health or well-being: (1) All occupations in or about any plant or establishment (other than... to function by explosion, as well as all goods identified in the most recent list of explosive...
NASA Astrophysics Data System (ADS)
Pontbriand, C. W.; Soule, S. A.; Sohn, R. A.; Humphris, S. E.
2008-12-01
Seafloor surveys conducted during the 2007 Arctic Gakkel Vents (AGAVE) expedition provide evidence for widespread explosive volcanism within the axial valley of the ultraslow spreading Gakkel Ridge at 85°E. We have used high-definition video and high-resolution bathymetry to map out the extent of the deposits as well as lava flows. The video imagery reveals that unconsolidated pyroclastic material lightly blankets the axial valley at 85°E with thicknesses up to ~10cm over an area 10km2. The bathymetric data show that the axial valley contains ubiquitous cratered volcanoes, that we interpret as potential source vents for the clastic material. We collected detailed visual imagery from one of these volcanoes, and found that the crater center as well as the proximal portions of the rim and outer flanks are covered with talus, suggesting the possibility that Vulcanian explosions played a role in crater formation and pyroclast deposition. We collected samples of the pyroclasts from two locations within the axial valley. The pyroclasts are dominated by low vesicularity angular fragments, with a small weight fraction (~ 12%) of bubble-wall fragments (limu o Pele). Many bubble-wall fragments have fluidal morphologies and stretched vesicles. The morphology of the clasts help constrain multiple models of fragmentation that may have occurred. The distribution of clasts suggests explosive discharge from multiple source vents within the axial valley over a prolonged period of time (i.e, not a single eruption in 1999). In order to explain the generation of pyroclastic material in water depths of ~3800 m (well below the critical pressure for steam generation), we present a model wherein volatiles exsolve from ascending magmas and are sequestered and stored in a lithospheric reservoir before being explosively discharged during a volcanic eruption. The long inter-eruption interval (100s to 1000s of years) and strong spatial heterogeneity of melt delivery associated with ultra-slow spreading may be especially conducive to the build-up of lithospheric volatile reservoirs and explosive volcanic eruptions.
LLNL small-scale static spark machine: static spark sensitivity test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, M F; Simpson, L R
1999-08-23
Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Explosives. 1903.9 Section 1903.9 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY... applicable Central Intelligence Agency rules and/or regulations. (b) Using, possessing, storing, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Explosives. 1903.9 Section 1903.9 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY... applicable Central Intelligence Agency rules and/or regulations. (b) Using, possessing, storing, or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Explosives. 1903.9 Section 1903.9 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY... applicable Central Intelligence Agency rules and/or regulations. (b) Using, possessing, storing, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Explosives. 1903.9 Section 1903.9 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY... applicable Central Intelligence Agency rules and/or regulations. (b) Using, possessing, storing, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Explosives. 1903.9 Section 1903.9 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY... applicable Central Intelligence Agency rules and/or regulations. (b) Using, possessing, storing, or...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives [OMB Number 1140-0092] Agency Information Collection Activities: Proposed Collection; Comments Requested: Voluntary Magazine... Magazine Questionnaire for Agencies/Entities Who Store Explosives. (3) Agency form number, if any, and the...
Radiological Exposure Devices (RED) Technical Basis for Threat Profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Jesse John; Potter, Charles A.; Homann, Steven
Facilities that manufacture, store or transport significant quantities of radiological material must protect against the risk posed by sabotage events. Much of the analysis of this type of event has been focused on the threat from a radiological dispersion device (RDD) or "dirty bomb" scenario, in which a malicious assailant would, by explosives or other means, loft a significant quantity of radioactive material into a plume that would expose and contaminate people and property. Although the consequences in cost and psychological terror would be severe, no intentional RDD terrorism events are on record. Conversely, incidents in which a victim ormore » victims were maliciously exposed to a Radiological Exposure Device (RED), without dispersal of radioactive material, are well documented. This paper represents a technical basis for the threat profile related to the risk of nefarious use of an RED, including assailant and material characterization. Radioactive materials of concern are detailed in Appendix A.« less
49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials on....166 Transport of Class 1 (explosive) materials on passenger vessels. (a) Only the following Class 1 (explosive) materials may be transported as cargo on passenger vessels: (1) Division 1.4 (explosive...
49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials on....166 Transport of Class 1 (explosive) materials on passenger vessels. (a) Only the following Class 1 (explosive) materials may be transported as cargo on passenger vessels: (1) Division 1.4 (explosive...
46 CFR 183.530 - Hazardous areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... equipment in spaces containing machinery powered by, or fuel tanks for, gasoline or other fuels having a... intrinsically safe system. (b) Electrical equipment in lockers used to store paint, oil, turpentine, or other flammable liquids must be explosion-proof or be part of an intrinsically safe system. (c) Explosion-proof...
49 CFR 176.100 - Permit for Divisions 1.1 and 1.2 (explosive) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Permit for Divisions 1.1 and 1.2 (explosive... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials § 176.100 Permit for Divisions 1.1 and 1.2 (explosive) materials. Before Divisions 1.1 and 1.2 (explosive) materials may be...
49 CFR 176.100 - Permit for Divisions 1.1 and 1.2 (explosive) materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Permit for Divisions 1.1 and 1.2 (explosive... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials § 176.100 Permit for Divisions 1.1 and 1.2 (explosive) materials. Before Divisions 1.1 and 1.2 (explosive) materials may be...
30 CFR 57.6201 - Separation of transported explosive material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Separation of transported explosive material... MINES Explosives Transportation-Surface and Underground § 57.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives...
30 CFR 57.6201 - Separation of transported explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of transported explosive material... MINES Explosives Transportation-Surface and Underground § 57.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives...
30 CFR 56.6903 - Burning explosive material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...
30 CFR 56.6903 - Burning explosive material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...
30 CFR 56.6903 - Burning explosive material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...
30 CFR 56.6903 - Burning explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...
30 CFR 56.6903 - Burning explosive material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...
30 CFR 56.6201 - Separation of transported explosive material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Separation of transported explosive material... Explosives Transportation § 56.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives except as follows: (a) Detonators in...
30 CFR 56.6201 - Separation of transported explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of transported explosive material... Explosives Transportation § 56.6201 Separation of transported explosive material. Detonators shall not be transported on the same vehicle or conveyance with other explosives except as follows: (a) Detonators in...
27 CFR 555.205 - Movement of explosive materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Movement of explosive materials. 555.205 Section 555.205 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... Movement of explosive materials. All explosive materials must be kept in locked magazines meeting the...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage practices. 57.6102... Storage-Surface and Underground § 57.6102 Explosive material storage practices. (a) Explosive material... instructions and the date-plant-shift code are maintained with the product. Storage—Surface Only ...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage practices. 57.6102... Storage-Surface and Underground § 57.6102 Explosive material storage practices. (a) Explosive material... instructions and the date-plant-shift code are maintained with the product. Storage—Surface Only ...
Augmented shock wave fracture/severance of materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor)
1995-01-01
The present invention related generally to severing materials, and more particularly to severing or weakening materials through explosively induced, augmented shock waves. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
30 CFR 57.6960 - Mixing of explosive material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...
30 CFR 57.6960 - Mixing of explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...
30 CFR 57.6960 - Mixing of explosive material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...
30 CFR 57.6960 - Mixing of explosive material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...
30 CFR 57.6960 - Mixing of explosive material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mixing of explosive material. 57.6960 Section... General Requirements-Underground Only § 57.6960 Mixing of explosive material. (a) The mixing of... to the hazards associated with the mixing of the bulk explosive material underground. (b) Storage...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
27 CFR 478.23 - Right of entry and examination.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION... ammunition kept or stored by any licensed manufacturer, licensed importer, or licensed dealer at such premises or any firearms curios or relics or ammunition kept or stored by any licensed collector at such...
27 CFR 478.23 - Right of entry and examination.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION... ammunition kept or stored by any licensed manufacturer, licensed importer, or licensed dealer at such premises or any firearms curios or relics or ammunition kept or stored by any licensed collector at such...
27 CFR 478.23 - Right of entry and examination.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION... ammunition kept or stored by any licensed manufacturer, licensed importer, or licensed dealer at such premises or any firearms curios or relics or ammunition kept or stored by any licensed collector at such...
27 CFR 478.23 - Right of entry and examination.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION... ammunition kept or stored by any licensed manufacturer, licensed importer, or licensed dealer at such premises or any firearms curios or relics or ammunition kept or stored by any licensed collector at such...
27 CFR 478.23 - Right of entry and examination.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION... ammunition kept or stored by any licensed manufacturer, licensed importer, or licensed dealer at such premises or any firearms curios or relics or ammunition kept or stored by any licensed collector at such...
Optically-energized, emp-resistant, fast-acting, explosion initiating device
Benson, David A.; Kuswa, Glenn W.
1987-01-01
Optical energy, provided from a remote user-operated source, is utilized to initially electrically charge a capacitor in a circuit that also contains an explosion initiating transducer in contact with a small explosive train contained in an attachable housing. Additional optical energy is subsequently supplied in a preferred embodiment to an optically responsive phototransistor acting in conjunction with a silicon controlled rectifer to release the stored electrical energy through the explosion initiating transducer to set off the explosive train. All energy transfers between the user and the explosive apparatus, either for charging it up or for setting it off, are conveyed optically and may be accomplished in a single optical fiber with coding to distinguish between specific optical energy transfers and between these and any extraneous signals.
49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...
49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...
49 CFR 176.174 - Transport of Class 1 (explosive) materials in shipborne barges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.174 Transport of Class 1 (explosive) materials in shipborne barges. (a...
49 CFR 176.174 - Transport of Class 1 (explosive) materials in shipborne barges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.174 Transport of Class 1 (explosive) materials in shipborne barges. (a...
49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...
49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a) All...
Methodology for Assessing a Boiling Liquid Expanding Vapor Explosion (BLEVE) Blast Potential
NASA Technical Reports Server (NTRS)
Keddy, Chris P.
2012-01-01
Composite Vessels are now used to store a variety of fluids or gases including cryogenic fluids under pressure. Sudden failure of these vessels under certain conditions can lead to a potentially catastrophic vapor expansion if thermal control is not maintained prior to failure. This can lead to a "Boiling Liquid Expanding Vapor Explosion" or BLEVE.
NASA Astrophysics Data System (ADS)
Hsu, Peter; Hust, Gary; Reynolds, John; Springer, Keo; Fried, Larry; Maienschein, Jon
2013-06-01
Incidents caused by fire and combat operations in battlefields can expose energetic materials to unexpected heat that may cause thermal explosion, structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. In this paper, we will present some recent ODTX experimental data and compare thermal explosion violence of different energetic materials. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Recent Advances in the Synthesis of High Explosive Materials
2015-12-29
explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials...This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary
NASA Astrophysics Data System (ADS)
Hsu, P. C.; Hust, G.; Zhang, M. X.; Lorenz, T. K.; Reynolds, J. G.; Fried, L.; Springer, H. K.; Maienschein, J. L.
2014-05-01
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...
Insensitive detonator apparatus for initiating large failure diameter explosives
Perry, III, William Leroy
2015-07-28
A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.
Fracture/Severance of Materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor); DuBrucq, Glenn F., Jr. (Inventor); Klein, Edward A. (Inventor)
1998-01-01
A method for severing or weakening materials is discussed. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-06-17
The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less
The quest for greater chemical energy storage in energetic materials: Grounding expectations
NASA Astrophysics Data System (ADS)
Lindsay, C. Michael; Fajardo, Mario E.
2017-01-01
It is well known that the performance of modern energetic materials based on organic chemistry has plateaued, with only ˜ 40% improvements realized over the past half century. This fact has stimulated research on alternative chemical energy storage schemes in various U.S. government funded "High Energy Density Materials" (HEDM) programs since the 1950's. These efforts have examined a wide range of phenomena such as free radical stabilization, metallic hydrogen, metastable helium, polynitrogens, extended molecular solids, nanothermites, and others. In spite of the substantial research investments, significant improvements in energetic material performance have not been forthcoming. This paper discusses the lessons learned in the various HEDM programs, the different degrees of freedom in which to store energy in materials, and the fundamental limitations and orders of magnitude of the energies involved. The discussion focuses almost exclusively on the topic of energy density and only mentions in passing other equally important properties of explosives and propellants such as gas generation and reaction rate.
Hazardous materials accidents: initial scene assessment and patient care.
Leonard, R B
1993-06-01
Hazardous materials, i.e., chemicals that are toxic, corrosive, flammable, or explosive, are a ubiquitous aspect of modern life. They are manufactured throughout the United States, shipped by truck, train, barge, and pipeline, and stored at a wide variety of locations, including factories, military bases, and warehouses. Accidents involving hazardous materials present an added dimension of danger to emergency personnel arriving first at the scene, and have the potential to produce chemically contaminated patients who require special medical treatment. Personnel arriving first at the scene must understand how to evaluate the scene for fast and safe mitigation without endangering themselves. Chemically contaminated patients require prompt treatment, which, for optimal outcome, must begin at the scene. Although frequently the identification of the hazardous materials involved is not known initially, emergency personnel may safely provide medical care to the victims by understanding and following the principles of hazardous materials accidents and the pathophysiology of chemical injuries as presented in this paper.
Code of Federal Regulations, 2010 CFR
2010-01-01
... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...
