Sample records for storm event sampling

  1. Determining storm sampling requirements for improving precision of annual load estimates of nutrients from a small forested watershed.

    PubMed

    Ide, Jun'ichiro; Chiwa, Masaaki; Higashi, Naoko; Maruno, Ryoko; Mori, Yasushi; Otsuki, Kyoichi

    2012-08-01

    This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.

  2. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    USGS Publications Warehouse

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110 to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce

  3. A novel fractionation approach for water constituents - distribution of storm event metals.

    PubMed

    McKenzie, Erica R; Young, Thomas M

    2013-05-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.

  4. A novel fractionation approach for water constituents – distribution of storm event metals

    PubMed Central

    McKenzie, Erica R.; Young, Thomas M.

    2014-01-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891

  5. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    USGS Publications Warehouse

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active ingredient was transported during the four storms, and 1.47 pounds active ingredient were considered as baseline load. The total January and February diazinon load in the San Joaquin River near Vernalis was 0.27 percent of dormant application; the total January and February chlorpyrifos load was 0.02 percent of dormant application. The precipitation samples collected during the January 2001 storm event were analyzed for pesticides to evaluate their potential contribution to pesticide loads in the study area. When the average concentrations of diazinon and chlorpyrifos in the precipitation samples were compared with concentrations in urban storm runoff samples, 68 percent of the diazinon concentration in the runoff could be accounted for in the precipitation. Chlorpyrifos, however, had average precipitation concentrations that were 2.5 times higher than what was detected in the runoff. Although no firm conclusions can be made from one storm event, preliminary results indicate that pesticides in precipitation can significantly contribute to pesticide loads in storm runoff.

  6. Storm flow export of metolachlor from a coastal plain watershed.

    PubMed

    Watts, D W; Novak, J M; Johnson, M H; Stone, K C

    2000-03-01

    During an 18-month (1994-1995) survey of the surface water in an Atlantic Coastal Plain watershed, metolachlor was most frequently detected during storm flow events. Therefore, a sampling procedure, focused on storm flow, was implemented in June of 1996. During 1996, three tropical cyclones made landfall within 150 km of the watershed. These storms, as well as several summer thunderstorms, produced six distinct storm flow events within the watershed. Metolachlor was detected leaving the watershed during each event. In early September, Hurricane Fran produced the largest storm flow event and accounted for the majority of the metolachlor exports. During the storm event triggered by Hurricane Fran, the highest daily average flow (7.5 m2 s-1) and highest concentration (5.1 micrograms L-1) ever measured at the watershed outlet were recorded. Storm flow exports leaving the watershed represented 0.1 g ha-1 or about 0.04% of active ingredient applied.

  7. Annual Report: 2011-2012 Storm Season Sampling, Non-Dry Dock Stormwater Monitoring for Puget Sound Naval Shipyard, Bremerton, WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenberger, Jill M.; Metallo, David; Rupert, Brian

    2013-07-03

    Annual PSNS non-dry dock storm water monitoring results for 2011-2012 storm season. Included are a brief description of the sampling procedures, storm event information, laboratory methods and data collection, a results and discussion section, and the conclusions and recommendations.

  8. Watershed and land use-based sources of trace metals in urban storm water.

    PubMed

    Tiefenthaler, Liesl L; Stein, Eric D; Schiff, Kenneth C

    2008-02-01

    Trace metal contributions in urban storm water are of concern to environmental managers because of their potential impacts on ambient receiving waters. The mechanisms and processes that influence temporal and spatial patterns of trace metal loading in urban storm water, however, are not well understood. The goals of the present study were to quantify trace metal event mean concentration (EMC), flux, and mass loading associated with storm water runoff from representative land uses; to compare EMC, flux, and mass loading associated with storm water runoff from urban (developed) and nonurban (undeveloped) watersheds; and to investigate within-storm and within-season factors that affect trace metal concentration and flux. To achieve these goals, trace metal concentrations were measured in 315 samples over 11 storm events in five southern California, USA, watersheds representing eight different land use types during the 2000 through 2005 storm seasons. In addition, 377 runoff samples were collected from 12 mass emission sites (end of watershed) during 15 different storm events. Mean flux at land use sites ranged from 24 to 1,238, 0.1 to 1,272, and 6 to 33,189 g/km(2) for total copper, total lead, and total zinc, respectively. Storm water runoff from industrial land use sites contained higher EMCs and generated greater flux of trace metals than other land use types. For all storms sampled, the highest metal concentrations occurred during the early phases of storm water runoff, with peak concentrations usually preceding peak flow. Early season storms produced significantly higher metal flux compared with late season storms at both mass emission and land use sites.

  9. Characterization of Water Quality Changes During Storm Events: New Methods to Protect Drinking Water Supplies

    NASA Astrophysics Data System (ADS)

    Sturdevant-Rees, P. L.; Long, S. C.; Barten, P. K.

    2002-05-01

    A forty-month investigation to collect microbial and water-quality measurements during storm events under a variety of meteorological and land-use conditions is in its initial stages. Intense sampling during storm event periods will be used to optimize sampling and analysis strategies for accurate determination of constituent loads. Of particular interest is identification of meteorological and hydrologic conditions under which sampling and analysis of surface waters for traditional microbial organisms, emerging microbial organisms and non-bacterial pathogens are critical to ensure the integrity of surface-water drinking supplies. This work is particular to the Quabbin-Ware-Wachusett reservoir system in Massachusetts, which provides unfiltered drinking water to 2.5 million people in Boston and surrounding communities. Sampling and analysis strategies will be optimized in terms of number of samples over the hydrograph, timing of sample collection (including sample initiation), constituents measured, volumes analyzed, and monetary and personnel costs. Initial water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, ammonia nitrogen, and total and fecal coliforms. Giardia cysts and Cryptosporidium oocysts will also be measured at all sample sites. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. It is anticipated that the final database will consist of transport data for the above parameters during twenty-four distinct storm-events in addition to monthly baseline data. Results and analyses for the first monitored storm-event will be presented.

  10. [First flush effects of storm events of Baoxiang River in Lake Dianchi Watershed].

    PubMed

    Guo, Huai-Cheng; Xiang, Nan; Zhou, Feng; Wang, Yong-Hua; Li, Fa-Rong; Zhu, Xiang; Mao, Guo-Zhu; Yu, Shu-Xia; Li, Na; Sheng, Hu; Yang, Yong-Hui; He, Cheng-Jie; Wang, Cui-Yu

    2013-04-01

    To understand riverine process of non-point source effectively, first flush effects of storm events were investigated at Baoxiang River of Lake Dianchi Watershed. Three sampling stations were selected along Baoxiang River for observing the flow rate and pollutant concentrations of the first three storm events from June 2009 to August 2009. Net discharged volume, net discharged loading, and net event mean concentration (EMC(n)) were proposed with their calculation methods. According to the analysis of three storm events at three stations, the following results colcd be extracted: (1) the larger the percent of impervious land and population density were, the higher EMC(n) of TSS, TN, TP, permanganate index and their cumulative curves [M(V)] were along the river; (2) TSS, TP loadings as well as their M (V) were positively correlated to the storm intensity, while TN and permanganate index loadings were consistent with the total rainfall of each storm event, where the percent of NO3(-) -N in total nitrogen decreased gradually when the number of storm events increased; (3) compared to tradition EMC, EMC(n) was proven to be a better indicator to accurately uncover and magnify the differences in first flush effects of storm events among different stations or storm events.

  11. Quality of Wisconsin stormwater, 1989-94

    USGS Publications Warehouse

    Bannerman, Roger T.; Legg, Andrew D.; Greb, Steven R.

    1996-01-01

    Water-quality data were compiled from four urban stormwater monitoring projects conducted in Wisconsin between 1989 and 1994. These projects included monitoring in both storm-sewer pipes and urban streams. A total of 147 constitu ents were analyzed for in stormwater sampled from 10 storm-sewer pipes and four urban streams. Land uses represented by the storm-sewer watersheds included residential, commercial, industrial, and mixed. For about one-half the con stituents, at least 10 percent of the event mean con centrations exceeded the laboratory's minimum reporting limit. Detection frequencies were greater than 75 percent for many of the heavy metals and polycyclic aromatic hydrocarbons in both the storm sewer and stream samples, whereas detec tion frequencies were about 20 percent or greater for many of the pesticides in both types of sam ples. Stormwater concentrations for conventional constituents, such as suspended solids, chloride, total phosphorus, and fecal coliform bacteria were greater than minimum reporting limits almost 100 percent of the time. Concentrations of many of the constituents were high enough to say that stormwater in the storm sewers and urban streams might be contrib uting to the degradation of the streams. In this report, constituents defined as potential contami nants are those for which the laboratory minimum report limit was exceeded for at least 10 percent of the sampled storm events, and for which at least one event mean concentration exceeded an estab lished water-quality standard. Storm-sewer sam ples had event mean concentrations of lead, copper, zinc, cadmium, and silver that frequently exceeded Wisconsin's acute toxicity criteria for cold water fisheries. Wisconsin's human cancer criteria was exceeded almost 100 percent of the time for polycyclic aromatic hydrocarbons in stormwater samples from storm sewers and streams. Maximum concentrations of diazinon found in storm sewers exceeded recommended levels of diazinon. Storm-sewer samples also exceeded Wisconsin's ground-water enforcement standards for pesticides, PCB's, phthalates, and chloride. Defined by criteria in this report, poten tial contaminants included five metals (lead, zinc, copper, silver, and cadmium), nine polycyclic aro matic hydrocarbons, Bis(2-ethylhexyl)phthalate, four pesticides (DDT, atrazine, alachlor, and 2,4 D), suspended solids, chlorides, total phosphorus, BOD 5-day, and bacteria. Wisconsin stormwater quality was similar to stormwater quality monitored in other states. Nearly one-half of median concentrations of con stituents in Wisconsin stormwater were within 30 percent of the medians from other states. The clos est agreement was seen for biochemical oxygen demand, total phosphorus, and total recoverable zinc. Similarities in stormwater quality for the storm sewer and urban streams indicated the storm sewers were a major source of water to the streams during storm events. Concentrations of potential contaminants in urban streams increased dramati cally during storm events as compared to baseflow concentrations.

  12. An assessment of the potential toxicity of runoff from an urban roadscape during rain events.

    PubMed

    Waara, Sylvia; Färm, Carina

    2008-05-01

    The potential negative impact of urban storm water on aquatic freshwater ecosystems has been demonstrated in various studies with different types of biological methods. There are a number of factors that influence the amount and bioavailability of contaminants in storm water even if it is derived from an area with a fairly homogenous land use such as a roadscape where a variation in toxicity during rain events might be expected. There are only a few previous investigations on the toxicity of highway runoff and they have not explored these issues extensively. The main objective of this study is therefore to characterize the potential toxicity of highway runoff during several rain events before it enters a detention pond in Västerås, Sweden, using laboratory bioassays with test organisms representing various functional groups in an aquatic ecosystem. The results are to be used for developing a monitoring program, including biological methods. The storm water was sampled before the entrance to a detention pond, which receives run-off from a highway with approximately 20,000 vehicles a day. The drainage area, including the roadscape and vegetated areas, is 4.3 ha in size. Samples for toxicity tests were taken with an automatic sampler or manually during storm events. In total, the potential toxicity of 65 samples representing 15 different storm events was determined. The toxicity was assessed with 4 different test organisms; Vibrio fischeri using the Microtox comparison test, Daphnia magna using Daphtoxkit-F agna, Thamnocephalus platyurus using the ThamnotoxkitF and Lemna minor, duckweed using SS 028313. Of the 65 samples, 58 samples were tested with DaphniatoxkitF agna, 57 samples with the Microtox comparison test, 48 samples with ThamnotoxkitF and 20 samples with Lemna minor, duckweed. None of the storm water samples were toxic. No toxicity was detected with the Lemna minor test, but in 5 of the 23 samples tested in comparison to the control a growth stimulation of 22-46% was observed. This is in accordance with the chemical analysis of the storm water, which indicated rather large concentrations of tot-N and tot-P. In addition to the growth stimulation, morphological changes were observed in all the 5 samples from the winter event that was sampled. The lack of toxicity observed in our study might be due to a lower traffic intensity (20,000 vehicles/day) at the site and the trapping of pollutants in the vegetated areas of the roadscape, resulting in much smaller loads of pollutants in the storm water than in some previous studies. Ecotoxicological evaluations of storm water including run off from rain events from urban roadscape studies clearly reveal that toxicity may or may not be detected depending upon site, storm condition and the test organism chosen. However, storm water might not be as polluted as previously reported nor may the first flush be such a widespread phenomenon as we originally expected. In this study, there was also a good correlation between pollutant load measured and the lack of toxicity. The test organisms chosen in this study are commonly used in effluent control programs in Sweden and other countries, which makes it possible to compare the results with those from other effluents. In this study, only acute toxicity tests were used and further studies using chronic toxicity tests, assays for genotoxic compounds or in situ bioassays might reveal biological effects at this site. Furthermore, most of the samples were taken in spring, summer or fall and it is possible that winter conditions might alter the constituents in the storm water and, thus, the toxicity of the samples. Considering the complex nature of run off from urban roadscapes, it will be virtually impossible to evaluate properly the potential hazard of particular storm water and the efficiency of a particular treatment strategy from only physical and chemical characterizations of the effluent. Therefore, despite the lack of toxicity detected in this study, it is recommended that toxicity tests or other biological methods should be included in evaluations of the effects of runoff from roadscapes.

  13. Temporal pattern of toxicity in runoff from the Tijuana River Watershed.

    PubMed

    Gersberg, Richard M; Daft, Daniel; Yorkey, Darryl

    2004-02-01

    Samples were collected from the Tijuana River under both dry weather (baseflow) conditions and during wet weather, and tested for toxicity using Ceriodaphnia dubia tests. Toxicity of waters in the Tijuana River was generally low under baseflow conditions, but increased markedly during high flow runoff events. In order to determine the temporal pattern of toxicity during individual rain events, sequential grab samples were collected using an autosampler at 5-7 h intervals after the start of the rain event, and tested for acute toxicity. In all cases, peak toxicity values (ranging from 2.8 to 5.8TU) for each storm occurred within the first 1-2 h of initiation of the rain event, and were statistically higher (using the 95% CL) for each of the pre-storm base flow values. However, there was no statistically significant correlation (p<0.05) between flow rate and toxicity when all storm data was pooled. Additionally, we used toxicity identification evaluation (TIE) procedures to attempt to identify the classes of chemicals that account for this early storm toxicity. Solid phase extraction was the only treatment that showed consistent and significant (P<0.05) removal of toxicity. These TIEs, conducted on the most toxic sample of the river's flow during runoff events, suggest that non-polar organics may be responsible for such toxicity. The temporal pattern of toxicity, both during a given storm event and seasonally, indicates that wash-off from the watershed by rainfall may deplete the supply of toxicity available for wash-off in subsequent events, so that a clearly consistent relationship between flow and toxicity was not evident.

  14. Variability of dissolved organic carbon in precipitation during storms at the Shale Hills Critical Zone Observatory

    USGS Publications Warehouse

    Iavorivska , Lidiia; Boyer, Elizabeth W.; Grimm, Jeffrey W.; Miller, Matthew P.; DeWalle, David R.; Davis, Kenneth J.; Kaye, Margot W.

    2017-01-01

    Organic compounds are removed from the atmosphere and deposited to the earth's surface via precipitation. In this study, we quantified variations of dissolved organic carbon (DOC) in precipitation during storm events at the Shale Hills Critical Zone Observatory, a forested watershed in central Pennsylvania (USA). Precipitation samples were collected consecutively throughout the storm during 13 events, which spanned a range of seasons and synoptic meteorological conditions, including a hurricane. Further, we explored factors that affect the temporal variability by considering relationships of DOC in precipitation with atmospheric and storm characteristics. Concentrations and chemical composition of DOC changed considerably during storms, with the magnitude of change within individual events being comparable or higher than the range of variation in average event composition among events. While some previous studies observed that concentrations of other elements in precipitation typically decrease over the course of individual storm events, results of this study show that DOC concentrations in precipitation are highly variable. During most storm events concentrations decreased over time, possibly as a result of washing out of the below-cloud atmosphere. However, increasing concentrations that were observed in the later stages of some storm events highlight that DOC removal with precipitation is not merely a dilution response. Increases in DOC during events could result from advection of air masses, local emissions during breaks in precipitation, or chemical transformations in the atmosphere that enhance solubility of organic carbon compounds. This work advances understanding of processes occurring during storms that are relevant to studies of atmospheric chemistry, carbon cycling, and ecosystem responses.

  15. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.

    PubMed

    Harris, C S; Tertuliano, M; Rajeev, S; Vellidis, G; Levy, K

    2018-03-01

    To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P < 0·01) and 0·61 (P < 0·05) log 10 most probable number (MPN) per 100 ml respectively. Salmonella concentrations in storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log 10 MPN per 100 ml (P < 0·001). Eighteen Salmonella serovars were identified from 155 serotyped isolates, and eight serovars were shared between storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health. © 2018 The Society for Applied Microbiology.

  16. Treatment performance of a constructed wetland during storm and non-storm events in Korea.

    PubMed

    Maniquiz, M C; Lee, S Y; Choi, J Y; Jeong, S M; Kim, L H

    2012-01-01

    The efficiency of a free water surface flow constructed wetland (CW) in treating agricultural discharges from stream was investigated during storm and non-storm events between April and December, 2009. Physico-chemical and water quality constituents were monitored at five sampling locations along the flow path of the CW. The greatest reduction in pollutant concentration was observed after passing the sedimentation zone at approximately 4% fractional distance from the inflow. The inflow hydraulic loading, flow rates and pollutant concentrations were significantly higher and variable during storm events than non-storm (baseflow) condition (p <0.001) that resulted to an increase in the average pollutant removal efficiencies by 10 to 35%. The highest removal percentages were attained for phosphate (51 ± 22%), ammonium (44 ± 21%) and phosphorus (38 ± 19%) while nitrate was least effectively retained by the system with only 25 ± 17% removal during non-storm events. The efficiency of the system was most favorable when the temperature was above 15 °C (i.e., almost year-round except the winter months) and during storm events. Overall, the outflow water quality was better than the inflow water quality signifying the potential of the constructed wetland as a treatment system and capability of improving the stream water quality.

  17. Importance of storm events in controlling ecosystem structure and function in a Florida Gulf Coast estuary

    USGS Publications Warehouse

    Davis, S. E.; Cable, J.E.; Childers, D.L.; Coronado-Molina, C.; Day, J.W.; Hittle, C.D.; Madden, C.J.; Reyes, E.; Rudnick, D.; Sklar, F.

    2004-01-01

    From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.

  18. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer strips can reduce the delivery of NH3-N and PO4-P by overland flow to stream channels during storm events, the management of N-rich storm runoff as NO3 via sub-surface drains would require significant interference with the drainage network. This could have a negative impact on agricultural production in the catchment.

  19. Asian Dust Storm Events of 2001 and Associated Pollution Observed in New England by the AIRMAP Monitoring Network

    NASA Astrophysics Data System (ADS)

    Debell, L. J.; Vozzella, M. E.; Talbot, R. W.; Dibb, J. E.

    2002-12-01

    The Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) program is operating 4 monitoring sites in New Hampshire, located at Fort Constitution (FC)(43.07oN, 70.71oW, 5m elevation), Thompson Farm (TF) (43.11oN, 70.95oW, 21m elevation), Castle Springs (CS) (43.75oN,71.35oW, 406m elevation) and Mount Washington (MW)(44.267oN, 71.30oW, 1909m elevation). Three chemically distinct, statistically extreme, regional scale dust aerosol events were observed at all four AIRMAP monitoring stations in NH between 4/18/01 and 5/13/01 (UTC). All three events, at all four sites, had days where the 24 hr bulk aerosol samples had Ca2+ concentrations that exceeded at least the 95th percentile of the site-specific, multi-year datasets. NO3- and SO42- were also enhanced above typical levels, ranging from above the 75th to above the 99th percentile. During all three events, mixing ratios of the gas phase pollutants O3 and CO were compared to mixing ratios on either side of the events. During event 1,enhancements above background levels were approximately 130 ppbv for CO and 30 ppbv for O3, very similar to the CO values in apparent Asian dust plumes sampled over Colorado at 6-7 km by aircraft measurements (http://www.cmdl.noaa.gov/info/asiandust.html); enhancements during events 2 and 3 were similar to event 1. The maximum elemental carbon value ever observed at TF, 0.97 μg/m3, occurred during the peak day of event 1. Elemental carbon was not substantially elevated during event 2 and no data were collected during event 3. Elemental ratios, determined by PIXE, on filters from events 1 and 3 were compared pairwise to each other and to published samples attributed to Asian dust storms. The AIRMAP samples collected on the same date at different sites showed good statistical agreement whereas samples collected at the same site on different dates show only moderate correlation. Of 17 published samples of Asian dust storm aerosol, collected well outside of the major desert and loess source regions, 15 showed good statistical agreement with at least 2 of our samples. In addition, at least 2 of our samples have good agreement with 1 published aerosol sample collected in the Gobi desert and for 1 published soil sample collected in the Takla Makan desert; indicating that the Asian dust storms are a possible source for our events. We also compared elemental ratios in our dust impacted samples to the IMPROVE dataset from Acadia, ME. Acadia was chosen for the longevity and completeness of its record and downwind location from the AIRMAP stations. Out of the over 1400 IMPROVE aerosol samples collected between 1988 and 2001, 476 have both Al, Fe and Ca above detection limit, and 120 show good agreement with at least 1 AIRMAP sample. The 120 samples selected above occurred primarily in spring: 52 samples from 3/1-5/15, 37 samples from 2/15-3/1 or 5/15-6/31. All three events are clearly discernible in the Acadia dataset both in timing and chemical similarity with the AIRMAP samples. A U.S. source cannot be ruled out chemically, but there are no reports in the National Climatic Data Centers Storm Publication that indicated large-scale dust storms in the period 4/10/01-5/10/01. TOMS images and the NRL-NAAPS model results also support an Asian source for the 3 events.

  20. The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms

    USGS Publications Warehouse

    Weir-Brush, J. R.; Garrison, V.H.; Smith, G.W.; Shinn, E.A.

    2004-01-01

    The number of reports of coral diseases has increased throughout the world in the last 20 years. Aspergillosis, which primarily affects Gorgonia ventalina and G. flabellum, is one of the few diseases to be characterized. This disease is caused by Aspergillus sydowii, a terrestrial fungus with a worldwide distribution. Upon infection, colonies may lose tissue, and ultimately, mortality may occur if the infection is not sequestered. The spores of A. sydowii are <5 ??m, small enough to be easily picked up by winds and dispersed over great distances. Aspergillosis is prevalent in the Caribbean, and it appears that this primarily terrestrial fungus has adapted to a marine environment. It has been proposed that dust storms originating in Africa may be one way in which potential coral pathogens are distributed and deposited into the marine environments of the Caribbean. To test the hypothesis that African dust storms transport and deposit pathogens, we collected air samples from both dust storms and periods of nondust in St. John, U.S. Virgin Islands. Because we focused on fungal pathogens and used A. sydowii as a model, we isolated and cultured fungi on various types of media. Fungi including Aspergillus spp. were isolated from air samples taken from dust events and non-dust events. Twenty-three separate cultures and seven genera were isolated from dust event samples whereas eight cultures from five genera were isolated from non-dust air samples. Three isolates from the Virgin Islands dust event samples morphologically identified as Aspergillus spp. produced signs of aspergillosis in seafans, and the original pathogens were re-isolated from those diseased seafans fulfilling Koch's Postulates. This research supports the hypothesis that African dust storms transport across the Atlantic Ocean and deposit potential coral pathogens in the Caribbean.

  1. Origin of particulate organic matter exported during storm events in a forested headwater catchment.

    NASA Astrophysics Data System (ADS)

    Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.

    2016-04-01

    Particulate organic matter (POM) plays an important biogeochemical role towards ecology, ecotoxicology and carbon cycle. Moreover POM within the fluvial suspended sediment load during infrequent high flows can comprise a larger portion of long-term flux than dissolved species. It is well documented that storm events that constituted only 10-20% of the year contributed to >80% of POC exports. But the origin and composition of POM transferred during those hot moments remained unclear. In order to improve our knowledge on this topic we explore the variability in storm event-transported sediments' POM content and source down a continuum of catchment drainage locations. Wetland, upland and forest O horizons, litter, river banks and bed sediments were analyzed for their content in organic C, isotopic (13C) and molecular (thermochemiolysis-gas chromatography-mass spectrometry) fingerprints. The isotopic and molecular fingerprints recorded in suspended and deposited (differentiated into fine, medium and coarse particles) sediments sampled during different storm events down a continuum of catchment drainage locations (12 and 79 ha). This study highlights compositional differences between the catchment size (12 versus 79 ha), the particle size of deposited sediment (fine versus medium versus coarse) and the sampling time during a storm event (rising limb versus peak flow versus falling limb). Two sampling strategies were used. Suspended sediments sampled at a specific time during flood events allow evaluating changes along the hydrograph, while deposited sediments that integrate the entire event allow making comparisons with drainage scale. For deposited sediments, the proportion of OM coming from the endmembers wetland, litter and Forest O horizon decreases from the 12ha to the 79ha catchment, which exhibited a higher proportion of OM coming from stream bed sediment and river banks. For both catchments, from fine to coarse particles, the influence of stream bed sediments and river banks decreases while the influence of Forest O horizon increases. For suspended sediments, the evolution during storm events were opposite in the 12ha and the 79ha catchments. In the 12ha catchment, during the rising limb of the hydrograph, POM seems to be inherited from stream bed sediments and river banks, while from the rising limb to the peak flow, the influence of litter and/or wetland increases. This influence decreases during the falling limb. The opposite trend was observed in the 79ha catchment, with an increasing contribution of stream bed sediments to the OM exported during a storm event. What is the information to take away? First POM transferred in headwater catchments has multiple sources. Secondly, the combination of those sources is different along the size continuum of particles. Then, down a continuum of catchment drainage locations, the combination of sources changes both along the size continuum and during storm events. This information is critical for identifying the various drivers and mechanisms behind POM transport and for understanding the impacts of POM on aquatic metabolism and downstream water quality.

  2. Impact of sampling techniques on measured stormwater quality data for small streams

    USGS Publications Warehouse

    Harmel, R.D.; Slade, R.M.; Haney, R.L.

    2010-01-01

    Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Microbiological and meteorological analysis of two Australian dust storms in April 2009.

    PubMed

    Lim, Natalie; Munday, Chris I; Allison, Gwen E; O'Loingsigh, Tadhg; De Deckker, Patrick; Tapper, Nigel J

    2011-12-15

    Dust is an important source of bioaerosols including bacteria. In this study, the microbiology and meteorology of specific dust storms in Australia were investigated. The samples were collected from two dust events in April 2009 that were characterised by intense cold fronts that entrained dust from the highly erodible and drought-stricken Mallee and Riverina regions of Victoria and central NSW. In the first storm, the dust travelled eastward over Canberra and Sydney, and in the second storm, the dust travelled east/southeastward over Canberra and Melbourne. Rain fell on both cities during the second dust storm. Dust and rain samples were collected, cultured, and the composition compared using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Multiple bands were evident on DGGE indicative of a diverse microflora, and identification of several bands confirmed the presence of multiple genera and species representing three phyla. Numerous bands represented Bacillus species, and these were present in multiple dust samples collected from both Canberra and Melbourne. Interestingly, the microflora present in rain samples collected in Canberra during the second dust storm was quite different and the DGGE banding patterns from these samples clustered separately to most dust samples collected at the same time. Identification of several DGGE bands and PCR products from these rain samples indicated the presence of Pseudomonas species. These results indicate that Australian dust and rain have a diverse microflora and highlights the contribution of dust events to the distribution of microbes in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    PubMed

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  5. Phosphorus export during storm events from a human perturbed watershed, southeast China: Implications for coastal ecology

    NASA Astrophysics Data System (ADS)

    Chen, Nengwang; Wu, Yinqi; Chen, Zhuhong; Hong, Huasheng

    2015-12-01

    Understanding how major storms impact riverine nutrient export to estuaries and the coastal region is crucial in the context of increasing anthropogenic climate and environmental perturbation. In this study, the effects of major storms on river phosphorus (P) were investigated in an agricultural river (SE China), through continuous sampling of dissolved and particulate P during the three largest storm events (A-C) in 2013. There was a major increase in the total P load (3.4-16 fold compared with baseflow). The event mean concentration of storm A was the highest likely due to the first flush effect mobilizing accumulated waste. The flux of DOP and DRP was controlled by discharge as DOP in storm B and DRP in storm C with a relatively simple hysteresis effect with higher fluxes on the rising limb being diluted by rainfall on the falling limb. DOP in storm B remained relatively constant due to delay in DOP flushed from upstream areas balancing dilution by rainfall down stream. DRP in storm C also remained relatively constant caused by successive release of soil DRP to the river from previous unsaturated surface layers. TPP export was greatest towards the early to high stages of the storm events suggesting that most of the eroded sediment and resuspended sediment-bound P are exported during the early stages of the storm. The total flux of P is elevated in watersheds with high levels of human perturbation while climate change is predicted to increase the frequency of major storms. The results of this study are important in predicting the ecosystem response of estuarine and coastal regions to major storms in the riverine catchment area.

  6. Toxicity of urban highway runoff with respect to storm duration.

    PubMed

    Kayhanian, M; Stransky, C; Bay, S; Lau, S-L; Stenstrom, M K

    2008-01-25

    The toxicity of stormwater runoff during various time-based stages was measured in both grab and composite samples collected from three highly urbanized highway sites in Los Angeles, California between 2002 and 2005. Stormwater runoff samples were tested for toxicity using three freshwater species (the water flea Ceriodaphnia dubia, the fathead minnow Pimephales promelas, and the green algae Pseudokirchneriella subcapitatum) and two marine species (the purple sea urchin Strongylocentrotus purpuratus, and the luminescent bacteria Photobacterium phosphoreum using Microtox. Toxicity results varied substantially throughout the storm events for both freshwater and marine species toxicity tests. In general, however, the first few samples were found to be more toxic compared with those collected during later stages of each storm event. In most cases, more than 40% of the toxicity was associated with the first 20% of discharged runoff volume. Furthermore, on average, 90% of the toxicity was observed during the first 30% of storm duration. Toxicity identification evaluation results found copper and zinc to be the primary cause of toxicity in about 90% of the samples evaluated with these procedures. Surfactants were also found to be the cause of toxicity in less than 10% of the samples.

  7. Occurrence of pesticides in surface water and sediments from three central California coastal watersheds, 2008-2009

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.

    2011-01-01

    Water and sediment (bed and suspended) were collected from January 2008 through October 2009 from 12 sites in 3 of the largest watersheds along California's Central Coast (Pajaro, Salinas, and Santa Maria Rivers) and analyzed for a suite of pesticides by the U.S. Geological Survey. Water samples were collected in each watershed from the estuaries and major tributaries during 4 storm events and 11 dry season sampling events in 2008 and 2009. Bed sediments were collected from depositional zones at the tributary sampling sites three times over the course of the study. Suspended sediment samples were collected from the major tributaries during the four storm events and in the tributaries and estuaries during three dry season sampling events in 2009. Water samples were analyzed for 68 pesticides using gas chromatography/mass spectrometry. A total of 38 pesticides were detected in 144 water samples, and 13 pesticides were detected in more than half the samples collected over the course of the study. Dissolved pesticide concentrations ranged from below their method detection limits to 36,000 nanograms per liter (boscalid). The most frequently detected pesticides in water from all the watersheds were azoxystrobin, boscalid, chlorpyrifos, DCPA, diazinon, oxyfluorfen, prometryn, and propyzamide, which were found in more than 80 percent of the samples. On average, detection frequencies and concentrations were higher in samples collected during winter storm events compared to the summer dry season. With the exception of the fungicide, myclobutanil, the Santa Maria estuary watershed exhibited higher pesticide detection frequencies than the Pajaro and Salinas watersheds. Bed and suspended sediment samples were analyzed for 55 pesticides using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment samples, 17 pesticides were detected including pyrethroid and organophosphate (OP) insecticides, p,p'-DDT and its degradates, as well as several herbicides. The only pesticides detected more than half the time were p,p'-DDD, p,p'-DDE, and p,p'-DDT. Maximum pesticide concentrations ranged from less than their respective method detection limits to 234 micrograms per kilogram (p,p'-DDE). Four pyrethroids (bifenthrin, &# 955;-cyhalothrin, permethrin, and &# 964;-fluvalinate) were detected in bed sediment samples, though concentrations were relatively low (less than 10 microgram per kilogram). The greatest number of pesticides were detected in samples collected from Lower Orcutt Creek, the major tributary to the Santa Maria estuary. In suspended sediment samples, 19 pesticides were detected, and maximum concentrations ranged from less than the method detection limits to 549 micrograms per kilogram (chlorpyrifos). The most frequently detected pesticides were p,p'-DDE (49 percent), p,p'-DDT (38 percent), and chlorpyrifos (32 percent). During storm events, 19 pesticides were detected in suspended sediment samples compared to 10 detected during the dry season. Pesticide concentrations commonly were higher in suspended sediments during storm events than during the dry season, as well.

  8. Comparison between Measured and Calculated Sediment Transport Rates in North Fork Caspar Creek, California

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Yarnell, S. M.; Yager, E.; Leidman, S. Z.

    2015-12-01

    Caspar Creek is a gravel-bedded stream located in the Jackson Demonstration State Forest in the coast range of California. The Caspar Creek Experimental Watershed has been actively monitored and studied by the Pacific Southwest Research Station and California Department of Forestry and Fire Protection for over five decades. Although total annual sediment yield has been monitored through time, sediment transport during individual storm events is less certain. At a study site on North Fork Caspar Creek, cross-section averaged sediment flux was collected throughout two storm events in December 2014 and February 2015 to determine if two commonly used sediment transport equations—Meyer-Peter-Müller and Wilcock—approximated observed bedload transport. Cross-section averaged bedload samples were collected approximately every hour during each storm event using a Helley-Smith bedload sampler. Five-minute composite samples were collected at five equally spaced locations along a cross-section and then sieved to half-phi sizes to determine the grain size distribution. The measured sediment flux values varied widely throughout the storm hydrographs and were consistently less than two orders of magnitude in value in comparison to the calculated values. Armored bed conditions, changing hydraulic conditions during each storm and variable sediment supply may have contributed to the observed differences.

  9. Solute Response To Arid-Climate Managed-River Flow During Storm Events

    NASA Astrophysics Data System (ADS)

    McLean, B.; Shock, E.

    2006-12-01

    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of major solutes change slowly and are independent of discharge downstream from the dams on two major tributaries. This is indicative of reservoir release water. In addition, a third input is derived from the Colorado River via the Central Arizona Project canal system. Cross plots including concentrations of solutes such as nitrate and sulfate from downstream of the confluence indicate at least three end-member sources, as do Piper diagrams using major anion and cation data. Dynamic contributions from natural event water and urban inputs can be resolved from the slowly changing release water, and may dictate the short-term transport of pollutants during the storm-induced transition state.

  10. Partitioning of Antibiotic Resistance Genes and Fecal Indicators Varies Intra and Inter-Storm during Combined Sewer Overflows

    PubMed Central

    Eramo, Alessia; Delos Reyes, Hannah; Fahrenfeld, Nicole L.

    2017-01-01

    Combined sewer overflows (CSOs) degrade water quality through the release of microbial contaminants in CSO effluent. Improved understanding of the partitioning of microbial contaminants onto settleable particles can provide insight into their fate in end-of-pipe treatment systems or following release during CSO events. Sampling was performed across the hydrograph for three storm events as well as during baseflow and wet weather in three surface waters impacted by CSO. qPCR was performed for select antibiotic resistance genes (ARG) and a marker gene for human fecal indicator organisms (BacHum) in samples processed the partitioning of microbial contaminants on settleable particles versus suspended in the aqueous phase. Amplicon sequencing was performed on both fractions of storm samples to further define the timing and partitioning of microbial contaminants released during CSO events. Samples collected at the CSO outfall exhibited microbial community signatures of wastewater at select time points early or late in the storm events. CSOs were found to be a source of ARG. In surrounding surface waters, sul1 was higher in samples from select locations during wet weather compared to baseflow. Otherwise, ARG concentrations were variable with no differences between baseflow and wet weather conditions. The majority of ARG at the CSO outfall were observed on the attached fraction of samples: 64–79% of sul1 and 59–88% of tet(G). However, the timing of peak ARG and human fecal indicator marker gene BacHum did not necessarily coincide with observation of the microbial signature of wastewater in CSO effluent. Therefore, unit processes that remove settleable particles (e.g., hydrodynamic separators) operated throughout a CSO event would achieve up to (0.5–0.9)-log removal of ARG and fecal indicators by removing the attached fraction of measured genes. Secondary treatment would be required if greater removal of these targets is needed. PMID:29104562

  11. POM Pulses: Characterizing the Physical and Chemical Properties of Particulate Organic Matter (POM) Mobilized by Large Storm Events and its Influence on Receiving Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.; Rowland, R. D.; Protokowicz, J.; Inamdar, S. P.; Kan, J.; Vargas, R.

    2016-12-01

    Extreme storm events have tremendous erosive energy which is capable of mobilizing vast amounts of material from watershed sources into fluvial systems. This complex mixture of sediment and particulate organic matter (POM) is a nutrient source, and has the potential to impact downstream water quality. The impact of POM on receiving aquatic systems can vary not only by the total amount exported but also by the various sources involved and the particle sizes of POM. This study examines the composition of POM in potential sources and within-event POM by: (1) determining the amount and quality of dissolved organic matter (DOM) that can be leached from coarse, medium and fine particle classes; (2) assessing the C and N content and isotopic character of within-event POM; and (3) coupling physical and chemical properties to evaluate storm event POM influence on stream water. Storm event POM samples and source sediments were collected from a forested headwater catchment (second order stream) in the Piedmont region of Maryland. Samples were sieved into three particle classes - coarse (2mm-1mm), medium (1mm-250µm) and fine (<250µm). Extractions were performed for three particle class sizes and the resulting fluorescent organic matter was analyzed. Carbon (C) and Nitrogen (N) amount, C:N ratio, and isotopic analysis of 13C and 15N were performed on solid state event and source material. Future work will include examination of microbial communities associated with POM particle size classes. Physical size class separation of within-event POM exhibited differences in C:N ratios, δ15N composition, and extracted DOM lability. Smaller size classes exhibited lower C:N ratios, more enriched δ15N and more recalcitrant properties in leached DOM. Source material had varying C:N ratios and contributions to leached DOM. These results indicate that both source and size class strongly influence the POM contribution to fluvial systems during large storm events.

  12. Study of Extreme Weather Hazards Using GRACE

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shum, C. K.; Shang, K.; Guo, J.; Schwartz, F. W.; Akyılmaz, O.; Feng, W.; Forootan, E.; LIU, G.; Zhong, M.

    2017-12-01

    Extreme weather events significantly affect humans and economics in the region. Synoptic and timely observations of these abrupt meteoro-hydrological hazards would benefit disaster management and improve storm forecasting. Contemporary processing of the Gravity Recovery and Climate Experiment (GRACE) twin-satellite data at monthly sampling would miss or under-sample abrupt events such as large ice storms with durations much shorter than a month. Here, we employ the energy balance approach processing GRACE Level 1 data, which is flexible to allow sub-monthly solutions at daily sampling covering the genesis and evolution of large winter storms. We studied the 2008 Southeast China snow and ice storm, which lasted from mid-January to mid-February, and affected 21 out of China's 34 provinces with heavy snows, ice and freezing rains, caused extensive damage and transportation disruption, displaced nearly 1.7 million people, and claimed 129 lives. We also investigated the devastating North America blizzard which occurred during late January through mid-February 2010. The massive accumulations of snow and ice in both storms slightly changed the gravity field of the Earth, and were sensitive to the GRACE satellite measurements, manifested as transient terrestrial water storage (TWS) change. We compared our solutions with other available high temporal frequency GRACE solutions. The GRACE observed total storage change for both storms are in good agreement with in situ precipitation measurements, and with GRACE observations clearly show the complex genesis, decline, strengthening and melting phases depicting the detailed evolution of these example large snow storms.

  13. Characterizations of the first flush in storm water runoff from an urban roadway.

    PubMed

    Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T

    2005-07-01

    Storm water runoff from urban roadways contains anthropogenic pollutants, which are mainly generated from traffic-related activities. The purpose of this study was to evaluate the characteristics of pollutants from the roadway runoff as well as first flush effects. Storm water runoff was sampled during five storm events from the experimental site in Otsu, Shiga, Japan. From the hydrographs and pollutographs for the roadway runoff, the concentration of pollutants increased with increasing runoff flow in the low flow rate event, but did not significantly increase in the high flow rate event. Moreover, according to the analysis of cumulative pollutant mass versus runoff volume curves from five storm events, the first 50% of the runoff volume transported 62% of TOC and Mo, 60% of SS, 59% of Fe, Mn and Cu, 58% of Ni, 57% of Cd and Pb, 56% of Al, 55% of Zn, and 54% of Cr, as the mean values. The first 30% and 80% of the runoff volume also transported 34-43% mass of the pollutants and 82-88% mass of the pollutants, respectively. This study for storm water runoff may also provide useful information to correctly design treatment facilities, such as detention tanks and ponds, filtration and adsorption systems.

  14. Observed characteristics of dust storm events over the western United States using meteorological, satellite, and air quality measurements

    NASA Astrophysics Data System (ADS)

    Lei, H.; Wang, J. X. L.

    2014-08-01

    To improve dust storm identification over the western United States, historical dust events measured by air quality and satellite observations are analyzed based on their characteristics in data sets of regular meteorology, satellite-based aerosol optical depth (AOD), and air quality measurements. Based on the prevailing weather conditions associated with dust emission, dust storm events are classified into the following four typical types: (1) The key feature of cold front-induced dust storms is their rapid process with strong dust emissions. (2) Events caused by meso- to small-scale weather systems have the highest levels of emissions. (3) Dust storms caused by tropical disturbances show a stronger air concentration of dust and last longer than those in (1) and (2). (4) Dust storms triggered by cyclogenesis last the longest. In this paper, sample events of each type are selected and examined to explore characteristics observed from in situ and remote-sensing measurements. These characteristics include the lasting period, surface wind speeds, areas affected, average loading on ground-based optical and/or air quality measurements, peak loading on ground-based optical and/or air quality measurements, and loading on satellite-based aerosol optical depth. Based on these analyses, we compare the characteristics of the same dust events captured in different data sets in order to define the dust identification criteria. The analyses show that the variability in mass concentrations captured by in situ measurements is consistent with the variability in AOD from stationary and satellite observations. Our analyses also find that different data sets are capable of identifying certain common characteristics, while each data set also provides specific information about a dust storm event. For example, the meteorological data are good at identifying the lasting period and area impacted by a dust event; the ground-based air quality and optical measurements can capture the peak strength well; aerosol optical depth (AOD) from satellite data sets allows us to better identify dust-storm-affected areas and the spatial extent of dust. The current study also indicates that the combination of in situ and satellite observations is a better method to fill gaps in dust storm recordings.

  15. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy

    PubMed Central

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin

    2016-01-01

    ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment. PMID:27060115

  16. Improving the accuracy of sediment-associated constituent concentrations in whole storm water samples by wet-sieving

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.; Bowman, G.

    2007-01-01

    Sand-sized particles (>63 ??m) in whole storm water samples collected from urban runoff have the potential to produce data with substantial bias and/or poor precision both during sample splitting and laboratory analysis. New techniques were evaluated in an effort to overcome some of the limitations associated with sample splitting and analyzing whole storm water samples containing sand-sized particles. Wet-sieving separates sand-sized particles from a whole storm water sample. Once separated, both the sieved solids and the remaining aqueous (water suspension of particles less than 63 ??m) samples were analyzed for total recoverable metals using a modification of USEPA Method 200.7. The modified version digests the entire sample, rather than an aliquot, of the sample. Using a total recoverable acid digestion on the entire contents of the sieved solid and aqueous samples improved the accuracy of the derived sediment-associated constituent concentrations. Concentration values of sieved solid and aqueous samples can later be summed to determine an event mean concentration. ?? ASA, CSSA, SSSA.

  17. Atmospheric inputs of organic matter to a forested watershed: Variations from storm to storm over the seasons

    NASA Astrophysics Data System (ADS)

    Iavorivska, Lidiia; Boyer, Elizabeth W.; Miller, Matthew P.; Brown, Michael G.; Vasilopoulos, Terrie; Fuentes, Jose D.; Duffy, Christopher J.

    2016-12-01

    The objectives of this study were to determine the quantity and chemical composition of precipitation inputs of dissolved organic carbon (DOC) to a forested watershed; and to characterize the associated temporal variability. We sampled most precipitation that occurred from May 2012 through August 2013 at the Susquehanna Shale Hills Critical Zone Observatory (Pennsylvania, USA). Sub-event precipitation samples (159) were collected sequentially during 90 events; covering various types of synoptic meteorological conditions in all climatic seasons. Precipitation DOC concentrations and rates of wet atmospheric DOC deposition were highly variable from storm to storm, ranging from 0.3 to 5.6 mg C L-1 and from 0.5 to 32.8 mg C m-2 h-1, respectively. Seasonally, storms in spring and summer had higher concentrations of DOC and more optically active organic matter than in winter. Higher DOC concentrations resulted from weather types that favor air advection, where cold frontal systems, on average, delivered more than warm/stationary fronts and northeasters. A mixed modeling statistical approach revealed that factors related to storm properties, emission sources, and to the chemical composition of the atmosphere could explain more than 60% of the storm to storm variability in DOC concentrations. This study provided observations on changes in dissolved organic matter that can be useful in modeling of atmospheric oxidative chemistry, exploring relationships between organics and other elements of precipitation chemistry, and in considering temporal changes in ecosystem nutrient balances and microbial activity.

  18. Rainfall, Discharge, and Water-Quality Data During Stormwater Monitoring, July 1, 2007, to June 30, 2008; Halawa Stream Drainage Basin and the H-1 Storm Drain, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Young, Stacie T.M.

    2008-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at four stations, and water-quality data at six stations, which include the four continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2007, and June 30, 2008. A total of 16 environmental samples were collected over two storms during July 1, 2007, to June 30, 2008, within the Halawa Stream drainage area. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some samples were analyzed for only a partial list of these analytes because an insufficient volume of sample was collected by the automatic samplers. Three additional quality-assurance/quality-control samples were collected concurrently with the storm samples. A total of 16 environmental samples were collected over four storms during July 1, 2007, to June 30, 2008 at the H-1 Storm Drain. All samples at this site were collected using an automatic sampler. Samples generally were analyzed for total suspended solids, nutrients, chemical oxygen demand, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc), although some samples were analyzed for only a partial list of these analytes. During the storm of January 29, 2008, 10 discrete samples were collected. Varying constituent concentrations were detected for the samples collected at different times during this storm event. Two quality-assurance/quality-control samples were collected concurrently with the storm samples. Three additional quality-assurance/quality-control samples were collected during routine sampler maintenance to check the effectiveness of equipment-cleaning procedures.

  19. Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa

    USGS Publications Warehouse

    Kellogg, C.A.; Griffin, Dale W.; Garrison, V.H.; Peak, K.K.; Royall, N.; Smith, R.R.; Shinn, E.A.

    2004-01-01

    Millions of metric tons of African desert dust blow across the Atlantic Ocean each year, blanketing the Caribbean and southeastern United States. Previous work in the Caribbean has shown that atmospheric samples collected during dust events contain living microbes, including plant and opportunistic human pathogens. To better understand the potential downwind public health and ecosystem effects of the dust microbes, it is important to characterize the source population. We describe 19 genera of bacteria and 3 genera of fungi isolated from air samples collected in Mali, a known source region for dust storms, and over which large dust storms travel.

  20. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    NASA Astrophysics Data System (ADS)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-07-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/2014 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper-beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number of the storms. This model application provides inter-survey information about morphological response to repeated storm impact. This will inform local managers of the potential beach response and dune vulnerability to variable storm configurations.

  1. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    NASA Astrophysics Data System (ADS)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-04-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/14 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross-section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number of the storms. This model application provides inter-survey information about morphological response to repeated storm impact. This will inform local managers of the potential beach response and dune vulnerability to variable storm configurations.

  2. Water-quality assessment of stormwater runoff from a heavily used urban highway bridge in Miami, Florida

    USGS Publications Warehouse

    McKenzie, Donald J.; Irwin, G.A.

    1983-01-01

    Runoff from a heavily-traveled, 1.43-acre bridge section of Interstate-95 in Miami, Florida, was comprehensively monitored for both quality and quantity during five selected storms between November 1979 and May 1981. For most water-quality parameters, 6 to 11 samples were collected during each of the 5 runoff events. Concentrations of most parameters in the runoff were quite variable both during individual storm events and among the five storm events; however, the ranges in parameter concentration were about the same magnitude report for numerous other highway and urban drainages. Data were normalized to estimate the average, discharge-weighted parameter loads per storm per acre of bridge surface and results suggested that the most significant factor influencing stormwater loads was parameter concentration. Rainfall intensity and runoff volume, however, influenced rates of loading. The total number of antecedent dry days and traffic volume did not appear to be conspicously related to either runoff concentrations or loads. (USGS)

  3. Self-Consistency of Rain Event Definitions

    NASA Astrophysics Data System (ADS)

    Teves, J. B.; Larsen, M.

    2014-12-01

    A dense optical rain disdrometer array was constructed to study rain variability on spatial scales less than 100 meters with temporal resolution of 1 minute. Approximately two months of data were classified into rain events using methods common in the literature. These methods were unable to identify an array-wide consensus as to the total number of rain events; instruments as little as 2 meters apart with similar data records sometimes identified different rain event totals. Physical considerations suggest that these differing event totals are likely due to instrument sampling fluctuations that are typically not accounted for in rain event studies. Detection of varying numbers of rain events impact many commonly used storm statistics including storm duration distributions and mean rain rate. A summary of the results above and their implications are presented.

  4. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  5. Storm loads of culturable and molecular fecal indicators in an inland urban stream.

    PubMed

    Liao, Hehuan; Krometis, Leigh-Anne H; Cully Hession, W; Benitez, Romina; Sawyer, Richard; Schaberg, Erin; von Wagoner, Emily; Badgley, Brian D

    2015-10-15

    Elevated concentrations of fecal indicator bacteria in receiving waters during wet-weather flows are a considerable public health concern that is likely to be exacerbated by future climate change and urbanization. Knowledge of factors driving the fate and transport of fecal indicator bacteria in stormwater is limited, and even less is known about molecular fecal indicators, which may eventually supplant traditional culturable indicators. In this study, concentrations and loading rates of both culturable and molecular fecal indicators were quantified throughout six storm events in an instrumented inland urban stream. While both concentrations and loading rates of each fecal indicator increased rapidly during the rising limb of the storm hydrographs, it is the loading rates rather than instantaneous concentrations that provide a better estimate of transport through the stream during the entire storm. Concentrations of general fecal indicators (both culturable and molecular) correlated most highly with each other during storm events but not with the human-associated HF183 Bacteroides marker. Event loads of general fecal indicators most strongly correlated with total runoff volume, maximum discharge, and maximum turbidity, while event loads of HF183 most strongly correlated with the time to peak flow in a hydrograph. These observations suggest that collection of multiple samples during a storm event is critical for accurate predictions of fecal indicator loading rates and total loads during wet-weather flows, which are required for effective watershed management. In addition, existing predictive models based on general fecal indicators may not be sufficient to predict source-specific genetic markers of fecal contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Atmospheric inputs of organic matter to a forested watershed: Variations from storm to storm over the seasons

    USGS Publications Warehouse

    Iavorivska , Lidiia; Boyer, Elizabeth W.; Miller, Matthew P.; Brown, Michael G.; Vasilopoulos , Terrie; Fuentes, Jose D.; Duffy, Christopher J.

    2016-01-01

    The objectives of this study were to determine the quantity and chemical composition of precipitation inputs of dissolved organic carbon (DOC) to a forested watershed; and to characterize the associated temporal variability. We sampled most precipitation that occurred from May 2012 through August 2013 at the Susquehanna Shale Hills Critical Zone Observatory (Pennsylvania, USA). Sub-event precipitation samples (159) were collected sequentially during 90 events; covering various types of synoptic meteorological conditions in all climatic seasons. Precipitation DOC concentrations and rates of wet atmospheric DOC deposition were highly variable from storm to storm, ranging from 0.3 to 5.6 mg C L−1 and from 0.5 to 32.8 mg C m−2 h−1, respectively. Seasonally, storms in spring and summer had higher concentrations of DOC and more optically active organic matter than in winter. Higher DOC concentrations resulted from weather types that favor air advection, where cold frontal systems, on average, delivered more than warm/stationary fronts and northeasters. A mixed modeling statistical approach revealed that factors related to storm properties, emission sources, and to the chemical composition of the atmosphere could explain more than 60% of the storm to storm variability in DOC concentrations. This study provided observations on changes in dissolved organic matter that can be useful in modeling of atmospheric oxidative chemistry, exploring relationships between organics and other elements of precipitation chemistry, and in considering temporal changes in ecosystem nutrient balances and microbial activity.

  7. Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas

    USGS Publications Warehouse

    Haggard, B.E.; Soerens, T.S.; Green, W.R.; Richards, R.P.

    2003-01-01

    The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams. Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression models are used. The objective of this work was to determine a minimum number of water-quality samples needed to provide constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The regression-based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean square error of less than 15%. Water quality samples should be collected at least semi-monthly (every 15 days) in studies less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from independently collected discrete water quality samples further demonstrated the utility of using regression models to estimate annual TP loads in this stream system.

  8. Association of time of occurrence of electrical heart storms with environmental physical activity.

    PubMed

    Stoupel, Eliiyahu; Kusniec, Jairo; Golovchiner, Gregory; Abramson, Evgeny; Kadmon, Udi; Strasberg, Boris

    2014-08-01

    Many publications in recent decades have reported a temporal link between medical events and environmental physical activity. The aim of this study was to analyze the time of occurrence of electrical heart storms against levels of cosmological parameters. The sample included 82 patients (71 male) with ischemic cardiomyopathy treated with an implantable cardioverter defibrillator at a tertiary medical center in 1999-2012 (5,114 days). The time of occurrence of all electrical heart storms, defined as three or more events of ventricular tachycardia or ventricular fibrillation daily, was recorded from the defibrillator devices. Findings were analyzed against data on solar, geomagnetic, and cosmic ray (neutron) activity for the same time period obtained from space institutions in the United States and Russia. Electrical storms occurred in all months of the year, with a slight decrease in July, August, and September. Most events took place on days with lower-than-average levels of solar and geomagnetic activity and higher-than-average levels of cosmic ray (neutron) activity. There was a significant difference in mean daily cosmic ray activity between the whole observation period and the days of electrical storm activity (P = 0.0001). These data extend earlier findings on the association of the timing of cardiac events and space weather parameters to the most dangerous form of cardiac arrhythmia-electric storms. Further studies are needed to delineate the pathogenetic mechanism underlying this association. ©2014 Wiley Periodicals, Inc.

  9. Annual Report: 2010-2011 Storm Season Sampling For NON-DRY DOCK STORMWATER MONITORING FOR PUGET SOUND NAVAL SHIPYARD, BREMERTON, WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenberger, Jill M.; Metallo, David; Johnston, Robert K.

    2012-09-01

    This interim report summarizes the stormwater monitoring conducted for non-dry dock outfalls in both the confined industrial area and the residential areas of Naval Base Kitsap within the Puget Sound Naval Shipyard (referred to as the Shipyard). This includes the collection, analyses, and descriptive statistics for stormwater sampling conducted from November 2010 through April 2011. Seven stormwater basins within the Shipyard were sampled during at least three storm events to characterize non-dry dock stormwater discharges at selected stormwater drains located within the facility. This serves as the Phase I component of the project and Phase II is planned for themore » 2011-2012 storm season. These data will assist the Navy, USEPA, Ecology and other stakeholders in understanding the nature and condition of stormwater discharges from the Shipyard and inform the permitting process for new outfall discharges. The data from Phase I was compiled with current stormwater data available from the Shipyard, Sinclair/Dyes Inlet watershed, and Puget Sound in order to support technical investigations for the Draft NPDES permit. The permit would require storm event sampling at selected stormwater drains located within the Shipyard. However, the data must be considered on multiple scales to truly understand potential impairments to beneficial uses within Sinclair and Dyes Inlets.« less

  10. Data Report: Organic Water Chemistry for 2005 Storm Events in Support of the Storm Water Studies in Sinclair and Dyes Inlet, Washington

    DTIC Science & Technology

    2005-12-01

    Water Data Report BATTELLE MARINE SCIENCES LABORATORIES SINCLAIR AND DYES INLET 2005 STORMWATER 1529 West Sequim Bay Road 2005 Stormwater Equipment...phenanthrene Page 1 of 4 Page 6 of 224 2005 Storm Water Data Report BATTELLE MARINE SCIENCES LABORATORIES 1529 West Sequim Bay Road Sequim , Washington...West Sequim Bay Road Sequim , Washington 98382 (360) 681-4564 MSL Sample ID Client ID Site Description Collection Date 2318-1 BST12-RB Equipment Blk

  11. Test of the efficiency of three storm water quality models with a rich set of data.

    PubMed

    Ahyerre, M; Henry, F O; Gogien, F; Chabanel, M; Zug, M; Renaudet, D

    2005-01-01

    The objective of this article is to test the efficiency of three different Storm Water Quality Model (SWQM) on the same data set (34 rain events, SS measurements) sampled on a 42 ha watershed in the center of Paris. The models have been calibrated at the scale of the rain event. Considering the mass of pollution calculated per event, the results on the models are satisfactory but that they are in the same order of magnitude as the simple hydraulic approach associated to a constant concentration. In a second time, the mass of pollutant at the outlet of the catchment at the global scale of the 34 events has been calculated. This approach shows that the simple hydraulic calculations gives better results than SWQM. Finally, the pollutographs are analysed, showing that storm water quality models are interesting tools to represent the shape of the pollutographs, and the dynamics of the phenomenon which can be useful in some projects for managers.

  12. Evaluating performance of stormwater sampling approaches using a dynamic watershed model.

    PubMed

    Ackerman, Drew; Stein, Eric D; Ritter, Kerry J

    2011-09-01

    Accurate quantification of stormwater pollutant levels is essential for estimating overall contaminant discharge to receiving waters. Numerous sampling approaches exist that attempt to balance accuracy against the costs associated with the sampling method. This study employs a novel and practical approach of evaluating the accuracy of different stormwater monitoring methodologies using stormflows and constituent concentrations produced by a fully validated continuous simulation watershed model. A major advantage of using a watershed model to simulate pollutant concentrations is that a large number of storms representing a broad range of conditions can be applied in testing the various sampling approaches. Seventy-eight distinct methodologies were evaluated by "virtual samplings" of 166 simulated storms of varying size, intensity and duration, representing 14 years of storms in Ballona Creek near Los Angeles, California. The 78 methods can be grouped into four general strategies: volume-paced compositing, time-paced compositing, pollutograph sampling, and microsampling. The performances of each sampling strategy was evaluated by comparing the (1) median relative error between the virtually sampled and the true modeled event mean concentration (EMC) of each storm (accuracy), (2) median absolute deviation about the median or "MAD" of the relative error or (precision), and (3) the percentage of storms where sampling methods were within 10% of the true EMC (combined measures of accuracy and precision). Finally, costs associated with site setup, sampling, and laboratory analysis were estimated for each method. Pollutograph sampling consistently outperformed the other three methods both in terms of accuracy and precision, but was the most costly method evaluated. Time-paced sampling consistently underestimated while volume-paced sampling over estimated the storm EMCs. Microsampling performance approached that of pollutograph sampling at a substantial cost savings. The most efficient method for routine stormwater monitoring in terms of a balance between performance and cost was volume-paced microsampling, with variable sample pacing to ensure that the entirety of the storm was captured. Pollutograph sampling is recommended if the data are to be used for detailed analysis of runoff dynamics.

  13. Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China.

    PubMed

    Chen, Nengwang; Wu, Jiezhong; Hong, Huasheng

    2012-08-01

    Rain storms are predicted to increase in the subtropical region due to climate change. However, the effects of storm events on riverine nitrogen (N) dynamics are poorly understood. In this study, the riverine N dynamics and storm effects in a large subtropical river (North Jiulong River, southeastern China) were investigated through continuous sampling of two storm events which occurred in June 2010 and June 2011. The results disclosed a strong linkage between N dynamics and hydrological controls and watershed characteristics. The extreme storm in June 2010 resulted in more fluctuations in N concentrations, loads, and composition, compared with the moderate storm in June 2011. There were contrasting patterns (e.g., the hysteresis effect) between nitrate and ammonium behavior in storm runoff, reflecting their different supply source and transport mechanism. Overall, nitrate supply originated from subsurface runoff and was dominated by within-channel mobilization, while ammonium was mainly from over-land sources and flushed by surface runoff. Extreme storm runoff (2010) caused a four-fold increase in dissolved inorganic N fluxes (DIN), with a greater fraction of ammonium (up to 30% of DIN) compared with the moderate storm and background flow condition (less than 15%). Storm-driven sharp increases of N loads and changes in nutrient stoichiometry (more ammonium) might have been connected with algal blooms in the adjacent estuary and Xiamen Bay. Combined with the background flow measurement of N gradients along the main river and a stream together with anthropogenic N load information, the interactive effect of hydrological and biogeochemical process on riverine N was preliminarily revealed. Current results suggested that storm runoff N was controlled by rainfall, hydrological condition, antecedent soil moisture, spatial variability of land-based N source, and damming. These findings could be used as a reference for future water quality monitoring programs and the development of a pollution mitigation strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Storm-water data for Bear Creek basin, Jackson County, Oregon 1977-78

    USGS Publications Warehouse

    Wittenberg, Loren A.

    1978-01-01

    Storm-water-quality samples were collected from four subbasins in the Bear Creek basin in southern Oregon. These subbasins vary in drainage size, channel slope, effective impervious area, and land use. Automatic waterquality samplers and precipitation and discharge gages were set up in each of the four subbasins. During the period October 1977 through May 1978, 19 sets of samples, including two base-flow samples, were collected. Fecal coliform bacteria colonies per 100-milliliter sample ranged from less than 1,000 to more than 1,000,000. Suspended-sediment concentrations ranged from less than 1 to more than 2,300 milligrams per liter. One subbasin consisting of downtown businesses and streets with heavy vehicular traffic was monitored for lead. Total lead values ranging from 100 to 1,900 micrograms per liter were measured during one storm event.

  15. Using high-frequency sensors to identify hydroclimatological controls on storm-event variability in catchment nutrient fluxes and source zone activation

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan

    2017-04-01

    At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.

  16. Transport of Cryptosporidium, Giardia, Source-specific Indicator Organisms, and Standard Water Quality Constituents During Storm Events

    NASA Astrophysics Data System (ADS)

    Sturdevant-Rees, P. L.; Bourdeau, D.; Baker, R.; Long, S. C.; Barten, P. K.

    2004-05-01

    Microbial and water-quality measurements are collected during storm events under a variety of meteorological and land-use conditions in order to 1) identify risk of Cryptosporidium oocysts, Giardia cysts and other constituents, including microbial indicator organisms, entering surface waters from various land uses during periods of surface runoff; 2) optimize storm sampling procedures for these parameters; and 3) optimize strategies for accurate determination of constituent loads. The investigation is focused on four isolated land uses: forested with free ranging wildlife, beaver influenced forested with free ranging wildlife, residential/commercial, and dairy farm grazing/pastureland using an upstream and downstream sampling strategy. Traditional water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, and ammonia nitrogen, Giardia cysts and Cryptosporidium oocysts. Total coliforms and fecal coliforms are measured as industry standard microbial analyses. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. Upon completion of the project, the final database will consist of wet weather transport data for a set of parameters during twenty-four distinct storm-events in addition to monthly baseline data. A subset of the results to date will be presented, with focus placed on demonstrating the impact of beaver on constituent loadings over a variety of hydrologic and meteorological conditions.

  17. Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms

    PubMed Central

    Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail

    2014-01-01

    Introduction: This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Methods: Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. Results: Results indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Discussion: Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced. PMID:25685629

  18. Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms.

    PubMed

    Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail

    2014-12-22

    This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. RESULTS indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced.

  19. High-throughput sequencing analysis of the bacteria in the dust storm which passed over Canberra, Australia on 22-23 September 2009

    NASA Astrophysics Data System (ADS)

    Munday, Chris; De Deckker, Patrick; Tapper, Nigel; Allison, Gwen

    2014-05-01

    Following a prolonged drought in Australia in the first decade of the 21st century, several dust storms affected the heavily populated East coast of Australia. The largest such storm occurred on 22-23 September 2009 and had a front of an estimated 3000km. A 24hr average PM10 concentration of over 2,000μg/m3 was recorded in several locations and an hourly peak of over 15,000μg/m3 was recorded (Leys et al. 2011). Over two time periods duplicate aerosol samples were collected on 47mm diameter cellulose nitrate membranes at a location removed from anthropogenic influences. One set of samples was collected in the afternoon the dust event started and another was collected overnight. Additionally, overnight rainfall was collected in a sterile bottle.DNA was directly extracted one membrane from each time point for molecular cloning and high throughput sequencing, while the other was cultivated on Tryptic Soy Agar (TSA). High throughput sequencing was performed using the 454 Titanium platform. From the three samples, 19,945 curated sequences were obtained representing 942 OTUS, with the three samples approximately equal in number. Unclassified Rhizobiales and Stenotrophomonas were the most abundant groups which could be attributed names. A total of 942 OTUs were identified (cutoff = 0.03), and despite the temporal relation of the samples, only eleven were found in all three samples, indicating that the dust storm evolved in composition as it passed over the region. Approximately 800 and 500 CFU/m3 were found in the two cultivated samples, tenfold more than was collected from previous dust events (Lim et al, 2011). Identification of cultivars revealed a dominance of the gram positive Firmicutes phylum, while the clone library showed a more even distribution of taxa, with Actinobacteria the most common and Firmicutes comprising less than 10% of sequences. Collectively, the analyses indicate that the concentration of cultivable organisms during the dust storm dramatically relative to calm conditions. A diverse and variable population of microorganisms were present reflecting the vast source and dynamic nature of the storm.

  20. Relationships between acid deposition, watershed characteristics, and stream chemistry in Maryland's coastal plain. Final report. Volume 5. Appendix B. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, S.; Bartoshesky, J.; Heimbuch, D.

    1987-06-01

    Contents include: data quality assurance and stream, precipitation, and meteorological data; Granny Finley Branch stream chemistry (routine sampling, storm-event chemistry, longitudinal sampling, groundwater chemistry).

  1. High-Amplitude Atlantic Hurricanes Produce Disparate Mortality in Small, Low-Income Countries.

    PubMed

    Dresser, Caleb; Allison, Jeroan; Broach, John; Smith, Mary-Elise; Milsten, Andrew

    2016-12-01

    Hurricanes cause substantial mortality, especially in developing nations, and climate science predicts that powerful hurricanes will increase in frequency during the coming decades. This study examined the association of wind speed and national economic conditions with mortality in a large sample of hurricane events in small countries. Economic, meteorological, and fatality data for 149 hurricane events in 16 nations between 1958 and 2011 were analyzed. Mortality rate was modeled with negative binomial regression implemented by generalized estimating equations to account for variable population exposure, sequence of storm events, exposure of multiple islands to the same storm, and nonlinear associations. Low-amplitude storms caused little mortality regardless of economic status. Among high-amplitude storms (Saffir-Simpson category 4 or 5), expected mortality rate was 0.72 deaths per 100,000 people (95% confidence interval [CI]: 0.16-1.28) for nations in the highest tertile of per capita gross domestic product (GDP) compared with 25.93 deaths per 100,000 people (95% CI: 13.30-38.55) for nations with low per capita GDP. Lower per capita GDP and higher wind speeds were associated with greater mortality rates in small countries. Excessive fatalities occurred when powerful storms struck resource-poor nations. Predictions of increasing storm amplitude over time suggest increasing disparity between death rates unless steps are taken to modify the risk profiles of poor nations. (Disaster Med Public Health Preparedness. 2016;10:832-837).