Code of Federal Regulations, 2013 CFR
2013-01-01
... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...
Code of Federal Regulations, 2012 CFR
2012-01-01
... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...
Code of Federal Regulations, 2011 CFR
2011-01-01
... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...
Automated High-Speed Video Detection of Small-Scale Explosives Testing
NASA Astrophysics Data System (ADS)
Ford, Robert; Guymon, Clint
2013-06-01
Small-scale explosives sensitivity test data is used to evaluate hazards of processing, handling, transportation, and storage of energetic materials. Accurate test data is critical to implementation of engineering and administrative controls for personnel safety and asset protection. Operator mischaracterization of reactions during testing contributes to either excessive or inadequate safety protocols. Use of equipment and associated algorithms to aid the operator in reaction determination can significantly reduce operator error. Safety Management Services, Inc. has developed an algorithm to evaluate high-speed video images of sparks from an ESD (Electrostatic Discharge) machine to automatically determine whether or not a reaction has taken place. The algorithm with the high-speed camera is termed GoDetect (patent pending). An operator assisted version for friction and impact testing has also been developed where software is used to quickly process and store video of sensitivity testing. We have used this method for sensitivity testing with multiple pieces of equipment. We present the fundamentals of GoDetect and compare it to other methods used for reaction detection.
Non-detonable and non-explosive explosive simulators
Simpson, Randall L.; Pruneda, Cesar O.
1997-01-01
A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.
49 CFR 173.59 - Description of terms for explosives.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... other material containing only propellant explosive. The term excludes charges, shaped, commercial...-flammable materials, in which only the explosive component is the primer. Cases, combustible, empty, without...
49 CFR 173.59 - Description of terms for explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... other material containing only propellant explosive. The term excludes charges, shaped, commercial...-flammable materials, in which only the explosive component is the primer. Cases, combustible, empty, without...
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a military explosive which is known to have contaminated groundwater on and near military installations where it has been used and stored. Historical disposal practices such as open burning and detonation have contributed to envir...
Zapata, Félix; García-Ruiz, Carmen
2017-06-01
Post-explosion scenes offer such chaos and destruction that evidence recovery and detection of post-blast residues from the explosive in the surrounding materials is highly challenging and difficult. The suitability of materials to retain explosives residues and their subsequent analysis has been scarcely investigated. Particularly, the use of explosive mixtures containing inorganic oxidizing salts to make improvised explosive devices (IEDs) is a current security concern due to their wide availability and lax control. In this work, a wide variety of materials such as glass, steel, plywood, plastic bag, brick, cardboard or cotton subjected to open-air explosions were examined using confocal Raman microscopy, aiming to detect the inorganic oxidizing salts contained in explosives as black powder, chloratite, dynamite, ammonium nitrate fuel oil and ammonal. Post-blast residues were detected through microscopic examination of materials surfaces. In general, the more homogeneous and smoother the surface was, the less difficulties and better results in terms of identification were obtained. However, those highly irregular surfaces were the most unsuitable collectors for the posterior identification of explosive traces by Raman microscopy. The findings, difficulties and some recommendations related to the identification of post-blast particles in the different materials studied are thoroughly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Munitions having an insensitive detonator system for initiating large failure diameter explosives
Perry, III, William Leroy
2015-08-04
A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...
Code of Federal Regulations, 2014 CFR
2014-04-01
..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...
Code of Federal Regulations, 2012 CFR
2012-04-01
..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...
Code of Federal Regulations, 2013 CFR
2013-04-01
..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...
Safety and performance enhancement circuit for primary explosive detonators
Davis, Ronald W [Tracy, CA
2006-04-04
A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... weapons, explosives, or other dangerous materials. § 1204.1005 Section § 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... description of the consequences for unauthorized introduction of firearms or weapons, explosives, or other...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
NASA Astrophysics Data System (ADS)
Gouwens, C.; Dragosavic, M.
The large reserves and increasing use of natural gas as a source of energy have resulted in its storage and transport becoming an urgent problem. Since a liquid of the same mass occupies only a fraction of the volume of a gas, it is economical to store natural gas as a liquid. Liquefied natural gas is stored in insulated tanks and also carried by ship at a temperature of -160 C to 170 C. If a serious accident allows the LNG to escape, a gas cloud forms. The results of a possible explosion from such a gas cloud are studied. The development of a leak, escape and evaporation, size and propagation of the gas cloud, the explosive pressures to be expected and the results on the environment are investigated. Damage to buildings is examined making use of the preliminary conclusions of the other sub-projects and especially the explosive pressures.
Non-detonable and non-explosive explosive simulators
Simpson, R.L.; Pruneda, C.O.
1997-07-15
A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.
One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.; Hust, G.; McClelland, M.
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurationsmore » (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HSU, P C; Hust, G; May, C
Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performedmore » detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.« less
Fluorescence based explosive detection: from mechanisms to sensory materials.
Sun, Xiangcheng; Wang, Ying; Lei, Yu
2015-11-21
The detection of explosives is one of the current pressing concerns in global security. In the past few decades, a large number of emissive sensing materials have been developed for the detection of explosives in vapor, solution, and solid states through fluorescence methods. In recent years, great efforts have been devoted to develop new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. This review article starts with a brief introduction on various sensing mechanisms for fluorescence based explosive detection, and then summarizes in an exhaustive and systematic way the state-of-the-art of fluorescent materials for explosive detection with a focus on the research in the recent 5 years. A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.
Semiconductor bridge (SCB) igniter
Bickes, Jr., Robert W.; Schwarz, Alfred C.
1987-01-01
In an explosive device comprising an explosive material which can be made to explode upon activation by activation means in contact therewith; electrical activation means adaptable for activating said explosive material such that it explodes; and electrical circuitry in operation association with said activation means; there is an improvement wherein said activation means is an electrical material which, at an elevated temperature, has a negative temperature coefficient of electrical resistivity and which has a shape and size and an area of contact with said explosive material sufficient that it has an electrical resistance which will match the resistance requirements of said associated electrical circuitry when said electrical material is operationally associated with said circuitry, and wherein said electrical material is polycrystalline; or said electrical material is crystalline and (a) is mounted on a lattice matched substrate or (b) is partially covered with an intimately contacting metallization area which defines its area of contact with said explosive material.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...
Ramírez, Alvaro; García-Torrent, Javier; Tascón, Alberto
2010-03-15
Agricultural products stored in silos, and their dusts, can undergo oxidation and self-heating, increasing the risk of self-ignition and therefore of fires and explosions. The aim of the present work was to determine the thermal susceptibility (as reflected by the Maciejasz index, the temperature of the emission of flammable volatile substances and the combined information provided by the apparent activation energy and the oxidation temperature) of icing sugar, bread-making flour, maize, wheat, barley, alfalfa, and soybean dusts, using experimental methods for the characterisation of different types of coal (no standardised procedure exists for characterising the thermal susceptibility of either coal or agricultural products). In addition, the thermal stability of wheat, i.e., the risk of self-ignition determined as a function of sample volume, ignition temperature and storage time, was determined using the methods outlined in standard EN 15188:2007. The advantages and drawbacks of the different methods used are discussed. (c) 2009 Elsevier B.V. All rights reserved.
Explosives Removal from Munitions Wastewaters
1975-01-01
activated carbon columns. Waste water, for the study was drawn as needed from the effluent of the i diatomaceous earth filters and stored in an 800-gallon...explosive Laterials, such as DNT and nitrocresols, from waste streams. The loaded adsorbent can be regenerated with solvent. To minimize operating costs...most effective is fixed-bed adsorption followir.nI clarification and filtration to remove suspended j solids. Activated carbon adsorbent is used at a
NASA missions studies magnetic space explosions
2017-12-08
Every day, invisible magnetic explosions are happening around Earth, on the surface of the sun and across the universe. These explosions, known as magnetic reconnection, occur when magnetic field lines cross, releasing stored magnetic energy. Such explosions are a key way that clouds of charged particles — plasmas — are accelerated throughout the universe. In Earth’s magnetosphere — the giant magnetic bubble surrounding our planet — these magnetic reconnections can fling charged particles toward Earth, triggering auroras. Read more: go.nasa.gov/2mnMtDm Video caption - In this simulation, a reconnection even pushes a blob of plasma toward Earth. The jet blown in the opposite direction wobbles due to the unstable conditions. Credit: NASA’s Goddard Space Flight Center/Yi-Hsin Liu/Joy Ng, producer
46 CFR 109.559 - Explosives and radioactive materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...
46 CFR 109.559 - Explosives and radioactive materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...
46 CFR 109.559 - Explosives and radioactive materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...
46 CFR 109.559 - Explosives and radioactive materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...
46 CFR 109.559 - Explosives and radioactive materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...
NASA Astrophysics Data System (ADS)
Farrell, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.
2015-05-01
The requirement to detect hazardous materials (i.e., chemical, biological, and explosive) on a host of materials has led to the development of hazard detection systems. These new technologies and their capabilities could have immediate uses for the US military, national security agencies, and environmental response teams in efforts to keep people secure and safe. In particular, due to the increasing use by terrorists, the detection of common explosives and improvised explosive device (IED) materials have motivated research efforts toward detecting trace (i.e., particle level) quantities on multiple commonly encountered surfaces (e.g., textiles, metals, plastics, natural products, and even people). Non-destructive detection techniques can detect trace quantities of explosive materials; however, it can be challenging in the presence of a complex chemical background. One spectroscopic technique gaining increased attention for detection is Raman. One popular explosive precursor material is ammonium nitrate (AN). The material AN has many agricultural applications, however it can also be used in the fabrication of IEDs or homemade explosives (HMEs). In this paper, known amounts of AN will be deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair, textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this report the detection and identification of AN will be demonstrated.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555.221 Section 555.221 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling...
Code of Federal Regulations, 2010 CFR
2010-04-01
... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555.221 Section 555.221 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling...
El-Sharkawy, Yasser H; Elbasuney, Sherif
2018-06-07
Energy-rich bonds such as nitrates (NO 3 - ) and percholorates (ClO 4 - ) have an explosive nature; they are frequently encountered in high energy materials. These bonds encompass two highly electronegative atoms competing for electrons. Common explosive materials including urea nitrate, ammonium nitrate, and ammonium percholorates were subjected to photoacoustic spectroscopy. The captured signal was processed using novel digital algorithm designed for time and frequency domain analysis. Frequency domain analysis offered not only characteristic frequencies for NO 3 - and ClO 4 - groups; but also characteristic fingerprint spectra (based on thermal, acoustical, and optical properties) for different materials. The main outcome of this study is that phase-shift domain analysis offered an outstanding signature for each explosive material, with novel discrimination between explosive and similar non-explosive material. Photoacoustic spectroscopy offered different characteristic signatures that can be employed for real time detection with stand-off capabilities. There is no two materials could have the same optical, thermal, and acoustical properties. Copyright © 2018 Elsevier B.V. All rights reserved.
49 CFR 176.164 - Fire precautions and firefighting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Class 1 (explosive) materials other than those of Division 1.4 (explosive). No welding, burning, cutting... compartment, including a closed vehicle deck space, which contains Class 1 (explosive) materials must be...
49 CFR 176.164 - Fire precautions and firefighting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Class 1 (explosive) materials other than those of Division 1.4 (explosive). No welding, burning, cutting... compartment, including a closed vehicle deck space, which contains Class 1 (explosive) materials must be...
Code of Federal Regulations, 2013 CFR
2013-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...
Code of Federal Regulations, 2014 CFR
2014-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...
Technical note: Headspace analysis of explosive compounds using a novel sampling chamber.
DeGreeff, Lauryn; Rogers, Duane A; Katilie, Christopher; Johnson, Kevin; Rose-Pehrsson, Susan
2015-03-01
The development of instruments and methods for explosive vapor detection is a continually evolving field of interest. A thorough understanding of the characteristic vapor signatures of explosive material is imperative for the development and testing of new and current detectors. In this research a headspace sampling chamber was designed to contain explosive materials for the controlled, reproducible sampling and characterization of vapors associated with these materials. In a detonation test, the chamber was shown to contain an explosion equivalent to three grams of trinitrotoluene (TNT) without damage to the chamber. The efficacy of the chamber in controlled headspace sampling was evaluated in laboratory tests with bulk explosive materials. Small quantities of TNT, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were separately placed in the sampling chamber, and the headspace of each material was analyzed by gas chromatography/mass spectrometry (GC/MS) with online cryogenic trapping to yield characteristic vapor signatures for each explosive compound. Chamber sampling conditions, temperature and sampling time, were varied to demonstrate suitability for precise headspace analysis. Published by Elsevier Ireland Ltd.
49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ships, freight containers containing Class 1 (explosive) materials must be stowed only in the lowest... freight containers. 176.170 Section 176.170 Transportation Other Regulations Relating to Transportation... and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...
49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ships, freight containers containing Class 1 (explosive) materials must be stowed only in the lowest... freight containers. 176.170 Section 176.170 Transportation Other Regulations Relating to Transportation... and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...
49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ships, freight containers containing Class 1 (explosive) materials must be stowed only in the lowest... freight containers. 176.170 Section 176.170 Transportation Other Regulations Relating to Transportation... and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers. (a...
49 CFR 176.144 - Segregation of Class 1 (explosive) materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation of Class 1 (explosive) materials. 176... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.144 Segregation of Class... any ferrous metal or aluminum alloy, unless separated by a partition. (e) Segregation on deck: When...
49 CFR 176.144 - Segregation of Class 1 (explosive) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation of Class 1 (explosive) materials. 176... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.144 Segregation of Class... any ferrous metal or aluminum alloy, unless separated by a partition. (e) Segregation on deck: When...
27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).
Code of Federal Regulations, 2010 CFR
2010-04-01
... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...
27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).
Code of Federal Regulations, 2012 CFR
2012-04-01
... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...
27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).
Code of Federal Regulations, 2013 CFR
2013-04-01
... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...
27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).
Code of Federal Regulations, 2011 CFR
2011-04-01
... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...
27 CFR 555.110 - Furnishing of samples (Effective on and after January 24, 2003).
Code of Federal Regulations, 2014 CFR
2014-04-01
... or import explosive materials or ammonium nitrate must, when required by letter issued by the Director, furnish— (1) Samples of such explosive materials or ammonium nitrate; (2) Information on chemical... identification of the explosive materials or to identification of the ammonium nitrate. (b) Reimbursement. The...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
10 CFR 36.69 - Irradiation of explosive or flammable materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.200 Purpose. The purpose of this... store, handle, or process hazardous substances; (b) Alert those responsible for the siting of HUD...
ONE-DIMENSIONAL TIME TO EXPLOSION (THERMAL SENSITIVITY) TESTS ON PETN, PBX-9407, LX-10, AND LX-17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Peter C.; Strout, Steve; McClelland, Matthew
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to thermal explosion, threshold thermal explosion temperature, and determine the kinetic parameters of thermal decomposition of energeticmore » materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the results of our recent ODTX experiments on PETN powder, PBX-9407 pressed part, LX-10 pressed part, LX-17 pressed part and compares the test data that were obtained decades ago with the older version of ODTX system. Test results show the thermal sensitivity of various materials tested in the following order: PETN> PBX-9407 > LX-10 > LX-17.« less
NASA Technical Reports Server (NTRS)
2004-01-01
Beginning with the Apollo Program in the early 1960s, the NASA White Sands Test Facility (WSTF) has supported every U.S. human exploration space flight program to date. Located in Las Cruces, New Mexico, WSTF is part of Johnson Space Center. The facility's primary mission is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components, and rocket propulsion systems to enable the safe human exploration and utilization of space. WSTF stores, tests, and disposes of Space Shuttle and International Space Station propellants. Since aerospace fluids can have harmful reactions with the construction materials of the systems containing them, a major component of WSTF's work is the study of propellants and hazardous materials. WSTF has a wide variety of resources to draw upon in assessing the fire, explosion, compatibility, and safety hazards of these fluids, which include hydrogen, oxygen, hydrazine fuels, and nitrogen tetroxide. In addition to developing new test methods, WSTF has created technical manuals and training courses for the safe use of aerospace fluids.
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.
Equations of State and High-Pressure Phases of Explosives
NASA Astrophysics Data System (ADS)
Peiris, Suhithi M.; Gump, Jared C.
Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.
Explosive materials equivalency, test methods and evaluation
NASA Technical Reports Server (NTRS)
Koger, D. M.; Mcintyre, F. L.
1980-01-01
Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.
NASA Astrophysics Data System (ADS)
Heider, S. A.; Dunn, W. L.
2015-11-01
The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
27 CFR 555.30 - Reporting theft or loss of explosive materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting theft or loss of... and Miscellaneous Provisions § 555.30 Reporting theft or loss of explosive materials. (a) Any licensee or permittee who has knowledge of the theft or loss of any explosive materials from his stock shall...
Detection of explosives in soils
Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.
2002-01-01
An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.
Molecular hydrodynamics of high explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belak, J.
1994-11-01
High explosives release mechanical energy through chemical reactions. Applications of high explosives are vast in the mining and military industries and are beginning to see more civilian applications such as the deployment of airbags in modern automobiles. One of the central issues surrounding explosive materials is decreasing their sensitivity, necessary for their safe handling, while maintaining a high yield. Many practical tests have been devised to determine the sensitivity of explosive materials to shock, to impact, to spark, and to friction. These tests have great value in determining yield and setting precautions for safe handling but tell little of themore » mechanisms of initiation. How is the mechanical energy of impact or friction transformed into the chemical excitation that initiates explosion? The answer is intimately related to the structure of the explosive material, the size and distribution of grains, the size and presence of open areas such as voids and gas bubbles, and inevitably the bonding between explosive molecules.« less
Detonation Properties Measurements for Inorganic Explosives
NASA Astrophysics Data System (ADS)
Morgan, Brent A.; Lopez, Angel
2005-03-01
Many commonly available explosive materials have never been quantitatively or theoretically characterized in a manner suitable for use in analytical models. This includes inorganic explosive materials used in spacecraft ordnance, such as zirconium potassium perchlorate (ZPP). Lack of empirical information about these materials impedes the development of computational techniques. We have applied high fidelity measurement techniques to experimentally determine the pressure and velocity characteristics of ZPP, a previously uncharacterized explosive material. Advances in measurement technology now permit the use of very small quantities of material, thus yielding a significant reduction in the cost of conducting these experiments. An empirical determination of the explosive behavior of ZPP derived a Hugoniot for ZPP with an approximate particle velocity (uo) of 1.0 km/s. This result compares favorably with the numerical calculations from the CHEETAH thermochemical code, which predicts uo of approximately 1.2 km/s under ideal conditions.
Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N
2015-12-30
This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L; Wardell, J F; Weese, R K
The violence of thermal explosions with energetic materials is affected by many material properties, including mechanical and thermal properties, thermal ignition kinetics, and deflagration behavior. These properties must be characterized for heated samples as well as pristine materials. We present available data for these properties for two HMX-based formulations--LX-04 and PBX-9501, and two RDX-based formulations--Composition B and PBXN-109. We draw upon separately published data on the thermal explosion violence with these materials to compare the material properties with the observed violence. We have the most extensive data on deflagration behavior of these four formulations, and we discuss the correlation ofmore » the deflagration data with the violence results. The data reported here may also be used to develop models for application in simulation codes such as ALE3D to calculate and Dredict thermal explosion violence.« less
Explosive scabbling of structural materials
Bickes, Jr., Robert W.; Bonzon, Lloyd L.
2002-01-01
A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.
Method and apparatus for detecting explosives
Moore, David Steven [Santa Fe, NM
2011-05-10
A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.
Nanoscience for Insensitive Munitions Development (Briefing Charts)
2008-12-03
reactive material Ni/Al Hypervelocity collisions of ND Melting of nitromethane Shocked energetic materials Self-sustained detonation of model explosive ...deformation by compressing, stretching or twisting the bond. First Observed by Bridgeman as Explosion of Common Substances Subjected to Pressure and Shear...in Energetic Materials as New Means for Designing Nonconventional High Explosives : An analysis of Soviet Research, Tech Report 1991. A. M
Smart phones: platform enabling modular, chemical, biological, and explosives sensing
NASA Astrophysics Data System (ADS)
Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.
2013-05-01
Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.
Semiconductor bridge (SCB) detonator
Bickes, Jr., Robert W.; Grubelich, Mark C.
1999-01-01
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.
The Enhancement of Gas Pressure Diagnostics in the P-ODTX System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Peter C.; Jones, Aaron; Tesillo, Lynda
The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory is a useful tool for thermal safety assessment of energetic material. It has been used since 1970s to measure times to explosion, threshold thermal explosion temperature, thermal explosion violence, and determine decomposition kinetic parameters of energetic materials. ODTX data obtained for the last 40 years can be found elsewhere.
System for fracturing an underground geologic formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.
2017-03-14
An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacentmore » to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive...
Synthesis, Chemical and Physical Characterization of TKX-50
NASA Astrophysics Data System (ADS)
Klapoetke, Thomas
2015-06-01
TKX-50 (bis(hydroxylammonium) 5,5'-bis(tetrazolate-1 N-oxide)) is one of the most promising ionic salts as a possible replacement for RDX. The thermal behavior of TKX-50 (bis(hydroxylammonium) 5,5'-(tetrazolate-1 N-oxide)) and the kinetics of its thermal decomposition were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The calculated results of the detonation parameters and equations of state for the detonation products (EOS DP) of explosive materials TKX-50 and MAD-X1 and several of their derivatives were obtained using the computer program EXPLO5 V.6.01. These values were also calculated for standard explosive materials which are commonly used such as TNT, PETN, RDX, HMX as well as for the more powerful explosive material CL-20 to allow comparisons to be made. The determination of the detonation parameters and EOS DP was conducted both for explosive materials having the maximum crystalline density and for porous right up to 50% in volume materials. The influence of the content of plastic binder polyisobutylene used (up to 20% in volume) on all of the investigated properties was also examined. Calculated results on shock wave loading of different inert barriers in a wide range of their dynamic properties under explosion on their surfaces of concrete size charges of different explosive materials in various initial states were obtained with the use of the one-dimensional computer hydrocode EP. Barriers due to materials such as polystyrene, textolite, magnesium, aluminum, zinc, copper, tantalum or tungsten were examined (Fig. 1). Initial values of pressure and other parameters of loading on the interface explosive-barrier were determined in the process of conducted calculations. Phenomena of propagation and attenuation of shock waves in barrier materials were considered too for all possible situations. From these calculations, an essentially complete overview of the explosion properties and characteristics of shock wave action onto barriers was obtained for several new and also for several standard explosive materials as a comparison. Work done in collaboration with Golubev/Fischer/Stierstorfer/Bohanek/Dobrilovic.
Competency Development Detonator Development and Design
2007-09-01
required. Exploding foil initiators ( EFI or Slapper) - The benefits of using an EFI is that the metal bridge is separated from the explosive, the explosive...to the materials ignition temperature to begin a burning reaction that propagates to the next material in the initiator . Exploding bridgewire (EBW...principles "* Initiation capabilities of the MEMS scale detonator DETONATOR BACKGROUND In a typical detonator, an explosive train is used. The explosive train
NASA Astrophysics Data System (ADS)
Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Sokolov, P. N.
2016-08-01
The present work is one of the world first attempts to develop effective methods for controlling explosive sensitivity of energy-related materials with the help of weak electric (up to 1 mV/cm) and magnetic (0.001 T) fields. The resulting experimental data can be used for purposeful alternation of explosive materials reactivity, which is of great practical importance. The proposed technology of producing and processing materials in a weak electric field allows forecasting long-term stability of these materials under various energy impacts.
The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism
NASA Astrophysics Data System (ADS)
Soker, Noam
2017-04-01
Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is (E NS-spin/E exp) ≈ E exp/1052 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.
Ion spectrometric detection technologies for ultra-traces of explosives: a review.
Mäkinen, Marko; Nousiainen, Marjaana; Sillanpää, Mika
2011-01-01
In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods. Copyright © 2011 Wiley Periodicals, Inc.
Makowiecki, D.M.
1996-04-09
A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.
Code of Federal Regulations, 2012 CFR
2012-04-01
... or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive that, by April... 555.182 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES...
Code of Federal Regulations, 2011 CFR
2011-04-01
... or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive that, by April... 555.182 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES...
DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials
Desmare, Gabriel W.; Cates, Dillard M.
2002-05-14
High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.
In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, Timothy Todd
2014-09-01
The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into themore » experiment configuration has been explored.« less
Use of UV Sources for Detection and Identification of Explosives
NASA Technical Reports Server (NTRS)
Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur
2009-01-01
Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.
Semiconductor bridge (SCB) detonator
Bickes, R.W. Jr.; Grubelich, M.C.
1999-01-19
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.
Smokeless Propellants as Vehicle Borne IED Main Charges: An Initial Threat Assessment
2008-01-01
uci: • danger clasa : (B) critical detonation height I 45 - 65 em. detonation danger , during fillin. material in mixing trough, in barrels as a in...Appendix A Examples ofMorphology Appendix B ATF List of Explosives Materials Appendix C Cabella Web Page Appendix D ATF Intelligence Report on Explosives...available for exploitation by violent extremist organizations and individuals. Discussion: Conventional explosive materials remain the most probable
Unreacted Hugoniots for porous and liquid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, R.L.; Sheffield, S.A.
1993-08-01
Numerous authors have measured the Hugoniots of a variety of granular explosives pressed to different densities. Each explosive at each density was typically then treated as a unique material having its own Hugoniot. By combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. We discuss application of this method to several materials including HMX, PETN, TNT,more » and Tetryl, as well as HNS. We also show that the ``Universal Liquid Hugoniot`` can be used to calculate the unreacted Hugoniot for liquid explosives. With this method only the ambient pressure sound speed and density are needed to predict the Hugoniot. Applications presented include nitromethane and liquid TNT.« less
The challenge of improvised explosives
Maienschein, Jon L.
2012-06-14
Energetic materials have been developed for decades, and indeed centuries, with a common set of goals in mind. Performance (as a detonating explosive, a propellant, or a pyrotechnic) has always been key, equally important have been the attributes of safety, stability, and reproducibility. Research and development with those goals has led to the set of energetic materials commonly used today. In the past few decades, the adoption and use of improvised explosives in attacks by terrorists or third-world parties has led to many questions about these materials, e.g., how they may be made, what threat they pose to the intendedmore » target, how to handle them safely, and how to detect them. The unfortunate advent of improvised explosives has opened the door for research into these materials, and there are active programs in many countries. I will discuss issues and opportunities facing research into improvised explosives.« less
Nuclear quadrupole resonance detection of explosives: an overview
NASA Astrophysics Data System (ADS)
Miller, Joel B.