  2. Impact of sampling techniques on measured stormwater quality data for small streams

    USDA-ARS?s Scientific Manuscript database

    Science-based sampling methodologies are needed to enhance water quality characterization for developing Total Maximum Daily Loads (TMDLs), setting appropriate water quality standards, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water qual...

  3. Effects of the First Floods on Water Quality and Sediment Transport in the Sierra Nevada Foothill Streams, California

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Baca, J.; He, Z.; Blunmenshine, S.

    2010-12-01

    The typical Mediterranean climate of California (wet winter and spring season followed by dry summer and fall season) makes it necessary to closely monitor the first few floods in early November or December when the accumulated surface matters in the past rainless months would be flushed into the streams causing water quality impairment and sediment mobilization. In order to evaluate the effects of the first floods, two storm water samplers were installed, one on the main stem of the Fresno River and the other on the Coarsegold tributary. The storm water sampler collects two different samples during a storm event. The “first flush” sample is collected at the beginning of a storm event and the “time weighted” composite sample is collected at selected intervals during the storm. Nutrient contents in all the water samples were measured to evaluate water quality status, and the fine particle size distributions of the suspended sediments in the flood water were measured using laser diffraction. Results show that: (1)The effects of the first floods are significant: it cleans the tributary (nutrient losing) streams while aggravating nutrient loadings in the main stem of the river; (2) The sediment flux in the upper areas of the watershed is generally low, however it increases ten folds during the flood in the lower part of the watershed, loading large amounts of sediments in the Hensley Lake; and (3) After the first floods, the river channel is typically deposited with increased amount of very fine (< 2 micros) and very coarse particles (>200 microns), causing significant substrate siltation thus affecting habitat quality for the stream biota. The hydrology of the first floods needs to be further studied for water quality assessment in the Mediterranean climate regions.

  4. Microbial and Nutrient Concentration and Load Data During Stormwater Runoff at a Swine Concentrated Animal Feeding Operation in the North Carolina Coastal Plain, 2006-2007

    USGS Publications Warehouse

    Harden, Stephen L.

    2008-01-01

    This report summarizes water-quality and hydrologic data collected during 2006-2007 to characterize bacteria and nutrient loads associated with overland runoff and subsurface tile drainage in spray fields at a swine concentrated animal feeding operation. Four monitoring locations were established at the Lizzie Research Site in the North Carolina Coastal Plain Physiographic Province for collecting discharge and water-quality data during stormwater-runoff events. Water stage was measured continuously at each monitoring location. A stage-discharge relation was developed for each site and was used to compute instantaneous discharge values for collected samples. Water-quality samples were collected for five storm events during 2006-2007 for analysis of nutrients and fecal indicator bacteria. Instantaneous loads of nitrite plus nitrate, total coliform, Escherichia coli (E. coli), and enterococci were computed for selected times during the five storm events.

  5. Swashed away? Storm impacts on sandy beach macrofaunal communities

    NASA Astrophysics Data System (ADS)

    Harris, Linda; Nel, Ronel; Smale, Malcolm; Schoeman, David

    2011-09-01

    Storms can have a large impact on sandy shores, with powerful waves eroding large volumes of sand off the beach. Resulting damage to the physical environment has been well-studied but the ecological implications of these natural phenomena are less known. Since climate change predictions suggest an increase in storminess in the near future, understanding these ecological implications is vital if sandy shores are to be proactively managed for resilience. Here, we report on an opportunistic experiment that tests the a priori expectation that storms impact beach macrofaunal communities by modifying natural patterns of beach morphodynamics. Two sites at Sardinia Bay, South Africa, were sampled for macrofauna and physical descriptors following standard sampling methods. This sampling took place five times at three- to four-month intervals between April 2008 and August 2009. The second and last sampling events were undertaken after unusually large storms, the first of which was sufficiently large to transform one site from a sandy beach into a mixed shore for the first time in living memory. A range of univariate (linear mixed-effects models) and multivariate (e.g. non-metric multidimensional scaling, PERMANOVA) methods were employed to describe trends in the time series, and to explore the likelihood of possible explanatory mechanisms. Macrofaunal communities at the dune-backed beach (Site 2) withstood the effects of the first storm but were altered significantly by the second storm. In contrast, macrofauna communities at Site 1, where the supralittoral had been anthropogenically modified so that exchange of sediments with the beach was limited, were strongly affected by the first storm and showed little recovery over the study period. In line with predictions from ecological theory, beach morphodynamics was found to be a strong driver of temporal patterns in the macrofaunal community structure, with the storm events also identified as a significant factor, likely because of their direct effects on beach morphodynamics. Our results also support those of other studies suggesting that developed shores are more impacted by storms than are undeveloped shores. Whilst recognising we cannot generalise too far beyond our limited study, our results contribute to the growing body of evidence that interactions between sea-level rise, increasing storminess and the expansion of anthropogenic modifications to the shoreline will place functional beach ecosystems under severe pressure over the forthcoming decades and we therefore encourage further, formal testing of these concepts.

  6. Climatic Events and Historical Disturbances Control Acute and Chronic Water-Quality Impairment After Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2016-12-01

    Many studies have shown that surface water quality can be impaired after wildfire. The majority of these studies are typically conducted for short periods (1-2 years), and until recently, usually employed routine (fixed-interval) sampling. We monitored stream water quality for five years after a wildfire in the Colorado Front Range using a combination of routine sampling, storm sampling, and continuous sensors. This five-year study facilitated the measurement of post-wildfire water-quality response to a number of climatic events, including low- to moderate-intensity rain storms, drought, extreme rainfall (based on amount of rain that fell in a 7-day period), and the highest spring runoff recorded from the watershed during 23 years of record. Post-wildfire water quality was controlled by the hydrologic response to these climatic events, and by a legacy of historical disturbance from mining and related activities. Increased surface runoff during rain storms led to mobilization of sediment from hillslopes to stream channels. The sediment remained in stream channels during a drought that led to reduced (25% of mean) spring runoff, but this sediment, and associated constituents such as dissolved organic carbon and manganese, were remobilized into the water column and transported downstream during sustained high-flow spring runoff in the third year. We infer that the relative proportions of surface and subsurface runoff were altered by the wildfire and during the extreme rainfall, possibly leading to greater flow through abandoned mine adits and tunnels, and thus causing increased instream metal concentrations (such as arsenic and manganese). Post-wildfire water-quality issues were both acute, with significant water-quality impairment during storm events, and chronic, with elevated concentrations of sediment, nitrate, dissolved organic carbon, manganese, and arsenic for months to years after the wildfire. Such variable source water quality, in both contaminant type and concentration, presents a substantial challenge to water-treatment facilities. Climate change is projected to increase wildfire risk and possibly storm frequency and intensity, and thus the risk of wildfire impacts on water supplies is likely to worsen in the future.

  7. Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.

    2010-12-01

    The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the first post-fire rainy season regardless of storm size.

  8. Chapter 5: Quality assurance/quality control in stormwater sampling

    USDA-ARS?s Scientific Manuscript database

    Sampling the quality of stormwater presents unique challenges because stormwater flow is relatively short-lived with drastic variability. Furthermore, storm events often occur with little advance warning, outside conventional work hours, and under adverse weather conditions. Therefore, most stormwat...

  9. Classification and evaluation of the documentary-recorded storm events in the Annals of the Choson Dynasty (1392-1910), Korea

    NASA Astrophysics Data System (ADS)

    Yoo, Chulsang; Park, Minkyu; Kim, Hyeon Jun; Choi, Juhee; Sin, Jiye; Jun, Changhyun

    2015-01-01

    In this study, the analysis of documentary records on the storm events in the Annals of the Choson Dynasty, covering the entire period of 519 years from 1392 to 1910, was carried out. By applying various key words related to storm events, a total of 556 documentary records could be identified. The main objective of this study was to develop rules of classification for the documentary records on the storm events in the Annals of the Choson Dynasty. The results were also compared with the rainfall data of the traditional Korean rain gauge, named Chukwooki, which are available from 1777 to 1910 (about 130 years). The analysis is organized as follows. First, the frequency of the documents, their length, comments about the size of the inundated area, the number of casualties, the number of property losses, and the size of the countermeasures, etc. were considered to determine the magnitude of the events. To this end, rules of classification of the storm events are developed. Cases in which the word 'disaster' was used along with detailed information about the casualties and property damages, were classified as high-level storm events. The high-level storm events were additionally sub-categorized into catastrophic, extreme, and severe events. Second, by applying the developed rules of classification, a total of 326 events were identified as high-level storm events during the 519 years of the Choson Dynasty. Among these high-level storm events, only 19 events were then classified as the catastrophic ones, 106 events as the extreme ones, and 201 events as the severe ones. The mean return period of these storm events was found to be about 30 years for the catastrophic events, 5 years for the extreme events, and 2-3 years for the severe events. Third, the classification results were verified considering the records of the traditional Korean rain gauge; it was found that the catastrophic events are strongly distinguished from other events with a mean total rainfall and a storm duration equal to 439.8 mm and 49.3 h, respectively. The return period of these catastrophic events was also estimated to be in the range 100-500 years.

  10. Proceedings from the Annual Army Environmental R&D Symposium (16th) Held 23-25 June 1992 at Fort Magruder Inn and Conference Center, Williamsburg, Virginia

    DTIC Science & Technology

    1992-06-01

    methods of selecting sites, monitoring flow, and sampling 4 409 runoff. Also, there are some observations on storm water quality findings and some...turning off the flow meters until a rain event is imminent. Make sure you pack plenty of flashlights for night rains. 6. STORM WATER QUALITY SUMMARY

  11. Intra-storm variability in microbial partitioning and microbial loading rates.

    PubMed

    Krometis, Leigh-Anne H; Characklis, Gregory W; Simmons, Otto D; Dilts, Mackenzie J; Likirdopulos, Christina A; Sobsey, Mark D

    2007-01-01

    Association with particles in the water column can have a significant impact on microbial fate and transport. This study analyzed multiple stormwater samples taken throughout the duration of three separate storms (at two different sites) to evaluate the fraction of microbes partitioning to denser "settleable" particles and to examine how partitioning behavior varied over the course of a storm. Intra-storm sampling also allowed for estimates of microbial loading rates (both total and particle-associated) and cumulative storm-induced microbial load. Five different indicator organisms were examined, with the fraction of microbes associated with settleable particles assessed via a calibrated centrifugation method. Partitioning behavior varied across microorganism type, with an average of 40% of fecal coliforms, Escherichia coli, and enterococci associating with settleable particles, compared to approximately 65% of Clostridium perfringens spores and only 13% of total coliphage. Partitioning remained fairly constant for each type of organism throughout storm events. Nonetheless, higher concentrations of both settleable particles and microbes entering the water column soon after the onset of a storm led to higher loading rates of settleable microbes in the storm's earliest stages, a trend that could have important implications for the design of stormwater management structures (e.g., detention basins). Estimates of cumulative storm-induced microbial loading suggested that one day's worth of storm loading can be the equivalent of months, or even years, of dry-weather loading.

  12. Interannual Similarity in the Martian Atmosphere During the Dust Storm Season

    NASA Technical Reports Server (NTRS)

    Kass, D. M.; Kleinboehl, A.; McCleese, D. J.; Schofield, J. T.; Smith, M. D.

    2016-01-01

    We find that during the dusty season on Mars (southern spring and summer) of years without a global dust storm there are three large regional-scale dust storms. The storms are labeled A, B, and C in seasonal order. This classification is based on examining the zonal mean 50 Pa (approximately 25 km) daytime temperature retrievals from TES/MGS and MCS/MRO over 6 Mars Years. Regional-scale storms are defined as events where the temperature exceeds 200 K. Examining the MCS dust field at 50 Pa indicates that warming in the Southern Hemisphere is dominated by direct heating, while northern high latitude warming is a dynamical response. A storms are springtime planet encircling Southern Hemisphere events. B storms are southern polar events that begin near perihelion and last through the solstice. C storms are southern summertime events starting well after the end of the B storm. C storms show the most interannual variability.

  13. Interannual similarity in the Martian atmosphere during the dust storm season

    NASA Astrophysics Data System (ADS)

    Kass, D. M.; Kleinböhl, A.; McCleese, D. J.; Schofield, J. T.; Smith, M. D.

    2016-06-01

    We find that during the dusty season on Mars (southern spring and summer) of years without a global dust storm there are three large regional-scale dust storms. The storms are labeled A, B, and C in seasonal order. This classification is based on examining the zonal mean 50 Pa (˜25 km) daytime temperature retrievals from TES/MGS and MCS/MRO over 6 Mars Years. Regional-scale storms are defined as events where the temperature exceeds 200 K. Examining the MCS dust field at 50 Pa indicates that warming in the Southern Hemisphere is dominated by direct heating, while northern high latitude warming is a dynamical response. A storms are springtime planet encircling Southern Hemisphere events. B storms are southern polar events that begin near perihelion and last through the solstice. C storms are southern summertime events starting well after the end of the B storm. C storms show the most interannual variability.

  14. Contrasting patterns of nutrient dynamics during different storm events in a semi-arid catchment of northern China.

    PubMed

    Du, Xinzhong; Li, Xuyong; Hao, Shaonan; Wang, Huiliang; Shen, Xiao

    2014-01-01

    Nutrient discharge during storm events is a critical pathway for nutrient export in semi-arid catchments. We investigated nutrient dynamics during three summer storms characterized by different rainfall magnitude in 2012 in a semi-arid catchment of northern China. The results showed that, in response to storm events, nutrient dynamics displayed big variation in temporal trends of nutrient concentration and in nutrient concentration-flow discharge relationships. Nutrient concentrations had broader fluctuations during an extreme storm than during lesser storms, whereas the concentration ranges of the a moderate storm were no broader than those of a smaller one. The different concentration fluctuations were caused by storm magnitude and intensity coupled with the antecedent rainfall amount and cumulative nutrients. Correlation coefficients between nutrient concentrations and flow discharge varied from positive to negative for the three different events. There were no consistent hysteresis effects for the three different events, and no hysteresis effects were observed for any of the variables during the moderate storm (E2). Our findings provide useful information for better understanding nutrient loss mechanisms during storm events in semi-arid areas of a monsoon climate region.

  15. Effects of the H-3 Highway Stormwater Runoff on the Water Quality of Halawa Stream, Oahu, Hawaii, November 1998 to August 2004

    USGS Publications Warehouse

    Wolff, Reuben H.; Wong, Michael F.

    2008-01-01

    Since November 1998, water-quality data have been collected from the H-3 Highway Storm Drain C, which collects runoff from a 4-mi-long viaduct, and from Halawa Stream on Oahu, Hawaii. From January 2001 to August 2004, data were collected from the storm drain and four stream sites in the Halawa Stream drainage basin as part of the State of Hawaii Department of Transportation Storm Water Monitoring Program. Data from the stormwater monitoring program have been published in annual reports. This report uses these water-quality data to explore how the highway storm-drain runoff affects Halawa Stream and the factors that might be controlling the water quality in the drainage basin. In general, concentrations of nutrients, total dissolved solids, and total suspended solids were lower in highway runoff from Storm Drain C than at stream sites upstream and downstream of Storm Drain C. The opposite trend was observed for most trace metals, which generally occurred in higher concentrations in the highway runoff from Storm Drain C than in the samples collected from Halawa Stream. The absolute contribution from Storm Drain C highway runoff, in terms of total storm loads, was much smaller than at stations upstream and downstream, whereas the constituent yields (the relative contribution per unit drainage basin area) at Storm Drain C were comparable to or higher than storm yields at stations upstream and downstream. Most constituent concentrations and loads in stormwater runoff increased in a downstream direction. The timing of the storm sampling is an important factor controlling constituent concentrations observed in stormwater runoff samples. Automated point samplers were used to collect grab samples during the period of increasing discharge of the storm throughout the stormflow peak and during the period of decreasing discharge of the storm, whereas manually collected grab samples were generally collected during the later stages near the end of the storm. Grab samples were analyzed to determine concentrations and loads at a particular point in time. Flow-weighted time composite samples from the automated point samplers were analyzed to determine mean constituent concentrations or loads during a storm. Chemical analysis of individual grab samples from the automated point sampler at Storm Drain C demonstrated the ?first flush? phenomenon?higher constituent concentrations at the beginning of runoff events?for the trace metals cadmium, lead, zinc, and copper, whose concentrations were initially high during the period of increasing discharge and gradually decreased over the duration of the storm. Water-quality data from Storm Drain C and four stream sites were compared to the State of Hawaii Department of Health (HDOH) water-quality standards to determine the effects of highway storm runoff on the water quality of Halawa Stream. The geometric-mean standards and the 10- and 2-percent-of-the-time concentration standards for total nitrogen, nitrite plus nitrate, total phosphorus, total suspended solids, and turbidity were exceeded in many of the comparisons. However, these standards were not designed for stormwater sampling, in which constituent concentrations would be expected to increase for short periods of time. With the aim of enhancing the usefulness of the water-quality data, several modifications to the stormwater monitoring program are suggested. These suggestions include (1) the periodic analyzing of discrete samples from the automated point samplers over the course of a storm to get a clearer profile of the storm, from first flush to the end of the receding discharge; (2) adding an analysis of the dissolved fractions of metals to the sampling plan; (3) installation of an automatic sampler at Bridge 8 to enable sampling earlier in the storms; (4) a one-time sampling and analysis of soils upstream of Bridge 8 for base-line contaminant concentrations; (5) collection of samples from Halawa Stream during low-flow conditions

  16. Turbidity-controlled sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  17. Pathogen and nutrient pulsing and attenuation in "accidental" urban wetland networks along the Salt River in Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Palta, M. M.; Grimm, N. B.

    2013-12-01

    Increases in available nutrients and bacteria in urban streams are at the forefront of research concerns within the ecological and medical communities, and both pollutants are expected to become more problematic under projected changes in climate. Season, discharge, instream conditions (oxygen, water velocity), and weather conditions (antecedent moisture) all may influence loading rates to and the retention capabilities of wetlands fed by urban runoff and storm flow. The aim of this research was to examine the effect of these variables on nutrient (nitrogen, phosphorus) and Escherichia coli (E. coli) loading and attenuation along flow paths in urban wetland networks along the Salt River in Phoenix, AZ. Samples were collected for one year along flowpaths through wetlands that formed below six perennially flowing outfalls. Collection took place monthly during baseflow (dry season) conditions, and before and immediately following storm events, in the summer monsoon and winter rainy seasons. Water quality was assessed at the following points: immediately downstream of the outfall, mid-wetland, and downstream of the wetland. For determination of E. coli counts, samples were plated on coliform-selective media (Chromocult) and incubated for 24 hours. Plates were then used to enumerate E. coli. For determination of nutrient concentrations, samples were filtered and frozen until they could be analyzed by ion chromatography and automated wet chemistry. During both summer and winter, total discharge into the wetlands increased during storm events. Concentrations of PO43+, NH4+, and E. coli were significantly higher following storm events than during baseflow conditions, and post-storm peaks in concentration ('pulses') were higher during the summer monsoon than in winter storms. Pulses of pollutants during storms were highest when preceded by hot, dry conditions. NO3- was high in both base and stormflow. E. coli counts and nutrient concentrations dropped along flowpaths through the wetlands, indicating high attenuation capability even during storms. Attenuation of nutrients during baseflow appeared to be a function of microbial processing, while during stormflow, when water retention time in the wetlands was reduced, attenuation was likely explained by other factors, such as sediment adsorption. Potential tradeoffs emerged between removal of NO3- (highest under low dissolved oxygen) and E. coli (highest under high dissolved oxygen) during baseflow. Climate change models project increases in severe droughts and extreme precipitation events for the southwestern United States, which can lead to more sewage leakages and increases in contaminated runoff from impervious surfaces in urban areas. Wetlands are constructed or restored to mitigate microbial contamination of wastewater. Our research indicates that even "accidental" urban wetlands can serve to reduce downstream transport of nutrients and pathogens in storm and wastewater. However, wetland restoration or design targeting increased water retention time may increase the capability of accidental wetlands in this urban desert river channel to remove nutrients and pathogens from stormwater.

  18. Hydrologic disturbance and response of aquatic biota in Big Darby Creek basin, Ohio

    USGS Publications Warehouse

    Hambrook, J.A.; Koltun, G.F.; Palcsak, B.B.; Tertuliani, J.S.

    1997-01-01

    Washout and recolonization of macroinvertebrates and algae associated with a spring and summer storm were measured at three sites in Ohio's Big Darby Creek Basin. Related factors, such as streamflow magnitude, shear stress, and streamed disturbance were considered when interpreting observed changes in densities and community structure of macroinvertebrates and algae. During the study, 184 macroinvertebrate taxa and 202 algal taxa were identified. The major taxonomic groups for macroinvertebrates were midges and other true flies (Diptera), caddisflies (Trichoptera), beetles (Coleoptera), mayflies (Ephemeroptera), and stoneflies (Plecoptera). Diatoms were the dominant algae (in terms of percentage of total taxa found) followed by green algae, blue-green algae, euglenoids, golden flagellates, and freshwater red algae. Streamflows associated with the storm events that occurred during April 6-16 and June 23-July 5, 1994, probably had little effect on streambed elevations, but streambed disturbance was documented in the form of shifts in the median particle-size diameters of the subsurface bed materials. The streamflow magnitudes did not correlate well with the magnitude of observed changes in macroinvertebrate and algal-cell densities, but reductions in macroinvertebrate and algal-cell densities generally did occur. Local minima of macroinvertebrate density did not generally correspond to the first sample after the storms, but instead lagged by about 1 to 3 weeks. Other biotic factors, such as emergence of Diptera, probably affected the observed mid-July depression in macroinvertebrate densities. Evaluation of pre-event macroinvertebrate community structure in terms of functional feeding groups and flow-exposure groups showed that, on the basis of percentage of total taxa found, gatherers were the dominant feeding group and flow-facultative taxa were the dominant flow-exposure group. Densities of gatherers decreased from pre-event levels following all the storm events at all sites, whereas flow-facultative and flow-avoiding taxa were significantly reduced only after the summer event at Big and Little Darby Creeks. Algal-cell densities in the first post-event samples always were lower than pre-event densities; however, the total number of taxa present generally were not statistically different. In four out of five of the first post-event samples, algal-cell densities were only 16 to 26 percent of the pre-event densities. The exception was at Little Darby Creek after the spring event, where only the density of stalked algal cells in the community were significantly reduced. The observed resistance to disturbance of the algal community at Little Darby Creek may have resulted from the relative abundance of the mat-forming blue-green algae Oscillatoria spp. The stalked cells were the most consistently reduced in the post-event-samples, whereas holdfast types (such as Audouinella hermannii) and prostrate epiphytes (such as Cocconeis spp) were the most resistant to washout. Algal recolonization rates, measured as the change in algal-cell densities over a 7-day period after the summer storm event, ranged from 0.05 to 1.51 billion cells per square meter per day. These recolonization rates are expected to be affected by factors such as nutrients, temperature, amount of canopy, initial post-event algal density, and grazing by macroinvertebrates and fish. On the basis of canopy and nutrient data, one would expect the algal recolonization rates for the three sites in this study to sort in the order observed.

  19. Standard operating procedures for collection of soil and sediment samples for the Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy pilot study

    USGS Publications Warehouse

    Fisher, Shawn C.; Reilly, Timothy J.; Jones, Daniel K.; Benzel, William M.; Griffin, Dale W.; Loftin, Keith A.; Iwanowicz, Luke R.; Cohl, Jonathan A.

    2015-12-17

    An understanding of the effects on human and ecological health brought by major coastal storms or flooding events is typically limited because of a lack of regionally consistent baseline and trends data in locations proximal to potential contaminant sources and mitigation activities, sensitive ecosystems, and recreational facilities where exposures are probable. In an attempt to close this gap, the U.S. Geological Survey (USGS) has implemented the Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy pilot study to collect regional sediment-quality data prior to and in response to future coastal storms. The standard operating procedure (SOP) detailed in this document serves as the sample-collection protocol for the SCoRR strategy by providing step-by-step instructions for site preparation, sample collection and processing, and shipping of soil and surficial sediment (for example, bed sediment, marsh sediment, or beach material). The objectives of the SCoRR strategy pilot study are (1) to create a baseline of soil-, sand-, marsh sediment-, and bed-sediment-quality data from sites located in the coastal counties from Maine to Virginia based on their potential risk of being contaminated in the event of a major coastal storm or flooding (defined as Resiliency mode); and (2) respond to major coastal storms and flooding by reoccupying select baseline sites and sampling within days of the event (defined as Response mode). For both modes, samples are collected in a consistent manner to minimize bias and maximize quality control by ensuring that all sampling personnel across the region collect, document, and process soil and sediment samples following the procedures outlined in this SOP. Samples are analyzed using four USGS-developed screening methods—inorganic geochemistry, organic geochemistry, pathogens, and biological assays—which are also outlined in this SOP. Because the SCoRR strategy employs a multi-metric approach for sample analyses, this protocol expands upon and reconciles differences in the sample collection protocols outlined in the USGS “National Field Manual for the Collection of Water-Quality Data,” which should be used in conjunction with this SOP. A new data entry and sample tracking system also is presented to ensure all relevant data and metadata are gathered at the sample locations and in the laboratories.

  20. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean.

    PubMed

    Mazar, Yinon; Cytryn, Eddie; Erel, Yigal; Rudich, Yinon

    2016-04-19

    We evaluated the impact of Saharan dust storms on the local airborne microbiome in a city in the Eastern Mediterranean area. Samples of particles with diameter less than 10 μm were collected during two spring seasons on both dusty and nondusty days. DNA was extracted, and partial 16S rRNA gene amplicons were sequenced using the Illumina platform. Bioinformatic analysis showed the effect of dust events on the diversity of the atmospheric microbiome. The relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Quantitative polymerase chain reaction measurements of selected clinically significant antibiotic resistance genes (ARGs) showed that their relative abundance decreased during dust events. The ARG profiles on dust-free days were similar to those in aerosol collected in a poultry house, suggesting a strong agricultural influence on the local ambient profiles. We conclude that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to the dust particles. Dust storms do not seem to be an important vector for transport of probed ARGs.

  1. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    NASA Astrophysics Data System (ADS)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  2. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    NASA Astrophysics Data System (ADS)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  3. Hydrologic and sediment data collected from selected basins at the Fort Leonard Wood Military Reservation, Missouri--2010-11

    USGS Publications Warehouse

    Richards, Joseph M.; Rydlund, Jr., Paul H.; Barr, Miya N.

    2012-01-01

    Commercial and residential development within a basin often increases the amount of impervious area, which changes the natural hydrologic response to storm events by increasing runoff. Land development and disturbance combined with increased runoff from impervious areas potentially can increase sediment transport. At the Fort Leonard Wood Military Reservation in Missouri, there has been an increase in population and construction activities in the recent past, which has initiated an assessment of the hydrology in selected basins. From April 2010 to December 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Maneuver Support Center at the Fort Leonard Wood Military Reservation, collected hydrologic and suspended-sediment concentration data in six basins at Fort Leonard Wood. Storm-sediment concentration, load, and yield varied from basin to basin and from storm to storm. In general, storm-sediment yield, in pounds per square mile per minute, was greatest from Ballard Hollow tributary (06928410) and Dry Creek (06930250), and monthly storm-sediment yield, in tons per square mile, estimates were largest in Ballard Hollow tributary (06928410), East Gate Hollow tributary (06930058), and Dry Creek (06930250). Sediment samples, collected at nine sites, primarily were collected using automatic samplers and augmented with equal-width-increment cross-sectional samples and manually collected samples when necessary. Storm-sediment load and yield were computed from discharge and suspended-sediment concentration data. Monthly storm-sediment yields also were estimated from the total storm discharge and the mean suspended-sediment concentration at each given site.

  4. Investigation of Mercury Wet Deposition Physicochemistry in the Ohio River Valley through Automated Sequential Sampling

    EPA Science Inventory

    Intra-storm variability and soluble fractionation was explored for summer-time rain events in Steubenville, Ohio to evaluate the physical processes controlling mercury (Hg) in wet deposition in this industrialized region. Comprehensive precipitation sample collection was conducte...

  5. High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes

    USGS Publications Warehouse

    Saraceno, John F.; Pellerin, Brian A.; Downing, Bryan D.; Boss, Emmanuel; Bachand, Philip A. M.; Bergamaschi, Brian A.

    2009-01-01

    Dissolved organic matter (DOM) dynamics during storm events has received considerable attention in forested watersheds, but the extent to which storms impart rapid changes in DOM concentration and composition in highly disturbed agricultural watersheds remains poorly understood. In this study, we used identical in situ optical sensors for DOM fluorescence (FDOM) with and without filtration to continuously evaluate surface water DOM dynamics in a 415 km2agricultural watershed over a 4 week period containing a short-duration rainfall event. Peak turbidity preceded peak discharge by 4 h and increased by over 2 orders of magnitude, while the peak filtered FDOM lagged behind peak turbidity by 15 h. FDOM values reported using the filtered in situ fluorometer increased nearly fourfold and were highly correlated with dissolved organic carbon (DOC) concentrations (r2 = 0.97), providing a highly resolved proxy for DOC throughout the study period. Discrete optical properties including specific UV absorbance (SUVA254), spectral slope (S290–350), and fluorescence index (FI) were also strongly correlated with in situ FDOM and indicate a shift toward aromatic, high molecular weight DOM from terrestrially derived sources during the storm. The lag of the peak in FDOM behind peak discharge presumably reflects the draining of watershed soils from natural and agricultural landscapes. Field and experimental evidence showed that unfiltered FDOM measurements underestimated filtered FDOM concentrations by up to ∼60% at particle concentrations typical of many riverine systems during hydrologic events. Together, laboratory and in situ data provide insights into the timing and magnitude of changes in DOM quantity and quality during storm events in an agricultural watershed, and indicate the need for sample filtration in systems with moderate to high suspended sediment loads.

  6. An urban observatory for quantifying phosphorus and suspended solid loads in combined natural and stormwater conveyances.

    PubMed

    Melcher, Anthony A; Horsburgh, Jeffery S

    2017-06-01

    Water quality in urban streams and stormwater systems is highly dynamic, both spatially and temporally, and can change drastically during storm events. Infrequent grab samples commonly collected for estimating pollutant loadings are insufficient to characterize water quality in many urban water systems. In situ water quality measurements are being used as surrogates for continuous pollutant load estimates; however, relatively few studies have tested the validity of surrogate indicators in urban stormwater conveyances. In this paper, we describe an observatory aimed at demonstrating the infrastructure required for surrogate monitoring in urban water systems and for capturing the dynamic behavior of stormwater-driven pollutant loads. We describe the instrumentation of multiple, autonomous water quality and quantity monitoring sites within an urban observatory. We also describe smart and adaptive sampling procedures implemented to improve data collection for developing surrogate relationships and for capturing the temporal and spatial variability of pollutant loading events in urban watersheds. Results show that the observatory is able to capture short-duration storm events within multiple catchments and, through inter-site communication, sampling efforts can be synchronized across multiple monitoring sites.

  7. Characterizing Interplanetary Structures of Long-Lasting Ionospheric Storm Events

    NASA Astrophysics Data System (ADS)

    Tandoi, C.; Dong, Y.; Ngwira, C. M.; Damas, M. C.

    2015-12-01

    Geomagnetic storms can result in periods of heightened TEC (Total Electron Content) in Earth's ionosphere. These periods of change in TEC (dTEC) can have adverse impacts on a technological society, such as scintillation of radio signals used by communication and navigation satellites. However, it is unknown which exact properties of a given storm cause dTEC. We are comparing different solar wind properties that result in a significant long-lasting dTEC to see if there are any patterns that remain constant in these storms. These properties, among others, include the interplanetary magnetic field By and Bz components, the proton density, and the flow speed. As a preliminary investigation, we have studied 15 solar storms. Preliminary results will be presented. In the future, we hope to increase our sample size and analyze over 80 different solar storms, which result in significant dTEC.

  8. Evaluating the Impacts of Extreme Events on Ecological Processes Through the Lens of an Ice Storm Manipulation Experiment

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Rustad, L.; Driscoll, C. T.; Fahey, T.; Garlick, S.; Groffman, P.; Schaberg, P. G.

    2016-12-01

    It is increasingly evident that human-induced climate change is altering the prevalence and severity of extreme weather events. Ice storms are an example of a rare and typically localized extreme weather event that is difficult to predict and has impacts that are poorly understood. We used long-term data and a field manipulation experiment to evaluate how ice storms alter the structure, function, and composition of forest ecosystems. Plots established after a major ice storm in the Northeast in 1998 were re-sampled to evaluate longer-term (17 yr) responses of tree health, productivity, and species composition. Results indicate, that despite changes in herbaceous vegetation in the years immediately after the ice storm, the forest canopy recovered, albeit with some changes in composition, most notably a release of American Beech. An ice storm field manipulation experiment was used to evaluate mechanistic understanding of short term ecological responses. Water from a stream was sprayed above the forest canopy when air temperatures were below freezing, which was effective in simulating a natural ice storm. The experimental design consisted of three levels of ice thickness treatment with two replicates per treatment. The plots with the two more severe icing treatments experienced significant damage to the forest canopy, creating gaps. These plots also had large inputs of fine and coarse woody debris to the forest floor. The exposure to light and presence of brush piles in the more heavily damaged plots resulted in warming with increased spatial variability of soil temperature. Preliminary results from the early growing season have shown no significant changes in soil respiration or soil solution losses of nutrients despite significant forest canopy damage. Further monitoring will determine whether these trends continue in the future.

  9. Storm Observations of Persistent Three-Dimensional Shoreline Morphology and Bathymetry Along a Geologically Influenced Shoreface Using X-Band Radar (BASIR)

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2008-12-01

    Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.

  10. Ptaquiloside from bracken in stream water at base flow and during storm events.

    PubMed

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr B; Strobel, Bjarne W

    2016-12-01

    The bracken fern (Pteridium spp.) densely populates both open and woodland vegetation types around the globe. Bracken is toxic to livestock when consumed, and a group of potent illudane-type carcinogens have been identified, of which the compound ptaquiloside (PTA) is the most abundant. The highly water soluble PTA has been shown to be leachable from bracken fronds, and present in the soil and water below bracken stands. This has raised concerns over whether the compound might pose a risk to drinking water sources. We investigated PTA concentrations in a small stream draining a bracken-infested catchment at base flow and in response to storm events during a growth season, and included sampling of the bracken canopy throughfall. Streams in other bracken-dominated areas were also sampled at base flow for comparison, and a controlled pulse experiment was conducted in the field to study the in-stream dynamics of PTA. Ptaquiloside concentrations in the stream never exceeded 61 ng L -1 in the base flow samples, but peaked at 2.2 μg L -1 during the studied storm events. The mass of PTA in the stream, per storm event, was 7.5-93 mg from this catchment. A clear temporal connection was observed between rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl - ) in the pulse experiment over a relative short time scale (minutes-hours) reflecting no PTA sorption, and dispersion and dilution considerably lowered the observed PTA concentrations downstream. Bracken throughfall revealed a potent and lasting source of PTA during rainfall, with concentrations up to 169 μg L -1 , that did not decrease over the course of the event. In the stream, the throughfall contribution to PTA cannot be separated from a possible below-ground input from litter, rhizomes and soil. Catchment-specific factors such as the soil pH, topography, hydrology, and bracken coverage will evidently affect the level of PTA observed in the receiving stream, as well as the distance from bracken, but time since precipitation seems most important. Studying PTA loads and transport in surface streams fed by bracken-infested catchments, simply taking occasional grab samples will not capture the precipitation-linked pulses. The place and time of sampling governs the findings, and including event-based sampling is essential to provide a more complete picture of PTA loads to surface water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Microbial sewage contamination associated with Superstorm Sandy flooding in New York City

    NASA Astrophysics Data System (ADS)

    O'Mullan, G.; Dueker, M.; Sahajpal, R.; Juhl, A. R.

    2013-05-01

    The lower Hudson River Estuary commonly experiences degraded water quality following precipitation events due to the influence of combined sewer overflows. During Super-storm Sandy large scale flooding occurred in many waterfront areas of New York City, including neighborhoods bordering the Gowanus Canal and Newtown Creek Superfund sites known to frequently contain high levels of sewage associated bacteria. Water, sediment, and surface swab samples were collected from Newtown Creek and Gowanus Canal flood impacted streets and basements in the days following the storm, along with samples from the local waterways. Samples were enumerated for the sewage indicating bacterium, Enterococcus, and DNA was extracted and amplified for 16S ribosomal rRNA gene sequence analysis. Waterways were found to have relatively low levels of sewage contamination in the days following the storm. In contrast, much higher levels of Enterococci were detected in basement and storm debris samples and these bacteria were found to persist for many weeks in laboratory incubations. These data suggest that substantial sewage contamination occurred in some flood impacted New York City neighborhoods and that the environmental persistence of flood water associated microbes requires additional study and management attention.

  12. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  13. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    USGS Publications Warehouse

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  14. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  15. High Impact Weather Associated with a Predecessor Rain Event Over Misawa Air Base

    DTIC Science & Technology

    2012-03-01

    1  1.  Tropical Storms and Predecessor Rain Events...34  B.  MISAWA STORM EVENT ..........................................................................45  C.  NAGASAKI...through 1200 UTC 24 September 2011 (green line), shaded rain events PRE( STORM ) on left(right) with max 24 h rain period shaded in red (After http

  16. Reply: Comparison of slope instability screening tools following a large storm event and application to forest management and policy

    NASA Astrophysics Data System (ADS)

    Whittaker, Kara A.; McShane, Dan

    2013-02-01

    A large storm event in southwest Washington State triggered over 2500 landslides and provided an opportunity to assess two slope stability screening tools. The statistical analysis conducted demonstrated that both screening tools are effective at predicting where landslides were likely to take place (Whittaker and McShane, 2012). Here we reply to two discussions of this article related to the development of the slope stability screening tools and the accuracy and scale of the spatial data used. Neither of the discussions address our statistical analysis or results. We provide greater detail on our sampling criteria and also elaborate on the policy and management implications of our findings and how they complement those of a separate investigation of landslides resulting from the same storm. The conclusions made in Whittaker and McShane (2012) stand as originally published unless future analysis indicates otherwise.

  17. East Asian observations of low-latitude aurora during the Carrington magnetic storm

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Isobe, Hiroaki; Kataoka, Ryuho; Ebihara, Yusuke; Miyahara, Hiroko; Kawamura, Akito Davis; Shibata, Kazunari

    2016-12-01

    A magnetic storm around 1859 September 2, caused by a so-called Carrington flare, was the most intense in the history of modern scientific observations, and hence is considered to be a benchmark event concerning space weather. The magnetic storm caused worldwide observations of auroras, even at very low latitudes, such as Hawaii, Panama, or Santiago. Available magnetic-field measurements at Bombay, India, showed two peaks: the main was the Carrington event, which occurred in day time in East Asia; a second storm after the Carrington event occurred at night in East Asia. In this paper, we present results from surveys of aurora records in East Asia, which provide new information concerning the aurora activity of this important event. We found some new East Asian records of low-latitude aurora observations caused by a storm which occurred after the Carrington event. The size of the aurora belt of the second peak of the Carrington magnetic storm was even wider than that of usual low-latitude aurora events.

  18. Landscape-Scale Analysis of Wetland Sediment Deposition from Four Tropical Cyclone Events

    PubMed Central

    Tweel, Andrew W.; Turner, R. Eugene

    2012-01-01

    Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils. PMID:23185635

  19. Evaluation of the impact of storm event inputs on levels of gross primary production and respiration in a drinking water reservoir

    NASA Astrophysics Data System (ADS)

    Samal, N. R.; Pierson, D. C.; Staehr, P. A.; Pradhanang, S. M.; Smith, D. G.

    2013-12-01

    Episodic inputs of dissolved and particulate material during storm events can have important effects on lake and reservoir ecosystem function and also impact reservoir drinking water quality. We evaluate the impacts of storm events using vertical profiles of temperature, dissolved oxygen, turbidity, conductivity and chlorophyll automatically collected at 6 hour intervals in Ashokan Reservoir, which is a part of the New York City drinking water supply. Storm driven inputs to the reservoir periodically result in large input of suspended sediments that result in reservoir turbidity levels exceeding 25 NTU, and substantial reductions in the euphotic depth. Dissolved materials associated with these same storms would be expected to stimulate bacterial production. This study involves the use of a conceptual model to calculate depth specific estimates of gross primary production (GPP) and ecosystem respiration (R) using three years of data that included 777 events that increased reservoir turbidity levels to over 25 NTU. Using data from before, during and after storm events, we examine how the balance between GPP and R is influenced by storm related increases in turbidity and dissolved organic matter, which would in turn influence light attenuation and bacterial production. Key words: metabolism, primary production, GPP, respiration, euphotic depth, storm event, reservoir

  20. Aquatic Nitrate Retention at River Network Scales Across Flow Conditions Determined Using Nested In Situ Sensors

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.

    2017-11-01

    Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.

  1. Statistical Analysis of the Links between Blocking and Nor'easters

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Pfahl, S.

    2015-12-01

    Nor'easters can be loosely defined as extratropical cyclones that develop as they progress northward along the eastern coast of North America. The path makes it possible for these storms to generate storm surge along the coastline and/or heavy precipitation or snow inland. In the present analysis, the path of the storms is investigated relative to the behavior of upstream blocking events over the North Atlantic Ocean. For this analysis, two separate Lagrangian tracking methods are used to identify the extratropical cyclone paths and the blocking events. Using the cyclone paths, Nor'easters are identified and blocking statistics are calculated for the days prior to, during and following the occurrence of the Nor'easters. The path, strength and intensification rates of the cyclones are compared with the strength and location of the blocks. In the event that a Nor'easter occurs, the likelihood of the presence of block at the southeast tip of Greenland is statistically significantly increased, i.e., the presence of a block concurrent with a Nor'easter happens more often than by random coincidence. However no significant link between the strength of the storms and the strength of the block is identified. These results suggest that the presence of the block mainly affects the path of the Nor'easters. On the other hand, in the event of blocking at the southeast tip of Greenland, the likelihood of a Nor'easter, as opposed to a different type of storm is no greater than what one might expect from randomly sampling cyclone tracks. The results confirm a long held understanding in forecast meteorology that upstream blocking is a necessary but not sufficient condition for generating a Nor'easter.

  2. From precipitation to ice cores: an isotopic comparison at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Feng, X.; Adolph, A. C.; Virginia, R. A.; Posmentier, E. S.

    2015-12-01

    The observed deuterium excess (d-excess) in ice cores from Summit, Greenland has high summer values and low winter values, which is opposite of the seasonal variations of most northern hemisphere locations. The interpretation of this d-excess seasonality in the context of moisture source changes is made more complicated by possible post-depositional modifications. We investigate potential post-depositional modifications within 3-4 years after precipitation events by collecting precipitation samples and comparing them with snow pit profiles at Summit. Precipitation was sampled on a storm-by-storm basis from July 2011 to September 2014. To assess the effect of wind blown snow on cross-storm contamination, we sampled at three heights (1, 2, and 4 m). Snow pits were sampled in the summers of 2013 and 2015 to span the entirety of our precipitation record. All samples were analyzed for δD and δ18O and d-excess was calculated. Mixing of snow between different storms was identified only for samples collected at the lowest height. We thus use the samples collected at the top height for interpretation. The annual cycle of precipitation isotopes follow the established seasonal relationship with the average summer enrichment of -217 and -29‰, and winter depletion of -317 and -40‰ for δD and δ18O, respectively. The d-excess shows an average summer maximum of 16‰ and winter minimum of 3‰. In the snow pit, the seasonal amplitude and phase of both oxygen and hydrogen isotopic ratios as well as the d-excess compare remarkably well with those of the precipitation. The profile appeared to be devoid of major post depositional effects except for a thin layer that changed during a melt event in 2012. However, this type of event is extremely rare at Summit, and should not significantly compromise the interpretation of precipitation isotopes in ice cores, except perhaps during climatic warm period summers. The precipitation d-excess seasonality is typically interpreted as resulting from changing moisture sources, but this does not explain the positive relationship between d-excess and d18O at Summit, Greenland. We propose that moisture sublimated from the snow surface, which typically has high d-excess values, may be an important moisture source captured in the isotope record.

  3. Storms do not alter long-term watershed development influences on coastal water quality.

    PubMed

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nutrient load generated by storm event runoff from a golf course watershed.

    PubMed

    King, K W; Balogh, J C; Hughes, K L; Harmel, R D

    2007-01-01

    Turf, including home lawns, roadsides, golf courses, parks, etc., is often the most intensively managed land use in the urban landscape. Substantial inputs of fertilizers and water to maintain turf systems have led to a perception that turf systems are a major contributor to nonpoint source water pollution. The primary objective of this study was to quantify nutrient (NO(3)-N, NH(4)-N, and PO(4)-P) transport in storm-generated surface runoff from a golf course. Storm event samples were collected for 5 yr (1 Apr. 1998-31 Mar. 2003) from the Morris Williams Municipal Golf Course in Austin, TX. Inflow and outflow samples were collected from a stream that transected the golf course. One hundred fifteen runoff-producing precipitation events were measured. Median NO(3)-N and PO(4)-P concentrations at the outflow location were significantly (p < 0.05) greater than like concentrations measured at the inflow location; however, median outflow NH(4)-N concentration was significantly less than the median inflow concentration. Storm water runoff transported 1.2 kg NO(3)-N ha(-1) yr(-1), 0.23 kg NH(4)-N ha(-1) yr(-1), and 0.51 kg PO(4)-P ha(-1) yr(-1) from the course. These amounts represent approximately 3.3% of applied N and 6.2% of applied P over the contributing area for the same period. NO(3)-N transport in storm water runoff from this course does not pose a substantial environmental risk; however, the median PO(4)-P concentration exiting the course exceeded the USEPA recommendation of 0.1 mg L(-1) for streams not discharging into lakes. The PO(4)-P load measured in this study was comparable to soluble P rates measured from agricultural lands. The findings of this study emphasize the need to balance golf course fertility management with environmental risks, especially with respect to phosphorus.

  5. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability analysis for flood risk analysis considering multiple flood producing mechanisms. This is the first step in applying a Monte Carlo based joint probability method for flood risk assessment.

  6. Using continuous in-situ measurements to adaptively trigger urban storm water samples

    NASA Astrophysics Data System (ADS)

    Wong, B. P.; Kerkez, B.

    2015-12-01

    Until cost-effective in-situ sensors are available for biological parameters, nutrients and metals, automated samplers will continue to be the primary source of reliable water quality measurements. Given limited samples bottles, however, autosamplers often obscure insights on nutrient sources and biogeochemical processes which would otherwise be captured using a continuous sampling approach. To that end, we evaluate the efficacy a novel method to measure first-flush nutrient dynamics in flashy, urban watersheds. Our approach reduces the number of samples required to capture water quality dynamics by leveraging an internet-connected sensor node, which is equipped with a suite of continuous in-situ sensors and an automated sampler. To capture both the initial baseflow as well as storm concentrations, a cloud-hosted adaptive algorithm analyzes the high-resolution sensor data along with local weather forecasts to optimize a sampling schedule. The method was tested in a highly developed urban catchment in Ann Arbor, Michigan and collected samples of nitrate, phosphorus, and suspended solids throughout several storm events. Results indicate that the watershed does not exhibit first flush dynamics, a behavior that would have been obscured when using a non-adaptive sampling approach.

  7. Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird

    PubMed Central

    Descamps, Sébastien; Tarroux, Arnaud; Varpe, Øystein; Yoccoz, Nigel G; Tveraa, Torkild; Lorentsen, Svein-Håkon

    2015-01-01

    Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985–2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state-dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change. PMID:25691959

  8. Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird.

    PubMed

    Descamps, Sébastien; Tarroux, Arnaud; Varpe, Øystein; Yoccoz, Nigel G; Tveraa, Torkild; Lorentsen, Svein-Håkon

    2015-01-01

    Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985-2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state-dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change.

  9. Surge Driven Return Flow Results in Deposition of Coarse Grain Horizons Archiving a 4000 Year Record of Extreme Storm Events, Cape Cod, Massachusetts

    NASA Astrophysics Data System (ADS)

    Maio, C. V.; Donnelly, J. P.; Sullivan, R.; Weidman, C. R.; Sheremet, V.

    2014-12-01

    The brevity of the instrumental record and lack of detailed historical accounts is a limiting factor in our understanding of the relationship between climate change and the frequency and intensity of extreme storm events. This study applied paleotempestologic and hydrographic methods to identify the mechanisms of storm-induced coarse grain deposition and reconstruct a late Holocene storm record within Waquoit Bay, Massachusetts. Three sediment cores (6.0 m, 8.4 m, and 8.2 m) were collected in 3 m of water using a vibracore system. Grain sizes were measured along core to identify coarse grain anomalies that serve as a proxy for past storm events. An historical age model (1620-2011 AD) was developed based on Pb pollution chronomarkers derived from X-Ray Florescence bulk Pb data, equating to a sedimentation rate of 8-8.3 mm/yr (R2 = 0.99). A long-term (4000 to 275 years before present) sedimentation rate of 1.1-1.4 mm/yr (R2 = 0.89) was calculated based on twenty-four continuous flow atomic mass spectrometry 14C ages of marine bivalves. To determine hydrographic conditions within the embayment during storm events current meters and tide gauges were deployed during Hurricane Irene (2011) which measured a storm surge of 88 cm above mean sea level. The buildup of storm water against the landward shoreline resulted in a measured 10 cm/s seaward moving bottom current capable of transporting coarse sand eroded from the adjacent shoreface into the coring site. Modeled surges for eleven modern and historic storm events ranged in height from 0.37 m (2011) to 3.72 m (1635) above mean high water. The WAQ1, WAQ2, and WAQ3 cores recorded a total of 89, 139, and 137 positive anomalies that exceeded the lower threshold and 15, 34, and 12 that exceeded the upper threshold respectively. Events recorded during the historic period coincide with documented storm events. The mean frequency within the three cores applying the lower threshold was 2.6 events per century, while applying the upper threshold was 0.44 events per century. The study has identified a previously understudied transport mechanism for the formation of storm-induced coarse grain horizons and highlighted some of the challenges to utilizing shallow water embayments as sites for storm reconstructions.

  10. Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance

    PubMed Central

    Rappé, Michael S.

    2013-01-01

    In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156

  11. Isotopic mixing model for quantifying contributions of soil water and groundwater in subsurface ('tile') drainage

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Gall, H.; Jafvert, C. T.; Bowen, G. J.

    2010-12-01

    Subsurface (‘tile’) drainage, consisting of buried grids of perforated pipe, has provided a means of converting millions of acres of poorly drained soils in the Midwestern U.S. into fertile cropland. However, by altering pathways and rates of soil water and groundwater movement through agricultural lands, this practice may accelerate the loss of nitrate and other agrochemicals. To better understand the hydrological controls on nitrogen dynamics in artificially drained agricultural watersheds, a field sampling program has been established at the Animal Science Research and Education Center (ASREC) at Purdue University (West Lafayette, Indiana) to (1) measure precipitation amount, tile flow, and water-table elevation, and (2) collect water samples for analysis of nitrate, major ions, and oxygen isotope ratios in precipitation, tile drainage, shallow (1 m) and deep (3 m) groundwater, and soil water during storm events. Preliminary physical, chemical, and isotopic data collected at the ASREC show a coincident timing of peak storm ‘event water’ and peak nitrate flux in tile drainage, suggesting significant routing of infiltrating event water. In this work, we aim to refine our understanding of tile drainage at the ASREC by developing a mixing model for partitioning contributions of soil water and groundwater in tile drainage during several storm runoff events ranging in precipitation intensity and coinciding with varying antecedent soil moisture conditions. The results of our model will describe tile drainage in terms of its hydrological components, soil water and groundwater, which in turn will provide a means of incorporating the effects of tile drainage in surface/subsurface hydrological transport models.

  12. Effects of storm-water runoff on local ground-water quality, Clarksville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.

    1990-01-01

    Storm-related water-quality data were collected at a drainage-well site and at a spring site in Clarksville, Tennessee, to define the effects of storm-water runoff on the quality of ground water in the area. A dye-trace test verified the direct hydraulic connection between the drainage well and Mobley Spring. Samples of storm run off and spring flow were collected at these sites for nine storms during the period February to October 1988. Water samples were collected also from Mobley Spring and two other springs and two observation wells in the area during dry-weather conditions to assess the general quality of ground water in an urban karst terrain. Evaluation of the effect of storm-water runoff on the quality of local ground water is complicated by the presence of other sources of contaminants in the area Concentrations and load for most major constituents were much smaller in storm-water runoff at the drainage well than in the discharge of Mobley Spring, indicating that much of the chemical constituent load discharged from the spring comes from sources other than the drainage well. However, for some of the minor constituents associated with roadway runoff (arsenic, copper, lead, organic carbon, and oil and grease), the drainage well contributed relatively large amounts of these constituents to local ground water during storms. The close correlation between concentrations of total organic carbon and concentrations of most trace metals at the drainage-well and Mobley Spring sites indicates that these constituents are transported together. Many trace metals were flushed early during each runoff event. Mean storm loads for copper, lead, zinc, and four nutrient species (total nitrogen, ammonia nitrogen, total phosphorus, and orthophosphorus) in storm-water runoff at the drainage-well site were lower than mean storm load predicted from an existing regression model. The overprediction by the model may be a result of the small size of the drainage area relative to the range of drainage areas used in the development of the models, or to the below-normal amounts of rainfall during the period of sampling for this investigation. Loads& in storm-water runoff for 22 constituents were extrapolated from sampled storms to total loads for the period February to October 1988. Calculated loads for trace metals for the period ranged from 0.030pound.s for cadmium to 12pound.s for strontium. Loads of the primary nutrients ranged from 0.97pounds for nitrite as nitrogen to 34pounds of organic nitrogen. Storm-water quality at the drainage-well and Mobley Spring sites was compared to background water quality of the local aquifer; as characterized by dry-weather samples from three springs and two observation wells in the Clarksville area. Concentrations of total-recoverable cadmium, chromium, copper, lead, and nickel were higher in many stormwater samples from both the drainage-well and Mobley Spring sites than in samples from any other site. In addition, concentrations of total organic carbon, methylene blue active substances, and total-recoverable oil and grease were generally higher in storm-water samples from the drainage-well site than in any ground-water sample. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total recoverable iron, manganese, and methylene blue active substances in storm samples from the drainage-well site exceeded the maximum contaminant levels listed in Tennessee?s drinking-water standards (1988) by as much as 2,500 and 5,500 colonies per 100 milliliters, and 2.7, 0.29, and 0.05 milligrams per liter, respectively. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total-recoverable iron, manganese, and lead in storm samples from Mobley Spring exceeded the maximum contaminant levels by as much as 500 and 4,500 colonies per 100 milliliters, and 18.7,0.65, and 0.02 milligrams per liter, respectively. For iron, manganese, and bacteria, these undesirable

  13. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    PubMed

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Strategy to evaluate persistent contaminant hazards resulting from sea-level rise and storm-derived disturbances—Study design and methodology for station prioritization

    USGS Publications Warehouse

    Reilly, Timothy J.; Jones, Daniel K.; Focazio, Michael J.; Aquino, Kimberly C.; Carbo, Chelsea L.; Kaufhold, Erika E.; Zinecker, Elizabeth K.; Benzel, William M.; Fisher, Shawn C.; Griffin, Dale W.; Iwanowicz, Luke R.; Loftin, Keith A.; Schill, William B.

    2015-10-26

    Coastal communities are uniquely vulnerable to sea-level rise (SLR) and severe storms such as hurricanes. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms that could adversely affect the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey has developed a strategy to define baseline and post-event sediment-bound environmental health (EH) stressors (hereafter referred to as the Sediment-Bound Contaminant Resiliency and Response [SCoRR] strategy). A tiered, multimetric approach will be used to (1) identify and map contaminant sources and potential exposure pathways for human and ecological receptors, (2) define the baseline mixtures of EH stressors present in sediments and correlations of relevance, (3) document post-event changes in EH stressors present in sediments, and (4) establish and apply metrics to quantify changes in coastal resilience associated with sediment-bound contaminants. Integration of this information provides a means to improve assessment of the baseline status of a complex system and the significance of changes in contaminant hazards due to storm-induced (episodic) and SLR (incremental) disturbances. This report describes the purpose and design of the SCoRR strategy and the methods used to construct a decision support tool to identify candidate sampling stations vulnerable to contaminants that may be mobilized by coastal storms.

  15. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    PubMed

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  16. Impact of Superstorm Sandy on Medicare Patients' Utilization of Hospitals and Emergency Departments.

    PubMed

    Stryckman, Benoit; Walsh, Lauren; Carr, Brendan G; Hupert, Nathaniel; Lurie, Nicole

    2017-10-01

    National health security requires that healthcare facilities be prepared to provide rapid, effective emergency and trauma care to all patients affected by a catastrophic event. We sought to quantify changes in healthcare utilization patterns for an at-risk Medicare population before, during, and after Superstorm Sandy's 2012 landfall in New Jersey (NJ). This study is a retrospective cohort study of Medicare beneficiaries impacted by Superstorm Sandy. We compared hospital emergency department (ED) and healthcare facility inpatient utilization in the weeks before and after Superstorm Sandy landfall using a 20% random sample of Medicare fee-for-service beneficiaries continuously enrolled in 2011 and 2012 (N=224,116). Outcome measures were pre-storm discharges (or transfers), average length of stay, service intensity weight, and post-storm ED visits resulting in either discharge or hospital admission. In the pre-storm week, hospital transfers from skilled nursing facilities (SNF) increased by 39% and inpatient discharges had a 0.3 day decreased mean length of stay compared to the prior year. In the post-storm week, ED visits increased by 14% statewide; of these additional "surge" patients, 20% were admitted to the hospital. The increase in ED demand was more than double the statewide average in the most highly impacted coastal regions (35% versus 14%). Superstorm Sandy impacted both pre- and post-storm patient movement in New Jersey; post-landfall ED surge was associated with overall storm impact, which was greatest in coastal counties. A significant increase in the number and severity of pre-storm transfer patients, in particular from SNF, as well as in post-storm ED visits and inpatient admissions, draws attention to the importance of collaborative regional approaches to healthcare in large-scale events.

  17. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits

    USGS Publications Warehouse

    Costa, Pedro J.M.; Gelfenbaum, Guy R.; Dawson, Sue; La selle, Seanpaul; Milne, F; Cascalho, J.; Ponte Lira, C.; Andrade, C.; Freitas, M. C.; Jaffe, Bruce E.

    2017-01-01

    Recent work has applied microtextural and heavy mineral analyses to sandy storm and tsunami deposits from Portugal, Scotland, Indonesia and the USA. We looked at the interpretation of microtextural imagery (scanning electron microscopy) of quartz grains and heavy mineral compositions. We consider inundation events of different chronologies and sources (the AD 1755 Lisbon and 2004 Indian Ocean tsunamis, the Great Storm of 11 January 2005 in Scotland, and Hurricane Sandy in 2012) that affected contrasting coastal and hinterland settings with different regional oceanographic conditions. Storm and tsunami deposits were examined along with potential source sediments (alluvial, beach, dune and nearshore sediments) to determine provenance.Results suggest that tsunami deposits typically exhibit a significant spatial variation in grain sizes, microtextures and heavy minerals. Storm deposits show less variability, especially in vertical profiles. Tsunami and storm quartz grains had more percussion marks and fresh surfaces compared to potential source material. Moreover, in the studied cases, tsunami samples had fewer fresh surfaces than storm deposits.Heavy mineral assemblages are typically site-specific. The concentration of heavy minerals decreases upwards in tsunamigenic units, whereas storm sediments show cyclic concentrations of heavy minerals, reflected in the laminations observed macroscopically in the deposits.

  18. Characteristics of storms driving wave-induced seafloor mobility on the U.S. East Coast continental shelf

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford

    2015-01-01

    This study investigates the relationship between spatial and temporal patterns of wave-driven sediment mobility events on the U.S. East Coast continental shelf and the characteristics of the storms responsible for them. Mobility events, defined as seafloor wave stress exceedance of the critical stress of 0.35 mm diameter sand (0.2160 Pa) for 12 or more hours, were identified from surface wave observations at National Data Buoy Center buoys in the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) over the period of 1997-2007. In water depths ranging from 36-48 m, there were 4-9 mobility events/year of 1-2 days duration. Integrated wave stress during events (IWAVES) was used as a combined metric of wave-driven mobility intensity and duration. In the MAB, over 67% of IWAVES was caused by extratropical storms, while in the SAB, greater than 66% of IWAVES was caused by tropical storms. On average, mobility events were caused by waves generated by storms located 800+ km away. Far-field hurricanes generated swell 2-4 days before the waves caused mobility on the shelf. Throughout most of the SAB, mobility events were driven by storms to the south, east, and west. In the MAB and near Cape Hatteras, winds from more northerly storms and low-pressure extratropical systems in the mid-western U.S. also drove mobility events. Waves generated by storms off the SAB generated mobility events along the entire U.S. East Coast shelf north to Cape Cod, while Cape Hatteras shielded the SAB area from swell originating to the north offshore of the MAB.

  19. Stormwater Runoff and Water Quality Modeling in Urban Maryland

    NASA Astrophysics Data System (ADS)

    Wang, J.; Forman, B. A.; Natarajan, P.; Davis, A.

    2015-12-01

    Urbanization significantly affects storm water runoff through the creation of new impervious surfaces such as highways, parking lots, and rooftops. Such changes can adversely impact the downstream receiving water bodies in terms of physical, chemical, and biological conditions. In order to mitigate the effects of urbanization on downstream water bodies, stormwater control measures (SCMs) have been widely used (e.g., infiltration basins, bioswales). A suite of observations from an infiltration basin installed adjacent to a highway in urban Maryland was used to evaluate stormwater runoff attenuation and pollutant removal rates at the well-instrumented SCM study site. In this study, the Storm Water Management Model (SWMM) was used to simulate the performance of the SCM. An automatic, split-sample calibration framework was developed to improve SWMM performance efficiency. The results indicate SWMM can accurately reproduce the hydraulic response of the SCM (in terms of reproducing measured inflow and outflow) during synoptic scale storm events lasting more than one day, but is less accurate during storm events lasting only a few hours. Similar results were found for a suite of modeled (and observed) water quality constituents, including suspended sediment, metals, N, P, and chloride.

  20. Classification and Feature Selection Algorithms for Modeling Ice Storm Climatology

    NASA Astrophysics Data System (ADS)

    Swaminathan, R.; Sridharan, M.; Hayhoe, K.; Dobbie, G.

    2015-12-01

    Ice storms account for billions of dollars of winter storm loss across the continental US and Canada. In the future, increasing concentration of human populations in areas vulnerable to ice storms such as the northeastern US will only exacerbate the impacts of these extreme events on infrastructure and society. Quantifying the potential impacts of global climate change on ice storm prevalence and frequency is challenging, as ice storm climatology is driven by complex and incompletely defined atmospheric processes, processes that are in turn influenced by a changing climate. This makes the underlying atmospheric and computational modeling of ice storm climatology a formidable task. We propose a novel computational framework that uses sophisticated stochastic classification and feature selection algorithms to model ice storm climatology and quantify storm occurrences from both reanalysis and global climate model outputs. The framework is based on an objective identification of ice storm events by key variables derived from vertical profiles of temperature, humidity and geopotential height. Historical ice storm records are used to identify days with synoptic-scale upper air and surface conditions associated with ice storms. Evaluation using NARR reanalysis and historical ice storm records corresponding to the northeastern US demonstrates that an objective computational model with standard performance measures, with a relatively high degree of accuracy, identify ice storm events based on upper-air circulation patterns and provide insights into the relationships between key climate variables associated with ice storms.

  1. Modelling economic losses of historic and present-day high-impact winter storms in Switzerland

    NASA Astrophysics Data System (ADS)

    Welker, Christoph; Martius, Olivia; Stucki, Peter; Bresch, David; Dierer, Silke; Brönnimann, Stefan

    2015-04-01

    Windstorms can cause significant financial damage and they rank among the most hazardous meteorological hazards in Switzerland. Risk associated with windstorms involves the combination of hazardous weather conditions, such as high wind gust speeds, and socio-economic factors, such as the distribution of assets as well as their susceptibilities to damage. A sophisticated risk assessment is important in a wide range of areas and has benefits for e.g. the insurance industry. However, a sophisticated risk assessment needs a large sample of storm events for which high-resolution, quantitative meteorological and/or loss data are available. Latter is typically an aggravating factor. For present-day windstorms in Switzerland, the data basis is generally sufficient to describe the meteorological development and wind forces as well as the associated impacts. In contrast, historic windstorms are usually described by graphical depictions of the event and/or by weather and loss reports. The information on historic weather events is overall sparse and the available historic weather and loss reports mostly do not provide quantitative information. It has primarily been the field of activity of environmental historians to study historic weather extremes and their impacts. Furthermore, the scarce availability of atmospheric datasets reaching back sufficiently in time has so far limited the analysis of historic weather events. The Twentieth Century Reanalysis (20CR) ensemble dataset, a global atmospheric reanalysis currently spanning 1871 to 2012, offers potentially a very valuable resource for the analysis of historic weather events. However, the 2°×2° latitude-longitude grid of the 20CR is too coarse to realistically represent the complex orography of Switzerland, which has considerable ramifications for the representation of smaller-scale features of the surface wind field influenced by the local orography. Using the 20CR as a starting point, this study illustrates a method to simulate the wind field and related economic impact of both historic and present-day high-impact winter storms in Switzerland since end of the 19th century. Our technique involves the dynamical downscaling of the 20CR to 3 km horizontal resolution using the numerical Weather Research and Forecasting model and the subsequent loss simulation using an open-source impact model. This impact model estimates, for modern economic and social conditions, storm-related economic losses at municipality level, and thus allows a numerical simulation of the impact from both historic and present-day severe winter storms in Switzerland on a relatively fine spatial scale. In this study, we apply the modelling chain to a storm sample of almost 90 high-impact winter storms in Switzerland since 1871, and we are thus able to make a statement of the typical wind and loss patterns of hazardous windstorms in Switzerland. To evaluate our modelling chain, we compare simulated storm losses with insurance loss data for the present-day windstorms "Lothar" and "Joachim" in December 1999 and December 2011, respectively. Our study further includes a range of sensitivity experiments and a discussion of the main sources of uncertainty.

  2. Recent Extreme Marine Events at Southern Coast of Black Sea

    NASA Astrophysics Data System (ADS)

    Ozyurt Tarakcioglu, Gulizar; Cevdet Yalciner, Ahmet; Kirezci, Cagil; Baykal, Cuneyt; Gokhan Guler, Hasan; Erol, Onur; Zaytsev, Andrey; Kurkin, Andrey

    2015-04-01

    The utilization at the coastal areas of Black Sea basin has increased in the recent years with the projects such as large commercial ports, international transportation hubs, gas and petrol pipelines, touristic and recreational infrastructures both along surrounding shoreline. Although Black Sea is a closed basin, extreme storms and storm surges have also been observed with an increasing frequency in the recent years. Among those events, February 1999, March 2013 and September 2014 storms impacted Southern coast of Black sea have clearly shown that the increasing economic value at the coastal areas caused the increasing cost of damages and loss of property by natural hazards. The storm occurred on February 19-20, 1999 is one of the most destructive storm in the last decades. The 1999 event (1999 Southern Black sea storm) caused destruction at all harbors and coastal protection structures along the Black Sea coast of Turkey. The complete damage of the breakwater of Giresun Harbor and damage on the harbor structures and cargo handling equipment were the major impacts of the 1999 Southern Black sea storm. Similar coastal impact have also been observed during the September 24, 2014 storm at 500m East of Giresun harbor. Although there are considerable number of destructive storms observed at southern coast of Black sea recently, data on these events are limited and vastly scattered. In this study the list of recent extreme marine events at South coast of the Black sea compiled and related data such as wind speed, wave height, period, and type of damages are cataloged. Particular attention is focused on the 1999 and 2014 storm events. The meteorological and morphological characteristics which may be considered as the reasons of the generation and coastal amplification of these storms are discussed. ACKNOWLEDGEMENTS: This study is partly supported by Turkish Russian Joint Research Grant Program by TUBITAK (Turkey) and RFBR (Russia), and TUBITAK 213M534 Research Project.