2011-06-01
Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.
Wireless sensor for detecting explosive material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K
Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
2010-06-24
control Defensive Test Chamber • Certified for Chem-Bio simulants • Man-in-simulant (MIST) testing Bang Box • Explosive material synthesis and testing...Explosive material synthesis and testing Bang Box –Peroxide Explosives Properties – HMTD, TATP, DADP –Peroxide Explosives as Initiators –TATP... Synthesis –HMTD Synthesis –RDX Synthesis –ANFO Mixture Mustang VILLAGE Approved for public release; distribution is unlimited. • Hotel, Post Office
Explosive simulants for testing explosive detection systems
Kury, John W.; Anderson, Brian L.
1999-09-28
Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.
A Summary Report on Store Heating Technology
1978-09-01
from aerodynamic heating effects. Almost all present-day bombs and fuzes have, as their explosive charge, some form of TNT which melts at about 178...deg. This was achieved on flights 14, 16, 18, 19, and 20. Flight 15 was a subsonic mission to perform afterburner tests, and flight 17 was aborted...BDU-12 at a Mach number of 2.5. Of course, this store did not contain TNT and was in no way restricted by the temperature limitations previously
DoD Contractors’ Safety Manual for Ammunition and Explosives.
1997-09-01
grit, and other foreign material into operating buildings. 9. Windows and skylights . Non-shatterable glazing is preferred where an explosion...with the explosives being processed. Dull or damaged tools shall not be used for machining high explosives. k. The explosives products resulting from
Code of Federal Regulations, 2011 CFR
2011-10-01
... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2011-10-01 2011-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...
Code of Federal Regulations, 2013 CFR
2013-10-01
... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2013-10-01 2013-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...
Code of Federal Regulations, 2014 CFR
2014-10-01
... serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. (a) Except for... 49 Transportation 2 2014-10-01 2014-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
Detection of vehicle-based improvised explosives using ultra-trace detection equipment
NASA Astrophysics Data System (ADS)
Fisher, Mark; Sikes, John; Prather, Mark; Wichert, Clint
2005-05-01
Vehicle-borne improvised explosive devices (VBIEDs) have become the weapon of choice for insurgents in Iraq. At the same time, these devices are becoming increasingly sophisticated and effective. VBIEDs can be difficult to detect during visual inspection of vehicles. This is especially true when explosives have been hidden behind a vehicle"s panels, inside seat cushions, under floorboards, or behind cargo. Even though the explosive may not be visible, vapors of explosive emanating from the device are often present in the vehicle, but the current generation of trace detection equipment has not been sensitive enough to detect these low concentrations of vapor. This paper presents initial test results using the Nomadics Fido sensor for detection of VBIEDs. The sensor is a small, explosives detector with unprecedented levels of sensitivity for detection of nitroaromatic explosives. Fido utilizes fluorescence quenching of novel polymer materials to detect traces of explosive vapor emanating from targets containing explosives. These materials, developed by collaborators at the Massachusetts Institute of Technology (MIT), amplify the quenching response that occurs when molecules of explosive bind to films of the polymer. These materials have enabled development of sensors with performance approaching that of canines trained to detect explosives. The ability of the sensor to detect explosives in vehicles and on persons who have recently been in close proximity to explosives has recently been demonstrated. In these tests, simulated targets were quickly and easily detected using a Fido sensor in conjunction with both direct vapor and swipe sampling methods. The results of these tests suggest that chemical vapor sensing has utility as a means of screening vehicles for explosives at checkpoints and on patrols.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Federal property or Federal governmental functions. Explosives or munitions emergency. A situation... explosives or munitions, an improvised explosive device (IED), other potentially explosive material or device, or other potentially harmful military chemical munitions or device, that creates an actual or...
Analysing the Terrorist Threat
2001-09-01
through subterfuge, several vials of Yersinia pestis ( bubonic plague -culture) which he stored along with explosives in his home. None of his ’equipment’ was...public release, distribution unlimited Ibis paper is part of the following report: TITLE: Chemical and Biological Medical Treatment Symposium
Explosive instability and erupting flux tubes in a magnetized plasma
Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.
2015-01-01
The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193
Explosive Characteristics of Carbonaceous Nanoparticles
NASA Astrophysics Data System (ADS)
Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok
2013-03-01
Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)
49 CFR 172.202 - Description of hazardous material on shipping papers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE... description must be indicated (by mass or volume, or by activity for Class 7 materials) and must include an... mass. For an explosive that is an article, such as Cartridges, small arms, the net explosive mass may...
49 CFR 176.140 - Segregation from other classes of hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation from other classes of hazardous... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.140 Segregation from other classes of hazardous materials. (a) Class 1 (explosive) materials must be segregated...
49 CFR 176.140 - Segregation from other classes of hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation from other classes of hazardous... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.140 Segregation from other classes of hazardous materials. (a) Class 1 (explosive) materials must be segregated...
49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Transport of Class 1 (explosive) materials in vehicle spaces. 176.168 Section 176.168 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed...
Near-Source Mechanism for Creating Shear Content from Buried Explosions
NASA Astrophysics Data System (ADS)
Steedman, D. W.; Bradley, C. R.
2017-12-01
The Source Physics Experiment (SPE) has the goal of developing a greater understanding of explosion phenomenology at various spatial scales, from near-source to the far-field. SPE Phase I accomplished a series of six chemical explosive tests of varying scaled depth of burial within a borehole in granite. The testbed included an extensive array of triaxial accelerometers. Velocity traces derived from these accelerometers allow for detailed study of the shock environment close in to the explosion. A specific goal of SPE is to identify various mechanisms for generating shear within the propagation environment and how this might be informative on the identification of explosive events that otherwise fail historic compression wave energy/shear wave energy (P/S) event discrimination. One of these sources was hypothesized to derive from slippage along joint sets near to the source. Velocity traces from SPE Phase I events indicate that motion tangential to a theoretically spherical shock wave are initially quiescent after shock arrival. But this period of quiescence is followed by a sudden increase in amplitude that consistently occurs just after the peak of the radial velocity (i.e., onset of shock unloading). The likelihood of occurrence of this response is related to yield-scaled depth-of-burial (SDOB). We describe a mechanism where unloading facilitates dilation of closed joints accompanied by a release of shear energy stored during compression. However, occurrence of this mechanism relies on relative amplitudes between the shock loading caused at a point and the in situ stress: at too large a SDOB the stored energy is insufficient to overcome the combination of the overburden stress and traction on the joint. On the other hand, too small of a SDOB provides that the in situ stress is insufficient to keep joints from storing stress, thus overriding the release mechanism and mitigating rupture-like slippage. We develop a notional relationship between SPE Phase I SDOB and the likelihood of shear release. We then compare this to the six recorded DPRK events in terms of where these events fall in relation to the accepted mb:MS discriminant using estimated SDOB values for those events. To first order SPE SDOBs resulting in shear release appear to map to estimated DPRK SDOBs which display excessive shear magnitude. LA-UR-17-29528.
49 CFR 173.59 - Description of terms for explosives.
Code of Federal Regulations, 2012 CFR
2012-10-01
... perforating guns, charged, oil well, without detonator. Articles consisting of a steel tube or metallic strip... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... fiber, metal or other material containing only propellant explosive. The term excludes charges, shaped...
76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol dinitrate]. Erythritol tetranitrate explosives..., trinitroglycerine]. Nitroglycide. Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives...
Erickson, Robert P
2013-05-01
There has been a recent explosion in research on Niemann-Pick type C disease. Much of the work has used mouse models or cells in culture to elucidate the pathophysiological mechanisms resulting in the phenotype of the disease. This work has generated several contrasting views on the mechanism, which are labeled 'controversies' here. In this review, two of these controversies are explored. The first concerns which stored materials are causative in the disease: cholesterol, gangliosides and sphingolipids, or something else? The second concerns which cells in the body require Npc1 in order to function properly: somatic cells, neurons only, or neurons and glia? For the first controversy, a clear answer has emerged. More research will be needed in order to definitively solve the second controversy.
Ultrashort-pulse laser generated nanoparticles of energetic materials
Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM
2010-08-03
A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.
Explosives and pyrotechnic propellants for use in long term deep space missions
NASA Technical Reports Server (NTRS)
Gorzynski, C. S., Jr.; Maycock, J. N.
1973-01-01
Explosives and pyrotechnic propellant materials which will withstand heat sterilization cycling at 125 C and ten year deep space aging under 10 to the minus 6th power torr and 66 C have been selected. The selection was accomplished through a detailed literature survey and an analytical evaluation of the physicochemical properties of the materials. The chemical components of the electroexplosive devices used in U.S. missiles and spacecraft were categorized into primary explosives, secondary explosives, and propellant ingredients. Kinetic data on such parameters as thermal decomposition and sublimation were obtained for these materials and used as a basis for the ten year life prediction. From these experimental data and some analytical calculations, a listing of candidate materials for deep space missions was made.
49 CFR 176.156 - Defective packages.
Code of Federal Regulations, 2010 CFR
2010-10-01
... packages. (a) No leaking, broken, or otherwise defective package containing Class 1 (explosive) materials.... (b) No Class 1 (explosive) material, which for any reason has deteriorated or undergone a change of...
Application of high explosion cratering data to planetary problems
NASA Technical Reports Server (NTRS)
Oberbeck, V. R.
1977-01-01
The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.
2009-10-01
detonation and expansion of the TNT explosive materials was described using the JWL (Jones-Wilkins-Lee) equation of state (EOS) along with a high...explosive material definition (Dobratz 1981). The JWL equation is described as: Where V= ρ0 (initial density of an explosive)/ρ (density of detonation...gas). E is specific internal energy. A, B, R1, R2, ω are JWL fitting parameters (Table 2). ρ0 Detonation velocity CJ pressure Material
NASA Astrophysics Data System (ADS)
Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.
2013-05-01
The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.
Non-detonable explosive simulators
Simpson, Randall L.; Pruneda, Cesar O.
1994-01-01
A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P. C.; Strout, S.; Reynolds, J. G.
Incidents caused by fire and other thermal events can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Thus, it is important to understand the response of energetic materials to thermal insults. The One-Dimensional-Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) has been used for decades to characterize thermal safety of energetic materials. In this study, an integration of a pressure monitoring element has been added into the ODTX system (P-ODTX) to perform thermal explosion (cook-off) experiments (thermal runaway) on PETN powder, PBX-9407, LX-10-2, LX-17-1, and detonator samples (cupmore » tests). The P-ODTX testing generates useful data (thermal explosion temperature, thermal explosion time, and gas pressures) to assist with the thermal safety assessment of relevant energetic materials and components. This report summarizes the results of P-ODTX experiments that were performed from May 2015 to July 2017. Recent upgrades to the data acquisition system allows for rapid pressure monitoring in microsecond intervals during thermal explosion. These pressure data are also included in the report.« less
Bonnot, Karine; Bernhardt, Pierre; Hassler, Dominique; Baras, Christian; Comet, Marc; Keller, Valérie; Spitzer, Denis
2010-04-15
Among various methods for landmine detection, as well as soil and water pollution monitoring, the detection of explosive compounds in air is becoming an important and inevitable challenge for homeland security applications, due to the threatening increase in terrorist explosive bombs used against civil populations. However, in the last case, there is a crucial need for the detection of vapor phase traces or subtraces (in the ppt range or even lower). A novel and innovative generator for explosive trace vapors was designed and developed. It allowed the generation of theoretical concentrations as low as 0.24 ppq for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in air according to Clapeyron equations. The accurate generation of explosive concentrations at subppt levels was verified for RDX and 2,4,6-trinitrotoluene (TNT) using a gas chromatograph coupled to an electron capture detector (GC-ECD). First, sensing material experiments were conducted on a nanostructured tungsten oxide. The sensing efficiency of this material determined as its adsorption capacity toward 54 ppb RDX was calculated to be five times higher than the sensing efficiency of a 54 ppb TNT vapor. The material sensing efficiency showed no dependence on the mass of material used. The results showed that the device allowed the calibration and discrimination between materials for highly sensitive and accurate sensing detection in air of low vapor pressure explosives such as TNT or RDX at subppb levels. The designed device and method showed promising features for nanosensing applications in the field of ultratrace explosive detection. The current perspectives are to decrease the testing scale and the detection levels to ppt or subppt concentration of explosives in air.
The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soker, Noam, E-mail: soker@physics.technion.ac.il
Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg;more » It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.« less
Burn injuries related to liquefied petroleum gas-powered cars.
Bozkurt, Mehmet; Kulahci, Yalcin; Zor, Fatih; Kapi, Emin
2008-01-01
Liquefied petroleum gas (LPG), which is used as a type of fuel, is stored as a liquid under high pressure in tanks. Immediate and sudden explosion of these tanks can release a large amount of gas and energy into the environment and can result in serious burns. In this study, the cases of 18 patients injured due to LPG burns in five incidents were examined, along with their epidemiologic features. The authors also investigated the causes of the LPG tank explosions. Inhalation injury was present in 11 cases with varying degrees of severity, and 7 patients subsequently required mechanical ventilation. The explosions resulted from weakening of the tank wall (n = 2), crash impact (n = 2), and gas leakage from the tank (n = 1). LPG-powered cars are becoming more popular because of their lower operational costs. However, LPG tanks can be hazardous in the event of a tank explosion. Burns caused by explosions of the LPG tanks in cars have significant mortality and morbidity. This danger must be taken into account and public awareness must be increased.
Elaboration of the Charge Constructions of Explosives for the Structure of Facing Stone
NASA Astrophysics Data System (ADS)
Khomeriki, Sergo; Mataradze, Edgar; Chikhradze, Nikoloz; Losaberidze, Marine; Khomeriki, Davit; Shatberashvili, Grigol
2017-12-01
Increased demand for high-strength facing material caused the enhancement of the volume of explosives use in modern technologies of blocks production. The volume of broken rocks and crushing quality depends on the rock characteristics and on the properties of the explosive, in particular on its brisance and serviceability. Therefore, the correct selection of the explosive for the specific massif is of a considerable practical importance. For efficient mining of facing materials by explosion method the solving of such problems as determination of the method of blasthole drilling as well as of the regime and charge values, selection of the explosive, blastholes distribution in the face and their order is necessary. This paper focuses on technical solutions for conservation of rock natural structure in the blocks of facing material, mined by the use of the explosives. It has been established that the efficient solving of mentioned problem is attained by reducing of shock pulse duration. In such conditions the rigidity of crystalline lattice increases in high pressure area. As a result, the hazard if crack formation in structural unites and the increases of natural cracks are excluded. Short-time action of explosion pulse is possible only by linear charges of the explosives, characterized by high detonation velocity which detonate by the velocity of 7-7.5 km/sec and are characterized by very small critical diameter.
Final report for SERDP WP-2209 Replacement melt-castable formulations for Composition B
2017-05-19
Chemical reaction of the materials in the melt ............................................................... 5 Thermal degradation of materials...reasons other than the hazard of explosion, these include: • Chemical reaction of the materials in the melt • Thermal degradation at low...temperature • Sublimation and condensation of explosive material on equipment and exposure to workers Chemical reaction of the materials in the melt
Snap, crack and pop of explosive fruit.
Galstyan, Anahit; Hay, Angela
2018-05-09
There is an increasing appreciation for the role of physical forces in plant development. Mechanics are fundamental to how explosive fruit eject their seeds, and recent studies have successfully combined mechanics with developmental genetics to help explain how these dispersal traits are produced and how they evolved. Computational modeling is used more and more to address developmental questions, and explosive fruit are particularly good systems for combining biology and modeling approaches. Finite element models have been recently used to explore questions such as: Why do touch-me-not species with similar fruits, differ so much in how efficiently they transfer stored energy to eject seeds? And how do popping cress fruits use the expansive force of turgor pressure for tissue contraction? Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Experimental evaluation of LPG tank explosion hazards.
Stawczyk, Jan
2003-01-31
Liquefied-pressure gases (LPG) are transported and stored in the liquid phase in closed tanks under sufficiently high pressure. In the case of an accident, an abrupt tank unsealing may release enormous quantity of evaporating gas and energy that has a destructive effect on the tank and its surroundings. In this paper, experiments with explosions of small LPG tanks are described. The data acquisition equipment applied in the tests provided a chance to learn dynamics of the process and determine hazard factors. The tests enabled a determination of temperature and pressure at which tanks containing LPG disrupt. The results enable a reconstruction of consecutive phases of the explosion and identification of hazards resulting from damage of the tanks. An explanation of the tank unsealing process with fluid parameters above critical point is given.
Scribner, Kenneth J.
1985-01-01
Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.
Method for fabricating non-detonable explosive simulants
Simpson, Randall L.; Pruneda, Cesar O.
1995-01-01
A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.
Non-detonable explosive simulators
Simpson, R.L.; Pruneda, C.O.
1994-11-01
A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.
30 CFR 57.6902 - Excessive temperatures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...
30 CFR 57.6902 - Excessive temperatures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...
30 CFR 57.6902 - Excessive temperatures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...
30 CFR 57.6902 - Excessive temperatures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...
30 CFR 57.6902 - Excessive temperatures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...
Understanding ultrafine nanodiamond formation using nanostructured explosives
Pichot, Vincent; Risse, Benedikt; Schnell, Fabien; Mory, Julien; Spitzer, Denis
2013-01-01
The detonation process is able to build new materials with a bottom-up approach. Diamond, the hardest material on earth, can be synthesized in this way. This unconventional synthesis route is possible due to the presence of carbon inside the high-explosive molecules: firing high-explosive mixtures with a negative oxygen balance in a non-oxidative environment leads to the formation of nanodiamond particles. Trinitrotoluene (TNT) and hexogen (RDX) are the explosives primarily used to synthesize nanodiamonds. Here we show that the use of nanostructured explosive charges leads to the formation of smaller detonation nanodiamonds, and it also provides new understanding of nanodiamond formation-mechanisms. The discontinuity of the explosive at the nanoscale level plays the key role in modifying the diamond particle size, and therefore varying the size with microstructured charges is impossible. PMID:23831716
NASA Astrophysics Data System (ADS)
Backofen, Joseph E.
2005-07-01
This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.
NASA Astrophysics Data System (ADS)
Savenkov, Georgiy; Morozov, Viktor; Kats, Victor
2018-05-01
Results of the experimentation on the destruction of the phase change materials (beeswax and paraffin) by the electric explosion of conductors are presented. The process of the explosion of copper and nickel titanium wires in both pure PCM and its mixture with nonosized additives of cuprous oxide is analyzed. The effect of this additive on the process of the expansion of the electric-discharge plasma during the electric explosion of conductors and on the strength of composite materials is demonstrated. The piezoprobe-based method of measurement of the radial pressure during samples destruction is developed. The experiments made it possible to determine the dimensions of the melting channel formed inside the samples during the explosion and the subsequent expansion of the electric-discharge plasma. The experiments are performed on the generator of short-term high-voltage pulses capable to shape the voltage of (10-24) kV.
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
NASA Astrophysics Data System (ADS)
Springer, H. Keo
2017-06-01
Advanced manufacturing techniques offer control of explosive mesostructures necessary to tailor its shock sensitivity. However, structure-property relationships are not well established for explosives so there is little material design guidance for these techniques. The objective of this numerical study is to demonstrate how TATB-based explosives can be sensitized to shocks using mesostructural features. For this study, we use LX-17 (92.5%wt TATB, 7.5%wt Kel-F 800) as the prototypical TATB-based explosive. We employ features with different geometries and materials. HMX-based explosive features, high shock impedance features, and pores are used to sensitive the LX-17. Simulations are performed in the multi-physics hydrocode, ALE3D. A reactive flow model is used to simulate the shock initiation response of the explosives. Our metric for shock sensitivity in this study is run distance to detonation as a function of applied pressure. These numerical studies are important because they guide the design of novel energetic materials. This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-724986.
El-Sharkawy, Yasser H; Elbasuney, Sherif
2017-08-01
Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of circumstellar material in a normal type Ia supernova.
Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M
2007-08-17
Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.
49 CFR 176.146 - Segregation from non-hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation from non-hazardous materials. 176.146... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.146 Segregation from non... for “away from” segregation apply. (2) An explosive substance or article which has a secondary...
49 CFR 176.146 - Segregation from non-hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation from non-hazardous materials. 176.146... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.146 Segregation from non... for “away from” segregation apply. (2) An explosive substance or article which has a secondary...
27 CFR 555.213 - Quantity and storage restrictions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...
27 CFR 555.213 - Quantity and storage restrictions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...
27 CFR 555.213 - Quantity and storage restrictions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Quantity and storage..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.213 Quantity and storage restrictions. (a) Explosive materials in excess of 300,000 pounds or detonators in...
Method for fabricating non-detonable explosive simulants
Simpson, R.L.; Pruneda, C.O.
1995-05-09
A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.
2018-04-26
decomposition of explosives, test materials and their mixtures. A DSC for each individual explosive, test material and mixture shall be run in duplicate... run in duplicate • Explosives and test materials are mixed in a 1:1 (w/w) ratio • Samples are heated at a rate of 5°C/min from room temperature to...warrants it. If a reaction occurs in ten trials, the load is reduced until there are no reactions observed in ten trials. The ESD test was run per a
Scribner, K.J.
1985-01-29
Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.
Scribner, K.J.
1985-11-26
Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.
Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M
2007-01-01
The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.
A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions
NASA Astrophysics Data System (ADS)
Costa, A.; Gottsmann, J.; Melnik, O.; Sparks, R. S. J.
2011-10-01
Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10 10 kg/s from shallow-seated (4-6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).
Cover and startup gas supply system for solid oxide fuel cell generator
Singh, P.; George, R.A.
1999-07-27
A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.
Cover and startup gas supply system for solid oxide fuel cell generator
Singh, Prabhakar; George, Raymond A.
1999-01-01
A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.
NASA Astrophysics Data System (ADS)
Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.
2007-12-01
We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.
40 CFR 279.52 - General facility standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... consider both direct and indirect effects of the release, fire, or explosion (e.g., the effects of any toxic, irritating, or asphyxiating gases that are generated, or the effects of any hazardous surface... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing of...
40 CFR 279.52 - General facility standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... consider both direct and indirect effects of the release, fire, or explosion (e.g., the effects of any toxic, irritating, or asphyxiating gases that are generated, or the effects of any hazardous surface... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing of...
40 CFR 279.52 - General facility standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... consider both direct and indirect effects of the release, fire, or explosion (e.g., the effects of any toxic, irritating, or asphyxiating gases that are generated, or the effects of any hazardous surface... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing of...
40 CFR 279.52 - General facility standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... consider both direct and indirect effects of the release, fire, or explosion (e.g., the effects of any toxic, irritating, or asphyxiating gases that are generated, or the effects of any hazardous surface... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing of...
27 CFR 555.216 - Repair of magazines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Repair of magazines. 555... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.216 Repair of magazines. Before repairing the interior of magazines, all explosive materials are to be removed and the interior...
27 CFR 555.166 - Seizure or forfeiture.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Seizure or forfeiture. 555... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Unlawful Acts, Penalties, Seizures and Forfeitures § 555.166 Seizure or forfeiture. Any explosive materials involved or used or intended to be used...
Computer simulation of explosion crater in dams with different buried depths of explosive
NASA Astrophysics Data System (ADS)
Zhang, Zhichao; Ye, Longzhen
2018-04-01
Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.J. Miller; G. Elias; N.C. Schmitt
2010-06-01
High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that weremore » used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.« less
Explosive Welding in the 1990's
NASA Technical Reports Server (NTRS)
Lalwaney, N. S.; Linse, V. D.
1985-01-01
Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.
Solid Rocket Launch Vehicle Explosion Environments
NASA Technical Reports Server (NTRS)
Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.
2014-01-01
Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.
Modular initiator with integrated optical diagnostic
Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA
2011-05-17
A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...
30 CFR 56.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... surrounding storage facilities for explosive material shall be clear of rubbish, brush, dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other...
30 CFR 56.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... surrounding storage facilities for explosive material shall be clear of rubbish, brush, dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other...
30 CFR 56.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surrounding storage facilities for explosive material shall be clear of rubbish, brush, dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other...
30 CFR 56.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... surrounding storage facilities for explosive material shall be clear of rubbish, brush, dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other...
30 CFR 56.6101 - Areas around explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... surrounding storage facilities for explosive material shall be clear of rubbish, brush, dry grass, and trees for 25 feet in all directions, except that live trees 10 feet or taller need not be removed. (b) Other...
Optically detonated explosive device
NASA Technical Reports Server (NTRS)
Yang, L. C.; Menichelli, V. J. (Inventor)
1974-01-01
A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.
Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.
Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong
2017-11-01
High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 264.1202 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... closure of a magazine or unit which stored hazardous waste under this subpart, the owner or operator must..., and financial responsibility for magazines or units must meet all of the requirements specified in... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...
20 CFR 61.4 - Definitions and use of terms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the United States or any of its allies; (3) The discharge or explosion of munitions intended for use... employees of a manufacturer, processor, or transporter of munitions during the manufacture, processing, or transporting of munitions, or while stored on the premises of the manufacturer, processor, or transporter); (4...
20 CFR 61.4 - Definitions and use of terms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the United States or any of its allies; (3) The discharge or explosion of munitions intended for use... employees of a manufacturer, processor, or transporter of munitions during the manufacture, processing, or transporting of munitions, or while stored on the premises of the manufacturer, processor, or transporter); (4...
20 CFR 61.4 - Definitions and use of terms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the United States or any of its allies; (3) The discharge or explosion of munitions intended for use... employees of a manufacturer, processor, or transporter of munitions during the manufacture, processing, or transporting of munitions, or while stored on the premises of the manufacturer, processor, or transporter); (4...
20 CFR 61.4 - Definitions and use of terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the United States or any of its allies; (3) The discharge or explosion of munitions intended for use... employees of a manufacturer, processor, or transporter of munitions during the manufacture, processing, or transporting of munitions, or while stored on the premises of the manufacturer, processor, or transporter); (4...
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Potential Explosion Hazard of Carbonaceous Nanoparticles: Screening of Allotropes
Turkevich, Leonid A.; Fernback, Joseph; Dastidar, Ashok G.; Osterberg, Paul
2016-01-01
There is a concern that engineered carbon nanoparticles, when manufactured on an industrial scale, will pose an explosion hazard. Explosion testing has been performed on 20 codes of carbonaceous powders. These include several different codes of SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes) and CNFs (carbon nanofibers), graphene, diamond, fullerene, as well as several different control carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226 protocol), at a concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples typically exhibited overpressures of 5–7 bar, and deflagration index KSt = V1/3 (dP/dt)max ~ 10 – 80 bar-m/s, which places these materials in European Dust Explosion Class St-1. There is minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with primary particle size (BET specific surface area). PMID:27468178
Frank, A.M.; Lee, R.S.