  3. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.

    2016-12-01

    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run-time for the reservoir model. This approach proved useful in probing a water supply's resilience to extreme events, and to inform management responses, particularly in a region such as the American Northeast where climate change is expected to bring such events with higher frequency and intensity than have occurred in the past.

  4. Rainfall and runoff quantity and quality characteristics of four urban land-use catchments in Fresno, California, October 1981 to April 1983

    USGS Publications Warehouse

    Oltmann, Richard N.; Shulters, Michael V.

    1989-01-01

    Rainfall and runoff quantity and quality were monitored for industrial, single-dwelling residential, multiple-dwelling residential, and commercial land-use catchments during the 1981-82 and 1982-83 rain seasons. Storm-composite rainfall and discrete run6ff samples were analyzed for numerous inorganic, biological, physical, and organic constituents. Atmospheric dry-deposition and street-surface particulate samples also were collected and analyzed. With the exception of the industrial catchment, the highest runoff concentrations for most constituents occurred during the initial storm runoff and then decreased throughout the remainder of the storm, independent of hydraulic conditions. Metal concentrations were high during initial runoff, but also increased as flow increased. Constituent concentrations for the industrial catchment fluctuated greatly during storms. Statistical tests showed higher ammonia plus organic nitrogen, ammonia, pH, and phenol concentrations in rainfall at the industrial site than at the single-dwelling residential and laboratory sites. Statistical testing of runoff quality data showed higher concentrations for the industrial catchment than for the two residential and commercial catchments for most constituents. Total recoverable lead was one of the few constituents that had lower concentrations for the industrial catchment than for the other three catchments. The two residential catchments showed no significant difference in runoff concentrations for 50 of the 57 constituents used in the statistical analysis. The commercial catchment runoff concentrations for most constituents generally were similar to the residential catchments. Although constituent concentrations generally were higher for the industrial catchment than for the commercial catchment, constituent storm loads from the commercial catchment were similar to the industrial catchment because of the greater runoff volume from the highly impervious commercial catchment. Between 10 and 50 percent of the constituent runoff loads for the two residential catchments were attributed to the rainfall load, with the percentages generally considerably less for the industrial catchment. Event mean concentrations (EMC) for most constituents for all but the industrial catchment were highest for the first two or three storms of the rain season after which they became almost constant. Constituent event mean concentrations for the industrial catchment generally did not show any pattern throughout a rain season. Multiple-regression predictor equations for event mean concentrations were developed for several constituents for all sites. Average annual constituent unit loads were computed for 18 constituents for each catchment. The organophosphorus compounds, diazinon, malathion, and parathion were the most prevalent pesticides detected in rainfall. Diazinon was detected in all 54 rainfall samples. Parathion and malathion were detected in 49 and 50 samples, respectively. Other pesticides detected in rainfall included chlordane, lindane, methoxychlor, endosulfan, and 2,4-D. Of these, only methoxychlor and endosulfan were not consistently detected in runoff.

  5. Stochastic evaluation of annual micropollutant loads and their uncertainties in separate storm sewers.

    PubMed

    Hannouche, Ali; Chebbo, Ghassan; Joannis, Claude; Gasperi, Johnny; Gromaire, Marie-Christine; Moilleron, Régis; Barraud, Sylvie; Ruban, Véronique

    2017-12-01

    This article describes a stochastic method to calculate the annual pollutant loads and its application over several years at the outlet of three catchments drained by separate storm sewers. A stochastic methodology using Monte Carlo simulations is proposed for assessing annual pollutant load, as well as the associated uncertainties, from a few event sampling campaigns and/or continuous turbidity measurements (representative of the total suspended solids concentration (TSS)). Indeed, in the latter case, the proposed method takes into account the correlation between pollutants and TSS. The developed method was applied to data acquired within the French research project "INOGEV" (innovations for a sustainable management of urban water) at the outlet of three urban catchments drained by separate storm sewers. Ten or so event sampling campaigns for a large range of pollutants (46 pollutants and 2 conventional water quality parameters: TSS and total organic carbon (TOC)) are combined with hundreds of rainfall events for which, at least one among three continuously monitored parameters (rainfall intensity, flow rate, and turbidity) is available. Results obtained for the three catchments show that the annual pollutant loads can be estimated with uncertainties ranging from 10 to 60%, and the added value of turbidity monitoring for lowering the uncertainty is demonstrated. A low inter-annual and inter-site variability of pollutant loads, for many of studied pollutants, is observed with respect to the estimated uncertainties, and can be explained mainly by annual precipitation.

  6. Dust Storm Feature Identification and Tracking from 4D Simulation Data

    NASA Astrophysics Data System (ADS)

    Yu, M.; Yang, C. P.

    2016-12-01

    Dust storms cause significant damage to health, property and the environment worldwide every year. To help mitigate the damage, dust forecasting models simulate and predict upcoming dust events, providing valuable information to scientists, decision makers, and the public. Normally, the model simulations are conducted in four-dimensions (i.e., latitude, longitude, elevation and time) and represent three-dimensional (3D), spatial heterogeneous features of the storm and its evolution over space and time. This research investigates and proposes an automatic multi-threshold, region-growing based identification algorithm to identify critical dust storm features, and track the evolution process of dust storm events through space and time. In addition, a spatiotemporal data model is proposed, which can support the characterization and representation of dust storm events and their dynamic patterns. Quantitative and qualitative evaluations for the algorithm are conducted to test the sensitivity, and capability of identify and track dust storm events. This study has the potential to assist a better early warning system for decision-makers and the public, thus making hazard mitigation plans more effective.

  7. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  8. Extreme beach retreat history inferred from cut-and-fill beach deposits at Moruya, SE Australia

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Woodroffe, C. D.; Oliver, T.; Cunningham, A. C.

    2017-12-01

    A sequence of beach ridges often records a `cut and fill', where the fair-weather swash accretion of beach sand is punctuated by storm erosion. The detailed chronology of the sequence is thus a clue to decipher past storm events and associated beach erosion, but has not been explored much. Here we explore the potential of such a sequence to detect past extreme retreats in Bengello Beach at Moruya, southeastern Australia. Beach monitoring since 1972 reveals that Bengello beach has shown a typical cut and fill, in which the beach retreats several tens of meters in relation to storms and recovers within a following few years. A storm event caused extreme retreat up to 50 m in 1974. Since then, no retreat exceeded 30 m. The beach monitoring highlights the sporadic nature of the prograded beach deposits; they can only be preserved as stratigraphic records during rapid beach recovery following a large retreat deeper than the beach profile envelope. Thus, ages of the preserved beach deposits roughly correspond to timings of large retreat. Optically-stimulated luminescence (OSL) ages were determined for beach deposits at 5-10 m intervals along a shore-normal transect from the modern foredune to beach ridge 120 m inland. The most landward sample was dated as 510 yr, indicating that the net progradation rate is 0.24 m/yr, concordant with both the long- and short-term rates since the mid Holocene and 1972, respectively. Other ages show four events of retreat around 350, 180, 130 and 90 yr, and also reflect the beach scarp resulting from the 1974 event. The retreat of each event is given by the distance between the shoreline position prior to storm erosion and relevant gap in OSL age. The position of the pre-storm shoreline is estimated by assuming a constant rate of the net progradation of 0.24 m/yr, as with long- and short-term rates. The retreat of the four events is then determined as 45-55 m, similar to the 1974 event. In summary, extreme beach retreats, including that in 1974, appear to have happened at least five times over the last 350 years with a variable recurrence interval of 50-150 years at Moruya. Multi-timescale analysis of the beach-ridge sequence as shown in Moruya has the potential to detect past extreme beach retreat that should be taken into account for the long-term coastal management.

  9. An Extensive Study on Dynamical aspects of Dust Storm over the United Arab Emirates during 18-20 March 2012

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Phanikumar, Devulapalli V.; Ouarda, Taha B. M. J.

    2015-04-01

    On 18 March 2012, a super dust storm event occurred over Middle East (ME) and lasted for several hours. Following to this, another dust storm occurred on early morning of 20 March 2012 with almost higher intensity. Both these storms reduced the horizontal visibility to few hundreds of meters and represented as one of the most intense and long duration dust storms over United Arab Emirates (UAE) in recent times. These storms also reduced the air quality in most parts of the ME implying the shutdown of Airports, schools and hundreds of people were hospitalized with respirational problems. In the context of the above, we have made a detailed study on the dynamical processes leading to triggering of dust storm over UAE and neighboring regions. We have also analyzed its impact on surface, and vertical profiles of background parameters and aerosols during the dust storm period by using ground-based, space borne, dust forecasting model, and reanalysis data sets. The synoptic and dynamic conditions responsible for the occurrence of the dust storm are discussed extensively by using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim reanalysis data sets. The Impact of dust storm on surface and upper air radiosonde measurements and aerosol optical properties are also investigated before, during and after the dust storm event. During the dust storm, surface temperature decreased by 15oC when compared to before and after the event. PM10 values significantly increased maximum of about 1600µg/m3. Spatial variation of Aerosol Optical Depth (AOD) from Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) aerosol index (AI) exhibited very high values during the event and source region can be identified of dust transport to our region with this figure. The total attenuated backscatter at 550nm from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite shows the vertical extent of dust up to 8km. The dynamics of this event is related to coupling of subtropical jet and polar jet over the Saudi Arabia region, which leads to massive dust storm generation and dust transport through Rub-Al-Khali, and Persian Gulf over the UAE region. AOD from ground based measurements showed fourfold increase from 0.2 to 1.8 during the event implying an atmospheric forcing of ~ 150 Wm-2. In addition, vertical profile of heating rate showed heating of ~1.5 K/day at 3-4 km during the event. In the view of the above, the present event is discussed in the light of current understanding of dust storm aerosol optical and physical processes and associated dynamics over UAE region.

  10. Long-term characterization of residential runoff and assessing potential surrogates of fecal indicator organisms.

    PubMed

    Reano, Dane C; Haver, Darren L; Oki, Lorence R; Yates, Marylynn V

    2015-05-01

    Investigations into the microbiological impacts of urban runoff on receiving water bodies, especially during storm conditions, have yielded general paradigms that influence runoff abatement and control management strategies. To determine whether these trends are present in other runoff sources, the physical, chemical, and microbiological components of residential runoff from eight neighborhoods in Northern and Southern California were characterized over the course of five years. Sampling occurred regularly and during storm events, resulting in 833 data sets. Analysis of runoff data assisted in characterizing residential runoff, elucidating differences between dry and storm conditions, and identifying surrogates capable of assessing microbiological quality. Results indicate that although microbial loading increases during storm events similar to urban runoff, annual microbial loading in these study sites principally occurs during dry conditions (24% storm, 76% dry). Generated artificial neural network and multiple linear regression models assessed surrogate performance by accurately predicting Escherichia coli concentrations from validation data sets (R(2) = 0.74 and 0.77, respectively), but required input from other fecal indicator organism (FIO) variables to maintain performance (R(2) = 0.27 and 0.18, respectively, without FIO). This long-term analysis of residential runoff highlights characteristics distinct from urban runoff and establishes necessary variables for determining microbiological quality, thus better informing future management strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    PubMed

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  12. The threshold between storm overwash and inundation and the implication to paleo-storm records and climate signatures.

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Long, J.; Osterman, L. E.; Plant, N. G.; Marot, M. E.; Bernier, J.; Flocks, J. G.; Adams, C. S.

    2014-12-01

    In modern coastal systems, the sensitivity of a coastal site to erosion or deposition during storm conditions depends largely on the geomorphic configuration (e.g. dune or beach height and width) and the storm-induced oceanographic processes (surge and waves). Depending on the magnitude of these variables, coastal systems may be eroded, overwashed, breached, and/or inundated during the storm. To date, there has been no attempt to evaluate how these observable modern differences in storm-impact regimes might be utilized to interpret paleo-storm intensities and frequencies. Time-series of sediment texture, radioisotopic, and foraminiferal data from back-barrier environments along the Chandeleur Islands (Louisiana, USA) document the emplacement of a storm event deposit from Hurricane Isaac and we use this event to test paleo-storm intensity reconstruction methods. Water level reconstructed for the event layer using an advection (grain-size) settling model are 2 - 3 times greater than measured during the storm. The over-estimation is linked to the reconstruction model's assumptions concerning sediment transport during storms (i.e., overwash only), while actual processes included inundation as well. These contrasts may result in misidentification (i.e., presence/absence) and/or misclassification (i.e., intensity) of storms in the geologic record (e.g., low geomorphic conditions and high water levels) that would in turn affect the ability to link storm frequency or intensity to climatic drivers.

  13. Rainfall, streamflow, and water-quality data for five small watersheds, Nashville, Tennessee, 1990-92

    USGS Publications Warehouse

    Outlaw, George S.; Hoos, Anne B.; Pankey, John T.

    1994-01-01

    Rainfall, streamflow, and water-quality data were collected furing storm conditions at five urban watersheds in Nashville, Tennessee. These data can be used to build a database for developing predictive models of the relations between storm- water quality and land use, storm characteristics, and seasonal variations. The primary land and mix of land uses was different for each watershed. Stormwater samples were collected during three storms at each watershed and analyzed for selected volatile, acidic and base/neutral organic compounds; organic pesticides; trace metals; conventional pollutants; and several physical properties. Storm loads were computed for all constituents and properties with event mean concentration above the minimum reporting level. None of the samples con- tained acidic organic compounds at concentrations above the minimum reporting levels. Several constituents in each of the other categories, however, were present at concentrations above the minimum reporting level. For 21 of these constituents, water-quality criteria have been pro- mulgated by the State of Tennessee. For only 8 of the 21 did the value exceed the most restrictive of the criteria: pyrene, dieldrin, and mercury concen- trations and counts of fecal coliform exceeded the criteria for recreational use, copper and zinc concentrations and pH value exceeded the criteria for fish and aquatic life, and lead concentrations exceeded the criteria for domestic supply.

  14. Pesticide mitigation capacities of constructed wetlands

    Treesearch

    Matthew T. Moore; Charles M. Cooper; Sammie Smith; John H. Rodgers

    2000-01-01

    This research focused on using constructed wetlands along field perimeters to buffer receiving water against potential effects of pesticides associated with storm runoff. The current study incorporated wetland mesocosm sampling following simulated runoff events using chlorpyrifos, atrazine, and metolachlor. Through this data collection and simple model analysis,...

  15. Effects of detention on water quality of two stormwater detention ponds receiving highway surface runoff in Jacksonville, Florida

    USGS Publications Warehouse

    Hampson, P.S.

    1986-01-01

    Water and sediment samples were analyzed for major chemical constituents, nutrients, and heavy metals following ten storm events at two stormwater detention ponds that receive highway surface runoff in the Jacksonville, Florida, metropolitan area. The purpose of the sampling program was to detect changes in constituent concentration with time of detention within the pond system. Statistical inference of a relation with total rainfall was found in the initial concentrations of 11 constituents and with antecedent dry period for the initial concentrations of 3 constituents. Based on graphical examination and factor analysis , constituent behavior with time could be grouped into five relatively independent processes for one of the ponds. The processes were (1) interaction with shallow groundwater systems, (2) solubilization of bottom materials, (3) nutrient uptake, (4) seasonal changes in precipitation, and (5) sedimentation. Most of the observed water-quality changes in the ponds were virtually complete within 3 days following the storm event. (Author 's abstract)

  16. A Two-Step Method to Select Major Surge-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the primary driver of storm surge events along the UK and northwest mainland Europe coastlines. In an effort to evaluate the storm surge risk in coastal communities in this region, a stochastic catalog is developed by perturbing the historical storm seeds of European ETCs to account for 10,000 years of possible ETCs. Numerical simulation of the storm surge generated by the full 10,000-year stochastic catalog, however, is computationally expensive and may take several months to complete with available computational resources. A new statistical regression model is developed to select the major surge-generating events from the stochastic ETC catalog. This regression model is based on the maximum storm surge, obtained via numerical simulations using a calibrated version of the Delft3D-FM hydrodynamic model with a relatively coarse mesh, of 1750 historical ETC events that occurred over the past 38 years in Europe. These numerically-simulated surge values were regressed to the local sea level pressure and the U and V components of the wind field at the location of 196 tide gauge stations near the UK and northwest mainland Europe coastal areas. The regression model suggests that storm surge values in the area of interest are highly correlated to the U- and V-component of wind speed, as well as the sea level pressure. Based on these correlations, the regression model was then used to select surge-generating storms from the 10,000-year stochastic catalog. Results suggest that roughly 105,000 events out of 480,000 stochastic storms are surge-generating events and need to be considered for numerical simulation using a hydrodynamic model. The selected stochastic storms were then simulated in Delft3D-FM, and the final refinement of the storm population was performed based on return period analysis of the 1750 historical event simulations at each of the 196 tide gauges in preparation for Delft3D-FM fine mesh simulations.

  17. The Climatology of Extreme Surge-Producing Extratropical Cyclones in Observations and Models

    NASA Astrophysics Data System (ADS)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.

    2016-12-01

    Extreme coastal storms devastate heavily populated areas around the world by producing powerful winds that can create a large storm surge. Both tropical and extratropical cyclones (ETCs) occur over the northwestern Atlantic Ocean, and the risks associated with ETCs can be just as severe as those associated with tropical storms (e.g. high winds, storm surge). At The Battery in New York City, 17 of the 20 largest storm surge events were a consequence of extratropical cyclones (ETCs), which are more prevalent than tropical cyclones in the northeast region of the United States. Therefore, we analyze the climatology of ETCs that are capable of producing a large storm surge along the northeastern coast of the United States. For a historical analysis, water level data was collected from National Oceanic and Atmospheric Administration (NOAA) tide gauges at three separate locations (Sewell's Pt., VA, The Battery, NY, and Boston, MA). We perform a k-means cluster analysis of sea level pressure from the ECMWF 20th Century Reanalysis dataset (ERA-20c) to explore the natural sets of observed storms with similar characteristics. We then composite cluster results with features of atmospheric circulation to observe the influence of interannual and multidecadal variability such as the North Atlantic Oscillation. Since observational records contain a small number of well-documented ETCs, the capability of a high-resolution coupled climate model to realistically simulate such extreme coastal storms will also be assessed. Global climate models provide a means of simulating a much larger sample of extreme events, allowing for better resolution of the tail of the distribution. We employ a tracking algorithm to identify ETCs in a multi-century simulation under present-day conditions. Quantitative comparisons of cyclolysis, cyclogenesis, and cyclone densities of simulated ETCs and storms from recent history (using reanalysis products) are conducted.

  18. Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range

    USGS Publications Warehouse

    Writer, Jeffrey H.; McCleskey, R. Blaine; Murphy, Sheila F.; Stone, Mike; Collins, Adrian; Thoms, Martin C.

    2012-01-01

    Watershed erosion can dramatically increase after wildfire, but limited research has evaluated the corresponding influence on source-water quality. This study evaluated the effects of the Fourmile Canyon wildfire (Colorado Front Range, USA) on source-water quality and aquatic ecosystems using high- frequency sampling. Dissolved organic carbon (DOC) and nutrient loads in stream water were evaluated for a one-year period during different types of runoff events, including spring snowmelt, and both frontal and summer convective storms. DOC export from the burned watershed did not increase relative to the unburned watershed during spring snowmelt, but substantial increases in DOC export were observed during summer convective storms. Elevated nutrient export from the burned watershed was observed during spring snowmelt and summer convective storms, which increased the primary productivity of stream biofilms. Wildfire effects on source-water quality were shown to be substantial following high-intensity storms, with the potential to affect drinking-water treatment processes.

  19. Time-lag and Correlation between ACE and RBSPICE Injection Event Observations during Storm Times

    NASA Astrophysics Data System (ADS)

    Madanian, H.; Patterson, J. D.; Manweiler, J. W.; Soto-chavez, A. R.; Gerrard, A. J.; Lanzerotti, L. J.

    2017-12-01

    The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the Van Allen Probes mission measures energetic charged particles [ 20 keV to 1 MeV] in the inner magnetosphere and ring current. During geomagnetic storms, injections of energetic ions into the ring current change the ion population and produce geomagnetic field depressions on Earth's surface. We analyzed the magnetic field strength and particle composition in the interplanetary medium measured by instruments on the Advanced Composition Explorer (ACE) spacecraft near the inner Lagrangian point. The Electron, Proton, and Alpha Monitor-Low Energy Magnetic Spectrometer (EPAM-LEMS) sensor on ACE measures energetic particles [ 50 keV to 5 MeV] in the interplanetary space. The SYM-H index is utilized to classify the storm events by magnitude and to select more than 60 storm events between 2013 and 2017. We cross-compared ACE observations at storm times, with the RBSPICE ion measurements at dusk to midnight magnetic local time and over the 3-6 L-shell range. We report on the relative composition of the solar particles and the relative composition of the inner magnetospheric hot plasma during storm times. The data correlation is accomplished by shifting the observation time from ACE to RBSPICE using the solar wind velocity at the time of the observation. We will discuss time lags between storm onset at the magnetopause and injection events measured for each storm.

  20. Accretion of a New England (U.S.A.) salt march in response to inlet migration, storms, and sea-level rise

    USGS Publications Warehouse

    Roman, C.T.; Peck, J.A.; Allen, J.R.; King, J.W.; Appleby, P.G.

    1997-01-01

    Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs, 210Pb, 14C). The barrier spit fronting the Spartina-dominated study site has a complex geomorphic history of inlet migration and over-wash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events, and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year -1 were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2.2 mm year -1). During storm-free periods, accumulation rates did not exceed 6.7 mm year -1, but remained quite variable among sites. Based on 137Cs (3.8 to 4.5 mm year -1) and 210Pb (2.6 to 4.2 mm year -1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sealevel rise from 1921 to 1993 of 2.4 mm year -1. At one site, the 210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed that Distichlis spicata recently replaced this once S.patens site, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.

  1. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise

    USGS Publications Warehouse

    Roman, C.T.; Peck, J.A.; Allen, J.R.; King, J.W.; Appleby, P.G.

    1997-01-01

    Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs, 210Pb, 14C). The barrier spit fronting the Spartima-dominated study site has a complex geomorphic history of inlet migration and overwash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year-1 were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2.2 mm year-1). During storm-free periods, accumulation rates did not exceed 6.7 mm year-1, but remained quite variable among sites. Based on 137Cs (3.8 to 4.5 mm year-1) and 210Pb (2.6 to 4.2 mm year-1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sea-level rise from 1921 to 1993 of 2.4 mm year-1. At one site, the 210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed that Distichlis spicata recently replaced this once S. patens site, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.

  2. Storm and Substorm Causes and Effects at Midlatitude Location for the St. Patrick's 2013 and 2015 Events

    NASA Astrophysics Data System (ADS)

    Guerrero, A.; Palacios, J.; Rodríguez-Bouza, M.; Rodríguez-Bilbao, I.; Aran, A.; Cid, C.; Herraiz, M.; Saiz, E.; Rodríguez-Caderot, G.; Cerrato, Y.

    2017-10-01

    Midlatitude locations are unique regions exposed to both geomagnetic storm and substorm effects, which may be superposed on specific events imposing an extra handicap for the analysis and identification of the sources and triggers. We study space weather effects at the midlatitude location of the Iberian Peninsula for the St. Patrick's day events in 2013 and 2015. We have been able to identify and separate storm and substorm effects on ground magnetometer data from San Pablo-Toledo observatory during storm time revealing important contributions of the Substorm Current Wedge on both events. The analysis of these substorm local signatures have shown to be related to the production of effective geomagnetically induced currents and ionospheric disturbances as measured from Global Navigation Satellite Systems data at MAD2 IGS permanent station and not directly related to the storm main phase. The whole Sun-to-Earth chain has been analyzed in order to identify the solar and interplanetary triggers. In both events a high-speed stream (HSS) and a coronal mass ejections (CME) are involved, though for 2015 event, the HSS has merged with the CME, increasing the storm geoeffectiveness. The enhancement of substorm geoeffectiveness is justified by the effects of the inclined magnetic axes of the Sun and of the Earth during equinox period.

  3. Continental-Scale Estimates of Runoff Using Future Climate ...

    EPA Pesticide Factsheets

    Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge, relative changes in runoff using predicted future climate conditions were estimated over different biophysical areas for the CONterminous U.S. (CONUS). Runoff was estimated using the Curve Number (CN) developed by the USDA Soil Conservation Service (USDA, 1986). A seamless gridded dataset representing a CN for existing land use/land cover (LULC) across the CONUS was used along with two different storm event grids created specifically for this effort. The two storm event grids represent a 2- and a 100-year, 24-hour storm event under current climate conditions. The storm event grids were generated using a compilation of county-scale Texas USGS Intensity-Duration-Frequency (IDF) data (provided by William Asquith, USGS, Lubbock, Texas), and NOAA Atlas-2 and NOAA Atlas-14 gridded data sets. Future CN runoff was predicted using extreme storm events grids created using a method based on Kao and Ganguly (2011) where precipitation extremes reflect changes in saturated water vapor pressure of the atmosphere in response to temperature changes. The Clausius-Clapeyron relationship establishes that the total water vapor mass of fully saturated air increases with increasing temperature, leading to

  4. Parameterization of synoptic weather systems in the South Atlantic Bight for modeling applications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodong; Voulgaris, George; Kumar, Nirnimesh

    2017-10-01

    An event based, long-term, climatological analysis is presented that allows the creation of coastal ocean atmospheric forcing on the coastal ocean that preserves both frequency of occurrence and event time history. An algorithm is developed that identifies individual storm event (cold fronts, warm fronts, and tropical storms) from meteorological records. The algorithm has been applied to a location along the South Atlantic Bight, off South Carolina, an area prone to cyclogenesis occurrence and passages of atmospheric fronts. Comparison against daily weather maps confirms that the algorithm is efficient in identifying cold fronts and warm fronts, while the identification of tropical storms is less successful. The average state of the storm events and their variability are represented by the temporal evolution of atmospheric pressure, air temperature, wind velocity, and wave directional spectral energy. The use of uncorrected algorithm-detected events provides climatologies that show a little deviation from those derived using corrected events. The effectiveness of this analysis method is further verified by numerically simulating the wave conditions driven by the characteristic wind forcing and comparing the results with the wave climatology that corresponds to each storm type. A high level of consistency found in the comparison indicates that this analysis method can be used for accurately characterizing event-based oceanic processes and long-term storm-induced morphodynamic processes on wind-dominated coasts.

  5. Attenuation of copper in runoff from copper roofing materials by two stormwater control measures.

    PubMed

    LaBarre, William J; Ownby, David R; Lev, Steven M; Rader, Kevin J; Casey, Ryan E

    2016-01-01

    Concerns have been raised over diffuse and non-point sources of metals including releases from copper (Cu) roofs during storm events. A picnic shelter with a partitioned Cu roof was constructed with two types of stormwater control measures (SCMs), bioretention planter boxes and biofiltration swales, to evaluate the ability of the SCMs to attenuate Cu in stormwater runoff from the roof. Cu was measured as it entered the SCMs from the roof as influent as well as after it left the SCMs as effluent. Samples from twenty-six storms were collected with flow-weighted composite sampling. Samples from seven storms were collected with discrete sampling. Total Cu in composite samples of the influent waters ranged from 306 to 2863 μg L(-1) and had a median concentration of 1087 μg L(-1). Total Cu in the effluent from the planter boxes ranged from 28 to 141 μg L(-1), with a median of 66 μg L(-1). Total Cu in effluent from the swales ranged from 7 to 51 μg L(-1) with a median of 28 μg L(-1). Attenuation in the planter boxes ranged from 85 to 99% with a median of 94% by concentration and in the swales ranged from 93 to 99% with a median of 99%. As the roof aged, discrete storm events showed a pronounced first-flush effect of Cu in SCM influent but this was less pronounced in the planter outlets. Stormwater retention time in the media varied with antecedent conditions, stormwater intensity and volume with median values from 6.6 to 73.5 min. Based on local conditions, a previously-published Cu weathering model gave a predicted Cu runoff rate of 2.02 g m(-2) yr(-1). The measured rate based on stormwater sampling was 2.16 g m(-2) yr(-1). Overall, both SCMs were highly successful at retaining and preventing offsite transport of Cu from Cu roof runoff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Using host-associated genetic markers to investigate sources of fecal contamination in two Vermont streams

    USGS Publications Warehouse

    Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.

    2011-01-01

    The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans, ruminants, or canids. Results from samples from the Mettawee River watershed collected during high-flow conditions (12 storm samples on 2 dates at 6 stations) indicated that there was no evidence of fecal contamination from humans in seven samples and possible evidence in five samples. Results for humans were positive for only one station during both storm events. For two of the five samples with evidence for human fecal contamination, results for two different human genetic markers agreed, but results from three samples were inconsistent. In samples from five of the six Mettawee stations, ruminants were a potential source of fecal contamination on at least one of the three sampled dates, including three positive results for the base-flow sample. Yet samples from all of the stations that showed positive results for ruminants did so for only one or two of the three sampled dates. Samples from only one of the six stations gave consistent results, which were negative for ruminants for all three dates. In the Mettawee River base-flow sample, humans were an unlikely source of major fecal contamination. Factors that may influence results and conclusions include the timing of sample collection relative to the storm event; variability of E. coli and Bacteroidales concentrations in fecal reference samples and in water; sampling and analytical errors; the potential cross reactivity of host-associated genetic markers; and different persistence and survival rates of E. coli bacteria and Bacteroidales genetic markers on land, in water, and by season. These factors interfere with the ability to directly relate Bacteroidales concentrations to E. coli concentrations in river samples. It must be recognized that while use of Bacteroidales genetic markers as a source tracking tool coupled with the interpretive approach described in this report cannot be used quantitatively to pinpoint sources, it can be used to exclude potential sources as major contributors to fecal contamination.

  7. Spatial and temporal variability of (7)Be and (210)Pb wet deposition during four successive monsoon storms in a catchment of northern Laos.

    PubMed

    Gourdin, E; Evrard, O; Huon, S; Reyss, J-L; Ribolzi, O; Bariac, T; Sengtaheuanghoung, O; Ayrault, S

    2014-10-01

    Fallout radionuclides (7)Be and (210)Pb have been identified as potentially relevant temporal tracers for studying soil particles dynamics (surface vs. subsurface sources contribution; remobilization of in-channel sediment) during erosive events in river catchments. An increasing number of studies compared (7)Be: (210)Pb activity ratio in rainwater and sediment to estimate percentages of freshly eroded particles. However, the lack of data regarding the spatial and temporal variability of radionuclide wet deposition during individual storms has been identified as one of the main gaps in these estimates. In order to determine these key parameters, rainwater samples were collected at three stations during four storms that occurred at the beginning of the monsoon (June 2013) in the Houay Xon mountainous catchment in northern Laos. Rainwater (7)Be and (210)Pb activities measured using very low background hyperpure Germanium detectors ranged from 0.05 to 1.72 Bq L(-1) and 0.02 to 0.26 Bq L(-1), respectively. Water δ(18)O were determined on the same samples. Total rainfall amount of the four sampled storms ranged from 4.8 to 26.4 mm (51 mm in total) at the time-fractionated collection point. Corresponding cumulative (7)Be and (210)Pb wet depositions during the sampling period were 17.6 and 2.9 Bq m(-2), respectively. The (7)Be: (210)Pb activity ratio varied (1) in space from 6 to 9 for daily deposition and (2) in time from 3 to 12 for samples successively collected. Intra-event evolution of rainwater (7)Be and (210)Pb activities as well as δ(18)O highlighted the progressive depletion of local infra-cloud atmosphere radionuclide stock with time (washout), which remains consistent with a Raleigh-type distillation process for water vapour. Intra-storm ratio increasing with time showed the increasing contribution of rainout scavenging. Implications of such variability for soil particle labelling and erosion studies are briefly discussed and recommendations are formulated for the collection of rainwater signature in studies based on the (7)Be: (210)Pb ratio method, especially in tropical areas under high erosive pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    USGS Publications Warehouse

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.

  9. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    DOE PAGES

    Tang, C. L.; Wang, Y. X.; Ni, B.; ...

    2017-05-19

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. Formore » non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.« less

  10. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, C. L.; Wang, Y. X.; Ni, B.

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. Formore » non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.« less

  11. Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Murphy, Sheila F.; Stallard, Robert F.; Contributions by Buss, Heather L.; Gould, William A.; Larsen, Matthew C.; Liu, Zhigang; Martinuzzi, Sebastian; Pares-Ramos, Isabel K.; White, Arthur F.; Zou, Xiaoming

    2012-01-01

    Humid tropical regions occupy about a quarter of Earth's land surface, yet they contribute a substantially higher fraction of the water, solutes, and sediment discharged to the world's oceans. Nearly half of Earth's population lives in the tropics, and development stresses can potentially harm soil resources, water quality, and water supply and in addition increase landslide and flood hazards. Owing to Puerto Rico's steep topography, low water storage capacity, and dependence on trade-wind precipitation, the island's people, ecosystems, and water supply are vulnerable to extreme weather such as hurricanes, floods, and droughts. Eastern Puerto Rico offers a natural laboratory for separating geologic and land-cover influences from regional- and global-scale influences because of its various bedrock types and the changing land cover surrounding intact, mature forest of the Luquillo Experimental Forest. Accordingly, a multiyear assessment of hydrological and biogeochemical processes was designed to develop an understanding of the effects of these differences on local climate, streamflow, water quality, and ecosystems, and to form the basis for a long-term and event-based program of climate and hydrologic monitoring. Because infrequent, large storms play a major role in this landscape, we focused on high-runoff events, sampling 263 storms, including all major hurricanes from 1991 through 2005. The largest storms have profound geomorphic consequences, such as landslides, debris flows, deep gullying on deforested lands, excavation and suspension of sediment in stream channels, and delivery of a substantial fraction of annual stream sediment load. Large storms sometimes entrain ocean foam and spray causing high concentrations of seasalt-derived constituents in stream waters during the storm. Past deforestation and agricultural activities in the Cayaguás and Canóvanas watersheds accelerated erosion and soil loss, and this material continues to be remobilized during large storms. Nearly 5,000 routine and event samples were analyzed for parameters that allow determination of denudation rates based on suspended and dissolved loads; 860 of these samples were analyzed for a comprehensive suite of chemical constituents. The rivers studied are generally similar in water-quality characteristics, and windward or leeward aspect appears to exert a stronger influence on water quality than geology or land cover. Of samples analyzed for comprehensive chemistry and for sediment, 543 were collected at runoff rates greater than 1 millimeter per hour, 256 at rates exceeding 10 millimeters per hour, and 3 at rates exceeding 90 millimeters per hour. Streams have rarely been sampled during events with such high runoff rates. Rates of physical and chemical weathering are especially high, and physical denudation rates, forested watersheds included, are considerably greater than is expected for a steady-state system. The elevated physical erosion drives an increased particulate organic carbon flux, one that is large, important to the carbon cycle, and sustainable, because soil-carbon regeneration is rapid. The 15-year Water, Energy, and Biogeochemical Budget dataset, which includes discharge, field parameters, suspended sediment, major cations and anions, and nutrients, is available from the U.S. Geological Survey's National Water Information System (http://waterdata.usgs.gov/nwis). The dataset provides a baseline for characterizing future environmental change and will improve our understanding of the interdependencies of land, water, and biological resources and their responses to changes in climate and land use. Because eastern Puerto Rico resembles many tropical regions in terms of geology and patterns of development, implications from this study are transferable to other tropical regions facing deforestation, rapid land-use change, and climate change.

  12. The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.

    2004-01-01

    The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.

  13. Watershed-based sources of polycyclic aromatic hydrocarbons in urban storm water.

    PubMed

    Stein, Eric D; Tiefenthaler, Liesl L; Schiff, Kenneth

    2006-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds, ubiquitous in the air and water of urban environments, and have been shown to accumulate in coastal estuarine and marine sediments. Although previous studies have documented concentrations and loads of PAHs in urban runoff, little is known about the sources and temporal patterns of PAH loading from storm water. This study characterized the sources and temporal patterns of PAHs in urban storm water by analyzing PAH concentrations and loads from a range of homogeneous land use sites and in-river mass emission sites throughout the greater Los Angeles, California, USA, region. Samples were collected at 30- to 60-min intervals over the course of a storm during multiple storm events over a four-year period in order to investigate PAH sources and inter- and intrastorm patterns in loading. Polycyclic aromatic hydrocarbon storm fluxes ranged from 1.3 g/km2 for the largely undeveloped Arroyo Sequit watershed to 223.7 g/km2 for the highly urbanized Verdugo Wash watershed, with average storm fluxes being 46 times higher in developed versus undeveloped watersheds. Early-season storms repeatedly produced substantially higher loads than comparably sized late-season storms. Within individual storms, PAHs exhibited a moderate first flush with between 30 and 60% of the total PAH load being discharged in the first 20% of the storm volume. The relative distribution of individual PAHs demonstrated a consistent predominance of high-molecular-weight compounds indicative of pyrogenic sources.

  14. The role of storm scale, position and movement in controlling urban flood response

    NASA Astrophysics Data System (ADS)

    ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James

    2018-01-01

    The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.

  15. Impacts of Stormwater Management Measures on E. coli and Enterococci Populations in Stormwater Effluent

    NASA Astrophysics Data System (ADS)

    Wildey, R. A.; Ballestero, T. P.; Roseen, R. M.; Houle, J.

    2005-05-01

    In our efforts to improve the quality of runoff entering our streams and waterways, stormwater management measures (or BMPs) are being implemented at a rapid pace. Usually designed to treat one or more specific types of contamination or loading, these measures may have unintended consequences that are not well understood. One issue that has not been fully explored is the potential effect these systems have on microbial contamination of the treated runoff. This study evaluates 11 types of treatment systems and their impact on E. coli and Enterococci contamination. Recent research has demonstrated that near-shore sediment may act as a continuous source of bacterial loading in the overlying waters, rather than bacterial loading being solely a temporal, storm-driven phenomenon. Similarly, stormwater management measures that utilize a soil media for filtration or incorporate a sediment sump may also provide conditions conducive to the incubation of fecal coliforms that can then be released into the environment during runoff events. Following with EPA regulatory guidelines for receiving waters, E. coli and Enterococci are used as surrogates for the presence of other potential disease-causing pathogens typically associated with mammalian and avian enteric bacteria. The stormwater management measures being investigated include: subsurface infiltration, surface sand filter, standard detention pond, bioretention area, hydrodynamic separation, subsurface gravel wetland, street sweeping, and vegetated swale. An adjacent porous parking area and a standard asphalt lot that drains to a tree filter are similarly monitored. Influent is supplied by runoff generated by a 9-acre commuter parking lot at the University of New Hampshire in Durham, NH. This influent is distributed equally to the different treatment devices that operate in parallel. Water quality parameters (DO, pH, specific conductivity, temperature) and flow are continuously monitored upstream from the distribution chamber (influent) and downstream from each device (effluent). Automated samplers are used to collect samples during storm events and grab samples are taken between storm events to evaluate the effect of each device or BMP on bacterial populations. Initial data indicate that influent concentrations of fecal coliforms for this parking area often exceed EPA limits for Class A waterbodies. Several of the treatment units appear to substantially reduce (>90% reduction) bacterial loading, while others appear to increase loading during some storm events (>500% increase). This study is on-going and additional sample events from the Spring of 2005 will also be presented.

  16. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran.

    PubMed

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza

    2016-04-01

    Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 < 200 μg m(-3)) were collected from December 2012 until June 2013 in Ahvaz, the capital of Khuzestan Province in Iran. The chemical composition and cytotoxicity were analyzed by ICP- OES and Lactase Dehydrogenase (LDH) reduction assay, respectively. The results showed that PM10 suspensions, their water-soluble fraction and solvent-extractable organics from both dust storm and normal days caused a decrease in the cell viability and an increase in LDH in supernatant in a dose-response manner. Although samples of normal days showed higher cytotoxicity than those of dust storm at the highest treated dosage, T Test showed no significant difference in cytotoxicity between normal days and dust event days (P value > 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. EPISODIC EVENTS: THE EFFECT OF FLOODS ON NUTRIENT TRANSPORT IN A NORTHWESTERN, USA ESTUARY

    EPA Science Inventory

    To estimate the effects of storms on nutrient transport, dissolved nutrients and suspended sediment loads were measured relative to stream discharge in the Yaquina River, OR for three storm events. Episodic events, particularly high rainfall or flood events may transport high di...

  18. Vulnerability Assessment of Dust Storms in the United States under a Changing Climate Scenario

    EPA Science Inventory

    Severe weather events, such as flooding, drought, forest fires, and dust storms can have a serious impact on human health. Dust storm events are not well predicted in the United States, however they are expected to become more frequent as global climate warms through the 21st cen...

  19. Aquatic ecosystems in a changing climate

    USGS Publications Warehouse

    Inamdar, Shreeram; Shanley, James B.; McDowell, William H.

    2017-01-01

    Extreme climate events (ECEs) such as tropical storms and hurricanes, thunderstorms, heat waves, droughts, ice storms, and snow storms have increased and are projected to further increase in intensity and frequency across the world. These events are expected to have significant consequences for aquatic ecosystems with the potential for large changes in ecosystem processes, responses, and functions.

  20. Continental-Scale Estimates of Runoff Using Future Climate Storm Events

    EPA Science Inventory

    Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge...

  1. Effects of dust storm events on weekly clinic visits related to pulmonary tuberculosis disease in Minqin, China

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Wang, Ruoyu; Ming, Jing; Liu, Guangxiu; Chen, Tuo; Liu, Xinfeng; Liu, Haixia; Zhen, Yunhe; Cheng, Guodong

    2016-02-01

    Pulmonary tuberculosis (PTB) is a major public health problem in China. Minqin, a Northwest county of China, has a very high number of annual PTB clinic visits and it is also known for its severe dust storms. The epidemic usually begins in February and ends in July, while the dust storms mainly occur throughout spring and early summer, thereby suggesting that there might be a close link between the causative agent of PTB and dust storms. We investigated the general impact of dust storms on PTB over time by analyzing the variation in weekly clinic visits in Minqin during 2005-2012. We used the Mann-Whitney-Pettitt test and a regression model to determine the seasonal periodicity of PTB and dust storms in a time series, as well as assessing the relationships between meteorological variables and weekly PTB clinic visits. After comparing the number of weekly PTB cases in Gansu province with dust storm events, we detected a clear link between the population dynamics of PTB and climate events, i.e., the onset of epidemics and dust storms (defined by an atmospheric index) occurred in almost the same mean week. Thus, particulate matter might be the cause of PTB outbreaks on dust storm days. It is highly likely that the significant decline in annual clinic visits was closely associated with improvements in the local environment, which prevented desertification and decreased the frequency of dust storm events. To the best of our knowledge, this is the first population-based study to provide clear evidence that a PTB epidemic was affected by dust storms in China, which may give insights into the association between this environmental problem and the evolution of epidemic disease.

  2. Storm surges and coastal impacts at Mar del Plata, Argentina

    NASA Astrophysics Data System (ADS)

    Fiore, Mónica M. E.; D'Onofrio, Enrique E.; Pousa, Jorge L.; Schnack, Enrique J.; Bértola, Germán R.

    2009-07-01

    Positive storm surges (PSS) lasting for several days can raise the water level producing significant differences between the observed level and the astronomical tide. These storm events can be more severe if they coincide with a high tide or if they bracket several tidal cycles, particularly in the case of the highest astronomical tide. Besides, the abnormal sea-level elevation near the coast can cause the highest waves generated to attack the upper beach. This combination of factors can produce severe erosion, threatening sectors located along the coastline. These effects would be more serious if the storm surge height and duration increase as a result of a climatic change. The Mar del Plata (Argentina) coastline and adjacent areas are exposed to such effects. A statistical characterization of PSS based on their intensity, duration and frequency, including a surge event classification, was performed utilizing tide-gauge records over the period 1956-2005. A storm erosion potential index (SEPI) was calculated from observed levels based on hourly water level measurements. The index was related to beach profile responses to storm events. Also, a return period for extreme SEPI values was calculated. Results show an increase in the average number of positive storm surge events per decade. Considering all the events, the last decade (1996-2005) exhibits an average 7% increase compared to each one of the previous decades. A similar behavior was found for the decadal average of the heights of maximum annual positive storm surges. In this case the average height of the last two decades exceeds that of the previous decades by approximately 8 cm. The decadal average of maximum annual duration of these meteorological events shows an increase of 2 h in the last three decades. A possible explanation of the changes in frequency, height and duration of positive storm surges at Mar del Plata would seem to lie in the relative mean sea-level rise.

  3. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    USGS Publications Warehouse

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  4. Major coastal impact induced by a 1000-year storm event

    PubMed Central

    Fruergaard, Mikkel; Andersen, Thorbjørn J.; Johannessen, Peter N.; Nielsen, Lars H.; Pejrup, Morten

    2013-01-01

    Extreme storms and storm surges may induce major changes along sandy barrier coastlines, potentially causing substantial environmental and economic damage. We show that the most destructive storm (the 1634 AD storm) documented for the northern Wadden Sea within the last thousand years both caused permanent barrier breaching and initiated accumulation of up to several metres of marine sand. An aggradational storm shoal and a prograding shoreface sand unit having thicknesses of up to 8 m and 5 m respectively were deposited as a result of the storm and during the subsequent 30 to 40 years long healing phase, on the eroded shoreface. Our results demonstrate that millennial-scale storms can induce large-scale and long-term changes on barrier coastlines and shorefaces, and that coastal changes assumed to take place over centuries or even millennia may occur in association with and be triggered by a single extreme storm event.

  5. Water quality, selected chemical characteristics, and toxicity of base flow and urban stormwater in the Pearson Creek and Wilsons Creek Basins, Greene County, Missouri, August 1999 to August 2000

    USGS Publications Warehouse

    Richards, Joseph M.; Johnson, Byron Thomas

    2002-01-01

    The chemistry and toxicity of base flow and urban stormwater were characterized to determine if urban stormwater was degrading the water quality of the Pearson Creek and Wilsons Creek Basins in and near the city of Springfield, Greene County, Missouri. Potentially toxic components of stormwater (nutrients, trace metals, and organic compounds) were identified to help resource managers identify and minimize the sources of toxicants. Nutrient loading to the James River from these two basins (especially the Wilsons Creek Basin) is of some concern because of the potential to degrade downstream water quality. Toxicity related to dissolved trace metal constituents in stormwater does not appear to be a great concern in these two basins. Increased heterotrophic activity, the result of large densities of fecal indicator bacteria introduced into the streams after storm events, could lead to associated dissolved oxygen stress of native biota. Analysis of stormwater samples detected a greater number of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) than were present in base-flow samples. The number and concentrations of pesticides detected in both the base-flow and stormwater samples were similar.Genotoxicity tests were performed to determine the bioavilability of chemical contaminants and determine the potential harmful effects on aquatic biota of Pearson Creek and Wilsons Creek. Genotoxicity was determined from dialysates from both long-term (approximately 30 days) and storm-event (3 to 5 days) semipermeable membrane device (SPMD) samples that were collected in each basin. Toxicity tests of SPMD samples indicated evidence of genotoxins in all SPMD samples. Hepatic activity assessment of one long-term SPMD sample indicated evidence of contaminant uptake in fish. Chemical analyses of the SPMD samples found that relatively few pesticides and pesticide metabolites had been sequestered in the lipid material of the SPMD; however, numerous PAHs and VOCs were detected in both the long-term and the storm-event exposures. It is suspected, based on the compounds detected in the SPMDs and the water samples, that the observed genotoxicity is largely the result of PAHs and VOCs that were probably derived from petroleum inputs or combustion sources. Therefore the water quality and thus the aquatic environments in the Pearson Creek and Wilsons Creek Basins are being degraded by urban derived contaminants.

  6. Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.

    2017-12-01

    The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.

  7. Analog ensemble and Bayesian regression techniques to improve the wind speed prediction during extreme storms in the NE U.S.

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Delle Monache, L.; Alessandrini, S.

    2016-12-01

    Accuracy of weather forecasts in Northeast U.S. has become very important in recent years, given the serious and devastating effects of extreme weather events. Despite the use of evolved forecasting tools and techniques strengthened by increased super-computing resources, the weather forecasting systems still have their limitations in predicting extreme events. In this study, we examine the combination of analog ensemble and Bayesian regression techniques to improve the prediction of storms that have impacted NE U.S., mostly defined by the occurrence of high wind speeds (i.e. blizzards, winter storms, hurricanes and thunderstorms). The predicted wind speed, wind direction and temperature by two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) are combined using the mentioned techniques, exploring various ways that those variables influence the minimization of the prediction error (systematic and random). This study is focused on retrospective simulations of 146 storms that affected the NE U.S. in the period 2005-2016. In order to evaluate the techniques, leave-one-out cross validation procedure was implemented regarding 145 storms as the training dataset. The analog ensemble method selects a set of past observations that corresponded to the best analogs of the numerical weather prediction and provides a set of ensemble members of the selected observation dataset. The set of ensemble members can then be used in a deterministic or probabilistic way. In the Bayesian regression framework, optimal variances are estimated for the training partition by minimizing the root mean square error and are applied to the out-of-sample storm. The preliminary results indicate a significant improvement in the statistical metrics of 10-m wind speed for 146 storms using both techniques (20-30% bias and error reduction in all observation-model pairs). In this presentation, we discuss the various combinations of atmospheric predictors and techniques and illustrate how the long record of predicted storms is valuable in the improvement of wind speed prediction.

  8. Extreme Magnetic Storms: Their Characteristics and Possible Consequences for Humanity

    NASA Astrophysics Data System (ADS)

    Falkowski, B. J.; Tsurutani, B.; Lakhina, G. S.; Deng, Y.; Mannucci, A. J.

    2015-12-01

    The solar and interplanetary conditions necessary to create an extreme magnetic storm will be discussed. The Carrington 1859 event was not the largest possible. It will be shown that different facets of fast ICMEs/extreme magnetic storms will have different limitations. Some possible adverse effects of such extreme space weather events on society will be addressed.

  9. A-Train Data Depot (ATDD)

    NASA Technical Reports Server (NTRS)

    Smith, Peter M.; Kempler, Steven; Leptoukh, Gregory; Savtchenko, Andrey; Kummerer, Robert; Gopolan, Arun

    2008-01-01

    ATDD is a web based tool which provides collocated data and display products for a number of A-train instruments Cloudsat, Calipso, OMI, AIRS, MODIS, MLS, POLDER-3, and ECWMF model data. Products provided include Clouds, Aerosols, Water Vapor, Temperatures and trace gases. All input data is online and in HDF4, HDF5 format. Display products include curtain images, horizontal strips, line plot overlays, and GE kmz files. Sample products are shown for two type of events. Hurricane event, Norbert, Oct 8, 2008 and a dust storm event over the Arabian Sea, Nov 13-14, 2008.

  10. Characterization of microbial and metal contamination in flooded New York City neighborhoods following Superstorm Sandy

    NASA Astrophysics Data System (ADS)

    Dueker, M.; O'Mullan, G. D.; Sahajpal, R.

    2013-12-01

    Large scale flooding of waterfront neighborhoods occurred in New York City (NYC) during Superstorm Sandy. While NYC waterways commonly experience combined sewer overflow (CSO) and associated water quality degradation during rain storms, Superstorm Sandy was unique in that these potentially contaminated waters were transported over the banks and into city streets and buildings. Sampling of waterways, storm debris on city streets, and flood water trapped in building basements occurred in the days following Sandy, including in neighborhoods bordering the Gowanus Canal and Newtown Creek, which are both Superfund sites known to frequently contain high levels of sewage associated bacteria and metal contamination. Samples enumerated for the sewage indicating bacterium, Enterococcus, suggest that well-flushed waterways recovered quickly from sewage contamination in the days following the storm, with Enterococci concentrations similar to background levels measured before flooding occurred. In contrast, storm debris on city streets and waters from flooded basements had much higher levels of sewage-associated bacteria days after flooding occurred. Analysis of 180,000 bacterial 16S rRNA gene sequences obtained from flood water samples and flood debris confirmed the presence of bacterial genera often associated with sewage impacted samples (e.g. Escherichia, Streptococcus, Clostridium, Trichococcus, Aeromonas) and a community composition similar to CSO discharge. Elemental analysis suggests low levels of metal contamination in most flood water, but much higher levels of Cu, Pb, and Cr were found in leach from some storm debris samples found adjacent to the Newtown Creek and Gowanus Canal superfund sites. These data suggest a rapid recovery of water quality in local waterways after Superstorm Sandy, but that trapped flood water and debris samples in urban neighborhoods retained elevated levels of microbial sewage pollution, and in some cases metal pollution, days after that waterway recovery. These findings indicate a potentially significant risk to local populations exposed to trapped flood waters and debris in the aftermath of urban waterway flooding events.

  11. Field Verification Program (Upland Disposal): Prediction of Surface Runoff Water Quality from Black Rock Harbor Dredged Material Placed in an Upland Disposal Site.

    DTIC Science & Technology

    1987-03-01

    Simulator was similar to the original rotating disk-type rainfall simulator but had several important design modifications ( Westerdahl and Skogerboe...exist- ing vegetation on the soil surface ( Westerdahl and Skogerboe 1982). A multiple-peaked natural storm event was selected from field data and pro... Westerdahl and Skogerboe 1982) and has been used as a standard storm event for comparison to natural storm events (Laws and Parsons 1943). Similar

  12. The dichotomous response of flood and storm extremes to rising global temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Wasko, C.

    2017-12-01

    Rising temperature have resulted in increases in short-duration rainfall extremes across the world. Additionally it has been shown (doi:10.1038/ngeo2456) that storms will intensify, causing derived flood peaks to rise even more. This leads us to speculate that flood peaks will increase as a result, complying with the storyline presented in past IPCC reports. This talk, however, shows that changes in flood extremes are much more complex. Using global data on extreme flow events, the study conclusively shows that while the very extreme floods may be rising as a result of storm intensification, the more frequent flood events are decreasing in magnitude. The study argues that changes in the magnitude of floods are a function of changes in storm patterns and as well as pre-storm or antecedent conditions. It goes on to show that while changes in storms dominate for the most extreme events and over smaller, more urbanised catchments, changes in pre-storm conditions are the driving factor in modulating flood peaks in large rural catchments. The study concludes by providing recommendations on how future flood design should proceed, arguing that current practices (or using a design storm to estimate floods) are flawed and need changing.

  13. Contaminant Concentrations in Storm Water Entering the Sinclair/Dyes Inlet Subasin of the Puget Sound, USA During Storm Event and Baseflow Conditions

    DTIC Science & Technology

    2007-03-01

    Contaminant Concentrations in Storm Water Entering the Sinclair/Dyes Inlet Subasin of the Puget Sound , USA During Storm Event and Baseflow Conditions...Johnston1 (Space and Naval Warfare Systems Center, Bremerton, WA, USA), Dwight E. Leisle, Bruce Beckwith, and Gerald Sherrell ( Puget Sound Naval Shipyard...The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County, Washington, U.S.A. (Figure 1). Puget Sound Naval

  14. Flood Frequency Analyses Using a Modified Stochastic Storm Transposition Method

    NASA Astrophysics Data System (ADS)

    Fang, N. Z.; Kiani, M.

    2015-12-01

    Research shows that areas with similar topography and climatic environment have comparable precipitation occurrences. Reproduction and realization of historical rainfall events provide foundations for frequency analysis and the advancement of meteorological studies. Stochastic Storm Transposition (SST) is a method for such a purpose and enables us to perform hydrologic frequency analyses by transposing observed historical storm events to the sites of interest. However, many previous studies in SST reveal drawbacks from simplified Probability Density Functions (PDFs) without considering restrictions for transposing rainfalls. The goal of this study is to stochastically examine the impacts of extreme events on all locations in a homogeneity zone. Since storms with the same probability of occurrence on homogenous areas do not have the identical hydrologic impacts, the authors utilize detailed precipitation parameters including the probability of occurrence of certain depth and the number of occurrence of extreme events, which are both incorporated into a joint probability function. The new approach can reduce the bias from uniformly transposing storms which erroneously increases the probability of occurrence of storms in areas with higher rainfall depths. This procedure is iterated to simulate storm events for one thousand years as the basis for updating frequency analysis curves such as IDF and FFA. The study area is the Upper Trinity River watershed including the Dallas-Fort Worth metroplex with a total area of 6,500 mi2. It is the first time that SST method is examined in such a wide scale with 20 years of radar rainfall data.

  15. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  16. Rainfall, discharge, and water-quality data during stormwater monitoring, H-1 storm drain, Oahu, Hawaii, July 1, 2009, to June 30, 2010

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.

    2010-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff collected by the H-1 storm drain on the Manoa-Palolo Drainage Canal. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2009, and June 30, 2010. As part of this program, rainfall and continuous discharge data were collected at the H-1 storm drain. During the year, sampling strategy and sample processing methods were modified to improve the characterization of the effects of discharge from the storm drain on the Manoa-Palolo Drainage Canal. During July 1, 2009, to February 1, 2010, samples were collected from only the H-1 storm drain. Beginning February 2, 2010, samples were collected simultaneously from the H-1 storm drain and the Manoa-Palolo Drainage Canal at a location about 50 feet upstream of the discharge point of the H-1 storm drain. Three storms were sampled during July 1, 2009, to June 30, 2010. All samples were collected using automatic samplers. For the storm of August 12, 2009, grab samples (for oil and grease, and total petroleum hydrocarbons) and a composite sample were collected. The composite sample was analyzed for total suspended solids, nutrients, and selected dissolved and total (filtered and unfiltered) trace metals (cadmium, chromium, nickel, copper, lead, and zinc). Two storms were sampled in March 2010 at the H-1 storm drain and from the Manoa-Palolo Drainage Canal. Two samples were collected during the storm of March 4, 2010, and six samples were collected during the storm of March 8, 2010. These two storms were sampled using the modified strategy, in which discrete samples from the automatic sampler were processed and analyzed individually, rather than as a composite sample, using the simultaneously collected samples from the H-1 storm drain and from the Manoa-Palolo Drainage Canal. The discrete samples were analyzed for some or all of the following constituents: total suspended solids, nutrients, oil and grease, and selected dissolved (filtered) trace metals (cadmium, chromium, nickel, copper, lead, and zinc). Five quality-assurance/quality-control samples were analyzed during the year. These samples included one laboratory-duplicate, one field-duplicate, and one matrix-spike sample prepared and analyzed with the storm samples. In addition, two inorganic blank-water samples, one sample at the H-1 storm drain and one sample at the Manoa-Palolo Drainage Canal, were collected by running the blank water (water purified of all inorganic constituents) through the sampling and processing systems after cleaning automatic sampler lines to verify that the sampling lines were not contaminated.

  17. Evolution of potentially eroding events along the northern coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrón, J. C.

    2009-09-01

    The anthropogenic global warming is expected to result in a rise in sea-level, accompanied by changes in extreme climate events, such as the frequency and intensity of storms. Such scenario would result in an acceleration of coastal erosion. The aim of the present study is to assess the temporal evolution of potentially eroding events along the northern coast of the Iberian Peninsula during the second half of the 20th century, and to investigate changes in forcing processes such as the frequency and magnitude of storm surges and high wave events. To characterize the potentially eroding events, the total elevation of the water level was selected, being calculated as the sum of the contributions of the average water level, wave run up and the storm surges. Potentially eroding events were identified and quantified following a two-step procedure. Through the first step the potential flood induced by a given storm was estimated by simulating its effects on a theoretical beach profile (intermediate) using an empirical parameterization for extreme run-up approach. The second step consisted on characterizing the maximum storm surge registered during a storm. Those parameters were calculated from hindcasted data (storm surge, wave heights and period, wind speed and direction), retrieved from the SIMAR-44 database (Puertos del Estado), and validated against actual tide gauge measurements and buoy data (RedMar and RedExt networks). Analyses of total water levels showed a long term increase since 1958, resulting from the increase of mean sea level; conversely, a reduction of the frequency and the intensity of the storm events were deduced from the analysis of meteorological records. Since the impact of the storms on macro- and meso- tidal coast closely depend on the tides, a storm impact index was computed taking into account the storm surge magnitude, the wave heights and time duration during which a predefined threshold was exceeded by the sea level. The results are consistent with the analysis of the shoreline evolution on a specific sector of Cantabria (Oyambre) through the comparison of aerial photographs taken between 1957 and 2005. From the late 50´s to late 70’s, the shoreline significantly retreated, in correspondence with the period of maximum storm activity. Conversely, shoreline retreat slowed down during the late 1980s and 1990s while storm activity considerably decreased. Thus long-term coastal erosion, due to the occurrences of high water levels embedded into a long trend term of sea level rise, has been balanced by the reduction of the frequency and intensity of the Atlantic storms. Since relative sea-level will continue rising in the future, most of the coastal morphologies will probably be more frequently reached by the sea, increasing the flooding risk in low-lying sectors and promoting landslides along the cliffs.

  18. How to Recognize and Distinguish Low-Latitude Ionospheric Storms Disturbances Produced by TIDs or PPEFs During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Ribeiro, B. A.; Kavutarapu, V.; Fejer, B. G.; Pillat, V. G.

    2016-12-01

    The effects of geomagnetic storms on ionosphere are one of the important aspects of the space weather and identifying the possible sources of these perturbations is important. Among the possible sources of ionospheric perturbations, the Travelling Ionospheric Disturbance (TID) and Prompt Penetration Electric Field (PPEF) are the most important. In this study, we present and discuss the ionospheric response in the Brazilian sector due to geomagnetic storms occurred during January 2013 and March 2015. These space weather events were investigated using a network of 100 GPS-TEC stations. It has been noticed that the VTEC was disturbed during main phase in both storms. During the first event (January), a positive ionospheric storm peak in TEC is observed first beyond the EIA crest and sometime later at low-latitude and equatorial region. This delayed response at different latitudes could be a signature of TID propagation. In this specific event a TID propagating to northwest direction with a velocity of about 200 m/s. However, during the second event (March), 3 positive ionospheric storm peaks were observed in the VTEC from equator to low latitudes during the storm main phase, but these 3 peaks do not present wave propagation characteristics. Probably, an eastward electric field penetrated at equatorial and low-latitude regions uplifts the F-region where the recombination rates are lower leading to a positive ionospheric storm. To distinguish if the positive ionospheric storm was produced by TID or PPEF, it is important to observe the positive ionospheric storm changes along the meridional direction. In case of TIDs, a meridional propagation of the disturbance wave with a phase and speed will be observed. Therefore, the perturbation occurs first beyond the EIA crest and sometime later at the low latitudes and finally at the equatorial region. In case of PPEF the positive ionospheric storm takes place almost simultaneously from beyond the EIA crest to equatorial region.

  19. Martian Dust Cycle

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; James, P. B.

    The Mars Observer Camera (MOC), aboard Mars Global Surveyor (MGS), has completed approximately 3 consecutive Martian years of global monitoring, since entering its mapping orbit on March 9, 1999. MOC observations have shown the important role that dust devils and dust storms play in the Martian dust cycle on time scales ranging from semi-diurnally to interannually. These dust events have been observed across much of the planet from the depths of Hellas basin to the summit of Arsia Mons and range in size from10s of meters across (dust devils) to planet encircling (global dust veils). Though dust devils occur throughout most of the Martian year, each hemisphere has a "dust devil season" that generally follows the subsolar latitude and appears to be repeatable from year-to-year. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer. MOC observations show no evidence that dust devils cause or lead to dust storms, however, observations do suggest that dust storms can initiate dust devil activity. Dust devils also might play a role in maintaining the low background dust opacity of the Martian atmosphere. Dust storms occur almost daily with few exceptions, with 1000s occurring each year in the present Martian environment, dispelling the notion of a "Classical Dust Storm Season". However, there does appear to be an annual dust storm cycle, with storms developing in specific locations during certain seasons and that some individual storm events are repeatable from year-to-year. The majority of storms develop near the receding seasonal polar cap edge or along the corresponding polar hood boundaries in their respective hemispheres, but they also occur in the northern plains, the windward side of the large shield volcanoes, and in low laying regions such as Hellas, Argyre, and Chryse. The rarest of dust events are the "Great Storms" or "Global Events", of which only 6 (4 "planet encircling" and 2 "global") have been observed to date. With MOC we have observed that global dust events are not individual storms but are composed of a number of local and regional storms (sources) and that they do not signify climatic changes, but are only short-term perturbations to the general interannually repeatable Martian dust storm cycle.

  20. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  1. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.

    PubMed

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-04-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study ( B z  ≤ -5 nT or E y  ≥ 3 mV/m for t ≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME- Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.

  2. Effectiveness of a stormwater collection and detention system for reducing constituent loads from bridge runoff in Pinellas County, Florida

    USGS Publications Warehouse

    Stoker, Y.E.

    1996-01-01

    The quantity and quality of stormwater runoff from the Bayside Bridge were evaluated to determine the effectiveness of the stormwater collection and detention pond system of the bridge in reducing constituent loads to Old Tampa Bay. Water-quality samples of stormwater runoff from the bridge and outflow from the detention pond were collected during and after selected storms. These samples were used to compute loads for selected constituents. Stormwater on the Bayside Bridge drained rapidly during rain events. The volume of stormwater runoff from 24 storms measured during the study ranged from 4,086 to 103,705 cubic feet. Storms were most frequent during July through September and were least frequent from February through May. Concentrations of most constituents in stormwater runoff before the bridge opened to traffic were less than or equal to concentrations measured after the bridge was opened to traffic. However, concentrations of arsenic in the outflow from the detention pond generally were greater before the bridge opened than concentrations after, and concentrations of orthophosphorus in the stormwater runoff and outflow from the pond were greater before the bridge opened than during over half the sampled storms after the bridge opened. Concentrations of most constituents measured in stormwater runoff from the bridge were greatest at the beginning of the storm and decreased as the storm continued. Variations in suspended solids, nutrients, and trace element concentrations were not always concurrent with each other. The source of the measured constituent (rainfall or road debris) and the phase of the constituent (suspended or dissolved) probably affected the timing of concentration changes. The quality of stormwater runoff from the Bayside Bridge varied with total runoff volume, with the length of the dry period before the storm, and with season. Average concentrations of suspended solids, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, orthophosphorus, phosphorus, total organic carbon, aluminum, arsenic, copper, and zinc in stormwater runoff generally were inversely related to runoff volume. The quality of outflow from the detention pond also varied during a storm event and with season. Maximum concentrations generally occurred near the beginning of a storm, and decreased as the storm continued. Maximum concentrations of many constituents occurred in June and July 1995. During the summer months, pH exceeded 9.0 while inorganic nitrogen concentrations were very low. These high pH values and low inorganic nitrogen concentrations are most likely associated with photosynthesis by algae or aquatic plants in the pond. Concentrations of nitrogen, phosphorus, and nickel in stormwater runoff were correlated with total organic carbon concentrations. Concentrations of chromium, copper, iron, nickel, lead, and zinc in stormwater runoff were correlated with aluminum concentrations. The source of these metals is probably the bridge materials and metallic debris from vehicles. The northern detention pond system of the Bayside Bridge effectively reduced concentrations of suspended solids, ammonia nitrogen, nitrite plus nitrate nitrogen, phosphorus, aluminum, cadmium, chromium, copper, iron, lead, nickel, and zinc in stormwater runoff before water discharged from the pond. However, concentrations of ammonia plus organic nitrogen, organic carbon, arsenic, and values for alkalinity, pH, and specific conductance generally were greater in outflow from the pond than in stormwater runoff from the bridge. Stormwater runoff and pond outflow for three storm events were evaluated to determine the effectiveness of the detention pond system in removing selected constituents from the stormwater runoff. Most constituents and constituent loads were reduced in the outflow from the pond. Suspended solids loads were reduced about 30 to 45 percent, inorganic nitrogen loads were reduced by about 60 to 90 percent, and loads of most trace elements

  3. Event Water Balance and Recharge at the Panola Mountain Research Watershed, Georgia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Riley, J. W.; Aulenbach, B. T.

    2016-12-01

    Investigating catchment storage and runoff pathways allows a better mechanistic understanding of stream flow generation processes. This information can be used to elucidate processes such as those influencing baseflow that support human consumption and ecological needs. Here we describe storm runoff water budgets from 483 rain events to determine the conditions under which precipitation infiltrates to deeper storage that supports baseflow. Further, we examine the storage and recharge behavior of different storm characteristics and antecedent conditions. We use a simple water budget approach to achieve this in which Deep Recharge = (Precipitation) - (Storm Runoff) - (Event Change in Soil Storage). Hydrograph separation was used to determine the storm periods and split storm runoff into baseflow and quickflow. Quickflow was assumed to account for the event water lost to the stream. Data from volumetric water content sensors were used to calculate the soil profile water storage and the change in water storage over the course of an event. The remaining water after these two components was assumed to represent water available for deeper recharge. The median event quickflow:precipitation ratio was 11.8%. Event soil moisture recharge in the top one meter of soil accounted for a median of 65.3% of precipitation. Quickflow and shallow soil moisture recharge accounted for a median of 77.1% of the precipitation delivered to the watershed. Water budgets indicated that 43% of the events provided water for deeper recharge. Of these events, however, only 28% provided 50 mm or more of deep recharge. Because the focus was on events, when humidity was high and the vapor pressure deficit (VPD) was low, we ignored the role of evapotranspiration. However, interception, which was not accounted for, would have resulted in less storm precipitation than was measured at the watershed rain gage. Furthermore, transpiration may have altered the post-storm water balance when VPD increased and before excess water was able to infiltrate to deeper storage. While uncertainty remains, this study provided insight into the partitioning of incoming precipitation and the conditions under which water was likely available for deeper recharge.

  4. An evaluation of nitrogen and phosphorus responses to rain events in a forested watershed

    NASA Astrophysics Data System (ADS)

    Steadman, C.; Argerich, A.; Bladon, K. D.; Johnson, S. L.

    2017-12-01

    Nitrogen (N) and phosphorus (P) exhibit differential responses to storm events which reflect complex, hydrologically-driven biogeochemical activity in a watershed. However, the magnitude of the responses change throughout the year indicating that they may be strongly influenced by antecedent precipitation conditions. To evaluate N and P responses to storms, we collected storm samples from four subwatersheds in a small forested watershed over a 12-month period as well as climate and hydrologic data. We quantified dissolved nitrate (NO3-), ammonium (NH4+), total dissolved nitrogen (TDN), soluble reactive phosphorus (SRP), and total dissolved phosphorus (TDP) concentrations and exports in 300 samples and examined responses across subwatersheds and storms. To assess the influence of potential drivers, we generated a series of models with discharge, instantaneous rain, and cumulative rain as explanatory variables for analyte concentrations. We also constructed models with cumulative rain as the explanatory variable for analyte exports. There was strong evidence (p < .05) that cumulative rain or the cumulative rain-subwatershed interaction were important for all analyte exports and concentrations. In contrast, evidence was weak for the significance of instantaneous rain for any analyte concentrations while discharge or the discharge-subwatershed interaction was significant for NO3- and NH4+, respectively. Of all factors, cumulative rain was the most relevant to explain analyte concentrations (i.e., showed the highest pseudo-R2), except for NH4+, for which discharge was more relevant. There was significant spatial and temporal variability for all analyte concentrations with the exception of NH4+, which showed little variability storm-to-storm. Maximum NO3- concentration occurred at the onset of the wet season while SRP had the lowest concentration during the same time period. Differential responses of analytes evidence distinct influences of hydrologically-driven biogeochemical activity on individual analytes. However, strong correlations with cumulative rain suggest that insight may be gained through consideration of coarser factors such as antecedent precipitation conditions which may serve to integrate complexities of the hillslope, improving understanding of N and P variability.

  5. ARkStorm@Tahoe: Stakeholder perspectives on vulnerabilities and preparedness for an extreme storm event in the greater Lake Tahoe, Reno, and Carson City region

    USGS Publications Warehouse

    Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen

    2014-01-01

    Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency coordination, credentialing, flood management, and coordination of health and human services during such an event. Mitigation options were identified for each of the key issues. Several science needs were identified, particularly the need for improved flood inundation maps. Finally, key lessons learned were identified and may help to increase preparedness, response and recovery from extreme storms in the future.

  6. Characterization of stormwater at selected South Carolina Department of Transportation maintenance yard and section shed facilities in Ballentine, Conway, and North Charleston, South Carolina, 2010-2012

    USGS Publications Warehouse

    Journey, Celeste A.; Conlon, Kevin J.

    2013-01-01

    The South Carolina Department of Transportation operates section shed and maintenance yard facilities throughout the State. The U.S. Geological Survey conducted a cooperative investigation with the South Carolina Department of Transportation to characterize water-quality constituents that are transported in stormwater from representative maintenance yard and section shed facilities in South Carolina. At a section shed in Ballentine, S.C., stormwater discharges to a retention pond outfall (Ballentine). At the Conway maintenance yard, stormwater in the southernmost section discharges to a pipe outfall (Conway1), and stormwater in the remaining area discharges to a grass-lined ditch (Conway2). At the North Charleston maintenance yard, stormwater discharges from the yard to Turkey Creek through a combination of pipes, ditches, and overland flow; therefore, samples were collected from the main channel of Turkey Creek at the upstream (North Charleston1) and downstream (North Charleston2) limits of the North Charleston maintenance yard facility. The storms sampled during this study had a wide range of rainfall amounts, durations, and intensities at each of the facilities and, therefore, were considered to be reasonably representative of the potential for contaminant transport. At all facilities, stormwater discharge was significantly correlated to rainfall amount and intensity. Event-mean unit-area stormwater discharge increased with increasing impervious surface at the Conway and North Charleston maintenance yards. The Ballentine facility with 79 percent impervious surface had a mean unit-area discharge similar to that of the North Charleston maintenance yard (62 percent impervious surface). That similarity may be attributed, in part, to the effects of the retention pond on the stormwater runoff at the Ballentine facility and to the greater rainfall intensities and amounts at the North Charleston facility. Stormwater samples from the facilities were analyzed for multiple constituents and characteristics. Concentrations of sediment and concentrations of nutrients and fecal indicator bacteria, which are commonly transported with the sediment in stormwater, were measured. Total and dissolved concentrations of six trace metals were determined in the samples. Stormwater samples also were analyzed for organic compounds including 10 herbicides, 18 organochlorine pesticides, 7 Aroclor or polychlorinated biphenyl congeners, 44 volatile organic compounds, and 16 polycyclic aromatic hydrocarbons. Stormwater often transports large quantities of sediment and sediment-bound contaminants, including nutrients and fecal indicator bacteria. Median event-mean concentrations of suspended sediment in stormwater at these facilities ranged from 54 milligrams per liter in Turkey Creek at North Charleston2 to 147 milligrams per liter in stormwater discharging from the Ballentine retention pond outfall. In general, event-mean concentrations of total nitrogen consisted mainly of total Kjeldahl nitrogen (organic nitrogen plus ammonia) rather than nitrate plus nitrite in stormwater, and the median event-mean concentrations of total nitrogen ranged from 1.59 milligrams per liter at the Conway1 pipe outfall to 2.00 milligrams per liter at the Ballentine retention pond outfall. Median event-mean concentrations of total phosphorus in stormwater ranged from 0.15 milligram per liter at the Conway1 outfall to 0.42 milligram per liter in Turkey Creek at North Charleston1. Escherichia coli and enterococcus concentrations often varied by 3 to 4 orders of magnitude in grab samples collected during the “first flush” of stormwater discharging to the sampled outfalls of Turkey Creek. Additionally, enterococcus concentrations consistently were greater than the corresponding Escherichia coli concentrations in stormwater. Specifically, median "first-flush" Escherichia coli concentrations ranged from 30 colonies per 100 milliliters at the Conway1 outfall to 4,359 colonies per 100 milliliters in Turkey Creek at North Charleston2, whereas enterococcus concentrations ranged from 512 colonies per 100 milliliters at the Conway1 outfall to 6,329 colonies per 100 milliliters in Turkey Creek at North Charleston2. In comparison to the proposed South Carolina Department of Health and Environmental Control primary and secondary body contact criterion of 349 colonies per 100 milliliter, stormwater had Escherichia coli concentrations that were greater than the criterion in 4 of the 9 storms at Ballentine retention pond outfall, 1 of the 8 storms at the Conway1 pipe outfall, 5 of the 7 storms at the Conway2 grass-lined ditch outfall, 2 of the 8 storms at North Charleston1 on Turkey Creek, and 8 of the 8 storms at North Charleston2 on Turkey Creek. Of the six trace metals measured in stormwater, only copper and zinc had event-mean concentrations greater than the hardness-dependent South Carolina Department of Health and Environmental Control aquatic life criteria maximum concentrations. Measured dissolved copper event-mean concentrations in stormwater were greater than the criterion in 5 of the samples at the Ballentine facility, 1 of the samples at Conway1, 2 of the samples at Conway2, and 1 of the samples at North Charleston2. Measured dissolved zinc event-mean concentrations in stormwater were greater than the criterion in 3 of the samples at the Ballentine facility, 1 of the samples at Conway1, 2 of the samples at Conway2, and 0 of the samples at North Charleston2. At North Charleston1 upstream from the North Charleston maintenance yard, the measured dissolved trace-metal concentrations were all less than the criterion maximum concentrations. Among the three facilities, Conway1 outfall had the greatest range in event-mean yields in stormwater for total phosphorus, total nitrogen, total suspended solids, and suspended sediment, and both Conway outfalls tended to have median event-mean yields greater than those of the Ballentine and North Charleston yard facilities. "First-flush” yields of Escherichia coli in stormwater were not statistically different among the three facilities. Median event-mean yields of suspended sediment, total nitrogen, total phosphorus, total copper, and total zinc in stormwater demonstrated a strong linear relation to impervious surface at the three facilities. However, median "first-flush" fecal indicator bacterial yields did not have a linear relation to impervious surface.

  7. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.

    PubMed

    Stumpf, Curtis H; Piehler, Michael F; Thompson, Suzanne; Noble, Rachel T

    2010-09-01

    In the New River Estuary (NRE) in eastern North Carolina (NC), fecal indicator bacteria (FIB) levels exceed water quality standards, leading to closure of estuarine waters for shellfishing and classification of parts of the estuary as "impaired" per the Clean Water Act section 303(d) list. As a means to investigate fecal contamination and loading of FIB to the NRE, a continuous automated sampler (ISCO) outfitted with flow modules and water quality probes was placed in four first-order tidal creek headwaters. Total storm discharge and bacterial load for Escherichia coli (EC) and Enterococcus spp. (ENT) were calculated using graphical volumetric flow calculations and interpolation of FIB measurements over each storm's duration for 10 storms. Mean total load of 10(9)-10(12) EC and ENT cells (MPN) occurred over the course of each storm. Total storm loading, averaged across all storms, was as much as 30 and 37 times greater than equivalent duration of baseflow loading for EC and ENT, respectively. Within the first 30% of creek storm volume for all storms and all creeks combined, a mean cumulative load of only 37% and 44% of the total EC and ENT cells, respectively, was discharged, indicating these creeks are not demonstrating a 'first flush' scenario for FIB. The median storm Event Mean Concentrations (EMCs) were 6.37 × 10(2) and 2.03 × 10(2) MPN/100 mL, for EC and ENT, respectively, compared with median baseflow concentrations of 1.48 × 10(2) and 4.84 × 10(1) for EC and ENT, respectively, and were significantly different between base and storm flow events. FIB was correlated with TSS (weak), flow rate (strong), and different stages (base, rising, peak, and falling) of the hydrograph (strong). Pollutographs indicate large intra-storm variability of FIB, and the need for more intensive sampling throughout a storm in order to attain accurate FIB contaminant estimates. Instream sediment concentrations ranged from 5 to 478 (MPN/g) and 13 to 776 (MPN/g) for EC and ENT, respectively, indicating sediment as a source, but a minor reservoir. This overall approach for calculating loading in headwater tidal creeks is detailed. Accurate loading characterization of FIB during storms and dry weather conditions, and understanding intra-storm FIB concentrations, is imperative for understanding patterns of water quality impairment, establishing management planning, and developing appropriate mitigation strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Source, Transport, and Fate of Groundwater Contamination at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Landmeyer, James E.; Lowery, Mark A.

    2009-01-01

    Groundwater contamination by tetrachloroethene and its dechlorination products is present in two partially intermingled plumes in the surficial aquifer near a former dry-cleaning facility at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina. The northern plume originates from the vicinity of former above-ground storage tanks. Free-phase tetrachloroethene from activities in this area entered the groundwater and the storm sewer. The southern plume originates at a nearby new dry-cleaning facility, but probably was the result of contamination released to the aquifer from a leaking sanitary sewer line from the former dry-cleaning facility. Discharge of dissolved groundwater contamination is primarily to leaking storm sewers below the water table. Extensive biodegradation of the contamination takes place in the surficial aquifer; however, the biodegradation is insufficient to reduce trichloroethene to less than milligram-per-liter concentrations prior to discharging into the storm sewers. The groundwater volatile organic compounds entering the storm sewers are substantially diluted by tidal flushing upon entry and are subject to volatilization as they are transported through the storm sewer to a discharge point in a tributary to Ballast Creek. TCE concentrations of about 2-6 micrograms per liter were present in storm-sewer water near the discharge point (sampled at manhole STS26). On three out of four sampling events at manhole STS14, the storm-sewer water contained no vinyl chloride. During a time of relatively high groundwater levels, however, 20 micrograms per liter of vinyl chloride was present in STS14 storm-sewer water. Because groundwater leaks into that storm sewer and because the storm sewer upgradient from manhole STS14 is adjacent to part of the aquifer where 2,290 micrograms per liter of vinyl chloride have been detected, there is a potential for substantially increased concentrations of vinyl chloride to discharge at the storm-sewer outfall under conditions of high groundwater levels and low tidal flushing. In addition, the observation that free-phase tetrachloroethene may have entered the storm-sewer system during the 1994 discharge means that dense nonaqueous phase liquid tetrachloroethene could have leaked from various parts of the storm sewer or discharged to surface water at the storm-sewer outfall.

  9. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Effects of Urban Stormwater Infrastructure and Spatial Scale on Nutrient Export and Runoff from Semi-Arid Urban Catchments

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.

    2011-12-01

    There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.

  11. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  12. From cyclone tracks to the costs of European winter storms: A probabilistic loss assessment model

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Corti, Thierry; Reese, Stefan; Wueest, Marc; Viktor, Elisabeth; Zimmerli, Peter

    2014-05-01

    The quantitative assessment of the potential losses of European winter storms is essential for the economic viability of a global reinsurance company. For this purpose, reinsurance companies generally use probabilistic loss assessment models. This work presents an innovative approach to develop physically meaningful probabilistic events for Swiss Re's new European winter storm loss model. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20th Century Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of properties of historical events (e.g. track, intensity). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account. The low-resolution wind footprints taken from 20th Century Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints of the historical and probabilistic winter storm events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country- and risk-specific vulnerability functions and detailed market- or client-specific exposure information to compute (re-)insurance risk premiums.

  13. Land Cover Influence on Wet Season Storm Runoff Generation and Hydrologic Flowpaths in Central Panama

    NASA Astrophysics Data System (ADS)

    Birch, A. L.; Stallard, R. F.; Barnard, H. R.

    2017-12-01

    While relationships between land use/land cover and hydrology are well studied and understood in temperate parts of the world, little research exists in the humid tropics, where hydrologic research is often decades behind. Specifically, quantitative information on how physical and biological differences across varying land covers influence runoff generation and hydrologic flowpaths in the humid tropics is scarce; frequently leading to poorly informed hydrologic modelling and water policy decision making. This research effort seeks to quantify how tropical land cover change may alter physical hydrologic processes in the economically important Panama Canal Watershed (Republic of Panama) by separating streamflow into its different runoff components using end member mixing analysis. The samples collected for this project come from small headwater catchments of four varying land covers (mature tropical forest, young secondary forest, active pasture, recently clear-cut tropical forest) within the Smithsonian Tropical Research Institute's Agua Salud Project. During the past three years, samples have been collected at the four study catchments from streamflow and from a number of water sources within hillslope transects, and have been analyzed for stable water isotopes, major cations, and major anions. Major ion analysis of these samples has shown distinct geochemical differences for the potential runoff generating end members sampled (soil moisture/ preferential flow, groundwater, overland flow, throughfall, and precipitation). Based on this finding, an effort was made from May-August 2017 to intensively sample streamflow during wet season storm events, yielding a total of 5 events of varying intensity in each land cover/catchment, with sampling intensity ranging from sub-hourly to sub-daily. The focus of this poster presentation will be to present the result of hydrograph separation's done using end member mixing analysis from this May-August 2017 storm dataset. Expected results presented will yield an increase in the quantitative understanding of how land cover may influence physical hydrologic flowpaths and runoff generation in the humid tropics.

  14. Global mortality from storm surges is decreasing

    NASA Astrophysics Data System (ADS)

    Bouwer, Laurens M.; Jonkman, Sebastiaan N.

    2018-01-01

    Changes in society’s vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (>10 000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.

  15. Influence of Locally Derived Recharge on the Water Quality and Temperature of Springs in Hot Springs National Park, Arkansas

    USGS Publications Warehouse

    Bell, Richard W.; Hays, Phillip D.

    2007-01-01

    The hot springs of Hot Springs National Park consist of a mixture of water from two recharge components: a primary hot-water component and a secondary cold-water component. Widespread distribution of fractures enables mixing of the hot- and cold-water components of flow near the discharge area for the springs. Urbanization in the area near the hot springs of Hot Springs National Park has increased the potential for degradation of the quality of surface-water runoff and locally derived ground-water recharge to the hot springs. Previous studies by the U.S. Geological Survey have indicated that water from some cold-water springs and wells in the vicinity of Hot Springs, Arkansas, showed evidence of contamination and that water from locally derived cold-water recharge might contribute 25 percent of the total flow to the hot springs after storms. Water samples were collected during base-flow conditions at nine hot springs and two cold-water springs in September 2000. Nine hot springs and one cold-water spring were resampled in October 2001 after a storm that resulted in a measurable decrease in water temperature in selected hot springs. Water samples were analyzed for a variety of dissolved chemical constituents (nutrients, major ions, trace elements, pesticides, semivolatile compounds, isotopes, and radiochemicals), physical properties, field measurements, and bacteria. Comparison of analyses of samples collected during base-flow conditions from the springs in 2000 and during a storm event in 2001 with the results from earlier studies dating back to the late 1800's indicates that little change in major, minor, and trace constituent chemistry has occurred and that the water continues to be of excellent quality. Water-quality data show distinguishable differences in water chemistry of the springs during base-flow and stormflow conditions, indicating changing input of cold-water recharge relative to hot-water recharge. Silica, total dissolved solids, strontium, barium, and sulfate show statistically significant differences between the median values of base-flow and stormflow samples. While variations in these constituents do not degrade water quality, the differences do provide evidence of variability in the factors controlling water quality of the hot springs and show that water quality is influenced by the locally derived, cold-water component of flow to the springs. Water temperature was measured continuously (3-minute intervals) between August 2000 and October 2002 at four hot springs. Continuous water-temperature data at the springs provide no indication of persistent long-term change in water temperature through time. Short time-scale water-temperature decreases occur in response to mixing of hot-springs water with locally derived recharge after storm events; the magnitude of these decreases varied inversely with the amount of rainfall. Maximum decreases in water temperature for specific storms had a non-linear relation with the amount of precipitation measured for the events. Response time for water temperature to begin decreasing from baseline temperature as a result of storm recharge was highly variable. Some springs began decreasing from baseline temperature as quickly as 1 hour after the beginning of a storm; one spring had an 8-hour minimum response time to show a storm-related temperature decrease. Water-quality, water-temperature, isotopic, and radiochemical data provide multiple lines of evidence supporting the importance of the contribution of cold-water recharge to hot springs. All the springs sampled indicated some measure of influence from local recharge. Binary mixing models using silica and total dissolved solids indicate that cold-water recharge from stormflow contributes an estimated 10 to 31 percent of the flow of hot springs. Models using water temperature indicate that cold-water recharge from stormflow contributes an estimated 1 to 35 percent of the flow of the various hot springs. Alth

  16. A Thermodynamic, kinematic and microphysical analysis of a jet and gigantic jet-producing Florida thunderstorm

    NASA Astrophysics Data System (ADS)

    Lazarus, S. M.; Splitt, M. E.; Brownlee, James; Spiva, Nicholas; Liu, Ningyu

    2015-08-01

    This paper presents a meteorological analysis of a storm that produced two jets, four gigantic jets (GJ), and a starter, which were observed by two radars as well as the Kennedy Space Center 4-Dimensional Lightning Surveillance System on 3 August 2013 in Central Florida. The work is the first application of dual polarization data to a jet-producing storm and is the fifth case related to a tropical disturbance. The storm environment is consistent with the moist tropical paradigm that characterizes about three quarters of the surface and aircraft observed jet and GJ events. The most unstable (MU) convective available potential energy is not unusual for Florida summer convection and is below the climatological mean for these events. An unusual speed shear layer is located near the storm equilibrium level (EL) and the storm exhibits a tilted structure with CGs displaced upshear. The turbulence, as measured by the eddy dissipation rate, is extreme near the storm top during the event window, consistent with the GJ mixing hypothesis. The individual events are collocated with, and track along, the center axis of the divergent outflow at the EL and occur within the region of the coldest GOES IR temperatures—placing the events within the overshoot. The dual polarization data indicate a deep graupel column, extending above the mixed phase layer, to a 13 km altitude.

  17. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts.

    PubMed

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-06-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly. Low frequency sampling may therefore largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is lacking. High frequency monitoring (2min) of seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The maximum pesticide concentrations were 387μgL -1 . Samples from all of the runoff events exceeded the legal limit of 0.1μgL -1 for at least one pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The point and average (time or discharge-weighted) concentrations indicated up to a 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively. This highlights the important role of sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve understanding of pesticide supply and transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Storm water runoff-a source of emerging contaminants in urban streams

    NASA Astrophysics Data System (ADS)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This study demonstrated that urband storm water runoff could be a significant source, in addition to WWTP effluent, contributing to the widespread occurrence of ECs in aquatic environment.

  19. A Temporal Assessment of Barrier Island Vulnerability to Extreme Wave Events, Virginia Coast Reserve

    NASA Astrophysics Data System (ADS)

    Oster, D. J.; Moore, L. J.; Doran, K. J.; Stockdon, H. F.

    2010-12-01

    Barrier island vulnerability to storm-generated waves is directly related to interactions between shoreface morphology and surf-zone dynamics. During storms, the seaward-most dune often limits the landward extent of wave energy; however, if maximum wave run-up exceeds the elevation of the top of the dune, overwash or inundation may occur. The ‘Storm Impact Scale’ presented by Sallenger (2000) classifies barrier beach vulnerability to individual storm events based on the elevation of the frontal dune crest and toe relative to maximum wave run-up. Changes to the dune and beachface can occur over a range of time scales, altering local vulnerability to extreme waves from storms, even as a storm is occurring. As sea level continues to rise, barrier beaches will become increasingly vulnerable to overwash and inundation from a greater number of storms. Our objective is to assess temporal trends in barrier island vulnerability while also exploring island-chain-wide response and recovery from two notably different storm events (Nor’Ida and Hurricane Bonnie) along the undeveloped barrier islands of the Virginia Coast Reserve (VCR). We compare shoreline position and elevations of the frontal dune crest (DHIGH) and dune toe (DLOW) across four lidar data sets collected between 1998-2010. Observed significant wave height and period from the National Data Buoy Center and the Duck, NC Field Research Facility for the time period between 1985 and 2009 are classified to represent one-year, five-year, and ten-year storm events that serve as the basis for comparison of island vulnerability through time to a range of storm severity. Initial results reveal significant spatial and temporal variation in barrier island vulnerability to storms throughout the VCR. Despite the range of variability, all three beach features (i.e., shoreline position, DHIGH and DLOW), have moved landward indicating large-scale, widespread migration, or narrowing, of VCR barrier island landforms over the last 10 years. Potentially evolving long-term trends in island vulnerability appear to be difficult to detect, likely due to the short time window of analysis and the preferential capture of short-term variations as two out of the four lidar data sets were collected immediately following a storm event. Further statistical analysis of changes in frontal dune height (DHIGH) and the distance between the dune toe (DLOW) and shoreline will provide insight into short-term responses to individual storms as well as the potential for future long-term changes in barrier island vulnerability, contributing to a better understanding of barrier island response to rising seas and severe storms.

  20. A simplified real time method to forecast semi-enclosed basins storm surge

    NASA Astrophysics Data System (ADS)

    Pasquali, D.; Di Risio, M.; De Girolamo, P.

    2015-11-01

    Semi-enclosed basins are often prone to storm surge events. Indeed, their meteorological exposition, the presence of large continental shelf and their shape can lead to strong sea level set-up. A real time system aimed at forecasting storm surge may be of great help to protect human activities (i.e. to forecast flooding due to storm surge events), to manage ports and to safeguard coasts safety. This paper aims at illustrating a simple method able to forecast storm surge events in semi-enclosed basins in real time. The method is based on a mixed approach in which the results obtained by means of a simplified physics based model with low computational costs are corrected by means of statistical techniques. The proposed method is applied to a point of interest located in the Northern part of the Adriatic Sea. The comparison of forecasted levels against observed values shows the satisfactory reliability of the forecasts.

  1. Identifying airborne fungi in Seoul, Korea using metagenomics.

    PubMed

    Oh, Seung-Yoon; Fong, Jonathan J; Park, Myung Soo; Chang, Limseok; Lim, Young Woon

    2014-06-01

    Fungal spores are widespread and common in the atmosphere. In this study, we use a metagenomic approach to study the fungal diversity in six total air samples collected from April to May 2012 in Seoul, Korea. This springtime period is important in Korea because of the peak in fungal spore concentration and Asian dust storms, although the year of this study (2012) was unique in that were no major Asian dust events. Clustering sequences for operational taxonomic unit (OTU) identification recovered 1,266 unique OTUs in the combined dataset, with between 223᾿96 OTUs present in individual samples. OTUs from three fungal phyla were identified. For Ascomycota, Davidiella (anamorph: Cladosporium) was the most common genus in all samples, often accounting for more than 50% of all sequences in a sample. Other common Ascomycota genera identified were Alternaria, Didymella, Khuskia, Geosmitha, Penicillium, and Aspergillus. While several Basidiomycota genera were observed, Chytridiomycota OTUs were only present in one sample. Consistency was observed within sampling days, but there was a large shift in species composition from Ascomycota dominant to Basidiomycota dominant in the middle of the sampling period. This marked change may have been caused by meteorological events. A potential set of 40 allergy-inducing genera were identified, accounting for a large proportion of the diversity present (22.5᾿7.2%). Our study identifies high fungal diversity and potentially high levels of fungal allergens in springtime air of Korea, and provides a good baseline for future comparisons with Asian dust storms.

  2. Modeling of storm runoff and pollutant wash off processes during storm event in rapidly urbanizing catchment

    NASA Astrophysics Data System (ADS)

    Qin, H. P.; Yu, X. Y.; Khu, S. T.

    2009-04-01

    Many urban catchments in developing countries are undergoing fast economic growth, population expansion and land use/cover change. Due to the mixture of agricultural/industrial/residential land use or different urbanization level as well as lack of historical monitoring data in the developing area, storm-water runoff pollution modeling is faced with challenges of considerable spatial variations and data insufficiency. Shiyan Reservoir catchment is located in the rapidly urbanizing coastal region of Southeast China. It has six sub-catchments with largely different land use patterns and urbanization levels. A simple semi-distributed model was used to simulate the storm-water runoff pollution process during storm event in the catchment. The model adopted modified IHACRES model and exponential wash-off functions to describe storm-runoff and pollutant wash-off processes, respectively, in each of six sub-catchments. Temporary hydrological and water quality monitoring sites were set at the downstream section of each sub-catchment in Feb-May 2007, spanning non-rain and rain seasons. And the model was calibrated for storm-runoff and water quality data during two typical storm events with rainfall amount of 10mm/4hr and 73mm/5hr, respectively. The results indicated that the Nash-Sutcliffe (NS) coefficients are greater than 0.65 and 0.55 respectively for storm-runoff model calibration and validation. However although NS coefficients can reach 0.7~0.9 for pollutant wash-off model calibration based on measured data in each storm event, the simulation data can not fit well with the measured data in model validation. According to field survey observation, many litters and residuals were found to distribute in disorder in some sub-catchments or their drainage systems and to instantaneously wash off into the surface water when the rainfall amount and intensity are large enough. In order to improve storm-water runoff pollution simulation in the catchment, the variations of pollutant source and wash off processes in different storm intensity should be consider in future monitoring and model development. Keywords: storm runoff; wash off; urbanization; catchment modeling; litter; residual

  3. Dynamics of Phosphorus export from small forested catchments in low mountain ranges in Germany

    NASA Astrophysics Data System (ADS)

    Julich, Stefan; Julich, Dorit; Benning, Raphael; Feger, Karl-Heinz

    2017-04-01

    Phosphorus (P) plays an important role in the nutrition of forest ecosystem. The transport of P in forest soils predominantly occurs along preferential water flow pathways bypassing large parts of the soil matrix. Therefore, rapid flow processes by preferential flow and/or during storm events may lead to significant P losses from forest soils. However only little knowledge about the dynamics, magnitude and driving processes of P exports into surface water exist. In this contribution, we present the results of two studies where two small forested catchments have been monitored for a period around 3 years. Both catchments are situated in low mountain ranges in Saxony (catchment size 21 ha) and Thuringia (catchment size 5 ha) representing medium P contents in the topsoil of 1142 mg kg-1 and 834 mg kg-1 respectively. During the regular sampling (monthly to weekly sampling frequency), the mean Total-P concentrations of 23 μg L-1(Thuringian Site) and 8 μg L-1(Saxonian Site) have been measured. However, during single storm events Total-P concentrations increased considerably with maximum concentrations of 134 μg L-1(Thuringian Site) and 203 μg L-1(Saxonian Site). Our findings indicate that during storm events, especially after longer dry periods, significant amounts of phosphorus can be exported from forest ecosystems. Comparison of discharge-concentration patterns of Total-P, Nitrogen and DOC, as well as dye tracer experiments, suggest that preferential flow along biopores and stone surfaces, and the interface between mineral soil and litter layer are main pathways of export from forests. For the site in Saxony we calculated mean annual export rates of 32.8 to 33.5 g ha-1 a-1 based on the weekly sampling with different load calculation methods (flow weighted methods up to linear regression models). If the events are included into the annual load calculation the mean annual export fluxes increase from 47.8 to 58.6 g ha-1 a-1 based on the different load calculation methods. This implies that the estimation of P-exports from forested catchments need to be based on appropriate monitoring schemes and load estimation methods.

  4. Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.

    1980-01-01

    Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed.

  5. Mercury and methylmercury related to historical mercury mining in three tributaries to Lake Berryessa, Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Horner, T.; Cornwell, K.; Izzo, V.; Alpers, C. N.

    2014-12-01

    This study examined the relative contribution of total mercury (THg) and mono-methylmercury (MMHg) from upstream historical mercury-mining districts to Lake Berryessa, a reservoir with impaired water quality because of mercury. The third and fourth largest historical mercury-producing mining districts in California are within Lake Berryessa's three largest tributary watersheds: Pope, (Upper) Putah, and Knoxville-Eticuera Creeks. Downstream of the reservoir, Putah Creek drains into the Yolo Bypass, a major source of THg and MMHg to the Sacramento-San Joaquin Delta. Water samples were collected from October 2012 to May 2014 during 37 non-storm and 8 storm events along Pope, (Upper) Putah, and Knoxville-Eticuera Creeks and analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and turbidity). Additionally, water samples collected during five of the non-storm and storm events were analyzed for unfiltered THg and MMHg and total suspended solids (TSS). Discharge was measured during sampling to calculate instantaneous loads. More than 120 streambed sediment samples were collected to determine the spatial variation of THg and organic carbon content (loss on ignition). Across the watersheds, unfiltered THg (in water) samples ranged from 2.3 to 125 ng/L and unfiltered MMHg (in water) samples from 0.12 to 1.0 ng/L. Concentrations of THg ranged from less than 0.0001 to 122 mg/kg in streambed sediment. Tributary reaches with elevated mercury concentrations ("hot spots") are near or downstream of historical mercury mines and have: (1) strong positive correlations between THg (in water) or MMHg (in water) and TSS (R2> 0.88, n=5); (2) higher instantaneous loads of suspended sediment, THg and MMHg than reaches with low THg and MMHg concentrations; and (3) elevated sediment organic carbon content. Tributary reaches with weaker correlations among THg, MMHg, and TSS in unfiltered water may reflect non-mining sources of dissolved THg and MMHg, such as geothermal springs and groundwater influx from shallow aquifers. The importance of suspended particulate matter relative to THg and MMHg transport in the most contaminated stream reaches indicates that erosion control is likely to be a critical factor in successful remediation efforts in the Upper Putah Creek watershed.

  6. Physical and Chemical Properties of Seasonal Snow and the Impacts on Albedo in New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Amante, J.; Dibb, J. E.

    2014-12-01

    Snow albedo is critical to surface energy budgets and thus to the timing of mid-winter and vernal melt events in seasonal snow packs. Timing of these melt events is important in predicting flooding, understanding plant and animal phenology, and the availability of winter recreational activity. The state of New Hampshire experiences large spatial and temporal variability in snow albedo as a result of differences in meteorological conditions, physical snow structure, and chemical impurities in the snow, particularly highly absorptive black carbon (BC) and dust particles. This work focuses on the winters of 2012-2013 and 2013-2014, comparing three intensive study sites. Data collected at these sites include sub-hourly meteorological data, near daily measurements of snow depth, snow density, surface IR temperature, specific surface area (SSA) from contact spectroscopy, and spectrally resolved snow albedo using an ASD FieldSpec4 throughout the winter season. Additionally, snow samples were analyzed for black carbon content and other chemical impurities including Cl-, NO3-, NH4 , K , Na , Mg2+ , Ca2+ and SO42-. For each storm event at the three intensive sites, moisture sources and paths were determined using HYPLIT back trajectory modeling to determine potential sources of black carbon and other impurities in the snow. Storms with terrestrial-based paths across the US Midwest and Canada resulted in higher BC content than storms with ocean-based paths and sources. In addition to the variable storm path between sites and between years, the second year of study was on average 2.5°C colder than the first year, impacting duration of snow cover at each site and the SSA of surface snow which is sensitive to frequency of snow events and relies on cold temperatures to reduce grain metamorphism. Combining an understanding of storm frequency and path with physical and chemical attributes of the snow allows us to investigate snow albedo sensitivities with implications for understanding the impacts of future climate change on snow albedo in the Northeastern US.

  7. Winter Storm Jupiter of January 2017: Meteorological Drivers, Synoptic Evolution, and Climate Change Considerations in Portland, Oregon

    NASA Astrophysics Data System (ADS)

    Dean, S.; Loikith, P. C.

    2017-12-01

    Although the Pacific Northwest has some of the highest wintertime precipitation in the United States, most urban areas receive little in the way of snow. While 37 inches of wintertime rain fall in Portland on average annually, the city only receives four inches of snow on average. Although wintertime extreme snowstorm events are rare in Portland, in the last century they have occurred about once every ten years. On January 10-12th, 2017, winter storm Jupiter brought 11 inches of snow to downtown Portland within a 12-hour period, making it the largest snowstorm for the city in twenty years. The city declared a state of emergency, over 30,000 citizens lost power, and thousands of businesses were forced to shut down. The anomalously cold air and high amounts of snowfall in a short amount of time made the storm different from others in recent years. This study aims to discover the meteorological drivers behind the January 2017 snowstorm in Portland, Oregon. We also aim to understand how this storm compared with other local storms in the past, and assess the likelihood of a similar event occurring in the future. To do this, reanalysis data were used to display the synoptic evolution of the January 2017 storm. We compared this storm with two other extreme snowfall events from December 2008 and January 1980, assessing meteorological similarities and differences between storms. Results show that the 2017 event was associated with a slow moving, strong low-pressure system accompanied by a 500 hPa trough. These large-scale features helped drive slow moving, locally heavy snow bands over the city of Portland. At the same time, an unusually strong Arctic high-pressure system moved into the interior Pacific Northwest allowing for strong cold air advection west through the Cascade Mountain Range and Columbia River Gorge. Temperature trends show warming of 1-2 °C in the Pacific Northwest since the middle of the last century. Because of this, uncertainty associated with occurrence and magnitude of extreme snowfall events with respect to climate change must also be assessed. Understanding essential questions about the synoptic evolution of extreme snowfall events will better equip meteorologists and city planners to understand how this event occurred, and what to look for to better prepare Pacific Northwest cities for future storms.

  8. The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, Sheila F.; Writer, Jeffrey H.; Blaine McCleskey, R.; Martin, Deborah A.

    2015-08-01

    Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h-1. These storms, which typically occur several times each year in July-September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10-156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.

  9. The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire

    USGS Publications Warehouse

    Murphy, Sheila F.; Writer, Jeffrey H.; McCleskey, R. Blaine; Martin, Deborah A.

    2015-01-01

    Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h−1. These storms, which typically occur several times each year in July–September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10–156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.

  10. The effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt

    DOE PAGES

    Tang, C. L.; Wang, Y. X.; Ni, B.; ...

    2017-08-11

    Using the electron phase space density (PSD) data measured by Van Allen Probe A from January 2013 to April 2015, we investigate the effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt during 50 geomagnetic storms. A statistical study shows that the maximum electron PSDs for various μ (μ = 630, 1096, 2290, and 3311 MeV/G) at L*~4.0 after the storm peak have good correlations with storm intensity (cc~0.70). This suggests that the occurrence and magnitude of geomagnetic storms are necessary for relativistic electron enhancements at the inner edge of the outer radiation belt (L*more » = 4.0). For moderate or weak storm events (SYM–H min > ~–100 nT) with weak substorm activity (AE max < 800 nT) and strong storm events (SYM–H min ≤ ~–100 nT) with intense substorms (AE max ≥ 800 nT) during the recovery phase, the maximum electron PSDs for various μ at different L* values (L* = 4.0, 4.5, and 5.0) are well correlated with storm intensity (cc > 0.77). For storm events with intense substorms after the storm peak, relativistic electron enhancements at L* = 4.5 and 5.0 are observed. This shows that intense substorms during the storm recovery phase are crucial to relativistic electron enhancements in the heart of the outer radiation belt. In conclusion, our statistics study suggests that magnetospheric processes during geomagnetic storms have a significant effect on relativistic electron dynamics.« less

  11. The effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, C. L.; Wang, Y. X.; Ni, B.

    Using the electron phase space density (PSD) data measured by Van Allen Probe A from January 2013 to April 2015, we investigate the effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt during 50 geomagnetic storms. A statistical study shows that the maximum electron PSDs for various μ (μ = 630, 1096, 2290, and 3311 MeV/G) at L*~4.0 after the storm peak have good correlations with storm intensity (cc~0.70). This suggests that the occurrence and magnitude of geomagnetic storms are necessary for relativistic electron enhancements at the inner edge of the outer radiation belt (L*more » = 4.0). For moderate or weak storm events (SYM–H min > ~–100 nT) with weak substorm activity (AE max < 800 nT) and strong storm events (SYM–H min ≤ ~–100 nT) with intense substorms (AE max ≥ 800 nT) during the recovery phase, the maximum electron PSDs for various μ at different L* values (L* = 4.0, 4.5, and 5.0) are well correlated with storm intensity (cc > 0.77). For storm events with intense substorms after the storm peak, relativistic electron enhancements at L* = 4.5 and 5.0 are observed. This shows that intense substorms during the storm recovery phase are crucial to relativistic electron enhancements in the heart of the outer radiation belt. In conclusion, our statistics study suggests that magnetospheric processes during geomagnetic storms have a significant effect on relativistic electron dynamics.« less

  12. Bivariate frequency analysis of rainfall intensity and duration for urban stormwater infrastructure design

    NASA Astrophysics Data System (ADS)

    Jun, Changhyun; Qin, Xiaosheng; Gan, Thian Yew; Tung, Yeou-Koung; De Michele, Carlo

    2017-10-01

    This study presents a storm-event based bivariate frequency analysis approach to determine design rainfalls in which, the number, intensity and duration of actual rainstorm events were considered. To derive more realistic design storms, the occurrence probability of an individual rainstorm event was determined from the joint distribution of storm intensity and duration through a copula model. Hourly rainfall data were used at three climate stations respectively located in Singapore, South Korea and Canada. It was found that the proposed approach could give a more realistic description of rainfall characteristics of rainstorm events and design rainfalls. As results, the design rainfall quantities from actual rainstorm events at the three studied sites are consistently lower than those obtained from the conventional rainfall depth-duration-frequency (DDF) method, especially for short-duration storms (such as 1-h). It results from occurrence probabilities of each rainstorm event and a different angle for rainfall frequency analysis, and could offer an alternative way of describing extreme rainfall properties and potentially help improve the hydrologic design of stormwater management facilities in urban areas.

  13. Storm-damaged saline-contaminated boreholes as a means of aquifer contamination

    USGS Publications Warehouse

    Carlson, D.A.; Van Biersel, T. P.; Milner, L.R.

    2008-01-01

    Saline water from a storm surge can flow down storm-damaged submerged water supply wells and contaminate boreholes and surrounding aquifers. Using data from conventional purging techniques, aquifer test response analysis, chemical analysis, and regression analysis of chloride/silica (Cl/Si) ratio, equations were derived to estimate the volume of saline water intrusion into a well and a porous media aquifer, the volume of water needed to purge a well shortly following an intrusion event, and the volume of water needed after delay of several or more months, when the saline plume has expanded. Purging time required is a function of volume of water and pumping rate. The study site well is located within a shoreline community of Lake Pontchartrain, St. Tammany Parish, in southeastern Louisiana, United States, which was impacted by two hurricane storm surges and had neither been rehabilitated nor chlorinated prior to our study. Chemical analysis of water samples in fall 2005 and purging of well and aquifer in June 6, 2006, indicated saline water had intruded the well in 2005 and the well and aquifer in 2006. The volume of water needed to purge the study well was approximately 200 casing volumes, which is significantly greater than conventionally used during collection of water samples for water quality analyses. ?? 2007 National Ground Water Association.

  14. Multi-year microbial source tracking study characterizing fecal contamination in an urban watershed

    USGS Publications Warehouse

    Bushon, Rebecca N.; Brady, Amie M. G.; Christensen, Eric D.; Stelzer, Erin A.

    2017-01-01

    Microbiological and hydrological data were used to rank tributary stream contributions of bacteria to the Little Blue River in Independence, Missouri. Concentrations, loadings and yields of E. coli and microbial source tracking (MST) markers, were characterized during base flow and storm events in five subbasins within Independence, as well as sources entering and leaving the city through the river. The E. coli water quality threshold was exceeded in 29% of base-flow and 89% of storm-event samples. The total contribution of E. coli and MST markers from tributaries within Independence to the Little Blue River, regardless of streamflow, did not significantly increase the median concentrations leaving the city. Daily loads and yields of E. coli and MST markers were used to rank the subbasins according to their contribution of each constituent to the river. The ranking methodology used in this study may prove useful in prioritizing remediation in the different subbasins.

  15. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    USGS Publications Warehouse

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  16. Impact of storms on coastlines: preparing for the future without forgetting the past? Examples from European coastlines using a Storm Impact Database

    NASA Astrophysics Data System (ADS)

    Ciavola, Paolo; Garnier, Emmanuel; Ferreira, Oscar; Spencer, Thomas; Armaroli, Clara

    2017-04-01

    Severe storms have historically affected many European coastlines but the impact of each storm has been evaluated in different ways in different countries, often using local socio-economic impact criteria (e.g. loss of lives and damage to properties). Although the Xynthia (2010) storm, Atlantic coast of France, was the largest coastal disaster of the last 50 years, similar events have previously impacted Europe. The 1953 storm surge in the southern North Sea, resulted in over 2000 deaths and extensive flooding and was the catalyst for post WWII improvements in flood defences and storm early warning systems. On a longer timescale, the very extreme storm of 1634 AD re-configured Wadden Sea coastlines, accompanied by thousands of deaths. Establishing patterns of coastal risk and vulnerability is greatly helped by the use of historical sources, as these allow the development of more complete time series of storm events and their impacts. The work to be presented was supported by the EU RISC-KIT (Resilience-Increasing Strategies for Coasts - toolKIT) Project. RISC-KIT (http://www.risckit.eu/np4/home.html) is a EU FP7 Collaborative project that has developed methods, tools and management approaches to reduce risk and increase resilience to low frequency, high-impact hydro-meteorological events in the coastal zone. These products will enhance forecasting, prediction and early warning capabilities, improve the assessment of long-term coastal risk and optimize the mix of prevention, mitigation and preparedness measures. We analyse historical large-scale events occurred from The Middle Ages to the 1960s at the case study sites of North Norfolk Coast (UK), the Charente-Maritime and Vendée coast (France), the Cinque Terre-Liguria (Italy), the Emilia-Romagna coast (Italy), and the Ria Formosa coast (Portugal). The work presented here uses a database of events built by the project, examining records for the last 300 years, including the characteristics of the storms as well as recorded losses. Finally, lessons learned will be presented, understanding the interaction between DRR elements such as prevention, resilience, mitigation and preparedness. The project's database is publicly available (http://risckit.cloudapp.net/risckit/#/)

  17. Identification of nitrosamine precursors from urban drainage during storm events: A case study in southern China.

    PubMed

    Bei, Er; Liao, Xiaobin; Meng, Xiangting; Li, Shixiang; Wang, Jun; Sheng, Deyang; Chao, Meng; Chen, Zhuohua; Zhang, Xiaojian; Chen, Chao

    2016-10-01

    The drinking water sources of many cities in southern China are frequently contaminated by upstream urban drainage during storm events, which brings high concentrations of N-nitrosamine (NA) precursors and poses a threat to the safety of drinking water. We conducted two sampling campaigns during the heavy rain season in 2015 in one representative city in southern China. We detected that the concentration of N-nitrosodimethylamine formation potential (NDMA FP) in urban drainage during two storm events was 80-115 ng/L and the total formation potential concentration of nine nitrosamines (TNA9 FP) was 145-165 ng/L. To address the deteriorated water quality, 30 mg/L of powdered activated carbon (PAC) was fed into the water intake. PAC adsorption alone could remove 52% of NDMA FP and 52% of TNA FP, while the subsequent conventional process only removed 8% of TNA FP. We isolated six chemicals (N,N-benzyldimethylamine, 5-[(dimethylamino)methyl]-2-furanmethanol, N,N-dimethyl-3-aminophenol, N,N-dimethylethylamine, Ziram, and N,N-dimethylaniline) and confirmed them to be NA precursors. Among these NA precursors, Ziram was identified for the first time as a NA precursor that is formed via chloramination; its molar yield for NDMA was 6.73 ± 0.40%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Storminess trends in the Gulf and Mexican Caribbean

    NASA Astrophysics Data System (ADS)

    Mendoza, E. T.; Ojeda, E.; Appendini, C. M.

    2016-12-01

    Numerous studies have focused on whether the attributes of tropical cyclones have varied, or how they are expected to vary in a warming climate and yet, a defined conclusion has not been reached. However, an increase in storm intensity, with the inherent increase of wave height and storm surge, will be responsible of heavy economic loss on coastal areas. This contribution analyzes possible variations in the long term storminess pattern observed in 10 nearshore locations along the southern coasts of the Gulf of Mexico and the Mexican Caribbean using modeled wave data from the last 30 years (Appendini et al., 2013). Storminess is studied in terms of wave energy content focusing on extreme event conditions. Wave storm events are obtained using the Peak Over Threshold method. The wave conditions during the events are separated into those caused by tropical cyclones (TC) and extratropical storm (ETS) events because they are expected to behave differently in response to changing climate conditions. In order to characterize the waves generated by these different phenomena the data set is inspected separating individual storm events into TC and ETS using the IBtracks information. The trend and Mann-Kendall test are performed for each node to account for possible trends in the frequency, mean and maximum significant wave heights, and the mean energy content (taken as E=integral(Hs*dt) of TC and ETS. For the TC and ETS events, the results of the MK test show an absence of significant temporal trends for the majority of the nodes even at the 90% confidence interval. The significant trends in the number of ETS events show differential results (negative trend in the northernmost node and positive trends in the two Caribbean nodes and the easternmost GoM node). Regarding the TC events, the two nodes located in the Caribbean Sea present significant temporal (positive) trends in the energy content of the events. However, this trend is related to an increase in the magnitude of storms and in the probability of their occurrence.

  19. Sedimentological and geochemical support for a large flood ca. 4400 cy BP in the coastal southwest United States (Lake Elsinore, CA): Evidence for a Drought Buster Atmospheric River Storm?

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.; Patterson, W. P.

    2015-12-01

    As serious a threat drought is to the coastal southwest United States (US), floods represent an equally formidable threat. So significant is this risk that the USGS has created the ARkStorm Project. This project aims to prepare California for a future storm(s) on the scale of the disastrous 1861-1862 A.D. events. Unfortunately, our knowledge of pre-measurement floods in the coastal southwest US is not well known, excepting seven identified flood layers in the Santa Barbara Basin, which span the past 2000 years. As an alternative to marine archives, the lakes of the coastal southwest US represent untapped resources for pre-measurement flood reconstructions. Here, we present evidence for a flood ca. 4400 cal yrs BP using sediments from Lake Elsinore. Core LEGC03-4 was collected in 4.0 m water depth using a push core with a hollow stemmed augur; the core is 994 cm in length. The core is predominantly clayey silt with occasional sandy silt units of variable cm-scale thickness. Here we focus on a specific core section between 315 and 350 cm where a ~11 cm thick "unusual" sediment unit (319-330 cm) is well preserved and complete. The core section was digitally photographed, described, and sampled at 1 cm contiguous intervals for a variety of physical and chemical properties including: magnetic susceptibility, loss-on-Ignition (LOI) 550 and 950 °C, grain size, CN ratios, and d13Cbulk organics. The data suggest rapid deposition of sediment with classic "Bouma" sequence preservation. The unit is characterized by an erosional basal contact and flame structures. It is normally graded with laminae occurring in the upper section of the unit. It contains predominantly terrestrial organic matter and the upper boundary is gradational. The cause of this event unit is speculative but potentially associated with San Jacinto River flooding in response to a large atmospheric river storm. Curiously, the 1861-1862 A.D. events are not observed in the sediment core suggesting that this 4400 yr event was different (larger magnitude?) than anything observed in historic times. This event's timing is compared to regional paleoclimatic reconstructions and examined in the context of potential forcings.

  20. Characteristics of the overflow pollution of storm drains with inappropriate sewage entry.

    PubMed

    Yin, Hailong; Lu, Yi; Xu, Zuxin; Li, Huaizheng; Schwegler, Benedict R

    2017-02-01

    To probe the overflow pollution of separate storm drains with inappropriate sewage entries, in terms of the relationship between sewage entries and the corresponding dry-weather and wet-weather overflow, the monitoring activities were conducted in a storm drainage system in the Shanghai downtown area (374 ha). In this study site, samples from inappropriately entered dry-weather sewage and the overflow due to storm pumps operation on dry-weather and wet-weather days were collected and then monitored for six water quality constituents. It was found that overflow concentrations of dry-weather period could be higher than those of wet-weather period; under wet-weather period, the overflow concentrations of storm drains were close to or even higher than that of combined sewers. Relatively strong first flush mostly occurred under heavy rain that satisfied critical rainfall amount, maximum rainfall intensity, and maximum pumping discharge, while almost no first flush effect or only weak first flush effect was found for the other rainfall events. Such phenomenon was attributed to lower in-line pipe storage as compared to that of the combined sewers, and serious sediment accumulation within the storm pipes due to sewage entry. For this kind of system, treating a continuous overflow rate is a better strategy than treating the maximum amount of early part of the overflow. Correcting the key inappropriate sewage entries into storm drains should also be focused.

  1. Sediment suspension and the dynamic mechanism during storms in the Yellow River Delta.

    PubMed

    Bian, Shuhua; Hu, Zjian; Liu, Jianqiang; Zhu, Zichen

    2016-12-01

    The suspension and hydrodynamic characteristics of the Yellow River Delta during storms were analyzed based on suspended samples obtained using automatic samplers during a storm event in the Yellow River Delta. Synchronous data for winds, waves, and tides were also collected from a nearby station. The results show that under wind speeds of 5-15 m/s and wave heights of 50-150 cm, the suspended content reached 5.7-49.6 kg/m 3 , which is 10-100 times higher than that under normal weather conditions. The medium diameter of suspended particles was 1.2-2.1 μm (8.9-9.7 Φ), which was approximately 1-2 Φ finer than that under normal weather conditions. During the early stages of the measurements, the sea level had risen by 50 cm owing to the storm, which was in addition to the tidal sea level change. We suggest that during the storms, the waves strengthened and the storm-induced sea level change, which was combined with tidal currents moving in the same direction, produced high-speed currents. This overcame the cohesive forces among the fine sediment particles and suspended a large amount of sediment. As a result, the suspended content increased markedly and the suspended particle size became finer. This explains the intense siltation and erosion of the Yellow River Delta during storms.

  2. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the issuing authority, these reports include wind speed and atmospheric pressure for a number of stations. However, there is also important ancillary information that includes satellite images, weather radar pictures, sea state recordings, tide gauge records, and coastal surveys. When collated together, the literature survey gives good view of events related to the autumn storm. The key information from media reports is backed up by quantitative numbers from the scientific literature. For energy meteorology in the offshore environment, there is an outline of extreme wave events that may be important to help define the ultimate limit state of engineering structures and the return periods of extreme waves. While this contribution focusses on events from an old storm in the autumn of 2006, more severe regional storms have occurred since then, and the scientific literature indicates that these may be linked with climate warming. Literature surveys may help to fully define extreme meteorological conditions offshore and benefit different branches of the energy industry in Europe.

  3. Disaster Distress Helpline: Wildfires

    MedlinePlus

    ... Tips Anniversaries and Trigger Events Types of Disasters Tornadoes and Severe Storms Hurricanes and Tropical Storms Floods ... While not reported as often as floods or tornadoes and severe storms , they, too, can cause emotional ...

  4. Effects of field storage method on E. coli concentrations measured in storm water runoff.

    PubMed

    Harmel, Daren; Wagner, Kevin; Martin, Emily; Smith, Doug; Wanjugi, Pauline; Gentry, Terry; Gregory, Lucas; Hendon, Tina

    2016-03-01

    Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers is challenging conventional protocols for sample holding times and storage conditions in the field. A common holding time limit for E. coli is 8 h with a 10 °C storage temperature, but several research studies support longer hold time thresholds. The use of autosamplers to collect E. coli water samples has received little field research attention; thus, this study was implemented to compare refrigerated and unrefrigerated autosamplers and evaluate potential E. coli concentration differences due to field storage temperature (storms with holding times ≤24 h) and due to field storage time and temperature (storms >24 h). Data from 85 runoff events on four diverse watersheds showed that field storage times and temperatures had minor effects on mean and median E. coli concentrations. Graphs and error values did, however, indicate a weak tendency for higher concentrations in the refrigerated samplers, but it is unknown to what extent differing die-off and/or regrowth rates, heterogeneity in concentrations within samples, and laboratory analysis uncertainty contributed to the results. The minimal differences in measured E. coli concentrations cast doubt on the need for utilizing the rigid conventional protocols for field holding time and storage temperature. This is not to say that proper quality assurance and quality control is not important but to emphasize the need to consider the balance between data quality and practical constraints related to logistics, funding, travel time, and autosampler use in storm water studies.

  5. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK

    PubMed Central

    Haigh, Ivan D.; Wadey, Matthew P.; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J.; Brown, Jennifer M.; Horsburgh, Kevin; Gouldby, Ben

    2016-01-01

    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915–2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (<4 days) typically impact different stretches of coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4–8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective. PMID:27922630

  6. Weathering a Perfect Storm from Space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  7. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esser, Bradley K.; Bibby, Richard K.; Fish, Craig

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevatedmore » Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al and of Fe with Al in storm water and air particulates and the strong association of Mg, Fe, and Al with Eu in air particulates strongly suggests that a dominant source of the Mg in storm water is associated with mineral phases of natural origin. These observations all point to Mg exceedances being associated with natural sources and processes and not with anthropogenic processes or pollutant sources.« less

  8. From Cyclone Tracks to the Costs of European Winter Storms: A Probabilistic Loss Assessment Model

    NASA Astrophysics Data System (ADS)

    Orwig, K.; Renggli, D.; Corti, T.; Reese, S.; Wueest, M.; Viktor, E.; Zimmerli, P.

    2014-12-01

    European winter storms cause billions of dollars of insured losses every year. Therefore, it is essential to understand potential impacts of future events, and the role reinsurance can play to mitigate the losses. The authors will present an overview on natural catastrophe risk assessment modeling in the reinsurance industry, and the development of a new innovative approach for modeling the risk associated with European winter storms.The new innovative approach includes the development of physically meaningful probabilistic (i.e. simulated) events for European winter storm loss assessment. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20thCentury Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of historical event properties (e.g. track, intensity, etc.). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account.The low-resolution wind footprints taken from the 20thCentury Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints for both the simulated and historical events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country and site-specific vulnerability functions and detailed market- or client-specific information to compute annual expected losses.

  9. Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic.

    PubMed

    Chow, M F; Yusop, Z; Shirazi, S M

    2013-10-01

    Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.

  10. High frequency monitoring of pesticides in runoff water from a vineyard: ecotoxicological and hysteresis pattern analysis

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-04-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly; therefore, low frequency sampling may largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is actually lacking. High frequency monitoring (2 min) of dissolved concentrations and loads for seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The pesticide concentrations reached 387 µg/L. All of the runoff events exceeded the mandated acceptable concentrations of 0.1 µg/L for each pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The instantaneous and average (time or discharge-weighted) concentrations indicated an up to 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively, highlighting the important role of the sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve the understanding of pesticide supply and transport.

  11. Seasonal variability in hydrologic-system response to intense rain events, Matanuska Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Denner, J.C.; Lawson, D.E.; Larson, G.J.; Evenson, E.B.; Alley, R.B.; Strasser, J.C.; Kopczynski, S.

    1999-01-01

    Two rain events at Matanuska Glacier illustrate how subglacial drainage system development and snowpack conditions affect hydrologic response at the terminus. On 21 and 22 September 1995, over 56 mm of rain fell in the basin during a period usually characterized by much drier conditions. This event caused an 8-fold increase in discharge and a 47-fold increase in suspended-sediment concentration. Peak suspended-sediment concentration exceeded 20 kg m-3, suggesting rapid evacuation of stored sediment. While water discharge returned to its pre-storm level nine days after the rain ceased, suspended-sediment concentrations took about 20 days to return to pre-storm levels. These observations suggest that the storm influx late in the melt season probably forced subglacial water into a more distributed system. In addition, subglacially transported sediments were supplemented to an unknown degree by the influx of storm-eroded sediments off hillslopes and from tributary drainage basins. A storm on 6 and 7 June 1997, dropped 28 mm of rain on the basin demonstrating the effects of meltwater retention in the snowpack and englacial and subglacial storage early in the melt season. Streamflow before the storm event was increasing gradually owing to warming temperatures; however, discharge during the storm and the following week increased only slightly. Suspended-sediment concentrations increased only a small amount, suggesting the drainage system was not yet well developed, and much of the runoff occurred across the relatively clean surface of the glacier or through englacial channels.

  12. Dynamics of dissolved organic matter during four storm events in two forest streams: source, export, and implications for harmful disinfection byproduct formation.

    PubMed

    Yang, Liyang; Hur, Jin; Lee, Sonmin; Chang, Soon-Woong; Shin, Hyun-Sang

    2015-06-01

    Dynamics of river dissolved organic matter (DOM) during storm events have profound influences on the downstream aquatic ecosystem and drinking water safety. This study investigated temporal variations in DOM during four storm events in two forest headwater streams (the EH and JH brooks, South Korea) and the impacts on the disinfection byproducts (DBPs) formation potential. The within-event variations of most DOM quantity parameters were similar to the flow rate in the EH but not in the larger JH brook. The dissolved organic carbon (DOC) showed clockwise and counterclockwise hysteresis with the flow rate in the EH and JH brooks, respectively, indicating the importance of both flow path and DOM source pool size in determining the effects of storm events. The stream DOM became less aromatic/humified from the first to the last event in both brooks, probably due to the increasing fresh plant pool and the decreasing leaf litter pool during the course of rainy season. The DOC export during each event increased 1.3-2.7- and 1.1-7.0-fold by stormflows in the EH and JH brooks, respectively. The leaf litter and soil together was the major DOM source, particularly during early events. The enhanced DOM export probably increases the risks of DBPs formation in disinfection, as indicated by a strong correlation observed between DOC and trihalomethanes formation potential (THMFP). High correlations between two humic-like fluorescent components and THMFP further suggested the potential of assessing THMFP with in situ fluorescence sensors during storms.

  13. Deciphering storm-event runoff behavior in a coastal plain watershed using chemical and physical hydrograph separation techniques

    Treesearch

    Timothy Callahan; Austin E. Morrison

    2016-01-01

    Interpreting storm-event runoff in coastal plain watersheds is challenging because of the space- and time-variable nature of different sources that contribute to stream flow. These flow vectors and the magnitude of water flux is dependent on the pre-storm soil moisture (as estimated from depth to water table) in the lower coastal plain (LCP) region.

  14. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  15. Microphysics, Meteorology, Microwave and Modeling of Mediterranean Storms: The M(sup 5) Problem

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven; Mugnai, Alberto; Panegrossi, Giulia; Tripoli, Gregory; Starr, David (Technical Monitor)

    2001-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms requires a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, particularly from synoptic scale down to mesoscale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. Insofar as hazardous Mediterranean storms, highlighted by the September 25-28/1992 Genova flood event, the October 5-7/1998 Friuli flood event, and the October 13-15/2000 Piemonte flood event (all taking place in northern Italy), developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within the storm domains. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting proc esses. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size distributions, and fall rates of the various modes of hydrometeors found within the storm environments. This paper presents detailed 4-dimensional analyses of the microphysical elements of the three severe Mediterranean storms identified above, investigated with the aid of SSM/I and TRMM satellite measurements (and other remote sensing measurements). The analyses are guided by nonhydrostatic mesoscale model simulations at high resolution of the intense rain producing portions of the storm environments. The results emphasize how meteorological controls taking place at the large scale, coupled with localized terrain controls, ultimately determine the most salient features of the bulk microphysical properties of the storms. These results have bearing on precipitation remote sensing from space, and the role of modeling in designing precipitation retrieval algorithms.

  16. Flooding Mitigation of seawalls and river embankments to storm surges in the coastal areas of Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Wang, Xina

    2017-04-01

    The coastal areas of Guangdong Province, China are susceptible to the destructions of tropical cyclones and storm surges. The projected global warming, coastal subsidence and sea level rise together will bring about greater flooding risk to these areas. The seawall and river embankment have played a significant role in mitigating and preventing the coastal low-land areas from the impairment of storm surges flooding and wave runup. However, few risk assessment studies in this region consider the existence of seawall and river embankment and often overestimate the risk and potential economic loss and population affected due to storm surge flooding. This study utilizes a hydraulic model to simulate the overtop flooding and compare those without seawall and river embankment using several specific tropic storm events and extreme events of tropic storm surges in different return periods of 2, 10, 20, 50, 100, 200 and 500 years. Most seawalls are 4 or 5 meters plus another meter of wave levee above the local mean sea level. The river embankments are usually 4 or 5 meter higher than the local mean sea level as well and decrease from the outer estuary to the inner riverine. The modeling results considering seawall and river embankments and from real storm surges are in agreement with on-site survey and observations, while those without infusing seawall and river embankments overestimate the inundation condition and economic loss. Modeling results demonstrate that seawall and river embankment greatly reduce the flooding risk and prevent the low-land area from inundation for most tropic storm events, e.g., for extreme events less than 20 to 50 years, in the coastal areas of Guangdong Province, China. However, the seawall and river embankment may also cause catastrophic disasters once there is an engineering failure of seawalls and river embankment, especially once encountering with an extreme typhoon event, e.g., the 1969 super typhoon Viola in Shantou China and the 2005 hurricane Katrina in New Orleans, USA.

  17. Impacts on Coralligenous Outcrop Biodiversity of a Dramatic Coastal Storm

    PubMed Central

    Teixidó, Núria; Casas, Edgar; Cebrián, Emma; Linares, Cristina; Garrabou, Joaquim

    2013-01-01

    Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006–2008) and after the impact (2009–2010) at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change. PMID:23326496

  18. Community And Stakeholder Engagement With A University-Based Storm Research Team And Program During Events: Progressive Awareness, Cooperation And Mutual Support.

    NASA Astrophysics Data System (ADS)

    Gayes, P. T.; Bao, S.; Yan, T.; Pietrafesa, L. J.; Hallstrom, J.; Stirling, D.; Mullikin, T.; McClam, M.; Byrd, M.; Aucoin, K.; Marosites, B.

    2017-12-01

    HUGO: The HUrricane Genesis and Outlook program is a research initiative spanning new approaches to Atlantic tropical season outlooking to a storm event-related interactively coupled model system. In addition to supporting faculty and student academic research it has progressively been engaged by diverse regional interests in the public and private sector. The seasonal outlook incorporates 22 regional-to-global climate drivers developed from the historical storm database and has shown good skill related to historical storm seasons within the development of the model as well as the last several years in an outlook capacity. The event scale model is a based upon a fully interactively coupled model system incorporating ocean, atmosphere, wave and surge/flood models. The recent cluster of storms impacting the Southeast US provided an opportunity to test the model system and helped develop strong collaborative interests across diverse groups seeking to facilitate local capacity and access to additional storm-related information, observations and expertise. The SC State Guard has actively engaged the HUGO team in carrying out their charge in emergency responders planning and activities during several recent storms and flooding events. They were instrumental in developing support to expand observational systems aiding model validation and development as well as develop access pathways for deployment of new observational technology developed through NSF sponsored projects (Intelligent River and Hurricane-RAPID) with ISENSE at Florida Atlantic University to advance observational capability and density especially during or immediately following events. At the same time an increasing number of county-level emergency and environmental managers and private sector interests have similarly been working collaborately towards expanding observational systems contributing to the goals of the growing storm-oriented cooperative and as well as broader national MesoUS goals. Collectively, the interaction and partnering have aided and advanced diverse interests, enabled direct and in-kind support towards mutual goals and enabled considerable leverage of resources focused on science and supporting applications.