1998-05-26
A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.
Frank, Alan M.; Lee, Ronald S.
1998-01-01
A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.
Detonation Performance Analyses for Recent Energetic Molecules
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Samuels, Philip; Spangler, Kimberly; Iwaniuk, Daniel; Cornell, Rodger; Baker, Ernest
2017-06-01
Detonation performance analyses were conducted for a number of evolving and potential high explosive materials. The calculations were completed for theoretical maximum densities of the explosives using the Jaguar thermo-chemical equation of state computer programs for performance evaluations and JWL/JWLB equations of state parameterizations. A number of recently synthesized materials were investigated for performance characterizations and comparisons to existing explosives, including TNT, RDX, HMX, and Cl-20. The analytic cylinder model was utilized to establish cylinder and Gurney velocities as functions of the radial expansions of the cylinder for each explosive. The densities and heats of formulation utilized in the calculations are primarily experimental values from Picatinny Arsenal and other sources. Several of the new materials considered were predicted to have enhanced detonation characteristics compared to conventional explosives. In order to confirm the accuracy of the Jaguar and analytic cylinder model results, available experimental detonation and Gurney velocities for representative energetic molecules and their formulations were compared with the corresponding calculated values. Close agreement was obtained with most of the data. Presently at NATO.
78 FR 64246 - Commerce in Explosives; List of Explosives Materials
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...
Controlled Detonation Dynamics in Additively Manufactured High Explosives
NASA Astrophysics Data System (ADS)
Schmalzer, Andrew; Tappan, Bryce; Bowden, Patrick; Manner, Virginia; Clements, Brad; Menikoff, Ralph; Ionita, Axinte; Branch, Brittany; Dattelbaum, Dana; Espy, Michelle; Patterson, Brian; Wu, Ruilian; Mueller, Alexander
2017-06-01
The effect of structure in explosives has long been a subject of interest to explosives engineers and scientists. Through structure, detonation dynamics in explosives can be manipulated, introducing a new level of safety and directed performance into these previously difficult to control materials. New advances in additive manufacturing (AM) allow the deliberate introduction of exact internal structures at dimensions approaching the mesoscale of these energetic materials. We show through simulation and experiment that this structure can be used to control detonation behavior by manipulating complex shockwave interactions. We use high-speed video and shorting mag-wires to determine the detonation velocity in AM generated explosive structures, demonstrating, for the first time, a method of controlling the directional propagation of reactive flow through the controlled introduction of structure within a high explosive. With ongoing improvement in the AM methods available coupled with guidance through modeling and simulations, more complex interactions are being explored. LANL LDRD Office.
Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates
NASA Astrophysics Data System (ADS)
Mousavi, S. A. A. Akbari; Zareie, H. R.
2011-01-01
The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.
Toward an Empirically-Based Parametric Explosion Spectral Model
2010-09-01
estimated (Richards and Kim, 2009). This archive could potentially provide 200 recordings of explosions at Semipalatinsk Test Site of the former Soviet...estimates of explosion yield, and prior work at the Nevada Test Site (NTS) (e.g., Walter et al., 1995) has found that explosions in weak materials have...2007). Corner frequency scaling of regional seismic phases for underground nuclear explosions at the Nevada Test Site , Bull. Seismol. Soc. Am. 97
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lear, P.R.; Gemarr, D.
1997-12-31
The US Army Umatilla Depot (UMD) was established as an ordnance depot in 1941 to store, preserve, and perform minor maintenance on conventional and chemical munitions. From the 1940`s until the present, UMD operated periodically at the 32 miscellaneous sites identified as OU-5. OU-4 consists of twenty sites within the Ammunition Demolition Activity Area. Typical activities conducted at these sites consisted of operations to burn, detonate, and otherwise dispose of ordnance, munitions casings, and other solids wastes. Five sites were selected for remedial action. The remediation contaminants of concern for the sites encompassed both metallic and non-metallic elements and bothmore » inorganic and organic compounds. The remedial action selected for the contaminated soil at these sites was stabilization/solidification (S/S). The site remediation activities for the five sites were performed by OHM Remediation Services Corp. (OHM) under the supervision of the US Army Corps of Engineers (USACE) Seattle District. The remedial action included treatability mix design testing, mobilization and field setup, soil excavation and processing, and S/S treatment. Stabilized soil samples were collected as grab samples from the pugmill discharge conveyor at a rate of every 75 tons of soil feed, corresponding to an individual production lot. None of the 437 production lots failed to meet the UCS requirement of 50 psi, however, 31 (7%) of the 437 lots failed for either TCLP-leachable metals or explosives. With one exception, all production lots which failed were due to exceedances of the TCLP-leachable explosives requirements. Of these 30 lots, 22 lots were from the OU-5 metals sites and were not expected to contain significant amounts of explosives. The areas in the landfill corresponding to these lots were excavated and the material reprocessed.« less
77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol dinitrate]. Erythritol tetranitrate explosives..., RNG, nitro, glyceryl trinitrate, trinitroglycerine]. Nitroglycide. Nitroglycol [ethylene glycol...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Vehicles. 176.134 Section 176.134 Transportation... Class 1 (Explosive) Materials Stowage § 176.134 Vehicles. Closed vehicles may be used to transport Class... requirements relating to the transport of Class 1 (explosive) materials in vehicles. ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Vehicles. 176.134 Section 176.134 Transportation... Class 1 (Explosive) Materials Stowage § 176.134 Vehicles. Closed vehicles may be used to transport Class... requirements relating to the transport of Class 1 (explosive) materials in vehicles. ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Vehicles. 176.134 Section 176.134 Transportation... Class 1 (Explosive) Materials Stowage § 176.134 Vehicles. Closed vehicles may be used to transport Class... requirements relating to the transport of Class 1 (explosive) materials in vehicles. ...
45 CFR 12a.6 - Suitability criteria.
Code of Federal Regulations, 2010 CFR
2010-10-01
... basis. (2) Property containing flammable or explosive materials. A property located within 2000 feet of an industrial, commercial or Federal facility handling flammable or explosive material (excluding... substances such as radon, periodic flooding, sinkholes or earth slides. (6) Inaccessible. A property that is...
Bomb swab: Can trace explosive particle sampling and detection be improved?
Fisher, Danny; Zach, Raya; Matana, Yossef; Elia, Paz; Shustack, Shiran; Sharon, Yarden; Zeiri, Yehuda
2017-11-01
The marked increase in international terror in recent years requires the development of highly efficient methods to detect trace amounts of explosives at airports, border crossings and check points. The preferred analytical method worldwide is the ion mobility spectrometry (IMS) that is capable of detecting most explosives at the nano-gram level. Sample collection for the IMS analysis is based on swabbing of a passenger's belongings to collect possible explosive residues. The present study examines a wide range of issues related to swab-based particle collection and analysis, in the hope of gaining deeper understanding into this technique that will serve to improve the detection process. The adhesion of explosive particles to three typical materials, plastic, metal and glass, were measured using atomic force microscopy (AFM). We found that a strong contribution of capillary forces to adhesion on glass and metal surfaces renders these substrates more promising materials upon which to find and collect explosive residues. The adhesion of explosives to different swipe materials was also examined. Here we found that Muslin, Nomex ® and polyamide membrane surfaces are the most promising materials for use as swipes. Subsequently, the efficiency of multiple swipe use - for collecting explosive residues from a glass surface using Muslin, Nomex ® and Teflon™ swipes - was examined. The study suggests that swipes used in about 5-10 "sampling and analysis cycles" have higher efficiency as compared to new unused swipes. The reason for this behavior was found to be related to the increased roughness of the swipe surface following a few swab measurements. Lastly, GC-MS analysis was employed to examine the nature of contaminants collected by the three types of swipe. The relative amounts of different contaminants are reported. The existence and interference of these contaminants have to be considered in relation to the detection efficiency of the various explosives by the IMS. Copyright © 2017 Elsevier B.V. All rights reserved.
1990-11-01
radioactive) - Determine class of HAZMAT (Class A Explosive, Class B Explosive, Class C Explosive, Blasting Agent , Flammable Gas , Non- flammable Gas ... agent . Specific health and safety plans related to IRP actions amy be obtained from the same source. 2. Interaction of Fire Departments with the...such as digging near a gas line, a fuel tank, or buried explo- sives, the fire department would be briefed before beginning the work, and, under
2011-11-30
fuze separating from the shell body preventing high order detonations thus saving the lives of the Soldiers. Unit’s SPC Alan Ng with his father Peter...Sensitive If not fully compliant, must show improvement over Baseline explosive Affordable Artillery Cost Drivers = Steel Body Material & Explosive Fill...Mortar Cost Drivers = Steel Body Material, Fuze & Propelling Charges Producible within the National Technology and Industrial Base Infrastructure
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
A Review of Safety Practices and Safety Training for the Explosives Field
1985-02-01
reworking. This was discovered when an impact test was run on the received material and a "GO" occurred. If the received material bad been handled as...exist, small quantities of the explosive or explosive mixture should -be subjected to- sensitivity tests (including at least spark sensitivity, impact ...increases more energy is put into the nix which must be considered with respect to blending speeds and tolerances in equip- ment and temperatures. Also
Non-Gurney Scaling of Explosives Heavily Loaded with Dense Inert Additives
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Higgins, Andrew; Frost, David
2017-06-01
For most high explosives, the ability to accelerate material to some terminal velocity scales with the ratio of material-mass to charge-mass (M/C) according to the Gurney equations. Generally, the Gurney equation for planar geometry accurately predicts the terminal velocity of the driven material until the M/C ratio is reduced to roughly 0.15 or lower; at which point gasdynamic departures from the assumptions in the model result in systematic underpredictions of the material velocity. The authors conducted a series of open-face sandwich flyer plate experiments to measure the scaling of flyer terminal velocity with M/C for a heterogeneous explosive composed of a packed bed of 280 μm steel particles saturated with amine-sensitized nitromethane (90% NM, 10% diethylenetriamine). The propulsive capability of this explosive did not scale according to a modified form of the Gurney equation. Rather, propulsive efficiency increased as the flyer plate became relatively thicker. In the present study the authors have conducted further experiments using this explosive in symmetric sandwiches as well as for normally-incident detonations initiated via a slapping foil to examine how flyer terminal velocity scales with M/C for alternative geometries and loading conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, C.M.
The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that themore » polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.« less
Explosive Tube-to-fitting Joining of Small-diameter Tubes
NASA Technical Reports Server (NTRS)
Bement, L. J.
1985-01-01
An effort is currently under way by NASA Marshall Space Flight Center to upgrade the space shuttle main engine through the use of improved materials and processes. Under consideration is the use of the Langley Research Center explosive seam welding process. The objective is to demonstrate the feasibility of joining space shuttle main engine tube to fitting components in an oxygen heat exchanger, using the NASA LaRC explosive seam welding process. It was concluded that LaRC explosive joining is viable for this application; that there is no incompatability of materials; that ultrasonic inspection is the best nondestructive testing method; and that the .500 DIA joint experiences interface problems.
The Effect of Electric Field on the Explosive Sensitivity of Silver Azide
NASA Astrophysics Data System (ADS)
Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Gazenaur, N. V.
2017-05-01
The effect of a constant contactless electric field on the rate of a chemical reaction in silver azide is explored in this paper. The technology of growing and processing silver azide whiskers in the constant contactless electric field (field intensity was varied in the range from 10-3 V/m to 100 V/m) allows supervising their explosive sensitivity, therefore, the results of experiments can be relevant for purposeful controlling the resistance of explosive materials. This paper is one of the first attempts to develop efficient methods to affect the explosive sensitivity of energy-related materials in a weak electric field (up to 10-3 V/m).
Fluid-filled bomb-disrupting apparatus and method
Cherry, Christopher R.
2001-01-01
An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.
Energy transfer through a multi-layer liner for shaped charges
Skolnick, Saul; Goodman, Albert
1985-01-01
This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.
Nonideal detonation regimes in low density explosives
NASA Astrophysics Data System (ADS)
Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.
2016-02-01
Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.
2009-01-01
Background Most conventional explosives can be roughly categorized into two classes – molecular materials and intermolecular composites. Molecular...materials refer to species such as the nitroalkanes (e.g. nitromethane ) and cyclic nitramines (e.g. TNAZ, RDX, HMX) that release chemical energy...alternative to conventional explosives that has been gaining increasing interest have been termed reactive materials, and are defined as systems in
Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure.
Sisco, Edward; Najarro, Marcela; Bridge, Candice; Aranda, Roman
2015-06-01
Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1]. Published by Elsevier Ireland Ltd.
Design and validation of inert homemade explosive simulants for X-ray-based inspection systems
NASA Astrophysics Data System (ADS)
Faust, Anthony A.; Nacson, Sabatino; Koffler, Bruce; Bourbeau, Éric; Gagne, Louis; Laing, Robin; Anderson, C. J.