  19. 16-year Climatology of Cold-Season Extreme Precipitation-Drought Statistics derived from NLDAS Precipitation Data Over the Conterminous U.S.

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Mocko, D. M.

    2015-12-01

    We examine radar-gauge merged 1/8-degree hourly precipitation data from the North American Land Data Assimilation System (NLDAS) Phase-II datasets from 1997 to 2013. For each 1/8 grid, we derived statistics of single-event storm duration, total accumulated precipitation, and dry period between each storm events during cold (Oct-Mar) seasons, and histogram of event-by-event statistics are used to estimate the thresholds for extreme (below-1%) and very extreme (below-0.1%) events. In this way, we constructed unique climatology maps of the extreme precipitation-drought frequencies and probability density functions. This climatology map depicted that cold-season extremely heavy precipitation events are populated over West Coast, Deep South, and coastal zone of North East, suggesting impacts of land-falling maritime storm systems. Simultaneously, datasets depicts that long-extended precipitation events are mostly populated over North West, and lower Mississippi Basin up to North East centered at Appalachian Mountains, resembling east Pacific storm tracks and nor'easter storm tracks, respectively. Furthermore, season-by-season statistics of these extreme events were examined for each National Climate Assessment (NCA) regimes in comparison with a number of major atmospheric oscillations and teleconnection patterns as well as Arctic Amplifications. Index of Arctic Amplification includes variability of 500mb zonal wind speed and pole-to-midlatitude differences in atmospheric thickness, linking to the phase speed of the Rossby wave. Finally, we present ensemble correlations scores, and discuss the physical processes and underlying mechanisms for their key characteristics as well as the predictive skill and predictability of the extreme events from sub-seasonal to interannual scales during cold seasons.

  20. Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan.

    PubMed

    Chan, Chang-Chuan; Chuang, Kai-Jen; Chen, Wen-Jone; Chang, Wei-Tien; Lee, Chung-Te; Peng, Chi-Ming

    2008-03-01

    This study aims to explore whether Asian dust storms can affect health after 4000 km long-range transport from their origins to downwind areas. Asian dust storms reaching Taipei, Taiwan are tracked by satellite images and confirmed by backward trajectory analysis and ground air pollution monitoring between 1995 and 2002. Our outcome variables include emergency visits for ischaemic heart diseases (ICD-9-CM 410-411, 414), cerebrovascular diseases (ICD-9-CM 430-437), and chronic obstructive pulmonary diseases (COPD) (ICD-9-CM 493, 496) from the National Taiwan University Hospital (NTUH). We use simple paired t-test and Poisson regression models to compare difference in emergency visits, air pollution levels and meteorological conditions for the pairs of Asian dust events and pre-dust periods. There were 39 high dust events with PM(10) greater than 90 microg/m(3) and another 46 low dust events with PM(10) less than 90 microg/m(3). Compared to their pre-dust periods, PM(10) concentrations are significantly increased by 77 microg/m(3) per event for the high dust events. Asian dust storms increase cardiopulmonary emergency visits during storm-affecting periods in Taipei when ambient PM(10) concentrations are above 90 microg/m(3). Compared to their pre-dust periods, emergency visits for ischaemic heart diseases, cerebrovascular diseases, and COPD during high dust events are increased by 0.7 case (35%), 0.7 case (20%), and 0.9 case (20%) per event, respectively, by paired t-tests. By comparing the model-predicted to the observed emergency visits, we find emergency visits for cardiovascular diseases (ICD-9-CM 410-411, 414, 430-437) were significantly increased by 2.9 cases (67%) per event for the 39 high Asian dust events.

  1. ScienceCasts: A Display of Lights Above the Storm

    NASA Image and Video Library

    2017-10-10

    Transient Luminous Events (TLEs) are flashes and glows that appear above storms and are results of activity occurring in and below those storms. Researchers are working to better understand lightning and thunderstorms, how they form and develop over time, and why storms produce different TLEs in different circumstances.

  2. Dust Storms and Mortality in the United States, 1995-2005

    EPA Science Inventory

    Extreme weather events, such as dust storms, are predicted to become more frequent as the global climate warms through the 21st century. The impact of dust storms on human health has been studied extensively in the context of Asian, Saharan, Arabian, and Australian storms, but t...

  3. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances

    1989-01-01

    The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.

  4. Key forecasts shaping nursing's perfect storm.

    PubMed

    Yoder-Wise, Patricia S

    2007-01-01

    Perfect storms abound in nursing and healthcare. How we plan for them and how we forecast effectively which ones will have tremendous impact on how we lead the profession is a challenge to anyone who is or will be a leader. This article focuses on key forecasts that contribute to creating perfect storms of the future. The "perfect storm" is a term found in multiple disciplines. The phrase denotes the condition that exists when events occur simultaneously with the result that this confluence has a greater impact than what could have resulted from a chance combination. Although perfect storms are rare, they have enormous impact when they occur, and if an alteration in any of the events occurs, the overall impact is lessened.

  5. An Outflow Event on the Left Side of Harvey: Erosion of Barrier Sand and Seaward Transport Through Aransas Pass

    NASA Astrophysics Data System (ADS)

    Goff, J.; Swartz, J. M.; Gulick, S. P. S.

    2017-12-01

    Barrier islands provide critical support and protection for coastal communities and ecosystems, but are potentially vulnerable to net losses of sand during major storms. Evidence from satellite imagery, ground observations and tide stations indicates that Hurricane Harvey in 2017 caused a large outflow event of waters moving from the bays out towards the sea in the Port Aransas, Texas region. Rather than just an ebb of a storm surge, this event may have been driven by seaward-directed winds on the left side of storm. Less than a month after landfall, we conducted a swath mapping and sampling survey in Lydia Ann Channel and Aransas Pass, where we had earlier mapped in 2009 and 2012 as part of the UT marine geology and geophysical field course. These waterways are important conduits linking Corpus Christi and Aransas bays to the Gulf of Mexico. This multi-year record allows us to gauge the impact of the outflow event on these waterways in the context of "normal" coastal processes. Both satellite imagery and sonar mapping reveal that the outflow event caused significant erosion, both on land and beneath the water, along the edges of Lydia Ann Channel and Corpus Christi ship channel. It also caused seaward-directed flow and erosion through breaches in the foredunes along southern San Jose Island, from waters that overtopped Lydia Ann Channel. Much of the sand that was transported seaward settled in Lydia Ann Channel and Aransas Pass (up to 6.5 m accumulation), possibly during the waning stages of the event. However, a likely large (but unknown) quantity of barrier and estuarine sand could have been transported well out to sea, beyond the jetties, at the peak of the event. If so, it would have resulted in a net loss of sand from the barrier island system.

  6. Impact of land-use on water pollution in a rapidly urbanizing catchment in China

    NASA Astrophysics Data System (ADS)

    Khu, Soon-Thiam; Qin, Huapeng

    2010-05-01

    Many catchments in developing countries are undergoing fast urbanization which is usually characterized by population increase, economic growth as well as drastic changes of land-use from natural/rural to urban area. During the urbanization process, some catchments experience water quality deterioration due to rapid increase of pollution loads. Nonpoint source pollution resulting from storm water runoff has been recognized as one of the major causes of pollutants in many cities in developing countries. The composition of land-use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management in the catchment. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as the study area, and temporary monitoring sites were set at the outlets of its 6 sub-catchments to synchronously measured rainfall, runoff and water quality during 4 storm events. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants (such as COD, BOD, NH3-N, TN, TP and SS) in each sub-catchment during the storm events; and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land-use; however, they have different trends in heavy storm events, which correlate with the different proportional combination of residential, industrial, agricultural and bare land-use. It is also shown that it is necessary to consider some pervious land-use types in runoff pollution monitoring or management for a rapidly urbanizing area, particularly in heavy storm.

  7. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as well as local scale bathymetry. Additionally, significant dependence can be observed over spatial distances of up to several hundred kilometers, implying that meso-scale meteorological forcings may play an important role in driving the dependence. This is also consistent with the result which shows that significant dependence often remaining for lags of up to one or two days between extremal rainfall and storm surge events. The influence of storm burst duration can also be observed, with rainfall extremes lasting more than several hours typically being more closely associated with storm surge compared with sub-hourly rainfall extremes. These results will have profound implications for how flood risk is evaluated along the coastal zone in Australia, with the strength of dependence varying depending on: (1) the dominant meteorological conditions; (2) the local estuary configuration, influencing the strength of the surge; and (3) the catchment attributes, influencing the duration of the storm burst that will deliver the peak flood events. Although a strong random component remains, we show that the probability of an extreme storm surge during an extreme rainfall event (or vice versa) can be up to ten times greater than under the situation under which there is no dependence, suggesting that failure to account for these interactions can result in a substantial underestimation of flood risk.

  8. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    USGS Publications Warehouse

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (<100 ??S/cm), but increased post-storm at the overwashed wetlands (x?? = 7,613 ??S/cm). Increased specific conductance was strongly correlated with increases in chloride concentrations. Amphibian species richness showed no correlation with specific conductance. One month post-storm we observed slightly fewer species in overwashed compared with non-overwashed wetlands, but this trend did not continue in 2006. More species were detected across all wetlands pre-storm, but there was no difference between overwashed and non-overwashed wetlands when considering all amphibian species or adult anurans and larval anurans separately. Amphibian species richness did not appear to be correlated with pH or presence of fish although the amphibian community composition differed between wetlands with and without fish. Our results suggest that amphibian communities in wetlands in the southeastern United States adjacent to marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  9. Contributions of substorm injections to SYM-H depressions in the main phase of storms

    NASA Astrophysics Data System (ADS)

    He, Zhaohai; Dai, Lei; Wang, Chi; Duan, Suping; Zhang, Lingqian; Chen, Tao; Roth, I.

    2016-12-01

    Substorm injections bring energetic particles to the inner magnetosphere. But the role of the injected population in building up the storm time ring current is not well understood. By surveying Los Alamos National Laboratory geosynchronous data during 34 storm main phases, we show evidence that at least some substorm injections can contribute to substorm-time scale SYM-H/Dst depressions in the main phase of storms. For event studies, we analyze two typical events in which the main-phase SYM-H index exhibited stepwise depressions that are correlated with particle flux enhancement due to injections and with AL index. A statistical study is performed based on 95 storm time injection events. The flux increases of the injected population (50-400 keV) are found proportional to the sharp SYM-H depressions during the injection interval. By identifying dispersionless and dispersive injection signals, we estimate the azimuthal extent of the substorm injection. Statistical results show that the injection regions of these storm time substorms are characterized with an azimuthal extent larger than 06:00 magnetic local time. These results suggest that at least some substorm injections may mimic the large-scale enhanced convection and contribute to sharp decreases of Dst in the storm main phase.

  10. Quantifications of Geomagnetic Storm Impact on TEC and NmF2 during 2013 Mar. event

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Tsagouri, I.; Goncharenko, L. P.; Mays, M. L.; Taktakishvili, A.; Rastaetter, L.; Kuznetsova, M. M.

    2016-12-01

    We investigate the ionospheric response to 2013 Mar. geomagnetic storm event using GPS TEC, ISR and ionosonde observations in North American sector. In order to quantify variations of TEC and NmF2 (or foF2) due to the storm, we remove the background quiet-time values (e.g., TEC of one day prior to the storm, NmF2 median and average of five quietest days for 30 days prior to the storm). In addition, in order to assess modeling capability of reproducing storm impacts on TEC and NmF2, we compare the observations with various model simulations, which are obtained from empirical, physics-based, and data assimilation models. Further, we investigate how uncertainty in the interplanetary magnetic field (IMF) impacts on TEC and NmF2 during the geomagnetic storm event. For this uncertainty study, we use a physics-based coupled ionosphere-thermosphere model, CTIPe, and solar wind parameters obtained from ensemble of WSA-ENLIL+Cone model simulations. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.

  11. Surface Properties Associated With Dust Storm Plume's Point-Source Locations In The Border Region Of The US And Mexico

    NASA Astrophysics Data System (ADS)

    Bleiweiss, M. P.; DuBois, D. W.; Flores, M. I.

    2013-12-01

    Dust storms in the border region of the Southwest US and Northern Mexico are a serious problem for air quality (PM10 exceedances), health (Valley Fever is pandemic in the region) and transportation (road closures and deadly traffic accidents). In order to better understand the phenomena, we are attempting to identify critical characteristics of dust storm sources so that, possibly, one can perform more accurate predictions of events and, thus, mitigate some of the deleterious effects. Besides the emission mechanisms for dust storm production that are tied to atmospheric dynamics, one must know those locations whose source characteristics can be tied to dust production and, therefore, identify locations where a dust storm is eminent under favorable atmospheric dynamics. During the past 13 years, we have observed, on satellite imagery, more than 500 dust events in the region and are in the process of identifying the source regions for the dust plumes that make up an event. Where satellite imagery exists with high spatial resolution (less than or equal to 250m), dust 'plumes' appear to be made up of individual and merged plumes that are emitted from a 'point source' (smaller than the resolution of the imagery). In particular, we have observed events from the ASTER sensor whose spatial resolution is 15m as well as Landsat whose spatial resolution is 30m. Tying these source locations to surface properties such as NDVI, albedo, and soil properties (percent sand, silt, clay, and gravel; soil moisture; etc.) will identify regions with enhanced capability to produce a dust storm. This, along with atmospheric dynamics, will allow the forecast of dust events. The analysis of 10 events from the period 2004-2013, for which we have identified 1124 individual plumes, will be presented.

  12. North Sea Storm Driving of Extreme Wave Heights

    NASA Astrophysics Data System (ADS)

    Bell, Ray; Gray, Suzanne; Jones, Oliver

    2017-04-01

    The relationship between storms and extreme ocean waves in the North sea is assessed using a long-period wave dataset and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to either the winds in the cold conveyor belt (northerly-wind events) or winds in the warm conveyor belt (southerly-wind events) of extratropical cyclones. The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearwards round the cyclone to the cold side of the warm front. The northerly-wind events also provide a larger fetch to the central North Sea. Southerly-wind events are associated with the warm conveyor belts of intense extratropical storms developing in the right upper-tropospheric jet exit region. There is predictability in the extreme ocean wave events up to two days before the event associated with a strengthening of a high pressure system to the west (northerly-wind events) and south-west (southerly-wind events) of the British Isles. This acts to increase the pressure gradient over the British Isles and therefore drive stronger wind speeds in the central North sea.

  13. Hurricane impacts on forest resources in the Eastern United States: a post-sandy assessment

    Treesearch

    Greg C. Liknes; Susan J. Crocker; Randall S. Morin; Brian F. Walters

    2015-01-01

    Extreme weather events play a role in shaping the composition and structure of forests. Responding to and mitigating a storm event in a forested environment requires information about the location and severity of tree damage. However, this information can be difficult to obtain immediately following an event. Post-storm assessments using regularly collected forest...

  14. Development of a CME-associated geomagnetic storm intensity prediction tool

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; DeHart, J. M.

    2015-12-01

    From 1995 to 2012, the Wind spacecraft recorded 168 magnetic cloud (MC) events. Among those events, 79 were found to have upstream shock waves and their source locations on the Sun were identified. Using a recipe of interplanetary magnetic field (IMF) Bz initial turning direction after shock (Wu et al., 1996, GRL), it is found that the north-south polarity of 66 (83.5%) out of the 79 events were accurately predicted. These events were tested and further analyzed, reaffirming that the Bz intial turning direction was accurate. The results also indicate that 37 of the 79 MCs originate from the north (of the Sun) averaged a Dst_min of -119 nT, whereas 42 of the MCs originating from the south (of the Sun) averaged -89 nT. In an effort to provide this research to others, a website was built that incorporated various tools and pictures to predict the intensity of the geomagnetic storms. The tool is capable of predicting geomagnetic storms with different ranges of Dst_min (from no-storm to gigantic storms). This work was supported by Naval Research Lab HBCU/MI Internship program and Chief of Naval Research.

  15. Introducing stochastics into the simulation of convective precipitation events

    NASA Astrophysics Data System (ADS)

    Pistotnik, Georg

    2010-05-01

    In a joint project, the Central Institute for Meteorology and Geodynamics (ZAMG) and the Vienna University of Technology aimed to characterize strong precipitation events and their impact in the Bucklige Welt region in Eastern Austria. Both the region's hydrological and meteorological characteristics, namely its composition of virtually countless small catchments with short response times and a high frequency of summertime convective storms, cause the occurrence of flooding to be strictly tied to convective rainfall events, which is why this study has been focused on this type of precipitation. The meteorological database consists of the ZAMG's high-resolution analysis and nowcasting system INCA ("Integrated Nowcasting through Comprehensive Analysis"), which provides a set of precipitation analyses generated by a statistically optimized combination of rain gauge measurements and radar data with a temporal resolution of 15 minutes and a spatial resolution of 1 kilometre. An intensity threshold of 3.8mm/15min has been used to classify any observed precipitation as a convective one, thus extracting 245 convection days with a total number of almost 1600 individual storm events over the project region out of the 5-year data set from 2003 to 2007. Consecutive analyses were used to compute the motion of these storms, a complex process that could not be completely automatized; due to the repeated occurrence of storm splits or coalescences, a manual control of the automatically provided "suggestion" of movement had to be performed in order to merge two or more precipitation maxima to a single storm if necessary, thus yielding the smoothest and most plausible storm tracks and ensuring a high quality of the database. In the first part of the project, distributions for all characteristic parameters have been derived, including the number of storms per day, their place and time of initiation, their motion, lifetime, maximum intensity and maximum "cell volume" (i.e. overall precipitation per time step). Both components of the mean motion as well as of its deviations could be approximated by normal distributions, whereas the number of storms per day, their lifetime, maximum intensity and maximum cell volume roughly followed exponential distributions. The shapes of the convective cells were approximated by Gaussian bells with the peak intensity and the cell volume as boundary conditions. The temporal courses of the peak intensities and cell volumes were assumed to follow parabolas which are symmetric with respect to the half of the lifetime. In the second part of the project, these distributions were used to drive a random generator that allows simulating an arbitrary number of convection days in order to obtain pseudo time series of convective precipitation for each grid point. An algorithm to create correlated samples of random numbers enabled to also account for the observed correlation between some of the parameters, i.e. lifetime and maximum intensity or maximum cell volume. The spatial structures of the return periods of simulated convective precipitation events may provide valuable additional information when being assimilated to the time series measured by the (unfortunately rather sparse) rain gauges in this region. Thus, further studies have to investigate to what extent the "convection simulator" is able to reproduce these time series. Some iterative fine-tuning of the parameters' distributions as well as an extension of the database to a longer time span may further improve the results and enable to simulate realistic spatio-temporal convection scenarios ("design storms") that have the potential to feed hydrological models and, together with vegetation and soil characteristics, hopefully enable to better assess and regionalize the torrent hazard over the project region.

  16. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both), all geomagnetic storms are correctly forecasted.

  17. The Meteorological Setting of Narrow Bipolar Events

    NASA Astrophysics Data System (ADS)

    Stanley, M. A.; Suszcynsky, D. M.; Heavner, M. J.

    2003-12-01

    Narrow Bipolar Events (NBEs) are an impulsive form of electrical breakdown in storms which emits strong VHF radiation. It is well known that these events can be readily detected by VHF receivers in orbit and thus may provide a highly practical means to globally monitor storm activity. However, relatively little is known about how NBEs relate to the convective phase of storms and of how good a predictor they are of severe weather events such as large hail, damaging winds, and tornadoes. On June 10, 2002, numerous energetic NBEs were detected over Kansas by the Los Alamos National Laboratory Edot array, which is primarily located in Florida. These NBEs were also detected by a VHF receiver on-board the SVN 54 GPS satellite. The NBEs were associated with severe thunderstorms which produced softball size hail exceeding 11 centimeters in diameter and a weak F0 tornado. In another case study, several F2 tornadic Florida storms were analyzed for March, 2001. Unlike the Kansas storms, the NBEs of the Florida tornadic storms were spread out over a much wider area and exhibited considerable variability in both frequency of occurrence and predominant polarity of vertical charge transfer. To further explore the significance of the NBE rate variability, we will analyze NEXRAD radar volume scans in conjunction with Edot 3-dimensional locations to better understand how NBEs correlate with the thunderstorm life-cycle.

  18. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    USGS Publications Warehouse

    Haase, K.B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the ongoing monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93 % above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols. ?? 2011 Author(s).

  19. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    USGS Publications Warehouse

    Haase, Karl B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93% above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols.

  20. Sub-Auroral Polarization Stream (SAPS) Events Under Non-storm Conditions

    NASA Astrophysics Data System (ADS)

    Sazykin, S. Y.; Coster, A. J.; Huba, J.; Spiro, R. W.; Baker, J. B.; Kunduri, B.; Ruohoniemi, J. M.; Erickson, P. J.; Wolf, R.

    2017-12-01

    The occurrence of Sub-Auroral Polarization Stream, or SAPS, structures, defined here as latitudinally narrow channels of enhanced westward plasma convection in the evening ionosphere equatorward of the auroral electron precipitation boundary, is most dramatic during geomagnetic storms. However, SAPS-like structures known as Polarization Jets or SAIDs (Sub-Auroral Ion Drift events) are also frequently observed during non-storm conditions, typically during periods of isolated substorm activity or during bursts of enhanced convection associated with southward IMF Bz component. This paper presents results from data analysis and numerical simulations of several SAPS/SAID events observed during non-storm conditions. We use convection velocity measurements from the mid-latitude chain of SuperDARN radars and cross-track drift meter data from DMSP spacecraft to identify SAPS/SAID and to characterize their structure and temporal evolution. DMSP topside ion density data and high-resolution ground-based GPS total electron content (TEC) maps are used to determine the ionospheric and plasmaspheric morphology of SAPS regions. DMSP electron precipitation data are used to determine auroral boundaries. We also present simulation results of the chosen event intervals obtained with the SAMI3-RCM ionosphere-magnetosphere coupled model. Observational results are analyzed to identify systematic differences between non-storm SAPS/SAID and the picture that has emerged based on previous storm time studies. Simulation results are used to provide physical interpretation of these differences.

  1. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which magnitude III events can be expected. Rainfall trigger-magnitude relations are linked with potential emergency-response actions in the form of an emergency-response decision chart. The chart leads a user through steps to determine potential event magnitudes, and identify possible evacuation and resource-deployment levels as a function of either individual storm forecasts or measured precipitation during storms. The ability to use this information in the planning and response decision-making process may result in significant financial savings and increased safety for both the public and emergency responders.

  2. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash

    PubMed Central

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s−1 in each storm with gusts up to 38.7 m s−1. Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m−1 during the most intense storm event with a rate of 1,440 kg m−1 hr−1 for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions. PMID:23409248

  3. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash.

    PubMed

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s(-1) in each storm with gusts up to 38.7 m s(-1). Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m(-1) during the most intense storm event with a rate of 1,440 kg m(-1) hr(-1) for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions.

  4. Particulate Organic Carbon (POC) and Particulate N (PN) behaviors in Response to Storm Events in the Clear Creek, IA Site of the Intensively Managed Landscape - Critical Zone Observatory (IML-CZO)

    NASA Astrophysics Data System (ADS)

    Blair, N. E.; Ward, A. S.; Bettis, E. A., III; Zhou, N.; Kazmierczak, B. M.

    2017-12-01

    A goal of the NSF-sponsored IML-CZO (EAR-1331906) is to understand how the Critical Zone of the agricultural Midwest of North America will respond to the pressures of increased land use and climate change. As a step towards that goal, the landscape response to storm events of one of the IML-CZO field sites, the Clear Creek watershed in Iowa, was studied to determine the sources and quantities of suspended load POC and PN to the creek. The Clear Creek watershed is 270 km2 and is dominated by corn-soybean agriculture. Water samples were collected prior to, during and after 6 storm events during the 2014-2016 period at up to three stations on the creek. The suspended particulate load was isolated via filtration and characterized by C, N elemental and stable isotope analyses. Sediment concentration - discharge relationships vary considerably between storm events. POC δ13C values exhibit pronounced yet consistent changes within events as a function of discharge. In general, δ13C values are reflective of C3 plant sources ( -30‰) at base flow and trend towards an asymptotic value of -22‰ with increasing discharge. The most positive δ13C values also correlate with higher C/N ratios. The 13C-enrichment of the suspended load thus seems to be the result of the inclusion of C4 plant debris, principally corn, from surface soils. Bank erosion with mobilization of in-channel production likely dominate the POC sources at base flow. Top soil erosion incorporating corn (and C3 plant) residue dominate stream inputs at Q >3000 l/s. The C4 plant signal is more prevalent at upstream stations, which is consistent with land use patterns. The presence of corn in the system provides an in situ particle tracer for POC and PN that can be followed downstream and used to investigate exchanges of material between the landscape and stream.

  5. Time-series variations in CFC and 3H/3He ages in springs discharging from an eogenetic karst aquifer (Invited)

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Kurz, M. J.; Khadka, M. B.; Cohen, M. J.

    2013-12-01

    One of the hallmarks of karst aquifers is rapid mixing between surface water and groundwater, which results in changes in flow and water chemistry at springs. Aquifers with little matrix porosity (telogenetic karst) tend to respond to storm events within days to weeks (e.g., are flashy) while aquifers characterized by elevated matrix porosity (eogenetic karst) may take months or years to respond. This response time is an important control on remediation of storm-derived contaminants as well as the magnitude of water-rock reactions that may result from mixing of surface water and groundwater with different compositions. Responses of flashy springs may be observed through time-series measurements of various solute compositions of the discharge, but response at springs discharging from eogenetic aquifers are difficult to observe because the chemical composition of the recharged storm water may be altered during its residence in the subsurface. For these aquifers, conservative tracers such as chlorofluorocarbon and 3H/3He ratios may provide useful information on the mixing, residence time, and variation in the average age of discharged water. We are testing this hypothesis at six springs discharging from the Floridan Aquifer to the Ichetucknee River in north Florida. Samples were first collected September 3, 2009 during record low flow when the river was discharging 7.2 m3/sec and subsequently after about 400 mm of rain fell over the springshed from June 23 to 26, 2012 during Tropical Storm Debby. Following the storm, samples were collected July 27, 2012 (all six springs) when flow had increased to 10.5 m3/sec. Three of the six springs were sampled during the recession on October 25, 2012 (Q = 10.3 m3/sec), February 14, 2013 (Q = 8.7 m3/sec), and May 16, 2013 (Q = 8.6 m3/sec). CFC dates are available now for all sampling times but 3H/3He dates are only available through October 25, 2012. The two different tracers yield conflicting results with CFC ages generally increasing from the low flow to flood samples while 3H/3He ages decrease in five of the six springs with increasing discharge. The age of the water would be expected to decrease following the storm, suggesting that the CFC data may be contaminated. Assuming the drought discharge is solely groundwater and the measured reduction in the 3H/3He ages originates from mixing old groundwater with zero-aged water from the storm, the fraction of discharging storm water ranged from 4 to 25% of the total discharge. This variation in the fraction of the storm-derived water corresponds to estimated depths of flow paths to the springs based on dissolved oxygen and temperature data. Springs originating from deep flow paths have smaller fractions of storm water. Time-series measurements of ages of water discharging from springs appear to be a useful technique for estimating fractions of storm derived water and possibly flow paths in springs discharging from eogenetic karst aquifers.

  6. Winter storm intensity, hazards, and property losses in the New York tristate area.

    PubMed

    Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E

    2017-07-01

    Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  7. Polar cap potential saturation during the Bastille Day storm event using global MHD simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.

    2017-04-01

    We investigated the temporal variations and saturation of the cross polar cap potential (CPCP) in the Bastille Day storm event (15 July 2000) by global magnetohydrodynamics (MHD) simulation. The CPCP is considered to depend on the electric field and dynamic pressure of the solar wind as well as on the ionospheric conductivity. Previous studies considered only the ionospheric conductivity due to solar extreme ultraviolet (EUV) variations. In this paper, we dealt with the changes in the CPCP attributable to auroral conductivity variations caused by pressure enhancement in the inner magnetosphere owing to energy injection from the magnetosphere because the energy injection is considerably enhanced in a severe magnetic storm event. Our simulation reveals that the auroral conductivity enhancement is significant for the CPCP variation in a severe magnetic storm event. The numerical results concerning the Bastille Day event show that the ionospheric conductivity averaged over the auroral oval is enhanced up to 18 mho in the case of Bz of less than -59 nT. On the other hand, the average conductivity without the auroral effect is almost 6 mho throughout the entire period. Resultantly, the saturated CPCP is about 240 kV in the former and 704 kV in the latter when Bz is -59 nT. This result indicates that the CPCP variations could be correctly reproduced when the time variation of auroral conductivity caused by pressure enhancement due to the energy injection from the magnetosphere is correctly considered in a severe magnetic storm event.

  8. Urban stormwater quality, event-mean concentrations, and estimates of stormwater pollutant loads, Dallas-Fort Worth area, Texas, 1992-93

    USGS Publications Warehouse

    Baldys, Stanley; Raines, T.H.; Mansfield, B.L.; Sandlin, J.T.

    1998-01-01

    Local regression equations were developed to estimate loads produced by individual storms. Mean annual loads were estimated by applying the storm-load equations for all runoff-producing storms in an average climatic year and summing individual storm loads to determine the annual load.

  9. Autism Prevalence Following Prenatal Exposure to Hurricanes and Tropical Storms in Louisiana

    ERIC Educational Resources Information Center

    Kinney, Dennis K.; Miller, Andrea M.; Crowley, David J.; Huang, Emerald; Gerber, Erika

    2008-01-01

    Hurricanes and tropical storms served as natural experiments for investigating whether autism is associated with exposure to stressful events during sensitive periods of gestation. Weather service data identified severe storms in Louisiana from 1980 to 1995 and parishes hit by storm centers during this period. Autism prevalences in different…

  10. Statistical modeling of storm-level Kp occurrences

    USGS Publications Warehouse

    Remick, K.J.; Love, J.J.

    2006-01-01

    We consider the statistical modeling of the occurrence in time of large Kp magnetic storms as a Poisson process, testing whether or not relatively rare, large Kp events can be considered to arise from a stochastic, sequential, and memoryless process. For a Poisson process, the wait times between successive events occur statistically with an exponential density function. Fitting an exponential function to the durations between successive large Kp events forms the basis of our analysis. Defining these wait times by calculating the differences between times when Kp exceeds a certain value, such as Kp ??? 5, we find the wait-time distribution is not exponential. Because large storms often have several periods with large Kp values, their occurrence in time is not memoryless; short duration wait times are not independent of each other and are often clumped together in time. If we remove same-storm large Kp occurrences, the resulting wait times are very nearly exponentially distributed and the storm arrival process can be characterized as Poisson. Fittings are performed on wait time data for Kp ??? 5, 6, 7, and 8. The mean wait times between storms exceeding such Kp thresholds are 7.12, 16.55, 42.22, and 121.40 days respectively.

  11. Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements

    NASA Astrophysics Data System (ADS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.

    2017-12-01

    Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.

  12. Particulate Organic Matter Composition in Stream Runoff Following Large Storms: Role of POM Sources, Particle Size, and Event Characteristics

    NASA Astrophysics Data System (ADS)

    Johnson, Erin R.; Inamdar, Shreeram; Kan, Jinjun; Vargas, Rodrigo

    2018-02-01

    Large storm events possess significant erosive energy capable of mobilizing large amounts of sediment and particulate organic matter (POM) into fluvial systems. This study investigated how stream POM composition varied as a function of the watershed POM source, particle size, storm event magnitude, and seasonal timing. POM composition was characterized for multiple watershed sources and for stream POM following storms in a second-order forested stream. Carbon (C) and nitrogen (N) amount, C:N ratio and isotopic content (13C and 15N) were determined for solid phase POM, whereas dissolved organic C, total N concentrations, and fluorescence characteristics were determined for solution/extracted POM. Key findings from this study were the following: (1) Composition of POM varied greatly with watershed sources with forest floor litter being C and N rich and labile, while stream banks and bed were C and N poor and recalcitrant. (2) Summer storms mobilized more carbon and nitrogen-rich labile sources, while winter events mobilized more carbon- and nitrogen-poor refractory material from near-stream sources. (3) POM composition varied by size class, with the coarse POM showing more C and N rich and labile properties, while the fine POM displayed more degraded and refractory properties. If climate variability increases the magnitude and intensity of large storm events, our observations suggest that this will not only increase the inputs of POM to aquatic systems but also result in the delivery of coarser, C and N rich, and more bioavailable POM to the stream drainage network.

  13. The May 1967 Great Storm and Radio Disruption Event: The Impacts We Didn't Know About

    NASA Astrophysics Data System (ADS)

    Knipp, D.

    2016-12-01

    Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01-9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high frequency communication in the polar cap. Subsequently record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. This event is also one with severe impacts on thermospheric temperature and satellite drag. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the 20th Century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the 20th century, despite the lack of large geomagnetically-induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.

  14. A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.

    2017-12-01

    Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there is a discrepancy between the results from our experiment and the natural ice storm, even though the levels of damage were comparable. It is possible that large declines in N supply observed over the last two decades have resulted in a tightening of the nitrogen cycle. Quantification of additional pools and fluxes (especially foliar N) should provide further insight.

  15. The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Ramsay, A. C.; Beard, E. D.; Boright, A. L.; Cade, W. B.; Hewins, I. M.; McFadden, R. H.; Denig, W. F.; Kilcommons, L. M.; Shea, M. A.; Smart, D. F.

    2016-09-01

    Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01 and 9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high-frequency communication in the polar cap. Subsequently, record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. An important and long-lasting outcome of this storm was more formal Department of Defense-support for current-day space weather forecasting. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the twentieth century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the twentieth century, despite the apparent lack of large geomagnetically induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.

  16. Are inundation limit and maximum extent of sand useful for differentiating tsunamis and storms? An example from sediment transport simulations on the Sendai Plain, Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko

    2018-02-01

    We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.

  17. Probability of occurrence of planetary ionosphere storms associated with the magnetosphere disturbance storm time events

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.

    2014-11-01

    The ionospheric W index allows to distinguish state of the ionosphere and plasmasphere from quiet conditions (W = 0 or ±1) to intense storm (W = ±4) ranging the plasma density enhancements (positive phase) or plasma density depletions (negative phase) regarding the quiet ionosphere. The global W index maps are produced for a period 1999-2014 from Global Ionospheric Maps of Total Electron Content, GIM-TEC, designed by Jet Propulson Laboratory, converted from geographic frame (-87.5:2.5:87.5° in latitude, -180:5:180° in longitude) to geomagnetic frame (-85:5:85° in magnetic latitude, -180:5:180° in magnetic longitude). The probability of occurrence of planetary ionosphere storm during the magnetic disturbance storm time, Dst, event is evaluated with the superposed epoch analysis for 77 intense storms (Dst ≤ -100 nT) and 230 moderate storms (-100 < Dst ≤ -50 nT) with start time, t0, defined at Dst storm main phase onset. It is found that the intensity of negative storm, iW-, exceeds the intensity of positive storm, iW+, by 1.5-2 times. An empirical formula of iW+ and iW- in terms of peak Dst is deduced exhibiting an opposite trends of relation of intensity of ionosphere-plasmasphere storm with regard to intensity of Dst storm.

  18. Patrick Air Force Base Storm Water Pollution Prevention Plan.

    DTIC Science & Technology

    1994-09-01

    CE 00 0O L 2- E0 .0 cl ci = 0 L) cz C C 00 H cz - ~.CIn U -. 0 0 - - E o nC .C) 0 2;l C)i En C) u C CIO cz _ C>) C) 0 u E-) a) Z L) 0o~bo coo 0 - . cn...as soon as practi-distated and lo dal c rq ir nts anderas, cable after significant modification areS tate, an d local req u irem en ts an d asm a e t...the duration between the storm event and fecal coliform (counts per 100 mL). sampled and the end of the previous measur- able (greater than 0.1 inch

  19. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  20. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams.

    PubMed

    Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen

    2017-12-31

    Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The impact of the High Park Wildfire on stream water quality and implications for drinking water treatment

    NASA Astrophysics Data System (ADS)

    Rosario-Ortiz, F.

    2014-12-01

    The Cache La Poudre (CLP) watershed in Northern Colorado was impacted by the High Park fire, which burned from June 9th through July 1st of 2012. The CLP watershed serves as a source of drinking water for three water districts in Northern Colorado, including the City of Fort Collins. Sampling was conducted during four different storm events immediately after the fire was extinguished. The sampling was expanded through spring and summer 2013 in order to capture the flush of debris from the wildfire into the CLP River. Samples were also collected from an unburned control site for comparison. Surface water samples were analyzed for parameters including nutrients, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) characterization. In addition, bench scale treatment analyses were conducted to better understand the impacts of the wildfire on treatment processes for drinking water utilities. Lastly, leaching of stream bank sediments was conducted to determine the potential longer term inputs of burned material to the stream water. The overarching goals of the sampling campaign were to: 1) Evaluate the impact that wildfires have on the properties of DOM, specifically with respect to DBP formation and speciation (TTHM, HAA5, HAN, NDMA); 2) Establish the condition under which the source water could be effectively treated (using coagulation) to remove DBP precursors; 3) Evaluate the use of fluorescence spectroscopy as a surrogate for the concentration and reactivity of DOM in the CLP watershed; and 4) Assess the quantity and quality of DOM leached from streambed sediments. Preliminary results showed elevated DOC levels during the storm events and at wildfire impacted sites compared to the unburned site following the fire. DBP yields were higher for the four storm events following the fire when compared to yields for the control site located upstream of the burn area, and also when compared to data from a previous DBP study conducted on similar Colorado source waters in 2010. Fluorescence spectroscopy shows promise as a tool for discerning differences in DOM quality between burned and unburned areas of the CLP watershed. Ultimately, the results of this study will offer insight for recovering this watershed as a sustainable water source and will prepare utilities for future wildfires.

  2. New dust opacity mapping from Viking Infrared Thermal Mapper data

    NASA Technical Reports Server (NTRS)

    Martin, Terry Z.; Richardson, Mark I.

    1993-01-01

    Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.

  3. Onset of frequent dust storms in northern China at ~AD 1100.

    PubMed

    He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui

    2015-11-26

    Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist.

  4. Numerical Simulation of the 9-10 June 1972 Black Hills Storm Using CSU RAMS

    NASA Technical Reports Server (NTRS)

    Nair, U. S.; Hjelmfelt, Mark R.; Pielke, Roger A., Sr.

    1997-01-01

    Strong easterly flow of low-level moist air over the eastern slopes of the Black Hills on 9-10 June 1972 generated a storm system that produced a flash flood, devastating the area. Based on observations from this storm event, and also from the similar Big Thompson 1976 storm event, conceptual models have been developed to explain the unusually high precipitation efficiency. In this study, the Black Hills storm is simulated using the Colorado State University Regional Atmospheric Modeling System. Simulations with homogeneous and inhomogeneous initializations and different grid structures are presented. The conceptual models of storm structure proposed by previous studies are examined in light of the present simulations. Both homogeneous and inhomogeneous initialization results capture the intense nature of the storm, but the inhomogeneous simulation produced a precipitation pattern closer to the observed pattern. The simulations point to stationary tilted updrafts, with precipitation falling out to the rear as the preferred storm structure. Experiments with different grid structures point to the importance of removing the lateral boundaries far from the region of activity. Overall, simulation performance in capturing the observed behavior of the storm system was enhanced by use of inhomogeneous initialization.

  5. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  6. Modeling Earth's Ring Current Using The CIMI Model

    NASA Astrophysics Data System (ADS)

    Craven, J. D., II; Perez, J. D.; Buzulukova, N.; Fok, M. C. H.

    2015-12-01

    Earth's ring current is a result of the injection of charged particles trapped in the magnetosphere from solar storms. The enhancement of the ring current particles produces magnetic depressions and disturbances to the Earth's magnetic field known as geomagnetic storms, which have been modeled using the comprehensive inner magnetosphere-ionosphere (CIMI) model. The purpose of this model is to identify and understand the physical processes that control the dynamics of the geomagnetic storms. The basic procedure was to use the CIMI model for the simulation of 15 storms since 2009. Some of the storms were run multiple times, but with varying parameters relating to the dynamics of the Earth's magnetic field, particle fluxes, and boundary conditions of the inner-magnetosphere. Results and images were placed in the TWINS online catalog page for further analysis and discussion. Particular areas of interest were extreme storm events. A majority of storms simulated had average DST values of -100 nT; these extreme storms exceeded DST values of -200 nT. The continued use of the CIMI model will increase knowledge of the interactions and processes of the inner-magnetosphere as well as lead to a better understanding of extreme solar storm events for the future advancement of space weather physics.

  7. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used the biogeochemical model, PnET-BGC. The model was calibrated to the study watersheds using observations from the natural and experimental ice storms. Future projections for ice storm events were estimated from an advanced climate model and applied to the calibrated PnET-BGC model to simulate future impacts of ice storms on the northern hardwood forests.

  8. Concentrations and Loads of Organic Compounds and Trace Elements in Tributaries to Newark and Raritan Bays, New Jersey

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2007-01-01

    A study was undertaken to determine the concentrations and loads of sediment and chemicals delivered to Newark and Raritan Bays by five major tributaries: the Raritan, Passaic, Rahway, Elizabeth, and Hackensack Rivers. This study was initiated by the State of New Jersey as Study I-C of the New Jersey Toxics Reduction Workplan for the New York-New Jersey Harbor, working under the NY-NJ Harbor Estuary Program (HEP) Contaminant Assessment and Reduction Program (CARP). The CARP is a comprehensive effort to evaluate the levels and sources of toxic contaminants to the tributaries and estuarine areas of the NY-NJ Harbor, including Newark and Raritan Bays. The Raritan and Passaic Rivers are large rivers (mean daily discharges of 1,189 and 1,132 cubic feet per second (ft3/s), respectively), that drain large, mixed rural/urban basins. The Elizabeth and Rahway Rivers are small rivers (mean daily discharges of 25.9 and 49.1 ft3/s, respectively) that drain small, highly urbanized and industrialized basins. The Hackensack River drains a small, mixed rural/urban basin, and its flow is highly controlled by an upstream reservoir (mean daily discharge of 90.4 ft3/s). These rivers flow into urbanized estuaries and ultimately, to the Atlantic Ocean. Each of these tributaries were sampled during two to four storm events, and twice each during low-flow discharge conditions. Samples were collected using automated equipment installed at stations adjacent to U.S. Geological Survey streamflow-gaging stations near the heads-of-tide of these rivers. Large-volume (greater than 50 liters of water and a target of 1 gram of sediment), flow-weighted composite samples were collected for chemical analysis using filtration to collect suspended particulates and exchange resin (XAD-2) to sequester dissolved contaminants. Composite whole-water samples were collected for dissolved polycyclic aromatic hydrocarbons (PAH) and for trace element analysis. Additional discrete grab samples were collected throughout each event for trace-element analysis, and multiple samples were collected for suspended sediment (SS), particulate carbon (POC), and dissolved organic carbon (DOC) analysis. The suspended sediment and exchange resin were analyzed for 114 polychlorinated biphenyls (PCBs, by US EPA method 1668A, modified), seven 2,3,7,8-substituted chlorinated dibenzo-p-dioxins (CDD) and 10 dibenzo-p-difurans (CDF) (by US EPA method 1613), 24 PAHs (by low-resolution isotope dilution/mass-spectral methods), 27 organo-chlorine pesticides (OCPs) (by high resolution isotope dilution/mass-spectral methods), and the trace elements mercury (Hg), methyl-mercury (MeHg), lead (Pb), and cadmium (Cd). Isotope dilution methods using gas chromatography and high-and low-resolution mass spectral (GC/MS) detection were used to accurately identify and quantify organic compounds in the sediment and water phases. Trace elements were measured using inductively coupled plasma-mass spectrometry and cold-vapor atomic fluorescence spectrometry methods. The loads of sediment, carbon, and chemicals were calculated for each storm and low-flow event sampled. Because only a few storm events were sampled, yearly loads of sediment were calculated from rating curves developed using historical SS and POC data. The average annual loads of sediment and carbon were calculated for the period 1975-2000, along with the loads for the selected water years being modeled as part of the New York New Jersey Harbor Estuary Program CARP. Comparison of loads calculated using the rating curve method to loads measured during the sampled storm events indicated that the rating curve method likely underpredicts annual loads. Average annual loads of suspended sediment in the tributaries were estimated to be 395,000 kilograms per year (kg/yr) in the Hackensack River, 417,000 kg/yr in the Elizabeth River, 882,000 kg/yr in the Rahway River, 22,700,000 kg/yr in the Passaic River, and 93,100,000 kg/yr in the Raritan River. Averag

  9. Ionospheric storms—A challenge for empirical forecast of the total electron content

    NASA Astrophysics Data System (ADS)

    Borries, C.; Berdermann, J.; Jakowski, N.; Wilken, V.

    2015-04-01

    Since the last decades, the functioning of society depends more and more on well-functioning communication and navigation systems. As the availability and reliability of most of these satellite-based systems can be severely impacted by ionospheric storms, the accurate forecast of these events becomes a required task for mitigating social and economic risks. Here we aim to make initial steps toward an empirical model for ionospheric perturbations related to space weather events that are observable in the total electron content (TEC). The perturbation TEC forecast model will be a fast and robust approach, improving TEC forecasts based on climatological models during storm conditions. The derivation of such a model is a challenging task, because although a general dependence of the storm features (enhancement or depletion of electron density) on the storm onset time, local time, season and geomagnetic latitude is well known, there is a large deviation from the mean behavior. For a better understanding of storm conditions, this paper presents analyses of ionospheric storms observed in the TEC, broken down into diverse classes of storms. It provides a detailed characterization of the typical ionospheric storm behavior over Europe from high to midlatitudes, beyond case studies. Generally, the typical clear strong TEC enhancement starting in high latitudes and propagating equatorward is found to be strongest for storms starting in the morning hours independent of the season. In midlatitudes, it is strongest during noon. In addition, a clear difference between summer and winter storms is reported. While only winter storms develop high-latitude TEC enhancements, only summer storms typically exhibit TEC depletions during the storm recovery phase. During winter storms TEC enhancements can also occur the day following the storm onset, in contrast to summer storms. Strong correlation of TEC perturbation amplitudes to the Bz component of the interplanetary magnetic field and to a proxy of the polar cap potential are shown especially for summer midlatitude TEC enhancements during storms with and onset in the morning hours (6 to 12 UT over Europe) and for winter high-latitude TEC enhancements (around 60∘N). The results indicate the potential to derive improved predictions of maximum TEC deviations during space weather events, based on solar wind measurements.

  10. Geometric effects of ICMEs on geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  11. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    PubMed

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  12. Contribution of storms to shoreline changes in mesotidal dissipative beaches: case study in the Gulf of Cádiz (SW Spain)

    NASA Astrophysics Data System (ADS)

    Puig, María; Del Río, Laura; Plomaritis, Theocharis A.; Benavente, Javier

    2016-12-01

    In this study an analysis of storminess and rates of shoreline change is performed and discussed jointly in four geomorphological units of the Gulf of Cádiz (SW Spain) for the period of 1956-2010. For this purpose, storm events are identified based on the following characteristics: wave height above 2.5 m, a minimum duration of 12 h and events with calm periods of less than 24 h were considered as a single event. Subsequently, energy parameters are determined in order to characterize storm-induced impacts. Conversely, geographic information system (GIS) tools are used to measure shoreline changes in aerial photographs and orthophotographs of each site, selecting the high water line as shoreline proxy. Each geomorphological unit is divided into different behavioural patterns according to recorded coastal changes, so that each one shows a particular behaviour.In general the variability of shoreline changes that is explained by storms and the relation between storm parameters and coastal changes present better results in exposed areas (Cádiz and Vistahermosa) than in sheltered areas (Valdelagrana spit barrier) because the former are more sensitive to storm impacts. On the contrary, in areas where there is no relation between coastal changes and storm parameters (Valdelagrana and Sancti Petri sand spit), it is suggested that anthropogenic factors are the main forcing agents determining shoreline behaviour. However, in these areas the storminess also modulates coastline recession by increasing erosion when the number of storms is high.

  13. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode

    PubMed Central

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-01-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387

  14. Revisiting the cold season surge generating storms of the east coast in the 20th century

    NASA Astrophysics Data System (ADS)

    Lee, D. E.; Kushnir, Y.; Booth, J. F.

    2014-12-01

    Cold season storms in the East coast of the United States often threaten the coastal livelihood. This is a study to connect the recorded extreme cold season surges with the storms in the past, spanning from the early 20th Century. We find the 20th century reanalysis data (20CR) useful for this study, for its temporal coverage sufficiently overlaps with the modern tidal records. The storm tracks are obtained from the cold season (NDJFMA) sea level pressure field from 20CR, using the popular tracking algorithm by K.Hodges. In seeking for fidelity in the storm data, we made two major efforts: The climatology and the known climate signals imbedded in the track data are verified against those of ERA-interim reanalysis, and against the storms tracked by an independent algorithm (GISS-MCMS). In addition, it is statistically confirmed that the storm tracks and the sea level pressure fields based on 20CR around the east coast area exhibit temporal homogeneity. In the Battery, we select top 100 cold season water displacement events from the 6-hour mean water height data from 1927 to 2012, with linear trend and tide removed. Among the tracks passing close enough to the Battery, we found 91 matches. Distinctive track characteristics stand out when the positive surge events are separated from the negative surge events. More characteristic parameters of the storms are investigated according to further surge classification.

  15. Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 - Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Cheng, C. L.; Huang, Y.; Tao, J.; Ren, Y. Q.; Wu, F.; Meng, J. J.; Li, J. J.; Cheng, Y. T.; Cao, J. J.; Liu, S. X.; Zhang, T.; Zhang, R.; Chen, Y. B.

    2014-11-01

    A total suspended particulate (TSP) sample was collected hourly in Xi'an, an inland megacity of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00-12 March 10:00 LT), along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC) and nitrogen (WSON), inorganic ions and elements to investigate chemistry evolution of dust particles. Hourly concentrations of Cl-, NO3-, SO42-, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m-3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that during the whole observation period NH4+ and NO3- were linearly correlated with each other (r2=0.76) with a molar ratio of 1 : 1, while SO42- and Cl- were well correlated with Na+, Ca2+, Mg2+ and K+ (r2 > 0.85). Size distributions of NH4+ and NO3- presented a same pattern, which dominated in the coarse mode (> 2.1 μm) during the event and predominated in the fine mode (< 2.1 μm) during the non-event. SO42- and Cl- also dominated in the coarse mode during the event hours, but both exhibited two equivalent peaks in both the fine and the coarse modes during the non-event, due to the fine-mode accumulations of secondarily produced SO42- and biomass-burning-emitted Cl- and the coarse-mode enrichments of urban soil-derived SO42- and Cl-. Linear fit regression analysis further indicated that SO42- and Cl- in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3- in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic salts such as Na2SO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3- during the dust period were secondarily produced via this pathway, with the remaining derived from the Gobi desert and Loess Plateau, while SO42- in the event almost entirely originated from the desert regions. Such cases are different from those in the East Asian continental outflow region, where during Asia dust storm events SO42- is secondarily produced and concentrates in sub-micrometer particles as (NH4)2SO4 and/or NH4HSO4. To the best of our knowledge, the current work for the first time revealed an infant state of the East Asian dust ageing process in the regions near the source, which is helpful for researchers to understand the panorama of East Asian dust ageing process from the desert area to the downwind region.

  16. A Method for Simulating Sedimentation of Fish Eggs to Generate Biological Effects Data for Assessing Dredging Impacts

    DTIC Science & Technology

    2017-03-01

    activities, as well as other causes of sedimentation (e.g., agricultural practices, storm events, tidal flows). BACKGROUND AND PROBLEM: Many naturally...effects originating from many sources (e.g., agriculture , storm event, tidal flows) on multiple aquatic species and life stages. Multiple experimental

  17. Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida.

    PubMed

    Ahmed, Warish; Lobos, Aldo; Senkbeil, Jacob; Peraud, Jayme; Gallard, Javier; Harwood, Valerie J

    2017-12-24

    CrAssphage are recently-discovered DNA bacteriophages that are prevalent and abundant in human feces and sewage. We assessed the performance characteristics of a crAssphage quantitative PCR (qPCR) assay for quantifying sewage impacts in stormwater and surface water in subtropical Tampa, Florida. The mean concentrations of crAssphage in untreated sewage ranged from 9.08 to 9.98 log 10 gene copies/L. Specificity was 0.927 against 83 non-human fecal reference samples and the sensitivity was 1.0. Cross-reactivity was observed in DNA extracted from soiled poultry litter but the concentrations were substantially lower than untreated sewage. The presence of the crAssphage marker was monitored in water samples from storm drain outfalls during dry and wet weather conditions in Tampa, Florida. In dry weather conditions, 41.6% of storm drain outfalls samples were positive for the crAssphage marker and the concentrations ranged from 3.60 to 4.65 log 10 gene copies/L of water. After a significant rain event, 66.6% of stormwater outlet samples were positive for the crAssphage marker and the concentration ranged from 3.62 to 4.91 log 10 gene copies/L of water. The presence of the most commonly used Bacteroides HF183 marker in storm drain outfalls was also tested along with the crAssphage. Thirteen samples (55%) were either positive (i.e., both markers were present) or negative (i.e., both markers were absent) for both the markers. Due to the observed cross-reactivity of this marker with DNA extracted from poultry litter samples, it is recommended that this marker should be used in conjunction with additional markers such as HF183. Our data indicate that the crAssphage marker is highly sensitive to sewage, is adequately specific, and will be a valuable addition to the MST toolbox. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Changes in the Mechanisms Causing Rapid Drought Cessation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Maxwell, Justin T.; Knapp, Paul A.; Ortegren, Jason T.; Ficklin, Darren L.; Soulé, Peter T.

    2017-12-01

    The synoptic processes that end droughts are poorly understood, yet have significant climatological implications. Here we examined the spatiotemporal patterns of rapid drought cessation (RDC) in the southeastern United States during the1979-2013 warm season (April-November) for three storm types: Frontal, Tropical, and Air mass. We defined RDC as a 1 month shift in soil moisture sufficient to alleviate an existing drought. We found that 73% of all warm-season droughts were ended by RDC events and the three storm-type groups ended droughts over similar spatial areas. Frontal storms were the most frequent mechanism for RDC events, yet their occurrences significantly decreased and were negatively related to increases in Northern Hemisphere air temperatures. Projected future warming in the Northern Hemisphere suggests a continued decline in the frequency and relative contribution of Frontal storms as RDC events, potentially influencing the timing and spatial scale of drought cessation in the southeastern U.S.

  19. A sampling plan for conduit-flow karst springs: Minimizing sampling cost and maximizing statistical utility

    USGS Publications Warehouse

    Currens, J.C.

    1999-01-01

    Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.

  20. Dust storms and the risk of asthma admissions to hospitals in Kuwait.

    PubMed

    Thalib, Lukman; Al-Taiar, Abdullah

    2012-09-01

    Arid areas in the Arabian Peninsula are one of the largest sources of global dust, yet there is no data on the impact of this on human health. This study aimed to investigate the impact of dust storms on hospital admissions due to asthma and all respiratory diseases over a period of 5 years in Kuwait. A population-based retrospective time series study of daily emergency asthma admissions and admissions due to respiratory causes in public hospitals in Kuwait was analyzed in relation to dust storm events. Dust storm days were defined as the mean daily PM(10)>200 μg/m(3) based on measurements obtained from all six monitoring sites in the country. During the five-year study period, 569 (33.6%) days had dust storm events and they were significantly associated with an increased risk of same-day asthma and respiratory admission, adjusted relative risk of 1.07 (95% CI: 1.02-1.12) and 1.06 (95% CI: 1.04-1.08), respectively. This was particularly evident among children. Dust storms have a significant impact on respiratory and asthma admissions. Evidence is more convincing and robust compared to that from other geographical settings which highlights the importance of public health measures to protect people's health during dust storms and reduce the burden on health services due to dust events. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The Identification of Hail Storms in the Early Stage Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Shi, Jinyu; Hou, Jinyi; Hu, Yan

    2018-01-01

    This study investigates the characteristics of hail storms and cumulonimbus storms in China from 2005 to 2016. Ten features are proposed to identify storm cells that can produce hail, especially in the early stage of hail formation. These features describe hail storms based on three factors: the height and thickness of the cell core, the radar echo intensity, and the overhang structure and the horizontal reflectivity gradient. The 10 features are transformed into two-dimensional comprehensive features by principal component analysis (PCA). The two comprehensive features are named the volume measurement comprehensive feature (VMCF) and the height-gradient comprehensive feature (HGCF). Through an analysis of 49 hail cases and 35 heavy rainfall cases with S-band radar data, the time series exhibit a distinct increase in VMCF or HGCF values in the early stage of a hail storm. However, the VMCF and HGCF values of heavy rainfall events remain relatively stable throughout the storm life cycle. An experiment involving real-storm events, including 31 hail cases and 33 heavy rainfall cases, indicated that the probability of detection of hail storms was 93.33% and the false alarm ratio was 15.66%. In the cases that could be successfully identified as hail storms, 80.00% were detected within 18 min of reaching a hail storm reflectivity of 40 dBZ.

  2. Effects of Extreme Events on Arsenic Cycling in Salt Marshes

    NASA Astrophysics Data System (ADS)

    Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.

    2018-03-01

    Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.

  3. Weak linkage between the heaviest rainfall and tallest storms.

    PubMed

    Hamada, Atsushi; Takayabu, Yukari N; Liu, Chuntao; Zipser, Edward J

    2015-02-24

    Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.

  4. The "perfect storm" in compensation: convergence of events leads to a greater need to review compensation strategies.

    PubMed

    Jones, Robert B

    2004-01-01

    The recent unprecedented convergence of significant strategic events in the compensation arena has created the need for ongoing and extensive compensation planning. This article reviews the events leading to this point, describes the implications of the results from a recent Aon study with WorldatWork, and suggests what employers can do to successfully navigate the "perfect storm" in compensation.

  5. Tracking the evolution of stream DOM source during storm events using end member mixing analysis based on DOM quality

    NASA Astrophysics Data System (ADS)

    Yang, Liyang; Chang, Soon-Woong; Shin, Hyun-Sang; Hur, Jin

    2015-04-01

    The source of river dissolved organic matter (DOM) during storm events has not been well constrained, which is critical in determining the quality and reactivity of DOM. This study assessed temporal changes in the contributions of four end members (weeds, leaf litter, soil, and groundwater), which exist in a small forested watershed (the Ehwa Brook, South Korea), to the stream DOM during two storm events, using end member mixing analysis (EMMA) based on spectroscopic properties of DOM. The instantaneous export fluxes of dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent components were all enhanced during peak flows. The DOC concentration increased with the flow rate, while CDOM and humic-like fluorescent components were diluted around the peak flows. Leaf litter was dominant for the DOM source in event 2 with a higher rainfall, although there were temporal variations in the contributions of the four end members to the stream DOM for both events. The contribution of leaf litter peaked while that of deeper soils decreased to minima at peak flows. Our results demonstrated that EMMA based on DOM properties could be used to trace the DOM source, which is of fundamental importance for understanding the factors responsible for river DOM dynamics during storm events.

  6. Assessing dry weather flow contribution in TSS and COD storm events loads in combined sewer systems.

    PubMed

    Métadier, M; Bertrand-Krajewski, J L

    2011-01-01

    Continuous high resolution long term turbidity measurements along with continuous discharge measurements are now recognised as an appropriate technique for the estimation of in sewer total suspended solids (TSS) and Chemical Oxygen Demand (COD) loads during storm events. In the combined system of the Ecully urban catchment (Lyon, France), this technique is implemented since 2003, with more than 200 storm events monitored. This paper presents a method for the estimation of the dry weather (DW) contribution to measured total TSS and COD event loads with special attention devoted to uncertainties assessment. The method accounts for the dynamics of both discharge and turbidity time series at two minutes time step. The study is based on 180 DW days monitored in 2007-2008. Three distinct classes of DW days were evidenced. Variability analysis and quantification showed that no seasonal effect and no trend over the year were detectable. The law of propagation of uncertainties is applicable for uncertainties estimation. The method has then been applied to all measured storm events. This study confirms the interest of long term continuous discharge and turbidity time series in sewer systems, especially in the perspective of wet weather quality modelling.

  7. Hurdles to Overcome to Model Carrington Class Events

    NASA Astrophysics Data System (ADS)

    Engel, M.; Henderson, M. G.; Jordanova, V. K.; Morley, S.

    2017-12-01

    Large geomagnetic storms pose a threat to both space and ground based infrastructure. In order to help mitigate that threat a better understanding of the specifics of these storms is required. Various computer models are being used around the world to analyze the magnetospheric environment, however they are largely inadequate for analyzing the large and extreme storm time environments. Here we report on the first steps towards expanding and robustifying the RAM-SCB inner magnetospheric model, used in conjunction with BATS-R-US and the Space Weather Modeling Framework, in order to simulate storms with Dst > -400. These results will then be used to help expand our modelling capabilities towards including Carrington-class events.

  8. Molecular Hysteresis of Dissolved Organic Matter in the Connecticut River Watershed

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Hoyle, J. B.; Matt, S.; Raymond, P. A.; Saiers, J. E.; Dittmar, T.; Stubbins, A.

    2017-12-01

    Rainfall-runoff processes have emerged as key controllers of the quantity and quality of terrestrial dissolved organic matter (DOM) exported from the landscape to inland waters. Hydrological events result in increased river discharge and a concomitant release of large amounts of DOM into fluvial networks. This study is part of a Macrosystems project which aims to test the Pulse-Shunt Concept: where rivers are converted from active to passive pipes during high discharge events ("pulse"), transporting labile, terrestrial DOM downstream ("shunt"), and relocating biogeochemical hotspots for DOM from the upper to the lower reaches of the watershed. The primary objective of our study was to track hysteretic changes in riverine DOM molecular composition over the course of a storm event. Samples were collected from nested watersheds in the Passumpsic River catchment, a tributary of the Connecticut River (USA). High resolution monitoring (via in-situ sondes) and high frequency collection of discreet samples (for FT-ICR/MS and other analyses) was necessary to capture short-term, hydrologically-driven variations in DOM concentration and composition. At the onset of the discharge event, we observed a unique DOM signature, enriched in aliphatic, and potentially biolabile, DOM. During peak discharge, and along the falling limb of the hydrograph, an aromatic, terrestrial-type DOM signature was more prevalent. These initial findings support the pulse-shunt hypothesis, providing evidence for the release of labile forms of DOM into rivers during the onset of a storm event, which apparently persists across low-to-high stream orders. Insights into the molecular hysteresis of fluvial DOM spotlights the impact of watershed hydrology on biogeochemical cycling in river networks.

  9. Storm event-scale nutrient attenuation in constructed wetlands experiencing a Mediterranean climate: A comparison of a surface flow and hybrid surface-subsurface flow system.

    PubMed

    Adyel, Tanveer M; Oldham, Carolyn E; Hipsey, Matthew R

    2017-11-15

    Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evidence of extreme storm events from coral boulder deposits on the southern coast of Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Gao, S.

    2017-12-01

    The southern coast of Hainan Island in China is one of the most frequently hit areas of tropical cyclones in the Pacific Northwest regions. Long-term storm data are important to reconstruct past extreme wave events, for understanding present-day coastal vulnerability. However, the magnitude of storm and typhoon events in the historical period over the northwestern South China Sea is still poorly understood. A primary study was carried out to investigate into the characteristics of a carbonate boulder field found at the Xiaodonghai (XDH) site on the southern coast of Hainan Island, in order to derive the maximum spatial extent, wave height, and velocity of coastal flooding and to determine the type of extreme wave events responsible for the boulder distributions. We recorded the position, shape, size, and the long axis orientation of 1247 of the boulders, with the a-axes being between 0.52 and 3.76 m. A morphometric analysis of the boulders shows that they are distributed within 160 m of the reef edge, with an exponential fining trend shoreward. Numerical models are used to estimate the minimum wave height and minimum flow velocity required to move these boulders. Flow velocities of 1.76-14.73 m/s and storm wave height of 0.47-15.87 m are needed to displace the measured boulders deposited near the mean sea level. These values are consistent with the dataset of storm boulder transport at other sites in the Asia-Pacific region and local instrumental records. Overall, the carbonate boulder deposits at the XDH site implies that the area is exposed to giant storm waves capable of displacing the very large boulders observed here. The recurrence of a similar storm event in the future will have the potential to cause severe coastal flooding damage on this densely populated part of the low-lying coastlines of Hainan Island.

  11. Using isotopes of dissolved inorganic carbon species and water to separate sources of recharge in a cave spring, northwestern Arkansas, USA Blowing Spring Cave

    USGS Publications Warehouse

    Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.

    2013-01-01

    Blowing Spring Cave in northwestern Arkansas is representative of cave systems in the karst of the Ozark Plateaus, and stable isotopes of water (δ18O and δ2H) and inorganic carbon (δ13C) were used to quantify soil-water, bedrock-matrix water, and precipitation contributions to cave-spring flow during storm events to understand controls on cave water quality. Water samples from recharge-zone soils and the cave were collected from March to May 2012 to implement a multicomponent hydrograph separation approach using δ18O and δ2H of water and dissolved inorganic carbon (δ13C–DIC). During baseflow, median δ2H and δ18O compositions were –41.6‰ and –6.2‰ for soil water and were –37.2‰ and –5.9‰ for cave water, respectively. Median DIC concentrations for soil and cave waters were 1.8 mg/L and 25.0 mg/L, respectively, and median δ13C–DIC compositions were –19.9‰ and –14.3‰, respectively. During a March storm event, 12.2 cm of precipitation fell over 82 h and discharge increased from 0.01 to 0.59 m3/s. The isotopic composition of precipitation varied throughout the storm event because of rainout, a change of 50‰ and 10‰ for δ2H and δ18O was observed, respectively. Although, at the spring, δ2H and δ18O only changed by approximately 3‰ and 1‰, respectively. The isotopic compositions of precipitation and pre-event (i.e., soil and bedrock matrix) water were isotopically similar and the two-component hydrograph separation was inaccurate, either overestimating (>100%) or underestimating (<0%) the precipitation contribution to the spring. During the storm event, spring DIC and δ13C–DIC decreased to a minimum of 8.6 mg/L and –16.2‰, respectively. If the contribution from precipitation was assumed to be zero, soil water was found to contribute between 23 to 72% of the total volume of discharge. Although the assumption of negligible contributions from precipitation is unrealistic, especially in karst systems where rapid flow through conduits occurs, the hydrograph separation using inorganic carbon highlights the importance of considering vadose-zone soil water when analyzing storm chemohydrographs.

  12. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.

    PubMed

    Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V

    2017-08-04

    Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. A History of the Martian Dust Storms

    NASA Astrophysics Data System (ADS)

    McKim, R. J.

    2005-08-01

    The author reviews historical observations of Martian dust storms from the earliest telescopic records up to the present day (see R.J.McKim, Telescopic Martian Dust Storms: A Narrative and Catalogue, Memoirs of the British Astronomical Association, volume 44, 1999 (166 pp)). The earliest record begins with Maraldi in 1704. The term ``yellow cloud" was coined by Burton (1879). The first event which attracted much attention was the regional dust storm of 1894 October-November. The first planet-encircling event was that of 1909. The daily evolution of dust storms began to be studied in 1911; photography would not help until 1922. Other milestones in our understanding of the phenomenon are illustrated and explained. The telescopic literature is littered with errors of fact and interpretation, and the author describes some of the pitfalls and successes in the analysis of old telescopic records.