2014-05-01
Transport Canada (TC), the Canadian Armed Forces, and other public security agencies have an interest in the assessment of the potential utility of advanced explosives detection technologies to aid in the detection and interdiction of commercial grade, military grade, and homemade or improvised explosives (HME or IE). The availability of suitable, non-hazardous, non-toxic, explosive simulants is of concern when assessing the potential utility of such detection systems. Lack of simulants limits the training opportunities, and ultimately the detection probability, of security personnel using these systems. While simulants for commercial and military grade explosives are available for a wide variety of detection technologies, the design and production of materials to simulate improvised explosives has not kept pace with this emerging threat. Funded by TC and the Canadian Safety and Security Program, Defence Research and Development Canada (DRDC), Visiontec Systems, and Optosecurity engaged in an effort to develop inert, non-toxic Xray interrogation simulants for IE materials such as ammonium nitrate, potassium chlorate, and triacetone triperoxide. These simulants were designed to mimic key X-ray interrogation-relevant material properties of real improvised explosives, principally their bulk density and effective atomic number. Different forms of the simulants were produced and tested, simulating the different explosive threat formulations that could be encountered by front line security workers. These simulants comply with safety and stability requirements, and as best as possible match form and homogeneity. This paper outlines the research program, simulant design, and validation.
NASA Astrophysics Data System (ADS)
Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery
2006-05-01
Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.
NASA Technical Reports Server (NTRS)
Bement, L. J. (Inventor)
1974-01-01
A method and associated apparatus for confining the undesirable by-products and limiting noise of explosive welding are discussed. The apparatus consists fo a simple enclosure into which the explosive is placed and within which the explosion occurs. The shape of the enclosure, the placement of the explosive, and the manner in which the enclosure is placed upon the material to be welded determine the force of the explosion transmitted to the proposed bond area. The explosion is totally confined within the enclosure thus reducing the noise level and preventing debris from being strewn about to contaminate the weld area or create personnel hazards.
Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio
2010-04-15
In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reynolds, J. G.; Sandstrom, M. M.; Brown, G. W.; Warner, K. F.; Phillips, J. J.; Shelley, T. J.; Reyes, J. A.; Hsu, P. C.
2014-05-01
One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.
Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti
2015-01-01
Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
...] Agency Information Collection Activities; Proposed Collection; Comments Requested: Inventories, Licensed... currently approved collection. (2) Title of the Form/Collection: Inventories, Licensed Explosives Importers... explosive material inventories of those persons engaged in various activities within the explosives industry...
75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...
75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Vehicles. 57.6202 Section 57.6202 Mineral... and Underground § 57.6202 Vehicles. (a) Vehicles containing explosive material shall be— (1... operation. (b) Vehicles containing explosives shall have— (1) No sparking material exposed in the cargo...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicles. 57.6202 Section 57.6202 Mineral... and Underground § 57.6202 Vehicles. (a) Vehicles containing explosive material shall be— (1... operation. (b) Vehicles containing explosives shall have— (1) No sparking material exposed in the cargo...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Vehicles. 57.6202 Section 57.6202 Mineral... and Underground § 57.6202 Vehicles. (a) Vehicles containing explosive material shall be— (1... operation. (b) Vehicles containing explosives shall have— (1) No sparking material exposed in the cargo...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Vehicles. 57.6202 Section 57.6202 Mineral... and Underground § 57.6202 Vehicles. (a) Vehicles containing explosive material shall be— (1... operation. (b) Vehicles containing explosives shall have— (1) No sparking material exposed in the cargo...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Vehicles. 57.6202 Section 57.6202 Mineral... and Underground § 57.6202 Vehicles. (a) Vehicles containing explosive material shall be— (1... operation. (b) Vehicles containing explosives shall have— (1) No sparking material exposed in the cargo...
49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...
49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...
49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...
49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...
49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...
Improved explosive collection and detection with rationally assembled surface sampling materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.
Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple usesmore » of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.« less
Seyhan, Ercan; Cengiz, Salih
2017-01-01
The case relates to a bookstore owner claiming that two DM-41 hand grenades were exploded simultaneously in his store. There were three males together at the store when the explosion occurred. One was the owner who claimed that he escaped after the explosion without any harm; the other was at the corner lying down to prevent his body from the explosion effect. He survived with very minor, almost no effects. According to the hospital report, it was stated that "cuts on the right femur with sizes of 0.5x2 and 0.5x1 cm and one cut of 0.5x2,0 cm on the left food which are curable with simple medical intervention; generalized skin erosions on body with the sizes between 0,5 to 1,0 cm"; the third male was standing and killed. He was next to the lying down male. At the autopsy report it was stated that the he was killed due to the shrapnel/fragmentation effect, breaks on humerus, radius, femur and cranium; cerebral and internal hemorrhage. The males witnessed at the court that they had survived with no vital damage on their bodies, they had seen the perpetrators and heard them talking. With the fact that the deceased male was intensively affected with the fragmentation/shrapnel due to the autopsy report, it was the court's wonder if it is possible for the survived men to have no or very minor nonfatal fragmentation effect on their bodies even being in the same room with the deceased. It was mainly aimed to test the fragmentation effect of 2 DM-41 defence hand grenades when detonated in a closed environment (an empty room with the approximately same size of the related case). The test room was empty with no secondary fragmentation sources as window glasses etc. 3 male mannequins were used as test materials. With the post blast reconstruction of the crime scene, it was aimed to determine if the test results and the autopsy report are very coherent and the persons having the direct blast effect would be expected having maximum exposure to the fragmentation.
High-speed velocity measurements on an EFI-system
NASA Astrophysics Data System (ADS)
Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.
2007-01-01
For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain circumstances the flyer breaks up in several parts and several velocities at the same time have been recorded. Several flyer materials and dimensions exist that are able to initiate very insensitive explosives like TATB.
Method and apparatus for optimized sampling of volatilizable target substances
Lindgren, Eric R.; Phelan, James M.
2004-10-12
An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.
Wavelength-Dependence on the Initiation of Iron-Based Photoactive Explosives
NASA Astrophysics Data System (ADS)
Brown, Kathryn; Myers, Thomas; Clarke, Steven
2017-06-01
Photoactive explosives show promise to be relatively insensitive to impact and friction compared to PETN and other detonator materials, but can be more easily initiated with laser light. Metal-ligand charge transfer (MLCT) complexes have been shown to have tunable explosive properties and absorption profiles, making them strong candidates for laser detonator material. Here, we discuss the synthesis and characterization of several iron-based MLCT complexes, as well as results from recent experiments on their sensitivity to initiation from different wavelengths of laser light.
ERIC Educational Resources Information Center
Baayen, R. Harald; Hendrix, Peter; Ramscar, Michael
2013-01-01
Arnon and Snider ((2010). More than words: Frequency effects for multi-word phrases. "Journal of Memory and Language," 62, 67-82) documented frequency effects for compositional four-grams independently of the frequencies of lower-order "n"-grams. They argue that comprehenders apparently store frequency information about…
Code of Federal Regulations, 2014 CFR
2014-01-01
... security organization must include sufficient personnel per shift to provide for monitoring of detection... authorization and visually searched for explosives before entry. (10) Written response procedures must be... termination of the license. (11) All detection systems and supporting subsystems must be tamper indicating...
Code of Federal Regulations, 2011 CFR
2011-01-01
... security organization must include sufficient personnel per shift to provide for monitoring of detection... authorization and visually searched for explosives before entry. (10) Written response procedures must be... termination of the license. (11) All detection systems and supporting subsystems must be tamper indicating...
Code of Federal Regulations, 2012 CFR
2012-01-01
... security organization must include sufficient personnel per shift to provide for monitoring of detection... authorization and visually searched for explosives before entry. (10) Written response procedures must be... termination of the license. (11) All detection systems and supporting subsystems must be tamper indicating...
Code of Federal Regulations, 2013 CFR
2013-01-01
... security organization must include sufficient personnel per shift to provide for monitoring of detection... authorization and visually searched for explosives before entry. (10) Written response procedures must be... termination of the license. (11) All detection systems and supporting subsystems must be tamper indicating...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... post-closure care. (a) At closure of a magazine or unit which stored hazardous waste under this subpart... estimates for closure, and financial responsibility for magazines or units must meet all of the requirements... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
49 CFR 176.118 - Electrical requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Electrical requirement. 176.118 Section 176.118... Requirements for Class 1 (Explosive) Materials Stowage § 176.118 Electrical requirement. (a) Electrical... person. (b) Electrical equipment and cables in a cargo space in which Class 1 (explosive) materials are...
49 CFR 176.118 - Electrical requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Electrical requirement. 176.118 Section 176.118... Requirements for Class 1 (Explosive) Materials Stowage § 176.118 Electrical requirement. (a) Electrical... person. (b) Electrical equipment and cables in a cargo space in which Class 1 (explosive) materials are...
49 CFR 176.118 - Electrical requirement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Electrical requirement. 176.118 Section 176.118... Requirements for Class 1 (Explosive) Materials Stowage § 176.118 Electrical requirement. (a) Electrical... person. (b) Electrical equipment and cables in a cargo space in which Class 1 (explosive) materials are...
49 CFR 176.118 - Electrical requirement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Electrical requirement. 176.118 Section 176.118... Requirements for Class 1 (Explosive) Materials Stowage § 176.118 Electrical requirement. (a) Electrical... person. (b) Electrical equipment and cables in a cargo space in which Class 1 (explosive) materials are...
49 CFR 176.118 - Electrical requirement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Electrical requirement. 176.118 Section 176.118... Requirements for Class 1 (Explosive) Materials Stowage § 176.118 Electrical requirement. (a) Electrical... person. (b) Electrical equipment and cables in a cargo space in which Class 1 (explosive) materials are...
Experimental Study of Structure/Behavior Relationship for a Metallized Explosive
NASA Astrophysics Data System (ADS)
Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick
2017-06-01
Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Detection of liquid hazardous molecules using linearly focused Raman spectroscopy
NASA Astrophysics Data System (ADS)
Cho, Soo Gyeong; Chung, Jin Hyuk
2013-05-01
In security, it is an important issue to analyze hazardous materials in sealed bottles. Particularly, prompt nondestructive checking of sealed liquid bottles in a very short time at the checkpoints of crowded malls, stadiums, or airports is of particular importance to prevent probable terrorist attack using liquid explosives. Aiming to design and fabricate a detector for liquid explosives, we have used linearly focused Raman spectroscopy to analyze liquid materials in transparent or semi-transparent bottles without opening their caps. Continuous lasers with 532 nm wavelength and 58 mW/130 mW beam energy have been used for the Raman spectroscopy. Various hazardous materials including flammable liquids and explosive materials have successfully been distinguished and identified within a couple of seconds. We believe that our technique will be one of suitable methods for fast screening of liquid materials in sealed bottles.
Buckybomb: Reactive Molecular Dynamics Simulation
Chaban, Vitaly V.; Fileti, Eudes Eterno; Prezhdo, Oleg V.
2015-02-24
Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C 60(NO 2) 12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO 2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyballmore » surface. NO oxidizes into NO 2, and C 60 falls apart, liberating CO 2. At the highest temperatures, CO 2 gives rise to diatomic carbon. Lastly, the study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Catanach; Larry Hill; Herbert Harry
1999-10-01
The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radialmore » wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.« less
Tang, Shisong; Vinerot, Nataly; Fisher, Danny; Bulatov, Valery; Yavetz-Chen, Yehuda; Schechter, Israel
2016-08-01
Multiphoton electron extraction spectroscopy (MEES) is an analytical method in which UV laser pulses are utilized for extracting electrons from solid surfaces in multiphoton processes under ambient conditions. Counting the emitted electrons as a function of laser wavelength results in detailed spectral features, which can be used for material identification. The method has been applied to detection of trace explosives on a variety of surfaces. Detection was possible on dusty swabs spiked with explosives and also in the standard dry-transfer contamination procedure. Plastic explosives could also be detected. The analytical limits of detection (LODs) are in the sub pmole range, which indicates that MEES is one of the most sensitive detection methods for solid surface under ambient conditions. Scanning the surface with the laser allows for its imaging, such that explosives (as well as other materials) can be located. The imaging mode is also useful in forensic applications, such as detection of explosives in human fingerprints. Copyright © 2016 Elsevier B.V. All rights reserved.
Benedick, William B.; Daniel, Charles J.
1977-01-01
The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.
49 CFR 176.182 - Conditions for handling on board ship.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...
49 CFR 176.182 - Conditions for handling on board ship.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...
49 CFR 176.182 - Conditions for handling on board ship.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...
49 CFR 176.182 - Conditions for handling on board ship.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...
27 CFR 555.105 - Distributions to nonlicensees, nonpermittees, and limited permittees.
Code of Federal Regulations, 2010 CFR
2010-04-01
... employee of a common or contract carrier transporting explosive materials to a nonlicensee or nonpermittee... licensee's business premises are located, the holder of the limited permit presents in person or by mail... transport explosive materials from the distributor to a holder of a limited permit: (A) The limited...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... importers and persons who manufacture or import explosive materials or ammonium nitrate must, when required by the Director, furnish samples of such explosive materials or ammonium nitrate; information on... to the identification of the ammonium nitrate. (5) An estimate of the total number of respondents and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... import explosive materials or ammonium nitrate must, when required by the Director, furnish samples of such explosive materials or ammonium nitrate; information on chemical composition of those products... ammonium nitrate. (5) An estimate of the total number of respondents and the amount of time estimated for...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...