  14. Assessment and comparison of extreme sea levels and waves during the 2013/2014 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-04-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/2014 winter caused extensive coastal flooding and damage. In such circumstances, coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. We therefore provide these levels for the winter storms, as well as discussing their application to the given data sets and case studies (two UK case study sites: Sefton, northwest England; and Suffolk, east England). We use tide gauge records and wave buoy data to compare the 2013/2014 storms with return periods from a national dataset, and also generate joint probabilities of sea level and waves, incorporating the recent events. The UK was hit at a national scale by the 2013/2014 storms, although the return periods differ with location. We also note that the 2013/2014 high water and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a very high return period at both case study sites. Our return period analysis shows that the national scale impact of this event is due to its coincidence with spring high tide at multiple locations as the tide and storm propagated across the continental shelf. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment should be recorded alongside details of defence performance and upgrade, with other variables (e.g. river levels at estuarine locations) included and appropriate offsetting for linear trends (e.g. mean sea level rise) so that the storm-driven component of coastal flood events can be determined. Local offsetting of the mean trends in sea level allows long-term comparison of storm severity and also enables an assessment of how sea level rise is influencing return levels over time, which is important when considering long-term coastal resilience in strategic management plans.

  15. Characterizing Storm Event Dynamics of a Forested Watershed in the Lower Atlantic Coastal Plain, South Carolina USA

    NASA Astrophysics Data System (ADS)

    Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.

    2007-12-01

    Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar watersheds in the Lower Coastal Plain of the Southeast U.S.

  16. Multiple storm event impacts on epikarst storage and transport of organic soil amendments in South-Central Kentucky.

    USDA-ARS?s Scientific Manuscript database

    The groundwater in agricultural karst areas is susceptible to contamination from organic soil amendments and pesticides. During major storm events of winter and spring 2011, dye traces were initiated using sulphorhodamine-B, fluorescein and eosine in a known groundwater recharge area where manure wa...

  17. Using XRF Geochemical Data to Differentiate Storm Event Deposits in a Backbarrier Lake in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Dietz, M.; Liu, K. B.; Bianchette, T. A.; Yao, Q.; McCloskey, T.

    2016-12-01

    Hurricanes Gustav and Ike consecutively impacted coastal Louisiana in 2008 and generated significant storm surges. Three sediment cores taken from Bay Champagne, a coastal backbarrier lake near Port Fourchon, Louisiana, clearly show a deposition layer of clastic sediment up to 17 cm thick attributable to these two storms. X-ray fluorescence (XRF) analysis indicates that the two storm events can be distinguished from one another based on contrasting geochemical profiles. The bottom layer, presumably deposited by Hurricane Gustav, has high concentrations of S, Cl, Ca, and Sr, suggesting a strong marine influence. The top layer, presumably attributed to Hurricane Ike, has high concentrations of Ti, Mn, Fe and Zn, indicative of material of terrestrial origin. The elemental concentration profiles suggest that the storm deposits in each core were deposited through two distinct hydrological processes: a storm surge -driven marine intrusion during Hurricane Gustav, followed by intensive freshwater flooding during Hurricane Ike. Using these deposits as modern analogs, this technique could be applied to characterize older storm layers in the sedimentary record and potentially provide information about their respective depositional mechanisms.

  18. Subtropical Dust Storms and Downslope Wind Events

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie

    2017-10-01

    We performed detailed mesoscale observational analyses and Weather Research and Forecasting (WRF) model simulations to study the terrain-induced downslope winds that generated dust-emitting winds at the beginning of three strong subtropical dust storms in three distinctly different regions of North Africa and the Arabian Peninsula. We revisit the Harmattan dust storm of 2 March 2004, the Saudi dust storm of 9 March 2009, and the Bodélé Depression dust storm of 8 December 2011 and use high-resolution WRF modeling to assess the dynamical processes during the onset of the storms in more depth. Our results highlight the generation of terrain-induced downslope winds in response to the transition of the atmospheric flow from a subcritical to supercritical state in all three cases. These events precede the unbalanced adjustment processes in the lee of the mountain ranges that produced larger-scale dust aerosol mobilization and transport. We see that only the higher-resolution data sets can resolve the mesoscale processes, which are mainly responsible for creating strong low-level terrain-induced downslope winds leading to the initial dust storms.

  19. Sorted bedform pattern evolution: Persistence, destruction and self-organized intermittency

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Murray, A. Brad; Coco, Giovanni

    2011-12-01

    We investigate the long-term evolution of inner continental shelf sorted bedform patterns. Numerical modeling suggests that a range of behaviors are possible, from pattern persistence to spatial-temporal intermittency. Sorted bedform persistence results from a robust sorting feedback that operates when the seabed features a sufficient concentration of coarse material. In the absence of storm events, pattern maturation processes such as defect dynamics and pattern migration tend to cause the burial of coarse material and excavation of fine material, leading to the fining of the active layer. Vertical sorting occurs until a critical state of active layer coarseness is reached. This critical state results in the local cessation of the sorting feedback, leading to a self-organized spatially intermittent pattern, a hallmark of observed sorted bedforms. Bedforms in shallow conditions and those subject to high wave climates may be temporally intermittent features as a result of increased wave orbital velocity during storms. Erosion, or deposition of bimodal sediment, similarly leads to a spatially intermittent pattern, with individual coarse domains exhibiting temporal intermittence. Recurring storm events cause coarsening of the seabed (strengthening the sorting feedback) and the development of large wavelength patterns. Cessation of storm events leads to the superposition of storm (large wavelength) and inter-storm (small wavelength) patterns and spatial heterogeneity of pattern modes.

  20. Low latitude ionospheric TEC responses to dynamical complexity quantifiers during transient events over Nigeria

    NASA Astrophysics Data System (ADS)

    Ogunsua, Babalola

    2018-04-01

    In this study, the values of chaoticity and dynamical complexity parameters for some selected storm periods in the year 2011 and 2012 have been computed. This was done using detrended TEC data sets measured from Birnin-Kebbi, Torro and Enugu global positioning system (GPS) receiver stations in Nigeria. It was observed that the significance of difference (SD) values were mostly greater than 1.96 but surprisingly lower than 1.96 in September 29, 2011. The values of the computed SD were also found to be reduced in most cases just after the geomagnetic storm with immediate recovery a day after the main phase of the storm while the values of Lyapunov exponent and Tsallis entropy remains reduced due to the influence of geomagnetic storms. It was also observed that the value of Lyapunov exponent and Tsallis entropy reveals similar variation pattern during storm period in most cases. Also recorded surprisingly were lower values of these dynamical quantifiers during the solar flare event of August 8th and 9th of the year 2011. The possible mechanisms responsible for these observations were further discussed in this work. However, our observations show that the ionospheric effects of some other possible transient events other than geomagnetic storms can also be revealed by the variation of chaoticity and dynamical complexity.

  1. Monitoring Hurricane Rita Inland Storm Surge: Chapter 7J in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    McGee, Benton D.; Tollett, Roland W.; Goree, Burl B.

    2007-01-01

    Pressure transducers (sensors) are accurate, reliable, and cost-effective tools to measure and record the magnitude, extent, and timing of hurricane storm surge. Sensors record storm-surge peaks more accurately and reliably than do high-water marks. Data collected by sensors may be used in storm-surge models to estimate when, where, and to what degree stormsurge flooding will occur during future storm-surge events and to calibrate and verify stormsurge models, resulting in a better understanding of the dynamics of storm surge.

  2. Water Quality, Fish Tissue, and Bed Sediment Monitoring in Waterbodies of Fort Chaffee Maneuver Training Center, Arkansas, 2002-2004

    USGS Publications Warehouse

    Justus, B.G.; Stanton, Gregory P.

    2005-01-01

    The Fort Chaffee Maneuver Training Center is a facility used to train as many as 50,000 Arkansas National Guardsmen each year. Due to the nature of ongoing training and also to a poor understanding of environmental procedures that were practiced in the World War II era, areas within Fort Chaffee have the potential to be sources of a large number of contaminants. Because some streams flow on to Fort Chaffee, there is also the potential for sources that are off post to affect environmental conditions on post. This study evaluates constituent concentrations in water, fish tissue, and bed sediment collected from waterbodies on Fort Chaffee between September 2002 and July 2004. Constituent concentrations detected in the three media and measured at nine stream sites and four lake sites were compared to national and regional criteria when available. Two of the larger streams, Big and Vache Grasse Creeks, were sampled at multiple sites. All three sampled media were analyzed for insecticides, PCBs, explosives, and trace elements. Additionally, water samples were analyzed for nutrients and herbicides. The different constituents detected in the three sample media (water, fish tissue, and bed sediment) indicate that land-use activities both on and off post are influencing environmental conditions. Contaminants such as explosives that were sometimes detected in water samples have an obvious relation to military training; however, the occurrence and locations of some nutrients, insecticides, and trace elements suggest that land use both on and off post also could be influencing environmental conditions to some degree. Constituent concentrations at sites on Vache Grasse Creek, and particularly the most upstream site, which was located immediately downstream from an off-post wastewater-treatment facility, indicate that environmental conditions were being influenced by an off-post source. The most upstream site on Vache Grasse Creek had both the highest number of detections and the highest concentrations detected of all sites sampled. Event-mean storm concentrations and storm loads calculated from storm-flow samples at two sites each for Big and Vache Grasse Creeks indicate that storm loads were highest at the two Vache Grasse Creek sites for 24 of the 25 constituents detected. Further evaluation by normalizing storm loads at Big Creek to storm loads at Vache Grasse Creek by stream flow indicate that event loads at Vache Grasse Creek were about two or more times higher than those on Big Creek for 15 of the 25 constituents measured. Low concentrations of arsenic and lead were detected in water samples, but all detections for the two trace elements occurred in samples collected at the upstream site on Vache Grasse Creek. The nickel concentration in fish livers collected from the upstream site on Vache Grasse Creek was 45 percent higher than the median of a national study of 145 sites. Mercury concentrations in edible fish tissue, which are a widespread concern in the United States, exceeded an USEPA criterion for methylmercury of 300 ?g/kg in four of nine samples; however, concentrations are typical of mercury concentrations in fish tissues for the State of Arkansas. Constituent concentrations at some sites indicate that environmental conditions are being influenced by on-post activities. Of the 55 (excluding total organic carbon) organic constituents analyzed in water samples, only 10 were detected above the minimum detection limit but four of those were explosives. Bed-sediment samples from one site located on Grayson Creek, and nearest the administrative and residential (cantonment) area, had detections for arsenic, copper, lead, manganese, nickel, and zinc that were above background concentrations, and concentrations for arsenic and nickel at this site exceeded lowest effect level criteria established by the U.S. Environmental Protection Agency. The site on Grayson Creek also had the only detections of DDT metabolites in bed sedi

  3. Climate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond—a real-time event attribution revisited

    NASA Astrophysics Data System (ADS)

    Otto, Friederike E. L.; van der Wiel, Karin; van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah F.; Uhe, Peter; Cullen, Heidi

    2018-02-01

    On 4-6 December 2015, storm Desmond caused very heavy rainfall in Northern England and Southern Scotland which led to widespread flooding. A week after the event we provided an initial assessment of the influence of anthropogenic climate change on the likelihood of one-day precipitation events averaged over an area encompassing Northern England and Southern Scotland using data and methods available immediately after the event occurred. The analysis was based on three independent methods of extreme event attribution: historical observed trends, coupled climate model simulations and a large ensemble of regional model simulations. All three methods agreed that the effect of climate change was positive, making precipitation events like this about 40% more likely, with a provisional 2.5%-97.5% confidence interval of 5%-80%. Here we revisit the assessment using more station data, an additional monthly event definition, a second global climate model and regional model simulations of winter 2015/16. The overall result of the analysis is similar to the real-time analysis with a best estimate of a 59% increase in event frequency, but a larger confidence interval that does include no change. It is important to highlight that the observational data in the additional monthly analysis does not only represent the rainfall associated with storm Desmond but also that of storms Eve and Frank occurring towards the end of the month.

  4. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    PubMed

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  5. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    PubMed Central

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo. PMID:22547978

  6. Evaluation of a Socio-Hydrologic Model for the Rebuilding of Biloxi, Mississippi

    NASA Astrophysics Data System (ADS)

    Calhoun, J. L.; O'Donnell, F. C.; Burton, C. G.

    2017-12-01

    In August 2005, Hurricane Katrina ripped through the Gulf Coast of the United States causing billions in damage. The storm cost the City of Biloxi, Mississippi $355 million in infrastructure repair, which is being constructed with funding from the Federal Emergency Management Agency (FEMA). Approximately 30% of the city's storm systems including storm drains, bridges and culverts are being replaced and updated utilizing FEMA Hazard Mitigation funding to lessen the impact of future natural disasters. The infrastructure is being upgraded from conveying a 4% annual chance storm event to a 1% annual chance storm event. An extensive socio-economic data set of the impacts of Hurricane Katrina along the Mississippi Gulf Coast was used to analyze recovery in the area. The recovery data set assessed the area directly after the storm in 2005 thru 2010 with an analysis of recovery five years after the storm. This study uses a dynamic socio-hydrologic model with modifications to relate the change in flow capacity of engineered structures and socio-economic processes. The results will be used to assess the hypothesis that raising flood protection increases the base flood elevation levels and therefore requires a higher level of flood protection. The increase in flood protect eases the fears of the community leading them to not require additional flood protection when developing in flood prone areas and strengthening the socio-hydrologic association. The results will also be evaluated to create a tool for the City of Biloxi to improve their resilience from future hurricanes and storm surge events.

  7. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    NASA Astrophysics Data System (ADS)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  8. Extreme Storm Surges in the North Sea

    NASA Astrophysics Data System (ADS)

    Goennert, G.; Buß, Th.; Mueller, O.; Thumm, S.

    2009-04-01

    Extreme Storm Surges in the North Sea Gabriele Gönnert, Olaf Müller, Thomas Buß and Sigrid Thumm Climate Change will cause a rise of the sea level and probably more frequent and more violent storm surges. This has serious consequences for the safety of people as well as for their values and assets behind the dikes. It is therefore inevitable to first assess how sea level rise and an extreme storm surge event designes. In a second step it is possible to determine the risk for specific locations and develop strategies. The Project XtremRisk - Extreme Storm Surges at the North Sea Coast and in Estuaries. Risk calculation and risk strategies, funded by the German Federal Government will help answering these questions. The „Source-Pathway-Receptor" Concept will be used as a basis for risk analysis and development of new strategies. The Project offers methods to assess the development of extreme events under the conditions of today. Under conditions reflecting the climate change it will be tried to design an extreme event. For these three main points will be considered: a) Analysis and calculation of each factor, which produce a storm surge and its maximum level occurring in the last 100 years. These are: - maximum surge level: surge (due to the wind), - influence of the tide and the interaction between surge and tide, - influence of external surges , b) The hydrodynamics of a storm surge cause nonlinear effects in the interaction of the named factors. These factors and effects will both be taken into account to calculate the magnitude of the extreme storm surge. This step is very complex and need additional examination by numerical models. c) Analysis of the different scenarios to mean sea level rise and to the increase of wind speed due to the climate change. The presentation will introduce methods and show first results of the analysis of extreme events and the mean sea level rise.

  9. Urbanisation impacts on storm runoff along a rural-urban gradient

    NASA Astrophysics Data System (ADS)

    Miller, James David; Hess, Tim

    2017-09-01

    Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Eugene; Pierce, Julia; Mahat, Vinod

    This project is a part of the Regional Resiliency Assessment Program, led by the Department of Homeland Security, to address flooding hazards of regional significance for Portland, Maine. The pilot study was performed by Argonne National Laboratory to identify differences in spatial rainfall distributions between the radar-derived and rain-gauge rainfall datasets and to evaluate their impacts on urban flooding. The flooding impact analysis utilized a high-resolution 2-dimensional (2-D) hydrodynamic model (15 ft by 15 ft) incorporating the buildings, streets, stream channels, hydraulic structures, an existing city storm drain system, and assuming a storm surge along the coast coincident with amore » heavy rainfall event. Two historical storm events from April 16, 2007, and September 29, 2015, were selected for evaluation. The radar-derived rainfall data at a 200-m resolution provide spatially-varied rainfall patterns with a wide range of intensities for each event. The resultant maximum flood depth using data from a single rain gauge within the study area could be off (either under- or over-estimated) by more than 10% in the 2007 storm and more than 60% in the 2015 storm compared to the radar-derived rainfall data. The model results also suggest that the inundation area with a flow depth at or greater than 0.5 ft could reach 11% (2007 storm) and 17% (2015 storm) of the total study area, respectively. The lowland areas within the neighborhoods of North Deering, East Deering, East and West Baysides and northeastern Parkside, appear to be more vulnerable to the flood hazard in both storm events. The high-resolution 2-D hydrodynamic model with high-resolution radar-derived rainfall data provides an excellent tool for detailed urban flood analysis and vulnerability assessment. The model developed in this study could be potentially used to evaluate any proposed mitigation measures and optimize their effects in the future for Portland, ME.« less

  11. Contributions of human activities to suspended sediment yield during storm events from a small, steep, tropical watershed

    NASA Astrophysics Data System (ADS)

    Messina, A. M.; Biggs, T. W.

    2016-07-01

    Suspended sediment concentrations (SSC) and yields (SSY) were measured during storm and non-storm periods from undisturbed and human-disturbed portions of a small (1.8 km2), mountainous watershed that drains to a sediment-stressed coral reef. Event-wise SSY (SSYEV) was calculated for 142 storms from measurements of water discharge (Q), turbidity (T), and SSC measured downstream of three key sediment sources: undisturbed forest, an aggregate quarry, and a village. SSC and SSYEV were significantly higher downstream of the quarry during both storm- and non-storm periods. The human-disturbed subwatershed (10.1% disturbed) accounted for an average of 87% of SSYEV from the watershed. Observed sediment yield (mass) to the coast, including human disturbed subwatersheds, was 3.9× the natural background. Specific SSY (mass/area) from the disturbed quarry area was 49× higher than from natural forest compared with 8× higher from the village area. Similar to mountainous watersheds in semi-arid and temperate climates, SSYEV from both the undisturbed and disturbed watersheds correlated closely with maximum event discharge (Qmax), event total precipitation and event total Q, but not with the Erosivity Index. Best estimates of annual SSY varied by method, from 45 to 143 tons/km2/yr from the undisturbed subwatershed, 441-598 tons/km2/yr from the human-disturbed subwatershed, and 241-368 tons/km2/yr from the total watershed. Sediment yield was very sensitive to disturbance; the quarry covers 1.1% of the total watershed area, but contributed 36% of SSYEV. Given the limited access to gravel for infrastructure development, sediment disturbance from local aggregate mining may be a critical sediment source on remote islands in the Pacific and elsewhere. Identification of erosion hotspots like the quarry using rapid, event-wise measures of suspended sediment yield will help efforts to mitigate sediment stress and restore coral reefs.

  12. Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-10-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/14 winter caused extensive coastal flooding and damage. Coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. This paper provides these levels for the winter storms, and discusses their application to the given data sets for two UK case study sites: Sefton, northwest England, and Suffolk, east England. Tide gauge records and wave buoy data were used to compare the 2013/14 storms with return periods from a national data set, and also joint probabilities of sea level and wave heights were generated, incorporating the recent events. The 2013/14 high waters and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a high return period at both case study sites. The national-scale impact of this event was due to its coincidence with spring high tide at multiple locations. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment could in the future be recorded alongside defence performance and upgrade. Ideally other variables (e.g. river levels at estuarine locations) would also be included, and with appropriate offsetting for local trends (e.g. mean sea-level rise) so that the storm-driven component of coastal flood events can be determined. This could allow long-term comparison of storm severity, and an assessment of how sea-level rise influences return levels over time, which is important for consideration of coastal resilience in strategic management plans.

  13. Geological record of severe storm impacts along the Texas Coast

    NASA Astrophysics Data System (ADS)

    Wallace, D.; Anderson, J. B.; Yu, W.

    2008-12-01

    Hurricanes act as one of the primary controls on barrier island migration through wave and wind energy, and their frequency has been suggested to indicate changes in climate (El Niño) cycles. Texas has an extensive coastline containing barriers in various stages of evolution. Through a detailed sedimentological examination and radiocarbon age constraints of offshore storm sands, beach ridge breaching events, storm surge channels, and washovers, we offer a geologic record of severe storm impacts along the Texas Coast. From offshore core data, we ascertain that sand storage along the upper and lower shoreface (the profile of which is controlled by catastrophic storm impacts) is minimal over geologic timescales (i.e. 100-1000 years). Hence, an offshore record of storm impact is lacking. Using high resolution LIDAR data, we map breaching events of prominent beach ridges. Storm surge channels on the bayside of barriers (which are cut by water flowing towards the Gulf of Mexico when storm surge recedes) are also being dated, although they likely record lower magnitude storms. This study reveals that hurricane washover formation is only a minor contributor to sand transport within the system, as accumulation rates in back-barriers range from .095 - .4m/C. By examining the sedimentological components of hurricane impacts, we establish a hurricane impact chronology and conclude that the frequency of major storms along the Texas Coast is actually quite minimal.

  14. Amount and Percentage of Current Societal Assets in Areas on Kaua'i, Hawai'i, within the 1992 Hurricane 'Iniki Storm-Surge Inundation Zone

    USGS Publications Warehouse

    Wood, Nathan

    2008-01-01

    The Pacific Risk Management 'Ohana (PRiMO) is a network of partners and stakeholders involved in the development, delivery, and communication of risk management-related information, products, and services across the Pacific Ocean (National Oceanic and Atmospheric Administration Pacific Services Center, 2008). One PRiMO-related project is the NOAA National Climatic Data Center's Integrated Data and Environmental Applications (IDEA) Center's Pacific Region Integrated Climatology Information Products (PRICIP) initiative, which seeks to improve the understanding of patterns and trends of storm frequency and intensity ('storminess') within the Pacific region and to develop a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies, and other decision-makers (National Oceanic and Atmospheric Administration Integrated Data and Environmental Applications Center, 2008a). One of the PRICIP information products is a historical storm 'event anatomy', which includes a summary of sector-specific socioeconomic impacts associated with a particular event, as well as information about the event and its climatological context. The intent of an event anatomy is to convey the causes of an extreme storm event and the associated impacts in a format that users can understand. The event anatomies also are intended to familiarize users with the in-place and remotely sensed products typically employed to track and forecast weather and climate. The first event anatomy developed as a prototype and hosted on the PRICIP portal is for Hurricane 'Iniki (National Oceanic and Atmospheric Administration Integrated Data and Environmental Applications Center, 2008b), a Category 3-4 hurricane that made landfall on the south coast of Kaua'i Island on September 11, 1992, with estimated maximum sustained winds of more than 140 mph and gusts as high as 175 mph. Storm-surge inundation occurred on the southern and northeastern coast of Kaua'i Island. In an effort to increase the amount of available information on the Hurricane 'Iniki event anatomy of the PRICIP portal, representatives from the NOAA NCDC IDEA Center contacted the U.S. Geological Survey (USGS) in 2007 for assistance in determining what current societal assets are in areas that were inundated by storm surge during Hurricane 'Iniki in 1992. This report contains data summarizing the amount and percentage of current societal assets on Kaua'i Island, Hawai'i, that exist in the historic Hurricane 'Iniki storm-surge inundation zone. Coupled with an array of information on the socioeconomic impacts of Hurricane 'Iniki and distributed through the PRICIP portal, the results of this effort will help managers and the general public to understand the current risks posed by extreme storms in the Pacific Basin.

  15. Dust Storms in the United States are Associated with Increased Cardiovascular Mortality

    EPA Science Inventory

    Background: Extreme weather events such as dust storms are predicted to become more frequent as the global climate warms through the 21st century. Studies of Asian, Saharan, Arabian, and Australian dust storms have found associations with cardiovascular and total non-accidental...

  16. What Role do Nor'Easters have on the Jamaica Bay Wetlands Sediment Budget?

    NASA Astrophysics Data System (ADS)

    Clarke, R. C.; Bentley, S. J.; Wang, H.; Smith, J.

    2017-12-01

    The wetlands of Jamaica Bay, located on the outskirts of Queens, New York, have lost over half their surface area in the last 50 years due both anthropogenic and natural causes, including channel dredging, urban drainage construction, and greater tidal amplitudes partially due to rising local sea levels. Superstorm Sandy made landfall in 2014 as a powerful coastal geomorphic agent, highlighting the vulnerability of that region to large cyclonic storms that are more commonly encountered along coastal reaches of southeastern North America. After this event, research aimed at quantifying the geomorphic impact of Superstorm Sandy and to evaluate the record of past documented major winter storms on Jamaica Bay's wetlands. 12 sediment cores were collected from the surface of remaining wetlands in August 2014 by the USGS Wetland and Aquatic Research Center; the cores have been analyzed for Pb-210/Cs-137 geochronology, organic content, and water content to establish chronology of mineral sediment supply to the wetlands over the past 120 years. Most cores were found to be organic-rich, marked with periodic cm-scale beds with increased mineral content. Historic storm data, dating as far back as the late 1800's, were used to identify hurricanes and major winter storms determined by the National Weather Service passing within 100 km of the study area. Likely storm-event deposits in each core were identified as layers with mineral content higher than the core mean plus one standard deviation, and were matched to historic events via radioisotope geochronology, incorporating age-model uncertainty. Overall, 22 out of the 35 defined storm layers match the timing of historic strong storms (within uncertainty ranging from 2 to 5 years) from 1894 to Superstorm Sandy in 2014. Our findings show that over multidecadal timescales, nor'easters and winter storms play a role in the vertical accretion of sediment in the Jamaica Bay wetlands, but are substantially less important than sediment delivery under typical tidal conditions. Event deposits from tropical cyclones are also present, but less common than those produced by frontal storms.

  17. Concentration-discharge responses to storm events in coastal California watersheds

    NASA Astrophysics Data System (ADS)

    Aguilera, R.; Melack, J. M.

    2017-12-01

    Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Non-linear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON and PO43-) and total suspended solids (TSS) during storms across ten sites and water years 2002 to 2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types: constituents associated with sediment transport (PO43- and TSS) were flushed during storm events, whereas nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anti-clockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Storm responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anti-clockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. By the middle of the season, the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation, which implied high initial concentrations and proximal sources by the end of the season.

  18. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Treesearch

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  19. Major Geomagnetic Storms (Dst less than or equal to -100 nT) Generated by Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Webb, D. F.; Zhang, J.; Berdichevsky, B. D.; Biesecker, D. A.; Kasper, J. C.; Kataoka, R.; Steinberg, J. T.; Thompson, B. J.; Wu, C.-C.; hide

    2006-01-01

    Seventy-nine major geomagnetic storms (minimum Dst less than or equal to -100 nT) observed in 1996 to 2004 were the focus of a Living with a Star Coordinated Data-Analysis Workshop (CDAW) in March, 2005. In 9 cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material (interplanetary coronal mass ejections, ICMEs). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst approx. -40 nT but is subject to a prominent seasonal variation of - 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction towards or away from the Sun. The O'Brien and McPherron [2000] equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst approx. 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September - November, 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst less than or equal to -100 nT storms in 1972 - 1995, is (Dst = -161 nT). This is consistent with the maximum storm strength (Dst approx. -180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind electric fields associated with CIRs. This suggests that CIRs alone are unlikely to generate geomagnetic storms that exceed these levels.

  20. Gigantic Jets and the Tropical Paradigm: A Satellite Perspective

    NASA Astrophysics Data System (ADS)

    Lazarus, S. M.; Splitt, M. E.

    2017-12-01

    While not exclusively oceanic, gigantic jets (GJ) appear to have a preference for the tropical environment. In particular, a number of GJs have been observed in conjunction with tropical disturbances (i.e., weak tropical storms, depressions, and remnant lows). Given the remote aspect of TC convection and general lack of radar coverage, we explore this subset of events via analysis of their infrared and water vapor satellite presentations. The satellite perspective is relevant given that storm top mixing (dilution) of charge associated with storm-scale turbulence in this portion of the storm is thought to be connected to GJs. The thunderstorm overshoot, upper level divergence / outflow are examined in an effort to better understand the tropical paradigm. Specifically, an analysis of cloud top temperature, anvil expansion rates and asymmetries as well as placement of the GJ events with respect to the large (storm) scale circulation will be conducted.

  1. Atmospheric bioaerosols transported via dust storms in the western United States

    NASA Astrophysics Data System (ADS)

    Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig

    2011-09-01

    Measurements are presented showing the presence of biological material within frequent dust storms in the western United States. Previous work has indicated that biological particles were enhancing the impact of dust storms on the formation of clouds. This paper presents multiple case studies, between April and May 2010, showing the presence of and quantifying the amount of biological material via an Ultraviolet Aerodynamic Particle Sizer during dust events. All dust storms originated in the Four Corners region in the western Untied States and were measured at Storm Peak Laboratory, a high elevation facility in northwestern Colorado. From an Aerodynamic Particle Sizer, the mean dust particle size during these events was approximately 1 μm, with number concentrations between 6 cm-3 and 12 cm-3. Approximately 0.2% of these dust particles had fluorescence signatures, indicating the presence of biological material.

  2. Can Regional Climate Modeling Capture the Observed Changes in Spatial Organization of Extreme Storms at Higher Temperatures?

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasko, C.; Johnson, F.; Evans, J. P.; Sharma, A.

    2018-05-01

    The spatial extent and organization of extreme storm events has important practical implications for flood forecasting. Recently, conflicting evidence has been found on the observed changes of storm spatial extent with increasing temperatures. To further investigate this question, a regional climate model assessment is presented for the Greater Sydney region, in Australia. Two regional climate models were considered: the first a convection-resolving simulation at 2-km resolution, the second a resolution of 10 km with three different convection parameterizations. Both the 2- and the 10-km resolutions that used the Betts-Miller-Janjic convective scheme simulate decreasing storm spatial extent with increasing temperatures for 1-hr duration precipitation events, consistent with the observation-based study in Australia. However, other observed relationships of extreme rainfall with increasing temperature were not well represented by the models. Improved methods for considering storm organization are required to better understand potential future changes.

  3. Satellite microwave observations of a storm complex: A comparative analysis

    NASA Technical Reports Server (NTRS)

    Martin, D. W.

    1985-01-01

    The hypothesis that cold events correspond to a particular stage in a class of thunderstorms was tested. That class is a storms class which updrafts are: (1) strong, broad and moist, and (2) extend well above the freezing level. Condition (1) implies strong mesoscale forcing. Condition (2) implies a tall updraft or a relatively low freezing level. Such storms should have big, intense radar echoes and cold, fast-growing anvils. The thunderstorm events were analyzed by radar, rain gauge and GOES infrared observations. Radar was the starting point for detection and definition of the hypothesized thunderstorms. The radar signature is compared to the signature of the storm in rain gauge observations, satellite infrared images and satellite microwave images.

  4. Increasing Risk Awareness: The Coastal Community Resilience Index

    ERIC Educational Resources Information Center

    Thompson, Jody A.; Sempier, Tracie; Swann, LaDon

    2012-01-01

    As the number of people moving to the Gulf Coast increases, so does the risk of exposure to floods, hurricanes, and other storm-related events. In an effort to assist communities in preparing for future storm events, the Coastal Community Resilience Index was created. The end result is for communities to take actions to address the weaknesses they…

  5. Characteristics of aerosol and meteorological parameters during major dust storm events (2005 - 2010) over Beijing, China

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Cao, Chunxiang; Singh, Ramesh

    Multi satellite sensors are capable in monitoring dust storm, its path and changes in atmospheric parameters. The present paper discusses aerosol optical properties and meteorological parameters during major dust storm events (2005-2010) over Beijing, China. The back trajectory model shows that the dust is transported from the Inner Mongolia and Mongolia to Beijing. High aerosol optical depth (AOD) and low Ångström exponent (AE) values are observed during dusty days, the average AOD (675 nm) and AE (440-870 nm) during dusty days are 2.33 and 0.06, respectively. The aerosol size distribution (ASD) in coarse mode shows a large increase in the volume during dusty days. The single scattering albedo (SSA) increases with higher wavelength on dusty days, and higher compared to non-dusty days, indicating the presence of high scattering particles due to dust storm events. Characteristics of particles during dusty and non-dusty days are also supported by the real and imaginary parts of refractive index (RI). High air pollution index (API) during dusty days represent poor air quality is a serious health hazard at the time of dust events. The CO volume mixing ratio (COVMR) from Atmospheric Infrared Sounder (AIRS) shows decrease on the ground on dusty days, while the relative humidity (RH) and H _{2}0 mass mixing ratio (H _{2}OMMR) enhance. In addition, due to the dust storm in 2005, enhanced level of water vapor (WV) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is observed in and around Beijing over the dust storms track.

  6. Storm Water Retention on Three Green Roofs with Distinct Climates

    NASA Astrophysics Data System (ADS)

    Breach, P. A.; Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.; Powers, B. S. C.

    2014-12-01

    As urbanization continues to increase the impact of cities on their surrounding environments, the feasibility of implementing low-impact development such as green roofs is of increasing interest. Green roofs retain and attenuate storm water thereby reducing the load on urban sewer systems. In addition, green roofs can provide insulation and lower roof surface temperature leading to a decrease in building energy load. Green roof technology in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines. The capacity of a green roof to moderate runoff depends on the storage capacity of the growing medium at the start of a rainfall event. Storage capacity is finite, which makes rapid drainage and evapotranspiration loss critical for maximizing storage capacity between subsequent storms. Here the retention and attenuation of storm events are quantified for experimental green roof sites located in three representative Canadian climates corresponding to; semiarid conditions in Calgary, Alberta, moderate conditions in London, Ontario, and cool and humid conditions in Halifax, Nova Scotia. The storage recovery and storm water retention at each site is modelled using a modified water balance approach. Components of the water balance including evapotranspiration are predicted using climate data collected from 2012 to 2014 at each of the experimental sites. During the measurement period there were over 300 precipitation events ranging from small, frequent events (< 2 mm) to a storm with a 250 year return period. The modeling approach adopted provides a tool for planners to assess the feasibility of implementing green roofs in their respective climates.

  7. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  8. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. Themore » evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.« less

  9. Partitioning of Metals Throughout a Winter Storm-Generated Fluid Mud Event, Atchafalaya Shelf, Louisiana

    NASA Astrophysics Data System (ADS)

    Clark, F. R.; McKee, B. A.; Duncan, D. D.

    2002-12-01

    Particulate and dissolved phases of a suite of metals and radionuclides were analyzed in fluid mud samples collected during a time series. This time series was taken during the passage of a winter storm on the Atchafalaya Shelf off the coast of Louisiana. The shelf receives an estimated 30% of the flow of the Mississippi River from its distributary, the Atchafalaya River. This input contributes a high sediment load to the shelf. Frequent winter storms provide shear stress to resuspend sediments and form fluid mud. Samples of fluid mud and overlying water were collected every two hours for 56 hours. Meteorological data as well as turbidity measurements by OBS were collected throughout the study. Bottom sediments were also collected before and after the time series. Partitioning effects were investigated on Be7, Th234, and Pb210 by gamma spectroscopy. These effects were also studied on several redox-sensitive metals, including Fe, Mn, Mo, Te, Re, U, Al, Ti, and V by ICP-MS analysis. Preliminary results indicate a rapid establishment of reducing conditions in fluid mud immediately overlying the seabed. These conditions persist until the suspended sediments in the fluid mud settle, and the fluid mud dissipates. The recurrence of storm front passages and their subsequent fluid mud formation cause repeated cycling from oxic to suboxic conditions in these coastal bottom waters. This redox cycling could potentially alter the fates of redox-sensitive metals, especially those associated with metal oxide carrier phases.

  10. An investigation of recent storm histories using Ground Penetrating Radar at Bay-Bay Spit, Bicol, Central Philippines

    NASA Astrophysics Data System (ADS)

    Switzer, Adam D.; Pile, Jeremy; Soria, Janneli Lea A.; Siringan, Fernando; Daag, Arturo; Brill, Dominik

    2016-04-01

    The Philippine archipelago lies in the path of seasonal tropical cyclones, and much of the coast is prone to periodic inundation and overwash during storm surges. On example is typhoon Durian a category 3 storm that made landfall on the 30th November 2006, in Bicol province, on the east central Philippine coast. Satellite imagery from May 2007 reveal that Durian breached a sandy spit that runs southeast from the mouth of the Quinale River at Bay-Bay village towards Tabaco City. The imagery also showed that, although the breach site showed signs of partial recovery, geomorphological evidence of the inundation event associated with typhoon Durian still remains. In 2012 we mapped the geomorphological features of Durian. In June 2013 we returned to conduct Ground Penetrating Radar (GPR) surveys on the Bay-Bay spit to investigate potential subsurface evidence of previous storm events. The GPR surveys comprised five, 1.5 km, longshore profiles and 12 cross-shore profiles, of 50 m - 200 m in length. The GPR system used for this study was a Sensors and Software Noggin with 100 Mhz antennas. Near surface velocities were determine using Hyperbolae matching in order to estimate depth. Topographic and positional data were collected using a dGPS system. After minimal processing depth of penetration during the survey varied from 2 - 8 m. The cross-shore GPR profiles reveal at least two erosional events prior to 2006 typhoon Durian, with approximately 10 m of recovery and progradation between each erosion surface. The GPR profiles that captured the erosional features were revisited in September 2013 for trial pitting, stratigraphic description, and sediment sampling. Sediment cores were taken horizontally from the trench walls and vertically from the trench bases to date sediments using Optically Stimulated Luminescence (OSL), which eventually could constrain the timing of the erosional surfaces.

  11. Impacts of Extreme Space Weather Events on Power Grid Infrastructure: Physics-Based Modelling of Geomagnetically-Induced Currents (GICs) During Carrington-Class Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.; Bent, R.; Chen, Y.; Delzanno, G. L.; Jeffery, C. A.; Jordanova, V. K.; Morley, S.; Rivera, M. K.; Toth, G.; Welling, D. T.; Woodroffe, J. R.; Engel, M.

    2017-12-01

    Large geomagnetic storms can have devastating effects on power grids. The largest geomagnetic storm ever recorded - called the Carrington Event - occurred in 1859 and produced Geomagnetically Induced Currents (GICs) strong enough to set fires in telegraph offices. It has been estimated that if such a storm occurred today, it would have devastating, long-lasting effects on the North American power transmission infrastructure. Acutely aware of this imminent threat, the North American Electric Reliability Corporation (NERC) was recently instructed to establish requirements for transmission system performance during geomagnetic disturbance (GMD) events and, although the benchmarks adopted were based on the best available data at the time, they suffer from a severely limited physical understanding of the behavior of GMDs and the resulting GICs for strong events. To rectify these deficiencies, we are developing a first-of-its-kind data-informed modelling capability that will provide transformational understanding of the underlying physical mechanisms responsible for the most harmful intense localized GMDs and their impacts on real power transmission networks. This work is being conducted in two separate modes of operation: (1) using historical, well-observed large storm intervals for which robust data-assimilation can be performed, and (2) extending the modelling into a predictive realm in order to assess impacts of poorly and/or never-before observed Carrington-class events. Results of this work are expected to include a potential replacement for the current NERC benchmarking methodology and the development of mitigation strategies in real power grid networks. We report on progress to date and show some preliminary results of modeling large (but not yet extreme) events.

  12. Changes of circulatory and nervous diseases mortality patterns during periods of exceptional solar events

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2017-04-01

    The paper contains a statistical analysis of exceptional solar events and daily numbers of deaths from diseases from ICD-10 group VI. Diseases of the nervous system, group IX. Diseases of the circulatory system, and overall daily numbers of deaths in the Czech Republic. It is demonstrated that neurological diseases exhibit greater instability during the period of rising and falling solar activity. Specifically, we study the daily number of deaths separately for both sexes at the age groups under 39 and 40+ during the Solar Cycles No. 23 and No. 24. We focus mainly on exceptional solar events such as a "Bastille Day event" on July 14, 2000 (class X5), "Halloween solar storm" on October 28, 2003 (class X17), and events on January 7, 1997, April 2, 2000 (class X20), or September 7, 2005 (class X15). Special attention is given to "St. Patrick's Day storm" on March 17, 2015, the strongest geomagnetic storm of the Solar Cycle No. 24 that occurred following a coronal mass ejection (CME). We investigate changes in daily numbers of deaths during 1 month before and 1 month after these exceptional solar events. We take specific storm dynamics of geophysical parameters into consideration, and we also apply the results of risky characteristics of expositions by ionospheric and geomagnetic parameters. It is verified that, for diseases of the nervous system, women are generally more sensitive than men. On the contrary, this differences between men and women are not found for diseases of the circulatory system. Our findings suggest that the impact of hazardous space weather conditions on human health depends on the specific course and strength of individual solar storm.

  13. A green roof experimental site in the Mediterranean climate: the storm water quality issue.

    PubMed

    Gnecco, Ilaria; Palla, Anna; Lanza, Luca G; La Barbera, Paolo

    2013-01-01

    Since 2007, the University of Genoa has been carrying out a monitoring programme to investigate the hydrologic response of green roofs in the Mediterranean climate by installing a green roof experimental site. In order to assess the influence of green roofs on the storm water runoff quality, water chemistry data have been included in the monitoring programme since 2010, providing rainfall and outflow data. For atmospheric source, the bulk deposition is collected to evaluate the role of the overall atmospheric deposition in storm water runoff quality. For subsurface outflow, a maximum of 24 composite samples are taken on an event basis, thus aiming at a full characterization of the outflow hydrograph. Water chemistry data reveal that the pollutant loads associated with green roof outflow is low; in particular, solids and metal concentrations are lower than values generally observed in storm water runoff from traditional rooftops. The concentration values of chemical oxygen demand, total dissolved solids, Fe, Ca and K measured in the subsurface outflow are significantly higher than those observed in the bulk deposition (p < 0.05). With respect to the atmospheric deposition, the green roof behaviour as a sink/source of pollutants is investigated based on both concentration and mass.

  14. Adjustment of regional regression models of urban-runoff quality using data for Chattanooga, Knoxville, and Nashville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.; Patel, Anant R.

    1996-01-01

    Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.

  15. Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Krylov, Aleksey

    2017-04-01

    Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.

  16. The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)

    NASA Astrophysics Data System (ADS)

    Ni, Y. Y.

    2018-03-01

    We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.

  17. U.S. Energy Disruptions

    EIA Publications

    EIA tracks and reports on selected significant storms that impact or could potentially impact energy infrastructure. See past historical events reported or real-time storm tracking with energy infrastructure maps.

  18. Empirical regression models for estimating nitrogen removal in a stormwater wetland during dry and wet days.

    PubMed

    Guerra, Heidi B; Park, Kisoo; Kim, Youngchul

    2013-01-01

    Due to the highly variable hydrologic quantity and quality of stormwater runoff, which requires more complex models for proper prediction of treatment, a relatively few and site-specific models for stormwater wetlands have been developed. In this study, regression models based on extensive operational data and wastewater wetlands were adapted to a stormwater wetland receiving both base flow and storm flow from an agricultural area. The models were calibrated in Excel Solver using 15 sets of operational data gathered from random sampling during dry days. The calibrated models were then applied to 20 sets of event mean concentration data from composite sampling during 20 independent rainfall events. For dry days, the models estimated effluent concentrations of nitrogen species that were close to the measured values. However, overestimations during wet days were made for NH(3)-N and total Kjeldahl nitrogen, which resulted from higher hydraulic loading rates and influent nitrogen concentrations during storm flows. The results showed that biological nitrification and denitrification was the major nitrogen removal mechanism during dry days. Meanwhile, during wet days, the prevailing aerobic conditions decreased the denitrification capacity of the wetland, and sedimentation of particulate organic nitrogen and particle-associated forms of nitrogen was increased.

  19. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.

    PubMed

    Burnette, Dylan T; Sengupta, Prabuddha; Dai, Yuhai; Lippincott-Schwartz, Jennifer; Kachar, Bechara

    2011-12-27

    Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.

  20. Quantification of non-stormwater flow entries into storm drains using a water balance approach.

    PubMed

    Xu, Zuxin; Yin, Hailong; Li, Huaizheng

    2014-07-15

    To make decisions about correcting illicit or inappropriate connections to storm drains, quantification of non-stormwater entries into storm drains was performed using a water flow balance approach, based on data analysis from 2008 to 2011 in a separate storm drainage system in a Shanghai downtown area of 374 ha. The study revealed severe sewage connections to storm drains; meanwhile, misconnections between surface water and storm drains were found to drive frequent non-stormwater pumping discharges at the outfall, producing a much larger volume of outfall flows in a short period. This paper presented a methodology to estimate quantities of inappropriate sewage flow, groundwater infiltration and river water backflow into the storm drains. It was concluded that inappropriate sewage discharge and groundwater seepage into storm drains were approximately 17,860 m(3)/d (i.e., up to 51% of the total sewage flow in the catchment) and 3,624 m(3)/d, respectively, and surface water backflow was up to an average 28,593 m(3)/d. On the basis of this work, end-of-storm pipe interceptor sewers of 0.25 m(3)/s (i.e., 21,600 m(3)/d) would be effective to tackle the problem of sewage connections and groundwater seepage to storm drains. Under this circumstance, the follow-up non-stormwater outfall pumping events indicate misconnections between surface water and storm drains, featuring pumping discharge equivalent to surface water backflow; hence the misconnections should be repaired. The information provided here is helpful in estimating the magnitude of non-stormwater flow entries into storm drains and designing the necessary pollution control activities, as well as combating city floods in storm events. Copyright © 2014. Published by Elsevier B.V.

  1. Rainfall, Discharge, and Water-Quality Data During Stormwater Monitoring, July 1, 2008, to June 30, 2009 - Halawa Stream Drainage Basin and the H-1 Storm Drain, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.

    2009-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream, and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at five stations, and water-quality data at six stations, which include the five continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2008, and June 30, 2009. Within the Halawa Stream drainage area, three storms (October 25 and December 11, 2008, and February 3, 2009) were sampled during July 1, 2008, to June 30, 2009. A total of 43 environmental samples were collected during these three storms. During the storm of October 25, 2009, 31 samples were collected and analyzed individually for metals only. The other 12 samples from the other two storms were analyzed for some or all of the following analytes: total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for some or all of the following analytes: oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some grab and composite samples were analyzed for only a partial list of these analytes, either because samples could not be delivered to the laboratory in a timely manner, or an insufficient volume of sample was collected by the automatic samplers. Two quality-assurance/quality-control samples were collected after cleaning automatic sampler lines to verify that the sampling lines were not contaminated. Four environmental samples were collected at the H-1 Storm Drain during July 1, 2008, to June 30, 2009. An oil and grease sample and a composite sample were collected during the storm on November 15, 2008, and two composite samples were collected during the January 11, 2009, storm. All samples at this site were collected using an automatic sampler. Samples were analyzed for some or all of the following analytes: total suspended solids, nutrients, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). One qualityassurance/quality-control sample was collected after cleaning automatic sampler lines to verify that the sampling lines were not contaminated. During the storm of January 11, 2009, the two composite samples collected at H-1 Storm Drain were collected about three hours apart. Higher constituent concentrations were detected in the first 2 composite sample relative to the second composite sample, although the average discharge was higher during the period when the second sample was collected.

  2. From mess to mass: a methodology for calculating storm event pollutant loads with their uncertainties, from continuous raw data time series.

    PubMed

    Métadier, M; Bertrand-Krajewski, J-L

    2011-01-01

    With the increasing implementation of continuous monitoring of both discharge and water quality in sewer systems, large data bases are now available. In order to manage large amounts of data and calculate various variables and indicators of interest it is necessary to apply automated methods for data processing. This paper deals with the processing of short time step turbidity time series to estimate TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) event loads in sewer systems during storm events and their associated uncertainties. The following steps are described: (i) sensor calibration, (ii) estimation of data uncertainties, (iii) correction of raw data, (iv) data pre-validation tests, (v) final validation, and (vi) calculation of TSS and COD event loads and estimation of their uncertainties. These steps have been implemented in an integrated software tool. Examples of results are given for a set of 33 storm events monitored in a stormwater separate sewer system.

  3. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  4. Time-Scales of Storm Flow Response in the Stream and Hyporheic Zone of a Small, Steep Forested Catchment - Contrasting the Potential Contributions from the Hillslope, Riparian-Hyporheic Zones, and the Stream Channel

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-rikert, H.; Haggerty, R.

    2016-12-01

    Storm-flow responses of small catchments are widely studied to identify water sources and mechanisms routing water through catchments. These studies typically observe rapid responses to rainfall with peak concentrations of many chemical constituents occurring on rising leg of the hydrograph. To explain this, some conceptual models suggest that stream water early in storm periods is dominated by riparian water sources with hillslope water sources dominating later in the storm. We examined changes in both stream and hyporheic water chemistry during a small, autumn storm in a forested mountain catchment to test this conceptual model. Our study site was located in WS01 at the H.J. Andrews Experimental Forest, in Oregon, USA. The watershed has a narrow valley floor, always less than 15 m wide and occasionally interrupted by narrow, constrained bedrock sections. The valley floor has a longitudinal gradient of approximately 14%. Hyporheic water tends to flow parallel the valley axis and flow paths change little with changes in stream discharge, even during storm events. A well network is located in a 30-m reach near the bottom of the watershed. We sampled the stream, 9 hyporheic wells, and a hillslope well for DOC, DIC, Cl-, and NO3- during the storm. As expected, concentrations of DOC and NO3- increased rapidly on the rising leg of the hydrograph in both the stream and the hyporheic wells. However, the stream always had higher concentrations of DOC, and lower concentrations of NO3-, than did either the hillslope well or the hyporheic wells. These data suggest that the riparian/hyporheic zone is not a likely source of water influencing stream water chemistry on the rising leg of the hydrograph. These data agree with median travel time estimates of water flowing along hyporheic flow paths - it takes many 10s of hours for water to move from the riparian/hyporheic zone to the stream - a time scale that is far too slow to explain the rapid changes observed on the rising leg of the hydrograph. These data suggest that much of the early storm responses in stream chemistry may be generated by in-channel processes, or processes occurring in the shallow streambed with very short hyporheic residence times; the influence of the riparian zone, most of the hyporheic zone, or hillslopes must occur much later in the storm event.

  5. Linking on-farm dairy management practices to storm-flow fecal coliform loading for California coastal watersheds.

    PubMed

    Lewis, D J; Atwill, E R; Lennox, M S; Hou, L; Karle, B; Tate, K W

    2005-08-01

    How and where to improve water quality within an agricultural watershed requires data at a spatial scale that corresponds with individual management decision units on an agricultural operation. This is particularly true in the context of water quality regulations, such as Total Maximum Daily Loads (TMDLs), that identify agriculture as one source of non-point source pollution through larger tributary watershed scale and above and below water quality investigations. We have conducted a systems approach study of 10 coastal dairies and ranches to document fecal coliform concentration and loading to surface waters at the management decision unit scale. Water quality samples were collected on a storm event basis from loading units that included: manure management systems; gutters; storm drains; pastures; and corrals and lots. In addition, in-stream samples were collected above and below the dairy facilities and from a control watershed, managed for light grazing and without a dairy facility or human residence and corresponding septic system. Samples were analyzed for fecal coliform concentration by membrane filtration. Instantaneous discharge was measured for each collected sample. Storm runoff was also calculated using the curve number method (SCS, 1985). Results for a representative dairy as well as the entire 10 dairy data set are presented. Fecal coliform concentrations demonstrate high variability both within and between loading units. Fecal coliform concentrations for pastures range from 206 to 2,288,888 cfu/100 ml and for lots from 1,933 to 166,105,000 cfu/100 ml. Mean concentrations for pastures and lots are 121,298 (SE = 62,222) and 3,155,584 (SE = 1,902,713) cfu/100 ml, respectively. Fecal coliform load from units of concentrated animals and manure are significantly more than units such as pastures while storm flow amounts were significantly less. Compared with results from earlier tributary scale studies in the watershed, this systems approach has generated water quality data that is beneficial for management decisions because of its scale and representation of current management activities. These results are facilitating on-farm changes through the cooperative efforts of dairy managers, regulatory agency staff, and sources of technical and financial assistance.

  6. Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii.

    PubMed

    Paul, J H; Rose, J B; Jiang, S C; London, P; Xhou, X; Kellogg, C

    1997-01-01

    Public concern over the discharge of primarily treated sewage by two offshore outfalls in Mamala Bay, Oahu, prompted a multidisciplinary study to determine the impact of such activities on the water quality in the bay and at adjacent recreational beaches. As part of this study, we determined the abundance of coliphage as an indicator of fecal pollution along with total viral direct counts and phages infective for Vibrio parahaemoltyicus 16 at stations in Mamala Bay in four quarterly samplings over 13 months. Coliphage (< 1 to 1.2 x 10(3)/liter) were found during each quarterly sampling along an offshore transect to the Sand Island waste treatment facility outfall. The nonpoint coastal stations (Pearl Harbor, Ala Wai Canal, and Ke'ehi Lagoon) had high levels of coliphage during the storm event sampling in February 1994 but much lower levels or none when sampled during dry weather. Coliphage were absent at all samplings at Waikiki Beach and at the control station off Diamond Head. Viral direct counts in eutrophic coastal stations (Pearl Harbor, Ke'ehi Lagoon, Ala Moana Beach, and Ala Wai canal) averaged 10(9)/liter, while counts at offshore stations ranged from 9 x 10(7) to 1 x 10(9) viruses/liter, values similar to those for other marine environments. Vibriophage were found mainly in eutrophic coastal environments (Ala Wai Canal, Pearl Harbor, and Ke'ehi Lagoon) and at the Sand Island Transect stations D1 and D2. The greatest abundance was found during the storm event (February 1994) sampling. These results suggest that the Sand Island outfall influenced the water quality of the immediate surrounding waters but had little effect on the quality of the recreational beaches. Nonpoint discharge sources appeared to be more important in the distribution of fecal indicators in the coastal zone.

  7. A new approach for the assessment of temporal clustering of extratropical wind storms

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Eddounia, Fadoua; Kuhnel, Ivan; Ulbrich, Uwe

    2017-04-01

    A widely-used methodology to assess the clustering of storms in a region is based on dispersion statistics of a simple homogeneous Poisson process. This clustering measure is determined by the ratio of the variance and the mean of the local storm statistics per grid point. Resulting values larger than 1, i.e. when the variance is larger than the mean, indicate clustering; while values lower than 1 indicate a sequencing of storms that is more regular than a random process. However, a disadvantage of this methodology is that the characteristics are valid for a pre-defined climatological time period, and it is not possible to identify a temporal variability of clustering. Also, the absolute value of the dispersion statistics is not particularly intuitive. We have developed an approach to describe temporal clustering of storms which offers a more intuitive comprehension, and at the same time allows to assess temporal variations. The approach is based on the local distribution of waiting times between the occurrence of two individual storm events, the former being computed through the post-processing of individual windstorm tracks which in turn are obtained by an objective tracking algorithm. Based on this distribution a threshold can be set, either by the waiting time expected from a random process or by a quantile of the observed distribution. Thus, it can be determined if two consecutive wind storm events count as part of a (temporal) cluster. We analyze extratropical wind storms in a reanalysis dataset and compare the results of the traditional clustering measure with our new methodology. We assess what range of clustering events (in terms of duration and frequency) is covered and identify if the historically known clustered seasons are detectable by the new clustering measure in the reanalysis.

  8. Metals and bacteria partitioning to various size particles in Ballona Creek storm water runoff.

    PubMed

    Brown, Jeffrey S; Stein, Eric D; Ackerman, Drew; Dorsey, John H; Lyon, Jessica; Carter, Patrick M

    2013-02-01

    Many storm water best management practice (BMP) devices function primarily by capturing particulate matter to take advantage of the well-documented association between storm water particles and pollutants. The hydrodynamic separation or settling methods used by most BMP devices are most effective at capturing medium to large particles; however, these may not be the most predominant particles associated with urban runoff. The present study examined particle size distribution in storm water runoff from an urban watershed in southern California and investigated the pollutant-particle associations of metals (Cu, Pb, Ni, and Zn) and bacteria (enterococci and Escherichia coli). During small storm events (≤0.7 cm rain), the highest concentration of pollutants were associated with a <6-µm filter fraction, which accounted for 70% of the per storm contaminant mass but made up more than 20% of the total particle mass. The pollutant-particle association changed with storm size. Most pollutant mass was associated with >35 µm size particles during a 5-cm rain event. These results suggest that much of the contaminant load in storm water runoff will not be captured by the most commonly used BMP devices, because most of these devices (e.g., hydrodynamic separators) are unable to capture particles smaller than 75 µm. Copyright © 2012 SETAC.

  9. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  10. The effects of a whole-watershed calcium addition on the chemistry of stream storm events at the Hubbard Brook Experimental Forest in NH, USA.

    PubMed

    Cho, Youngil; Driscoll, Charles T; Blum, Joel D

    2009-10-01

    Patterns of storm runoff chemistry from a wollastonite (calcium-silicate mineral, CaSiO(3)) treated watershed (W1) were compared with a reference watershed (W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire (NH), USA to investigate the role of Ca(2+) supply in the acid-base status of stream chemistry. In the summer of 2003, six storm events were studied in W1 and W6 to evaluate the effects of the wollastonite treatment on the episodic acidification of stream waters. Although mean values of Ca(2+) concentrations decreased slightly from 33.8 to 31.7 mumol/L with increasing stream discharge in W1 during the events, the mean value of acid neutralizing capacity (ANC) was positive (1.2 mueq/L) during storm events, compared to negative values (-0.2 mueq/L) in W6. This pattern is presumably due to enhanced Ca(2+) supply in W1 (20.7 to 29.0% of dissolved Ca(2+) derived from the added wollastonite) to stream water as a result of interflow along shallow flowpaths. In addition, the application of wollastonite increased pH and dissolved silica (H(4)SiO(4)) concentrations, and decreased the concentration of inorganic monomeric Al (Al(i)) in W1 in comparison with W6 during storm events. Despite an increase in SO(4)(2-) concentration, likely due to desorption of sulfate from soil after the treatment, the watershed showed an increase in ANC compared to the reference watershed, serving to mitigate episodic acidification.

  11. Magnitude-Based Postfire Debris Flow Rainfall Accumulation-Duration Thresholds for Emergency-Response Planning

    NASA Astrophysics Data System (ADS)

    Cannon, S. H.; Boldt, E. M.; Laber, J. L.; Kean, J. W.; Staley, D. M.

    2011-12-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is needed for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response in this setting. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. Magnitude 0 events show a negligible response, while Magnitude I events are characterized by small (<1,000 m3) debris flows or low-discharge floods produced from one or two drainage basins. A few culverts and storm drains may be blocked, a few streets may be partially flooded or blocked by water and debris, and a few buildings near the mountain front may be damaged. Magnitude II events are characterized by two to five moderately-sized (1,000 to 10,000 m3) debris flows or one large (>10,000 m3) event. Several culverts or storm drains may be blocked or fail, several streets may be flooded or completely blocked by water and debris, and buildings, streets, and bridges may be damaged or destroyed. Magnitude III events consist of widespread and abundant debris flows of volumes >10,000 m3 and high discharge flooding causing significant impact to the built environment. Many streets, storm drains, and streets may be completely blocked by debris, making many streets unsafe for travel. Several large buildings, sections of infrastructure corridors and bridges may be damaged or destroyed. The range of rainfall conditions associated with different magnitude classes are defined by correlating local rainfall data with the response magnitude information. Magnitude 0 events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall below the threshold A=0.4D0.5. Magnitude I events can be expected when storm rainfall conditions are above the threshold A=0.4D0.5 and below A=0.5D0.6 for durations greater than 1 hour. Magnitude II events will be generated in response to rainfall accumulations and durations between A=0.4D0.5 and A=0.9D0.5 for durations less than one hour, and between A=0.5D0.6 and A=0.9D0.5 for durations greater than one hour. Magnitude III events can be expected in response to rainfall conditions above the threshold A=0.9D 0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in the planning and response decision-making process could result in increased safety for both the public and emergency responders.

  12. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    NASA Astrophysics Data System (ADS)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter

    Stride Search provides a flexible tool for detecting storms or other extreme climate events in high-resolution climate data sets saved on uniform latitude-longitude grids in standard NetCDF format. Users provide the software a quantitative description of a meteorological event they are interested in; the software searches a data set for locations in space and time that meet the user’s description. In its first stage, Stride Search performs a spatial search of the data set at each timestep by dividing a search domain into circular sectors of constant geodesic radius. Data from a netCDF file is read into memory for eachmore » circular search sector. If the data meet or exceed a set of storm identification criteria (defined by the user), a storm is recorded to a linked list. Finally, the linked list is examined and duplicate detections of the same storm are removed and the results are written to an output file. The first stage’s output file is read by a second program that builds storm. Additional identification criteria may be applied at this stage to further classify storms. Storm tracks are the software’s ultimate output and routines are provided for formatting that output for various external software libraries for plotting and tabulating data.« less

  14. Influences of Hydrological Regime on Runoff Quality and Pollutant Loadings in Tropical Urban Areas

    NASA Astrophysics Data System (ADS)

    Chow, M.; Yusop, Z.

    2011-12-01

    Experience in many developed countries suggests that non point source (NPS) pollution is still the main contributor to pollutant loadings into water bodies in urban areas. However, the mechanism of NPS pollutant transport and the influences of hydrologic regime on the pollutant loading are still unclear. Understanding these interactions will be useful for improving design criteria and strategies for controlling NPS pollution in urban areas. This issue is also extremely relevant in tropical environment because its rainfall and the runoff generation processes are so different from the temperate regions where most of the studies on NPS pollutant have been carried out. In this regard, an intensive study to investigate the extent of this pollution was carried out in Skudai, Johor, Malaysia. Three small catchments, each represents commercial, residential and industrial land use were selected. Stormwater samples and flow rate data were collected at these catchments over 52 storm events from year 2008 to 2009. Samples were analyzed for ten water quality constituents including total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, soluble phosphorus, total phosphorus and zinc. Quality of stormwater runoff is estimated using Event Mean Concentration (EMC) value. The storm characteristics analyzed included rainfall depth, rainfall duration, mean intensity, max 5 minutes intensity, antecedent dry day, runoff volume and peak flow. Correlation coefficients were determined between storm parameters and EMCs for the residential, commercial and industrial catchments. Except for the antecedent storm mean intensity and antecedent dry days, the other rainfall and runoff variables were negatively correlated with EMCs of most pollutants. This study reinforced the earlier findings on the importance of antecedent dry days for causing greater EMC values with exceptions for oil and grease, nitrate nitrogen, total phosphorus and zinc. There is no positive correlation between rainfall intensity and EMC of constituents in all the studied catchments. In contrast, the pollutant loadings are influenced primarily by the rainfall and runoff characteristics. Rainfall depth, mean intensity, max 5 minute intensity, runoff volume and peak flow were positively correlated with the loadings of most of the constituents. Antecedent storm mean intensity and antecedent dry days seemed to be less important for estimating the pollutant loadings. Such study should be further conducted for acquiring a long term monitoring data related to storm runoff quality during rainfall, in order to have a better understanding on NPS pollution in urban areas.

  15. Talking about Twisters: Relations between Mothers' and Children's Contributions to Conversations about a Devastating Tornado

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Burch, Melissa M.; Van Abbema, Dana L.; Ackil, Jennifer K.

    2007-01-01

    Mother-child dyads who experienced a devastating tornado talked about the storm and about two affectively more positive or neutral events at each of two time points: 4 months and 10 months after the storm. The conversations were analyzed to determine whether mothers and/or children's contributions differed as a function of event type and whether…

  16. Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing.

    PubMed

    Noble, R T; Moore, D F; Leecaster, M K; McGee, C D; Weisberg, S B

    2003-04-01

    In July 1999, California's ocean recreational bacterial water quality standards were changed from a total coliform (TC) test to a standard requiring testing for all three bacterial indicators: TC, fecal coliforms (FC), and enterococci (EC). To compare the relationship between the bacterial indicators, and the effect that changing the standards would have on recreational water regulatory actions, three regional studies were conducted along the southern California shoreline from Santa Barbara to San Diego, California. Two studies were conducted during dry weather and one following a large storm event. In each study, samples were collected at over 200 sites which were selected using a stratified random design, with strata consisting of open beach areas and rocky shoreline, and areas near freshwater outlets that drain land-based runoff. During the dry weather studies, samples were collected once per week for 5 weeks. For the storm event study, sampling occurred on a single day about 24 h following the storm. The three indicator bacteria were measured at each site and the results were compared to the single sample standards (TC > 10,000; FC > 400 and EC > 104 MPN or cfu/100 ml). EC was the indicator that failed the single sample standards most often. During the wet weather study, 99% of all standard failures were detected using EC, compared with only 56% for FC, and 40% for TC. During the Summer Study, EC was again the indicator that failed the single sample standards most often, with 60% of the failures for EC alone. The increased failure of the EC standard occurred consistently regardless of whether the sample was collected at a beach or rocky shoreline site, or at a site near a freshwater outlet. Agreement among indicators was better during wet weather than during dry weather. During dry weather, agreement among indicators was better near freshwater outlets than along open shoreline. Cumulatively, our results suggest that replacement of a TC standard with an EC standard will lead to a five-fold increase in failures during dry weather and a doubling of failures during wet weather. Replacing a TC standard with one based on all three indicators will lead to an eight-fold increase in failures. Changes in the requirements for water quality testing have strong implications for increases in beach closures and restrictions. Copyright 2002 Elsevier Science Ltd.

  17. Variability of tidal signals in the Brent Delta Front: New observations on the Rannoch Formation, northern North Sea

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang

    2016-04-01

    Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter-storm deposits. The documentation of the unconventional Rannoch Formation contributes to our understanding of mixed-energy coastal systems.

  18. Extreme Event impacts on Seafloor Ecosystems

    NASA Astrophysics Data System (ADS)

    Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic

    2013-04-01

    The Mediterranean region is among those presenting the highest concentration of cyclogenesis during the northern hemisphere winter, thus is frequently subjected to sudden events of extreme weather. The highest frequency of storm winds occur in its northwestern basin, and is associated to NE and NW storms. The occurrence of such extreme climatic events represents an opportunity of high scientific value to investigate how natural processes at their peaks of activity transfer matter and energy, as well as how impact ecosystems. Due to the approximately NE-SW orientation of the western Mediterranean coast, windforced motion coming from eastern storms generate the most intense waves and with very long fetch in the continental shelf and the coast, causing beach erosion, overwash and inundation of low-lying areas, and damage to infrastructures and coastal resources. On December 26, 2008 a huge storm afforded us the opportunity to understand the effect of storms on the deep sea ecosystems, as impacted violently an area of the Catalan coast covered by a dense network of monitoring devices including sediment traps and currentmeters. The storm, with measured wind gusts of more than 70 km h-1 and associated storm surge reaching 8 m, lead to the remobilisation of a shallow water large reservoir of marine organic carbon associated to fine particles and to its redistribution across the deep basin, and also ignited the motion of large amounts of coarse shelf sediment resulting in the abrasion and burial of benthic communities. In addition to eastern storms, increasing evidence has accumulated during the last few years showing the significance of Dense Shelf Water Cascading (DSWC), a type of marine current driven exclusively by seawater density contrast caused by strong and persistent NW winds, as a key driver of the deep Mediterranean Sea in many aspects. A network of mooring lines with sediment traps and currentmeters deployed in the Cap de Creus canyon in winter 2005-06 recorded a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.

  19. A socioeconomic assessment of climate change-enhanced coastal storm hazards in the U.S. Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Baron, H. M.; Ruggiero, P.; Harris, E.

    2010-12-01

    Every winter, coastal communities in the U.S. Pacific Northwest are at risk to coastal change hazards caused by extreme storm events. These storms have the potential to erode large portions of the primary foredune that may be a community’s only barrier from the ocean. Furthermore, the frequency and magnitude of significant erosion events appears to be increasing, likely due to climate-related processes such as sea level rise and increases in storm wave heights. To reduce risks posed by winter storms, it is not only important to determine the impending physical impacts but it is also necessary to explore the vulnerability of the social-ecological system in the context of these hazards. Here we assess the exposure to both annually occurring and extreme storm events at various planning timelines using a methodology that incorporates the effect of a variable and changing climate on future total water levels. To do this, we have developed a suite of climate change scenarios involving a range of projections for the wave climate, global sea level rise, and the occurrence of El Niño events through 2100. Simple geometric models are then used to conservatively determine the extent of erosion that may occur for a given combination of these climatic factors. We integrate the physical hazards with socioeconomic data using a geographic information system (GIS) in order to quantify societal vulnerability, characterized by the exposure and sensitivity of a community, which is based on the distribution of people, property, and resources. Here we focus on a 14 km stretch of dune-backed coast in northwest Oregon, from Cascade Head to Cape Kiwanda—the location of two communities that, historically, have experienced problematic storm-induced coastal change, Pacific City and Neskowin. Although both of these communities have similar exposure to coastal change hazards at the present, Neskowin is more than twice as sensitive to erosion because almost all of its residents and community assets are located within ~230 m of a narrow beach behind a rip rap revetment. Clearly, any significant losses sustained during an extreme storm could be devastating to the community, and these impacts will likely be amplified in the future. This information is being used to inform land-use planners as well as coastal community residents and visitors about potential coastal change hazards in order to make communities more resistant to future extreme storm events as they are influenced by a changing climate.

  20. Advances in using satellite altimetry to observe storm surge

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2017-04-01

    Storm surges are the major cause for coastal flooding, resulting in catastrophic damage to properties and loss of life in coastal communities. Thus it is important to utilize new technology to enhance our capabilities of observing storm surges and ultimately to improve our capacity for forecasting storm surges and mitigating damage and loss. In this talk we first review traditional methods of monitoring storm surges. We then provide examples of storm surges observed by nadir satellite altimetry, during Hurricane Sandy and Igor, as well as typhoon and cyclone events. We further evaluate satellite results against tide-gauge data and explain storm surge features. Finally, we discuss the potential of a wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  1. May through July 2015 storm event effects on suspended-sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.

    2016-06-20

    The Neosho River and its primary tributary, the Cottonwood River, are the main sources of inflow to John Redmond Reservoir in east-central Kansas. Storm events during May through July 2015 caused large inflows of water and sediment into the reservoir. The U.S. Geological Survey, in cooperation with the Kansas Water Office, and funded in part through the Kansas State Water Plan Fund, computed the suspended-sediment inflows to, and trapping efficiency of, John Redmond Reservoir during May through July 2015. This fact sheet summarizes the quantification of suspended-sediment loads to and from the reservoir during May through July 2015 storm events and describes reservoir sediment trapping efficiency and effects on water-storage capacity.

  2. The radioactivity of seasonal dust storms in the Middle East: the May 2012 case study in Jordan.

    PubMed

    Hamadneh, Hamed S; Ababneh, Zaid Q; Hamasha, Khadeejeh M; Ababneh, Anas M

    2015-02-01

    Dust storms in the Middle East are common during spring. Some of these storms are massive and carry a large amount of dust from faraway regions, which pose health and pollution risks. The huge dust storm event occurred in early May, 2012 was investigated for its radioactive content using gamma ray spectroscopy. Dust samples were collected from Northern Jordan and it was found that the storm carried a large amount of both artificial and natural radioactivity. The average activity concentration of fallout (137)Cs was 17.0 Bq/kg which is larger than that found in soil (2.3 Bq/kg), and this enrichment is attributed to particle size effects. (7)Be which is of atmospheric origin and has a relatively short half-life, was detected in dust with relatively large activity concentrations, as it would be expected, with an average of 2860 Bq/kg, but it was not detected in soil. Despite the large activity concentration of (7)Be, dose assessment showed that it does not contribute significantly to the effective dose through inhalation. The concentrations of the primodial nuclides (40)K, (232)Th and (238)U were 547, 30.0 and 49.3 Bq/kg, respectively. With the exception of (40)K, these were comparable to what was found in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Combined Sewer Overflows as a Source of Hormones to Surface Water

    NASA Astrophysics Data System (ADS)

    Phillips, P.; Chalmers, A.; Gray, J. L.; Foreman, W.; Kolpin, D. W.; Wall, G.; Esposito, K.

    2009-12-01

    Some sources of hormones to surface water, such as wastewater-treatment-plant (WWTP) effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflows (CSOs), are not well characterized. Flow-weighted composite samples of secondarily treated WWTP effluent and untreated sewage discharges from WWTP inflows and CSO discharges were collected during 12 storms and 6 non-storm conditions from November 2007-December 2008 at the main Burlington Vermont WWTP. Concentrations of many androgens and estrogens were highest in samples from untreated sewage, and lower in samples from treated sewage. For example, concentrations of estriol in CSO samples ranged from 5 to over 100 ng/L (nanograms per liter), but were generally less than 1 ng/L in treated sewage. Many androgens were detected in CSO discharge samples in concentrations ranging from 1 to over 1000 ng/L, but were not detected above 1 ng/L in treated samples. For many of the hormones, including androgens and estriol, CSO discharges comprised over half of the total load discharged by the WWTP, even though annual CSO discharge is less than 10% of the treated plant discharge. These results indicate that untreated discharges during CSO events can be a major source of some hormones and other wastewater compounds to the environment.

  4. Using EPA Tools and Data Services to Inform Changes to Design Storm Definitions for Wastewater Utilities based on Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Tryby, M.; Fries, J. S.; Baranowski, C.

    2014-12-01

    Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.

  5. Performance of compost filtration practice for green infrastructure stormwater applications.

    PubMed

    Faucette, Britt; Cardoso, Fatima; Mulbry, Walter; Millner, Pat

    2013-09-01

    Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-cost solutions to meet these goals and guidelines. The objective of this study was to determine the multiple-event removal efficiency and capacity of compost filter socks (FS) and filter socks with natural sorbents (NS) to remove soluble phosphorus, ammonium-nitrogen, nitrate-nitrogen, E. coli, Enterococcus, and oil from urban storm water runoff. Treatments were exposed to simulated storm water pollutant concentrations consistent with urban runoff originating from impervious surfaces, such as parking lots and roadways. Treatments were exposed to a maximum of 25 runoff events, or when removal efficiencies were < or = 25%, whichever occurred first. Experiments were conducted in triplicate. The filter socks with natural sorbents removed significantly greater soluble phosphorus than the filter socks alone, removing a total of 237 mg/linear m over eight runoff events, or an average of 34%. The filter socks with natural sorbents removed 54% of ammonium-nitrogen over 25 runoff events, or 533 mg/linear m, and only 11% of nitrate-nitrogen, or 228 mg/linear m. The filter socks and filter socks with natural sorbents both removed 99% of oil over 25 runoff events, or a total load of 38,486 mg/linear m. Over 25 runoff events the filter socks with natural sorbents removed E. coli and Enteroccocus at 85% and 65%, or a total load of 3.14 CFUs x 10(8)/ linear m and 1.5 CFUs x 10(9)/linear m, respectively; both were significantly greater than treatment by filter socks alone. Based on these experiments, this technique can be used to reduce soluble pollutants from storm water over multiple runoff events.

  6. The first super geomagnetic storm of solar cycle 24: "The St. Patrick day (17 March 2015)" event

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Liou, K.; Socker, D. G.; Howard, R.; Jackson, B. V.; Yu, H. S.; Hutting, L.; Plunkett, S. P.

    2015-12-01

    The first super geomagnetic storm of solar cycle 24 occurred on the "St. Patrick's day" (17 March 2015). Notably, it was a two-step storm. The source of the storm can be traced back to the solar event on March 15, 2015. At ~2:10 UT on that day, SOHO/LASCO C3 recorded a partial halo corona mass ejection (CME) which was associated with a C9.1/1F flare (S22W25) and a series of type II/IV radio bursts. The propagation speed of this CME is estimated to be ~668 km/s during 02:10 - 06:20 UT (Figure 1). An interplanetary (IP) shock, likely driven by the CME, arrived at the Wind spacecraft at 03:59 UT on 17 March (Figure 2). The arrival of the IP shock at the Earth may have caused a sudden storm commencement (SSC) at 04:45 UT on March 17. The storm intensified (Dst dropped to -80 nT at ~10:00 UT) during the crossing of the CME sheath. Later, the storm recovered slightly (Dst ~ -50 nT) after the IMF turned northward. At 11:01 UT, IMF started turning southward again due to the large magnetic cloud (MC) field itself and caused the second storm intensification, reaching Dst = - 228 nT on March 18. We conclude that the St. Patrick day event is a two-step storm. The first step is associated with the sheath, whereas the second step is associated with the MC. Here, we employ a numerical simulation using the global, three-dimensional (3D), time-dependent, magnetohydrodynamic (MHD) model (H3DMHD, Wu et al. 2007) to study the CME propagation from the Sun to the Earth. The H3DMHD model has been modified so that it can be driven by (solar wind) data at the inner boundary of the computational domain. In this study, we use time varying, 3D solar wind velocity and density reconstructed from STELab, Japan interplanetary scintillation (IPS) data by the University of California, San Diego, and magnetic field at the IPS inner boundary provided by CSSS model closed-loop propagation (Jackson et a., 2015). The simulation result matches well with the in situ solar wind plasma and field data at Wind, in terms of the peak values of the IP shock and its arrival time (Figure 3). The simulation not only helps us to identify the driver of the IP shock, but also demonstrates that the modified H3DMHD model is capable of realistic simulations of large solar event. In this presentation, we will discuss the CME/storm event with detailed data from observations (Wind and SOHO) and our numerical simulation.

  7. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol

    NASA Astrophysics Data System (ADS)

    Goudarzi, Gholamreza; Soleimani, Zahra; Sorooshian, Armin; Marzouni, Mohammad Bagherian; Maleki, Heidar

    2016-08-01

    The presence of microbes in airborne aerosol particles, especially dust, is a major public health concern in desert regions. This study is the first of its kind to examine the effect of dust storms on indoor and outdoor microbial air quality at a hospital on the western side of Iran (city of Ahvaz), which is notorious for being highly vulnerable to dust emissions. Air samples were collected inside and outside of the hospital environment for six months, with the unique advantage of this study being that the region and duration of measurements allow for a clear comparison between dusty and normal days. On normal days, the average concentrations (outdoor/indoor) of bacteria and fungi were 423/329 cfu m-3 and 596/386 cfu m-3, respectively, which increased to 1257/406 cfu m-3 and 1116/550 cfu m-3 on dust event days. Indoor/Outdoor ratios for bacteria and fungi are lower on dust event days (0.26-0.60) versus normal days (0.44-0.95). Bacillus spp., Micrococcus spp., Streptomyces spp., and Staphylococcus spp. were the dominant bacteria both indoors and outdoors on normal and dust event days. Gram positive bacteria exhibited higher concentrations than Gram negative bacteria in both outdoor and indoor air samples as well as during both normal and dust event days. The data suggest that Gram positive bacteria are more resistant to undesirable outdoor conditions (e.g., high incident solar radiation) as compared to Gram negative ones. These results have implications for other populated arid regions where more stringent control of indoor air quality can greatly benefit public health.

  8. Discharge process of cesium during rainstorms in headwater catchments, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Nishino, Masataka; Konuma, Ryohei

    2014-05-01

    We monitored Cs-137 concentrations in stream water, groundwater, soil water and rainwater in the Yamakiya district located approximately 35 km north west of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from June 2011 through July 2013, focusing on rainfall-runoff processes during the rainstorm events. Two catchments with different land cover (Iboishiyama and Koutaishiyama) were instrumentd, and stream water, groundwater, soil water and rainwater were sampled for approximately one month at each site, and intensive sampling was conducted during rainstorm events. The 137Cs concentration in stream water showed a relatively quick decreasing trend during 2011. Also, during rainfall events, the Cs-137 concentration in stream water showed a temporary increase. End Member Mixing Analysis was applied to evaluate contribution of groundwater, soil water and rainwater in discharge water during rainstorm events. The groundwater component was dominant in the runoff, whereas rainwater was main source for the Cs-137 concentration of the stream increasing during the storm events. In addition, a leaching of Cs-137 from the suspended sediments and the organic materials seemed to be also important sources to the stream.

  9. Biogeochemical cycle of Mercury in an urban stream in Hartford CT

    NASA Astrophysics Data System (ADS)

    Aragon-jose, A. T.; Bushey, J. T.; Perkins, C.; Mendes, M.; Ulatowski, G.

    2012-12-01

    Mercury (Hg) toxicity and the potential for bioaccumulation in the food chain result in exposure risk even at low Hg levels. The presence of urban activities can substantially alter Hg fate and transport mechanisms and Hg biogeochemical cycles. Urban watersheds are characterized by high imperviousness and some may even be impacted by combined sewer overflows, both being fundamental factors contributing to Hg loading, mobilization, and shifts in bioavailability in urban watersheds. Research is still needed to characterize the fate and dynamics of Hg in urban streams. To address this gap in knowledge, we collected and characterized stream water and suspended sediment samples in the Park River watershed in Hartford, CT (USA) during baseflow and precipitation events. Sampling sites were selected across an urbanization gradient. Water samples are analyzed for total, dissolved, and particulate Hg and methyl Hg (MeHg), major ions (Cl-, NO3-, SO42-)-, total suspended solids (TSS), and dissolved organic carbon (DOC). Our results show that both total and dissolved Hg concentrations increase in the streams during precipitation events, however, the greatest portion of Hg is associated, and consequently transported, with suspended sediments, as suggested by the high correlation coefficient (R2 ~ 0.80) between TSS and total Hg. No significant correlation was observed between dissolved or total Hg and DOC, contrary to the observations in forested systems, which indicates that the sources and mechanisms governing mobilization and transport of dissolved Hg in an urban watershed differ from those at forested systems. However, during select events, a significant portion of Hg flux occurs in the dissolved phase. Unfiltered MeHg samples exhibited a similar pattern relative to the hydrograph to that of total Hg. Concentrations increase during the rising limb with TSS followed by a decrease as the storm progresses. Dissolved MeHg is mostly below our detection limit. Area normalized THg flux is generally higher at the more developed sites for all but the May storm, whereas the opposite trend is observed for MeHg except for the August storm, indicative of different sources of Hg contributing to the stream. To assist in elucidating the potential sources, dissolved organic matter in the water samples was analyzed for specific ultra violet absorbance at 254 nm (SUVA254) and for excitation-emission matrix (EEMs) to assess differences in organic matter loading to the stream. Additionally, Hg association with sediment was analyzed by collecting four sets of suspended sediment samples over 3-month periods at five sites across the watershed to assess potential sediment sources into the stream. Solid samples were analyzed for total carbon, nitrogen, and hydrogen, organic and inorganic carbon, mercury, acid volatile sulfide, chromium reducible sulfide, PAHs, QACs, and select metals.

  10. Modelling of sediment transport pattern in the mouth of the Rhone delta: Role of storm and flood events

    NASA Astrophysics Data System (ADS)

    Boudet, L.; Sabatier, F.; Radakovitch, O.

    2017-11-01

    The delta of the Rhone River is one of the most important in the Mediterranean Sea. Beach erosion problems along its coasts have developed in recent decades, raising the need for a better understanding of the sediment transport processes at the Rhone mouth and the adjacent beaches. Because field data are very difficult to obtain in such an energetic environment, a high-resolution numerical model (Delft3D) is applied to this area. This model is calibrated by taking into account hydrodynamical and morphological observations. Special attention is given to storm and flood events, which are the major morphological drivers. Therefore, scenarios with different wave and flow conditions are run to estimate the influence of these events on the sediment transport. The analysis of historical hydrological data shows that storms from the southeast represent 70% of the events between 1979 to 2010 and that 20% of them were followed by a flood within a few days. Consequently, specific simulations for such conditions are performed using Delft3D. The model simulates trends in the bedload sediment transport that are consistent with the bedforms observed in the bathymetry data. The total sediment transport at the outlet is only influenced by the river flow, but sediment transport at the mouth-bar depends on an equilibrium between the influence of floods and storms and the succession of these events. A period of 2 or 3 days separating the storm and flood peaks is sufficient to differentiate wave and river flow-induced sediment transport. The waves constrain the total transport on the mouth-bar and shallow mouth-lobe and induce a longshore transfer towards the adjacent beaches. The riverine sediments can be exported seaward only if a flood is energetic enough compared to the storm intensity. Regardless, when a flood is greater than the decadal return period (7800 m3 s-1), the sediment is transported from the outlet across the mouth-bar and is directed offshore.

  11. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  12. The eSurge-Venice project: how satellite data can improve the storm surge forecasting in the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; Vignudelli, Stefano; Donlon, Craig; De Biasio, Francesco; Della Valle, Antonio; Umgiesser, Georg; Bajo, Marco

    The Data User Element (DUE) program of the European Space Agency (ESA) is funding two projects (eSurge and eSurge-Venice) aimed to demonstrate the improvement of the storm surge forecasting through the use of Earth Observation (EO) data. eSurge-Venice (http://www.esurge-venice.eu/), is specifically focused on the Gulf of Venice, northern Adriatic Sea. The project objectives are: a) Select a number of Storm Surge Events occurred in the Venice lagoon since 1999; b) Provide the available satellite EO data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts; c) Provide a demonstration Near Real Time service (eSurge-Venice live) of EO data products and services in support of operational and experimental forecasting and warning services; d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data. Present storm surge models use atmospheric model wind fields as forcing. These are know to underestimate the wind in small basins like the Adriatic Sea (~1000 km by 300 km), where the orography plays an important role in shaping the winds. Therefore there is the need to verify and tune the atmospheric model wind fields used in the storm surge modeling, an activity which can easily done using satellite scatterometer winds. The project is now in the middle of his life, and promising preliminary results have been achieved using satellite scatterometer wind data to forge the atmospheric model wind fields forcing the storm surge model. This contribution will present the methodology adopted to tune the model wind fields according to the bias with scatterometer winds and the improvements induced in the storm surge model hindcast.

  13. Porewater chemistry in a treatment wetland: links to metal retention and release

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Zhang, J.

    2011-12-01

    Constructed wetlands are gaining increased support for treatment of nonpoint source pollutants. A subsurface flow wetland treating runoff from an agricultural milkhouse floor and roof drainage has been monitored for metal removal. Influent dissolved concentrations from 5 to 30 ppb Cu and 60 to 800 ppb Zn were observed. Effluent concentrations of Zn were always lower from about 3 to 60 ppb Zn, however, Cu was typically around 10 ppb, and much larger at certain points in time, up to 95 ppb Cu. The results were similar in vegetated and non-vegetated wetlands, suggesting abiotic chemistry or microbial activity is controlling metal mobility. Porewater samples were taken using soil moisture lysimeters during both non-storm and storm events to examine metal and related chemistry with depth and distance in the wetland. Under non storm conditions, Cu and Zn average porewater concentrations were 64 and 250 ppb, respectively and did not vary much along the length of the wetland. During a storm event, Zn concentrations in the porewater initially increased near the inlet shortly after a storm, but typically decreased along the length and depth of the wetland to less than 60 ppb. Observed porewater Cu concentrations also increased near the inlet in some cases up to 700 ppb, but dropped rapidly with distance to less than 30 ppb near the middle of the wetland and increased again near the outlet. The dissolved Fe and Mn concentrations follow nearly opposite trends as Cu, increasing and then decreasing along the length of the wetland, suggesting possibly different roles in controlling Cu retention in each stage of the wetland, either co-precipitation with Cu initially, or reductive dissolution and release of Cu in later stages. An understanding of what controls metal retention and release is relevant to optimizing future design parameters of these wetlands.

  14. Competition Between Radial Loss and EMIC Wave Scattering of MeV Electrons During Strong CME-shock Driven Storms

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.

    2017-12-01

    The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.

  15. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni

    2018-01-01

    Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).

  16. ENSO-Related Variability in Wave Climate Drives Greater Erosion Potential on Central Pacific Atolls

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Donnelly, J. P.

    2015-12-01

    The El Nino Southern Oscillation (ENSO) modulates atmospheric circulation across the equatorial Pacific over a periodic time scale of 2-7 years. Despite the importance of this climate mode in forcing storm generation and trade wind variability, its impact on the wave climate incident on central Pacific atolls has not been addressed. We used the NOAA Wavewatch III CFSR reanalysis hindcasts (1979-2007) to examine the influence of ENSO on sediment mobility and transport at Kwajalein Atoll (8.8°N, 167.7°E). We found that during El Nino event years, easterly trade winds incident on the atoll weakened by 4% compared to normal years and 17% relative to La Nina event years. Despite this decrease in wind strength, significant wave heights incident on the atoll were 3-4% greater during El Nino event years. Using machine learning to partition these waves revealed that the greater El Nino wave heights originated mainly from greater storm winds near the atoll. The southeastern shift in tropical cyclone genesis location during El Nino years forced these storm winds and contributed to the 7% and 16% increases in annual wave energy relative to normal and La Nina years, respectively. Using nested SWAN and XBeach models we determined that the additional wave energy during El Nino event years significantly increased potential sediment mobility at Kwajalein Atoll and led to greater net offshore transport on its most populous island. The larger storm waves likely deplete ocean-facing beaches and reef flats of sediment, but increase the supply of sediment to the atoll lagoon across open reef platforms that are not supporting islands. We discuss further explicit modelling of storms passing over the atoll to elucidate the confounding role of storm surge on the net erosional/depositional effects of these waves. Extrapolating our results to recent Wavewatch III forecasts leads us to conclude that climate change-linked increases in wave height and storm wave energy will increase erosion on central Pacific atolls.

  17. Similarities and differences in dissolved organic matter response in two headwater streams under contrasted hydro-climatic regimes

    NASA Astrophysics Data System (ADS)

    Butturini, Andrea; Guarch, Alba; Battin, Tom

    2017-04-01

    Dissolved organic matter (DOM) concentration and properties in headwater streams are strongly shaped by hydrology. Besides the direct relationship with storms and high flows, seasonal variability of base flow also influences DOM variability. This study focuses on identifying the singularities and similarities in DOM - discharge relationships between an intermittent Mediterranean stream (Fuirosos) and a perennial Alpine stream (Oberer Seebach). Oberer Seebach had a higher discharge mean, but Fuirosos had a higher variability in flow and in magnitude of storm events. During three years we performed an intensive sampling that allows us to satisfactorily capture abrupt and extreme storms. We analysed dissolved organic carbon concentration (DOC) and optical properties of DOM and we calculated the specific ultraviolet absorbance (SUVA), the spectral slopes ratio (SR), the fluorescence index (FI), the biological index (BIX) and the humification index (HIX). DOM in Fuirosos was significantly more concentrated than in Oberer Seebach, and more terrigenous (lower FI), more degraded (lower BIX), more aromatic (higher SUVA) and more humificated (higher HIX). Most of the DOM properties showed a clear relationship with discharge and the sign of the global response was identical in both streams. However, discharge was a more robust predictor of DOM variability in Oberer Seebach than in Fuirosos. In fact, low flow and rewetting periods in Fuirosos introduced considerable dispersion in the relationship. During snowmelt in Oberer Seebach the sensitivity to discharge also decreased (DOC and BIX) or disappeared (SR, FI and HIX). The magnitude of the storm events (DQ) in Fuirosos significantly drove the changes in DOC, FI, BIX and SUVA. This suggests that the flushing/dilution patterns were essentially associated to the occurrence of storm episodes in Fuirosos. In contrast, in Oberer Seebach all DOM qualitative properties were unrelated to DQ and it significantly explained only the change in DOC. While the storms were behind the DOC oscillations, DOM quality change in Oberer Seebach was more coupled to basal flow conditions. Finally, the biogeochemical analysis of two hydrologically different headwaters motivates to speculate about the impact of the hydrological regime alteration forced by atmospheric drivers on DOM quantity and properties.

  18. Instrumentation for a dry-pond detention study

    USGS Publications Warehouse

    Pope, L.M.; Jennings, M.E.; Thibodeaux, K.G.

    1988-01-01

    A 12.3-acre, fully urbanized, residential land-use catchment was instrumented by the U. S. Geological Survey in Topeka, Kansas. Hydraulic instrumentation for flow measurement includes two types of flumes, a pipe-insert flume and a culvert-inlet (manhole) flume. Samples of rainfall and runoff for water-quality analyses were collected by automatic, 3-liter, 24-sample capacity water samples controlled by multichannel data loggers. Ancillary equipment included a raingage and wet/dry atmospheric-deposition sampler. Nineteen stormwater runoff events were monitored at the site using the instrumentation system. The system has a high reliability of data capture and permits an accurate determination of storm-water loads.

  19. A stochastic storm surge generator for the German North Sea and the multivariate statistical assessment of the simulation results

    NASA Astrophysics Data System (ADS)

    Wahl, Thomas; Jensen, Jürgen; Mudersbach, Christoph

    2010-05-01

    Storm surges along the German North Sea coastline led to major damages in the past and the risk of inundation is expected to increase in the course of an ongoing climate change. The knowledge of the characteristics of possible storm surges is essential for the performance of integrated risk analyses, e.g. based on the source-pathway-receptor concept. The latter includes the storm surge simulation/analyses (source), modelling of dike/dune breach scenarios (pathway) and the quantification of potential losses (receptor). In subproject 1b of the German joint research project XtremRisK (www.xtremrisk.de), a stochastic storm surge generator for the south-eastern North Sea area is developed. The input data for the multivariate model are high resolution sea level observations from tide gauges during extreme events. Based on 25 parameters (19 sea level parameters and 6 time parameters) observed storm surge hydrographs consisting of three tides are parameterised. Followed by the adaption of common parametric probability distributions and a large number of Monte-Carlo-Simulations, the final reconstruction leads to a set of 100.000 (default) synthetic storm surge events with a one-minute resolution. Such a data set can potentially serve as the basis for a large number of applications. For risk analyses, storm surges with peak water levels exceeding the design water levels are of special interest. The occurrence probabilities of the simulated extreme events are estimated based on multivariate statistics, considering the parameters "peak water level" and "fullness/intensity". In the past, most studies considered only the peak water levels during extreme events, which might not be the most important parameter in any cases. Here, a 2D-Archimedian copula model is used for the estimation of the joint probabilities of the selected parameters, accounting for the structures of dependence overlooking the margins. In coordination with subproject 1a, the results will be used as the input for the XtremRisK subprojects 2 to 4. The project is funded by the German Federal Ministry of Education and Research (BMBF) (Project No. 03 F 0483 B).

  20. Atmospheric Dynamics of Sub-Tropical Dust Storms

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar

    Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust storm in a narrow zone parallel to the mountains before it expanded upscale. The thermally-forced meos-gamma scale adjustment processes, which occurred in the canyons/small valleys, resulted in the numerous dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and the TKE generation. This indicates that there were meso-beta to meso-gamma scale adjustment processes at the lower levels after the imbalance within the exit region of the upper level jet streaks and these processes were responsible for causing the large scale dust storms. Most notably, the sub-tropical jet streak caused the dust storm nearer to the equatorial region after its interaction with the thermally perturbed air mass on the lee of the Tibesti Mountains in the Bodele case study, which is different than the two other cases where the polar jet streaks played this same role at higher latitudes. This represents an original finding. Additionally, a climatological analysis of 15 years (1997-2011) of dust events over the NASA Dryden Flight Research Center (DFRC) in the desert of Southern California was performed to evaluate how the extratropical systems influenced the cause of dust storms over this region. This study indicates that dust events were associated with the development of a deep convective boundary layer, turbulent kinetic energy ≥3 J/kg, a lapse rate between dry adiabatic and moist adiabatic, wind speed above the frictional threshold wind speed necessary to ablate dust from the surface (≥7.3m/s), above the surface the presence of a cold trough, and strong cyclonic jet. These processes are similar in many ways to the dynamics in the other subtropical case studies. This also indicated that the annual mean number of dust events, their mean duration, and the unit duration per number of event were positively correlated with each of the visibility ranges, when binned for <11.2km, <8km, <4.8km, <1.6km, and <1km. The percentage of the dust events by season show that most of the dust events occurred in autumn (44.7%), followed by spring (38.3%) and equally in summer and winter with these seasons each accounting for 8.5% of events.

  1. Catalogue of extreme wave events in Ireland: revised and updated for 14 680 BP to 2017

    NASA Astrophysics Data System (ADS)

    O'Brien, Laura; Renzi, Emiliano; Dudley, John M.; Clancy, Colm; Dias, Frédéric

    2018-03-01

    This paper aims to extend and update the survey of extreme wave events in Ireland that was previously carried out by O'Brien et al. (2013). The original catalogue highlighted the frequency of such events dating back as far as the turn of the last ice age and as recent as 2012. Ireland's marine territory extends far beyond its coastline and is one of the largest seabed territories in Europe. It is therefore not surprising that extreme waves have continued to occur regularly since 2012, particularly considering the severity of weather during the winters of 2013-2014 and 2015-2016. In addition, a large number of storm surges have been identified since the publication of the original catalogue. This paper updates the O'Brien et al. (2013) catalogue to include events up to the end of 2017. Storm surges are included as a new category and events are categorised into long waves (tsunamis and storm surges) and short waves (storm and rogue waves). New results prior to 2012 are also included and some of the events previously documented are reclassified. Important questions regarding public safety, services and the influence of climate change are also highlighted. An interactive map has been created to allow the reader to navigate through events: https://drive.google.com/open?id=19cZ59pDHfDnXKYIziYAVWV6AfoE&usp=sharing.

  2. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were significantly overestimated (40 to 82 %) by the chemical tracers. These observations, coupled with the storm-to-storm patterns in precipitation isotope inputs and the associated stream water isotope response, led to a conceptual hypothesis for runoff generation in the catchment. Under this hypothesis, the pre-event water that is mobilized by precipitation events may, depending on antecedent moisture conditions, be significantly shallower, younger, and less mineralized than the deeper, older water that feeds baseflow and thus defines the pre-event endmember used in hydrograph separation. This proof-of-concept study illustrates the potential advantages of capturing isotopic and hydrochemical behavior at a high frequency over extended periods that span multiple hydrologic events.

  3. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    PubMed

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp.

    PubMed

    Waters, Jonathan M; King, Tania M; Fraser, Ceridwen I; Craw, Dave

    2018-03-01

    The subtropical front (STF) generally represents a substantial oceanographic barrier to dispersal between cold-sub-Antarctic and warm-temperate water masses. Recent studies have suggested that storm events can drastically influence marine dispersal and patterns. Here we analyse biological and geological dispersal driven by two major, contrasting storm events in southern New Zealand, 2017. We integrate biological and physical data to show that a severe southerly system in July 2017 disrupted this barrier by promoting movement of substantial numbers of southern sub-Antarctic Durvillaea kelp rafts across the STF, to make landfall in mainland NZ. By contrast, a less intense easterly storm (Cyclone Cook, April 2017) resulted in more moderate dispersal distances, with minimal dispersal between the sub-Antarctic and mainland New Zealand. These quantitative analyses of approximately 200 freshly beach-cast kelp specimens indicate that storm intensity and wind direction can strongly influence marine dispersal and landfall outcomes. © 2018 The Author(s).

  5. Application of Radar-Rainfall Estimates to Probable Maximum Precipitation in the Carolinas

    NASA Astrophysics Data System (ADS)

    England, J. F.; Caldwell, R. J.; Sankovich, V.

    2011-12-01

    Extreme storm rainfall data are essential in the assessment of potential impacts on design precipitation amounts, which are used in flood design criteria for dams and nuclear power plants. Probable Maximum Precipitation (PMP) from National Weather Service Hydrometeorological Report 51 (HMR51) is currently used for design rainfall estimates in the eastern U.S. The extreme storm database associated with the report has not been updated since the early 1970s. In the past several decades, several extreme precipitation events have occurred that have the potential to alter the PMP values, particularly across the Southeast United States (e.g., Hurricane Floyd 1999). Unfortunately, these and other large precipitation-producing storms have not been analyzed with the detail required for application in design studies. This study focuses on warm-season tropical cyclones (TCs) in the Carolinas, as these systems are the critical maximum rainfall mechanisms in the region. The goal is to discern if recent tropical events may have reached or exceeded current PMP values. We have analyzed 10 storms using modern datasets and methodologies that provide enhanced spatial and temporal resolution relative to point measurements used in past studies. Specifically, hourly multisensor precipitation reanalysis (MPR) data are used to estimate storm total precipitation accumulations at various durations throughout each storm event. The accumulated grids serve as input to depth-area-duration calculations. Individual storms are then maximized using back-trajectories to determine source regions for moisture. The development of open source software has made this process time and resource efficient. Based on the current methodology, two of the ten storms analyzed have the potential to challenge HMR51 PMP values. Maximized depth-area curves for Hurricane Floyd indicate exceedance at 24- and 72-hour durations for large area sizes, while Hurricane Fran (1996) appears to exceed PMP at large area sizes for short-duration, 6-hour storms. Utilizing new methods and data, however, requires careful consideration of the potential limitations and caveats associated with the analysis and further evaluation of the newer storms within the context of historical storms from HMR51. Here, we provide a brief background on extreme rainfall in the Carolinas, along with an overview of the methods employed for converting MPR to depth-area relationships. Discussion of the issues and limitations, evaluation of the various techniques, and comparison to HMR51 storms and PMP values are also presented.

  6. The 2015 Summer Solstice Storm: One of the Major Geomagnetic Storms of Solar Cycle 24 Observed at Ground Level

    NASA Astrophysics Data System (ADS)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Raulin, J. P.; Tueros, E.; de Mendonça, R. R. S.; Fauth, A. C.; Vieira de Souza, H.; Kopenkin, V.; Sinzi, T.

    2018-05-01

    We report on the 22 - 23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth's magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22 - 23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured {˜} 56° degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun-Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton radiation storm that began on 21 June. We did not find a signal from this SEP at ground level. The details of these observations are presented.

  7. Investigating extreme event loading on coastal bridges using wireless sensor technology

    NASA Astrophysics Data System (ADS)

    Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.

    2017-04-01

    Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.

  8. Geological and Geomorphological Impacts of Two Large Typhoons from the Central Coast Of Vietnam

    NASA Astrophysics Data System (ADS)

    Switzer, A. D.; Gouramanis, C.; Dura, T.; Lam, D. D.; Hoang, L. V.; Sloss, C. R.; Hoang, Q. D.; Lee, Y. S.; Chan, M. M.; Pham, D. T.

    2011-12-01

    Typhoons Xangsane (2006) and Ketsana (2009) left behind geological and geomorphic evidence of their landfall in central Vietnam. In both instances, the events caused the evacuation of several hundred thousand people, considerable deaths (at least 70 and 160, respectively) and damages to infrastructure of more than US$600 million each time. Storm surges and waves associated with both events left sandsheet deposits and scattered cobble to boulder size clasts on the coastal landscape. This study details the first investigation of multiple storm deposits from the Vietnamese coast. These deposits provide modern analogues for the study of past events regionally and globally. In each situation, the deposits show characteristics unique to their setting. In one location, Canh Duong Village, at the northern end of Chan May embayment, the Xangsane event deposited well-defined populations of cobbles (rock) and soil clasts that allows the identification of the sediment source. In a second location, several hundred meters west of Chan May Port and at the southern end of the embayment, the presence of a large tree stump with encrusting intertidal bivalve molluscs and tube worms provides a minimum transport distance for the Ketsana event. When combined with generic information on the extent, height above sea level and sedimentary properties of the storm-deposited sandsheets, the unique qualities of the different deposits allow an accurate reconstruction of the inundation characteristics of these recent storms.

  9. Storm Water Quality in Los Alamos Canyon following the Cerro Grande Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Johansen; B. Enz; B. Gallaher

    In May 2000, the Cerro Grande Fire burned about 7400 acres of forest on the Los Alamos National Laboratory (LANL) and about 10,000 acres in watersheds above LANL on Santa Fe National Forest lands. The resulting burned landscapes raised concerns of increased storm water runoff and transport of contaminants by runoff in the canyons traversing LANL. On June 2 and 3, 2000, rain fell in the Los Alamos Canyon watershed generating storm water runoff in the canyon bottom. This event was important in that it was the first significant runoff on LANL following the fire and occurred in a canyonmore » containing known legacy waste sites. Samples from this runoff were analyzed for radionuclide, metal, inorganic, and organic constituents. Results show radionuclide concentrations at or below previous (pre-fire) maximum levels at locations on LANL and downstream. However, greater concentrations of some fallout-associated radionuclides (cesium-137 and strontium-90) were seen arriving on LANL from upstream areas compared to pre-fire conditions. Tests indicate most of the radionuclides in the samples were bound to sediments, not dissolved in water. Most radionuclide concentrations in sediments were below LANL Screening Action Levels, with cesium-137 and strontium-90 as exceptions. Most radionuclide concentrations in samples taken at LANL's downstream boundary were greater than those taken upstream, indicating the presence of contributing sources on LANL. For comparison purposes, doses were calculated on a mrem per liter of unfiltered water basis for 11 radionuclides commonly associated with atmospheric fallout and with LANL operations. The maximum dose was 0.094 mrem per liter unfiltered water and was largely associated with plutonium-239/240. In contrast, all filtered samples had total doses less than 0.001 mrem per liter. Compared to past data, potential doses were not increased by the fire during this initial runoff event. Of the 25 metals tested for, seven were above pre-fire levels, including copper, lead, manganese, selenium, strontium, uranium, and zinc. However, dissolved metal concentrations did not exceed State livestock and wildlife standards. Of the 18 general chemistry parameters tested, eight exceeded historic norms, including calcium, potassium, total phosphorus, cyanide, and magnesium.« less

  10. The National Shipbuilding Research Program. Strategies and Demonstrations for the Reduction of Government Regulations Related to Commercial Shipbuilding

    DTIC Science & Technology

    1996-09-01

    inspecting storm water quality associated with storm water runoff or snowmelt: January through March; April through June: July through September and October...beyond those described in Part V.B. of this permit. 5. Monitoring and Reporting . Requirements Storm Water Quality . Facilities shall perform and document...event. (I) Examinations shall be conducted in each of the following periods for the purposes of visually inspecting storm water quality associated

  11. The dual effect of vegetation green-up date and strong wind on the return period of spring dust storms.

    PubMed

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-08-15

    Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida

    NASA Astrophysics Data System (ADS)

    Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.

    2009-12-01

    The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.

  13. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    NASA Astrophysics Data System (ADS)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  14. Winter maintenance performance measure.

    DOT National Transportation Integrated Search

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  15. A Synoptic- and Planetary-Scale Analysis of Widespread North American Ice Storms

    NASA Astrophysics Data System (ADS)

    McCray, C.; Gyakum, J. R.; Atallah, E.

    2017-12-01

    Freezing rain can have devastating impacts, particularly when it persists for many hours. Predicting the precise temperature stratification necessary for long duration freezing rain events remains an important forecast challenge. To better elucidate the conditions responsible for the most severe events, we concentrate on surface observations of long-duration (6 or more hours) freezing rain events over North America from 1979-2016. Furthermore, we analyze cases in which multiple stations observe long-duration events simultaneously. Following these cases over successive days allows us to generate maps of freezing rain "tracks." We then categorize recurring geographic patterns to examine the meteorological conditions leading to these events. While freezing rain is most frequently observed in the northeastern United States and southeastern Canada, long-duration events have affected areas as far south as the Gulf Coast. Notably, a disproportionately large number of very long duration (18 or more hours) events have occurred in the Southern Plains states relative to the climatological annual frequency of freezing rain there. Classification of individual cases shows that most of these very long duration events are associated with a recurring pattern which produces freezing rain along a southwest-northeast swath from Texas/Oklahoma into the northeastern U.S. and eastern Canada. Storms classified within this pattern include the January 1998 and December 2013 ice storms. While this pattern is the most widespread, additional spatially extensive patterns occur. One of these areas extends from the Southern Plains eastward along the Gulf Coast to Georgia and the Carolinas. A third category of events extends from the Upper Midwest into the northeastern U.S. and southeastern Canada. The expansive areal extent and long duration of these events make them especially problematic. An analysis of the planetary- to synoptic-scale settings responsible for these cases and the differences among individual storms is performed to provide forecasters with additional tools/insight towards the prediction of these damaging weather events.

  16. Management of microbial contamination in storm runoff from California coastal dairy pastures.

    PubMed

    Lewis, David J; Atwill, Edward R; Lennox, Michael S; Pereira, Maria D G; Miller, Woutrina A; Conrad, Patricia A; Tate, Kenneth W

    2010-01-01

    A survey of storm runoff fecal coliform bacteria (FCB) from working farm and ranch pastures is presented in conjunction with a survey of FCB in manure management systems (MMS). The cross-sectional survey of pasture runoff was conducted on 34 pastures on five different dairies over 2 yr under varying conditions of precipitation, slope, manure management, and use of conservation practices such as vegetative filter strips. The MMS cross-sectional survey consisted of samples collected during 1 yr on nine different dairies from six loafing barns, nine primary lagoons, 12 secondary lagoons, and six irrigation sample points. Pasture runoff samples were additionally analyzed for Cryptosporidium sp. and Giardia duodenalis, whereby detectable concentrations occurred sporadically at higher FCB concentrations resulting in poor correlations with FCB. Prevalence of both parasites was lower relative to high-use areas studied simultaneously on these same farms. Application of manure to pastures more than 2 wk in advance of storm-associated runoff was related to a > or =80% reduction in FCB concentration and load compared to applications within 2 wk before a runoff event. For every 10 m of buffer length, a 24% reduction in FCB concentration was documented. A one-half (75%), one (90%), and two (99%) log10 reduction in manure FCB concentration was observed for manure holding times in MMS of approximately 20, 66, and 133 d, respectively. These results suggest that there are several management and conservation practices for working farms that may result in reduced FCB fluxes from agricultural operations.

  17. Using diatoms, hydrochemical and stable isotope tracers to infer runoff generation processes

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, N.; Wetzel, C. E.; Frentress, J.; Hlúbiková, D.; Ector, L.; McDonnell, J. J.; Hoffmann, L.; Pfister, L.

    2012-04-01

    Imaginative techniques are needed to improve our understanding of runoff generation processes. In this context, the hydrological community calls to cut across disciplines looking for new and exciting advances in knowledge. In this study, hydrologists and ecologists have worked together to use not only hydrochemical and stable isotope tracers, but also diatoms to infer runoff generation processes. Diatoms, one of the most common and divers algal group, can be easily transported by flowing water due to their small size (~10-200 μm). They are present in most terrestrial habitats and their diversified species distributions are largely controlled by physico-geographical factors (e.g. light, temperature, pH and moisture). Thus, hydrological systems largely control diatom species community composition and distribution. This study was conducted in the schistose Weierbach catchment (0.45 km2, NW Luxembourg). Its runoff regime is characterised by seasonal variation and a delayed shallow groundwater component originating from a saprolite zone. The catchment was instrumented with piezometers, suction cups, an automatic streamwater sampler, a sequential rainfall sampler, and soil moisture and temperature sensors. Samples collected bi-weekly and during storm runoff events allowed the characterisation of the different end-members. Chemical and isotopic hydrograph separations of stream discharge were used to determine not only the geographic sources of water, but also the fractions of old and new water contributing to streamflow. Diatoms intra-storm variability was also analysed and samples of diatoms from various terrestrial and subaerial substrates (bryophytes, litter and leaves), as well as from aquatic habitats (epilithon, epipelon and drift samples) were regularly collected. Diatoms were then used to constrain assumptions and to confirm or reject the hypothesis of existing surface runoff during rainfall-runoff events and to document the intermittent character of hydrological connectivity between upland, riparian and aquatic zones. As an advantage, diatoms do not seem to be subject to some inherent limitations of the classical tracer-based hydrograph separation techniques, such as unrealistic mixing assumptions, unstable end-member solutions and temporally varying input concentrations. Results suggested a substantial contribution of soil water during winter events in the Weierbach catchment, whereas groundwater played a more significant role during summer events. Even though overland flow remained insignificant during most of the sampled events, terrestrial diatom abundance increased with precipitation in all sampled events suggesting a rapid connectivity between soil surface and stream water. We hypothesise the mobilization and flushing away of terrestrial diatoms through a subsurface network of macropores in the shallow soils.

  18. First flush of storm runoff pollution from an urban catchment in China.

    PubMed

    Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  19. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  20. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE PAGES

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.; ...

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  1. Index for Predicting Insurance Claims from Wind Storms with an Application in France.

    PubMed

    Mornet, Alexandre; Opitz, Thomas; Luzi, Michel; Loisel, Stéphane

    2015-11-01

    For insurance companies, wind storms represent a main source of volatility, leading to potentially huge aggregated claim amounts. In this article, we compare different constructions of a storm index allowing us to assess the economic impact of storms on an insurance portfolio by exploiting information from historical wind speed data. Contrary to historical insurance portfolio data, meteorological variables show fewer nonstationarities between years and are easily available with long observation records; hence, they represent a valuable source of additional information for insurers if the relation between observations of claims and wind speeds can be revealed. Since standard correlation measures between raw wind speeds and insurance claims are weak, a storm index focusing on high wind speeds can afford better information. A storm index approach has been applied to yearly aggregated claim amounts in Germany with promising results. Using historical meteorological and insurance data, we assess the consistency of the proposed index constructions with respect to various parameters and weights. Moreover, we are able to place the major insurance events since 1998 on a broader horizon beyond 40 years. Our approach provides a meteorological justification for calculating the return periods of extreme-storm-related insurance events whose magnitude has rarely been reached. © 2015 Society for Risk Analysis.

  2. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; Henderson, M. G.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  3. Total electron content responses to HILDCAAs and geomagnetic storms over South America

    NASA Astrophysics Data System (ADS)

    Mara de Siqueira Negreti, Patricia; Rodrigues de Paula, Eurico; Nicoli Candido, Claudia Maria

    2017-12-01

    Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O / N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from ˜ 25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.

  4. WSR-88D Cell Trends

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    1998-01-01

    This report documents the Applied Meteorology Unit's evaluation of the Cell Trends display as a tool for radar operators to use in their evaluation of storm cell strength. The objective of the evaluation is to assess the utility of the WSR-88D graphical Cell Trends display for local radar cell interpretation in support of the 45th Weather Squadron (45 WS), Spaceflight Meteorology Group (SMG), and National Weather Service (NWS) Melbourne (MLB) operational requirements. The analysis procedure was to identify each cell and track the maximum reflectivity, height of maximum reflectivity, storm top, storm base, hail and severe hail probability, cell-based Vertically Integrated Liquid (VIL) and core aspect ratio using WATADS Build 9.0 cell trends information. One problem noted in the analysis phase was that the Storm Cell Identification and Tracking (SCIT) algorithm had a difficult time tracking the small cells associated with the Florida weather regimes. The analysis indicated numerous occasions when a cell track would end or an existing cell would be give a new ID in the middle of its life cycle. This investigation has found that most cells, which produce hail or microburst events, have discernable Cell Trends signatures. Forecasters should monitor the PUP's Cell Trends display for cells that show rapid (1 scan) changes in both the heights of maximum reflectivity and cell-based VIEL. It is important to note that this a very limited data set (four case days). Fifty-two storm cells were analyzed during those four days. The above mentioned t=ds, increase in the two cell attributes for hail events and decrease in the two cell attributes for wind events were noted in most of the cells. The probability of detection was 88% for both events. The False Alarm Rate (FAR) was a 36% for hail events and a respectable 25% for microburst events. In addition the Heidke Skill Score (HSS) is 0.65 for hail events and 0.67 for microburst events. For random forecast the HSS is 0 and that a perfect score is 1.

  5. GPU-Meta-Storms: computing the structure similarities among massive amount of microbial community samples using GPU.

    PubMed

    Su, Xiaoquan; Wang, Xuetao; Jing, Gongchao; Ning, Kang

    2014-04-01

    The number of microbial community samples is increasing with exponential speed. Data-mining among microbial community samples could facilitate the discovery of valuable biological information that is still hidden in the massive data. However, current methods for the comparison among microbial communities are limited by their ability to process large amount of samples each with complex community structure. We have developed an optimized GPU-based software, GPU-Meta-Storms, to efficiently measure the quantitative phylogenetic similarity among massive amount of microbial community samples. Our results have shown that GPU-Meta-Storms would be able to compute the pair-wise similarity scores for 10 240 samples within 20 min, which gained a speed-up of >17 000 times compared with single-core CPU, and >2600 times compared with 16-core CPU. Therefore, the high-performance of GPU-Meta-Storms could facilitate in-depth data mining among massive microbial community samples, and make the real-time analysis and monitoring of temporal or conditional changes for microbial communities possible. GPU-Meta-Storms is implemented by CUDA (Compute Unified Device Architecture) and C++. Source code is available at http://www.computationalbioenergy.org/meta-storms.html.

  6. Understanding and predicting the impact of extreme storms events on European coastlines: the MICORE approach

    NASA Astrophysics Data System (ADS)

    Ciavola, P.

    2009-04-01

    Both the EU and The United Nations are now taking seriously the predicted climate change scenarios of the IPCC. Of particular relevance to Integrated Coastal Zone Management is the predicted increase in the intensity and frequency of powerful storm events characterised by larger peak wind speeds and consequently larger waves. Engineering has usually been favoured in the past as the best option for disaster mitigation at the coast. However, most engineering works are constrained by economics, and a compromise is sought between the potential threat to lives and property and the resources available for design and construction. Furthermore, the design of structures is based on predicted extreme events which themselves are subject to uncertainty, especially in a rapidly changing global climate. The huge damage to the city of New Orleans by Hurricane Katrina illustrates clearly what can go wrong when the engineering design is subjected to forcing beyond its design limits and when civil evacuation and management plans fail. The proposed paper will address the issue of encouraging and facilitating exchange of information on storm impacts produced by nationally funded projects in Member States; establishing robust data management and data quality control and engaging with stakeholders and end users to optimise dissemination strategies. It will heavily rely on the information produced by the MICORE Project (FP7 contract 202798), using and enlarging the database collated by the project regarding the characteristics of extreme storm events occurred in the last 50 years. The MICORE project (www.micore.eu) will provide the knowledge necessary to assess the present day risks and to study the economic and social impact of future severe storm events. Together, these elements will have an important strategic impact on the safety of the people living in coastal areas and upon decision processes aimed at minimising the economic consequences of extreme events. The project will also investigate with stakeholders and end-users the possibilities of producing EU-wide guidelines for a viable and reliable risk mitigation strategy. One of the initial main objectives of MICORE is to produce an up-to-date data base for each partner country that includes: an historical review of storms; an inventory of data related to the forcing signals; quantification of the morphological response of coastal systems to storms and to sequences of storms; an assessment of socio-economic impact; a description of existing civil protection schemes and interventions. The MICORE project will identify indices for coastal vulnerability to erosion with an integrated EU perspective using the standardised data bases assembled for all member states. It will also recommend future data collection requirements that best serve the needs of coastal managers. Here an area of innovation in the project is the standardization in the production of vulnerability matrices for evaluation of society impact from storms.

  7. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Hui; Zhang, Jing; Gao, Hui-Wang; Tan, Sai-Chun; Yao, Xiao-Hong; Ren, Jing-Ling

    2013-12-01

    Satellite images showed that two large dust storms swept over the Yellow Sea from 31 Mach to 1 April 2007; both were accompanied by precipitation. Three to four days after the dust episodes, blooms occurred in the Yellow Sea. As an important and potential controlling factor of the bloom, nutrients in the total suspended particle (TSP) and size-segregated particle samples during the cruise campaign were measured and their atmospheric deposition fluxes of nutrients are reported in this paper. Concentrations of total P and TIN (NH4+, NO2- and NO3-) in TSP varied from 0.01 to 1.05 μg m-3, and from 1.21 to 22.28 μg m-3, with the maximum occurring concurrently with the dust storm events. In addition, the measured solubility of Fe in these particles varied from 1.0 to 20.1%, while it ranged from 0.8 to 15% for Al. The total deposition fluxes of Asian dust as well as the contained nutrients were estimated on the basis of an episodic increment of the measured concentration of dissolved Al in the surface ocean during the dust events. The estimated fluxes of atmospheric deposition of soluble Fe, P and inorganic nitrogen over the Yellow Sea during the dust episodes were 42.5±10.9, 10.3±2.6 and 772.0±198.0 mg m-2, respectively. The estimated fluxes of nutrients via dry atmospheric deposition accounted for only ~2% of the total fluxes. The deposition fluxes of particulate Fe and P during the two dust storm events associated with precipitation were about 500-1000 times of that daily averaged flux during non-dust days, indicating the importance of the episodic inputs to the annual budget of these metals deposited into the ocean.

  8. Natural Attenuation of Arsenic, Cadmium, Lead, and Zinc Using Hydrograph Separation

    NASA Astrophysics Data System (ADS)

    Burrows, J. E.; Peters, S. C.

    2009-12-01

    Strategies for remediating contaminated sites range from complete removal of the contaminated soil to in-situ monitored natural attenuation. The decision to let a property naturally attenuate is partially based on the estimated time it will take to return to ambient conditions. The Lehigh Gap Wildlife Refuge at Palmerton, PA was historically contaminated with arsenic, cadmium, lead, and zinc from a zinc smelting operation that ceased emissions twenty-nine years ago. This property provides an opportunity to assess whether the length of time required for the natural attenuation of metals in soil has been achieved using a watershed mass balance approach, focusing particularly on perturbations observed in the concentration-discharge relationships of contaminants compared to the conservative tracers sodium and chloride, and silicon as an indicator of rock-water interactions. Water samples were collected from 3 springs in the Wildlife Refuge for approximately 4 days following the onset of storm events and analyzed for cation and anion concentrations. Preliminary results show that while the concentrations of arsenic and lead were below detection limits, the fluxes of zinc and cadmium increase corresponding with the peak in the hydrograph relative to the fluxes of the tracers, indicating the solutes are being released from adsorption sites located in an unsaturated zone that is temporarily inundated during storm events. In comparison, the flux of the tracers remains constant, indicative of a steady-state leakage of the solutes from their respective reservoirs in the soil. Along with flux, the concentrations of zinc and cadmium also increase following the rise in discharge after storm events, further suggesting that these contaminants are being mobilized out of the soil profile.

  9. Seasonal Variation of Phytoplankton and Primary Production in the Thames River, Southeastern Connecticut

    NASA Astrophysics Data System (ADS)

    Wainright, S. C.

    2016-02-01

    A year-long study was performed to investigate seasonal changes in the phytoplankton biomass and primary production in the Thames River, a salt wedge estuary that empties into Long Island Sound in southeastern CT. Chlorophyll measurements were made on discrete filtered samples collected above and below the 1-3 m deep pycnocline at a 5-meter deep station. Surface chlorophyll concentrations, primarily from diatoms, averaged approx. 2 mg m-3, with maxima (up to 10 mg m-3) during summer months (Jun to Aug) and minima during October through March (as low as 0.3 mg m-3). The lower water layer had nearly the same annual average but a smaller range (0.7-3.3 mg m-3) and a winter/spring bloom (Jan-Apr) that was not seen in surface water. During most of the winter, chlorophyll concentrations were higher in the lower layer. Primary production, as measured by 13C uptake in bottle incubations, averaged 67 mgC m-3 h-1 in surface water [range 0.1 (Jan 2012) to 800 mgC m-3 h-1 (Aug 2011)], and 3 mgC m-3 h-1 [range 0.04 (Jan 2012) to 17 mgC m-3 h-1 (Aug 2011)] in the lower layer. On most occasions, deep water incubated near the surface had a higher primary production rate than surface water incubated at the surface; apparently the light-limited phytoplankton in the lower layer were released from light-limitation during these incubations. During the study period there were over a dozen heavy wind or heavy rain events, including Hurricane Irene in August and a freak Nor'easter snow storm in October 2011. Hurricane Irene was associated with a large decline in phytoplankton biomass and primary production. With significant storms as frequent as the rate of sampling, it is difficult to separate a "storm effect" from a background seasonal pattern. The study reveals that phytoplankton, especially those in the lower layer, are light-limited in the Thames River estuary, and that the effects of significant storm events are superimposed on significant seasonal variation.

  10. Throughfall Monitoring Of Old Growth, Second Growth, And Cleared Vegetation Plots On Prince of Wales Island, Alaska

    NASA Astrophysics Data System (ADS)

    Prussian, K. M.

    2006-12-01

    The density of forest canopy affects the amount of rain reaching the forest floor in forested environments of Southeast Alaska. Less throughfall occurs in the second growth sites than in the old growth site and greater throughfall occurs in the clear-cut sites. More specifically, preliminary data show that SG sites received between 38 and 87% of the OG throughfall and the clear-cut sites experienced between 145 and 248% of the OG throughfall. Precipitation gages were used to monitor throughfall in each of the forested vegetation sites on Prince of Wales Island, Alaska, as an indicator of the amount of water reaching the forest floor in these different forest types. Data collected during 2004 and 2005 included 23 storms ranging from 0.2 to 10.6 inches of rain in the clear-cut forest. This monitoring is an effort to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. Site selection focused on similarities in location, elevation, aspect, and accessibility while accounting for the three varying vegetation conditions. Data collected during 2004 and 2005 sampling seasons were in the same sampling plots, while data collected in 2006 is a duplicate set of sites. Twenty-three storms were used to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. The second growth stand was harvested in 1979 and is currently in stem re-initiation phase with thick conifer regeneration. The clear-cut site was harvested in 1999 and contains conifer vegetation, blueberry, and salmonberry vegetation less than five feet in height. Storms were defined as events that were clearly delineated by lack of rainfall for a period of time, or similar antecedent conditions, and totaled at least .2 inches of rain at the CC site. Analysis of a storm event began prior to rainfall (in the CC site) and terminated post throughfall in the SG sites.

  11. Weather-Related Hazards and Population Change: A Study of Hurricanes and Tropical Storms in the United States, 1980–2012

    PubMed Central

    FUSSELL, ELIZABETH; CURRAN, SARA R.; DUNBAR, MATTHEW D.; BABB, MICHAEL A.; THOMPSON, LUANNE; MEIJER-IRONS, JACQUELINE

    2017-01-01

    Environmental determinists predict that people move away from places experiencing frequent weather hazards, yet some of these areas have rapidly growing populations. This analysis examines the relationship between weather events and population change in all U.S. counties that experienced hurricanes and tropical storms between 1980 and 2012. Our database allows for more generalizable conclusions by accounting for heterogeneity in current and past hurricane events and losses and past population trends. We find that hurricanes and tropical storms affect future population growth only in counties with growing, high-density populations, which are only 2 percent of all counties. In those counties, current year hurricane events and related losses suppress future population growth, although cumulative hurricane-related losses actually elevate population growth. Low-density counties and counties with stable or declining populations experience no effect of these weather events. Our analysis provides a methodologically informed explanation for contradictory findings in prior studies. PMID:29326480

  12. Weather-Related Hazards and Population Change: A Study of Hurricanes and Tropical Storms in the United States, 1980-2012.

    PubMed

    Fussell, Elizabeth; Curran, Sara R; Dunbar, Matthew D; Babb, Michael A; Thompson, Luanne; Meijer-Irons, Jacqueline

    2017-01-01

    Environmental determinists predict that people move away from places experiencing frequent weather hazards, yet some of these areas have rapidly growing populations. This analysis examines the relationship between weather events and population change in all U.S. counties that experienced hurricanes and tropical storms between 1980 and 2012. Our database allows for more generalizable conclusions by accounting for heterogeneity in current and past hurricane events and losses and past population trends. We find that hurricanes and tropical storms affect future population growth only in counties with growing, high-density populations, which are only 2 percent of all counties. In those counties, current year hurricane events and related losses suppress future population growth, although cumulative hurricane-related losses actually elevate population growth. Low-density counties and counties with stable or declining populations experience no effect of these weather events. Our analysis provides a methodologically informed explanation for contradictory findings in prior studies.

  13. Cooling in the Post-Sunrise Equatorial Topside Ionosphere During the 22-23 June 2015 Superstorm

    NASA Astrophysics Data System (ADS)

    Stoneback, R.; Hairston, M. R.; Coley, W. R.; Heelis, R. A.

    2015-12-01

    During the recovery phase of the 22-23 June 2015 superstorm multiple DMSP spacecraft observed two separate and short-lived (~ 30 minutes) events of localized cooling in the topside equatorial ionosphere (~840 km) in the post-sunrise region (between 6:15 and 7:30 local time). The ion temperatures dropped from the nominal 2000-3000° observed in these regions to 1000 to 1500°. This cooling effect was not observed on the corresponding duskside equatorial crossings of the DMSP spacecraft during this storm. Further, these cooling events do not normally occur during major storms; no such phenomenon was observed by DMSP during the March 2015 superstorm. Flow data from DMSP and the CINDI instruments on the C/NOFS spacecraft indicate these cooling events are associated with short-lived vertical flows bringing up cooler plasma from lower altitudes. The two cooling events correspond to large northward turnings of the IMF during the storm and these are being explored as a possible trigger mechanism.

  14. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  15. Exceptional winter storms affecting Western Iberia and extremes: diagnosis, modelling and multi-model ensemble projection

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Pinto, J. G.; Gil, V.; Ramos, A. M.; Trigo, R. M.

    2017-12-01

    Extratropical cyclones dominate autumn and winter weather over Western Europe and particularly over the Iberian Peninsula. Intense, high-impact storms are one of the major weather risks in the region, mostly due to the simultaneous occurrence of high winds and extreme precipitation events. These intense extratropical cyclones may result in windstorm damage, flooding and coastal storm surges, with large societal impacts. In Portugal, due to the extensive human use of coastal areas, the natural and built coastal environments have been amongst the most affected. In this work several historical winter storms that adversely affected the Western Iberian Peninsula are studied in detail in order to contribute to an improved assessment of the characteristics of these events. The diagnosis has been performed based on instrumental daily precipitation and wind records, on satellite images, on reanalysis data and through model simulations. For several examples the synoptic evolution and upper-level dynamics analysis of physical processes controlling the life cycle of extratropical storms associated with the triggering of the considered extreme events has also been accomplished. Furthermore, the space-time variability of the exceptionally severe storms affecting Western Iberia over the last century and under three climate scenarios (the historical simulation, the RCP4.5 and RCP8.5 scenarios) is presented. These studies contribute to improving the knowledge of atmospheric dynamics controlling the life cycle of midlatitude storms associated to severe weather (precipitation and wind) in the Iberian Peninsula. AcknowledgementsThis work is supported by the Portuguese Foundation for Science and Technology (FCT), Portugal, through project UID/GEO/50019/2013 - Instituto Dom Luiz. A. M. Ramos is also supported by a FCT postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).

  16. Fuzzy neural network for flow estimation in sewer systems during wet weather.

    PubMed

    Shen, Jun; Shen, Wei; Chang, Jian; Gong, Ning

    2006-02-01

    Estimation of the water flow from rainfall intensity during storm events is important in hydrology, sewer system control, and environmental protection. The runoff-producing behavior of a sewer system changes from one storm event to another because rainfall loss depends not only on rainfall intensities, but also on the state of the soil and vegetation, the general condition of the climate, and so on. As such, it would be difficult to obtain a precise flowrate estimation without sufficient a priori knowledge of these factors. To establish a model for flow estimation, one can also use statistical methods, such as the neural network STORMNET, software developed at Lyonnaise des Eaux, France, analyzing the relation between rainfall intensity and flowrate data of the known storm events registered in the past for a given sewer system. In this study, the authors propose a fuzzy neural network to estimate the flowrate from rainfall intensity. The fuzzy neural network combines four STORMNETs and fuzzy deduction to better estimate the flowrates. This study's system for flow estimation can be calibrated automatically by using known storm events; no data regarding the physical characteristics of the drainage basins are required. Compared with the neural network STORMNET, this method reduces the mean square error of the flow estimates by approximately 20%. Experimental results are reported herein.

  17. A storm time, Pc 5 event observed in the outer magnetosphere by ISEE 1 and 2 - Wave properties

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Scarf, F. L.; Mcpherron, R. L.; Anderson, R. R.

    1986-01-01

    The properties of the waves composing a classical storm time Pc 5 event, recorded by the satellite pair ISEE 1,2 during an inbound nearly equatorial pass in the dusk sector on August 21-22, 1978, are described. On the basis of these observations it is concluded that the events of the August 21-22 pass resulted from a combination of sources, namely, distant wideband excitation and ion drift instability, plus a coupling of wave modes. It is suggested that the observed phenomenon was a radial cross section of the type of event reported by Barfield et al. (1972).

  18. A probabilistic storm surge risk model for the German North Sea and Baltic Sea coast

    NASA Astrophysics Data System (ADS)

    Grabbert, Jan-Henrik; Reiner, Andreas; Deepen, Jan; Rodda, Harvey; Mai, Stephan; Pfeifer, Dietmar

    2010-05-01

    The German North Sea coast is highly exposed to storm surges. Due to its concave bay-like shape mainly orientated to the North-West, cyclones from Western, North-Western and Northern directions together with astronomical tide cause storm surges accumulating the water in the German bight. Due to the existence of widespread low-lying areas (below 5m above mean sea level) behind the defenses, large areas including large economic values are exposed to coastal flooding including cities like Hamburg or Bremen. The occurrence of extreme storm surges in the past like e.g. in 1962 taking about 300 lives and causing widespread flooding and 1976 raised the awareness and led to a redesign of the coastal defenses which provide a good level of protection for today's conditions. Never the less the risk of flooding exists. Moreover an amplification of storm surge risk can be expected under the influence of climate change. The Baltic Sea coast is also exposed to storm surges, which are caused by other meteorological patterns. The influence of the astronomical tide is quite low instead high water levels are induced by strong winds only. Since the exceptional extreme event in 1872 storm surge hazard has been more or less forgotten. Although such an event is very unlikely to happen, it is not impossible. Storm surge risk is currently (almost) non-insurable in Germany. The potential risk is difficult to quantify as there are almost no historical losses available. Also premiums are difficult to assess. Therefore a new storm surge risk model is being developed to provide a basis for a probabilistic quantification of potential losses from coastal inundation. The model is funded by the GDV (German Insurance Association) and is planned to be used within the German insurance sector. Results might be used for a discussion of insurance cover for storm surge. The model consists of a probabilistic event driven hazard and a vulnerability module, furthermore an exposure interface and a financial module to account for specific (re-) insurance conditions. This contribution will mainly concentrate on the hazard module. The hazard is covered by an event simulation engine enabling Monte Carlo simulations. The event generation is done on-the-fly. A classification of historical storm surges is used based on observed sea water levels at gauging stations and extended literature research. To characterize the origin of storm events and storm surges caused by those, also meteorological parameters like wind speed and wind direction are being used. If high water levels along the coast are mainly caused by strong wind from particular directions as observed at the North Sea, there is a clear empirical relationship between wind and surge (where surge is defined as the wind-driven component of the sea water level) which can be described by the ATWS (Average Transformed Wind speed). The parameters forming the load at the coastal defense elements are water level and wave parameters like significant wave height, wave period and wave direction. To assess the wave characteristics at the coast the numerical model SWAN (Simulating Waves Near Shore) from TU Delft has been used. To account for different probabilities of failure and inundation the coast is split into segments with similar defense characteristics like type of defense, height, width, orientation and others. The chosen approach covers the most relevant failure mechanisms for coastal dikes induced by wave overtopping and overflow. Dune failure is also considered in the model. Inundation of the hinterland after defense failure is modeled using a simple dynamical 2d-approach resulting in distributed water depths and flood outlines for each segment. Losses can be estimated depending on the input exposure data either coordinate based for single buildings or aggregated on postal code level using a set of depths-damage functions.