Simulation of Metal Particulates in High Energetic Materials
2015-05-28
in explosive mixtures increases the density of the shock wave, causing a higher pressure in the shock . The high pressure in the shock is devastating...19 2.3.3 Explosive Materials with Aluminum Powders . . . . . . . . . . . . . . . . . 21 2.3.4 An Analysis of Shock ...32 3.2.4 Nozzling Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3
Layered memristive and memcapacitive switches for printable electronics
NASA Astrophysics Data System (ADS)
Bessonov, Alexander A.; Kirikova, Marina N.; Petukhov, Dmitrii I.; Allen, Mark; Ryhänen, Tapani; Bailey, Marc J. A.
2015-02-01
Novel computing technologies that imitate the principles of biological neural systems may offer low power consumption along with distinct cognitive and learning advantages. The development of reliable memristive devices capable of storing multiple states of information has opened up new applications such as neuromorphic circuits and adaptive systems. At the same time, the explosive growth of the printed electronics industry has expedited the search for advanced memory materials suitable for manufacturing flexible devices. Here, we demonstrate that solution-processed MoOx/MoS2 and WOx/WS2 heterostructures sandwiched between two printed silver electrodes exhibit an unprecedentedly large and tunable electrical resistance range from 102 to 108 Ω combined with low programming voltages of 0.1-0.2 V. The bipolar resistive switching, with a concurrent capacitive contribution, is governed by an ultrathin (<3 nm) oxide layer. With strong nonlinearity in switching dynamics, different mechanisms of synaptic plasticity are implemented by applying a sequence of electrical pulses.
Thermoplasmonic Ignition of Metal Nanoparticles.
Mutlu, Mehmet; Kang, Ju-Hyung; Raza, Søren; Schoen, David; Zheng, Xiaolin; Kik, Pieter G; Brongersma, Mark L
2018-03-14
Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.
NASA Astrophysics Data System (ADS)
Kulkov, S.; Vorozhtsov, S.; Turuntaev, I.
2015-04-01
The possibilities to combine metal and metal oxide powders in various compositions open a broad range of mechanical and thermal behavior. When using in nanostructured components the resulting materials might exhibit even more interesting properties, like product effectiveness, tensile strength, wear resistance, endurance and corrosion resistance. Intermetallics like TiAl could be obtained as TiAlx in a quality similar to that obtained from melting where only eutectic mixture can be produced. Similar effects are possible when compacting nanoceramic powders whereas these can be combined with intermetallics. Currently, it is very difficult to produce wires and special shaped parts from high temperature superconducting materials. The compacting by explosives could solve this problem.The present paper uses explosion compacting of Al nanoparticles to create nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material (HEM) for shock-wave compaction. The different schemes and conditions were suggested to run the explosion process. Al nanoparticles as produced by electric wire explosion contain 8-10% of aluminum oxide. That aluminum oxide can serve as strengthening material in the final nanocomposite which may be generated in various compositions by explosive compacting. Further modifications of nanocomposites were obtained when including nanodiamonds into the mixture with aluminum nanoparticles with different percentages. The addition of nanodiamonds results in a substantial strengthening effect. The experiments with compacting aluminum nanoparticles by explosives are described in detail including the process variations and conditions. The physico-mechanical properties of the nanocomposites are determined and discussed by considering the applied conditions. Especially, microstructure and phases of the obtained nanocomposites are analyzed by X-ray diffraction.
Numerical simulation study on thermal response of PBX 9501 to low velocity impact
NASA Astrophysics Data System (ADS)
Lou, Jianfeng; Zhou, Tingting; Zhang, Yangeng; Zhang, Xiaoli
2017-01-01
Impact sensitivity of solid high explosives, an important index in evaluating the safety and performance of explosives, is an important concern in handling, storage, and shipping procedures. It is a great threat for either bare dynamite or shell charge when subjected to low velocity impact involved in traffic accidents or charge piece drops. The Steven test is an effective tool to study the relative sensitivity of various explosives. In this paper, we built the numerical simulation method involving mechanical, thermo and chemical properties of Steven test based on the thermo-mechanical coupled material model. In the model, the stress-strain relationship is described by dynamic plasticity model, the thermal effect of the explosive induced by impact is depicted by isotropic thermal material model, the chemical reaction of explosives is described by Arrhenius reaction rate law, and the effects of heating and melting on mechanical properties and thermal properties of materials are also taken into account. Specific to the standard Steven test, the thermal and mechanical response rules of PBX 9501 at various impact velocities were numerically analyzed, and the threshold velocity of explosive initiation was obtained, which is in good agreement with experimental results. In addition, the effect of confine condition of test device to the threshold velocity was explored.
Variation of methods in small-scale safety and thermal testing of improvised explosives
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.; ...
2014-09-29
Here, one of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of homemade or improvised explosives (HMEs) to SSST testing, 16 HME materials were compared to 3 standard military explosives in a proficiency-type round robin study among five laboratories, two U.S. Department of Defense and three U.S. Department of Energy, sponsored by the Department of Homeland Security, Science & Technology Directorate, Explosives Division.
Elasticity of crystalline molecular explosives
Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; ...
2015-04-14
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less
Johnson, James O.; Dinegar, Robert H.
1988-01-01
A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.
Explosively Generated Plasmas: Measurement and Models of Shock Generation and Material Interactions
NASA Astrophysics Data System (ADS)
Emery, Samuel; Elert, Mark; Giannuzzi, Paul; Le, Ryan; McCarthy, Daniel; Schweigert, Igor
2017-06-01
Explosively generated plasmas (EGPs) are created by the focusing of a shock produced from an explosive driver via a conical waveguide. In the waveguide, the gases from the explosive along with the trapped air are accelerated and compressed (via Mach stemming) to such extent that plasma is produced. These EGPs have been measured in controlled experiments to achieve temperatures on the order of 1 eV and velocities as high as 25 km/s. We have conducted a combined modeling and measurement effort to increase the understanding for design purposes of the shock generation of EGPs and the interaction of EGP with explosive materials. Such efforts have led to improved measures of pressure and temperature, spatial structure of the plasma, and the decomposition/deflagration behavior of RDX upon exposure to an EGP. Funding provided by the Environmental Security Technology Certification Program (ESTCP) Munitions Response program area.
Universal explosive detection system for homeland security applications
NASA Astrophysics Data System (ADS)
Lee, Vincent Y.; Bromberg, Edward E. A.
2010-04-01
L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.
15 CFR 265.39 - Weapons and explosives.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...
15 CFR 265.39 - Weapons and explosives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...
15 CFR 265.39 - Weapons and explosives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...
15 CFR 265.39 - Weapons and explosives.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...
49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Test Methods for Dynamite (Explosive, Blasting, Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR...
49 CFR 176.182 - Conditions for handling on board ship.
Code of Federal Regulations, 2010 CFR
2010-10-01
... such person clear of any areas where Class 1 (explosive) materials are being handled. (f) Smoking. (1) Smoking is prohibited on the vessel while Class 1 (explosive) materials are being handled or stowed except in places designated by the master of the vessel. (2) Conspicuous notices prohibiting smoking must be...
27 CFR 555.218 - Table of distances for storage of explosive materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... with traffic volume of more than 3,000 vehicles/day Barricaded Unbarricaded Separation of magazines... explosive materials are defined in § 555.11. (2) When two or more storage magazines are located on the same property, each magazine must comply with the minimum distances specified from inhabited buildings, railways...
Code of Federal Regulations, 2013 CFR
2013-04-01
... explosive materials, e.g., resale, mining, quarrying, agriculture, construction, sport rocketry, road... the explosive materials, e.g., resale, mining, quarrying, agriculture, construction, sport rocketry... Management and Budget under control number 1140-0079) [ATF No. 1, 68 FR 13787, Mar. 20, 2003, as amended by...
Performance evaluation of DAAF as a booster material using the onionskin test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, John S; Francois, Elizabeth G; Hooks, Daniel E
Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemisphericalmore » IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.« less
Europa Lander Material Selection Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tappan, Alexander S.; Heller, Mellisa
2017-01-10
Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input frommore » the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.« less
A micro-macro coupling approach of MD-SPH method for reactive energetic materials
NASA Astrophysics Data System (ADS)
Liu, Gui Rong; Wang, Guang Yu; Peng, Qing; De, Suvranu
2017-01-01
The simulation of reactive energetic materials has long been the interest of researchers because of the extensive applications of explosives. Much research has been done on the subject at macro scale in the past and research at micro scale has been initiated recently. Equation of state (EoS) is the relation between physical quantities (pressure, temperature, energy and volume) describing thermodynamic states of materials under a given set of conditions. It plays a significant role in determining the characteristics of energetic materials, including Chapman-Jouguet point and detonation velocity. Furthermore, EoS is the key to connect microscopic and macroscopic phenomenon when simulating the macro effects of an explosion. For instance, an ignition and growth model for high explosives uses two JWL EoSs, one for solid explosive and the other for gaseous products, which are often obtained from experiments that can be quite expensive and hazardous. Therefore, it is ideal to calculate the EoS of energetic materials through computational means. In this paper, the EoSs for both solid and gaseous products of β-HMX are calculated using molecular dynamics simulation with ReaxFF-d3, a reactive force field obtained from quantum mechanics. The microscopic simulation results are then compared with experiments and the continuum ignition and growth model. Good agreement is observed. Then, the EoSs obtained through micro-scale simulation is applied in a smoothed particle hydrodynamics (SPH) code to simulate the macro effects of explosions. Simulation results are compared with experiments.
Vogel, H
2007-08-01
Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.
Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture
NASA Technical Reports Server (NTRS)
Bement, L. J.
1976-01-01
The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
10 CFR 20.1801 - Security of stored material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Security of stored material. 20.1801 Section 20.1801 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Storage and Control of Licensed Material § 20.1801 Security of stored material. The licensee shall secure from unauthorized...
Computer code for the optimization of performance parameters of mixed explosive formulations.
Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R
2006-08-25
LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.
Spectroscopic signatures of PETN in contact with sand particles
NASA Astrophysics Data System (ADS)
Ballesteros, Luz M.; Herrera, Gloria M.; Castro, Miguel E.; Briano, Julio; Mina, Nairmen; Hernandez-Rivera, Samuel P.
2005-06-01
The detection of explosive materials is not only important as an issue in landmines but also for global security reasons, unexploded ordnance, and Improvised Explosive Devices detection. In such areas, explosives detection has played a central role in ensuring the safety of the lives of citizens in many countries. Raman Spectroscopy is a well established tool for vibrational spectroscopic analysis and can be applied to the field of explosives identification and detection. The analysis of PETN is important because it is used in laminar form or mixed with RDX to manufacture Semtex plastic explosive and in the fabrication of Improvised Explosive Devices (IEDs). Our investigation is focused on the study of spectroscopic signatures of PETN in contact with soil. Ottawa sand mixed in different proportions with PETN together with the study of the influence of pH, temperature, humidity, and UV light on the vibrational signatures of the mixtures constitute the core of the investigation. The results reveal that the characteristic bands of PETN are not significantly shifted but rather appear constant with respect of the ubiquitous band of sand (~463 cm-1). These results will make possible the development of highly sensitive sensors for detection of explosives materials and IDEs.
Nucleosynthesis in Thermonuclear Supernovae
NASA Astrophysics Data System (ADS)
Seitenzahl, Ivo Rolf; Townsley, Dean M.
The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light "fuel" nuclei, predominantly carbon and oxygen, into more tightly bound nuclear "ash" dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Petel, Oren; Huneault, Justin; Serge, Matthew; Frost, David; Higgins, Andrew
2013-06-01
The detonation behavior of high explosives containing dispersed quantities or packed beds of dense additives has been previously investigated with the observation that such systems depart from the ``gamma law'' behavior typical of homogeneous explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been far less rigorously studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. Two experimental configurations are used to study acceleration either by a purely grazing detonation in a finite thickness slab of explosive or by a normal detonation from an effectively infinite thickness of explosive. Flyer acceleration and velocity is measured via Photonic Doppler Velocimetry. Packed beds of plastic, aluminum, glass, iron, and bismuth are considered and the data is compared to Gurney velocity predictions.
Determining the source characteristics of explosions near the Earth's surface
Pasyanos, Michael E.; Ford, Sean R.
2015-04-09
We present a method to determine the source characteristics of explosions near the airearth interface. The technique is an extension of the regional amplitude envelope method and now accounts for the reduction of seismic amplitudes as the depth of the explosion approaches the free surface and less energy is coupled into the ground. We first apply the method to the Humming Roadrunner series of shallow explosions in New Mexico where the yields and depths are known. From these tests, we find an appreciation of knowing the material properties for both source coupling/excitation and the free surface effect. Although there ismore » the expected tradeoff between depth and yield due to coupling effects, the estimated yields are generally close to the known values when the depth is constrained to the free surface. We then apply the method to a regionally recorded explosion in Syria. We estimate an explosive yield less than the 60 tons claimed by sources in the open press. The modifications to the method allow us to apply the technique to new classes of events, but we will need a better understanding of explosion source models and properties of additional geologic materials.« less
Modeling normal shock velocity curvature relations for heterogeneous explosives
NASA Astrophysics Data System (ADS)
Yoo, Sunhee; Crochet, Michael; Pemberton, Steven
2017-01-01
The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. As an initial work, we assume that the heterogeneity comes from the local density variation or porosity only.
A comparison study of exploding a Cu wire in air, water, and solid powders
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan
2017-11-01
In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.