  19. Past storminess recorded in the internal architecture of coastal formations of Estonia in the NE Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Tõnisson, Hannes; Vilumaa, Kadri; Kont, Are; Sugita, Shinya; Rosentau, Alar; Muru, Merle; Anderson, Agnes

    2016-04-01

    Over the past 50 years, storminess has increased in northern Europe because of the changes in cyclonic activity. The cyclone season in the Baltic Sea area has shifted from autumn to winter; this has led to intensification of shore processes (erosion, sediment transport and accumulation) and has increased pressure to the economy (land use, coastal protection measures) of the coastal regions in the Baltic states. Therefore, studing the effects of such changes on shore processes in the past is critical for prediction of the future changes along the Baltic coasts. Beach ridge plains are found worldwide, where cyclones and storm surges affect accumulation forms. These sandy shores are highly susceptible to erosion. Due to the isostatic uplift on the NE coast of the Baltic Sea, the signs of major past events are well-preserved in the internal architecture of old coastal formations (dune ridge-swale complexes). Wave-eroded scarps in beach deposits are visible in subsurface ground-penetrating radar (GPR) records, indicating the past high-energy events. Several study areas and transects were selected on the NW coast of Estonia, using high-resolution topographic maps (LiDAR). Shore-normal subsurface surveys have been conducted with a digital GSSI SIR-3000 georadar with a 270 MHz antenna at each transect. Interpretation of GPR facies was based on hand auger and window sampler coring, which provided accurate depths of key stratigraphic boundaries and bounding surfaces. Several samples for luminescence and 14C dating were collected to determine the approximate chronology of the coastal formations along the Estonian coast. We have found that changes in storminess, including the periods of high and low intensity of storms in late Holocene, are clearly reflected in the internal patterns of ancient coastal formations. The sections with small ridges with short seaward-dipped layers (interface between wave-built and aeolian deposits) in deeper horizons are probably formed during relatively calm periods. Such short seaward-dipped layers refer to low sea levels during their formation. More extensive layers reflect stronger storm events with higher water levels. Large amounts of sand in nearshore zone contribute to the formation of larger ridges. We have found at least three periods with high cyclonic activity and two relatively calm periods punctuated by few intense storms along the Estonian coast. In addition, a comparative study of the erosional palaeo-surfaces and recent storm monitoring data is currently underway for a better understanding, and thus a reliable reconstruction of the past storm parameters. Further studies are required for a better chronology of coastal events to clarify the periodicity of storminess in this part of the Baltic Sea region. The findings of the current study will contribute to the forecast of future scenarios in regional storm risk assessment of the coastal areas. ACKNOWLEDGMENTS: This work has been funded by the Estonian Ministry of Education and Research and by the Estonian Science Foundation grants No. 7564, 8549, 9191, 9011, IUT18-9, PUT456, the BONUS project BaltCoast and Doctoral School of Earth Sciences and Ecology (EU Structural Support).

  20. Observing storm surges from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2016-07-01

    Storm surges can cause catastrophic damage to properties and loss of life in coastal communities. Thus it is important to enhance our capabilities of observing and forecasting storm surges for mitigating damage and loss. In this presentation we show examples of observing storm surges around the world using nadir satellite altimetry, during Hurricane Sandy, Igor, and Isaac, as well as other cyclone events. The satellite observations are evaluated against tide-gauge observations and discussed for dynamic mechanisms. We also show the potential of a new wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  1. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China

    PubMed Central

    Ma, Weixing; Huang, Tinglin; Li, Xuan; Zhou, Zizhen; Li, Yang; Zeng, Kang

    2015-01-01

    Storm runoff events in the flooding season affect the water quality of reservoirs and increase risks to the water supply, but coping strategies have seldom been reported. The phenomenon of turbid current intrusion resulting in water turbidity and anoxic conditions reappearing after storm runoff, resulting in the deterioration of water quality, was observed in the flooding season in the deep canyon-shaped Heihe Reservoir. The objective of this work was to elucidate the effects of storm runoff on the Heihe Reservoir water quality and find a coping strategy. In this study, an intensive sampling campaign measuring water temperature, dissolved oxygen, turbidity, nutrients, and metals were conducted in the reservoir over a period of two years, and the water-lifting aerators were improved to achieve single aeration and a full layer of mixing and oxygenation functions using different volumes of gas. The operation of the improved water-lifting aerators mixed the reservoir three months ahead of the natural mixing time, and good water quality was maintained during the induced mixing period, thereby extending the good water quality period. The results can provide an effective coping strategy to improve the water quality of a source water reservoir and ensure the safety of drinking water. PMID:26184258

  2. Characterization of storm flow dynamics of headwater streams in the South Carolina lower coastal plain

    Treesearch

    Thomas H. Epps; Daniel R. Hitchcock; Anand D. Jayakaran; Drake R. Loflin; Thomas M. Williams; Devendra M. Amatya

    2013-01-01

    Hydrologic monitoring was conducted in two first-order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three-year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph...

  3. Climate-change driven increase in high intensity rainfall events: Analysis of development in the last decades and towards an extrapolation of future progression

    NASA Astrophysics Data System (ADS)

    Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel

    2015-04-01

    Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.

  4. Reliability of windstorm predictions in the ECMWF ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Becker, Nico; Ulbrich, Uwe

    2016-04-01

    Windstorms caused by extratropical cyclones are one of the most dangerous natural hazards in the European region. Therefore, reliable predictions of such storm events are needed. Case studies have shown that ensemble prediction systems (EPS) are able to provide useful information about windstorms between two and five days prior to the event. In this work, ensemble predictions with the European Centre for Medium-Range Weather Forecasts (ECMWF) EPS are evaluated in a four year period. Within the 50 ensemble members, which are initialized every 12 hours and are run for 10 days, windstorms are identified and tracked in time and space. By using a clustering approach, different predictions of the same storm are identified in the different ensemble members and compared to reanalysis data. The occurrence probability of the predicted storms is estimated by fitting a bivariate normal distribution to the storm track positions. Our results show, for example, that predicted storm clusters with occurrence probabilities of more than 50% have a matching observed storm in 80% of all cases at a lead time of two days. The predicted occurrence probabilities are reliable up to 3 days lead time. At longer lead times the occurrence probabilities are overestimated by the EPS.

  5. Tool for Automated Retrieval of Generic Event Tracks (TARGET)

    NASA Technical Reports Server (NTRS)

    Clune, Thomas; Freeman, Shawn; Cruz, Carlos; Burns, Robert; Kuo, Kwo-Sen; Kouatchou, Jules

    2013-01-01

    Methods have been developed to identify and track tornado-producing mesoscale convective systems (MCSs) automatically over the continental United States, in order to facilitate systematic studies of these powerful and often destructive events. Several data sources were combined to ensure event identification accuracy. Records of watches and warnings issued by National Weather Service (NWS), and tornado locations and tracks from the Tornado History Project (THP) were used to locate MCSs in high-resolution precipitation observations and GOES infrared (11-micron) Rapid Scan Operation (RSO) imagery. Thresholds are then applied to the latter two data sets to define MCS events and track their developments. MCSs produce a broad range of severe convective weather events that are significantly affecting the living conditions of the populations exposed to them. Understanding how MCSs grow and develop could help scientists improve their weather prediction models, and also provide tools to decision-makers whose goals are to protect populations and their property. Associating storm cells across frames of remotely sensed images poses a difficult problem because storms evolve, split, and merge. Any storm-tracking method should include the following processes: storm identification, storm tracking, and quantification of storm intensity and activity. The spatiotemporal coordinates of the tracks will enable researchers to obtain other coincident observations to conduct more thorough studies of these events. In addition to their tracked locations, their areal extents, precipitation intensities, and accumulations all as functions of their evolutions in time were also obtained and recorded for these events. All parameters so derived can be catalogued into a moving object database (MODB) for custom queries. The purpose of this software is to provide a generalized, cross-platform, pluggable tool for identifying events within a set of scientific data based upon specified criteria with the possibility of storing identified events into a searchable database. The core of the application uses an implementation of the connected component labeling (CCL) algorithm to identify areas of interest, then uses a set of criteria to establish spatial and temporal relationships between identified components. The CCL algorithm is used for identifying objects within images for computer vision. This application applies it to scientific data sets using arbitrary criteria. The most novel concept was applying a generalized CCL implementation to scientific data sets for establishing events both spatially and temporally. The combination of several existing concepts (pluggable components, generalized CCL algorithm, etc.) into one application is also novel. In addition, how the system is designed, i.e., its extensibility with pluggable components, and its configurability with a simple configuration file, is innovative. This allows the system to be applied to new scenarios with ease.

  6. Anomalous, extreme weather disrupts obligate seed dispersal mutualism: snow in a subtropical forest ecosystem.

    PubMed

    Zhou, Youbing; Newman, Chris; Chen, Jin; Xie, Zongqiang; Macdonald, David W

    2013-09-01

    Ongoing global climate change is predicted to increase the frequency and magnitude of extreme weather events, impacting population dynamics and community structure. There is, however, a critical lack of case studies considering how climatic perturbations affect biotic interactions. Here, we document how an obligate seed dispersal mutualism was disrupted by a temporally anomalous and meteorologically extreme interlude of unseasonably frigid weather, with accompanying snowstorms, in subtropical China, during January-February 2008. Based on the analysis of 5892 fecal samples (representing six mammalian seed dispersers), this event caused a substantial disruption to the relative seed dispersal function for the raisin tree Hovenia dulcis from prestorm 6.29 (2006) and 11.47 (2007), down to 0.35 during the storm (2008). Crucially, this was due to impacts on mammalian seed dispersers and not due to a paucity of fruit, where 4.63 fruit per branch were available in January 2008, vs. 3.73 in 2006 and 3.58 in 2007. An induced dietary shift occurred among omnivorous carnivores during this event, from the consumption fruit to small mammals and birds, reducing their role in seed dispersal substantially. Induced range shift extinguished the functionality of herbivorous mammals completely, however, seed dispersal function was compensated in part by three omnivorous carnivores during poststorm years, and thus while the mutualism remained intact it was enacted by a narrower assemblage of species, rendering the system more vulnerable to extrinsic perturbations. The storm's extended effects also had anthropogenic corollaries - migrating ungulates becoming exposed to heightened levels of illegal hunting - causing long-term modification to the seed dispersal community and mutualism dynamics. Furthermore, degraded forests proved especially vulnerable to the storm's effects. Considering increasing climate variability and anthropogenic disturbance, the impacts of such massive, aberrant events warrant conservation concern, while affording unique insights into the stability of mutualisms and the processes that structure biodiversity and mediate ecosystem dynamics. © 2013 John Wiley & Sons Ltd.

  7. Glider monitoring of shelf suspended particle dynamics and transport during storm and flooding conditions

    NASA Astrophysics Data System (ADS)

    Bourrin, François; Many, Gaël; Durrieu de Madron, Xavier; Martín, Jacobo; Puig, Pere; Houpert, Loic; Testor, Pierre; Kunesch, Stéphane; Mahiouz, Karim; Béguery, Laurent

    2015-10-01

    Transfers of particulate matter on continental margins primarily occur during energetic events. As part of the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) experiment, a glider equipped with optical sensors was deployed in the coastal area of the Gulf of Lions, NW Mediterranean in March 2011 to assess the spatio-temporal variability of hydrology, suspended particles properties and fluxes during energetic conditions. This deployment complemented a larger observational effort, a part of the MOOSE (Mediterranean Ocean Observing System of the Environment) network, composed of a coastal benthic station, a surface buoy and moorings on the continental slope. This set of observations permitted to measure the impact of three consecutive storms and a flood event across the entire continental shelf. Glider data showed that the sediment resuspension and transport observed at the coastal station during the largest storm (Hs>4 m) was effective down to a water depth of 80 m. The mid-shelf mud belt, located between 40 and 90 m depth, appears as the zone where the along-shelf flux of suspended sediment is maximum. Besides, the across-shelf flux of suspended sediment converges towards the outer limit of the mid-shelf mud belt, where deposition of suspended particles probably occurs and contributes to the nourishment of this area. Hydrological structures, suspended particles transport and properties changed drastically during stormy periods and the following flood event. Prior to the storms, the shelf waters were weakly stratified due in particular to the presence of cold dense water on the inner- and mid-shelf. The storms rapidly swept away this dense water, as well as the resuspended sediments, along the shelf and towards a downstream submarine canyon. The buoyant river plumes that spread along the shelf after the flooding period provoked a restratification of the water column on the inner- and mid-shelf. The analysis of glider's optical data at different wavelengths suggests that the coastal area and the bottom nepheloid layer during the largest storm are primarily composed of coarse particles, probably macroflocs, and that the size of particles decreases further offshore. A similar trend, albeit less contrasted, is observed after the flooding. This work provided a unique synoptic view across the entire shelf of the impact of a typical Mediterranean storm on bottom sediment erosion and particulate fluxes. Repeated glider transects across the south-western part of the Gulf of Lions shelf permitted for the first time to measure continuously the thermo-haline structures, the suspended particles concentrations and size, the current speed, and to estimate the particulate transport before, during and after typical Mediterranean storm events. Glider data complement and compare well with concomitant high frequency time series at fixed stations along the coast and in a downstream submarine canyon.

  8. Priority pollutants in urban stormwater: part 1 - case of separate storm sewers.

    PubMed

    Zgheib, Sally; Moilleron, Régis; Chebbo, Ghassan

    2012-12-15

    Organic and mineral pollutants have become part of today's urban environment. During a rain event, stormwater quality as well as the corresponding contaminant loads is affected by both atmospheric deposition and the various types of impervious surfaces (roads, rooftops, parking lots etc.) on which runoff occurs. This study provides results on stormwater pollution in Paris and its suburbs from three separate storm sewers (n=20 samples). These results show that the stormwater had been contaminated by 55 chemical substances out of the 88 investigated. A particular attention was given to stormwater particle contamination. Concentrations are provided for: metals, PAHs, PCBs, organotins, alkylphenols, phthalates, pesticides, and VOCs. Our findings are among the first available in the literature since the relevant analyses were all conducted on both the particulate (P) and dissolved (D) phases. For most substances, particles from the three storm sewers were more heavily contaminated than dredged sediments and settleable particles from the Seine River. As a consequence of this finding, the release of untreated stormwater discharges may impact the receiving waters and contribute to sediment contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Guidance for the Development of Air Force Storm Water Sampling Programs

    DTIC Science & Technology

    1993-09-01

    38 Storm Water Quality Monitoring ................. 39 Determining Flow Rate ....................... 42 Weirs and Flumes... water quality monitoring it is not possible to analyze the entire nmoff from a drainage basin. The objective of water quality sampling is to collect a...development of storm water pollution prevention plans. Best management practices can also be developed to control the pollution sources identified. In storm

  10. The observed clustering of damaging extra-tropical cyclones in Europe

    NASA Astrophysics Data System (ADS)

    Cusack, S.

    2015-12-01

    The clustering of severe European windstorms on annual timescales has substantial impacts on the re/insurance industry. Management of the risk is impaired by large uncertainties in estimates of clustering from historical storm datasets typically covering the past few decades. The uncertainties are unusually large because clustering depends on the variance of storm counts. Eight storm datasets are gathered for analysis in this study in order to reduce these uncertainties. Six of the datasets contain more than 100~years of severe storm information to reduce sampling errors, and the diversity of information sources and analysis methods between datasets sample observational errors. All storm severity measures used in this study reflect damage, to suit re/insurance applications. It is found that the shortest storm dataset of 42 years in length provides estimates of clustering with very large sampling and observational errors. The dataset does provide some useful information: indications of stronger clustering for more severe storms, particularly for southern countries off the main storm track. However, substantially different results are produced by removal of one stormy season, 1989/1990, which illustrates the large uncertainties from a 42-year dataset. The extended storm records place 1989/1990 into a much longer historical context to produce more robust estimates of clustering. All the extended storm datasets show a greater degree of clustering with increasing storm severity and suggest clustering of severe storms is much more material than weaker storms. Further, they contain signs of stronger clustering in areas off the main storm track, and weaker clustering for smaller-sized areas, though these signals are smaller than uncertainties in actual values. Both the improvement of existing storm records and development of new historical storm datasets would help to improve management of this risk.

  11. Thyroid storm precipitated by duodenal ulcer perforation.

    PubMed

    Natsuda, Shoko; Nakashima, Yomi; Horie, Ichiro; Ando, Takao; Kawakami, Atsushi

    2015-01-01

    Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male) complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  12. Impacts of a heavy storm of rain upon dissolved and particulate organic C, N and P in the main river of a vegetation-rich basin area in Japan.

    PubMed

    Li, Fusheng; Yuasa, Akira; Muraki, Yuzo; Matsui, Yoshihiko

    2005-06-01

    The impacts of a heavy storm of rain upon the dissolved and particulate organic matter (OM), nitrogen (N) and phosphorus (P) in the main river of the vegetation-rich Nagara River basin were investigated using water samples collected along the river line during a critical typhoon-induced heavy rain storm event. Besides, based on a high performance size-exclusion chromatography (HPSEC) system, the variance of dissolved OM (DOM) in its molecular weight (MW) characteristics was also assessed. From the MW standpoint, DOM components merged into the river along the river line resembled those present in its headwater. The MW range changed only slightly from 1010 to 5900 at the upstream (US), to 1130-5900 and 1200-5900 Da at the midstream (MS) and downstream (DS), respectively, while the corresponding weight-averaged MW (M(w)) decreased from 3669 to 3330 and 2962 Da. The heavy storm of rain enhanced the content of DOM; however, apart from a small larger-MW fraction (about 5900-6800 Da), the newly emerged DOM constituents exhibited an MW range similar to those existed before the storm. Due also to the storm of rain, total P and N (TP and TN) changed markedly in the ranges of 6.6-11.9, 8.3-40.6 and 48.4-231.3 microg/l for TP, and 145.4-296.0, 502.2-1168.7 and 1342.7-1927.3 microg/l for TN at the US, MS and DS, respectively. The larger values of TP and TN generally appeared for samples at elevated river water levels. The enhanced presence of P was found largely attributed to its particulate form; while, for N, the contribution from its dissolved form was significant. The newly emerged suspended particles via the storm-water contained lower content of OM, N and P, and a general decreasing trend of the particulate OM, N and P along the river line was also confirmed. The C/N ratio in the dissolved form varied in 0.7-6.7 and decreased downstream, while, that in the particulate form 2.3-17.3. Suspended particles that emerged in the river water during the storm exhibited larger C/N values. N/P in both dissolved and particulate forms varied in the ranges of 2.2-17.1 and 12.9-444.9, respectively, and a general trend of either increasing or decreasing in relation to the storm of rain was not revealed.

  13. Ionospheric Storm Effects and Equatorial Plasma Irregularities During the 17-18 March 2015 Event

    NASA Technical Reports Server (NTRS)

    Zhou, Yun-Liang; Luhr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-01-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (E (sub m)). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/pre-noon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the post-sunset sector. As a response to a short-lived decline of E (sub m), EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 hours. Only after the onset of recovery phase does EPI activity start again in the post-midnight sector, lasting more than 7 hours.This comprehensive view of ionospheric storm effects and plasma irregularities adds to our understanding of conditions that lead to ionospheric instabilities.

  14. Ionospheric storm effects and equatorial plasma irregularities during the 17-18 March 2015 event

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Liang; Lühr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-09-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (Em). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/prenoon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the postsunset sector. As a response to a short-lived decline of Em, EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 h. Only after the onset of recovery phase does EPI activity start again in the postmidnight sector, lasting more than 7 h. This comprehensive view of ionospheric storm effects and plasma irregularities adds to our understanding of conditions that lead to ionospheric instabilities.

  15. Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports

    NASA Astrophysics Data System (ADS)

    Kaltenböck, Rudolf; Diendorfer, Gerhard; Dotzek, Nikolai

    This study describes the environmental atmospheric characteristics in the vicinity of different types of severe convective storms in Europe during the warm seasons in 2006 and 2007. 3406 severe weather events from the European Severe Weather Database ESWD were investigated to get information about different types of severe local storms, such as significant or weak tornadoes, large hail, damaging winds, and heavy precipitation. These data were combined with EUCLID (European Cooperation for Lightning Detection) lightning data to distinguish and classify thunderstorm activity on a European scale into seven categories: none, weak and 5 types of severe thunderstorms. Sounding parameters in close proximity to reported events were derived from daily high-resolution T799 ECMWF (European Centre for Medium-range Weather Forecasts) analyses. We found from the sounding-derived parameters in Europe: 1) Instability indices and CAPE have considerable skill to predict the occurrence of thunderstorms and the probability of severe events. 2) Low level moisture can be used as a predictor to distinguish between significant tornadoes or non-severe convection. 3) Most of the events associated with wind gusts during strong synoptic flow situations reveal the downward transport of momentum as a very important factor. 4) While deep-layer shear discriminates well between severe and non-severe events, the storm-relative helicity in the 0-1 km and especially in the 0-3 km layer adjacent to the ground has more skill in distinguishing between environments favouring significant tornadoes and wind gusts versus other severe events. Additionally, composite parameters that combine measurements of buoyancy, vertical shear and low level moisture have been tested to discriminate between severe events.

  16. A Climatology of Nocturnal-Convection Initiation Over the Central Great Plains

    NASA Astrophysics Data System (ADS)

    Reif, D. W.; Bluestein, H. B.

    2015-12-01

    A nocturnal maximum in rainfall and thunderstorm activity over the central Great Plains is widely documented, but the mechanisms for understanding the development of thunderstorms over the region at night are still not well understood. Elevated convection, defined by Colman (1990) as storms formed through ascent above frontal surfaces, is one explanation, but our study shows that many thunderstorms can initiate at night without the presence of an elevated frontal inversion or nearby surface boundary. We address the following questions: Of all the events documented, what percentage fall under this definition of elevated convection, and what percentage fall outside of that definition? How do characteristics differ among the events that fall under that definition and the events that fall outside that definition? This study documents convection initiation (CI) events occurring at night over the central Great Plains from 1996 through 2014 during the months of April through July. Storm characteristics such as storm type (defined as linear, areal, or single cell), storm motion, initiation time and location, and others were documented. Once all of the cases were documented, surface data were examined to locate any nearby surface boundaries. The event's location relative to these boundaries (if they existed) was documented. Three main modes of CI were identified: formation on a surface boundary, formation on the cold side of a surface boundary, and formation without the presence of a surface boundary. A climatology of these events will be presented. There are many differences among the different modes of CI at night. One result is that there appears to be two main peaks of CI time at night: one early at night and one later at night. The later peak is likely due to the events that form in the absence of a nearby surface boundary.

  17. Characteristic Paths of Extratropical Cyclones that Cause High Wind Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.

    2014-12-01

    This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.

  18. Ionic composition of TSP and PM 2.5 during dust storms and air pollution episodes at Xi'an, China

    NASA Astrophysics Data System (ADS)

    Shen, Zhenxing; Cao, Junji; Arimoto, Richard; Han, Zhiwei; Zhang, Renjian; Han, Yuemei; Liu, Suixin; Okuda, Tomoaki; Nakao, Shunsuke; Tanaka, Shigeru

    TSP and PM 2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, F -, Cl -, NO 3-, and SO 42-). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH 4+, K +, F -, Cl -, NO 3-, and SO 42- were more abundant in PM 2.5 than TSP but the opposite was true for Mg 2+ and Ca 2+. PM collected on hazy days was enriched with secondary species (NH 4+, NO 3-, and SO 42) while PM from straw combustion showed high K + and Cl -. Firework displays caused increases in K + and also enrichments of NO 3- relative to SO 42-. During DSs, the concentrations of secondary aerosol components were low, but Ca 2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO 42-/K +, NO 3-/SO 42-, and Cl -/K +) proved effective as indicators for different pollution episodes.

  19. New Insights into the Estimation of Extreme Geomagnetic Storm Occurrences

    NASA Astrophysics Data System (ADS)

    Ruffenach, Alexis; Winter, Hugo; Lavraud, Benoit; Bernardara, Pietro

    2017-04-01

    Space weather events such as intense geomagnetic storms are major disturbances of the near-Earth environment that may lead to serious impacts on our modern society. As such, it is of great importance to estimate their probability, and in particular that of extreme events. One approach largely used in statistical sciences for extreme events probability estimates is Extreme Value Analysis (EVA). Using this rigorous statistical framework, estimations of the occurrence of extreme geomagnetic storms are performed here based on the most relevant global parameters related to geomagnetic storms, such as ground parameters (e.g. geomagnetic Dst and aa indexes), and space parameters related to the characteristics of Coronal Mass Ejections (CME) (velocity, southward magnetic field component, electric field). Using our fitted model, we estimate the annual probability of a Carrington-type event (Dst = -850nT) to be on the order of 10-3, with a lower limit of the uncertainties on the return period of ˜500 years. Our estimate is significantly higher than that of most past studies, which typically had a return period of a few 100 years at maximum. Thus precautions are required when extrapolating intense values. Currently, the complexity of the processes and the length of available data inevitably leads to significant uncertainties in return period estimates for the occurrence of extreme geomagnetic storms. However, our application of extreme value models for extrapolating into the tail of the distribution provides a mathematically justified framework for the estimation of extreme return periods, thereby enabling the determination of more accurate estimates and reduced associated uncertainties.

  20. Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban sources, and the main source of transport for the other pesticides could not be determined because of concentrations less than the method detection limit.

  1. Environmental Education: Non-point Source Pollution

    EPA Pesticide Factsheets

    This activity is designed to demonstrate to students what an average storm drain collects during a rainfall event and how the water from storm drains can impact the water quality and aquatic environments of local streams, rivers, and bays.

  2. Use of isotopic spike from Tropical Storm to understand water exchange on large scale: study case of Rafael Storm in the Lesser Antilles archipelago, October 2012.

    NASA Astrophysics Data System (ADS)

    Lambs, Luc

    2014-05-01

    Aim The tracking of the rainfall from Tropical Storm Raphael of mid October 2012 was used to better understand how the eco-hydrology and the water cycle function in wet areas, such as mangrove growing in salty ponds on a number of tropical islands. Location Guadeloupe and Saint Martin Islands in the Leeward Islands archipelago, Lesser Antilles. Methods Compared to normal tropical rainfall, tropical storms display distinct depleted heavy stable water isotopes which can be used as isotopic spikes to understand these special rainfall inflows. Rainfall, groundwater, river and pond water were sampled before, during and after the storm. Results In Guadeloupe where the tropical storm started, the rainfall isotopic signal reached values of d18O= -9 to -8 o on October 12-14th 2012, whereas the normal range is d18O= -4 to -2 o as measured from 2009 to 2012. It was possible to detect such a depleted signal in the groundwater and in the mangrove forest during the days after the storm event. Main conclusions The use of such natural isotopic spikes provides an opportunity to obtain a dynamic and time reference on a large scale for the study of the hydro-ecosystems and the effects on the impacted tropical islands. A few days after the cyclone, the isotopic spikes were found in river, groundwater and mangrove water pools with values up to d18O= -8.6 o . For the water basins on the windward side, the downhill salty pond water was almost completely renewed. By contrast, only 20 to 50 % of the water in the ponds located on the leeward side was renewed. No specific elevation in the d-excess values was noted, certainly due to the relatively long distance from the eye of the storm (180 to 300 km), which meant that there was no spray water evaporative process.

  3. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    NASA Technical Reports Server (NTRS)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal of examining these three events is to compare dual ]polarization features from this larger dataset to previous work and to determine if these signatures can be a useful indication of the potential for tornadic activity associated with the amount of low ]level wind shear in the near ]storm environment.

  4. Identification of Critical Vulnerable Areas During a Typhoon Haiyan Event in the Metro Manila Area Using Storm Surge Hazard Maps

    NASA Astrophysics Data System (ADS)

    Briones, J. B. L. T.; Puno, J. V.; Lapidez, J. P. B.; Muldong, T. M. M.; Ramos, M. M.; Caro, C. V.; Ladiero, C.; Bahala, M. A.; Suarez, J. K. B.; Santiago, J. T.

    2014-12-01

    Sudden rises in sea water over and above astronomical tides due to an approaching storm are known as storm surges. The development of an early warning system for storm surges is imperative, due to the high threat level of these events; Typhoon Haiyan in 08 November 2013 generated storm surges that caused casualties of over 6,000. Under the Department of Science and Technology, the Nationwide Operational Assessment of Hazards (DOST - Project NOAH) was tasked to generate storm surge hazard maps for all the coastal areas in the Philippines. The objective of this paper is to create guidelines on how to utilize the storm surge hazard map as a tool for planning and disaster mitigation. This study uses the case of the hypothetical situation in which a tropical storm with an intensity similar to Typhoon Haiyan hits Metro Manila. This site was chosen for various reasons, among them the economic, political, and cultural importance of Metro Manila as the location of the capital of the Philippines and the coastal bay length of the area. The concentration of residential areas and other establishments were also taken into account. Using the Japan Meteorology Association (JMA) Storm Surge Model, FLO-2D flood modelling software and the application of other GIS technology, the impact of Haiyan-strength typhoon passing through Manila was analysed. We were able to identify the population affected, number of affected critical facilities under each storm surge hazard level, and possible evacuation sites. The results of the study can be used as the basis of policies involving disaster response and mitigation by city authorities. The methods used by the study can be used as a replicable framework for the analysis of other sites in the Philippines.

  5. Defining Coastal Storm and Quantifying Storms Applying Coastal Storm Impulse Parameter

    NASA Astrophysics Data System (ADS)

    Mahmoudpour, Nader

    2014-05-01

    What defines a storm condition and what would initiate a "storm" has not been uniquely defined among scientists and engineers. Parameters that have been used to define a storm condition can be mentioned as wind speed, beach erosion and storm hydrodynamics parameters such as wave height and water levels. Some of the parameters are storm consequential such as beach erosion and some are not directly related to the storm hydrodynamics such as wind speed. For the purpose of the presentation, the different storm conditions based on wave height, water levels, wind speed and beach erosion will be discussed and assessed. However, it sounds more scientifically to have the storm definition based on the hydrodynamic parameters such as wave height, water level and storm duration. Once the storm condition is defined and storm has initiated, the severity of the storm would be a question to forecast and evaluate the hazard and analyze the risk in order to determine the appropriate responses. The correlation of storm damages to the meteorological and hydrodynamics parameters can be defined as a storm scale, storm index or storm parameter and it is needed to simplify the complexity of variation involved developing the scale for risk analysis and response management. A newly introduced Coastal Storm Impulse (COSI) parameter quantifies storms into one number for a specific location and storm event. The COSI parameter is based on the conservation of linear, horizontal momentum to combine storm surge, wave dynamics, and currents over the storm duration. The COSI parameter applies the principle of conservation of momentum to physically combine the hydrodynamic variables per unit width of shoreline. This total momentum is then integrated over the duration of the storm to determine the storm's impulse to the coast. The COSI parameter employs the mean, time-averaged nonlinear (Fourier) wave momentum flux, over the wave period added to the horizontal storm surge momentum above the Mean High Water (MHW) integrated over the storm duration. The COSI parameter methodology has been applied to a 10-year data set from 1994 to 2003 at US Army Corps of Engineers, Field Research Facility (FRF) located on the Atlantic Ocean in Duck, North Carolina. The storm duration was taken as the length of time (hours) that the spectral significant wave heights were equal or greater than 1.6 meters for at least a 12 hour, continuous period. Wave heights were measured in 8 meters water depth and water levels measured at the NOAA/NOS tide gauge at the end of the FRF pier. The 10-year data set were analyzed applying the aforementioned storm criteria and produced 148 coastal events including Hurricanes and Northeasters. The results of this analysis and application of the COSI parameter to determine "Extra Ordinary" storms in Federal Projects for the Gulf of Mexico, 2012 hurricane season will be discussed at the time of presentation.

  6. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  7. Concentrations of dissolved solids and nutrients in water sources and selected streams of the Santa Ana Basin, California, Octoger 1998 - September 2001

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth

    2004-01-01

    Concentrations of total dissolved solids (TDS) and nutrients in selected Santa Ana Basin streams were examined as a function of water source. The principal water sources are mountain runoff, wastewater, urban runoff, and stormflow. Rising ground water also enters basin streams in some reaches. Data were collected from October 1998 to September 2001 from 6 fixed sites (including a mountain site), 6 additional mountain sites (including an alpine indicator site), and more than 20 synoptic sites. The fixed mountain site on the Santa Ana River near Mentone appears to be a good representative of reference conditions for water entering the basin. TDS can be related to water source. The median TDS concentration in base-flow samples from mountain sites was 200 mg/L (milligrams per liter). Base-flow TDS concentrations from sites on the valley floor typically ranged from 400 to 600 mg/L; base flow to most of these sites is predominantly treated wastewater, with minor contributions of rising ground water and urban runoff. Sparse data suggest that TDS concentrations in urban runoff are about 300 mg/L. TDS concentrations appear to increase on a downstream gradient along the main stem of the Santa Ana River, regardless of source inputs. The major-ion compositions observed in samples from the different sites can be related to water source, as well as to in-stream processes in the basin. Water compositions from mountain sites are categorized into two groups: one group had a composition close to that of the alpine indicator site high in the watershed, and another group had ionic characteristics closer to those in tributaries on the valley floor. The water composition at Warm Creek, a tributary urban indicator site, was highly variable but approximately intermediate to the compositions of the upgradient mountain sites. Water compositions at the Prado Dam and Imperial Highway sites, located 11 miles apart on the Santa Ana River, were similar to one another and appeared to be a mixture of the waters of the upstream sites, Santa Ana River at MWD Crossing, Cucamonga Creek, and Warm Creek. Rainfall usually dilutes stream TDS concentrations. The median TDS concentration in all storm-event discrete samples was 260 mg/L. The median flow-weighted average TDS concentration for stormflow, based on continuous measurement of specific conductance and hydrograph separation of the continuous discharge record, was 190 mg/L. However, stormflow TDS concentrations were variable, and depended on whether the storm was associated with a relatively small or large rainfall event. TDS concentrations in stormflow associated with relatively small events ranged from about 50 to 600 mg/L with a median of 220 mg/L, whereas concentrations in stormflow associated with relatively large events ranged from about 40 to 300 mg/L with a median of 100 mg/L. From the perspective of water managers, the nutrient species of highest concern in Santa Ana Basin streams is nitrate. Most mountain streams had median base-flow concentrations of nitrate below 0.3 mg/L as nitrogen. Nitrate concentrations in both urban runoff and stormflow were near 1 mg/L, which is close to the level found in rainfall for the region. In fact, results from this study suggest that much of the nitrate load in urban storm runoff comes from rainwater. Nitrate concentrations in the Santa Ana River and its major tributaries are highest downstream from wastewater inputs, where median base-flow concentrations of nitrite+nitrate ranged from about 5 to 7 mg/L. About 4 percent of samples collected from sites receiving treated wastewater had nitrate concentrations greater than 10 mg/L. Rising ground water also appears to have high nitrate concentrations (greater than 10 mg/L) in some reaches of the river. Concentrations of other nitrogen species were much lower than nitrate concentrations in base-flow samples. However, storm events increased concentrations and the proportion of organic nitro

  8. SAPS effects on thermospheric winds during the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.

    2017-12-01

    Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.

  9. Turbidity dynamics during spring storm events in an urban headwater river system: the Upper Tame, West Midlands, UK.

    PubMed

    Lawler, D M; Petts, G E; Foster, I D L; Harper, S

    2006-05-01

    Turbidity is an important water quality variable, through its relation to light suppression, BOD impact, sediment-associated contaminant transport, and suspended sediment effects on organisms and habitats. Yet few published field investigations of wet-weather turbidity dynamics, through several individual and sequenced rainstorms in extremely urbanised headwater basins, have emerged. This paper aims to address this gap through a turbidity analysis of multiple storm events in spring 2001 in an urban headwater basin (57 km2) of the River Tame, central England, the most urbanised basin for its size in the UK ( approximately 42%). Data were collected at 15-min frequency at automated monitoring stations for rainfall, streamflow and six water quality variables (turbidity, EC, temperature, DO, pH, ammonia). Disturbance experiments also allowed estimates of bed sediment storage to be obtained. Six important and unusual features of the storm event turbidity response were apparent: (1) sluggish early turbidity response, followed by a turbidity 'rush'; (2) quasi-coincident flow and turbidity peaks; (3) anti-clockwise hysteresis in the discharge-turbidity relationship on all but one event, resulting from Falling-LImb Turbidity Extensions (FLITEs); (4) increases in peak turbidity levels through storm sequences; (5) initial micro-pulses (IMP) in turbidity; and (6) secondary turbidity peaks (STP) or 'turbidity shoulders' (TS). These features provided very little evidence of a true 'first-flush' effect: instead, substantial suspended solids transport continued right through the flow recessions, and little storm-event sediment exhaustion was evident. A new, dimensionless, hysteresis index, HI(mid), is developed to quantify the magnitude and direction of hysteresis in a simple, clear, direct and intuitive manner. This allowed the degree of departure from the classic 'first-flush', clockwise hysteresis models to be assessed. Of the 15 turbidity events considered, 10 coincided with ammonia spikes of up to 6.25 mg l(-1) at Water Orton (the downstream station): this suggests that spills from combined sewer overflows (CSO) or waste water treatment works (WwTWs) are significant in the throughput of turbid waters here. Substantial ammonia peaks related most strongly to total storm rainfall receipt, of four rainfall variables considered, and significant ammonia peaks were generated even from low-magnitude storms (rainfall totals <4 mm), indicating that spills are a frequent occurrence. Local bed sediment stores appear to be limited, suggesting that other distal sediment sources, such as road networks and old mineworkings are possibly more important. Biofilms may also play a part in delaying sediment release until late in the hydrograph, and in suppressing late spring turbidity levels. Existing first-flush models appear to be an oversimplification here. Such urban headwater basin responses can provide useful insights into the generation of contaminant waves, and offer vital early-warning systems for pollution events propagating downstream.

  10. Hazard Assessment from Storm Tides and Rainfall on a Tidal River Estuary

    NASA Technical Reports Server (NTRS)

    Orton, P.; Conticello, F.; Cioffi, F.; Hall, T.; Georgas, N.; Lall, U.; Blumberg, A.

    2015-01-01

    Here, we report on methods and results for a model-based flood hazard assessment we have conducted for the Hudson River from New York City to Troy/Albany at the head of tide. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. As a result, we use a three-dimensional hydrodynamic model and merge streamflows and storm tides from tropical and extratropical cyclones (TCs, ETCs), as well as wet extratropical cyclone (WETC) floods (e.g. freshets, rain-on-snow events). We validate the modeled flood levels and quantify error with comparisons to 76 historical events. A Bayesian statistical method is developed for tropical cyclone streamflows using historical data and consisting in the evaluation of (1) the peak discharge and its pdf as a function of TC characteristics, and (2) the temporal trend of the hydrograph as a function of temporal evolution of the cyclone track, its intensity and the response characteristics of the specific basin. A k-nearest-neighbors method is employed to determine the hydrograph shape. Out of sample validation tests demonstrate the effectiveness of the method. Thus, the combined effects of storm surge and runoff produced by tropical cyclones hitting the New York area can be included in flood hazard assessment. Results for the upper Hudson (Albany) suggest a dominance of WETCs, for the lower Hudson (at New York Harbor) a case where ETCs are dominant for shorter return periods and TCs are more important for longer return periods (over 150 years), and for the middle-Hudson (Poughkeepsie) a mix of all three flood events types is important. However, a possible low-bias for TC flood levels is inferred from a lower importance in the assessment results, versus historical event top-20 lists, and this will be further evaluated as these preliminary methods and results are finalized. Future funded work will quantify the influences of sea level rise and flood adaptation plans (e.g. surge barriers). It would also be valuable to examine how streamflows from tropical cyclones and wet cool-season storms will change, as this factor will dominate at upriver locations.

  11. Linkage of Rainfall-Runoff and Hurricane Storm Surge in Galveston Bay

    NASA Astrophysics Data System (ADS)

    Deitz, R.; Christian, J.; Wright, G.; Fang, N.; Bedient, P.

    2012-12-01

    In conjunction with the SSPEED Center, large rainfall events in the upper Gulf of Mexico are being studied in an effort to help design a surge gate to protect the Houston Ship Channel during hurricane events. The ship channel is the world's second largest petrochemical complex and the Coast Guard estimates that a one-month closure would have a $60 billion dollar impact on the national economy. In this effort, statistical design storms, such as the 24-hour PMP, as well as historical storms, like Hurricane Ike, Hurricane Katrina, and Hurricane Rita, are being simulated in a hydrologic/hydraulic model using radar and rain gauge data. VfloTM, a distributed hydrologic model, is being used to quantify the effect that storm size, intensity, and location has on timing and peak flows in the in the upper drainage area. These hydrographs were input to a hydraulic model with various storm surges from Galveston Bay. Results indicate that there is a double peak phenomenon with flows from the west draining days earlier than flows from the north. With storm surge typically lasting 36-48 hours, this indicates the flows from the west are interacting with the storm surge, whereas flows from the north would arrive once the storm surge is receding. Gate operations were optimized in the model to account for the relative timing of upland runoff and hurricane surge, and to quantify the capability of the gate structure to protect the Ship Channel industry.

  12. Evaluation of Soil Moisture, Storm Characteristics, and Their Influence on Storm Runoff and Water Yield at the Panola Mountain Research Watershed, Georgia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Riley, J. W.; Aulenbach, B. T.

    2015-12-01

    Understanding the factors that control runoff processes is important for many aspects of water supply and ecosystem protection, especially during climatic extremes that result in flooding or droughts; potentially impacting human safety. Furthermore, having knowledge of the conditions during which runoff occurs contributes to the conceptual understanding of the hydrologic cycle and may improve parameterization of hydrologic models. We evaluated soil moisture, storm characteristics, and the subsequent runoff and water yield for 297 storms over an eight-year period at Panola Mountain Research Watershed to better understand runoff generation processes. Panola Mountain Research Watershed is a small (41-hectare), relatively undisturbed forested watershed near Atlanta, GA, U.S.A. Strong relations were observed between total precipitation for a given storm, deep (70 cm below surface) antecedent soil moisture content and the volume of runoff. However, the strength of the relations varied based on occurrence during the growing (April - September; 172 storms) or dormant (October - March; 125 storms) period. In general, soil moisture responded at a minimum of 15 cm depth for all but 18 events. In addition, we found storms that initiated a response of deep soil moisture (70 cm below surface) to be an important factor relating to storm runoff and water yield. Seventy percent of the dormant period storms generated a response at 70 cm depth compared to 58% of growing period storms. A stronger relation between soil moisture and water yield was noted during the dormant period and indicated that all storms that produced a water yield >12% occurred when deep pre-event soil moisture was >20%. Similar patterns were also present during the growing season with occasional intense thunderstorms also generating higher water yields even in the absence of high soil moisture. The importance of deep soil moisture likely reflects the overall status of watershed storage conditions.

  13. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: a case of Xiamen City.

    PubMed

    Wei, Qunshan; Zhu, Gefu; Wu, Peng; Cui, Li; Zhang, Kaisong; Zhou, Jingjing; Zhang, Wenru

    2010-01-01

    The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concerns. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 microg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.

  14. The First Fermi-GBM Terrestrial Gamma Ray Flash Catalog

    NASA Astrophysics Data System (ADS)

    Roberts, O. J.; Fitzpatrick, G.; Stanbro, M.; McBreen, S.; Briggs, M. S.; Holzworth, R. H.; Grove, J. E.; Chekhtman, A.; Cramer, E. S.; Mailyan, B. G.

    2018-05-01

    We present the first Fermi Space Telescope Gamma Ray Burst Monitor (GBM) catalog of 4,144 terrestrial gamma ray flashes (TGFs), detected since launch in 11 July 2008 through 31 July 2016. We discuss the updates and improvements to the triggered data and off-line search algorithms, comparing this improved detection rate of ˜800 TGFs per year with event rates from previously published TGF catalogs from other missions. A Bayesian block algorithm calculated the temporal and spectral properties of the TGFs, revealing a delay between the hard (>300 keV) and soft (≤300 keV) photons of around 27 μs. Detector count rates of "low-fluence" events were found to have average rates exceeding 150 kHz. Searching the World-Wide Lightning Location Network data for radio sferics within ±5 min of each TGF revealed a clean sample of 1,314 World-Wide Lightning Location Network locations, which were used to to accurately locate TGF-producing storms. It also revealed lightning and storm activity for specific regions, as well as seasonal and daily variations of global lightning patterns. Correcting for the orbit of Fermi, we quantitatively find a marginal excess of TGFs being produced from storms over land near oceans (i.e., narrow isthmuses and small islands). No difference was observed between the duration of TGFs over the ocean and land. The distribution of TGFs at a given local solar time for predefined American, Asian, and African regions were confirmed to correlate well with known regional lightning rates.

  15. Release of Mercury Mine Tailings from Mine Impacted Watersheds by Extreme Events Resulting from Climate Change

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.

    2015-12-01

    An increase in intensity and frequency of extreme events resulting from climate change is expected to result in extreme precipitation events on both regional and local scales. Extreme precipitation events have the potential to mobilize large volumes of mercury (Hg) mine tailings in watersheds where tailings reside in the floodplain downstream from historic Hg mines. The California Hg mineral belt produced one third of the worlds Hg from over 100 mines from the 1850's to 1972. In the absence of environmental regulations, tailings were disposed of into streams adjacent to the mines in order to have them transported from the mine site during storm events. Thus most of the tailings no longer reside at the mine site. Addition of tailings to the streams resulted in stream aggradation, increased over-bank flow, and deposition of tailings in the floodplain for up to 25 kms downstream from the mines. After cessation of mining, the decrease in tailings entering the streams resulted in degradation, incision of the streams into the floodplain, and inability of the streams to access the floodplain. Thus Hg tailings have remained stored in the floodplain since cessation of mining. Hg phases in these tailings consist of cinnabar, metacinnabar and montroydite based on EXAFS analysis. Size analysis indicates that Hg phases are fine grained, less than 1 um. The last regional scale extreme precipitation events to effect the entire area of the California Hg mineral belt were the ARkStorm events of 1861-1862 that occurred prior to large scale Hg mining. Extreme regional ARkStorm precipitation events as well as local summer storms, such as the July 2006 flood in the Clear Creek Hg mining district, are expected to increase in frequency and have the potential to remobilize the large volume of tailings stored in floodplain deposits. Although Hg mine remediation has decreased Hg release from mine sites in a period of benign climate, no remediation efforts have addressed the large source of Hg residing in floodplain deposits. This Hg source in a period of climate change poses a significant environmental risk to aquatic systems downstream from Hg mine-impacted watersheds. An extreme ARkStorm event is estimated to potentially remobilize an amount of Hg equivalent to that released in the past during the peak period of unregulated Hg mining in California.

  16. Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Eckard, Robert S.; Pellerin, Brian A.; Bergamaschi, Brian A.; Bachand, Philip A. M.; Bachand, Sandra M.; Spencer, Robert G. M.; Hernes, Peter J.

    2017-10-01

    Agricultural watersheds are globally pervasive, supporting fundamentally different organic matter source, composition, and concentration profiles in comparison to natural systems. Similar to natural systems, agricultural storm runoff exports large amounts of organic carbon from agricultural land into waterways. But intense management of upper soil layers, waterway channelization, wetland and riparian habitat removal, and postharvest vegetation removal promise to uniquely drive organic matter release to waterways. During a winter first flush and a subsequent storm event, this study investigated the influence of a small agricultural watershed on dissolved organic matter (DOM) source, composition, and biolability. Storm water discharge released strongly terrestrial yet biolabile (23 to 32%) dissolved organic carbon (DOC). Following a 21 day bioassay, a parallel factor analysis identified an 80% reduction in a protein-like (phenylpropyl) component (C2) that was previously correlated to lignin phenol concentration, and a 10% reduction in a humic-like, terrestrially sourced component (C4). Storm-driven releases tripled DOC concentration (from 2.8 to 8.7 mg L-1) during the first flush event in comparison to base flow and were terrestrially sourced, with an eightfold increase in vascular plant derived lignin phenols (23.0 to 185 μg L-1). As inferred from system hydrology, lignin composition, and nitrate as a groundwater tracer, an initial pulse of dilute water from the upstream watershed caused a counterclockwise DOC hysteresis loop. DOC concentrations peaked after 3.5 days, with the delay between peak discharge and peak DOC attributed to storm water hydrology and a period of initial water repellency of agricultural soils, which delayed DOM leaching.

  17. Probabilistic Design Storm Method for Improved Flood Estimation in Ungauged Catchments

    NASA Astrophysics Data System (ADS)

    Berk, Mario; Å pačková, Olga; Straub, Daniel

    2017-12-01

    The design storm approach with event-based rainfall-runoff models is a standard method for design flood estimation in ungauged catchments. The approach is conceptually simple and computationally inexpensive, but the underlying assumptions can lead to flawed design flood estimations. In particular, the implied average recurrence interval (ARI) neutrality between rainfall and runoff neglects uncertainty in other important parameters, leading to an underestimation of design floods. The selection of a single representative critical rainfall duration in the analysis leads to an additional underestimation of design floods. One way to overcome these nonconservative approximations is the use of a continuous rainfall-runoff model, which is associated with significant computational cost and requires rainfall input data that are often not readily available. As an alternative, we propose a novel Probabilistic Design Storm method that combines event-based flood modeling with basic probabilistic models and concepts from reliability analysis, in particular the First-Order Reliability Method (FORM). The proposed methodology overcomes the limitations of the standard design storm approach, while utilizing the same input information and models without excessive computational effort. Additionally, the Probabilistic Design Storm method allows deriving so-called design charts, which summarize representative design storm events (combinations of rainfall intensity and other relevant parameters) for floods with different return periods. These can be used to study the relationship between rainfall and runoff return periods. We demonstrate, investigate, and validate the method by means of an example catchment located in the Bavarian Pre-Alps, in combination with a simple hydrological model commonly used in practice.

  18. Severe flooding along the eastern Adriatic coast: the case of 1 December 2008

    NASA Astrophysics Data System (ADS)

    Međugorac, Iva; Pasarić, Miroslava; Orlić, Mirko

    2015-06-01

    This paper addresses an extraordinary storm surge in the Northern Adriatic that was more pronounced on the eastern than on the western shore. On 1 December 2008, Adriatic monitoring stations detected exceptionally high sea levels; the oldest Croatian tide gauge station recorded the highest water level in its operating history at the time. Apart from the Northern Adriatic, large portion of the Dalmatian Coast was also exposed to high water levels, while Venice experienced a less-dramatic event. This marine storm was different from the capital storm of 4 November 1966 during which the surge had the highest impact ahead of Venice and along the north-western coastline. The 2008 event is studied here in detail, and the mechanisms that resulted in the different flooding of the two shores are identified. The study is based on hourly sea level, air pressure and wind data measured along both basin sides together with ECMWF reanalysis fields. Four components of sea-level evolution are identified: the storm surge, tide, Adriatic seiche and, low-frequency variability. The 2008 event was the outcome of a fine interplay between the first three components, which were all superimposed on the raised sea level due to low-frequency variability. The marine storm differed from the 1966 storm in the atmospheric forcing and relative timing of all contributing processes. The 2008 flooding of the eastern coast was mainly due to the Sirocco-wind shear, whereas the 1966 flooding of the western coast was due to the combined effect of almost uniform Sirocco and bottom slope.

  19. Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors

    NASA Astrophysics Data System (ADS)

    Malzone, J. M.; Shanley, J. B.

    2014-12-01

    The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded. As groundwater is recharged, the water table intersects more carbon rich soil layers. Pre-event water is flushed out first before event water mobilizes DOC, causing the groundwater hysteresis. High FDOM groundwater discharging to the stream likely sustained elevated FDOM at the gage. The gage hysteresis, therefore, seems to be a result of both hypotheses tested.

  20. Widespread Amazon forest tree mortality from a single cross-basin squall line event

    NASA Astrophysics Data System (ADS)

    Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro

    2010-08-01

    Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.

  1. A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Ansari, S.; Del Greco, S.

    2007-12-01

    The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.

  2. Eyewitness Reports of the Great Auroral Storm of 1859

    NASA Technical Reports Server (NTRS)

    Green, James L.; Boardsen, Scott; Odenwald, Sten; Humble, John; Pazamickas, Katherine A.

    2005-01-01

    The great geomagnetic storm of 1859 is really composed of two closely spaced massive worldwide auroral events. The first event began on August 28th and the second began on September 2nd. It is the storm on September 2nd that results from the Carrington-Hodgson white light flare that occurred on the sun September l&. In addition to published scientific measurements; newspapers, ship logs and other records of that era provide an untapped wealth of first hand observations giving time and location along with reports of the auroral forms and colors. At its height, the aurora was described as a blood or deep crimson red that was so bright that one "could read a newspaper by." Several important aspects of this great geomagnetic storm are simply phenomenal. Auroral forms of all types and colors were observed to latitudes of 25deg and lower. A significant portion of the world's 125,000 miles of telegraph lines were also adversely affected. Many of - which were unusable for 8 hours or more and had a small but notable economic impact. T h s paper presents only a select few available first hand accounts of the Great Auroral Event of 1859 in an attempt to give the modern reader a sense of how this spectacular display was received by the public from many places around the globe and present some other important historical aspects of the storm.

  3. Discontinuous Galerkin methods for modeling Hurricane storm surge

    NASA Astrophysics Data System (ADS)

    Dawson, Clint; Kubatko, Ethan J.; Westerink, Joannes J.; Trahan, Corey; Mirabito, Christopher; Michoski, Craig; Panda, Nishant

    2011-09-01

    Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability. Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution. The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh ( h) and polynomial order ( p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method. In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to the model to better capture surge in complex coastal environments. These features include modifications to the method to handle spherical coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting), and the modeling of internal barriers for capturing overtopping of levees and other structures. We will focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.

  4. On the log-normality of historical magnetic-storm intensity statistics: implications for extreme-event probabilities

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Riley, Pete

    2015-01-01

    An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to −Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst≥850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42,2.41] times per century; a 100-yr magnetic storm is identified as having a −Dst≥880 nT (greater than Carrington) but a wide 95% confidence interval of [490,1187] nT.

  5. North Atlantic storm driving of extreme wave heights in the North Sea

    NASA Astrophysics Data System (ADS)

    Bell, R. J.; Gray, S. L.; Jones, O. P.

    2017-04-01

    The relationship between storms and extreme ocean waves in the North Sea is assessed using a long-period wave data set and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to intense extratropical cyclone winds from either the cold conveyor belt (northerly-wind events) or the warm conveyor belt (southerly-wind events). The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearward round the cyclone to the cold side of the warm front. The northerly-wind events provide a larger fetch to the central North Sea to aid wave growth. Southerly-wind events are associated with the warm conveyor belts of intense extratropical cyclones that develop in the left upper tropospheric jet exit region. Ensemble sensitivity analysis can provide early warning of extreme wave events by demonstrating a relationship between wave height and high pressure to the west of the British Isles for northerly-wind events 48 h prior. Southerly-wind extreme events demonstrate sensitivity to low pressure to the west of the British Isles 36 h prior.

  6. An operation manual for a time-series, storm-activated suspended sediment sampler deployed in the coastal ocean: function, maintenance, and testing procedures

    USGS Publications Warehouse

    Rendigs, Richard R.; Bothner, Michael H.

    2004-01-01

    This manual describes the operation and testing procedures for two models of a multi-port suspended sediment sampler that are moored in the coastal ocean and that collect samples on a programmable time schedule that can be interrupted to collect during a storm. The ability to sense and collect samples before, during, and after the height of a storm is a unique feature of these instruments because it provides samples during conditions when it is difficult or impossible to sample from a surface ship. The sensors used to trigger storm sampling are a transmissometer or a pressure sensor. The purpose of such samples is to assess composition and concentration of sediment resuspended from the seafloor during storms and subsequently transported within the coastal system. Both light transmission and the standard deviation of pressure from surface waves correlate with the passage of major storms. The instruments successfully identified the onset of storms and collected samples before, during, and after the storm maximum as programmed. The accuracy of determining suspended matter concentrations collected by the sediment sampler has not been fully evaluated. Preliminary laboratory tests using a suspension of muddy sediment collected in a near-bottom sediment trap yielded excellent results. However in laboratory tests with different sediment types, the suspended matter concentrations determined with these samplers became less accurate with increasing average grain size. Future calibration work is necessary and should be conducted in a facility that ideally has a water depth of at least 30 feet to prevent cavitation of the pump that draws sea water through the filters. The test facility should also have the capability for adding suspended matter of known composition and concentration to a fixed volume of seawater that is well mixed.

  7. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters through mixing. Finally, the combination of a higher lead fraction and thinner ice cover, driven in part by storms, helped facilitate an early under-ice phytoplankton bloom in May, far inside the ice pack. In summary the storms entail significant effects on the ice pack that may last much longer than the short-lived storm events.

  8. Cost-efficient and storm surge-sensitive bridge design for coastal Maine.

    DOT National Transportation Integrated Search

    2013-08-01

    Climatic variation felt through changing weather patterns is having increasingly acute effects on Maines : transportation infrastructure. Acute risk occurs as a result of events, such as storms and flooding, while chronic risk : surrounds longer r...

  9. Typhoon Sinlaku

    Atmospheric Science Data Center

    2013-04-16

    ... before the storm weakened as it moved inland. While the nature and formation of individual storm events is relatively well understood, ... clouds on climate is difficult to assess due to the variable nature of cloud cover at various altitudes. MISR's data products are designed ...

  10. HDSC/OWP

    Science.gov Websites

    Maximum Precipitation Documents Miscellaneous Publications Storm Analysis Record Precipitation Contact Us ; - Probability analysis for selected historical storm events learn more > - Record point precipitation for the Oceanic and Atmospheric Administration National Weather Service Office of Water Prediction (OWP) 1325 East

  11. Soil Nutrient Responses to Disturbance in a Northern Temperate Forest: The Influence of an Ice Storm Manipulation Experiment on Belowground Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Weitzman, J. N.; Groffman, P.

    2017-12-01

    Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the same forest, when N transformations appeared to change more in response to disturbance (i.e. there seemed to be a decrease in plant uptake of inorganic N in response to canopy loss).

  12. Soil Nutrient Responses to Disturbance in a Northern Temperate Forest: The Influence of an Ice Storm Manipulation Experiment on Belowground Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Wiley, E.; King, C.; Richardson, A. D.; Landhäusser, S.

    2016-12-01

    Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the same forest, when N transformations appeared to change more in response to disturbance (i.e. there seemed to be a decrease in plant uptake of inorganic N in response to canopy loss).

  13. Highly Relativistic Radiation Belt Electron Acceleration, Transport, and Loss: Large Solar Storm Events of March and June 2015

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J.C.; Erickson, P. J.; Fennell, Joseph; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; hide

    2016-01-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (Disturbance Storm Time Ring Current Index) value reaching 223 nanoteslas. On 22 June 2015 another strong storm (Dst reaching 204 nanoteslas) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E (Energy) greater than or approximately equal to 1 millielectronvolt) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 millielectronvolts in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong butterfly distributions with deep minima in flux at alpha equals 90 degrees. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported impenetrable barrier at L (L-shell magnetic field line value) approximately equal to 2.8 was pushed inward, but not significantly breached, and no E (Energy) greater than or approximately equal to 2.0 millielectronvolts electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  14. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    PubMed Central

    Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; Henderson, M. G.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-01-01

    Abstract Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection‐driven event occurred with a Dst (storm time ring current index) value reaching −223 nT. On 22 June 2015 another strong storm (Dst reaching −204 nT) was recorded. These two storms each produced almost total loss of radiation belt high‐energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis. PMID:27867796

  15. Final Scientific/Technical Report for Subseasonal to Seasonal Prediction of Extratropical Storm Track Activity over the U.S. using NMME data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Edmund Kar-Man

    The goals of the project are: 1) To develop and assess subseasonal to seasonal prediction products for storm track activity derived from NMME data; 2) Assess how much of the predictable signal can be associated with ENSO and other modes of large scale low frequency atmosphere-ocean variability; and 3) Further explore the link between storm track variations and extreme weather statistics. Significant findings of this project include the followings: 1) Our assessment of NMME reforecasts of storm track variability has demonstrated that NMME models have substantial skill in predicting storm track activity in the vicinity of North America - Subseasonalmore » skill is high only for leads of less than 1 month. However, seasonal (winter) prediction skill near North America is high even out to 4 to 5 months lead - Much of the skill for leads of 1 month or longer is related to the influence of ENSO - Nevertheless, lead 0 NMME predictions are significantly more skillful than those based on ENSO influence 2) Our results have demonstrated that storm track variations highly modulate the frequency of occurrence of weather extremes - Extreme cold, high wind, and extreme precipitation events in winter - Extreme heat events in summer - These results suggest that NMME storm track predictions can be developed to serve as a useful guidance to assist the formulation of monthly/seasonal outlooks« less

  16. Determination of solar wind energy input during different form of geomagnetic disturbances.

    NASA Astrophysics Data System (ADS)

    Dahal, S.; Adhikari, B.; Narayan, C.; Shapkota, N.

    2017-12-01

    A quantitative study on solar wind energy input during different form of geomagnetic disturbances as well as during quite period was performed. To enable a quantitative analysis, we estimate Akasofu parameter which plays an important role to understand the relationships between ionosphere-magnetosphere and solar wind energy input. For comparative purpose, the total energy budget of Non storm HILDCAA event (19th to 24th April 2003), Storm preceding HILDCAA event (14th to 19th May 2005), Geomagnetic sub-storm (12nd to 16th November 2003), Geomagnetic super sub-storm (12nd to 16th November 2003) and a Quiet period (18th to 21st July 2006) were also analyzed. Among these events the highest total energy budget was found during the occurrence of storm preceding HILDCAA. This is due to significant geomagnetic field perturbation as displayed on the value of interplanetary parameters. The principal cause of geomagnetic disturbance is the magnetic reconnection, which establishes an electrodynamic coupling between the solar plasma and the magnetosphere. Although there is distinct perturbation on SYM-H index for all events but the values are different. The highest pick value of SYM-H index ( -300nT) was found for the storm preceding HILDCAA.This results suggest that the effects of HILDCAAs, displayed on the value of the SYM-H index, depends on the amount of the energy injected into the ring current. In a complementary way, fluctuation pattern of Temperature, IMF magnitude, Bx component, By component, and AE index are also studied and the possible physical interpretations for the statistical results obtained during each events were discussed. We shall report the characteristics of Bz component during each events by the implementation of discrete wavelet transform (DWT) and cross correlation analysis. We did cross-correlation between solar wind energy and Bz component of IMF and found a negative correlation between them during the main phase of geomagnetic disturbances. These results help to understand the coupling process between solar wind and magnetosphere-ionosphere system. By DWT analysis we found distinct singularity in solar wind energy signal during the period when Bz component is highly perturbed. This result indicates that there are impulsive energy injections superposed to the smooth background process.

  17. Pesticides detected in urban streams in King County, Washington, 1998-2003

    USGS Publications Warehouse

    Frans, Lonna M.

    2004-01-01

    The U.S. Geological Survey and the King County Department of Natural Resources collected water samples from 14 sites on urban streams in King County during storms and during base flow between 1998 and 2003. The samples were analyzed for the presence of 155 pesticides and pesticide transformation products. Thirty-nine of the compounds were detected at least once during the study: 20 herbicides, 9 insecticides, 2 fungicides, 6 pesticide transformation products, and 2 other types of compounds. The most widespread compound was 4-nitrophenol, which was detected at all 14 sampling sites. The most frequently detected compound was pentachlorophenol, a fungicide, which occurred in more than 80 percent of the samples. The most frequently detected herbicides were prometon, trichlopyr, 2,4-D, and MCPP, and the most frequently detected insecticides were diazinon and carbaryl. All of the most frequently detected herbicides and insecticides were sold for homeowner use over the timeframe of this study. More compounds were detected during storms than during base flow, and were detected more frequently and typically at high concentrations during storms. Seven compounds were detected only during storms. Most of the compounds that were detected during storms occurred more frequently during spring storms than during autumn storms.

  18. Contribution of recent hurricanes to wetland sedimentation in coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, Kam-biu; Bianchette, Thomas; Zou, Lei; Qiang, Yi; Lam, Nina

    2017-04-01

    Hurricanes are important agents of sediment deposition in the wetlands of coastal Louisiana. Since Hurricanes Katrina and Rita of 2005, coastal Louisiana has been impacted by Hurricanes Gustav (2008), Ike (2008), and Isaac (2012). By employing the principles and methods of paleotempestology we have identified the storm deposits attributed to the three most recent hurricanes in several coastal lakes and swamps in Louisiana. However, the spatial distribution and volume of these storm depositions cannot be easily inferred from stratigraphic data derived from a few locations. Here we report on results from a GIS study to analyze the spatial and temporal patterns of storm deposition based on data extracted from the voluminous CRMS (Coastal Reference Monitoring System) database, which contains vertical accretion rate measurements obtained from 390 wetland sites over various time intervals during the past decade. Wetland accretion rates averaged about 2.89 cm/yr from stations sampled before Hurricane Isaac, 4.04 cm/yr during the 7-month period encompassing Isaac, and 2.38 cm/yr from sites established and sampled after Isaac. Generally, the wetland accretion rates attributable to the Isaac effects were 40% and 70% greater than before and after the event, respectively. Accretion rates associated with Isaac were highest at wetland sites along the Mississippi River and its tributaries instead of along the path of the hurricane, suggesting that freshwater flooding from fluvial channels, enhanced by the storm surge from the sea, is the main mechanism responsible for increased accretion in the wetlands. Our GIS work has recently been expanded to include other recent hurricanes. Preliminary results indicate that, for non-storm periods, the average wetland accretion rates between Katrina/Rita and Gustav/Ike was 2.58 cm/yr; that between Gustav/Ike and Isaac was 1.95 cm/yr; and that after Isaac was 2.37 cm/yr. In contrast, the accretion rates attributable to the effects of Gustav/Ike and Isaac were 4.41 cm/yr and 3.52 cm/yr, respectively. These results show that hurricane-related accretion rates in wetlands are 50 - 225% higher than the normal rates typical of non-storm periods.

  19. Prediction of Sym-H index by NARX neural network from IMF and solar wind data

    NASA Astrophysics Data System (ADS)

    Cai, L.; Ma, S.-Y.; Liu, R.-S.; Schlegel, K.; Zhou, Y.-L.; Luehr, H.

    2009-04-01

    Similar to Dst, the Sym-H index is also an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study an artificial neural network (ANN) of Nonlinear Auto Regressive with eXogenous inputs (NARX) has been developed to predict for the first time Sym-H index from solar wind and IMF parameters. In total 73 great storm events during 1998 to 2006 are used, out of which 67 are selected to train the network and the other 6 samples including 2 super-storms for test. The newly developed NARX model shows much better capability than usual BP and Elman network in Sym-H prediction. When using IMF Bz, By and total B with a history length of 90 minutes along with solar wind proton density Np and velocity Vsw as the original external inputs of the ANN to predict Sym-H index one hour later, the cross-correlation between NARX network predicted and Kyoto observed Sym-H is 0.95 for the 6 test storms as a whole, even as high as 0.95 and 0.98 respectively for the two super-storms. This excellent performance of the NARX model can mainly be attributed to a feedback from the output neuron with a suitable length of about 120 min. to the external input. It is such a feedback that makes the ring current status properly brought into effect in the prediction of storm-time Sym-H index by our NARX network. Furthermore, different parameter combinations with different history length (70 to 120 min.) for IMF and solar wind data as external inputs are examined along with different hidden neuron number. It is found that the NARX network with 10 hidden units and with 100 min. length of Bz, Np and Vsw as external inputs provides the best results in Sym-H prediction. Besides, efforts have also been made to predict Sym-H longer time ahead, showing that the NARX network can predict Sym-H index 180 min. ahead with correlation coefficient of 0.94 between predicted and observed Sym-H and RMSE less than 19 nT for the 6 test samples.

  20. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring

    NASA Astrophysics Data System (ADS)

    Wade, A. J.; Palmer-Felgate, E. J.; Halliday, S. J.; Skeffington, R. A.; Loewenthal, M.; Jarvie, H. P.; Bowes, M. J.; Greenway, G. M.; Haswell, S. J.; Bell, I. M.; Joly, E.; Fallatah, A.; Neal, C.; Williams, R. J.; Gozzard, E.; Newman, J. R.

    2012-11-01

    This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames - one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

Top